DEMANDE DE BREVET D’INVENTION

Demandeur(s) : PEUGEOT CITROEN AUTOMOBILES SA Société anonyme — FR.

Inventeur(s) : SABRIE JULIEN, RIMAUX STEPHANE et CADILHAC THOMAS.

Titulaire(s) : PEUGEOT CITROEN AUTOMOBILES SA Société anonyme.

Mandataire(s) : PEUGEOT CITROEN AUTOMOBILES SA.

DISPOSITIF ET PROCEDE POUR LE REFROIDISSEMENT D’UN MOYEN DE STOCKAGE D’ENERGIE ELECTRIQUE.

L’invention concerne un dispositif et un procédé pour le refroidissement d’un moyen de stockage d’énergie électrique, notamment une batterie à haut potentiel énergétique (110) lequel dispositif comprend :
- des moyens de refroidissement (130) désignés moyens de stockage ;
- une batterie dite basse tension (120) ;
- des moyens (130), alimentés en énergie par la batterie basse tension (120), aptes à accélérer le refroidissement des moyens de stockage (110).
L’invention concerne également un véhicule (100), notamment automobile, comprenant un tel dispositif, le dit véhicule comprenant un groupe motopropulseur électrique (220).
1

DISPOSITIF ET PROCÉDÉ POUR LE REFROIDISSEMENT D'UN MOYEN DE STOCKAGE D'ÉNERGIE ÉLECTRIQUE

L'invention concerne un dispositif et un procédé pour le refroidissement d'un moyen de stockage d'énergie électrique, notamment une batterie. Elle concerne également un véhicule, notamment automobile, comprenant un tel dispositif, ledit véhicule comprenant un groupe motopropulseur électrique.

Le groupe motopropulseur est alimenté par des moyens de stockage d'énergie électrique à haut potentiel énergétique, lesquels peuvent se présenter sous la forme d'une batterie, dite haute tension, ou encore d'une pile à combustible. Pour préserver la durée de vie de ces moyens, ceux-ci doivent être refroidis pour les maintenir dans une plage de température acceptable pour les composants qu'ils contiennent.

Lorsque le véhicule est en fonctionnement, une partie de l'énergie électrique délivrée par les moyens de stockage est utilisée pour leur propre refroidissement, lequel peut être réalisé selon différentes méthodes telles que la circulation d'un fluide caloporteur dans un circuit de refroidissement ou par le brassage, à l'aide d'un ventilateur, d'un flux d'air. Une difficulté de mise en œuvre réside dans la poursuite de ce refroidissement lorsque le véhicule est à l'arrêt, plus particulièrement lorsque le groupe motopropulseur a été fortement sollicité dans les instants précédant l'arrêt du véhicule et que les moyens de stockage d'énergie ont été portés à une température élevée. Or, pour des raisons de sécurité, ces moyens à haut potentiel énergétique ne peuvent continuer à débiter de l'énergie pour assurer leur refroidissement lorsque le véhicule est à l'arrêt.

Les moyens de stockage d'énergie électrique à haut potentiel énergétique sont dits en fonctionnement lorsqu'ils délivrent un courant électrique dans un circuit nécessairement fermé. Ils ne sont plus en fonctionnement lorsque le circuit électrique dont ils font partie est ouvert.

La présente invention vise à remédier aux inconvénients de l'art antérieur par un dispositif pour le refroidissement de moyens de stockage d'énergie électrique à haut potentiel énergétique, lequel dispositif comprend :

- des moyens de refroidissement des moyens de stockage ;
- une batterie dite basse tension ;
- des moyens, alimentés en énergie par la batterie basse tension, aptes à refroidir les moyens de stockage lorsque ces derniers ne sont plus en fonctionnement.

Ainsi l'énergie contenue dans la batterie basse tension peut être utilisée sans risque pour refroidir les moyens de stockage à haut potentiel énergétique lorsque ceux-ci ne sont plus en fonctionnement.

L'invention peut être mise en œuvre selon des modes réalisation avantageux exposés ci-après, lesquels peuvent être considérés individuellement ou selon toute combinaison techniquement opérante.

Avantageusement, le dispositif comprend en outre un dispositif de charge apte à utiliser l'énergie des moyens de stockage à haut potentiel énergétique lorsque ceux-ci sont en fonctionnement pour recharger la batterie basse tension. Ainsi l'état de charge de la batterie basse tension peut être maintenu à tout moment à un niveau suffisant pour refroidir les moyens de stockage.

Selon un mode de réalisation, les moyens de refroidissement comprennent un ventilateur.

Selon un mode de réalisation particulier, les moyens de stockage à haut potentiel énergétique sont constitués par une batterie dite haute tension. Ainsi le dispositif est plus particulièrement adapté à une utilisation dans un véhicule hybride électrique.

L'invention concerne également un véhicule, notamment automobile, comprenant un dispositif selon l'un quelconque des modes de réalisation de l'invention et un groupe motopropulseur alimenté en énergie électrique par les moyens de stockage à haut potentiel énergétique. Le dispositif objet de l'invention est avantageusement utilisé dans un tel véhicule pour prolonger la durée de vie des moyens de stockage à haut potentiel énergétique, et ainsi réduire les coûts de maintenance dudit véhicule.

L'invention concerne également un procédé pour le refroidissement de moyens de stockage d'énergie électrique à haut potentiel énergétique qui comprend :
- une étape de refroidissement des moyens de stockage lorsque ceux-ci sont en fonctionnement et délivrent un courant électrique dans un circuit de
puissance ;

-une étape de refroidissement des moyens de stockage lorsqu’ils ne sont plus en fonctionnement, cette étape mettant en œuvre une batterie dite basse tension.

Avantageusement ce procédé comprend, lorsque les moyens de stockage sont en fonctionnement, des étapes consistant à :

a. mesurer la température des moyens de stockage à haut potentiel énergétique lorsque lesdits moyens sont en fonctionnement ;

b. déterminer un intervalle de temps jusqu’à la prochaine coupure de fonctionnement des moyens de stockage à haut potentiel énergétique ;

c. extrapolier la température atteinte par lesdits moyens de stockage lors de ladite prochaine coupure de fonctionnement ;

d. calculer l’énergie nécessaire pour ramener lesdits moyens de stockage à une température nominale définie après la coupure de fonctionnement ;

e. mesurer l’état de charge de la batterie basse tension pour en déduire un besoin de charge en regard de l’énergie nécessaire déterminée à l’étape d ainsi que le temps de charge nécessaire pour effectuer une charge correspondant à ce besoin ;

f. comparer le temps de charge nécessaire avec l’intervalle de temps déterminé à l’étape b ;

g. déclencher la charge de la batterie basse tension si le temps de charge est supérieur ou égal à l’intervalle de temps déterminé à l’étape b.

Ainsi, ce procédé permet d’optimiser la charge de la batterie basse tension en maintenant ladite charge au strict nécessaire pour le refroidissement des moyens de stockage à haut potentiel énergétique et au meilleur rendement de la batterie basse tension. Il limite ainsi le prélèvement d’énergie, par la batterie basse tension,
sur les moyens de stockage à haut potentiel énergétique.

Avantageusement, le procédé peut être mis en œuvre dans un véhicule comprenant un dispositif selon l’un quelconque des modes de réalisation de l’invention, l’intervalle de temps calculé à l’étape b étant déterminé par les conditions de roulage dudit véhicule. Ainsi, la charge de la batterie basse tension étant optimisée, l’autonomie du véhicule en mode de propulsion électrique est accrue tout en préservant la durée de vie des moyens de stockage.

Selon un premier mode de réalisation du procédé appliqué à un véhicule à propulsion électrique, les conditions de roulage du véhicule sont déterminées par la mesure de la vitesse du véhicule, l’évolution de celle-ci au cours du temps et l’analyse de ces données à l’aide d’une base statistique. Ce mode de réalisation est plus particulièrement adapté à un véhicule dont le mode de propulsion est majoritairement ou exclusivement électrique.

Selon un autre mode de réalisation du procédé appliqué à un véhicule comportant un dispositif de géolocalisation, l’intervalle de temps déterminé à l’étape b est calculé à partir de données issues du ce dispositif de géolocalisation. Ce mode de réalisation est plus particulièrement, mais pas exclusivement, adapté aux véhicules hybrides dans lesquels les modes de propulsions peuvent être alternés ou combinés et où les conditions de roulage en termes de vitesse et de puissance transmise dans la propulsion ne sont pas toujours corrélatées avec la sollicitation des moyens de stockage à haut potentiel énergétique.

Ces deux modes de réalisation du procédé appliqué à un véhicule comprenant une propulsion électrique peuvent être combinés.

L’invention sera maintenant plus précisément décrite dans le cadre de ses modes de réalisation préférés, nullement limitatifs, et des figures 1 à 3, dans lesquelles :

- la figure 1 ; représente de manière schématique en vue de dessus et en coupe un véhicule automobile comprenant un dispositif selon un exemple de réalisation du dispositif objet de l’invention ;

- la figure 2, est un logigramme du procédé selon l’invention et

- la figure 3 montre un exemple d’extrapolation temporelle de la température des moyens de stockage à haut potentiel énergétique.
Figure 1, selon un exemple de réalisation appliqué à un véhicule automobile 100, le dispositif objet de l’invention comprend des moyens de stockage d’énergie électrique à haut potentiel énergétique 110, lesquels fournissent en énergie, par un circuit de puissance 112, un groupe motopropulseur électrique 220 dont la puissance est utilisée pour mouvoir le véhicule par l’intermédiaire d’un train de propulsion 200. Pour une application dans un véhicule automobile, les moyens de stockage à haut potentiel énergétique 110 prennent plus souvent, mais pas exclusivement, la forme d’une batterie haute tension, généralement basée sur la technologie lithium-ion. Le circuit de puissance 112 comporte également une dérivation vers un transformateur / répartiteur pilote 140, qui permet de transformer la tension issue de la batterie haute tension en une tension apte à recharger une batterie basse tension 120 et à alimenter un moto-ventilateur 130, lequel permet de refroidir la batterie haute tension 110 par brassage d’air. D’autre part, le transformateur / répartiteur 140 comprend des moyens de connexion pilote (non représentés), de sorte qu’il peut alimenter le moto-ventilateur 130 par l’énergie électrique issue de la batterie haute tension ou par la batterie basse tension 120 ainsi qu’alimenter cette dernière en énergie électrique issue de la batterie haute tension 110. Lorsque le groupe motopropulseur est à l’arrêt et que la batterie basse tension 120 alimente le moto-ventilateur 130, le circuit de puissance 112 est ouvert.

Le transformateur / répartiteur 140 est piloté par un superviseur 150, lequel collecte des données par différents capteurs. Ainsi, selon un exemple de réalisation, le superviseur utilise un capteur de température 111 pour mesurer la température de la batterie haute tension 110, un capteur de tension électrique 121 pour mesurer l’état de charge de la batterie basse tension, un capteur 210 approprié pour mesurer la vitesse du véhicule, ainsi qu’un capteur 151 pour mesurer la température ambiante. Le superviseur 150 reçoit également des informations sur la géolocalisation du véhicule, en étant par exemple connecté au dispositif de navigation 160 du véhicule.

Figure 2, selon un exemple de réalisation la première étape 500 du procédé objet de l’invention consiste à mesurer la température 1110 de la batterie haute tension 110. Cette étape, comme les autres étapes du procédé est mise en œuvre par le superviseur 150 qui comprend des moyens de mémoire, de calcul, ainsi que
d'acquisition et de traitement du signal. La température 1110 est mesurée par au moins un capteur 111 celui – ci mesurant directement la température de la batterie haute tension. De manière additionnelle, un ou plusieurs capteurs complémentaires (non représentés) peuvent être utilisés pour mesurer la température du fluide caloporteur utilisé pour le refroidissement de ladite batterie.

Dans une étape 510 se déroulant parallèlement à la précédente, l'intervalle de temps séparant l'instant présent de la prochaine coupure de fonctionnement est calculé à partir d'informations telles que la vitesse 2100 du véhicule, mesurée par le capteur de vitesse 210, ou telle que la localisation 1600 du véhicule 100, laquelle localisation est issue des moyens de navigation 160 dudit véhicule. Par exemple, si le superviseur 150 détecte des variations de vitesses importantes, la vitesse maximale étant inférieure ou égale à 50 km/h, il en déduit qu'il s'agit d'un parcours de type urbain et que sa durée sera statistiquement de l'ordre de dix minutes. Si au contraire il détecte une vitesse stabilisée et supérieure ou égale à 100 km/h il en déduit qu'il s'agit d'un parcours autoroutier dont la durée moyenne est statistiquement de l'ordre d'une heure. Alternativement, connaissant la destination probable et la vitesse moyenne sur le parcours par le système de navigation 160 du véhicule, le superviseur en déduit l'intervalle de temps séparant l'instant présent de la future coupure de fonctionnement.

Les données statistiques peuvent être établies sous forme de tables ou corrélées à des comportements complexes mesurés au travers des variations de vitesse, par des techniques d'intelligence artificielle ou par apprentissage telle que des réseaux de neurones ou des modélisations récursives.

Connaissant cet intervalle de temps et la température 1110 de la batterie haute tension 110, une étape d'extrapolation 520 prend avantageusement en compte la température extérieure 1510 et permet de calculer la température probable de la batterie haute tension au moment de la coupure du fonctionnement.

Selon un exemple d'extrapolation, figure 3, celle-ci est obtenue en mesurant l'évolution de la température 402 de la batterie haute tension en fonction du temps 400. Ainsi, à l'instant initial une température 1111 initiale de la batterie haute tension est mesurée. Cette température augmente au cours du temps pour atteindre une deuxième température 1112 après un premier laps de temps 410. Une troisième
1113 et une quatrième 1114 températures sont atteintes après un deuxième 411 et un troisième 412 laps de temps. À partir de cette mesure, la température est extrapolée 520 par une fonction mathématique déterminée jusqu’à la température 1115 correspondant à l’instant 401 de la coupure de fonctionnement présumée.

En revenant à la figure 2, la connaissance de la température 1115 de la batterie haute tension à l’instant présumé 401 de la coupure de fonctionnement, permet, dans une étape de calcul 530, de déterminer la quantité d’énergie nécessaire pour refroidir la batterie haute tension et ramener celle-ci dans des conditions thermiques non dommageables pour sa durée de vie.

Par exemple, si l’on note E l’énergie nécessaire pour refroidir la batterie haute tension 110, M la masse de la batterie haute tension, Cp la capacité calorifique de ladite batterie, TA la température 1115 calculée de la batterie au moment de la coupure de fonctionnement et TC la température visée de la batterie haute tension à l’issue du refroidissement, alors :

\[ E = M \cdot C_p \cdot (T_A - T_C) \]

La connaissance de cette quantité énergie E à l’issue de cette étape de calcul, permet au cours d’une autre étape de calcul utilisant notamment l’information 1210 de l’état de charge de batterie basse tension de calculer 540 le besoin en charge de ladite batterie basse tension et d’en déduire le temps de charge nécessaire 541.

Le temps de charge est obtenu en comparant l’état de charge de la batterie basse tension avec la quantité d’énergie nécessaire au refroidissement de la batterie haute tension, en prenant pour cible un taux de charge optimum de la batterie basse tension.

En comparant, le temps nécessaire à cette charge 541 et l’intervalle de temps restant 401 jusqu’à la coupure présumée du fonctionnement, une étape de comparaison 550 compare le temps de charge 541 et le temps 401 jusqu’à la coupure de fonctionnement, et une étape de test 560 détermine si le temps de charge 541 est inférieur ou égal à l’intervalle de temps 401 déterminé précédemment. Dans le cas où le test 560 est positif le superviseur déclenche une étape 570 de charge de la batterie basse tension. Dans le cas contraire le processus est reconduit depuis le début.
Pour recharger la batterie basse tension 120, le superviseur 150 pilote le transformateur / répartiteur 140 de sorte qu’une partie de la puissance de la batterie haute tension serve à charger la batterie basse tension.

Lorsque le véhicule s'arrête et que le fonctionnement est coupé, le superviseur, par l'intermédiaire du transformateur / répartiteur 140 ouvre le circuit de puissance 112 et alimente le moto-ventilateur 130 par la batterie basse tension 120 pour assurer le refroidissement de la batterie haute tension 110.

L'homme du métier adaptera sans difficulté d'autres variantes de réalisation. Par exemple, le moto-ventilateur peut être remplacé par une pompe hydraulique faisant circuler un fluide caloporteur pour le refroidissement de moyens de stockage à haut potentiel énergétique. Alternativement un circuit de refroidissement liquide peut être utilisé, la batterie basse tension alimentant un ventilateur permettant d'accélérer le refroidissement dudit liquide dans un radiateur. La charge de la batterie basse tension peut être réalisée par un générateur mis en mouvement par le groupe motopropulseur 220 ou par un groupe motopropulseur à combustion interne si le véhicule 100 est un véhicule hybride.

La description ci-avant illustre clairement que par ses différentes caractéristiques et leurs avantages, la présente invention atteint les objectifs visés. En particulier, elle permet d'optimiser l'instant de la charge d'une batterie basse tension pour le refroidissement de moyens de stockage à haut potentiel énergétique en maîtrisant la consommation énergétique du dispositif.
REVENDICATIONS

1. Dispositif pour le refroidissement de moyens de stockage d'énergie électrique à haut potentiel énergétique (110) caractérisé en ce qu'il comprend :

   - des moyens de refroidissement (130) des moyens de stockage ;

   - une batterie dite basse tension (120) ;

   - des moyens (130), alimentés en énergie par la batterie basse tension (120), aptes à refroidir les moyens de stockage (110) lorsque ces derniers ne sont plus en fonctionnement.

2. Dispositif selon la revendication 1 caractérisée en ce qu'il comprend un dispositif de charge (140) apte à utiliser l'énergie des moyens de stockage à haut potentiel énergétique (110) lorsque ceux-ci sont en fonctionnement pour recharger la batterie basse tension (120).

3. Dispositif selon la revendication 1 caractérisée en ce que les moyens pour accélérer le refroidissement comprennent un ventilateur (130).

4. Dispositif selon la revendication 1 caractérisée en ce que les moyens de stockage à haut potentiel énergétique (110) sont constitués par une batterie dite haute tension.

5. Véhicule (100), notamment automobile, caractérisé en ce qu'il comprend un dispositif selon l'une quelconque des revendications précédentes et un groupe motopropulseur (220) alimenté en énergie électrique par les moyens de stockage à haut potentiel énergétique (110).

6. Procédé pour le refroidissement de moyens de stockage d'énergie électrique à haut potentiel énergétique (110) caractérisé en ce qu'il comprend :

   - une étape de refroidissement des moyens de stockage (110) lorsque ceux-ci
sont en fonctionnement et délivrent un courant électrique dans un circuit de puissance (112) ;
-une étape de refroidissement des moyens de stockage (110) lorsqu’ils ne délivrent plus de courant électrique, cette étape mettant en œuvre une batterie dite basse tension (120).

7. Procédé selon la revendication 6 caractérisé en ce qu’il comprend, alors que les moyens de stockage sont en fonctionnement, des étapes consistant à :

   a. mesurer la température (1110, 1111, 1112, 1113) des moyens de stockage à haut potentiel énergétique (110) lorsque lesdits moyens sont en fonctionnement ;

   b. déterminer un intervalle de temps (401) jusqu’à la prochaine coupure de fonctionnement des moyens de stockage à haut potentiel énergétique ;

   c. extrapoler (520) la température (1115) atteinte par les moyens de stockage lors de ladite prochaine coupure de fonctionnement ;

   d. calculer (530) l’énergie nécessaire pour ramener les moyens de stockage à une température nominale définie après la coupure de fonctionnement ;

   e. mesurer (540) l’état de charge (1210) de la batterie basse tension pour en déduire un besoin de charge en regard de l’énergie nécessaire déterminée à l’étape d ainsi que le temps de charge (541) nécessaire pour effectuer une charge correspondant à ce besoin ;

   f. comparer (550) le temps de charge nécessaire (541) avec l’intervalle de temps (401) déterminé à l’étape b ;

   g. déclencher (570) la charge de la batterie basse tension si le temps de charge (531) est supérieur ou égal à l’intervalle de temps (401) déterminé à l’étape b.
8. Procédé selon la revendication 7 mis en œuvre dans un véhicule selon la revendication 5 caractérisé en ce que l'intervalle de temps (401) calculé à l'étape b est déterminé par les conditions de roulage du véhicule.

9. Procédé selon la revendication 8 caractérisé en ce que les conditions de roulage du véhicule sont déterminées par la mesure de la vitesse (2100) du véhicule, de l'évolution de celle-ci au cours du temps et de l'analyse de ces données à l'aide d'une base statistique.

10. Procédé selon la revendication 8 caractérisé en ce que le véhicule comprend un dispositif de géolocalisation (160) et que l'intervalle de temps déterminé à l'étape b est calculé à partir de données issues du dispositif de géolocalisation.
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HO1M10/48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B60L11/18</td>
</tr>
</tbody>
</table>

**DOMAINES TECHNIQUES RECHERCHÉS (IPC)**

- HO1M

---

**Date d'achèvement de la recherche:** 8 mars 2011

**Examinateur:** Koessler, Jean-Luc
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 08-03-2011.

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1983603 A1</td>
<td>22-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007200780 A</td>
<td>09-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007086231 A1</td>
<td>02-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080091495 A</td>
<td>13-10-2008</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82