发明专利申请

(21) 申请号 201110200693.5
(22) 申请日 2011.07.18
(71) 申请人 华南农业大学
 地址 510642 广东省广州市天河区五山路483号
(74) 专利代理机构 广州粤高专利商标代理有限公司
 代理人 林丽明

(54) 发明名称
 同步营养肥料及其制备方法和应用

(57) 摘要
 本发明公开了一种同步营养肥料及其制备方法和应用。所述同步营养肥料包括高氮、高氨钾、高钾或均衡四种配方。四种配方的同步营养肥料分别包括基础肥料和与基础肥料相适应的树脂包膜控释组分。本发明所述同步营养肥料可应用于对生育期较短的大田作物的一次性施肥或对生育期较长或多年生的经济作物的多次追肥方面。本发明不仅实现了肥料养分比例符合作物需求，并进一步实现了控制肥料中养分供应速度、数量、营养元的比例与作物各个生育期的氮、磷、钾等需求量基本吻合。提供了高氮、高氨钾、高钾，均衡四大基础配方肥料与树脂包膜控释组分的有机配合，解决了目前一种配方肥仅对应一种或一类作物一生营养需求的局限。
1. 一种同步营养肥料，其特征在于包括高氮、高氮钾、高钾或均衡四种配方的同步营养肥；所述四种配方的同步营养肥分别包括基础肥料和与基础肥料相适配的树脂包膜控释组分；所述高氮配方的同步营养肥包括高氮型基础肥料及与之相适配的树脂包膜控释组分；所述高氮型基础肥料包括尿素态氮、硝态氮、铵态氮、正磷酸盐、硫酸钾及氯化钾的高氮复合肥或氮、磷、钾单质颗粒肥料，养分比例式是 N : P2O5 : K2O 的质量比例为 2.8 : 1 : 1.8 所述树脂包膜控释组分包括 (1) 3%, 4% 和 5% 的树脂包膜尿素和 (2) 5%, 6% 树脂包膜氯化钾；所述高氮钾配方的同步营养肥包括高氮钾型基础肥料及与之相适配的树脂包膜控释组分；所述高氮钾型基础肥料包括尿素态氮、硝态氮、铵态氮、正磷酸盐、硫酸钾及氯化钾的高钾复合肥或氮、磷、钾单质颗粒肥料，养分比例式是 N : P2O5 : K2O 的质量比例为 3 : 1 : 5；所述树脂包膜控释组分包括 (1) 3%, 4%, 5% 树脂包膜尿素和 (2) 5%, 6% 树脂包膜硫酸钾或树脂包膜氯化钾；所述高钾配方的同步营养肥包括高钾型基础肥料及与之相适配的树脂包膜控释组分；所述高钾型基础肥料包括尿素态氮、硝态氮、铵态氮、正磷酸盐、硫酸钾及氯化钾的高钾复合肥或氮、磷、钾单质颗粒肥料，养分比例式是 N : P2O5 : K2O 的质量比例为 3 : 1 : 6；所述树脂包膜控释组分包括 (1) 3%, 4%, 5% 树脂包膜尿素和 (2) 5%, 6% 树脂包膜硫酸钾或树脂包膜氯化钾；所述均衡配方的同步营养肥包括均衡型基础肥料和与之相适配的树脂包膜控释组分；所述均衡型基础肥料包括尿素态氮、硝态氮、铵态氮、正磷酸盐、硫酸钾的高钾复合肥或氮、磷、钾单质颗粒肥料，养分比例式是 N : P2O5 : K2O 的质量比例为 1 : 1 : 1；所述树脂包膜控释组分包括 (1) 3%, 4%, 5% 树脂包膜尿素和 (2) 5%, 6% 树脂包膜氯化钾或树脂包膜硫酸钾。

2. 根据权利要求 1 所述同步营养肥料，其特征在于所述高氮配方的同步营养肥包括如下各组分：

- 3% 树脂包膜尿素 (44.5-0-0)；
- 4% 树脂包膜尿素 (444-0-0)；
- 5% 树脂包膜尿素 (43.5-0-0)；
- 4% 树脂包膜氯化钾 (0-0-57)；
- 6% 树脂包膜氯化钾 (0-0-58)；
- 复合肥 (15-15-15)；
- 尿素 (46-0-0)；
- 磷酸二铵 (16-48-0)；
- 氯化钾 (0-0-60)；
- 硫酸钾 (0-0-50)；
- 络合态微量元素肥料 (微量元素 ≥ 2%)。

3. 根据权利要求 1 所述同步营养肥料，其特征在于所述高氮钾配方的同步营养肥包括如下各组分：

- 3% 树脂包膜尿素 (45-0-0)；
- 4% 树脂包膜尿素 (43-0-0)；
- 5% 树脂包膜尿素 (43-0-0)；
- 5% 反应性膜型包膜硫酸钾 (0-0-48)。
6% 反应成膜型包膜硫酸钾(0-0-47); 0 ~ 30 质量份；
5% 反应成膜型包膜氯化钾(0-0-58); 0 ~ 25 质量份；
6% 反应成膜型包膜氯化钾(0-0-57); 0 ~ 30 质量份；
复合肥(15-15-15); 0 ~ 15 质量份；
尿素(46-0-0); 10 ~ 30 质量份；
磷酸二铵(16-48-0); 0 ~ 15 质量份；
氯化钾(0-0-60); 0 ~ 35 质量份；
硫酸钾(0-0-50); 0 ~ 35 质量份；
络合态微量元素肥料(微量元素≥ 2%); 0 ~ 1 质量份。
4. 根据权利要求 1 所述同步营养肥料，其特征在于所述高钾配方的同步营养肥包括如下各组分：
3% 树脂包膜尿素(44.5-0-0); 0 ~ 10 质量份；
4% 树脂包膜尿素(44-0-0); 5 ~ 10 质量份；
5% 树脂包膜尿素(43.5-0-0); 0 ~ 10 质量份；
5% 树脂包膜氯化钾(0-0-57); 0 ~ 5 质量份；
6% 树脂包膜氯化钾(0-0-56.5); 0 ~ 10 质量份；
尿素(46-0-0); 10 ~ 20 质量份；
二铵(16-48-0); 0 ~ 15 质量份；
氯化钾(0-0-60); 30 ~ 50 质量份；
硫酸钾(0-0-50); 0 ~ 50 质量份；
复合肥(15-15-15); 0 ~ 15 质量份；
络合态微量元素肥料(微量元素≥ 2%); 0 ~ 1 质量份。
5. 根据权利要求 1 所述同步营养肥料，其特征在于所述均衡配方的同步营养肥包括如下各组分：
3% 树脂包膜尿素(44.5-0-0); 0 ~ 10 质量份；
4% 树脂包膜尿素(44-0-0); 5 ~ 10 质量份；
5% 树脂包膜尿素(43.5-0-0); 0 ~ 10 质量份；
5% 树脂包膜氯化钾(0-0-57); 0 ~ 5 质量份；
6% 树脂包膜氯化钾(0-0-56.5); 0 ~ 5 质量份；
尿素(46-0-0); 0 ~ 15 质量份；
二铵(16-48-0); 0 ~ 10 质量份；
氯化钾(0-0-60); 0 ~ 20 质量份；
硫酸钾(0-0-50); 0 ~ 30 质量份；
复合肥(15-15-15); 0 ~ 15 质量份；
络合态微量元素肥料(微量元素≥ 2%); 0 ~ 1 质量份。
6. 权利要求 1 ~ 5 任 1 项权利要求所述同步营养肥料的制备方法，其特征在于按照配方将粒径相近的包膜肥料、非包膜颗粒肥料置入单包计量混料器中搅拌并充分混匀后包装即得。
7. 权利要求 1 ~ 5 任 1 项权利要求所述同步营养肥料的应用，其特征在于应用于对生
育期较短的大田作物的一次性施肥或对生育期较长或多年生的经济作物的少次追肥方面。
同步营养肥料及其制备方法和应用

技术领域
[0001] 发明属于肥料生产技术领域，具体涉及一种配方肥料的制备技术，特别涉及一种同步营养肥料及其制备方法。

背景技术
[0002] 到目前为止，尚没有关于供肥速度、供肥数量（氮磷钾比例）与作物需求基本一致的同步营养肥料系统研究报道。根据现有资料报道，国际、国内相关的肥料主要有控释肥料和以普通肥料为基础的配方肥料两大种类。这两类肥料的状况和不足之处如下：

（1）普通配方肥料
普通配方肥料是指以土壤测试和田间试验为基础，根据作物需肥规律、土壤供肥性能和肥料效应，以各种单质颗粒化肥和（或）复混肥料为原料，采用掺混或造粒工艺制成的适合于特定区域、特定作物的肥料。普通配方肥的问世，已经部分解决了我国农业生产上常年存在的肥料养分配比与作物养分需求不平衡，农民盲目施用均衡型三元复合肥等一系列的问题。但是由于设计该类肥料指导思想的缺陷，即普通配方肥大多是根据作物一生的营养需求和营养规律设计和制造的，适用于一生的专用配方肥，致使目前的普通配方肥的肥效与三个主要营养阶段不吻合，因此无法担当平衡施肥载体的重任。

[0003] 其存在的主要问题是：普通配方肥料以各种单质颗粒化肥和（或）复混肥料为原料，配制而成，是水溶性化肥，施入土壤后养分供应速率快，易随降雨或灌溉流失，不仅肥料的利用率低，并引起严重的耕地质量退化和环境问题。而且，这类专用配方肥需要多次施肥才能满足目标作物全生育期的需要。特别是在劳动力价格高企的今天，需要多次施用的普通配方肥料的推广应用不免受到一定限制，而且也不符合我国提高肥料利用率和降低能耗、减少CO₂排放的国策。

（2）控释肥料
控释肥料即树脂包膜复合肥或树脂包膜尿素。控释肥料的养分供应速度只取决于包膜的厚度和土壤的温度湿度。一般包膜厚度越大，供肥速度越小；土壤湿度越高，供肥速度越快。在膜厚度一定时，养分释放速度与温度呈正相关。因此这种包膜肥料的供肥速度可以通过控制包膜的厚度而人为控制。然而这种树脂包膜控释肥料主要存在以下问题：

虽然树脂包膜控释肥料供应养分的速度和数量土壤的物理化学性质、土壤微生物活性无直接关系，而仅与土壤温度有直接关系。但是在一定的土壤条件下，无论在作物生长的任何时期，不论作物需求什么样的氮磷钾比例，控释肥料释放或供应的养分的速度恒定不变、供应氮磷钾的比例不变，就是说供肥速度和数量实际上无法调节，即供肥数量和速度与作物需求不不同步、突出的问题是在作物生长的前期供应速效养分不足，造成发棵不良因而影响整个生育期的生长发育。同时，生产供肥数量和养分比例与作物同步的控释肥料之制造工艺复杂，生产条件严格，肥料成本较高，是普通复合肥的5～6倍。故此在农业生产中使用控释肥料将面临成本高、肥料养分释放速度与供应量实际上难以与作物需求一致的双重限制。
说明书

发明内容

本发明人在专利申请号为201010207513.1，发明名称为“一种烟草控释配方肥及其制备方法和应用”的专利申请中提供了一种烟草控释 BB 肥制备方法，主要涉及反应成膜型树脂包膜材料为原料结合烟草的营养特性制造烟草专用控释 BB 肥的工业方法。但是该专利技术仅能针对性的解决烟草这种特殊作物的简化施肥技术。所述控释配方肥料不能适应作物一生三个主要营养阶段的每个阶段，而只适应于某个阶段，实际上还不能解决肥料供应养分与作物需求同步的问题。

发明内容

本发明针对现有配方肥技术的不足以及仅能适用于单种作物的局限性，建立了一种同步营养肥料，所述同步营养肥料可广泛地面向水稻、小麦、蔬菜等大田作物和香蕉、菠萝、柑橘等果树等绝大多数农作物。

本发明提供一种同步营养肥料，根据大多数目标作物的养分吸收规律和常规水溶性化学肥料进行配制，保证同步营养肥的供应养分速度、养分供应数量和氮、磷、钾、镁、硫、锌、锰、铁、铜、硼、钼、锰等营养元素比例与作物三个主要营养阶段的需求基本吻合。所述同步营养肥料可根据不同的目标作物生长周期不同阶段的营养特性而控制养分释放速度，供应数量、供应氮、磷、钾、镁、硫、锌、锰、铁、铜、硼、钼、锰等营养元素比例的同步营养肥料。

本发明的目的通过以下技术方案予以实现：

提供一种同步营养肥料，包括高氮、高氯钾、高钾或均衡四种配方的同步营养肥，四种配方的同步营养肥分别包括基础肥料和与基础肥料相匹配的树脂包膜控释组分；

所述高氮配方的同步营养肥包括高氯型基础肥料及与之相匹配的树脂包膜控释组分；所述高氯型基础肥料包括尿素态氮、硝态氮、铵态氮、硫酸铵、硫酸钾或氧化钾的氯化钾复合肥或氯、磷、钾单质或氯化钾，所述高氯型基础肥料的养分比例为 N : P : K = 2.8 : 1 : 1.8（指 N : P : K的质量比例）；所述树脂包膜控释组分包括 3%、4% 和 5% 树脂包膜尿素，以及 5% 和 6% 树脂包膜氯化钙。

优选的，所述高氯配方的同步营养肥包括如下各组分：

3% 树脂包膜尿素 (44.5-0-0) ; 2 ～ 5 质量份；
4% 树脂包膜尿素 (44-0-0) ; 5 ～ 10 质量份；
5% 树脂包膜尿素 (43.5-0-0) ; 2 ～ 5 质量份；
4% 树脂包膜氯化钾 (0-0-57) ; 2 ～ 10 质量份；
6% 树脂包膜氯化钾 (0-0-58) ; 1 ～ 5 质量份；
复合肥 (15-15-15) ; 0 ～ 30 质量份；
尿素 (46-0-0) ; 10 ～ 40 质量份；
磷酸二铵 (16-48-0) ; 0 ～ 20 质量份；
氯化钾 (0-0-60) ; 0 ～ 20 质量份；
硫酸钾 (0-0-50) ; 0 ～ 20 质量份；

络合态微量元素肥料 (微量元素 ≤ 2%) ; 0 ～ 1 质量份；

以上各组分比例的数值为肥料的常规标示，即N、P、K的质量百分比含量（以氯、氧化二磷、氧化钾计）。所述组分中同步营养肥料的养分供应速度是通过包膜厚度（按照包膜材料对核心肥料的质量百分数表示）控制的，如上述 3%、4%、5% 和 6% 树脂包膜肥就是指养分
供应期或肥效期分别是 30 ～ 40 天(d)、60 ～ 70d、80 ～ 90d 和 120 ～ 130d 的包膜控释肥料。

0010 所述高氯钾配方的同步营养肥包括高氯钾型基础肥料及与之相适配的树脂包膜控释组分、所述高氯钾型基础肥料包括尿素态氮、硝态氮、铵态氮、正磷酸盐、硫酸钾或氯化钾的高钾复合肥或氮、磷、钾单质颗粒肥料，所述高氯钾同步营养肥基础肥料的养分比例式是 3:1:5（指 N:P₂O₅:K₂O 的质量比例）；所述树脂包膜控释组分包括 3%、4% 和 5% 树脂包膜尿素，以及 5% 和 6% 树脂包膜硫酸钾或树脂包膜氯化钾。

0011 优选的，所述高氯钾配方的同步营养肥包括如下各组分：

3% 树脂包膜尿素(45-0-0):2 ～ 100 质量份；
4% 树脂包膜尿素(43-0-0):5 ～ 10 质量份；
5% 树脂包膜尿素(43-0-0):0 ～ 10 质量份；
5% 反应成膜型包膜硫酸钾(0-0-48):0 ～ 25 质量份；
6% 反应成膜型包膜硫酸钾(0-0-47):0 ～ 30 质量份；
5% 反应成膜型包膜氯化钾(0-0-58):0 ～ 25 质量份；
6% 反应成膜型包膜氯化钾(0-0-57):0 ～ 30 质量份；
复合肥(15-15-15):0 ～ 15 质量份；
尿素(46-0-0):10 ～ 30 质量份；
磷酸二铵(16-48-0):0 ～ 15 质量份；
氯化钾(0-0-60):0 ～ 35 质量份；
硫酸钾(0-0-50):0 ～ 35 质量份；
络合态微量元素肥料（微量元素 ≥ 2%):0 ～ 1 质量份。

0012 以上各组分括号内的数值为肥料中养分含量的常规标识，即 N、P、K 的质量百分比含量（以氮、五氧化二磷、氧化钾计）。上述组分中同步营养肥料的养分供应速度是通过包膜厚度（按照包膜材料占该态肥料的质量百分数表示）控制的，如上述 3%、4%、5%、6% 树脂包膜肥就是指养分供应期或肥效期分别为 30 ～ 40d、50 ～ 60d、80 ～ 90d、120 ～ 130d 的控释肥料。

0013 所述高钾配方的同步营养肥包括高钾型基础肥料及与之相适配的树脂包膜控释组分，所述高钾型基础肥料包括尿素态氮、硝态氮、铵态氮、正磷酸盐、硫酸钾或氯化钾的高钾复合肥或氮、磷、钾单质颗粒肥料，养分比例式是 3:1:6（指 N:P₂O₅:K₂O 的质量比例）；所述树脂包膜控释组分包括 3% 树脂包膜尿素、4% 树脂包膜氯化钾、4% 树脂包膜硫酸钾、5% 树脂包膜尿素、6% 树脂包膜氯化钾和 6% 树脂包膜硫酸钾。

0014 优选的，所述高钾配方的同步营养肥包括如下各组分：

3% 树脂包膜尿素(44.5-0-0):0 ～ 10 质量份；
4% 树脂包膜尿素(44-0-0):5 ～ 10 质量份；
5% 树脂包膜尿素(43.5-0-0):0 ～ 10 质量份；
5% 树脂包膜氯化钾(0-0-57):0 ～ 5 质量份；
6% 树脂包膜氯化钾(0-0-56.5):0 ～ 10 质量份；
尿素(46-0-0):10 ～ 20 质量份；
二铵(16-48-0):0 ～ 15 质量份；
氯化钾(0~0-60):30 ~ 50 质量份；
硫酸钾(0~0-50):0 ~ 50 质量份；
复合肥(15-15-15):0 ~ 15 质量份；
络合态微量元素肥料(微量元素≥ 2%):0 ~ 1 质量份。

0015 以上各组分括号内的数值为肥料中养分含量的常规标识，即 N、P、K 的质量百分比含量（以氯、五氧化二磷、氧化钾计）。上述组分中同步营养肥料的养分供应速度是通过包膜厚度控制的，包膜厚度按照包膜材料占核心肥料的质量百分数表示，如上述 3%、4%、5%、6% 树脂包膜肥就是指养分供应期或肥效期分别为 30 ~ 40d、50 ~ 60d、80 ~ 90d、120 ~ 130d 的控释肥料。

0016 所述均衡配方的同步营养肥包括均衡型基础肥料和与之相适应的树脂包膜控释组分，所述均衡型基础肥料包括尿素和尿素、硝态氮、铵态氮、正磷酸盐、硫酸钾的高钾复合肥或氯、磷、钾单质颗粒肥料，养分比例式是 1:1:1 (指 N : P : K 的质量比例)；所述树脂包膜控释组分包括 3%、4%、5% 树脂包膜尿素和 5%、6% 树脂包膜氯化钾，或者包括 3%、4%、5% 树脂包膜尿素和 5%、6% 树脂包膜硫酸钾。

0017 优选的，所述均衡配方的同步营养肥包括如下各组分：
3% 树脂包膜尿素(44.5-0-0):0 ~ 10 质量份；
4% 树脂包膜尿素(44-0-0):5 ~ 10 质量份；
5% 树脂包膜尿素(43.5-0-0):0 ~ 10 质量份；
5% 树脂包膜氯化钾(0-0-57):0 ~ 5 质量份；
6% 树脂包膜氯化钾(0-0-56.5):0 ~ 5 质量份；
尿素(46-0-0):0 ~ 15 质量份；
二铵(16-48-0):0 ~ 10 质量份；
氯化钾(0-0-60):0 ~ 20 质量份；
硫酸钾(0-0-50):0 ~ 30 质量份；
复合肥(15-15-15):0 ~ 15 质量份；
络合态微量元素肥料(微量元素≥ 2%):0 ~ 1 质量份。

0018 以上各组分括号内的数值为肥料中养分含量的常规标识，即 N、P、K 的质量百分比含量（以氯、五氧化二磷、氧化钾计）。上述组分中同步营养肥料的养分供应速度是通过包膜厚度（按照包膜材料占核心肥料的质量百分数表示）控制的，如上述 3%、4%、5%、6% 树脂包膜肥就是指养分供应期或肥效期分别为 30 ~ 40d、50 ~ 60d、80 ~ 90d、120 ~ 130d 的控释肥料。

0019 上述所有原料中的树脂包膜控释肥料原料采用市售现有产品，其中 5% 树脂包膜硫酸钾是指包膜层质量为总质量的 5%，例如产品型号为 CRF-SOP-3M(0-0-47.5)；6% 树脂包膜硫酸钾是指包膜层质量为总质量的 6%，例如产品型号为 CRF-SOP-3M(0-0-47)。5% 树脂包膜氯化钾是指包膜层质量为总质量的 4%，例如产品型号为 CRF-MOP-3M(0-0-57)；6% 树脂包膜氯化钾是指包膜层质量为总质量的 6%，例如产品型号为 CRF-MOP-4M(0-0-56.5)。3% 树脂包膜尿素是指包膜层质量为总质量的 3%，例如产品型号为 CRF-PCU-1M(44.5-0-0)；4% 树脂包膜尿素是指包膜层质量为总质量的 4%，例如产品型号为 CRF-PCU-2M(44-0-0)；6% 树脂包膜尿素是指包膜层质量为总质量的 6%，例如产品型号为 CRF-PCU-3M(43-0-0)。
所述同步营养肥料的制备方法，是按照配方将上述粒径相近的包膜肥料、非包膜
颗粒肥料放入单包计量混料器中搅拌并充分混匀和包装制造。

本发明经过长期大量的实验研究和创造性的分析总结，根据各种作物在生育期内
养分需求的共同点，将同步营养肥分为了四种同步营养配方基础肥料，然后根据对目标
作物在各个生育阶段的养分需要，以所述四种配方基础肥料为原料，配制合乎目标作物需求
的专用同步营养肥，所述同步营养肥的肥效期控制在2～3个月左右，实现了对生育期较短
的大田作物的一次施肥要求，实现对于生育期较长或多年生的经济作物的少次施肥。

与现有技术相比，本发明的有益效果如下：

（1）本发明提供的技术方案改变了现有控释肥料的技术定势，显著增加了控释肥料的内
涵。现有技术关于同步营养肥料的设计，是仅仅局限于控制肥料中养分的释放，单纯延长其
供肥时间方面，本发明将控制肥料的理论扩展到不仅仅延缓肥料的供肥时间，而是控制肥
料中养分的释放或供应速度、供应数量、供应氮、磷、钾和中微量元素的比例与作物各个生
育期的氮、磷、钾等营养元素的需求量基本吻合。

（2）本发明创造性地提出了新的配方肥料的技术思路，保证同步营养肥料更合适合
作物生长。现有技术对于肥料施肥往往只限于基肥（底肥）的氮磷钾养分比例与作物前中
期的需求比例相类似，由于肥效期短，往往需要根据作物生长期对养分需求的不同而追施
肥料。而同步营养肥不仅做到了养分比例合乎作物需求同时还能控制肥料中养分的释放或
供应速度、供应数量、供应氮、磷、钾等营养元素的比例与作物各个生育期的氮、磷、钾等需
求量基本吻合。

（3）本发明首次提出了同步营养肥基础肥料的技术方案。根据对各类型作物养
分需求规律的总结和分析，提出了高氮、高钾、高钙，均衡四大基础配方肥料思想，并通过
四个基础配方肥料与树脂包膜控释组分的有机配合，解决了目前一种配方肥仅适应一种或
一类作物一生营养需求的局限。在生产实践中，农业技术推广部门可以根据当地种植作物
的种类、气候特点、土壤肥力状况对本发明的基础配方肥料进行调整和重组，形成适合当地
作物一生各个主要营养阶段的专用同步营养肥，从而以同步营养肥实现配方肥对应性的突
破，避免一种配方肥对适一种作物可能造成的生产力、肥料资源浪费等问题。

（4）减少施肥次数，大大节约人工。本发明所述的同步营养肥的肥效期一般在三个
月左右，满足生长期短的小田作物一次施肥，能实现生长期长的或多年生经济作物（如：果
树）一生少次追肥。大大减少了施肥次数，节约了施肥人工成本，提高了经济效益，具有广阔
的应用前景。

（5）生产过程清洁无污染

本发明所采用的包膜控释肥料属于以植物油为主要原料的反应成膜型包膜控释肥，包
膜控释肥料制造过程无需溶剂，清洁无污染。同时包膜材料以植物油和固化剂为主要材料，
在土壤中易降解不会造成二次污染。

附图说明

图1 同步营养肥对海南乐东实施例和对照例香蕉产量的影响结果；
图2 同步营养肥对广西北海实施例和对照例香蕉产量的影响结果；
图3 同步营养肥对广东茂名实施例和对照例香蕉产量的影响结果；
具体实施方式

[0028] 下面结合具体实施例进一步详细说明本发明。为方便描述，本发明实施例中选用山东施可丰化工股份有限公司和陕西唐乐特控释肥有限公司所售的产品。但并不因此限制本发明范围。树脂包膜控释肥原料采用市售的以植物油为主要包膜材料的产品。实施例中所使用的方法如无特殊说明，均为常规方法；所使用的材料，如无特殊说明，为可从商业途径得到的材料。

具体实施例

[0029] 实施例 1 高 N 系列控释配方的制备
按下列质量含量称取各组分：质量份
3% 树脂包膜尿素（44.5-0-0）：2 质量份
4% 树脂包膜尿素（44-0-0）：6 质量份
5% 树脂包膜尿素（43.5-0-0）：3 质量份
5% 树脂包膜氯化钾（0-0-57）：3 质量份
6% 树脂包膜氯化钾（0-0-56.5）：3 质量份
尿素（46-0-0）：32 质量份
二铵（16-48-0）：17 质量份
氯化钾（0-0-60）：19 质量份
锌硼镁中微量元素：2 质量份
填料：12.5 质量份
总计 100 质量份。

[0030] 上述控释配方肥的养分配比，即组分中氮（N）、磷（P₂O₅）、钾（K₂O）质量比为控制为：1：0.4：0.7或氯磷钾的分析式是 22-8-15。

[0031] 上述控释配方肥的控释养分配比控制为：水溶性氮；肥效期 30d；肥效期 60；肥效期 90 d 的氮 =1：0.06：0.19；0.09，水溶性钾；肥效期 90d 的钾；肥效期 120d 的钾 =1：0.15：0.15。即保证氮肥中有 20% 以上的控释氮，钾肥中有 20% 以上的控释钾。

[0032] 将称重计量后的各组分物料加入 BB 肥混料机中，并搅拌 3～5 分钟，使其充分混合均匀，然后卸料并传输到自动计量包装机包装成品。

[0033] 本发明所选用的物料要求：①颗粒状且流动性好；②粒径在 3～5 毫米范围内，均匀且各种物料必须能相匹配；③物料含水量≤1.5%；④养分量应能达到上述已给出的养分含量指标以上。

[0034] 实施例 2 中氯高钾系列控释配方肥的制备
按下列质量含量称取各组分：质量份
3% 树脂包膜尿素（44.5-0-0）：2 质量份
4% 树脂包膜尿素（44-0-0）：6 质量份
5% 树脂包膜尿素（43.5-0-0）：2.5 质量份
5% 树脂包膜氯化钾（0-0-57）：4 质量份
6% 树脂包膜氯化钾（0-0-56.5）：4.5 质量份
尿素（46-0-0）：19 质量份
二铵（16-48-0）：10.5 质量份
氯化钾（0-0-60）：33.5 质量份
锌硼镁中微量元素：2 质量份
填料：16.5 质量份
总计 100 质量份。

上述中氮高钾控释配方肥的养分配比，即组分中氯 (N)、磷 (P₂O₅)、钾 (K₂O) 质量比控制为 1：0.33：1.67 或氮磷钾的分析式是 15-5-25。

上述中氮高钾控释配方肥的控释养分配比控制为：水溶性氮：缓释期 30d；缓释期 60d；缓释期 90d 的氮 = 1：0.10：0.29：0.12，水溶性钾：缓释期 90d 的钾，缓释期 120d 的钾 = 1：0.113：0.126。即保证氮肥中有 30%以上的控释氮，钾肥中有 20%以上的控释钾。

将称重计量后的各组分物料加入 BB 肥混料机中，并搅拌 3～5 分钟，使其充分混合均匀，然后包装成本发明产品。

本发明所选用的物料要求：①颗粒状且流动性好；②粒径在 3～5 毫米范围内，均匀且各种物料必须能相匹配；③物料含水量 ≤ 1.5%；④养分量应能达到上面已给出的含营养分量指标以上。

【0039】实施例 3 高钾系列控释配方肥的制备

按上述质量含量称取各组分：质量份
3% 树脂包膜尿素（44.5-0-0）：2 质量份
4% 树脂包膜尿素（44-0-0）：3 质量份
5% 树脂包膜氯化钾（0-0-57）：8 质量份
尿素（46-0-0）：13 质量份
二铵（16-48-0）：10.5 质量份
氯化钾（0-0-60）：42.5 质量份
锌硼镁中微量元素：2 质量份
填料：19 质量份
总计 100 质量份。

上述控释配方肥的养分配比，即组分中氯 (N)、磷 (P₂O₅)、钾 (K₂O) 质量比控制为：1：0.5：3 或氮磷钾的分析式是 10-5-30。

上述控释配方肥的控释养分配比控制为：水溶性氮：缓释期 30d；缓释期 50d 的氮 = 1：0.14：0.21，水溶性钾：缓释期 90d 的钾 = 1：0.18。即保证氮肥中有 22%以上的控释氮，钾肥中有 15%以上的控释钾。

将称重计量后的各组分物料加入 BB 肥混料机中，并搅拌 3～5 分钟，使其充分混合均匀，然后包装成本发明产品。

本发明所选用的物料要求：①颗粒状且流动性好；②粒径在 3～5 毫米范围内，均匀且各种物料必须能相匹配；③物料含水量 ≤ 1.5%；④养分量应能达到上面已给出的含营养分量指标以上。

【0044】实施例 4 均衡系列控释配方肥的制备
按下述质量含量称取各组分：质量份数
3%树脂包膜尿素（44.5·0·0）: 3 质量份
4%树脂包膜尿素（44·0·0）: 3 质量份
5%树脂包膜尿素（44·0·0）: 3 质量份
5%树脂包膜氯化钾（0·0·57）: 3 质量份
6%树脂包膜氯化钾（0·0·56·5）: 3 质量份
尿素（46·0·0）: 13 质量份
二铵（16·48·0）: 31.5 质量份
氯化钾（0·0·60）: 19.5 质量份
锌硼镁中微量元素: 2 质量份
填料: 19 质量份
总计 100 质量份。

[0045] 上述控释配方肥的养分配比，即组分中氮(N)、磷(P2O5)、钾(K2O)质量比控制为：1:1:1 或氨磷钾的分析式为15·15·15。

[0046] 上述控释配方肥的控释养分配比控制为：水溶性氮：肥效期 30d；肥效期 50d；肥效期 60d 的氮 = 1: 0.12:0.12, 0.12, 水溶性钾：肥效期 90d 的钾；肥效期 120d 的钾 = 1: 0.15:0.15。即保证氮肥中有 26% 以上的控释氮，钾肥中有 22% 以上的控释钾。

[0047] 将称重计量后的各组分物料加入 BB 肥混料机中，并搅拌 3 ~ 5 分钟，使其充分混合均匀，然后包装成本发明产品。

[0048] 本发明所选用的物料要求：①状条形和流动性好；②粒径在 3 ~ 5 毫米范围内，均匀且各种物料必须能相匹配；③物料含水量 ≤ 1.5%；④养分量应能达到上述已给出的含营养分量指标以上。

[0049] 实施例 5 控释配方肥的应用实例

本申请人自 2008 年以来，在广东、广西、海南、福建、云南等省多个香蕉等产区，开展了上述同种营养肥的大田示范试验和推广应用。多年多点的研究实验结果表明在香蕉、菠萝、甘蔗、砂糖橘、荔枝、龙眼、芒果等果基肥，苗期、生长旺盛期、果实生长发育其分别施用均能型、高氮型、中低氮钾型、高钾型控释配方肥，能很好地吻合作物一生三种主要营养阶段的养分需求，实现同种营养，获得高产、高效和早熟的效果。在本实施例中不能将实验结果一一罗列，选择香蕉和烟草这两种生长营养需求相差较远的植物的栽培试验作为例子说明本发明，但并不因此限定本发明范围。

[0050] 实验证明，在香蕉和烟草栽培中，使用本发明所述同种营养肥，大大简化了施肥技术，节约追肥人工 70%，香蕉早熟 20 ~ 30 天，生长期只追肥 4 次，动土少，不伤根，显著减少土传病害传播和发生。

[0051] (一) 香蕉栽培试验

1. 香蕉移栽期的基肥

试验地点：海南省乐东尖峰岭镇、东方华侨农场、临高、白沙、广西北海、南宁、云南西双版、福建等地。

[0052] 试验时间：2008 ~ 2011 年

香蕉品种：巴西香蕉

12
供试土壤：壤土、壤土、粘壤土

基肥方案：本试验选取实施例肥料样和对比例两个处理。对比例为普通水溶性肥料（氮、磷、钾），质量比为 1:1:1，每株施用 100g 化肥和 500～1000g 有机肥。本实施例根据上述肥料成本的原则，肥料施用量比例对比例相应减少（约减少了 30%～50%）。在香蕉移栽时施用 50g 控制根系或 100g 匀衡性控释配方肥。对比例采取当地常规水溶性肥料管理办法，在第一次追肥前每 6～7 天还喷施一次液体肥，实施例则在同时只喷清水。

【0053】香蕉苗期追肥

试验地点：海南省乐东尖峰岭镇、东方华侨农场、临高、白沙、广西北海、南宁、云南西双版纳、福建等地。

【0054】试验时间：2008～2011 年

香蕉品种：巴西香蕉

供試土壤：壤土、壤土、粘壤土

苗期追肥方案：本试验选取实施例肥料样和对比例两个处理。对比例为普通水溶性肥料（氮、磷、钾），质量比为 1:0.5:1，移栽后的前 3 个月，每株香蕉每月追施 2～3 次，每次施 0.05～0.10kg，小计 0.35～0.5kg；实施例根据上述肥料成本的原则，肥料施用量比例对比例相应减少（约减少了 35%～55%）。实施例在香蕉的营养生长前期（7～8 片叶），每株施用高氮系列专用控释配方肥 0.225kg。对比例与实施例同一时期内，对比例的追肥次数比实施例的多 5～8 次。对比例与实施例在同一时期的香蕉生长发育并无统计上的差异。试验结果见表 1-1～表 1-4 所示。

【0055】表 1-1 高氮控释配方肥对海南乐东实施例和对照例香蕉苗期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>旺盛营养期</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>苗高</td>
<td>株高</td>
<td>叶面积</td>
<td>叶片数</td>
</tr>
<tr>
<td>实施例</td>
<td>35.7±1.7a</td>
<td>140.9±6.6a</td>
<td>0.80±0.07a</td>
<td>17.8±0.5a</td>
</tr>
<tr>
<td>对比例</td>
<td>34.4±1.0a</td>
<td>135.8±5.0a</td>
<td>0.72±0.03a</td>
<td>17.9±0.3a</td>
</tr>
</tbody>
</table>

表 1-2 高氮控释配方肥对广西北海实施例和对照例香蕉苗期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>旺盛营养期</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>苗高</td>
<td>株高</td>
<td>叶面积</td>
<td>叶片数</td>
</tr>
<tr>
<td>实施例</td>
<td>32.9±1.0a</td>
<td>128.7±4.7a</td>
<td>0.64±0.03a</td>
<td>17.1±0.1a</td>
</tr>
<tr>
<td>对比例</td>
<td>33.3±1.9a</td>
<td>130.3±7.7a</td>
<td>0.68±0.04a</td>
<td>17.2±0.2a</td>
</tr>
</tbody>
</table>

表 1-3 高氮控释配方肥对广东茂名实施例和对照例香蕉苗期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>旺盛营养期</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>苗高</td>
<td>株高</td>
<td>叶面积</td>
<td>叶片数</td>
</tr>
<tr>
<td>实施例</td>
<td>37.1±1.7ab</td>
<td>142.3±5.9a</td>
<td>0.82±0.05a</td>
<td>18.2±0.2ab</td>
</tr>
<tr>
<td>对比例</td>
<td>39.7±0.7a</td>
<td>152.2±1.0a</td>
<td>0.90±0.03a</td>
<td>18.6±0.1a</td>
</tr>
</tbody>
</table>

表 1-4 高氮控释配方肥对云南版纳实施例和对照例香蕉苗期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>旺盛营养期</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>苗高</td>
<td>株高</td>
<td>叶面积</td>
<td>叶片数</td>
</tr>
<tr>
<td>实施例</td>
<td>29.6±0.6a</td>
<td>115.9±4.0a</td>
<td>0.59±0.08a</td>
<td>17.5±0.3a</td>
</tr>
<tr>
<td>对比例</td>
<td>29.9±0.8a</td>
<td>110.3±3.9a</td>
<td>0.59±0.09a</td>
<td>17.9±0.2a</td>
</tr>
</tbody>
</table>

结果表明，和对比例相比，在香蕉苗期施用本发明的高氮型控释配方肥以追施 1 次，与
对比例追施6～9此相比，对旺盛生长期香蕉的茎围、株高、叶面积和叶片数没有显著的影响。说明在香蕉苗期使用高氮控制配方肥，简化了常规施用的前2～3个月追施，只需追施1次控制配方肥，较常规管理大大节约了追施的劳动力。此外，苗期施用高氮控制配方肥处理的化肥总量较常规处理降低了35～55%，既节约了蕉农的肥料投资，又节约了国家资源，降低了因过度使用化肥而导致环境污染的风险。

试验地点：海南省乐东尖峰岭镇、东方华侨农场、临高、白沙、广西北海、南宁、云南西双版、福建等地。

试验时间：2008～2011年

香蕉品种：巴西香蕉

供试土壤：沙壤土、壤土、粘壤土

旺盛营养期追肥方案：本试验选取实施例肥料样和对比例两个处理。对比例为普通水溶性肥料（蕉农习惯使用肥），养分比例为1:0:3:2，移栽后第4个月到第5个月，每株香蕉每月追施2～3次，每次使用0.15～0.2kg，小计0.60～0.80kg；实施例根据等肥料成本的原则，肥料施用量比对比例相应减少（约减少了20%～40%）。实施例在香蕉的旺盛营养生长期（15～18片叶），每株施用高氮系列专用控制配方肥0.50kg。对比例与实施例同一时期内，对比例的追肥次数比实施例的多3～5次。对比例与实施例在同一时期内的香蕉生长发育并无统计上的差异。试验结果见表2-1～表2-4所示。

表2-1 高氮控释配方肥对海南乐东实施例和对照例香蕉苗期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>茎围</th>
<th>株高</th>
<th>叶面积</th>
<th>叶片数</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例</td>
<td>53.9±0.9a</td>
<td>207.7±2.4a</td>
<td>1.64±0.03a</td>
<td>25.6±0.3a</td>
</tr>
<tr>
<td>对比例</td>
<td>53.5±1.3a</td>
<td>211.6±6.8a</td>
<td>1.67±0.04a</td>
<td>26.0±0.2a</td>
</tr>
</tbody>
</table>

表2-2 高氮控释配方肥对广西北海实施例和对照例香蕉苗期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>茎围</th>
<th>株高</th>
<th>叶面积</th>
<th>叶片数</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例</td>
<td>53.8±0.3a</td>
<td>205.6±3.7a</td>
<td>1.58±0.07ab</td>
<td>25.8±0.3a</td>
</tr>
<tr>
<td>对比例</td>
<td>54.3±1.1a</td>
<td>206.0±5.78a</td>
<td>1.47±0.05ab</td>
<td>25.9±0.1a</td>
</tr>
</tbody>
</table>

表2-3 高氮控释配方肥对广东茂名实施例和对照例香蕉苗期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>茎围</th>
<th>株高</th>
<th>叶面积</th>
<th>叶片数</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例</td>
<td>53.5±1.3a</td>
<td>211.6±6.8a</td>
<td>1.67±0.04a</td>
<td>26.0±0.2a</td>
</tr>
<tr>
<td>对比例</td>
<td>53.8±0.7a</td>
<td>207.5±7.8a</td>
<td>1.59±0.03a</td>
<td>25.2±0.1a</td>
</tr>
</tbody>
</table>

表2-4 高氮控释配方肥对云南版纳实施例和对照例香蕉苗期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>茎围</th>
<th>株高</th>
<th>叶面积</th>
<th>叶片数</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例</td>
<td>51.8±1.9a</td>
<td>199.5±5.4a</td>
<td>1.66±0.13a</td>
<td>25.8±0.22a</td>
</tr>
<tr>
<td>对比例</td>
<td>50.6±2.3a</td>
<td>200.6±7.5a</td>
<td>1.68±0.20a</td>
<td>26.1±0.24a</td>
</tr>
</tbody>
</table>

结果表明，和对比例相比，在香蕉营养体旺盛生长期施用本发明的中氮高钾型控释配
方肥追施1次，与对其比例追施4～6次相比，对果树期的施用、株高、叶面积和叶片数没有显著的影响。说明在香蕉业旺盛生长期内，追施1次中氮高钾浓度配施配方肥，不仅简化了常规施肥的技术，大大提高了追施的劳动生产率，而且香蕉业旺盛生长期内施用中氮高钾浓度配施配方肥处理的肥用量较常规处理降低了20～40%，既节约了香蕉业的肥料投资，又节约了农资源，降低了因过度施用化肥而导致环境的污染的风险。

试验地点：海南省乐东尖峰岭镇、东方华侨农场、临高、白沙、广西北海、南宁、云南西双版、福建等地。

试验时间：2008～2011年

供试土壤：沙壤土、壤土、粘壤土

试验期追施方案：本试验选取实施例肥料氨和对比例两个处理。对比例为普通水溶性肥料（每株每袋用肥），养分比例为1：0．3：2．5，移栽后第6个月到第7个月，每株香蕉每月追施2～3次，每次使用0．25～0．35kg，计0．50～0．70kg；实施例仅在香蕉期或抽蕾前期（25～28叶）追施一次中氮高钾浓度配施肥料（15～25），每株施用0．39kg，肥料使用量比对比例相等增加（约减少了24%～45%）。同一时期内，对比例的追施次数比实施例的多1～2次。对比例与实施例在同一时期内香蕉期生育发育无统计学上的差异。试验结果见表3-1～3-4表所示。

表3-1 高氮浓度配施配方肥对海南乐东实施例和对比例香蕉期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>茎围</th>
<th>株高</th>
<th>叶面积</th>
<th>叶片数</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例</td>
<td>59.2±0.2a</td>
<td>236.6±2.7a</td>
<td>1.82±0.05a</td>
<td>27.9±0.4a</td>
</tr>
<tr>
<td>对比例</td>
<td>59.6±1.0a</td>
<td>237.0±4.6a</td>
<td>1.81±0.05a</td>
<td>28.1±0.4a</td>
</tr>
</tbody>
</table>

表3-2 高氮浓度配施配方肥对广西北海实施例和对比例香蕉期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>茎围</th>
<th>株高</th>
<th>叶面积</th>
<th>叶片数</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例</td>
<td>59.6±1.0a</td>
<td>237.0±4.6a</td>
<td>1.81±0.05a</td>
<td>28.1±0.4a</td>
</tr>
<tr>
<td>对比例</td>
<td>59.8±1.3a</td>
<td>238.1±8.2a</td>
<td>1.80±0.05a</td>
<td>28.4±0.4a</td>
</tr>
</tbody>
</table>

表3-3 高氮浓度配施配方肥对广东茂名实施例和对比例香蕉期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>茎围</th>
<th>株高</th>
<th>叶面积</th>
<th>叶片数</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例</td>
<td>58.5±0.3a</td>
<td>228.4±1.4a</td>
<td>1.85±0.03a</td>
<td>28.9±0.2a</td>
</tr>
<tr>
<td>对比例</td>
<td>59.6±1.0a</td>
<td>237.0±4.6a</td>
<td>1.81±0.05a</td>
<td>28.1±0.4ab</td>
</tr>
</tbody>
</table>

表3-4 高氮浓度配施配方肥对云南板纳实施例和对比例香蕉期生长的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>茎围</th>
<th>株高</th>
<th>叶面积</th>
<th>叶片数</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例</td>
<td>56.3±1.2a</td>
<td>222.6±5.7a</td>
<td>1.85±0.08a</td>
<td>28.9±0.6a</td>
</tr>
<tr>
<td>对比例</td>
<td>56.6±1.5a</td>
<td>227.0±6.6a</td>
<td>1.86±0.07a</td>
<td>28.1±0.5a</td>
</tr>
</tbody>
</table>

结果表明，和对比例相比，在香蕉期施用本发明的中氮高钾型配施配方肥追施1
次，与对比例追施 2 次相比，对香蕉的茎围、株高、叶面积和叶片数没有显著的影响。说明在香蕉孕育后期只追施 1 次中氮高钾控释配方肥，不仅简化了常规施肥的技术，大大节约了追施的劳动力，而且香蕉孕育后期施用中氮高钾控释配方肥处理的化肥总量较常规处理降低了 22 ～ 45%，既节约了蕉农的肥料投资，又节约了国家资源，降低了因过度施用化肥而导致环境污染的风险。

【0062】 幼果期追肥

试验地点：海南省乐东尖峰岭镇，东方华侨农场，临高，白沙，广西北海，南宁，云南西双版纳等地。

【0063】 试验时间：2008 ～ 2011 年

香蕉品种：巴西香蕉

供试土壤：沙壤土、壤土、粘壤土

香蕉期投施方案：本试验选取实施例肥料样和对比例两个处理。对比例为普通水溶性肥料（蕉农习惯用肥），养分比例为 1：0.3：3，移栽后第 7 个月到第 8 个月，每株香蕉每月追施 2 次，每次使用 0.10 ～ 0.20kg，小计 0.25 ～ 0.40kg；实施例仅在反把期追施一次高钾控释配方（15－5－30），每株施用 0.15kg，肥料使用量比对比例相应减少（约减少了 40% ～ 60%）。同一时期内，对比例的追肥次数比实施例的多 2 ～ 4 次。

【0064】 香蕉一生追施 4 次控释配方肥对果穗产量的影响

对比例与实施例在香蕉整个生长期，按照上述养分管理实施追施，尽管在抽蕾前期实施例只追施 4 次肥料与对比例追施 14 ～ 21 次，对香蕉生长农艺性状无明显影响（无统计上的差异），但是追施营养充足实施例处理在香蕉收获期的每穗产量明显大于对比例。试验结果见附图 1 ～ 4 所示。

【0065】 结果表明，和对比例相比，在香蕉移栽至反把其施用本发明中由均衡型控释配方肥、高氮型控释配方肥、中氮高钾型控释配方肥和高钾型控释配方肥组成的同步营养肥，并分别在苗期、孕蕾期、抽蕾前、幼果期分别追施 1 次，与对比例每月追施 2 ～ 3 次相比，能明显增加香蕉的产量，平均而言增产量在 12% ～ 19%。说明在同步营养肥在既能简化施肥的情况下，又能提高增收。同步营养肥是轻简施肥和高产高效施肥的优质肥料。

【0066】 二、烟草栽培试验

1. 同步营养肥在烟草上的施用效果

试验地点：广东省南雄市；试验时间：2008 ～ 2010 年

烟草品种：K326；供试土壤：紫色土发育而来的水稻土

试验方案：本试验设 5 个实施例和 1 个对比例两个处理。对比例为普通烟草专用肥，养分比例为 1：0.6：1.3，每亩 50 公斤肥料用量，实施例 1 ～ 5 选用上述同步营养肥的均衡型和高钾型控释配方肥，并根据等肥料成本的原则施肥，每亩 40 公斤肥料用量。实施例 1 ～ 5 在烟株移栽前 1 ～ 2 天以均衡型控释配方肥（占总施肥量的 40%）作为基肥施入，在团棵期至旺长期中间追施高钾型控释配方肥（占总施肥量的 60%），对比例中 30% 的肥料是在移栽前作为基肥施入，40% 和 30% 分别是在团棵期和旺长期追施，追肥的方式为地表撒施。试验结果见表 4 所示。

【0067】 表 4 同步营养肥对烤烟产量和含钾量的影响

16
结果表明，和对比例相比，施用本发明同步营养肥的均衡和高钾型控释配方肥均在一定程度上增加了烟叶的产量。其中实施例 5、实施例 3 和实施例 2 的增产效果最为显著，每亩分别增加烤烟 33.80 公斤、29.4 公斤和 25.5 公斤，增产率达到 15.65%、13.61% 和 11.81%。同时，施用同步营养控释配方肥还显著提高了烤烟中的钾含量，实施例 1、2、3、4、5 的含钾量分别对比例明显增加。因此，同步营养肥的组合施用促进了烟株对钾的吸收，明显改善了烤烟的品质。同时使用控释配方肥在生产和应用中实现了烟草简化施肥，降低了劳动力成本的投入。此外，施用同步营养肥降低了肥料养分的投入，节约了国家资源，降低了因过度施用化肥而导致环境污染的风险。