
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0227060 A1

Allen et al.

US 20120227060A1

(43) Pub. Date: Sep. 6, 2012

(54)

(75)

(73)

(21)
(22)

(63)

METHOD AND APPARATUS FOR
WIDGET CONTAINER HOSTING AND
GENERATION

Inventors: Stewart O. Allen, Reston, VA (US);
Scott F. Cosby, Rye, NY (US);
John A. Fath, Arlington, VA (US);
Dylan J. Greene, Falls Church, VA
(US); Matthew J. Keesan,
Washington, DC (US); Hooman
Radfar, Arlington, VA (US); Cyrus
B. Radfar, Arling, VA (US); Carlos
F. Reverte, Miami, FL (US)

Assignee: Clearspring Technologies, Inc.,
McLean, VA (US)

Appl. No.: 13/290,192
Filed: Nov. 7, 2011

Related U.S. Application Data

Continuation of application No. 1 1/537.362, filed on
Sep. 29, 2006, now Pat. No. 8,056,092.

1 OOO

101 O

1030

Generating a widget container that
Contains a widget and a service

Receiving a metadata parameter
value associated with the widget

Container

Receiving a request for the widget
Container when an instance of a

reference to the widget container is
accessed from a processor

readable vehicle

Modifying the widget container
based on the metadata parameter

Publication Classification

(51) Int. Cl.
G06F 3/00 (2006.01)

(52) U.S. Cl. .. 719/320

(57) ABSTRACT

A method includes receiving at least one of a widget or a
reference to a widget, where the widget can be at least one of
a static data object, a media object, or a software object. At
least a portion of a widget container, which is a procedural
Software framework containing a service module associated
with the widget and the widget, is generated. The service
module can be a pre-defined function associated with the
widget container before the widget container is generated.
The widget container can be configured to be executed at a
widget-container processing device in response to a reference
to the widget container being accessed from a processor
readable vehicle.

module

Value

1040
Sending the modified widget

container to a widget-container
processing device in response to

the request

1050 Modifying the widget container in
after the widget container has been

Served

US 2012/0227060 A1 Patent Application Publication

US 2012/0227060 A1 Sep. 6, 2012 Sheet 2 of 11 Patent Application Publication

4-*N 13A je

Patent Application Publication Sep. 6, 2012 Sheet 3 of 11 US 2012/0227060 A1

300 Receiving a widget and/or a reference to a
widget

310 Receiving a service module and/or a
reference to a Service module

Generating a widget container that
320 contains the widget and the service

module in response to an instruction from
a processor

330 Associating a widget-container identifier
with the widget container when the widget

container is generated

340 Storing the widget container for later
distribution

FG. 3

Patent Application Publication Sep. 6, 2012 Sheet 4 of 11 US 2012/0227060 A1

400 Receiving a request for the widget
container in response to an instance of a
reference to the container being accessed

from a processor-readable vehicle

410 Retrieving the widget container from a
memory using information in the request

420 Modifying dynamically the widget
Container

430 Sending the container to a widget
Container processing device in response

to the request

FIG. 4

US 2012/0227060 A1 Sep. 6, 2012 Sheet 5 of 11 Patent Application Publication

Patent Application Publication Sep. 6, 2012 Sheet 6 of 11 US 2012/0227060 A1

Including a first placement identifier in a first
600 instance of a reference to a widget container

placed in a first processor-readable vehicle, the
widget container Contains a placement Service

module

Accessing the first instance of the reference to
610 the widget container from the first processor

readable vehicle at a widget-container
processing device

Sending and executing an instance of the widget
62O container at the widget-container processing

device in response to the first instance of the
reference being accessed

Sending a request to a widget-container host to
place a second instance of the reference to the
widget container in a second processor-readable

vehicle using the placement service module

630

Generating and associating a second placement
identifier with the second instance of the

reference at a widget-container host

640

650 Placing the second instance of the reference in
the second-processor readable vehicle using the

widget-container host

660 Associating the first placement identifier with the
second placement identifier as parentage

information

F.G. 6

Patent Application Publication Sep. 6, 2012 Sheet 7 of 11 US 2012/0227060 A1

& S.

O
O
N
ar

CD
.
(S

will
C
O
O
se
CD
O)
O

S

US 2012/0227060 A1 Sep. 6, 2012 Sheet 8 of 11 Patent Application Publication

TOET| | | ? n | :::|

- P - -

009

US 2012/0227060 A1 Sep. 6, 2012 Sheet 9 of 11 Patent Application Publication

Patent Application Publication Sep. 6, 2012 Sheet 10 of 11 US 2012/0227060 A1

Generating a widget container that
1OOO w

Contains a widget and a service
module

Receiving a metadata parameter
value associated with the widget

Container

101O

Receiving a request for the widget
102O COntainer When an instance Of a

reference to the widget container is
accessed from a processor

readable vehicle

Modifying the Widget Container
based on the metadata parameter

Value

Sending the modified widget
104.O container to a widget-container

processing device in response to
the request

1050 Modifying the widget container in
after the Widget Container has been

Served

F.G. 1 O

Patent Application Publication Sep. 6, 2012 Sheet 11 of 11 US 2012/0227060 A1

Sending a widget container that
1100 contains a first Widget to a widget

container processing device

Receiving a request for a second
1110 widget based on the first widget

through a service module

Receiving a metadata parameter
112O Value associated with the first

widget in response to the request

Associating the metadata parameter
value associated with the first Widget

1130 with a metadata parameter Value of
a second widget, the second Widget
is of a different content type than the

first widget

1140 Sending the second Widget to the
widget-container processing device

FIG 11

US 2012/0227060 A1

METHOD AND APPARATUS FOR
WIDGET CONTAINER HOSTING AND

GENERATION

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a continuation of U.S. patent
application Ser. No. 1 1/537,362, filed Sep. 29, 2006, and
entitled “Method and Apparatus for Widget-Container Host
ing and Generation.” which is incorporated herein by refer
ence in its entirety.

BACKGROUND

0002 The disclosed invention relates generally to distri
bution of content over a network, and in particular, to con
tainerization of static, media, and/or software objects in a
procedural software framework.
0003. The worldwide web is a platform that has been used
to exchange various forms of content including videos, text,
music, etc. Often this content is distributed to users and/or
computers in an ad-hoc fashion, for example, using e-mail or
as files embedded in a web page. Recently, primitive forms of
“viral distribution or replication of content have been devel
oped that allow users to more easily spread content to other
users than previously known ad-hoc methods. Although these
primitive methods are more convenient than distributing con
tent in an ad-hoc fashion, they have many shortcomings. For
example, they do not provide for the ability to easily add
services related to the content and services, if any exist,
cannot be dynamically modified. The spreading of content
using ad-hoc methods and/or primitive forms of viral spread
ing cannot be tracked as a service in a useful way. Content
also cannot be readily shared with users of different platforms
(e.g., personal digital assistant to personal computer). Thus,
there is a need for an apparatus and method for combining
content with services.

SUMMARY OF THE INVENTION

0004. A method includes receiving at least one of a widget
ora reference to a widget, where the widget can beat least one
of a static data object, a media object, or a software object. At
least a portion of a widget container, which is a procedural
Software framework containing a service module associated
with the widget and the widget, is generated. The service
module can be a pre-defined function associated with the
widget container before the widget container is generated.
The widget container can be configured to be executed at a
widget-container processing device in response to a reference
to the widget container being accessed from a processor
readable vehicle.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. The present invention is described with reference to
the accompanying drawings. In the drawings, identical or like
reference numbers indicate identical or functionally similar
elements.
0006 FIG. 1 is a block diagram of a widget-container host
connected via a network to several widget-container process
ing devices, according to an embodiment of the invention.
0007 FIG. 2 is a schematic diagram illustrating a widget
container being executed/displayed within a framework of a
processor-readable vehicle, according to an embodiment of
the invention.

Sep. 6, 2012

0008 FIG. 3 is a flow chart that illustrates a method for
generating a widget container, according to an embodiment
of the invention.
0009 FIG. 4 is a flow chart that illustrates a method for
sending a widget container to a container processing device,
according to an embodiment of the invention.
0010 FIG. 5 is a schematic diagram that illustrates a wid
get-container host sending instances of a widget container for
execution within several processor-readable vehicles, accord
ing to an embodiment of the invention.
0011 FIG. 6 is a flow chart that illustrates an example
method for placing a reference and generating a placement
identifier that can be used to generate parentage information,
according to an embodiment of the invention.
0012 FIG. 7 is a schematic diagram of a widget container
that contains a widget and a placement service module,
according to an embodiment of the invention.
0013 FIG. 8 is an example metadata database that illus
trates some of the metadata parameters and values that can be
generated for and associated with widget containers, accord
ing to an embodiment of the invention.
0014 FIG. 9 is a schematic diagram illustrating a widget
container host accessing metadata parameter values from a
metadata database, according to an embodiment of the inven
tion.
0015 FIG. 10 is a flow chart that illustrates a method for
dynamically modifying a widget container, according to an
embodiment of the invention.
0016 FIG. 11 is a flow chart that illustrates a method for
retrieving a widget using metadata parameter values, accord
ing to an embodiment of the invention.

DETAILED DESCRIPTION

0017. A widget container (also can be referred to as a
container) is a procedural Software framework that contains a
widget and/or contains at least one service module that can be
associated with the widget. As a procedural software frame
work, the widget container can be a series of instructions that
are executable or interpretable by, for example, a computer
processor. The widget and/or service module is “contained
in the widget container when a widget and/or service module
is either referenced in a widget container or actually inte
grated into the procedural software framework of the widget
container. The widget and/or service module when being
contained in the widget container can be referred to as being
wrapped or containerized in the widget container.
0018. The widget container is a portable framework that
can be embedded in (e.g., referenced using an embed or
object tag) and/or accessed from/using a processor-readable
vehicle (e.g., webpage). The widget can be any type of object
Such as a static data object (e.g., text or textual document),
media object (e.g., video, mp3, or image), and/or Software
object (e.g., javascript applet) that can be contained (e.g.,
integrated or referenced) in the widget container. In many
embodiments, the widget and/or the service module (or ref
erences to the widget and/or service module) can be referred
to as components of the widget container.
0019. The service module (or reference to the service
module) contained in the widget container can be a pre
defined and/or customizable (e.g., user-defined) function
related to a variety of functions (e.g., tracking, placing)
related to the widget container and/or its components. The
service module and/or widget can be wrapped in the con
tainer, for example, at the time that the widget container is

US 2012/0227060 A1

first generated, after the widget container has been generated,
and/or dynamically when the widget container is being
served. The widget container can be created using a widget
generation engine that is implemented in hardware and/or
Software (e.g., using a user-interface). In some embodiments,
the widget-container generation engine can be included in a
widget-container host and/or a widget-container creation
device. In some embodiments, the widget container can be
dynamically modified using dynamic injection (i.e., injecting
data into the widget container just before/when the widget
container is served). Dynamic injection is discussed in more
detail in connection with tracking parameter values and in
connection with FIG. 4.

0020. The widget container can be sent from a widget
container host to a widget-container processing device Such
as, for example, a computer or mobile phone when a reference
to the widget container is accessed from, for example, a
webpage. The widget container can be executed on various
platforms and instances of references to the widget container
can be included in and/or spread to a variety of processor
readable vehicles that can be read using various widget-con
tainer processing devices. Also, metadata can be associated
with the widget container and/or a component of the widget
container (e.g., widget), so that the widget container and/or
component of the widget container can be, for example,
dynamically customized and/or tracked.
0021 Referring now to the drawings, FIG. 1 is a block
diagram of a widget-container host 100 connected via a net
work 130 to several widget-container processing devices 150.
The widget-container host 100 is a centralized management
component that controls, configures, and coordinates the
sending of widget containers to the container processing
devices 150. For example, an instance of a widget container
that is stored at the widget-container host can be sent from the
widget-container host 100 to one or more of the widget
container processing devices 150 in response to one or more
requests for the widget container received from the widget
container processing devices 150. A widget container is a
procedural Software framework that contains a widget and/or
a service module. In some embodiments, the service module
can be associated with the widget.
0022. Each of the widget-container processing devices
150 can be any type of device that is configured to process the
widget container and a widget and/or service module that can
be contained in the widget container. Each of the widget
container processing devices 150 can be, for example, a com
puter, a mobile phone, a personal digital assistant (PDA),
and/or a server. The widget container can be configured so
that the widget container can be processed by each of these
widget-container processing devices 150 even though the
platforms (e.g., hardware, architecture, software, operating
system, runtime libraries, programming languages) of the
respective widget-container processing devices 150 may be
different. The network 130 can be any type of network such as
a local area network (LAN) and/or a wide area network
(WAN) implemented as a wired and/or wireless network in a
variety of environments such as, for example, an office com
plex.
0023 The widget-container host 100, in response to a
request to access, modify, and/or define a widget container,
retrieves a widget container from a memory 105 where one or
more widget containers are stored. The memory 105 can be,
for example, a database included in the widget-container host
100. In some embodiments, the widget container can be

Sep. 6, 2012

stored in and accessed from a memory device Such as a
database that is a remote database and/or a distributed data
base that can be accessed by the widget-container host 100 via
network 130 or via a separate network (not shown).
0024. In this embodiment, a widget that is contained (e.g.,
referenced or integrated) in the widget container is stored in
and served from the memory 105 of the widget-container host
100 to one of the widget-container processing devices 150. In
other words, the widget container and/or the components of
the widget container are stored in the memory 105 and sent to
a widget-container processing device 150 over the network
130 in response to a request for the widget container from the
widget-container processing device 150. In many embodi
ments, a widget container served from the widget-container
host 100 can contain a reference to one or more widgets that
are served from, for example, a widget server (not shown).
Likewise, in Some embodiments, a widget container served
from the widget-container host 100 can contain a reference to
one or more service modules that are served from, for
example, a service module server (not shown). The widget
server and/or service module server can be connected to the
widget-container processing devices 150 and/or widget-con
tainer host 100 via network 130 or via a separate network (not
shown).
0025. The memory 105, in some embodiments can also be
configured to store metadata parameters and metadata param
eter values (e.g., tracking parameter values) associated with
widget containers and/or a component of the widget container
(e.g., widget or service module). The metadata parameters
and values can be used to, for example, dynamically custom
ize or track the widget container and/or the component of the
widget container. Metadata parameter value storage, manipu
lation, and usage are described in more detail in connection
with FIGS. 8-11.

0026 FIG. 1 also shows that a widget-container creation
device 120 can be connected to the container host 100 via
network 130. The widget-container creation device 120 can
be used to generate, define, and/or modify a widget container.
The widget-container creation device 120 can be, for
example, a personal computer, a mobile device (e.g., mobile
phone and/or PDA), and/or a server. In some embodiments,
the widget-container creation device 120 can be configured to
automatically generate and/or modify widgets containers, for
example, when a widget is received. In many embodiments,
the widget-container creation device 120 can also store wid
gets and function as a widget server. Each of the widget
container processing devices 150 can also be configured to
function as a widget-container creation device 120 and vice
WSa.

0027. The widget-container creation device 120 can trig
ger the generation and/or modification of the widget con
tainer at the widget-container host 100. In some embodi
ments, the widget-container creation device 120 can send an
instruction from, for example, a processor (not shown) to
cause the widget-container host 100 to generate and/or
modify a widget container.
0028. The widget-container creation device 120 can also
be configured to locally define, generate, and/or modify the
widget container. In some embodiments, the widget-con
tainer creation device 120 can access a user-interface served
by the widget-container host 100 that can be used to define a
widget container. The user-interface can be, for example, a
widget-container generation engine served from an applica

US 2012/0227060 A1

tion server (not shown) controlled and/or integrated into the
widget-container host 100 and accessed using a web browser.
0029. If the widget container is generated at the widget
container creation device 120 using, for example, a locally
executed widget-container generation engine, the widget
container can be sent to the widget-container host 100 for
storage and distribution to one or more of the container pro
cessing devices 150. The widget container can also locally
modify the widget-container creation device 120 by, for
example, receiving the widget container from the widget
container host 100, modifying the widget container locally,
and sending the widget container back to the widget-con
tainer host 100. More details related to the generation and
modification of a widget container are described in connec
tion with FIG.3 and FIG. 10, respectively.
0030 Although in this embodiment, the widget-container
host 100 is a centralized control/storage mechanism that man
ages requests received from container processing devices 150
and manages the sending of widgets containers (e.g., prompts
a separate device (not shown) to send a widget container
stored in a separate database (not shown)), the functionality
of the widget-container host 100 can be decentralized and/or
distributed. For example, a hierarchy of widget-container
hosts 100 can be arranged, for example, with management
components and/or slave components that control, configure,
and coordinate the sending of widget containers to the wid
get-container processing devices 150.
0031 FIG. 2 is a schematic diagram illustrating a widget
container 250 executing within a framework of a processor
readable vehicle 220 and/or being displayed on a display 230
of a container processing device 240, according to an embodi
ment of the invention. The widget container 250 includes a
widget 252 served from a widget server 210 over a network
280 to the container processing device 240 for, for example,
display within the procedural software framework of the wid
get container 250. The widget 252 is served to the container
processing device 240 and displayed/executed within the
widget container 250 in response to a reference to the widget
252 being accessed from the widget container 250. In some
embodiments, the widget container 250 is a Flash object and
the processor-readable vehicle 220 is a Flash-enabled web
browser.

0032. The widget 252 can be categorized into one of three
categories of widgets, static data objects, Software objects,
and media objects. Within each category, the widget can be a
specific content type. For example, the widget 252 can be an
executed (e.g., played) or a displayed media object such as a
video file (i.e., a video content file), an mp3 file (i.e., audio
content file), or an image file (i.e., image content file). The
widget 252 can be a static data object that is, for example,
displayed within the widget container 250. The static data
object can be, for example, a textual object such as a set of
letters, a textual document, or an html based textual docu
ment. The static data object can include, for example, links to
other widgets (not shown). The widget 252 can also be a
Software object such as an executable application or set of
instructions that is executed within the procedural software
framework of the widget container 252. The results of the
executable application can be included and/or displayed
within the procedural software framework of the widget con
tainer 250. The widget container 250 can be configured so that
the widget 252 can be executed/displayed in any portion of
the widget container 250 when the widget container 250 is
displayed on the display 230.

Sep. 6, 2012

0033. In some embodiments, the widget 252 can be modi
fied for display/execution within the widget container 250.
For example, the dimensions of an image object can be modi
fied by, for example, metadata parameter values defined
within or used to define the widget container 250. In some
embodiments, the widget container 250 can be configured so
that the executing/display of the widget 252 within the widget
container 250 is performed at specified times. For example,
the display of the widget 252 can be delayed or performed at
a certaintime in response to an instruction triggered by a user,
for example, through the service module 254.
0034. The widget container 250 is served to the container
processing device 240 from a widget-container host 200
when a reference to the widget container is accessed/read
from the processor-readable vehicle 220. In many embodi
ments, the widget-container 250 is automatically executed
when received at the widget-container processing device 240.
The reference can include a pointer to the widget container
250 (e.g., pointer to unique ID associated with the widget
container 250). An instance of a reference to the widget
container 250 can be included in any portion of the processor
readable vehicle 220.
0035. In many embodiments, the processor-readable
vehicle 220 is a readable framework that can be used to
describe a structure for displaying information without being
executed as a series of instructions such as a hyper-text
markup language (html) web-page or a wireless application
protocol (WAP) site. If the processor-readable vehicle 220 is
a web-page, the reference can be, for example, an embed tag
or an object tag that serves as a link to the widget container
2SO.

0036. The procedural software framework that makes up
the widget container 250 can be programmed in any number
of programming languages that are compiled (e.g., C++) and/
or in programming languages that are interpreted (e.g., Java
script). An executable portion (of the procedural software
framework) that manages and controls the service module(s)
254 and/or widget(s) 252 included in the widget container
250 can be referred to as the core of the widget container 250.
Metadata parameter values can be passed to the widget con
tainer 250 and used by, for example, the core of the widget
container 250 to modify, for example, attributes of the widget
container 250 (e.g., x, y location of the widget 252, size of the
widget 252, color, themes, styles, etc.).
0037. The service module 254 included in the widget con
tainer 250 can be a pre-defined function associated with one
or more widgets 252, another service module (not shown),
and/or the widget container 250. For example, the service
module 254 can be a metadata searching/retrieval function, a
polling/categorizing function, a widget container deployment
function (e.g., using a placement service module), a transac
tion service function (e.g., service module for facilitating a
web purchase, service module used for signing a user up for
a web service, etc.), a security function (e.g., security firewall
function), and/or a widget container tracking function. The
service module 254 can also be a referral service function
(e.g., a service used to refer a viewer to a widget container), an
advertisement service function (e.g., a service module that
includes an advertisement), or a directory service function
(e.g., a service module used for searching in a directory).
0038. In this embodiment, the service module 254 is
served from a service module server 270 in response to a
reference to the service module 254 being accessed/read from
the widget container 250. In some embodiments, the service

US 2012/0227060 A1

module 254 is an integrated component of the widget con
tainer 250 (e.g., compiled within the widget container 250).
In some embodiments, the service module 254 and/or widget
252 can be stored on and dynamically served from the widget
container host 200 when the widget container 250 is
requested. The widget-container host 200 can also be config
ured to prompt the widget server 210 and/or service module
server 270 to send the widget 252 and/or the service module
254 to the container processing device 240 when a request for
the widget container 250 is received from the container pro
cessing device 240.
0039. Although this figure shows only a single service
module 254 and a single widget 252, multiple service mod
ules 254 and/or widgets 252 can be integrated into and/or
referenced within a widget container 250. The widget(s) 252
and/or service module(s) 254 can be configured to interact
with one another.

0040. In many embodiments, the service module 254 can
be configured with a pre-defined functionality/feature that
cannot be modified (e.g., an e-mail distribution service mod
ule). The pre-defined features can be referred to as compo
nents. In some embodiments, the service module 254 can be
a pre-defined service module 254 that includes a finite set of
pre-defined options/features that can be selected by a user.
For example, the service module 254 can be a security service
module that has a pre-defined set of security levels that can be
selected for use within a widget container.
0041. In some embodiments, a pre-defined option within
the service module 254 can be used to customize the service
module 254. For example, a pre-defined service module 254
can include a pre-defined feature that allows a user to select a
certain theme or color scheme for the service module 254.

0042. The service module 254 can also have a set of pre
defined features that can receive customizable (e.g., unique)
information. For example, the service module 254 can be
configured so that the service module 254 can accept and use
information input by a user Such as an e-mail address. If the
service module 254, for example, is configured to provide
weather information to a user viewing the widget container
250, the service module 254 can be configured to accept
location information (e.g., Zip code) so that a weather forecast
that is of interest to the user can be provided by the service
module 254.

0043. In some embodiments, the service module 254 can
be a service module 254 created by and selected for use in the
widget container 250 by a user. In other words, a user can
define a user-created service module 254 that is not selected
from a library of pre-defined service modules 254. The user
created service module 254 can have a unique functionality
and can be wrapped into the widget container 250.
0044. In some embodiments, the service module 254 can
be a security service module that can function as a widget
firewall. For example, if the widget container 250 is config
ured to be executed using, for example, a flash player, the
widget container 250 can be configured to intercept network
calls before the flash player executes them. The widget con
tainer 250 can provide a single point of entry into, for
example, external javascript calls, and thereby filter them
according to a policy implemented by, for example, the wid
get-container host 200. The widget-container host 200 can
also be configured to write payloads (e.g., secret keys, ses
sions ID's, or one-time pads) into the widget container 250
when it is served/executed to facilitate secure communica
tion.

Sep. 6, 2012

0045 Widget container 250 can also include a tracking
kernel 256 configured to perform a tracking function. The
tracking kernel 256, which can also be referred to as a track
ing module, can be embedded/integrated in (e.g., pro
grammed within) the procedural software framework of the
widget container. The tracking kernel 256, in many embodi
ments, is not displayable on the display 230. The tracking
kernel 256 and/or features associated with the tracking kernel
256 can also be contained in the widget container 250 as a
service module 254.
0046. The tracking kernel 256 can be used to collect track
ing parameter values related to user-triggered interactions
with the widget container 250 such as basic mouse movement
and clock events. For example, the tracking kernel 256 can be
configured to count the number of times that a user (e.g.,
viewer of the widget container 250) moves a mouse over a
particular widget 252 or service module 254. The tracking
kernel 256 can also be configured to track impressions, wid
get container visitor profiles, domain names of the processor
readable vehicle 220, container processing device 240 infor
mation Such as browser type and operating system type.
0047. The tracking kernel 256 can also be used to collect
tracking parameter values related to placement information
Such as, for example, what webpage (e.g., processor-readable
vehicle 220) a widget container is referenced and/or placed
on, where on the page it was placed, and/or size of the widget
container 250 (e.g., dimensional and memory). In some
embodiments, the tracking kernel can be coupled with a Sup
porting javascript library.
0048 Tracking parameter values collected using the track
ing kernel 256 can be sent as, for example, a serialized string
of data (or packets) and/or as one or more bursts of tracking
packets to a tracking server 260 that can be configured to
collect/store tracking parameter values. In some embodi
ments, the tracking parameter values can be sent to the widget
container host 200 for storage in a metadata database (not
shown) as metadata. The widget container host 200, in some
embodiments, can include the functionality of the tracking
Server 260.

0049. In some embodiments, the widget container 250 can
be configured to transmit tracking parameter values to a cer
tain tracking server 260 while another widget container can
be configured to transmit tracking parameter values to a dif
ferent tracking server (not shown). These configurations can
be implemented dynamically (e.g., using dynamic injection
techniques) when the widget containers are served. The track
ing parameter values can be allocated to these different track
ing servers based on, for example, widget container type,
tracking information, etc. In some embodiments, a single
widget container Such as widget container 250 can be config
ured to transmit a first type of tracking parameter value to
tracking server 260 and a second type of tracking parameter
value to a different tracking server (not shown).
0050. The tracking parameter values that can be collected
when a widget container 250 is being executed can be trans
mitted from the widget container 250 at various times and
using various combinations of methods. For example, the
tracking parameter values can be continually transmitted
(e.g., streamed) and/or transmitted when the widget container
is closed (e.g., no longer being executed). In some embodi
ments, tracking parameter values are stored using the tracking
kernel 256 (or tracking service module) and transmitted to,
for example, the tracking server 260 at periodic intervals
and/or random intervals (e.g., transmitted in random and/or

US 2012/0227060 A1

periodic bursts). The tracking parameters values can be trans
mitted from the widget container 250 when a specified thresh
old of tracking parameter values has been collected and/or
when a cache that temporarily stores the tracking parameter
values reaches a threshold capacity value.
0051. In some embodiments, the tracking of data using the
widget container 250 can be throttled on a per-widget con
tainer basis to prevent, for example, overly popular widget
containers from flooding, for example, the widget container
host 200 (or tracking server) with tracking packets and/or
tracking parameter values. The tracking kernel 256 can be
throttled according to a tracking service level that indicates,
for example, that only certain numbers and/or types of user
triggered interactions should be tracked for, for example,
widget container 250.
0052. The tracking service level can be dynamically
injected into, for example, widget container 250 using a
dynamic injection technique. For example, the tracking ker
nel of widget container 250 can be configured to request a
tracking service level from, for example, the widget-con
tainer host 200. The widget container 250 can dynamically
load (e.g., just before the widget container 250 is served to the
widget-container-processing device 240) the tracking service
level represented by an image/data (e.g., composite bit field)
with a defined width and height. An image of one size can
trigger the tracking kernel 256 of the widget container 250,
for example, to be turned off altogether. Other image sizes can
enable or disable behavioral tracking, placement tracking,
etc. in any combination. Tracking kernels 256 associated with
different widget containers 250 can be individually config
ured dynamically on an instance by instance basis to mini
mize load and bandwidth cost where necessary as determined
by, for example, threshold conditions. In some embodiments,
the widget-container host 200, for example, can proactively
dynamically inject data into the widget container 250 based
on a policy without the data first being requested by the
widget container 250.
0053. In some embodiments, the widget container 250 can
include one or more other widget containers (not shown). The
one or more other widget containers can be referenced in the
widget container 250. In some embodiments, the tracking
data can be associated, for example, with a unique identifier
(e.g., globally unique identifier (GUID)) associated with a
specific widget container. The association of tracking data
with the widget container (and other metadata parameter
values) is discussed in more detail in connection with FIG.8.
0054 FIG. 3 is a flow chart that illustrates a method for
generating a widget container, according to an embodiment
of the invention. The method of generating a widget container
by including a reference to a widget and/or a reference to a
service module or integrating a widget and/or service module
in a procedural software framework can be referred to as
wrapping or containerization.
0055. The flow chart shows that a widget and/or a refer
ence to a widget is received at 300. If the widget container is
being generated using, for example, a widget-containergen
eration engine at a widget-container generation host, the ref
erence to the widget and the reference to the service module
can be selected and/or provided to the widget-container host
via a user-interface used to define a widget container. The
widget container user-interface can be linked to or can be a
component of the widget-container generation engine. The
user-interface can include for example, a field that allows a

Sep. 6, 2012

user to select (e.g., using a “browse” button) and/or input a
reference to the widget to be added to the widget container.
0056. In some implementations, the user-interface can be
provided via an application server controlled by the widget
container host. In some embodiments, the user-interface can
be associated with a remote server (e.g., separate computer/
server) that is configured to cause a generation engine asso
ciated with a separate widget-container generation host to
generate the widget container in response to, for example, an
application program interface (API) call. In some embodi
ments, a computer/server can be configured to automatically
(or in response to an instruction from a user) send an API call
to cause a remote widget-container generation host to gener
ate a widget container.
0057 The flow chart shows that a service module and/or a
reference to a service module is then received at 310 by, for
example, a device configured to define the widget container
(e.g., a centralized widget-container host or a widget-con
tainer creation device) using, for example, a widget-container
generation engine. Similar to the reference to the widget, the
reference to the service module can be selected and/or pro
vided using a user-interface configured for defining a widget
container.
0058. In many embodiments, the user-interface can be
configured to provide a set of pre-defined service modules
that can be selected by a user for containerization in a widget
container. The set can be an entire library of service modules
or a selected set of service modules from a library of pre
defined service modules. For example, a user can be
prompted via the user-interface to select one of two possible
service modules for containerization in the widget container.
In Some situations the user can be provided with an option not
to include a service module in the widget container. The
library of service modules can be stored in a location where a
service module (or reference) selected from the library of
service modules can be accessed for wrapping in the widget
container when the widget container is generated.
0059. In some embodiments, a set of service modules can
be selected/defined based on a library of service modules
based on a policy or a threshold condition. For example, a
policy can be created Such that only a certain type of service
module (e.g., polling type service modules) be allowed as an
option for containerization in a widget container for a par
ticular user or group of users. In some embodiments, a user
and/or group of users can be limited to a certain number of
service modules based on a threshold condition. If the widget
container is to be generated using a widget-container host in
response to a definition provided via a user-interface, the
policy can be stored on and enforced by the widget-container
host via the user-interface.

0060. In some embodiments, the policy used to define a set
of service modules can be dependent on the type of the widget
being containerized. For example a certain set of service
modules can be allowed for containerization in a widget
container based on the widget being a video content widget. A
different set of service modules can be provided to a user for
containerization in a widget container based on the widget
being an audio content widget.
0061. In some embodiments, a reference (e.g., link) to a
user-created service module can be provided by the user to,
for example, a widget generation engine via a user-interface
so that the user-created service module can be wrapped into
the widget container. In some embodiments, a user (or com
puter system) can be restricted from providing a reference to

US 2012/0227060 A1

a user-created service module for wrapping (i.e., container
ization) in a widget container. A user can be allowed, in some
embodiments, to insert a user-created service module only
when the user has been authenticated and/or the user-created
service module has been approved for use in the widget
container. The user-created service module can be approved
based on a policy that is, for example, included in and
enforced by a widget-container generation engine.
0062. In some embodiments, the service module can be
explicitly associated with the widget because the service
module performs a function related to the widget. For
example, the service module can be a polling service module
that is used to collect a user's opinion of a widget. As another
example, the service module can be a service module that
modifies, for example, the display and/or execution of the
widget. The widget can be associated with the service module
when the service module is selected and/or provided to a
widget-container generation engine. The service module can
be explicitly associated with the service module or automati
cally associated with the widget.
0063. After the widget and/or reference to the widget is
received at 300 and the service module and/or reference to the
service module are received at 310, a widget container that
contains the widget and the service module is generated in
response to an instruction from a processor at 320. The widget
container is a procedural Software framework that can be
generated as a set of instructions in any number of program
ming languages that are compiled (e.g., C++) and/or in pro
gramming languages that are interpreted (e.g., Java). If the
widget container is generated using a set of instructions in a
compiled programming language, the generating can include
compiling the widget container.
0064. The instruction to generate the widget container can
be received from a processor in, for example, a widget-con
tainer generation host or a widget-container creation device.
In some embodiments, the instruction to generate the widget
container can be prompted via a user-interface that is associ
ated with a widget generation engine. For example, the user
interface can include a button, that when selected at a remote
PDA of a user, triggers the generation of the widget container
at a widget-container generation host.
0065. A core of the procedural software framework of the
widget container manages and controls the service module
and/or the widget that is contained in the widget container.
The widget container can be configured so that metadata
parameter values can be passed to the widget container and
used by, for example, the core of the widget container to
modify, for example, the general layout (e.g., x, y location and
size of the widget) and/or attributes of the widget container
(e.g., color, themes, styles, etc.). The metadata parameter
values can be stored at and accessed from, for example, a
memory associated with a widget-container generation host.
0066. When the widget container is generated, a widget
container identifier is associated with the widget container at
330. The widget-container identifier can be an identifier used
to uniquely identify the widget container for later retrieval. In
Some embodiments, the widget container identifier can be, for
example, a GUID or an identifier derived from a GUID. The
widget is stored for later distribution at 340 on, for example,
a widget-container host.
0067. In some embodiments, a widget container can be
automatically generated by a separate computer and/or
server. Also, in some embodiments, the steps identified in

Sep. 6, 2012

FIG. 3 can be performed in a different order. For example, a
widget can be received before a service module is received.
0068. In some embodiments, different parts of the flow
chart can be performed on difference devices. For example,
the generating can be performed on a widget-containergen
eration host while the associating can be performed on a
different device Such as a widget-container creation device.
Also, in some embodiments, the widget container can be
generated to contain only a service module or a widget.
0069 FIG. 4 is a flow chart that illustrates a method for
sending a widget container to a widget-container processing
device, according to an embodiment of the invention. The
flow chart shows that a request for the widget container is
received in response to an instance of a reference to the widget
container being accessed from a processor-readable vehicle at
400. The request can be defined, for example, when the ref
erence is accessed/read from the processor-readable vehicle
at a widget-container processing device. The request can
include information from the reference Such as a pointer to a
unique identifier that can be used to identify the widget con
tainer that is being requested. In some embodiments the
pointer is a link that can be used to retrieve the widget con
tainer or is a widget-container identifier that can be used to
identify the widget container. If the processor-readable
vehicle is a web-page, for example, the reference can be an
embed tag or an object tag that serves as a link to the widget
container.

0070. Using the information in the request, the widget
container is retrieved from a memory at 410. The widget
container is, in many embodiments, retrieved so that the wid
get container can later be sent/served to a container-process
ing device. For example, the request for a widget container
can be received at a widget-container host and the widget
container can be retrieved from a memory of the widget
container host based on the request.
0071. In some embodiments, the widget container can be
dynamically modified at 420 before the widget container is
sent/served at 430. For example, data can be dynamically
injected into the widget container and used by the widget
container to customize, for example, a service module of the
widget container (e.g., customize a tracking feature). The data
can be, for example, a segment of data that replaces a known
segment of data within the widget container. The data can
trigger, as another example, the disabling of a service module
within the widget container. The widget container can, in
Some embodiments, be configured to search for and/or
request the data before the widget container is served. The
data can, in Some embodiments, be metadata that is defined by
a widget-container originator (e.g., creator or owner), a wid
get-container placer and/or a widget-container viewer and
can be stored at, for example, a widget-container host. In
Some embodiments, a widget-container host can, for
example, dynamically inject data into a widget container
based on a policy.
0072 The widget container can be sent to a widget-con
tainer processing device in response to the request at 430. The
sending can also be referred to as serving. For example, if the
requestis received from a widget-container processing device
Such as a mobile phone, the widget container is retrieved and
sent to the mobile phone for processing and/or display. In
Some embodiments, the widget container is compiled when
served. The widget container can also be generated (or regen
erated) when served. In many embodiments, the device that

US 2012/0227060 A1

requests the widget container will also be the same device that
receives the widget container for processing and/or display.
0073. The widget container can be configured so that
instances of the widget container can be sent to two or more
different widget-container processing devices that each oper
ate based on a different platform. For example, an instance of
the widget container can be sent to and executed within a first
processor-readable vehicle on a mobile phone and sent to and
executed within a second processor-readable vehicle on a
personal computer. In some embodiments, the first processor
readable vehicle and the second processor-readable vehicle
can be two different instances of the same processor-readable
vehicle.
0074 FIG. 5 is a schematic diagram that illustrates a wid
get-container host 500 sending instances of a widget con
tainer 505 for execution within the framework of several
processor-readable vehicles 530, 540, 550, and 560, accord
ing to an embodiment of the invention. The widget container
505 is sent from a memory 510 of the widget-container host
500 over a network 520.
0075. Each of the processor-readable vehicles, 530, 540,
550, and 560, include a reference, 532, 542, 552, and 562,
respectively, to the widget container 505. Each of the refer
ences 532,542,552, and 562 can be referred to as an instance.
Reference 532 (as an example of the references 532,542,552,
and 562 included in the processor readable vehicles, 530,540,
550, and 560, respectively) includes a widget-container
(W-C) pointer 534 and a placement identifier (ID) 536. The
widget-container pointer 534 is a pointer that is used to iden
tify and request the widget container 505 from the widget
container host 500. The placement ID 536 is used to uniquely
identify the placement of reference 532 (instance 532) in
processor readable vehicle 530. When one of the references,
532, 542, 552, and 562, is accessed from its respective pro
cessor readable vehicle, 530, 540, 550, and 560, at a widget
container processing device (not shown) an instance of the
widget container 505 can be sent to the respective processor
readable vehicle, 530, 540, 550, and 560.
0076. The arrows between the references, 532, 542, 552,
and 562, indicate a parentage of the references, 532,542,552,
and 562. For example, the arrow between reference 532 in
processor-readable vehicle 530 and reference 542 in proces
sor-readable vehicle 540 indicates that reference 542 was
derived from reference 532. Likewise, reference 552 in pro
cessor-readable vehicle 550 was derived from reference 542
in processor-readable vehicle 540.
0077. The placement ID's, 536,546, 556, and 566, asso
ciated with the references, 532, 542, 552, and 562, respec
tively, can be associated with one another as parentage infor
mation. Reference 542 (and placement ID 546), for example,
can be identified as a child reference to reference 532 (and
placement ID 536) in, for example, a parentage table.
0078. In some embodiments, the placement ID's, 536,
546,556, and 566, can be generated using a placement service
module 504 included in the widget container 505. When the
widget container 505 is executed within processor-readable
vehicle 530, for example, after being received at processor
readable vehicle 530 in response to reference 532 being
accessed, the placement service module 504 can be used to
place an instance of reference 532 in processor-readable
vehicle 540. The placement service module 504 can also be
used to generate placement ID 546 that identifies the place
ment of the new instance of the reference 542 within the
processor-readable vehicle 540. The placement service mod

Sep. 6, 2012

ule 504 can send an indicator that associates placement ID
536 with placement ID 546. This association can be stored at,
for example, the widget-container host 500 and used as par
entage information to identify that the instance of the refer
ence 542 was derived from reference 532.
007.9 The parentage information can be used to associate
tracking parameter values associated with instances of widget
containers to create collective tracking parameters. For
example, tracking parameter values associated with an
instance of the widget container 505 sent to processor-read
able vehicle 540 and an instance of the widget container sent
to processor-readable vehicle 550 can be statistically com
bined/compiled (e.g., averaged, Summed) and stored in, for
example, a metadata database. The tracking parameter values
associated with each of the instances of widget container 505
can be associated using parentage information. Tracking
parameter values of multiple instances of the widget con
tainer 505 sent to a single processor-readable vehicle such as,
for example, processor-readable vehicle 530 at different
times can also be statistically combined and/or compiled. In
Some embodiments, collective tracking parameters can be
used for monetization purposes.
0080. In some embodiments, the placement ID's, 536,
546, 556, and 566, can be stored in, for example, a metadata
database such that the placement ID's, 536, 546, 556, and
566, can be associated with their respective processor read
able vehicles, 530,540,550, and 560, even if, for example, an
identifier associated with any one of the processor readable
vehicles, 530, 540, 550, and 560, changes. For example, if
processor readable vehicle 550 is a webpage, the placement
ID 556 can be associated with each web address that can be
used to request processor-readable vehicle 550.
I0081 FIG. 6 is a flow chart that illustrates an example
method for placing a reference and generating a placement
identifier that can be used to generate parentage information,
according to an embodiment of the invention. A first instance
of a reference to a widget container that contains a first place
ment identifier is included in a first processor-readable
vehicle at 600. The widget container can contain a placement
service module that can be used to place a second instance of
the reference in a second-processor readable vehicle.
I0082. The first instance of the reference to the widget
container is accessed from the first processor-readable
vehicle at a widget-container processing device 610. The
widget-container processing device can be, for example, a
personal computer. An instance of the widget container is
then sent to and executed at the widget-container processing
device in response to the first instance of the reference being
accessed at 620. The widget container is executed such that
the placement service module can be used to place a second
instance of the reference in a second processor-readable
vehicle. For example, the widget container can be sent to and
executed on a personal computer from a database controlled
by a widget container host.
I0083. After the widget container has been executed at the
widget-container processing device at 620, a request can be
sent to a widget-container host to place a second instance of
the reference to the widget container in a second processor
readable vehicle using the placement service module at 630.
For example, a user can use the placement service module to
request that the second instance of the reference be placed in
the second processor-readable vehicle. The widget-container
host can then generate and associate a second placement
identifier with the second instance of the reference at 640. The

US 2012/0227060 A1

first placement identifier and the second placement identifier
can both be, for example, GUID's.
0084. In some embodiments, a service module (e.g., ser
Vice placement module) within the widget container can be
used to generate the second placement identifier and associate
the second placement identifier with the second instance of
the reference. In some embodiments, a separate host can be
triggered, for example, by the widget-container host and/or a
placement service module to generate the second placement
identifier and associate the second placement identifier with
the second instance of the reference.

0085. The second instance of the reference (with the sec
ond placement identifier) can then be placed in the second
processor readable vehicle at 650. In some embodiments, the
widget container host negotiates with a host server (e.g.,
using a series of scripted hypertext transfer protocol (HTTP)
requests) of the second-processor readable vehicle to place
the second instance of the reference (with the second place
ment identifier) in the second-processor readable vehicle. If
the second-processor readable vehicle requires authentica
tion before the second instance of the reference can be placed,
the information necessary for authentication (e.g., username,
password, etc.) can be securely collected via the placement
service module and transmitted to the widget-container host.
I0086. The first placement identifier and the second place
ment identifier can be associated as parentage information at
660. The first placement identifier and the second placement
identifier can be associated at the widget-container host. For
example, the placement service module can be configured to
send the first placement identifier (and associated first pro
cessor-readable vehicle information) to the widget-container
host so that when the widget-container host generates the
second placement identifier and places the second instance of
the reference in the second processor-readable vehicle the
first placement identifier and the second placement identifier
can be associated. The first placement identifier can be iden
tified as a parent identifier and the second placement identifier
can be identified as a child identifier. Likewise, the first
instance of the reference can be identified as a parent refer
ence and the second instance of the reference can be identified
as a child reference. This parentage information can be stored
in the widget-container host where the parentage information
can be used.

0087. In some embodiments, the placement service mod
ule can be used to place an instance of a reference from a first
processor-readable vehicle that is used on a first platform
(e.g., personal computer platform) in a second processor
readable vehicle that is used on a second and different plat
form (e.g., mobile phone platform).
0088 FIG. 7 is a schematic diagram of a widget container
700 that contains a widget 710 and a placement service mod
ule 720, according to an embodiment of the invention. The
placement service module 720 has a dropdown menu 722 that
can be used to place an instance of a reference to the widget
container in one of several webpages 724.
0089. In some embodiments of the invention, metadata
parameter values are stored and associated with widget con
tainers, components of widget containers, and other informa
tion associated with widget containers (e.g., sessions estab
lished during the transmission of widget containers). FIG. 8 is
an example metadata database 800 that illustrates some of the
metadata parameters and values that can be generated for and
associated with widget containers 820, according to an

Sep. 6, 2012

embodiment of the invention. Specifically, this metadata
database 800 includes metadata associated with widget con
tainers A and B.
(0090. The placement ID column 830 includes the place
ment ID's of instances of references to the widget containers
A and B placed in processor-readable vehicles indicated in
the processor-readable vehicle column 840. For example, a
reference to widget container A has been placed in processor
readable vehicles URL1 and URL2 as indicated in the pro
cessor-readable vehicle column 840. Each of these place
ments has been assigned a unique placement ID as indicated
by the placement ID's P1 and P2 included in the placement ID
column 830. This metadata database 800 shows that only one
placement ID 830 is associated with a single placement in a
processor-readable vehicle 840. Multiple identifiers (not
shown), however, can be used to identify a single processor
readable vehicle from column 840 (e.g., multiple variations
of a single webpage address that point to a single webpage).
The identifiers for a processor-readable vehicle can be
referred to as vehicle identifiers. Thus, a placement ID 830
can be associated with multiple vehicle identifiers for a single
processor-readable vehicle from column 840.
0091. In some embodiments, the placement ID’s 830 (e.g.,
P2) and vehicle identifiers for the processor-readable vehicles
840 (e.g., URL2) can be combined to create unique identifiers
for the placement ID and processor-readable vehicle combi
nations. These unique identifier that are combinations of the
placement ID’s 830 and the processor-readable vehicles 840
can be used as pointers to the widget containers 820, for
example, when included in a reference (e.g., embed tag) of a
processor-readable vehicle 840. These unique combined
identifiers can be encrypted and/or encoded using an algo
rithm and un-encrypted and/or decoded using the algorithm
(or a different algorithm) when used by, for example, a widget
container host.
0092 Also this exemplary embodiment shows that URL2
includes two different widget containers A and B. Each of the
widget containers A and B are associated with unique place
ment ID's P2 and P3, respectively. Unique metadata (e.g.,
viewer preferences) can be associated with each of these
placements (i.e., instances).
(0093. The session ID column 850 indicates the unique
session ID's of sessions that have been established and used
for sending, for example, widget container A to the processor
readable vehicle URL1 associated with placement IDP1. The
metadata database 800 shows that an instance of widget con
tainer A has been sent using a session with session ID 1 in
response to the reference associated with placement ID P1
being accessed from processor-readable vehicle URL1.
0094. The widget column 860 includes data that indicates
the widgets 860 that have been contained in the widget con
tainers 820. In this embodiment, only a single widget 860 is
contained in each of the widget containers 820. In some
embodiments, the widget containers 820 can include more
than one widget 820. For example, the widget container Acan
include two widgets, for example, for a specific placement ID
830.

0095. The service module column 870 includes data that
indicates the service modules that are contained in the widget
containers 820 for each of the placement ID’s 830. For
example, the metadata database 800 shows that widget con
tainer A for placement IDP1 contains service module J while
the widget container B contains service modules J and L for
placement IDP2 during both session ID's 2 and 3.

US 2012/0227060 A1

0096. A tracking parameter column 880 includes tracking
parameter values that can be associated with any of the meta
data in the metadata database 800 (e.g., placement ID 830
data, processor-readable vehicle 840 data, session ID 850
data, widget 860 data, and/or service module 870 data, etc.).
A value of the tracking parameter 880 can be collected and/or
generated using, for example, a module, such as a tracking
kernel/module, integrated into the procedural Software
framework of the widget container. A value of the tracking
parameter 880 can indicate, for example, the number of times
that a particular user has interacted with (e.g., moused over,
clicked on) widget container B during a particular session ID
850.

0097. A widget-container attribute column 890 includes
widget-container attribute metadata can be associated with,
for example, the widget containers 820. In some embodi
ments, the widget-container attribute data can be associated
with a particular placement ID 830. The widget-container
attribute metadata can be associated with, for example, the
size of a widget 860 when displayed, widget container behav
ior (animation action). The widget-container attribute 890
metadata can be passed to the core of the widget container
when the widget container is served. The widget-container
attribute 890 metadata which can define the widget container
can be used to generate a widget container when served.
0098. The metadata shown in FIG. 8 is an example of the
types of metadata that can be stored in a metadata database
800. A metadata database 800 can be configured to include a
variety of metadata that can be associated with widget con
tainers 820 and/or widget container related information (e.g.,
sessions, placement ID's). For example, a database Such as
metadata database 800 can be modified to include parentage
information that shows whether an instance of the reference
associated with placement ID P2 is derived from an instance
of the reference associated with placement ID P1. In some
embodiments, author information (e.g., actual name and/or
username, profile) of an entity that created a particular widget
container 820 can also be collected and stored in metadata
database 800. In some embodiments, author information can
be collected specifically for the placement ID’s 830. Placer
information (e.g., profile) of an entity that placed a reference
to, for example, widget container A in processor-readable
vehicle URL2 can also be stored. In some embodiments, login
information can be stored for each session ID 850.

0099 Metadata stored within the metadata database 800
can be collected and/or generated using, for example, one or
more service modules 870 contained in any of the widget
containers 820. For example, a preference, which can be
stored as metadata, for a particular configuration of widget
container A (e.g., theme or style) can be collected from a user
via a service module J that includes a feature that allows a user
to select a theme. As another example, a weather related
service module can collect a Zip code so that weather related
to an area relevant to the user can be displayed in, for example,
widget container B. The sip code can be stored as a metadata
parameter value.
0100. In some embodiments, comments made by a user
using a service module can be collected and associated with a
widget container 820, placement ID 830, processor-readable
vehicle 840, etc. The comments made by a user can be stored
as metadata parameter value in the metadata database 800. In
Some embodiments, rating/polling information (e.g., opinion
of a widget on a scale of 1 to 10) collected using a service
module can be stored as a metadata parameter value in the

Sep. 6, 2012

metadata database 800. In some embodiments, tagging and/or
categorization data (e.g., user-defined tagging/categorization
of widgets) collected using a service module can also be
stored as metadata in the metadata database 800.

0101 Metadata within a metadata database 800 can be
further included in at least one of three categories: widget
container originator ("originator) metadata, widget-con
tainer placer ("placer) metadata, and/or widget-container
viewer ('viewer) metadata. An originator is an entity (e.g.,
user) that triggers the generation of a widget container and/or
owns (e.g., retains administrative read, write, and execute
rights over the widget container) the widget container. A
widget-container placer is an entity that can place a widget in
a particular processor-readable vehicle. Often a widget-con
tainer placer can have control (e.g., owner) of the processor
readable vehicle where a reference to the widget container is
placed. A viewer is an entity (e.g., computer or user) that
views and/or interacts with a widget container via a proces
sor-readable vehicle (e.g., one that is owned by the widget
container placer).
0102 For example, an identifier (e.g., username, placer
identifier) of a widget-container placer can be associated with
a placement ID 830. An identifier (e.g., username, viewer
identifier) of a viewer can be associated with a particular
tracking parameter 880 and/or a session ID 850. In some
embodiments, the session can be triggered by a particular
widget-container viewer. In many embodiments, an identifier
(e.g., username, originator identifier) associated with an
originator can be included in the metadata database 800 as
author information.
0103) The rights (e.g., read, write, execute, etc.) associated
with a widget-container and/or its components can also be
assigned and/or delegated based on, for example, a username.
An originator, as an administrative owner of a particular
widget container, can delegate rights to widget-container
placers and/or widget-container viewers. The rights can
include not only interaction rights (e.g., rights to access or
execute certain portions of a widget container), but also rights
to create certain types of metadata. The rights of the originator
can, in Some embodiments, be limited by a policy imple
mented by, for example, a widget-container generation
engine. For example, a specific originator may not be granted
rights (e.g., not authorized via an authentication process) to
containerize a specific type of widget in a widget container.
0104. An originator can containerize, for example, a ser
Vice module in a widget container that allows a widget-con
tainer placer and/or viewer to perform a specific function. For
example, an originator can include a placement service mod
ule in a widget container that allows a placer to place a widget
container while only allowing a viewer rights only to execute
and/or view a widget container. As another example, a widget
originator can include a service module in a widget container
that allows a viewer to modify a theme of the widget con
tainer. In some embodiments, a placer can delegate rights to a
viewer within the scope of rights delegated from an originator
and/or based on rights granted by a widget-container genera
tion engine when a widget container is generated. A person of
ordinary skill in the art should appreciate that rights can be
assigned in a variety of hierarchies and/or using a variety of
methods.
0105. The widget-container originator metadata can be
referred to as global metadata because changes made to a
widget container by a originator can be propagated to all
instances of widget containers when served for viewing

US 2012/0227060 A1

within a processor-readable vehicle. For example, a change to
a widget container by the widget-container originator to a
theme of the widget container can be propagated to all
instances of widget containers when executed with a proces
sor-readable vehicle.

0106 The placer metadata can be referred to as local meta
data because, for example, preferences of a placer Stored as
metadata can be associated only with the placement of a
reference to the widget-container in a specific processor
readable vehicle. The widget container can be modified
according to the preferences of the placer when the widget
container is served to the processor-readable vehicle associ
ated with (e.g., owned by) the placer. The placer metadata
can, in Some embodiments, also be global metadata that can
cause changes to all instances of widget containers.
0107 The viewer metadata and metadata parameter val
ues can be quasi-local metadata because, for example, pref
erences of a viewer stored as metadata can be associated with
one or more placements of a reference to the widget-con
tainer. The viewer metadata parameter values can be used to
configure (or dynamically configure) one or more widget
containers. For example, a first viewer metadata parameter
value associated with a viewer can be used to configure a first
widget container served to a processor-readable vehicle while
a second viewer metadata parameter value associated with the
same viewer can be used to configure a second widget-con
tainer served to the same processor-readable vehicle. In some
embodiments, a first viewer metadata parameter value asso
ciated with a viewer can be associated with a first placement
of a widget and a second viewer metadata parameter value
associated with the same viewer can be associated with a
second placement of the same widget. The first placement and
the second placement can be included in a single processor
readable vehicle.
0108. In some embodiments, a viewer metadata parameter
value can be associated with a widget container no matter how
many instances of the widget container are served and/or
regardless of which processor-readable vehicles the widget
container is served to. The viewer metadata can be associated
with an instance of the widget container based on the creden
tials (e.g., viewer identifier, username?password) of the
viewer. The credentials can be collected when the widget
container is requested from, for example, a processor-read
able vehicle. The credentials of the viewer can then be used to
find viewer metadata that can later be used to dynamically
modify the widget container when the widget container is
served. In some embodiments, viewer metadata can be con
figured as local or global metadata.
0109 The metadata parameter values stored in the meta
data database 800 can be retrieved and used by, for example,
a widget-container host when serving a widget container in
response to a request for the widget container from a widget
container processing device. FIG. 9 is a schematic diagram
illustrating a widget-container host 900 accessing metadata
from a metadata database 910, according to an embodiment
of the invention. The widget-container host 900 can be con
figured to retrieve and/or write metadata to the metadata
database 910 at various times.
0110. For example, the widget-container host 900 can be
configured to store metadata when the widget container950 is
first generated and store metadata when the widget container
950 is executed and/or accessed. In some embodiments, the
widget-container host 900 can receive a metadata parameter
value via a service module 954 of the widget container 950

Sep. 6, 2012

and the widget-container host 900 can store the metadata
parameter value in the metadata database 910. In some
embodiments, the widget-container host 900 can receive a
metadata parameter value Such as a tracking parameter value
in response to a user-triggered interaction with the widget
container 950 and can store the tracking parameter value in
the metadata database 910. In some embodiments, tracking
parameter values are not sent from the widget container until
the widget container 950 is closed (e.g., no longer being
executed).
0111. In some embodiments, the widget-container host
900 can be configured to retrieve information to dynamically
modify a widget container when serving the widget container
950 and/or after the widget container950 has been served. For
example, a preference stored as a metadata parameter value in
the metadata database can be retrieved and used to configured
the widget container 950 before a widget container 950 is sent
over a network 980 for execution within a framework of a
processor-readable vehicle 920 in response to a reference to
the widget container 950 being accessed from the processor
readable vehicle 920. The preference can be stored as a local
metadata parameter value, global metadata parameter value,
an originator metadata parameter value, placer metadata
parameter value, and/or viewer metadata parameter value.
0112 For example, the preference can be a local metadata
preference (e.g., style, location) associated with an instance
of a reference associated with the processor-readable vehicle
920 or a preference associated with a separate instance of the
reference in a different processor-readable vehicle (not
shown). The preference can be retrieved, for example, after
receiving a request for the widget container 950 and used by
the widget-container host 900 to modify the widget container
950 just before an instance of the widget container 950 is
served to the container processing device 940.
0113. In some embodiments, the metadata database 910 is
a single database or set of databases included in the widget
container host 900. The metadata database 910 can also be
accessed by the widget-container host 900 via a network such
as network 980.

0114. In some embodiments, the widget container 950 can
include a core framework that has at least some portions that
are defined by metadata parameter values stored in the meta
data database 910 (or received in a request for the widget
container950). For example, the size/color/theme of the wid
get container 950, the widget 952 and/or service module 954
contained in the widget container 950, etc. can be defined
using metadata parameter values stored in the metadata 910.
The metadata parameter values that are used to define the
widget container 950 can be retrieved just before an instance
of the widget container 950 is served to the widget-container
processing device 940 (e.g., for execution within the frame
work of the processor-readable vehicle 920). The widget con
tainer 950 can be generated (or regenerated) based on the
defined metadata parameter values.
0115 FIG. 10 is a flow chart that illustrates a method for
dynamically modifying a widget container, according to an
embodiment of the invention. The flow chart shows that a
widget container that contains a widget and a service module
is generated at 1000. A metadata parameter value associated
with the widget container is received at 1010. The metadata
parameter value can be a local metadata parameter value
and/or global metadata parameter value associated with, for
example, an originator, placer, and/or viewer.

US 2012/0227060 A1

0116. A request for the widget container is received when
an instance of a reference to the widget container is accessed
from a processor-readable vehicle at 1020. The widget con
tainer is modified based on the metadata parameter value at
1030. The widget container can be modified at, for example,
a widget-container host according to a metadata parameter
value accessed from a metadata database. The metadata
parameter value can also be a metadata parameter value
included in the request for the widget container.
0117. After the widget container has been modified at
1030, the modified widget container is sent to the widget
container processing device in response to the request at
1040. Although the flow chart shows that the metadata param
eter value is received at 1010 before a request for the widget
container is received at 1020, the metadata parameter value
can be received at any time before the widget container is
modified. Also, the modifying of the widget container
includes defining the widget container according to the meta
data parameter values.
0118. The widget container can also be modified after the
widget container has been served at 1050 to the widget
container processing device. For example, a viewer, origina
tor (e.g., creator/owner), and/or placer of the widget container
can modify and/or define a parameter, for example, that can
be used to modify the widget container. In some embodi
ments, the parameter can be modified and/or defined at the
widget-container processing device using, for example, a ser
Vice module included in the widget container (i.e., user-trig
gered interaction). In some embodiments, the parameter can
be sent to a widget container host that defines an instruction
that can then be sent to the widget-container processing
device so that the widget-container processing device can
modify the widget container according to the instruction.
0119. In some embodiments of the invention, metadata
parameter values can be used to search for and/or identify a
portion of a widget container. For example, a metadata
parameter value search can be used to identify a widget,
service module, and/or widget container, for example, for
execution or display within a processor readable vehicle.
0120 FIG. 11 is a flow chart that illustrates a method for
retrieving a widget using metadata parameter values, accord
ing to an embodiment of the invention. The flow chart shows
that a widget container that contains a first widget is sent to a
widget-container processing device at 1100. The widget con
tainer can be sent to the widget-container processing device
from a widget-container host in response to a reference to the
widget container being accessed at a processor-readable
vehicle.
0121. A request for a second widget based on the first
widget is received via a service module at 1110. The request
can be received at, for example, a widget-container host from
the widget-container processing device. The request can be,
for example, a request to retrieve a second widget similar in
content to (e.g., like) the first widget.
0122. A metadata parameter value associated with the first
widget is received in response to the request at 1120. The
parameters of the request, when received at, for example, a
widget-container host, can be used to retrieve a metadata
parameter value associated with the first widget. The meta
data parameter value associated with the first widget can then
be used to retrieve a second widget. For example, if the
request is for a second widget containing content like the first
widget, a metadata parameter value that describes the content
of the first widget can be retrieved.

Sep. 6, 2012

I0123. The metadata parameter value associated with the
first widget is associated with a metadata parameter value of
the second widget at 1130. The metadata parameter value
associated with the first widget is used, for example, to search
for and retrieve the metadata parameter value of the second
widget from a metadata database. The associating of the
metadata parameter values can be based on a threshold crite
ria (e.g., policy) within a search engine. In this embodiment,
the second widget is of a different content type than the first
widget (e.g., the first widget is a video widget and the second
widget is an image widget or software widget). In some
embodiments, the second widget is the same content type as
the first widget.
0.124 Finally, after the second widget is identified using
the metadata parameter value from the first widget, the sec
ond widget is sent to the widget-container processing device
at 1140. The second widget can be, for example, executed
and/or displayed within the procedural software framework
of the widget container.
0.125. In conclusion, the present invention provides an
apparatus and methods for containerization of static, media,
and/or software objects in a procedural software framework.
Those skilled in the art can readily recognize that numerous
variations and Substitutions may be made in the invention, its
use and its configuration to achieve Substantially the same
results as achieved by the embodiments described herein.
Many variations, modifications and alternative constructions
fall within the scope and spirit of the disclosed invention as
expressed in the claims.

1.-23. (canceled)
24. A method, comprising:
receiving at a widget-container hosta widget or a reference

to the widget;
generating, at a first time, at least a portion of a widget

container, the widget container being a procedural Soft
ware framework including the widget or the reference to
the widget and a first service module configured to pro
vide a first service associated with the widget, the widget
container configured to be executed at a widget-con
tainer processing device in response to a user-initiated
request; and

regenerating, at a second time different than the first time,
the widget container Such that the widget container
includes a second service module configured to provide
a second service associated with the widget, the second
service being different from the first service.

25. The method of claim 24, wherein the widget is at least
one of a static data object, a media object, or a software object.

26. The method of claim 24, further comprising:
receiving a request for the widget container from the wid

get-container processing device, the generating being in
response to the receiving the request.

27. The method of claim 24, wherein the generating
includes compiling the widget container as a discrete portable
module.

28. The method of claim 24, wherein the reference to the
widget is provided to the widget-container host via a widget
container generation engine, and the first service module is
selected via a widget-container generation user-interface
associated with the widget-container generation engine.

29. The method of claim 24, wherein the first service mod
ule is configured to perform at least one of a metadata search
ing function, a metadata retrieval function, a polling function,
a widget container deployment function, a transaction service

US 2012/0227060 A1

function, a widget container tracking function, a referral Ser
Vice function, an advertisement service function, or a direc
tory service function.

30. The method of claim 24, wherein the user-initiated
request is a first user initiated request, the regenerating being
in response to a second user-initiated request, the method
further comprising:

sending an indication of the second user-initiated request
to a tracking server.

31. The method of claim 24, wherein the generating is in
response to a user-initiated request from a webpage contain
ing a reference to the widget container, the reference to the
widget container being an embed tag or an object tag on the
webpage that is configured to serve as a link to the widget
container.

32. The method of claim 24, wherein the widget container
includes a series of instructions configured to be executed by
the widget-container processing device to provide an execut
able environment for the widget.

33. The method of claim 24, further comprising:
Selecting, before the generating, the first service module
from a library of service modules based on a policy.

34. The method of claim 24, wherein the widget has a
content type,

the method further comprising:
Selecting, before the generating, the first service module
from a library of service modules based the content type.

35. The method of claim 24, wherein the widget container
is configured to be executed within a webpage at the widget
container processing device.

36. The method of claim 24, wherein the reference to the
widget container is a first reference, the widget container is
configured to be executed within a first webpage, the first
service module being a placement service module associated
with placing a second reference to the widget container in a
second webpage.

37. A method, comprising:
receiving at a widget-container host a request for a widget

container, the request being defined in response to a first
reference to the widget container being accessed via a
processor-readable vehicle:

defining the widget container, the widget container being a
procedural Software framework including a widget or a
reference to the widget, the widget container including
an identifier indicating that the widget container was
derived from a second reference to the widget container;
and

sending, from the widget-container host, the widget con
tainer to the widget-container processing device.

38. The method of claim 37, wherein the widget is at least
one of a static data object, a media object, or a software object.

39. The method of claim 37, wherein the widget container
includes a service module configured to generate the identi
fier in response to a user-initiated request associated with the
second reference to the widget container being accessed.

40. The method of claim 37, wherein the sending includes
sending the widget container based on a unique widget con
tainer identifier included in the request.

41. The method of claim 37, wherein the widget container
is configured to be executed at the widget-container process
ing device.

42. The method of claim 37, wherein,
the reference to the widget is configured such that the

widget is served into the widget container from a widget

Sep. 6, 2012

server independent from the widget-container host in
response to the reference to the widget being accessed at
the widget-container processing device.

43. The method of claim 37, wherein the widget-container
processing device is a first widget-container processing
device, the defining includes establishing a session between a
second widget-container processing device and the widget
container host,

the method further comprising:
associating with the session a global metadata parameter

value or a local metadata parameter value; and
modifying the widget container based on the global meta

data parameter value or the local metadata parameter
value.

44. The method of claim 37, wherein the widget-container
processing device is a first widget-container processing
device, the defining includes establishing a session between a
second widget-container processing device and the widget
container host, the receiving includes receiving at a first time,
the sending includes sending at a second time, the second
time being after the first time,

the method further comprising:
associating with the session a global metadata parameter

value or a local metadata parameter value; and
modifying the widget container based on the global meta

data parameter value or the local metadata parameter
value at an intermediate time by injecting a segment of
data into a specified location of the widget container, the
intermediate time being before the second time and after
the first time.

45. A non-transitory processor-readable medium storing
code representing instructions to be executed by a processor,
the code comprising code to cause the processor to:

place a first reference to a widget container in a first pro
cessor-readable vehicle;

receive a first user-initiated request for the widget con
tainer from a widget-container processing device in
response to the first reference being accessed;

send the widget container to the widget-container process
ing device in response to the first user-initiated request,
the widget container including a placement service mod
ule:

receive, from the widget-container processing device, a
second user-initiated request in response to the place
ment service module being accessed;

generate, in response to the second user-initiated request a
second reference to the widget container and a place
ment identifier;

place the second reference to the widget container in a
second processor-readable vehicle; and

associate the placement identifier with an identifier asso
ciated with the first reference.

46. The non-transitory processor-readable medium of
claim 45, wherein the widget container includes a widget or a
reference to the widget, the widget being at least one of a
static data object, a media object, or a software object.

47. The non-transitory processor-readable medium of
claim 45, wherein the widget container is a discrete portable
module.

48. The non-transitory processor-readable medium of
claim 45, wherein the widget container includes a series of
instructions configured to be executed by the widget-con
tainer processing device to provide an executable environ
ment for a widget.

US 2012/0227060 A1

49. The non-transitory processor-readable medium of
claim 45, wherein at least one of the first processor-readable
vehicle or the second processor-readable vehicle is a
webpage.

50. The non-transitory processor-readable medium of
claim 45, wherein the first processor-readable vehicle is a
webpage, the first reference being an embed tag or an object
tag on the webpage that serves as a link to the widget con
tainer.

51. The non-transitory processor-readable medium of
claim 45, wherein the code to cause the processor to receive
the second user-initiated request includes code to cause the
processor to receive the second user-initiated request at a first
time, the code to cause the processor to place the second
reference including code to cause the processor to place the
second reference at a second time, the second time being after
the first time,

the processor-readable medium further comprising code to
cause the processor to:

modify at an intermediate time the widget container by
injecting a segment of data into a specified location of
the widget container, the intermediate time being before
the second time and after the first time.

52. The non-transitory processor-readable medium of
claim 45, wherein the code to cause the processor to receive
the second user-initiated request includes code to cause the
processor to receive the second user-initiated request at a first
time, the code to cause the processor to place the second

Sep. 6, 2012

reference including code to cause the processor to place the
second reference at a second time, the second time being after
the first time,

the processor-readable medium further comprising code to
cause the processor to:

modify at an intermediate time the widget container by
injecting a segment of data associated with the first
user-initiated request or the second user initiated request
into a specified location of the widget container, the
intermediate time being before the second time and after
the first time.

53. The non-transitory processor-readable medium of
claim 45 further comprising code to cause the processor to:

generate, before the placing of the first reference, the wid
get container and the placement service module.

54. The non-transitory processor-readable medium of
claim 45, wherein the first reference is a reference to a first
instance of the widget container, the second reference being a
reference to a second instance of the widget container,

the processor-readable medium further comprising code to
cause the processor to:

generate, before the placing of the first reference, the first
instance of the widget container and the placement Ser
vice module; and

generate, before the placing of the second reference, the
second instance of the widget container.

c c c c c

