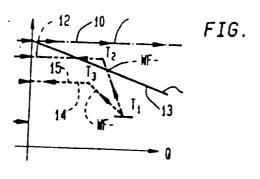


AFRICAN REGIONAL INDUSTRIAL PROPERTY ORGANIZATION (ARIPO)

A P 170

(11)


A

(21)	Application Number:	AP/P/90/00181	(73) Applicant(s):
(22)	Filing Date:	08.06.90	Ormat Turbines (1965) Limited P.O. Box 68
(24) (45)	Date of Grant& Publication	01.02.92	Yavne ISRAEL
(30)	Priority Data:		(72) Inventor(s):
(33)	Country: US		Alex Moritz 2 Makleef Street
(31)	Number: 365006		Holon ISRAEL
(32)	Date: 12.06.89		
(84)	Designated States:		(74) Representative: Honey & Blanckenberg
	KE		P.O. Box 85 HARARE Zimbabwe

- (51) International Patent Classification Int. C1. FOIK 23/04 FO3G 7/00
- (54) Title: Method of and means for using a Two-Phase fluid for (57) Abstract: Method of and means for using a Two-Phase fluid for generating power in a Ranking Cycle Power Plant

A method for using a two-phase fluid includes separating the fluid into its two phases, one of which is a hot gas containing energy in the form of latent heat, and one of which is a hot liquid containing energy in the form of sensible heat; converting sensible heat in the liquid to sensible heat in a working fluid for producing preheated working fluid; and transferring latent heat in the gas to the preheated working fluid for vaporizing the same at substantially constant temperature and pressure.

A P 170

BAD ORIGINAL

GB 2 162 584 A US 4 729 226

GB 2 162 583 A US 3 908 381

DESCRIPTION

METHOD OF AND MEANS FOR USING A TWO-PHASE FLUID FOR GENERATING POWER IN A RANKING CYCLE POWER PLANT

TECHNICAL FIELD

This invention relates to a method of and means for using a two-phase fluid for generating power in a Rankine cycle power plant, and more particularly, for using a two-phase fluid such as geothermal fluid extracted from a water dominated geothermal source.

10 BACKGROUND ART

Some two-phase fluids, such as fluids obtained from water dominated geothermal sources such as occur naturally in many areas of the world, contain a considerable amount of heat that can be utilized for power production using a 15 Rankine cycle power plant. Because of the corrosive properties of such geothermal fluid, and engineering difficulties in designing heat engines to operate efficiently with a two-phase working fluid, conventional to separate the water and steam at 20 wellhead, and to utilize the two fluids in separate power The steam may be used, either directly in a conventional steam turbine, or indirectly as the heat source for an organic working fluid Rankine cycle power plant such as shown in U.S. Patent No. 4,542,625, the disclosure which 25 is hereby incorporated by reference. Such an organic, Rankine cycle power plant comprises a vaporizer containing an organic fluid, such as a Freon, hydrocarbon, etc., which is vaporized by the application of the geothermal steam to the vaporizer. The resultant heat-depleted 30 (condensate) at the outlet of the vaporizer is then disposed of, possibly by injection into what is termed a rejection well. Vaporized working fluid produced by the vaporizer is applied to a specially designed turbine which converts some of the heat in the working fluid to useful work and produces 35 heat-depleted working fluid that is supplied to either a water, or an air cooled condenser wherein the heat-depleted

working fluid is condensed into a liquid condensate that is returned to the vaporizer.

To increase the utilization of the heat contained in geothermal fluid, it is also conventional to use the liquid 5 separated from the steam for generating power. To this end, it is conventional to apply the hot geothermal water to another organic Rankine cycle power plant such as shown in U.S. patent No. 4,578,953, the disclosure of which is hereby incorporated by reference. The '953 patent discloses a 10 cascade arrangement of vaporizers, each associated with its own turbine, and arranged so that the hot geothermal water passes serially from vaporizer to vaporizer. Improved thermodynamic efficiency is achieved by employing a preheater for each vaporizer and applying the heat-depleted 15 geothermal water from the last stage of the cascade to all the preheaters in parallel, thereby preheating the working fluid in each stage before the working fluid enters the vaporizer of the stage.

In some situations, it is impractical to provide 20 separate power plants, one utilizing geothermal steam, and the other utilizing geothermal water. Furthermore, the thermodynamic efficiency of a power plant operating on geothermal water may be too low to warrant the capital cost of the equipment.

It is therefore an object of the present invention to provide a new and improved method of and means for increasing the thermodynamic efficiency of a power plant operating with a two-phase fluid such as fluid obtained from a water dominated geothermal source.

30 <u>DISCLOSURE OF THE INVENTION</u>

The present invention provides a method for using a two-phase fluid comprising the steps of separating the fluid into its two phases, one of which is a hot gas containing energy in the form of latent heat, and one of which is a hot liquid containing energy in the form of sensible heat; converting sensible heat in the liquid to sensible heat in a

working fluid for producing preheated working fluid; and transferring latent heat in the gas to the preheated working fluid for vaporizing the same at substantially constant temperature and pressure.

The two-phase fluid may be a water dominated geothermal fluid, one phase of which is hot water, and the other phase of which is steam. Preferably, the working fluid may be an In such case, the invention provides for organic fluid. expanding the vaporized working fluid in a heat engine to 10 obtain work and heat-depleted working fluid, condensing the heat-depleted working fluid to produce condensed working In a broad aspect, the invention uses a two-phase fluid in a Rankine cycle power plant of the type having a vaporizer for vaporizing a working fluid, a heat engine 15 responsive to vaporized working fluid for producing work and heat-depleted working fluid, and a condenser for condensing the heat-depleted working fluid and producing condensate that is returned to the vaporizer. The method according to the present invention includes the steps of separating the 20 two-phase fluid into its two phases, one of which is a hot gas, and one of which is a hot liquid, passing said gas through the vaporizer wherein heat from the gas vaporizes working fluid in the vaporizer, and passing said liquid through a preheater interposed between the condenser and the 25 vaporizer, heat from the liquid serving to preheat the condensate before it is returned to the vaporizer.

The present invention is operable with geothermal fluid extracted from a water dominated geothermal source, both the geothermal water and the geothermal steam being utilized in 30 a single power plant rather than in separate plants. Thus, in the invention, the geothermal water preheats the working fluid before it is supplied to the vaporizer of the power plant and raises the temperature of the working fluid from the condenser temperature to a temperature just below the 35 temperature of the vaporizer, and the geothermal steam heats the working fluid in the vaporizer under conditions of

constant temperature and pressure. The available heat in the geothermal fluid, when utilized under these conditions, is more advantageously used than is the case were the geothermal steam applied to a power plant separate from the 5 power plant to which the geothermal water is applied.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the invention are shown in the accompanying drawings wherein:

- Fig. 1 is a plot of temperature versus heat input for a 10 conventional arrangement in which geothermal steam and geothermal water are separately used in different power plants, in order to better understand the deficiencies of utilizing separate power plants for each phase of a two-phase, water dominated geothermal source;
- Fig. 2 is a block diagram of a power plant according to the present invention;
 - Fig. 3 is a plot of temperature versus heat input for the vaporizer/preheater arrangement shown in Fig. 2; and
- Fig. 4 is a modification of the vaporizer/preheater 20 configuration shown in Fig. 2.

DETAILED DESCRIPTION

Before discussing the details of the present invention, reference is made to Fig. 1 in order to further explain the problems associated with using separate Rankine cycle power 25 plants for the geothermal water and for the geothermal steam produced by a two-phase, water dominated geothermal fluid source. Curve 10 represents, in an idealized manner, time-wise variation in temperature of the geothermal steam component of the two-phase source as heat is transferred 30 from the steam to a working fluid, e.g., an organic fluid, in a vaporizer containing working fluid at the temperature of the condenser. Except for the presence of noncondensable gases trapped in the steam, which adversely affects heat transfer, all of the heat transferred to the 35 working fluid is derived from the latent heat in the steam whose temperature remains essentially constant.

1.00

Curve 11 represents the variation in the temperature of the working fluid as the latter is heated from its temperature entering the vaporizer (essentially the condenser temperature) designated by T₁ to the boiling point 5 temperature T₂ of the working fluid. The area under curve 11 between the limits T₁ and T₂ represents the so-called pre-heat required to increase the sensible heat of the working fluid to its boiling point. The pre-heat is actually a considerable percentage of the the total heat 10 supplied to the working fluid; and all of this heat is supplied by latent heat in the steam.

After the boiling point of the working fluid is reached, the latent heat of vaporization of the working fluid is supplied by the latent heat condensation of the 15 steam as vaporization of the working fluid commences. The temperature of the working fluid remains constant during this phase as indicated by curve 12. During this phase, a greater amount of heat in the steam is transferred to the working fluid than during the pre-heat phase. Curves 10, 20 11, and 12 are thus representative of a Rankine cycle power plant operating on the steam component of a geothermal source as described in the '625 patent.

Curve 13 represents, in an idealized manner, the variation in temperature of the geothermal water component 25 of the two-phase source as heat is transferred from the hot water to a working fluid, e.g., an organic fluid, in a vaporizer containing working fluid at the temperature of the condenser in a Rankine cycle power plant. All of the heat transferred from the water to the working fluid is sensible 30 heat; and as a consequence, the water temperature drops as the temperature of the working fluid increases. In this case, the working fluid is preheated from temperature T_1 to T_3 (as shown by curve 14) by the water as the latter is cooled in the process. After the temperature of the working fluid reaches the boiling point, the temperature remains constant as indicated by curve 15. During this phase, the

latent heat of vaporization of the working fluid is supplied by sensible heat in the water. Consequently, the maximum temperature available when the heat source is water will be less than that available when the source is steam. Curves 5 13, 14, and 15 are thus representative of a Rankine cycle power plant operating on the liquid water component of a geothermal source as disclosed in the '953 patent.

Considering that, in a steam-based power plant, the pre-heat portion of the operation is carried out very 10 inefficiently from an energy standpoint, and that, in a water-based power plant, the boiling portion of the operation is carried out inefficiently, the result is that the overall operation of both power plants is not as efficient as possible. The present invention contemplates 15 using both the steam and water components of the geothermal fluid in a single system. That is to say, the steam component is used under conditions that maximize the amount of heat extracted from the steam under optimum conditions of thermodynamic efficiency (i.e., the latent 20 vaporization of the working fluid during its boiling phase is supplied by latent heat in the steam component), and the water component is used under conditions that maximize the amount of heat extracted from the water under optimum efficiency conditions (i.e., sensible heat in the working 25 fluid during its pre-heat phase is supplied by sensible heat in the water component).

Fig. 3 illustrates apparatus that operates according to the present invention. Geothermal water is applied to the working fluid to preheat it resulting in a temperature variation as shown in curve 16. The resultant temperature variation in the working fluid is shown by curve 17. Note that the temperature of the water at the beginning of its heat transfer operation in the pre-heater of the power plant is the same as the temperature of the steam during its operation in the vaporizer. During the vaporization of the working fluid, the temperature of the steam remains

substantially constant (except for the effect of the presence of non-condensable gases in the steam) as shown at 16A, and the temperature of the working fluid remains substantially constant as shown at 17A. Very little, if 5 any, heat from the steam is used to preheat the working fluid.

A power plant according to the present invention based on the above-described concept is designated by reference numeral 20 in Fig. 2 to which reference is now made. Power 10 plant 20 is used in conjunction with geothermal production well 21 that produces a two-phase fluid such as water dominated geothermal fluid. The mixture of water and steam is applied to separator 22 where the steam is separated from the water, the steam being applied to vaporizer 23 containing a working fluid in the from of an organic fluid such as a Freon, hydrocarbon or the like, and the water being applied to preheater 30.

Preheater 30, by reason of its operation described below, supplies working fluid to the vaporizer at close to 20 the boiling point. In the vaporizer, the working fluid is vaporized, the latent heat of vaporization being furnished by the latent heat of condensation in the steam. supplies vaporized working fluid to turbine 25 which is effective to convert some of the heat contained in the 25 working fluid into useful work by the operation of generator 26 coupled to the turbine, and to produced heat-depleted working fluid that is applied to condenser 27. contained in the heat-depleted working fluid is rejected into the air, when an air cooled condenser is involved, or 30 into cooling water, when a water cooled condenser is involved; and vapor in the condenser is condensed into liquid working fluid condensate.

Pump 28 receives the condensate, at essentially the temperature and pressure of the condenser, and pressurizes 35 it for return to the vaporizer via pre-heater 30. In the preheater, geothermal water extracted by separator 22 from

the geothermal fluid is brought into heat exchange relationship with the working fluid. Sensible heat in the water is transferred to the working fluid as sensible heat thus preheating the working fluid as indicated by curves 16 and 17 of Fig. 3. Thus, each component of the two-phase fluid operates in its most efficient mode; and the thermal efficiency of the power plant is greatly improved over the situation in which separate steam and water power plants are used.

The geothermal water that exits from preheater 30, after giving up its sensible heat to the working fluid thus preheating it, is combined at 31 downstream of the vaporizer with condensate that exits vaporizer 23. Pump 32 pressurizes the liquid for reinjection into rejection well 34. Non-condensable gases in the vaporizer are vented therefrom, compressed at 34, and also delivered to the rejection line for injection into rejection well 34. A procedure like that shown in the '625 patent can be

utilized.

20 In a modification of the apparatus shown in Fig. 3, residual heat in the condensate exiting from the vaporizer is captured. Reference numeral 40 designates a modification of the construction of the vaporizer/preheater configuration shown in Fig. 3. Modification 40 comprises vaporizer 23A 25 that receives steam from separator 22 and produces vaporized working fluid. I this modification, however, the heat depleted stream (condensate) exiting vaporizer 23A is mixed with the geothermal water exiting separator 22, and both are applied to preheater 30A. Consequently, working fluid in 30 preheater 30A absorbs additional heat from the condensate exiting vaporizer 23A before the condensate is conveyed to the rejection well. Fig. 4 thus shows apparatus according to the present invention that includes means 41 for applying the heat depleted steam, or condensate, exhausted from the 35 vaporizer to the preheater.

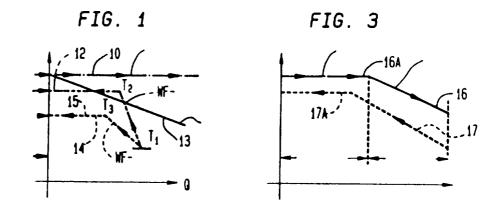
While the above description deals with a specific type

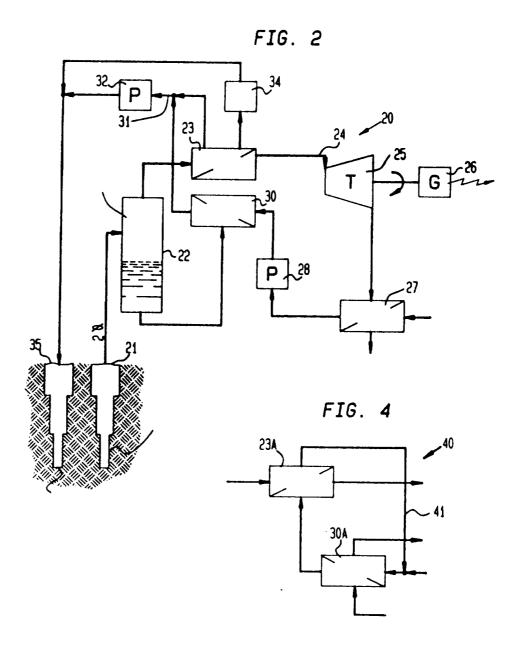
of two-phase fluid, namely fluids derived from a water dominated geothermal source, the invention is also applicable to other types of two-phase fluids in which one phase is a hot gas, and the other phase is a hot liquid. 5 Furthermore, the above-described invention is also applicable to situations where separate sources of hot steam and hot liquid or water are available.

The advantages and improved results furnished by the method and apparatus of the present invention are apparent 10 from the foregoing description of the preferred embodiment of the invention. Various changes and modifications may be made without departing form the scope of the invention as described in the appended claims.

Claims: -

- 1. A method for using a hot two-phase fluid which can be separated into a hot gas, containing energy in the form of latent heat that is released when the gas condenses to a liquid, and a hot liquid, containing energy in the form of sensible heat that is released when the liquid cools, for generating power in a power plant comprising a preheater for heating a liquid working fluid, a vaporizer for vaporizing the working fluid at constant temperature and pressure, a turbogenerator for expanding vaporized working fluid and producing work and heat-depleted working fluid, a condenser for condensing heat-depleated working fluid to produce condensate, and means for returning the condensate to the vaporizer, the method being characterized by the steps of:
- a) separating the hot two-phase fluid into a hot gas stream and into a hot liquid stream;
- b) applying the hot liquid stream to the preheater for raising the temperature of liquid working fluid in the preheater and cooling the hot liquid steam by the transfer of sensible heat from the hot liquid stream to the liquid working fluid; and
- c) applying the hot gas stream to the vaporizer for vaporizing liquid working fluid in the vaporizer and condensing the hot gas into condensate by the transfer of latent heat in the hot gas stream to latent heat in the working fluid.
- 2. A method according to claim 1, wherein the hot gas is steam and the hot liquid is hot water.
- 3. A method according to claim 2, wherein the hot two-phase fluid is a water-dominated geothermal fluid, one phase on which is hot water, and the other phase of which is steam.
- 4. A method according to claim 2 or 3, wherein the working fluid is an organic fluid.
- 5. A method according to claim 1, wherein geothermal fluid obtained from a production well is used as the hot two-phase fluid, the geothermal fluid havine one phase that is geothermal water, and having another phase that is geothermal steam.




- 6. A method according to claim 5, further comprising the step of injecting into a rejection well the water produced when the geothermal steam condenses as a result of its passage through the vaporizer and the geothermal water that is cooled as a result of its passage through the preheater.
- 7. A method according to any of claims 1 to 6, wherein condensate produced in step (c) is also applied to the preheater.
- 8. Apparatus for using a hot two-phase fluid which can be separated into a hot gas, containing energy in the form of latent heat that is released when the gas condenses to a liquid, and a hot liquid, containing energy in the form of sensible heat that is released when the liquid cools, for generating power in a power plant comprising a preheater for heating a liquid working fluid, a vaporizer for vaporizing the working fluid at constant temperature and pressure, a turbogenerator for expanding vaporized working fluid and producing work and heat-depleted working fluid, a condenser for condensing heat-depleted working fluid to produce condensate, and means for returning the condensate to the vaporizer, the apparatus being characterised by:
- a) a separator for separating the hot two-phase fluid into a hot gas stream and into a hot liquid stream;
- b) means for applying the hot liquid stream to the preheater for raising the temperature of liquid working fluid in the preheater and cooling the hot liquid stream by the transfer of sensible heat from the hot liquid stream to the liquid working fluid: and
- c) means for applying the hot gas stream to the vaporizer for vaporizing liquid working fluid in the vaporizer and condensing the hot gas into condensate by the transfer of latent heat in the hot gas stream to latent heat in the working fluid.
- 9. Apparatus according to claim 8, wherein the hot gas is steam and the hot liquid is hot water.

- 10. Apparatus according to claim 9, wherein the hot two-phase fluid is a water-dominated geothermal fluid, one phase of which is hot water, and the other phase of which is steam.
- 11. Apparatus according to claim 9 or 10, wherein the working fluid is an organic fluid.
- 12. Apparatus according to claim 8, further comprising a production well for producing geothermal fluid that provides the hot two-phase fluid, the geothermal fluid having one phase that is geothermal water and having another phase that is geothermal steam.
- 13. Apparatus according to claim 12, further comprising an injection well for disposing of condensate produced when the geothermal steam passes through the vaporizer and the geothermal water that passes through the preheater.
- 14. Apparatus according to any of claims 8 to 13, further comprising means for passing condensate, produced when the hot gas condenses as a result of its passage through the vaporizer, through the preheater.
- 15. Apparatus according to any of claims 8 to 14, wherein the condenser is an air-cooled condenser.
- 16. Apparatus according to any of claims 8 to 14, wherein the condenser is a water-cooled condenser.
- 17. Apparatus according to claim 8, further comprising a production well which produces geothermal fluid as the hot fluid, the geothermal fluid having one phase that is geothermal water and having another phase that is geothermal steam, an injection well for disposing of condensate produced when the geothermal steam passes through the vaporizer and the geothermal water that passes through the preheater, and means for venting non-condensable gases from the vaporizer.
- 18. Apparatus according to claim 17, further comprising means for venting the non-condensable gases into the injection well.

