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ALTAS ADDRESS SUPPORT 2210479

SUMMARY OF THE INVENTION

This invention is directed to certain hardware and
software improvements in workstations which utilize virtual
addressing in multi-user operating systems with write back
caches, including operating systems which allow each user to
have multiple active processes. 1In this connection, for
convenience the invention will be described with reference
to a particular multi-user, multiple active processes
operating system, namely the Unix bperating system.
However, the invention is not limited to use in connection
with the Unix operating system, nor are the claims to be
interpreted as covering an invention which may be used only

with the Unix operating system.

In a Unix based workstation, system performance may be
improved significantly by including a virtual address write
back cache as cne of the system elements. However, one
problem which arises in such systems is in the support of
alias addresses, i.e., two or more virtual addresses which

map to the same physical address in real menmory.

The probler arises because any data update into a write
back cache which is made through one alias address will not
be seen through a cache access to the alias address, since

the two alias addresses will not match.

More specifically, virtual addressing allows aliasing,

i.e., the possibility of multiple virtual addresses mapping

T 171 A "W - P —



to the same physical address. If a direct mapped, virtual
address write back cache were used in a system without page
mapping restrictions, any two arbitrary virtual addresses
could occupy any two arbitrary cache locations and still map
to the same physical address. When cache blocks are
modified, in general, it is impossible to check between
arbitrary cache locations for data consistency. Data can
become inconsistent when changes at one cache location are
not seen at another cache location. Ultimataely, the data at
the common physical address in main memory will include only
part of the modificaticons made by the CPU or I/0 device into

the several cache locations.

In the present invention, the foregeing problen is
solved by combining two distinct strategies to handling

aliases.

The first strategy is to create alias addresses so0 that
their low order address bits are identical, moduloc the size
of the cache (as a minimum). This strategy is applicable to
all user programs which use alias addresses generated by the
Xernel, or wholely within the kernel. These alias addresses
for this strategy are generated by modifications to the
kernel and are invisible to user programs. The alias
addresses so generated will map to the same cache block
within a direct mapped (one-way set associative) cache, or
within the same cache set within a multi-way set associative

cache. Alias hardware detection logic 1s then used to




guarantee data consistency within this cache block (or cache

set).

The second strategy covers those alias addresses in the
operating system, rather than user programs, which cannot be
made to match in their low order address bits. These are
handled by assigning their pages as "Don't Cache" pages in
the memory management unit (MMU) employed by workstations

which utilize virtual addressing.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram showing the main components
of a workstation utilizing virtual addresses with write back

cache,

Figure 2a is a schematic diagram of cache "hit" logic

25.

Figure 2b is a schematic diagram of a circuit for

detecting a cache protection violation.

Figure 2¢ is a schematic diagram of a circuit for

detecting a MMU protection violation.

Figure 3 is a detailed block diagram showing the
address path utilized by the alias detection logic of the

present invention.
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Figure 4 (4(a), 4(b)) is a flow diagram of 2a state
machine implementation for certain controls related to the

addressing of a virtual address write back cache.

Figure 5 is a detailed bleck diagram showing the data
path utilized by the alias detection logic of the present

inventien.

Figure € (6a, 6b) is a flow diagram of a étate machine
implementation for certain controls related to data
transfers to and from a virtual address write back cache

(states (a) = (o)).

Figure 7a is a flow diagram of a state machine
implementation for the data path when there is a real

address match (states (g) = (u)).

Figure 7b is a flow diagram of a state machine
implementation for the data path when there is no real
address match during a CPU write bus cycle (states (q) -
(¥)).

Figure 7¢ is a flow diagram of a state machine
implementation for the data path when there is no real

address match during a CPU read bus cycle (states (q) -
(¥)).

Figure 7d is a flow diagram of a state machine
implementation for the data path during a CPU write bus

cycle when the MMU indicates a Don't Cache Page.
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Figure 8 is a flow dlagram of a state machine
implementation for controlling Write Back bus cycles to

memnory.

Figure %a is a timing diagram for the best case timing

for a CPU write bus cycle when the MMU indicates a cacheable

page.

Figure 9b is a timing diagram for the best case timing
of a CPU write bus cycle when the MMU indicates a Don't

Cache page.

Figure 10a is a timing dliagram for the best case timing

for a CPU read bus cycle when the MMU indicates a cacheable

page.

Figure 10b is a timing diagram for the best case timing

©of a CPU read bus cycle when the MMU indicates a Don't Cache

page.

Figure lla is a timing diagram of the memory bus cycle

for performing a block read cycle.

Figure 11b is a timing diagram of the memory bus cycle

for performing a write back cycle.

Figure llc is a timing diagram of the memory bus cycle

for performing a write to a Don't Cache page.

T Ik, - - 0 TTT T T T T
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Figure 1 shows the functional blocks in a typical
workstation using virtual addresses in which the present

invention is implemented.

Specifically, such a workstation includes a
microprocessor or central processing unit (CPU) 11, cache

data array 19, cache tag array 23, cache hit comparator 25,

pemory management unit (MMU)} 27, main memory 31, write back

puffer 39 and workstation control legic 40. Such
workstations may, optionally, also include context ID
register 32, cache fiush logic 33, direct virtual memory

access (DVMA) logic 35, and multiplexor 37.

In addition to the foregoing elements, to implement the

present invention, also needed are multiplexor 45, alias
detect logic 47, alias detect control logic 49:and real
address register 51. The foregoing elements support alias
addresses without the problems inherent in prior art
implementaticns utilizing a virtual address write back

cache.

Each of the foregoing workstation elements will now be
described, including changes which must be made to the
operating system kernel, with particular emphasis on the

compenents unique to the present invention.
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Description of Necessary Elements of Workstation

CPU 11 issues bus cycles to address instructions and
data in memory (following address translation) and possibly
other system devices. The CPU address itself is a virtual
address of (A) bits in size which uniguely identifies bytes
of insiructions or data within a virtual context. The bus
cycle may be characterized by one or more control fields to
unicquely identify the bus cycle. In particular, a
Read/Write indicator is required, as well as a "Type" field.
This field identifies the memory instruction and data
address space as well as the access priority (i.e.,
"Supervisor" or "User" access priority) for the bus cycle.
A CPU which may be utilized in a workstation having virtual
addressing and capable of supporting a multi-user operating

system is a MC6B020.

Another necessary element in a virtual address
workstation with write back cache shown in Figure 1 is
virtual address cache data array 19, which is organized as
an array of 2N blocks of data, each of which contains 2M
bytes. The 2M bytes within each block are uniquely
identified with the low order M addfess bits. Each of the
2N blocks is uniquely addressed as an array element by the
next lowest N address bits. As a virtual address cache, the
(N+M) bits addressing bytes within the cache are from the
virtual address space of (A+C) bits. (The (C) bits are

i r .ol B8
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context bits from optional context ID register 32 described
belbw.) The (N+M) bits include, in general, the (P)
untranslated page bits plus added virtual bits from the
(A+C~P) bits defining the virtual page address.

virtual address cache data array 19 described herein is
a "direct mapped" cache, or "one way set associative" cache.
While this cache organization is used to illustrate the
invention, it is not meant to restrict the scope of the
invention which may also be used in connection with multi-

way set associative caches.

. Another required element shown in Figure 1 is virtual
address cache tag array 23 which has one tag array element
for each block of data in cache data array 19. The tag
array thus contains 2N elements, each of which has a Valid
bit (V), a Modified bit (M), two protection bits (P)
consisting of a Supervisor Protect bit (Supvsr Prot) and a
Write Allowed bit, and a virtual address field (VA, and
optionally CX) as shown in Figure 3. The contents of the
virtual address field, together with low order address bits
used to address the cache tag and data arrays, uniquely
identify the cache block within the total virtual address
space of (A+C) bits. That is, the tag virtual address field

must contain ((A+C) = (M+N)) virtual address bits.

Cache "Hit" logic 25 compares virtual access addresces

with the contents of the virtual address cache tag address




field. Within the access address, the lowest order M bits
address bytes within a block; the next lowest N bits address
a block within the cache; and the remaining ((A+C) - (M+N))
bits compare with the tag virtual address field, as part of
the cache "hit" logic.

The cache "hit" logic must identify, for systems with a
shared operating system, accesses to user instructions and
data, and to supervisor instructions and data. A "hit®
definition which satisfies these requirements is illustrated

in Figure 2a which comprises comparators 20, AND gate 22, OR
gate 24 and AND gate 26.

MMU 27, which translates addresses within the virtual
space into a physical address, is another required element.
MMU 27 is organized on the basis of pages of size (2F)
bytes, which in turn are grouped as segments of size (25)
pages. Addressing within a page requires (P) bits. These
(P) bits are physical address bits which require no
translation. The role of MMU 27 is to translate the virtual
page address bits ((A+C-P) or (A-P)) into physical page
addresses of (MM) bits. The composite physical address is
then (MM) page address bits with (P) bits per page.

MMU 27 is also the locus for protection checking, i.e.,
comparing the access bus cycle priority with the protection
assigned to the pagef To illustrate this point, there are
two types of protection that may be assigned to a page
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namely, a Supervisor/User access designator and a Write
Protect/Write Allowed designator. Although the subject
invention is not limited to such types of protection, given
this page protection, a nprotection Violation" can result if
either a "User" priority bus cycle accesses & page with
»supervisor" protection; or if a "Write" bus cycle accesses

a page.with a "Write Protect" designation.

The application of MMU protection checking through the
MMU is shown in Figure 2c¢ which conprises inverter 28, AND
gates 30a and 30Db, OR gate 34 and AND gate 36, In addition,
with a virtual address write back cache, the concept of
protection checking can be extended to cache only CPU cycles
which do not access the MMU. Such cache only protection
logic is shown in Figure 2b comprising inverter 42, AND

gates 44a and 44b, OR gate 46 and AND gate 48.

Also shown in Figure 1 is main memory 31 which is
addressable within the physical address space; control of

main memory access is through workstation control loglc 40.

Write back buffer 39 is a register containing one block
of cache data loaded from cache data array 19. Write back
puffer 39 is loaded whenever an existing cache block is to
be displaced. This may be caused by a need to update the
cache block with new contents, or because the.block must be
flushed. In either case, in a write back cache, the state

of the cache tags for the existing cache block determine




-11-

wheter this block must be written back to memory. If the
tags indicate that the block is valid and modified, 2s
defined below, then the block contents must be written back
to memory 31 when the cache plock is displaced. . Write back

buffer 39 temporarily holds guch data before it is written

to memory.

Workstation control logic 40 ceontrols the overall
operation of the workstation elements shown in Figure 1. In
the preferred embodiment, contrel logic 40 is implemented as
geveral state machines which are shown in Figures 4 and 6 -
g as will be described more fully nelow in conjunction with
the description of alias detect control logic 49 which is

also, in the preferred embodiment, integrated into the

workstation control logic.

Dg§gxip;iQn_g1_Qp;L9nAL_Elgmgnzg_gz_ﬂgxkﬁtgsign

context ID register 32 is an optional external address
register which contains further virtual address bits to
identify a virtual context or process. This register,
containing C bits, identifies a total of (2%*C) active user
processes; the total virtual address space is of size

2% % (A+C)

An important component in this virtual address space of
2%+ (A+C) bits is the address space occupied by the operating

system. The operating system is common to all user

. w3 By ———— =
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processes, and soO jt is assigned to a common address space
across all active user processes. That is, the (C) context
bits have no meaning in qualifying the addresses of pages
within the operating system. Rather, the operating system
ig assumed to lie within a commen, exclusive region at the
top of the (2#%*A) bytes of virtual address space for each
active context. No user pages may lie within this region.
So ths operating system page addresses for two distinct user
processes are identical, while the user pages for the two
processes are distinct. All pages within thg operating

system are marked as having "Supervisor" protection.

Workstations of the type in which the present invention
may be utilized may also include cache flush logic 33 to
remove selected blocks from the virtual cache when virtual

addresses are to be reassigned.

cache flush logic 33 is described here only'to indicate
its role as a compenent in a virtual address, write back
cache system. If a range of addresses (a virtual page
address, for example) is to be reassigned, then all
instances of addresses from within this range must be
removed, or "flushed"”, from the cache before the new address
assignment can be made. A cache block is "flushed" by
invalidating the valid pit in its tags and writing the block
pack to memory, if the block has been modified.




13-

In addition to CPU 11 as a source of bus cycles, the
workstation may inclpde one or more external Input/Output
(I/0) devices such as DVMA logic 35. These exterhal I/0
devices are capable of issuing bus cycles which parallel the
CPU in accessing one or more "Types" of virtual address
spaces. The virtual address from either the CPU 11 or DVMA
logic .35, together with the address in context ID register

32, is referred to as the access address.

Another optional element is data bus buffer 37, which
in the preferred embodiment is implemented as two buffers to
control data flow between a 32 bit bus and a 64 bit bus.
Such buffers are needed when the CPU data bus is 32 bits and
the cache data array data bus is 64 bits.

Description of Elements Unique to the Invented Workstation

As noted above, in the present invention, two distinct
strategies are utilized to solve the data consistency
problems resulting from alias addresses. Both strategies
require the interaction of the operating system with special

cache hardware to ensure consistent data.

The first strategy requires that all alias addresses
which map to the same data must match in their low order
address bits to ensure that they will use the same cache
location, if the data is to be cached. The present

invention utilizes alias detection logic 47, which is a real
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address comparator, to detect alias addresses on memory
accesses that "miss" the cache and to control the cache data
update to ensure that all alias addresses point to

consistent data within the same cache location.

The kernel addres operation modules implementing this
first strategy force alias addresses to match in their low
order address bits, so that alias addresses will be
guaranteed to use the same cache location. If the cache is
of size 2™ blocks of data, each with 2N bytes, then at least
the low order (N+M) bits of the allas addresses must match.
This applies to allias addresses within the same process as
well as alias addresses between processes. So long as this
requirement is met, in direct mapped caches, alias addresses
map to the same cache block, and in multi-way set
associative caches alias addresses will map to the same
cache set. The second strategy prevents data from being
cached through the use of a "Don't Cache" bit which is
defined for each page in MMU 27. In other words, each page
descripter in MMU 27 has a "Don't Cache" bit, which controls
whether instructions and data from that page may be written
into the cache. If this control bit is set for a page, then
all data accesses to this page are made directly to and from
main memory, bypassing the cache. 1In bypassing the cache,

the virtual cache data consistency problem is avoided.

Since alias addressing is possible, if a page is marked

nDon't Cache" in one MMU page entry, then it must be marked
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"Don't Cache" in all alias page entries. Data consistency

is not guaranteed otherwise.

Alias address generation for user processes is
controlled through the kernel, B0 that all user processes
utilize the first strategy to ensure data consistency among
alias addresses. GSome addresses for the operating systenm,
however, cannot be altered to meet the addressing
requirements of the first strateqgy. These system alias
addresses are handled instead by the second strategy,

assignment to "Don't Cache" pages.

The following is a functional description of what is
needed to produce data consistency in a direct mapped
virtual address, write back cache, using a combination of

the two strategies.

If a CPU 11 or DVMA 35 memory access cycle "misses" the
cache, then the access virtual address will be translated by
the MMU. The MMU translation will determine if the accessed
page is a "Don't Cache" page and whether the access has a
protection violation. 1If the accees is valid and to a
cacheable page, then the cache will be updated with the

cache block corresponding to the access address.

The current contents of the cache at the location
corresponding to the access address must be examined to
detect a possible alias address. vf the current cache block

ie valid and modified, then the translated address of the



-16-

cache block must be compared to the translated access

address to determine the scurce of valid data to update the

cache.

The real address comparison performed by alias
detection logic 47 takes as inputs the translated bus cycle
access address from real address register 51 and the

translated cache address from MMU 27.

If the current cache block is valid, and the translated
addresses compare, then the access address and cache block
address are aliases. If the cache block is modified, then
the current cache data is the most current data, and the

main memory data at this address is stale.

If the translated addresses compare but the cache block
is not modified, then the cold cache data and memory data are
identical, and either can be used as the source for the

cacha update.

Once the source of valid block data has been
determined, the access cycle can be completed. On Read
cycles, the bus cycle returns data either directly from the
source or from the cache following the cache update,
depending on the implementation. On Write cycles, the
access data may be written into the cache. Both the size of

cache updates and cache data alignment are implementation

~ dependent.
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To guarantee data consictency, any write to a page
requires that all references to that page (read or write)
adhere to this restriction. No reguirement is placed on

alias addressing to read only pages.

The preferred embodiment for the address path
incorporating alias detection logic 47 is shown in Figure 3.
As shown in Figure 3, the address path includes the
fundamental elements to support address contrel in a viréﬁal
address write back cache. For alias address support, also
needed are a virtual address register 52 (VAR) for the
virtual address (CX and VA) and cache block Valigd bit (V),
multiplexer 45 which multiplexes thre virtual address and
virtual address register, real address register 51, alias
detect logic 47, AND gate 53 (with the Valid bit from the
VAR and the alias detect logic output as inputs), and Real
Address Match flip-flop 55 which is set when a real address
match 1s detected.

The data path from the cache 19 to main memory 31 is
over two 64 bit busses 56 and 58. The CPU data path 60 is
32 bits, indicated as D(31:0). ©On read bus cycles, the
cache address bit A(2) selects which of two 32 bit buffers
37 may enable data from the 64 bit cache data bus 56 onto
the 32 bit CPU data bus 60. Alias detection logic 49
controls the source of the data on read cycle cache misses

(the cache or memory) and whether the cache is updated with
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nmemory data on write cycle cache misses as described in the

data state machinea, Figures 6 and 7.

In Figures 3 and 5, to avoid unnecessarily cluttering
the Figures, not all contrcl lines are shown. However, the

control lines necessary for proper operation of the
invention can be ascertained from the flow chart of the

state machines shown in Figures 4 and 6 - 8.

In the flow charts, the following abbreviations are
utilized:

MUX -~ multiplexor 45
Sel =~ select
VA = virtual address
RA ~ real address
OE - output enable
Ack =~ acknowledge
Cache Hit? - Did cache "hit" logic 25
detect a cache hit? (Fig 2a)

Cache Protect Violation ? ~ Did control legic 40 detect a

detect a cache protect violation?

(Fig 2b)




Memory Busy?.

MMU Protect Viol?

CLK

Adr

Mem Adr Strobe

VAR

Mem Adr Ack?

Mem Data Strobe 07

Mem Data Ack 07

Menm Data Strobe 17

Mem Data Ack 1?

_Tg_

Has Memory Busy been asserted?
Did control logic 40 detect a
MMU protect violation?

(Fig 2c¢)

real address register 51

clock

address

memory 31 address strobe

virtual address register 52

Has a mencry address acknowledge
been asserted by memory 317?

Has memory data strobe 0 been
asserted?

Has memory data acknowledge 0 been
assertead?

Has memory data strobe 1 been

asserted?

Has memory data acknowledge 1 been

e



Clk Write Back Buffer

Real Adr Match?

Dont't Cache Page?

CPU Read Cycle?

Clk Data Reg

Valid and Modified Write
Back Data?

Write to Don't Cache Page

Start No Cache Write?

Start Write Back Cycle?
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asserted?

clock write back buffer 39

Has a real address match been

detected (flip~flop 55)

Has control logic 40 detected a
Pon't Cache Page from MMU 27

Is CPU 11 in a read cycle

clock data register 61

lias control logic 40 detected
Valid bit(V) and Modified bit (M)
Has control logic 40 detected a
CPU write to a Don't Cache Page?
Has control logic 40 asserted
Start No Cache Write?

Has control logic 40 asserted

Start Write Back Cycle

Similar abbreviations are used in the timing diagranms

of Figures 9 - 11.




The address state machine shown in Figures 4a and 4b
defines certain of the controls related to the address
handling portion of the cache. The invention is integrated
through the clocking of the Real Address Match flip~filop 55
at state (0). The cache tags 23 are written as Valid during
state (w), following a successful transfer of all block data

from memory 31.

The data state machine shown in Figures 6a and 6b and
7a - 7d defines certain controls related to the data
transfer portion of the cache, As illustrated, following
setate (g), a test is made for a write to a Don't Cache Page;
the handling of this write to memory is also described in
the path following state (i.dw) in the data state machine.
Following state (o), a test is made for a Don't Cache Page
access (this time for Read data). The Don't Cache Read
control takes the same path as the No-Real Address Match
path, until states (¢.nr) and (u.nr). Here a test for Don't
Cache Pages inhibits cache updates in states ;s.nr) and

(w.nr).

The write back state machine shown in Figure 8 defines
the control of the Write Back bus cycle to memory. This
cycle may be performed in parallel with CPU cache accesses,
since both the Write Back controls and data path are
independent of the cache access controls and data path. As

described below, the "Memory Busy" signal causes the address
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and data state machines to wait until a previous Write Back

cycle has completed.

The write cache miss timing diagram shown in Figure %a
defines the overall timing of a CPU write bus cycle to a
cacheable page in memory which misses the cache. The cache

Hit and Protection Check occur in cycle (c) in this diagram.

+

A part of the miss handling seguence includes the
loading of the current cache block which is being replaced
into write back buffer 39 in cycles (i) and (m). The
translated address for the current cache block is also
jcaded into real address register 51 in cycle (o). The Real
Address Match latch (flip-flop 55) is also clocked at cycle
(o). If the current cache bleck is both valid and Modified
frem a previous CPU (or DVMA) write cycle, then this cache
block will be writtten back to memory 31 through a Write
‘Back bus cycle, described in both the Memory Data Bus Timing
and the Write Back State Machine, Figures 11b and 8

respectively.

An activa Real Address Match latch (flip-flop 55)
signifies an alias address match. 1If there‘is no Alias
Match, the CPU write data is merged with block data returned
from memory on the first data transfer of a Block Read
memory bus cycle. During cycles (q) through (u), the CPU
write Output Enable controlling buffers 37 will be active

for only those bytes to be written by the CPU, while the
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Data Register Output Enable contrclling data register 61
will be active for all other bytes. During the second data
transfer, cycle (w), the Data Register Output Enables for
all bytes will be active.

If there is an Alias Match, the CPU data is written
into the data cache at state (s), and the data fronm menory

31 is ignored.

The Write to Don't Cache Page timing shown in Figure 9b
defines the overall timing of a CPU write bus cycle to-
hemory for accesses to a Don't Cache Page. The cache Hit,
which occurs in cycle (c), will always indicate a miss (no

Hit).

The Write to a Don't Cache page case differs from the
cache miss case for a write to a cacheable page in that the
cache is not updated with either CPU or memory data. The
implementation uses a special ﬁemory bus cycle, called the
Write to Don't Cache Page cycle (Figure 1llc), to directly
update memory. Note that the Real Address Match latch has

no meaning for this case.

The read cache miss timing diagram shown in Figure 10a
defines the overall timing of a CPU read bus cycle to a
cacheable page in memory which misses the cache. The cache

Hit and Protection Check occur in cycle (c¢) in this diagram.
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A part of the miss handling sequence includes the
loading of the current cache block which is being replaced
into write back buffer 39 in cycles (i) and (m). The
translated address for the current cache block is also
loaded into real address register 51 in cycle (o). The Real
Address Match latch (flip-flop 55) is also clocked at cycle
(o). If the current cache block is both valid and Modifled
from a previous CPU (or DVMA) write cycle, then this cache
block will be writtten back to memory 31 through a Write
Back bus cycle, described in both the Memory Data Bus Tinming
and the Write Back State Machine, Figufes 1lb and 8

respectively.

An active Real Address Match latch (flip-flop 55)
signifies an alias address match. If there is no alias
address match, data is read to the CPU by simultaneocusly
bypassing the data to the CPU through buffers 37 enabled by
control signal CPU Read Output Enable, active in states (q)
through (u), and updating the cache, in state (s). The
memory is designed to always return the "missing data" on
the first 64 bit transfer, of a Block Read memory bus cycle
and the alternate 64 bits on the subsequent transfer. After
the CPU read bus cycle data is returned, the CPU may run
internal cycles while the cache is being updated with the

second data transfer from memery.




-05-

If there is an alias address match, data is read
directly frem the cache 19 to the CPU 11, and the data from

memory 31 is ignored.

The Read from Don't Cache Page timing shown in Figure
10b defines the overall timing of a CPU read bus cycle to
memory for accesses to a Don't Cache Page. The cache Hit,
which occurs in state (c), will always indicate a nmiss (no

Hit).

The Read from a Don't Cache page case differs from the
cache miss case for reading from a cacheable page in that
the cache is not updated with memory data. The
implementation uses the same Block Read memory bus cycle as
the cache miss case (see the Memory Data Bus Timing, below).

The Real Address Match latch (flip-flop 55) has no meaning

for this case.

The Memory Data Bus Timing shown in Figure 1lla - lic
shows the timing of Block Read, %Write Back, and Write to
DPon't Cache Page bus cycles. Since the cache block size is
128 bits, each cache block update recuires two data
transfers. As indicated above the 64 bits containing the
data addressed by CPU 11 are always returned on the first
transfer for Block Read bus cycles. The “"Memory Busy"
control signal active during the Write Back cycle is used to
inhibit the start of the next cache miss cycle until the

previous Write Back cycle can complete,
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~ On Write to Don't Cache Page bus cycles, the 8 bit Byte
Mark field, sent during the address transfer phase of the
cycle, defines which of the 8 bytes of data, sent during the

data phase, are to be updated in memory 31.

In addition to the foregoing hardware, the operating
system kernel must be modified in two fundamental ways to

support alias addressing:

1) The operating system utilities which generate user

alias addresses must be modified to guirantee that alias

sddresses conform to the rule regquiring that thelr low order

(N+¥) address bits, as a minimpum, must match.

2) Instances of alias addresses inside the operating
system, which cannot be made to conform to the rule

requiring the match of the low orxder (N+M) bits, must be

assiagned to "Don't Cache' pages.

The kernel changes needed to support allas addressing

for the Unix operating system are shown in Appendix A.
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SLAIMS

1. In a work station having an operating

system utilizing a virtual address write back cache,
said work station including a central processor coupled
to a cache tag array, a cache data array, 8 write

hack buffer, a memory management unit, a r=2al address
register, a main memory having physical addresses, a
cache hit detector and work station control logic,

the improvement comprising:

a) first means for ensuring that all alias
addresses which map to the same physical address in
said main memory, other than a predetermined set of
alias addresses which map to physical addresses used
exclusively by the operating system, match in
their lau crder adcress hbits theoshy using the same
location in szid cachs data aosy;

b} s=cond means far snsusing that szid
predetermined set of alias addrasses which map
to physical addresses used exclasively by the
aperating system, have their pages marked as Don't

Cache pages.

2. The improvement defined by Claim 1 wherein
said first means comprises:

a) alias detection logic means for
detecting alias addresses which map to physical
addresses in said main memory;

b) alias detect contrcl logic means for
obtaining the data used on read gycla and write cycle
cache misses from a selected ore of said cache
data array and said memory, and for controlling the
updating of the cache data array on write cycle

cache misses.
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3. The improvement defined by Claim 2, wherein

‘said alias detection logic means comprises:

a) a comparator coupled to said memory
management unit and said real address register,
said comparator generating a logic one when the
address stored in said real address register matches 2a
predetermined cache address in said memory
management unit;

b) an AND gate having one imput coupled to the
output of said comparator and a second input coupled
to a cache valid bit within a virtual address register,
said virtual address register storing 2
predetermined virtual address loaded from said cache
tag array;

c) a flip-flop coupled to the output
of said AND gate, said flip-flop being set when a
al zddraes match is detected as deternined

by the output of said AND gate.

(k]
m

L. The improvement defined by Claim 2, wherein
sald alias detect control logic means comprises

a state machine.

5. The improvement defined by Claim 1, wherein
said second means comprises means for indicating
in said memory management unit that a page in said

main memory is a Don't Cache page.

6. The improvement defined by Claim 5, wherein
said indicating means comprises a bit within a

page descriptor word for each page in said

memory management unit, wherein when said bit is
set for a page, all data accesses t+o0 sald page are
made directly to and from said memory thereby

bypassing said cache data array.
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7. In a work station having an operating system
utilizing a virtual address write back cache, said
work station including a central processor couplad
to a cache tag array, a cache data array, a write back
buffer, a memory management unit., a real address
register, a main memory having physicél addresses, a
cache hit detector and work station control logic, a
method for detecting data inconsistencies in said
data cache array and correcting detected data
inconsistencies, said method comprising the steps of:

a) ensuring that all alias addresses which
map to the same physical address in said main memory,
other than a predetermined set of alias addresses
whichmap to physical addresses used exclusively by the
operating system, match in their low order address
bits thersoy using the same location in said cache
data arcrav;

b) marking ssid predstzcrmined set of allas
addresses whizh map tc physical sddresses used exclusively

by the operating system as Don't Cache pages.

8. The imgrovemeznt defined by Claim 7 wherein
said ensuring step comprises the steps of:

a) detecting alias addresses which map
ta physical addrz2sses in said main memory;

b) obtaining the data used on read cycle
and write cycle cache misses from a selected one of
said cache data array and said rain memory;

c) selectively updating the cache data

array on write cycle cache misses.

9. The improvement definecd by Claim 8, wherein
said detecting step comprises the steps of:

a) gemerating a comparator output which is
a logic one when the address stored in said real

address register matches a predetermined cache address
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in said memgory management unit;
L) inputting to an AND gate one input
coupled to the output of said comparator and 2
second input coupled to a cache valid bit within a
virtual address register which stores a predetermined
virtual address loaded from said cache tag array;
c) setting a flip-flop coupled to the
output of said AND gate when a real address match
is detected as determined by the cutput of said
AND gate. '

10. The improvement defined by Claim 7, wherein
said marking step comprises the step of indicating in
said memory management unit that a page in said main

memory is a Dan't Cache page.

11. The improvement defined by Claim 10, wherein
s3id indicating step comprises setting a bit within

a page descriptcr word for each page in said memory
management unit, wherein when said bit is set for

a page, sll data accesses to said page are made
directly to and from said memory thereby bypassing

said cache data array.

12. A work station substantially as hereinbefores

described with reference to the accompanying drawings.
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