0 01/33369 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 May 2001 (10.05.2001)

PCT

(10) International Publication Number

WO 01/33369 Al

(51) International Patent Classification”: GO6F 13/00,

13/14, 15/16, 17/30, 17/60
(21) International Application Number: PCT/US00/30068
(22) International Filing Date:
2 November 2000 (02.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/163,020 2 November 1999 (02.11.1999) US

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
Us

Filed on

60/163,020 (CON)
2 November 1999 (02.11.1999)

(71) Applicant (for all designated States except US): COM-
MERCE ONE [US/US]; 4440 Rosewood Drive, Pleasan-
ton, CA 94588-3050 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MELTZER, Bart,
Alan [US/US]; Aptos, CA 95003 (US). DAVIDSON,
Andrew [US/US]; Boulder Creek, CA (US). VENKAT,
Ramshankar [US/US]; Milpitas, CA (US). MULLER,
Tom [US/US]J; Fremont, CA (US). ROSENTHAL, Karen
[US/US]; Knightsen, CA (US). SCHWARZHOFF, Kelly
[US/US]; Palo Alto, CA (US). AHMED, Zahid [US/US];
Redwood City, CA (US).

(74) Agent: BEFFEL, Ernest, J.; Haynes & Beffel LLP, P.O.

Box 366, Half Moon Bay, CA 94019 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,

DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,

HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,

LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

[Continued on next page]

(54) Title: COMMERCE COMMUNITY SCHEMA FOR THE GLOBAL TRADING WEB

Global Trading Web Architecture

MarketSite.net BT.net . i
Qe fusggeon [et [V | [
103 —(Buyer) —_—
- Plallorm Platform Platform Plalform 103
@ — —— — — S
*Catalof y
EorD e, S
*Service Usage
104 Global Trading Web Infrastructure
{Formals & Protocols, Interfaces, Revenue Sharing Agreements, Privacy Policies,)
105 Global Trading Web Services
(Billing, Traffic Management, Selllement, Non-Repudialion, Certificate Authority,
Commodity Spot Market, Securily, Global Directory for Suppfiers and Itetns)

Ty
106 Registry/
Repositol

(57) Abstract: Machine readable documents connect business with customers (101), suppliers (103) and trading partners (102).
To connect entities across marketplaces (102) to which they subscribe, there must be an interface (104) for defining documents.
The present invention includes an extensible interface (104) for common definitions and vocabulary to allows marketplaces (102) to
reveal their trading documents to others according to a commonly understood and marketplace independent definition.

WO 01/33369

AT TN 0000 O

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

— Before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 01/33369 PCT/US00/30068

COMMERCE COMMUNITY SCHEMA
FOR THE GLOBAL TRADING WEB

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to systenis and protocols supporting transactions
among diverse clients coupled to a network; and more particularly to an extensible
schema for electronic data interchange among participants in a commerce community

and between commerce communities.

Description of Related Art
The Internet and other communications networks provide avenues for

communication among people and computer platforms which are being used for a wide
variety of transactions, including commercial transactions in which participants buy and
sell goods and services. Many efforts are underway to facilitate commercial transactions
on the Internet. However, with many competing standards, in order to execute a
transaction, the parties to the transaction must agree in advance on the protocols to be

utilized, and often require custom integration of the platform architectures to support

-1-

10

15

20

25

30

WO 01/33369 PCT/US00/30068

such transactions. Commercial processes internal to a particular node not compatible
with agreed-upon standards, may require substantial rework for integration with other
nodes. Furthermore, as a company commits to one standard or the other, the company
becomes locked-in to a given standardized group of transacting parties, to the exclusion
of others.

| A good overview of the challenges met by Internet commerce development is
provided in Tenenbaum et al., "Eco System: An Internet Commerce Architecture”,
Computer, May 1997, pp. 48-55.

To open commercial transactions on the Internet, standardization of architectural
frameworks is desired. Platforms developed to support such commercial frameworks
include IBM Commerce Point, Microsoft Internet Commerce Framework, Netscape
ONE (Open Network Environment), Oracle NCA (Network Computing Architecture),
and Sun/JAVASoft JECF (JAVA Electronic Commerce Framework).

In addition to these proprietary frameworks, programming techniques, such as
common distributed object model based on CORBA IIOP (Common Object Request
Broker Architecture Internet ORB Protocol), are being pursued. Use of the common
distributed object model is intended to simplify the migration of enterprise systems to
systems which can inter-operate at the business appliéation level for electronic
commerce. However, a consumer or business using one framework is unable to execute
transactions on a different framework. This limits the growth of electronic commerce
systems.

Companies implementing one framework will have an application programming
interface API which is different than the API's supporting other frameworks. Thus, it is
very difficult for companies to access each other’s business services, without requiring
adoption of common business system interfaces. The development of such business
system interfaces at the API level requires significant cooperation amongst the parties
which is often impractical.

Accordingly, it is desirable to provide a framework which facilitates interaction
amongst diverse platforms in a communication network. Such system should facilitate
spontaneous commerce between trading partners without custom integration or prior
agreement on industry-wide standards. Further, such systems should encourage
incremental path to business automation, to eliminate much of the time, cost and risks of

traditional systems integration.

10

15

20

25

30

WO 01/33369 PCT/US00/30068

Overall, it is desirable to provide an electronic commerce system that replaces the

closed trading partner networks based on proprietary standards with open markets.

SUMMARY OF THE INVENTION
The present invention is part of an infrastructure for connecting businesses with
customers, suppliers and trading partners. Under the infrastructure of the present
invention, companies exchange information and services using self-defining, machine-

readable documents, such as XML (Extensible Markup Language) based documents, that

~ canbe easily understood amongst the partners. Documents which describe the

documents to be exchanged, called business interface definitions (BIDs herein), are
posted on the Internet, or otherwise communicated to members of the network. The

business interface definitions tell potential trading partners the services the company

_offers and the documents to use when communicating with such services. Thus, a

typical business ihterfacé definition allows a customer to place an order by submitting a
purchase order, compliant with a document definition published in the BID of a party to
receive the purchase order. A supplier is allowed to check availability by downloading
an inventory status report compliant with a document definition published in the BID of
a business system managing inventory data. Use of predefined, machine-readable
business documents provides a more intuitive and flexible way to access enterprise
applications. Consistent schema maintained by a global trading infrastructure assure
reliable exchange of documents and document containers among marketplaces, whether

the infrastructure participation is real or virtual.

BRIEF DESCRIPTION OF THE FIGURES

Fig. lisaan overview of a GTW (Giobal Trading Web) architecture.

Fig. 2 is a simplified diagram of a GTW topology. '

Fig. 3 is a simplified diagram of an electronic commerce network including
business interface definitions BIDs according to the present invention.

Fig. 4 is a conceptual block diagram of GTW implementation options.

Fig. 5 is a high level block diagram of a registry and repository architecture.

Fig. 6 is a block diagram of entities and relationships in the commerce

community schema of the present invention.

10

15

20

25

30

WO 01/33369 PCT/US00/30068

Fig. 7 is a tree structure that placés in context services and applications of the
present invention.

Fig. 8 is a simplified diagram of a business interface definition document
according to the present invention.

Fig. 9 is a conceptual block diagram of a server for a participant node in the
network of the present invention. ‘
| Fig. 10 is a flow chart illustrating the processing of a received document at a
participant node according to the present invention.

Fig. 11 is a block diagram of a parser and transaction process front end for an
XML based system.

Fig. 12 is a conceptual diagram of the flow of a parse function.

Fig. 13 is a simplified diagram of the resources at a server used for building a
business interface definition according to the present invention.

Fig. 14 is a simplified diagram of a repository according to the present invention
for use for building business interface definitions. |

Fig. 15 is a flow chart illustrating the processes of building a business interface
definition according to the present invention. '

Fig. 16 provides a heuristic view of a repository according to the present
invention.

Fig. 17 is a simplified diagram of the resources at a server providing the market
maker function for the network of the present invention based on business interface
definitions. - |

Fig. 18 is a flow chart for the market maker node processing of a received
document.

Fig. 19 is a flow chart illustrating the process of registering participants at a
market maker node according to the present invention.

Fig. 20 is a flow chart illustrating the process of providing service specifications
at a market maker node according to the process of Fig. 15.

Fig. 21 is a diagram illustrating the sequence of operation at a participant or
market maker node according to the present invention.

Fig. 22 is a conceptual diagram of the elements of a coﬁmercial network based

on BIDs, according to the present invention.

10

15

20

25

30

WO 01/33369 PCT/US00/30068

DETAILED DESCRIPTION

A detailed description of embodiments practicing the present invention is
provided with respect to the figures. Other embodiments practicing the present invention
will be apparent to those of skill in the art. Fig. 1 depicts a global trading Web |
infrastructure in support of an overall global trading Web architecture. Buyers 101
interact with market portals 102 to communicate with suppliers 103. The buyers,
suppliers and other interacting through the market portals or nodes may collectively be
referred to as traders. Each market portal operates from an URL and is hosted by a
platform, which may be a workstation, minicomputer or mainframe running an operating
system such as Windows NT, Linux, UNIX, or VM. Each platform has access to a local
registry, which contains a schema representing the businesses participating in the market
portal, the services they offer, interactions or transactions among businesses, the
documents which direct interactions and the information items in the documents. From
the perspective of a buyer or supplier, the market portals support catalogs, the transport
of documents, transactions between buyers and suppliers and between marketplaces, and
services in support of the transactions. The global trading Web infrastructure 104
supports the market portals that communicate with it. The infrastructure receives, stores
and reveals formats and protocols. It supports interfaces between market portals that
may otherwise be incompatible. It stores and assists in implementation of revenue-
sharing agreements between market portals for buyers and sellers, it stores and assists in
implementation of privacy policies. The communications between market portals and
the infrastructure are secure, as is the platform including one or more servers that
supports the infrastructure.

The market portals connected through the global trading Web infrastructure can
be based on servers built on the CommerceOne TM MarketSite product line, and eCo
interoperability specification compliant marketplace, or a custom marketplace solution
that has been adapted for interoperability, such as Chemdex TM or any other non-
MarketSite enabled marketplace. The infrastructure generally provides program
business community services, a routing infrastructure for business documents and a Web
portal for access to routing infrastructure and services. This infrastructure resembles the
structure that may be implemented for a single MarketSite TM. It is different because
the business community services provided facilitate global trading rather than trading

within one community. The routing and tracking documents account for transactions

-5-

10

15

20

25

30

WO 01/33369 PCT/US00/30068

between marketplaces, rather than within a single portal. The Web portal is tailored to
connecting other market Web portals around the world. For document routing, the
infrastructure can be real or virtual. When it is real, the documents actually go through
the infrastructure. That is, the infrastructure will act as a messaging switch, receiving
and forwarding document containers and documents from one market portal to another.
When it is virtual, documents are transferred in a peer-to-peer fashion, with the benefit of
local registries being updated from the global registry to assure that the market portals
supported are operating on current schemas and protocols. The infrastructure preferably
is informed of interconnects and transfers for tracking purposes when documents are
transferred peer-to-peer.

The infrastructure is useful in establishing interconnections between
marketplaces. Revenue-sharing agreements may be based on infrastructure supplied
forms. The billing capabilities exist to support the revenue-sharing agreements. A
billable event can be logged every time an event occurs which is billable to one of the
participants in the infrastructure. The infrastructure registers trading partners (also
referred to as traders) and interconnections. A global namespace uniquely identifies
trading partners via trading partner profiles. A privacy policy protects trading
community members profiles to the extent that they assert that an interest in privacy.
The infrastructure can support anonymous transactions pursuant to terms and cbnditions
which assure payment and delivery of goods. Trading partners who are interested in
being identified appear in a super directory of trading partners. Information regarding
each of the trading partners is available through a broWsing interface and a query
mechanism. When potential trading partners find each other, either through the super
directory or other means, they may wish to establish a trading relationship. The
infrastructure facilitates conversations between the entities and is available to register
whatever agreements they reach to support commerce between them. The infrastructure
assists in reconciling mappings and other issues related to interconnections by providing
businesses, market communities and context services targefed at global trading.

Operationally, the infrastructure provides activation and configuration of
interconnections, maintains interconnections over time, manages relationships across
interconnections and tracks activity for billing and confirmation purposes. These
operational capabilities depend on the consistency provided by the infrastructure in

formats, protocols, policies (e.g., privacy), processes and interfaces. The infrastructure

-6-

10

15

20

25

30

WO 01/33369 PCT/US00/30068

preferably is reliable, available, scalable and manageable. Aggregation of trading
partner or trader information from different marketplaces into a single super directory
view of trading partners can be done at least three ways. Cache can be updated from
trading partner information exchange between marketplaces in the infrastructure.

Trading partner information can be replicated from one marketplace to another. Or, meta
data about trading partners available in a single location or within each marketplace
instance can refer the interested party to a location that makes available more complete
data. '

Fig. 1 depicts how the infrastructure adds value to the market portals by
providing services 105 beyond acting as library for formats and protocols, interfaces,
revenue-sharing agreements, privacy policies and the like. The services 105 provided
include billing, traffic management, settlement of transactions, non-repudiation, a
certificate authority, a commodity spot market, general security services, and a global
directory for suppliers and items. The services may be implemented through an interface
schema. A registry and repository 106 supports the infrastructure and services.

Fig. 2 illustrates an overall global trading infrastructure topology, with examples
of five marketplaces. The global trading Web of infrastructure 201 comprises a global
registry and repository 202, global community services 203, global trading services 204,
and back office services 205. The names assigned to these groups of services are
somewhat arbitrary. Examples of marketplaces in this figure include a regional
MarketSite partner (BT) 211, a branded or vertical MarketSite such as Promus TM 212,
CommerceOne's own MarketSite.net 213, a marketplace operated by BellSouth TM 214,
and a second regional MarketSite partner (NTT). Buyers and suppliers are illustrated as
being in communication with each marketplace. The existence of revenue-sharing
agreements between various marketplaces is depicted by the revenue-sharing agreements
arrow 220 between BT 211 and NTT 215.

Fig. 3 illustrates a network of market participants and market makers based on
the use of business interface definitions, and supporting the trading of input and output
documents specified according to such interface descriptions. The network includes a
plurality of nodes 31-38 which are interconnected through a communication network
such as the Internet 39, or other telecommunicatioﬁs or data communications network.
Each of the nodes 31-39 consists of a computer, such as a portable computer, a desktop

personal computer, a workstation, a network of systems, or other data processing

-7-

10

15

20

25

30

WO 01/33369 PCT/US00/30068

resources. The nodes include memory for storing the business interface definition,
processors that execute transaction processes supporting commercial transactions with
othgr nodes in the network, and computer programs which are executed by the
proéessors in support of such services. In addition each of the nodes includes a network
interface for providing for communication across the Internet 39, or the other
communication network.

In the environment of Fig. 3; nodes 31, 32, 33, 34, 36 and 38 are designated
market participants. Market participants include resources for consumers or suppliers of
goods or services to be traded according to commercial transactions established
according to the present invention.

In this Qxample, nodes 35 and 37 are market maker nodes. The market maker
nodes include resources for registering business interface definitions, called a BID
registry. Pafticipants are able to send documents to a market maker node, at which the
document is identified and routed to an appropriate participant which has registered to
receive such documents as input. The market maker also facilitates the commercial
network by maintaining a repository of standard forms making up a common business
library for use in building business interface definitions.

In this example, the market participant 38 is connected directly to the market
maker 37, rather than through the Internet 39. This connection directly to the market
maker illustrates that the configuration of the networks supporting commercial
transactions can be very diverse, incorporating public networks such as the Internet 39,
and private connections such as a local area network or a Point-to-Point connection as
illustrated between nodes 37 and 38. Actual communication networks are quite diverse
and suitable for use to establish commercial transaction networks according to the
present invention.

Fig. 4 illustrates global trading infrastructure implementation options. The
numbering here is parallel to Fig. 2. Both real and virtual document routing are
illustrated. Documents 420 may be routed by the marketplaces through the global
trading Web infrastructure 401. The document 421 may be exchanged peer-to-peer
between marketplaces; supported by registry and repository information exchange
between the global trading Web infrastructure 401 and the marketplaces 411 and 415.

The high-level architecture of the registry and repository is illustrated in Fig. 5.

Interfaces are provided for communication through the Web 501 and exchange of

-8-

10

15

20

25

30

WO 01/33369 PCT/US00/30068

documents 502. A variety of repository services are illustrated. Information
organization services 510 may include a default taxonomy, a taxonomy map and a
commerce corhmunity schema. In general, services for browsing and searching 511 are
provided. Information exchange services 512 may include publication or subscription of
trading partners to a global training Web and publication or subscription to other
marketplaces. Additional services 513 may include validation, transformation and
management of documents passing through the document interface. The extensibility of
the repository services 511 is by design. From an architectural perspective, one layer of
the present invention provides for document storage to document mapping 520.
Different document storage schemes may apply to different types of data. For instance
X.500 may be used to store market trading partner information. An XML schema may
map data that are stored in Java objects. A registry stores meta data 530. Standards
adapted from Oasis and Dublin Core may be used for the registry. The existence of a
them registry adds value to the market, for market participants, to services, documents,
information items, trading partner relationships, routing, subscriptions and publications.
The actual storage of data is implemented by data storage based on information types
540. Functions provided by this architecture across all layers 550 include security,
reliability, availability, scalability and management functions.

Fig. 6 is a conceptual block diagram depicting entities and relationships in a
commerce community schema. The network layer 601 is a root or global trading
infrastructure, such as one provided by CommerceOne. The community layer 602
corresponds to regional or vertical partners in communication with the root of the
network layer. Each of the partners relies on a marketplace definition layer 603 to
support their instance of a regional or vertical marketplace. Details of the marketplace -
are provided at the marketplace specifics layer 604.

Fig. 7 is a hierarchical diagram of a data schema which implements an
embodiment of the present invention. A top layer, a root 701 is in contact with various
marketplaces 711-13. The root includes an owner, operator, technical contact and
administrative contact. Each of the marketplaces include an nonowner, operator and
technical and administrative contact. Ahy of the marketplaces may have a market
information registry 721. The market information registry for CommerceOne, for
instance, may be maintained on the server for MarketSite.net. The server for a single

marketplace may maintain a registry security model including certificate authority

-9.

10

15

20

25

30

WO 01/33369 PCT/US00/30068

credentials 731, terms and conditions for transactions which express the "do's, don'ts and
expirations" for transactions applicable throughout the marketplace 732, a market
participants registry 733, core business documents written in CBL, XML schema
language or in the form of a document guide 734 and logic for registration for core
services 735. '

The registry of market participants reflects both trading partners and services in
their respective registries 741-42. Trading partners may include buyers, suppliers,
service providers and others. A buyers registry pointer 751 is maintained as a unique
universal resource name. Similarly, a suppliers registry contains supply registry pointers

752, a service provider registry contains pointers 753 and a organization registry

contains pointers 754, all as universal resource names. The buyer registry pointers, for

instance, may reference buying Qrganizations including purchasing managers, purchasing
administfa_tors, system administrators and desktop requisitioners 771 and buying
applications which may be identified by name and version number 772. Similarly, the
supply registry pointers 752 may reference selling organizations including a sales
manager, sales administrator, catalog manager, system administrators and IT managers.
Supply registry pointers 752 also may reference selling applications which may be
identified by name and version number 774.

The registry of services may include system services 761, business services 762,

portal services 763, and community services 764. Each is the services may be régistry

through registry pointers as universal resource names. The nomenclature for these
groups of services may alternatively be as depicted in Fig. 2: global community services,
global trading services and back office services.

A further aspect of the present invention is an XML language schema which can
be compiled by the CommerceOne Sox compiler into a series a Java objects.
Superclasses and classes of objects are defined. The definitions below appear in
alphabetical order, rather than any particular logical order. These definitions should be

readily understood by those skilled in XML programming. The parsing of the schema

.can be illustrated in examples. The Sox definition for GtwCoreBusinessDocs.sox

corresponds to core business documents 734 of Fig. 7. It is written in XML version 1.0.
In is a "system" document type of a schema associated with the universal resource name
x-commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0. The schema

actually begins at the tag "schema". The uniform resource identifier for the schema

-10 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

corresponds to the boldfaced routine name; in this example, it is
x-commerceone:document: gtw:GthoreBusinessDocs.sox$1 .0. Comments in this
schema are indicated by tags. A comment begins with the tag "comment" and ends with
the tag "/comment". Element types are used to expand this definition. An element type
has a name which corresponds to the routine name and has a model. In a model, each |
data element can occur once only, as signified by "+", may be optional "?", or may
appear many times "*". In this instance, a universal resource indicator is a pointer which

occurs only once.

In each part of the example below, the name of the type is bold and its contents

follow.

GtwApplication.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwApplication.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define a basic Application in the GTW.

</comment>

<comment>
GtwApplication Can be extended with elementypes

</comment>

<elementtype name="GtwApplication">
<model>
<sequence>

<element name="GtwApplicationName" type="string"/>

-11-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<element name="GtwApplicationVersion" type="string"/>
<element name="GtwApplicationManufacturer” type="string"/>
<element name="GtwApplicationLiscenceOwner" type="string"/>
<element name="GtwApplicationPrimaryProtocol" type="AppProtocol" occurs="?"/>
</sequence>
</model>

</elementtype>

<datatype name="AppProtocol">

<enumeration datatype="NMTOKEN">
<option>http</option>
<option>https</option>
<option>iiop</option>
<option>mq</option>
<option>xa</option>
<option>smtp</option>
<option>ftp</option>
<option>edi</option>
<option>fax</option>

</enumeration>

</datatype>
</schema>
. GtwBusinessService.sox

<?xml version="1.0"?>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwBusinessService.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define business service in the GTW.

-12-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</comment>

<namespace prefix="GtwService" namespace="urn:x-

‘commerceone:document: gtw:GtwService.sox$1.0"/>

<comment>
GtwBusinessService Can be extended with elementypes, and is a wrapper on top of the GtwService
component.

</comment>

<elementtype name="GtwBusinessService">

<model>
<element name="ServiceData" type="GtwService" prefix="GtwService"/>
</model> '
</elementfype>
</schema>
GtwBuyer.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="um:x-commerceone:document: gtw:GtwBuyer.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define a basic Buyer in the GTW. It is defined here as a profile in a named MarketSite

Instance for the organization and the root of a descriptionof the applications they use which is not required

to be in the same Marketplace if they are already defined elsewhere on the GTW.

</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-

commerceone:document: gtw:GtwParticipants.sox$1.0"/>

-13 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<namespace prefix="GtwTradingPartner" namespace="urn:x-

commerceone:document:gtw:GtwTradingPartner.sox$1.0"/>

<comment>
GtwBuyer Can be extended with elementypes, and is a type of GtwTradingPartber

</comment>

<elementtype name="GtwBuyer">
<model> ‘
<sequence>
<element name="GtwBuyerName" type="string"/>
<element namé="GthuyerID" type="guuid" prefix="GtwParticipants"/>
<element name="GtwBuyerOrganizationProfileRoot" type="URI"/>
<element name="GtwBuyerApplicationInformationRoot" type="URI"/>
</sequence>
</model>

</elementtype>
</schema>

GtwBuyerApplication.sox

" <?xml version="1.0"?>

<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwBuyerApplication.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the Buyer Apllication in the GTW.

</comment>

<namespace prefix="GtwApplication" namespace="urn:x-

commerceone:document: gtw:GtwApplication.sox$1.0"/>

-14 -

10

15

- 20

25

30

35

WO 01/33369 PCT/US00/30068

<comment>
GtwBuyerApplication Can be extended in this elementype and is a wrapper for GtwApplication
component.

</comment>

<elementtype name="GtwBuyerApplication">
<model>
<element name="ApplicationInformation" type="GtwApplication"
prefix="GtwApplication"/>
</model>

</elementtype>
</schema>
GtwBuyerOrganization.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwBuyerOrganization.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the Buyer Organization details of the Global Trading Web

</comment>
<comment>
Need to get copy of TP Registry Buyer Organization Profile and Buyer Individual Profile
</comment>

</schema>

GtwCommunityService.sox

-15-

10

15

20

25

30

35

WO 01/33369

<?xml version="1.0"?>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwCommunityService.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define Community service in the GTW.
</comment>

<namespace prefix="GtwService" namespace="urn:x-

commerceone:document:gtw:GtwService.sox$1.0"/>

<comment>

GtwCommunityService Can be extended with elementypes, and is a wrapper on top of the GtwService

component.

</comment>

<elementtype name="GtwCommunityService">

<model>
<element name="ServiceData" type="GtwService" prefix="GtwService"/>
</model> '
</elementtype>
</schema>

GtwCoreBusinessDocs.sox
<?xml version="1.0"7>

<!DOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

-16 -

PCT/US00/30068

10

15

20

25

30

35

WO 01/33369

<schema uri="urn:x-commerceone:document:gtw:GtwCoreBusinessDocs.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.
Created By:Bart Meltzer

Created Date: 10/1/99

Purposé:To define a basic set of Business Documents in the GTW, and it can be used for the core

business documents in and MarketSite Instance.

</comment>

<comment>
GtwCoreBusinessDocs Can be extended with elementypes

</comment>

<elementtype name="GtwCoreBusinessDocs">
<model>
<element name="GtwCoreBusinessDocPointer" type="URI" occurs="+"/>
</model>
</elementtype>

</schema>

GtwCoreServices.sox

<?xml version="1.0"?>

" <IDOCTYPE schema SYSTEM "urn:x-

commerceone.document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwCoreServices.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.
Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the basic Services in the GTW, and to define the core services in a MarketSite

Instance.

</comment>

-17 -

PCT/US00/30068

10

15

20

25

30

35

WO 01/33369

<comment>
GtwCoreServices Can be extended with elementypes

</comment>

<elementtype name="GtwCoreServices">
<model>
<element name="GtwCoreServicePointer" type="URI" occurs="+"/>
</model>
</elementtype>

</schema>
GtwlnfrastructureService.sox

<?xml version="1.0"?>
<!IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwInfrastructureService.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.
Created By:Bart Meltzer

Created Date: 10/1/99

'Purpose:To define an infrastructure service in the GTW.

</comment>

<namespace prefix="GtwService" namespace="urn:x-

commerceone:document: gtw:GtwService.sox$1.0"/>

<comment>
GtwinfrastructureService Can be extended with elementypes, and is a wrapper on top of the
GtwService component.

</comment>

<elementtype name="GtwInfrastructureService">
<model>

<element name="ServiceData" type="GtwService" prefix="GtwService"/>

-18 -

PCT/US00/30068

10

15

20

25

30

35

WO 01/33369

PCT/US00/30068

</model>

</elementtype>
</schema>
Gtwlinterface_GtwRoot.sox

<?xml version="1.0"7>
<!DOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwInterface GtwRoot.s0x$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/2/99

Purpose: Interface to get GtwRoot information.
</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-
commerceone:document: gtw:GtwParticipants.sox$1.0"/>
<namespace prefix="GtwService" nameSpace="um:x-

commerceone:document: gtw:GtwService.sox$1.0"/>

<comment>
Gtwinterface_GtwRoot Can be extended in this elementype by adding new services.

</comment>

<elementtype name="GtwInterface_GtwRoot">
<model>

<sequence>

<element name="GtwRootRegistryOwner" type="Owner" prefix="GtwParticipants"/>

<element name="GtwRootRegistryOperator" type="Operator" prefix="GtwParticipants"/>

<element name="GtwRootRegistryTechnicalContact" type="TechnicalContact"
prefix="GtwParticipants"/>

-19-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<element name="GtwRootRegistryAdministrativeContact" type="AdministrativeContact"

prefix="GtwParticipants"/>

<element name="GtwRootRegistry" type="URI"/>
<element name="GtwServiceRegistryRoot" type="URI"/>

<element name="GtwService_GtwRegistry_GetGtwRootRegistryRequestHandler"
type="GtwService" prefix="GtwService"/>
<element name="GtwService_GtwRegistry_GetGtwServiceRegistryRequestHandler"
type="GtwService" prefix="GtwService"/>
</sequence>
</model>
</elementtype>

</schema>
Gtwinterface_MarketInformationRegistry.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:Gthnterface_MarketInfoﬁnationRegistIy.sox$ 1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/2/99

Purpose:To define the information service requirements for a GTW éompliant Market Information
Registry which is pointed to for every marketplace instance within an operation as defined by '
GtwOperation.sox. The information service requirements are in the form of:document exchanges that
define: - general information - formats - functionality with interacitons. A GTW interface describes a set
of information services that are available to interact with using XML documents.

</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-

commerceone:document:gtw:GtwParticipants.sox$1.0"/>

-20 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<namespace prefix="GtwService" namespace="urn:x-

commerceone:document: gtw:GtwService.sox$1.0"/>

<comment>
Gtwinterface_MarketInformationRegistry Can be extended in this elementype by adding new services.

</comment>

<elementtype name="GtwInterface_MarketInformationRegistry">
<model>

<sequence>

<element name="GtwMarketInformationRegistryOwner" type="Owner"
prefix="GtwParticipants"/>

<element name="GtwMarketInformationRegistryOperator" type="Operator"
prefix="GtwParticipants"/> .

<element name="GtwMarketInformationRegistryTechnicalContact" type="TechnicalContact"
prefix="GtwParticipants"/> '

<element name="GtwMarketInformationRegistryAdministrativeContact"
type="AdministrativeContact" prefix="GtwParticipants"/>

<element name="SecurityInformationRoot" type="URI"/>
<element name="TermsAndConditionsRoot" type="URI"/>
<element name="CoreBusinessDocumentsRoot" type="URI"/>
<element name="CoreServicesRoot" type="URI"/>

<element name="MarketParticipantRegistryRoot" type="URI"/>
<element name="TradingPartnerDirectoryRoot" type="URI"/>

<element name="ServiceRegistryRoot" type="URI"/>

<element _
name="GtwService_MarketInformationRegistry GetMarketParticipantRegistryRequestHandler"
type="GtwService" prefix="GtwService"/>

<element
name="GtwService_MarketInformationRegistry GetTradingPartnerDirectoryRequestHandler"
type="GtwService" prefix="GtwService"/>

</sequence>
</model>

</elementtype>

-21-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</schema>
Gtwlnterface_MarketInstanceServiceRegistry.sox

<?xml version="1.0"?>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-

commerceone:document: gtw:Gtwlnterface_MarketInstanceServiceRegistry.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/2/99

Purpose: Interface to get GtwServices from a MarketSite Instance.
</comment>

— 11

<namespace prefix="GtwParticipants" namespace="urn:x-
commerceone:document:gtw:GtwParticipants.sox$1.0"/>
<namespace prefix="GtwService" nainespace="um:x-

commerceone:document:gtw:GtwService.sox$1.0"/>

<comment>
Gtwinterface MarketInstanceServiceRegistry Can be extended in this elementype by adding new
services.

</comment>

<elementtype name="GtwInterface_MarketInstanceServiceRegistry">
<model>

<sequence>

<element name="GtwMarketInstanceServiceRegistryOwner" type="Owner"
prefix="GtwParticipants"/> -
<element name="GtwMarketInstanceServiceRegistryOperator" type="Operator"

prefix="GtwParticipants"/>

-22 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<element name="GtwMarketInstanceServiceRegistryTechnicalContact"
type="TechnicalContact" prefix="GtwParticipants"/>

<element name="GtwMarketInstanceServiceRegistry AdministrativeContact"
typé="AdministrativeContact" prefix="GtwParticipants"/>

~ <element name="MarketInstanceServiceRegistryRoot" type="URI"/>

<element
name="GtwService _MarketInstanceServiceRegistry GetServiceRegistryRootRequestHandler"
type=“Gthérvice" prefix="GtwService"/>
</sequence>
</model>
</elementtype>

</schema>
Gtwlnterface_MarketInstanceTPRegistry.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwInterface_MarketTPRegistry.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/2/99

Purpose: Interface to get Gtw Trading Partners frorﬁ a MarketSite Instance.

</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-
commerceone:document: gtw:GtwParticipants.sox$1.0"/>
<namespace prefix="GtwService" namespace="urn:x-

commerceone:document: gtw:GtwService.sox$1.0"/>

<comment>

Gtwinterface MarketTPRegistry Can be extended in this elementype by adding new services.

-23-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</comment>

<elementtype name="GtwInterface_MarketTPRegistry">
<model>

<sequence>

<element name="GtwMarketTPRegistryOwner" type="Owner" prefix="GtwParticipants"/>

<element name="GtwMarketTPRegistryOperator" type="Operator" prefix="GtwParticipants"/>

<element name="GtwMarketTPRegistryTechnicalContact" type="TechnicalContact"
prefix="GtwParticipants"/>)

<element name="GtwMarketTPRegistryAdministrativeContact" type="AdministrativeContact"
prefix="GtwParticipants"/>

<element name="MarketTPRegistryRoot" type="URI"/>

<element name="GtwService_MarketTPRegistry GetTPRegistryRootRequestHandler"
type="GtwService" prefix="GtwService"/>
</sequence> »
</model>
</elementtype>

</schema>
Gtwlnterface_MarketParticipantRegistry.sox

<?xml version="1.0"7>
<!DOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwInterface_MarketParticipantRegistry.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer.

Created Date: 10/2/99

Purpose: Interface to get GtwParticipants informaiton from a TP Registry.

</comment>

-24 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<namespace prefix="GtwParticipants" namespace="urn:x-
commerceone:document: gtw:GtwParticipants.sox$1.0"/>
<namespace prefix="GtwService" namespace="urn:x-

commerceone:document:gtw:GtwService.sox$1.0"/>

<comment>
Gtwinterface_MarketParticipantRegistry Can be extended in this elementype by adding new services.

</comment>

<elementtype name="GtwInterface_MarketParticpantRegistry">
<model>

<sequence>

<element name="GtwMarketParticipantRegistryOwner" type="Owner"
prefix="GtwParticipants"/>

<element name="GtwMarketParticipantRegistryOperator" type="Operator"
prefix="GtwParticipants"/>

<element name="GtwMarketParticipantRegistryTechnicalContact" type="TechnicalContact"
prefix="GtwParticipants"/>

<element name="GtwMarketParticipantRegistryAdministrativeContact”
type="AdministrativeContact" prefix="GtwParticipants"/>

<element name="TPRegistryRoot" type="URI"/> .
<element name="ServiceRegistryRoot" type="URI"/>

<element
name="GtwService_MarketInformationRegistry_GetTPRegistryRootRequestHandler"
type="GtwService" prefix="GtwService"/>

<element
name="GtwService_MarketInformationRegistry GetServiceRegistryRootRequestHandler"

type="GtwService" prefix="GtwService"/>

</sequence>
</model>
</elementtype>
</schema>

GtwOperation.sox

-25-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<?xml version="1.0"?>
<IDOCTYPE schema SYSTEM "um:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwOperation.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the operations in the Global Trading Web. An operation is defined by the Marketplaces
it Operates.

</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-

commerceone:document: gtw:GtwParticipants.sox$1.0"/>

<comment>
GtwOperation Can be extended in this elementype

</comment>

<elementtype name="GtwOperation">
<model>

<sequence>

<element name="GtwQOperationOwner" type="Owner" prefix="GtwParticipants"/>

<element name="GtwOperationOperator" type="Operator" prefix="GtwParticipants"/>

<element name="GtwQOperationTechnicalContact" type="TechnicalContact"
prefix="GtwParticipants"/>

<element name="GtwOperationAdministrativeContact" type="AdministrativeContact"

prefix="GtwParticipants"/>
<element name="MarketSiteOperation" type="MarketSiteInstance" occurs="+"/>

. <element name="ecoOperation" type="ecolnstance" occurs="*"/>

<element name="OtherOperation" type="OtherInstance" occurs="*"/>

=26 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</sequence>
</model>
</elementtype>

<elementtype name="MarketSitelnstance">
<empty/>
<attdef name="Name" datatype="string">
<required/>
</attdef>
<attdef name="MarketSiteNetworkRoot" datatype="URI">
<required/>
</attdef>
<attdef name="Interface_MarketInformationRegistry" datatype="URI">
<required/>
</attdef>
<attdef name="Interface_MarketParticipantRegistry" datatype="URI">
<required/>
</attdef>
<attdef name="Interface TradingPartnerDirectory" datatype="URI">
<required/> '
</attdef>
</elementtype>

_<elementtype name="ecolnstance">
<empty/>

<attdef name="ecoMarketplaceRoot" datatype="URI">
<required/>

</attdef>

<attdef name="Name" datatype="string">
<required/>

</attdef>

<attdef name="Interface_MarketInfbxmationRegistry" datatype="URI">
<required/>

</attdef>

<attdef name="Interface TradingPartnerDirectory" datatype="URI">
<required/>

</attdef>

</elementtype>

-27 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<elementtype name="OtherInstance">
<empty/>
<attdef name="OtherMarketplaceRoot" datatype="URI">
<required/>
</attdef>
<attdef name="Name" datatype="string">
<required/>
</attdef>
<attdef name="Interface_MarketInformationRegistry" datatype="URI">
<required/>
</attdef>
<attdef name="Interface_TradingPartnerDirectory" datatype="URI">
<required/>
</attdef>
</elementtype>

</schema>
GtwOther.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtthherEnfity.sox$ 1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define a basic OtherEntity in the GTW. It is defined here as a profile in a named MarketSite
Instance for the organization and the root of a descriptionof the applications they use which is not required
to be in the same Marketplace if they are already defined elsewhere on the GTW.

</comment>

-28 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<namespace prefix="GtwParticipants" namespace="urn:x-
commerceone:document: gtw:GtwParticipants.sox$1.0"/>
<namespace prefix="GtwTradingPartner" namespace="urn:x-

commerceone:document:gtw:GtwTradingPartner.sox$1.0"/>

<comment>
GtwOtherEntity Can be extended with elementypes, and is a type of GtwTradingPartner

</comment>

<elementtype name="GtwOtherEntity">
<model>
<sequence>
<element name="GtwOtherEntityName" type="string"/>
<element name="GtwOtherEntityID" type="guuid" prefix="GtwParticipants"/>
<element name="GtwOtherEntityOrganizationProfileRoot" type="URI"/>
<element name="GtwOtherEntityInformationRoot" type="URI"/>
</sequence>
</model>

</elementtype>
</schema>
GtwParticipants.sox

<?xml version="1.0"7>
<!DOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwParticipants.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define participants in the Global Trading Web

</comment>

-29.-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<comment>
GtwParticipants Can be extended with elementypes

</comment>

<elementtype name="Owner">
<model>
<element narﬁe="0wnerName" type="GtwActor"/>
</model>
<attdef name="OwnerID" datatype="guuid">
<required/>
</attdef>
</elementtype>

<elementtype name="Operator"> -
<model>
<element name="OperatorName" type="GtWActor"/>
</model>
<attdef name="OperatorID" datatype="guuid">
<required/>
</attdef>
</elementtype>

<elementtype name="TechnicalContact">
<model>
<element name="TechnicalContactName" type="GtwActor"/>
</model>
<attdef name="TechnicalContactID" datatype="guuid">
<required/>
</attdef>
</elementtype>

<elementtype name="AdministrativeContact">
<model>
<element name="AdministrativeContactName" type="GtwActor"/>
</model>
<attdef vname="AdminstrativeContactID" datatype="guuid">
<required/>

</attdef>

-130 -

10

15

20

25

30

35

WO 01/33369

</elementtype>

<elementtype name="GtwActor">
<model>
<string/>
</model>
</elementtype>

<datatype name="guuid">
<scalar datatype="int"/>
</datatype>

</schema>
GtwPortalService.sox

<?xml version="1.0"7>
<!IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwPortalService.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define portal service in the GTW.
</comment>

<namespace prefix="GtwService" namespace="um:x-

commerceone:document: gtw:GtwService.sox$1.0"/>

<comment>

PCT/US00/30068

GtwPortalService Can be extended with elementypes, and is a wrapper on top of the GtwService

component.

</comment>

-31-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<elementtype name="GtwPortalService">

<model>
<element name="ServiceData" type="GtwService" prefix="GtwService"/>
</model> -
</elementtype>
</schema>
GtwQos.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwQOS.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Baﬁ Meltzer

Created Date: 10/1/99

Purpose:To define the basic Quality of Service Statements that can be disclosed int he GTW.

</comment>

<comment>

GtwQOS Can be extended in this elementype

Needs to be changed from any string to an elelemttype that inforces the policy for how QOS
informaiton should be communicated in the GTW.

</comment>

<elementtype name="GtwQOS">
<model>
<element name="GtwQOSStatement" type="string"/>
</model>
</elementtype>

</schema>

-32-

WO 01/33369 PCT/US00/30068

GtwRoot.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

5 commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwRoot.sox$1.0">

10 <comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the root node of the Global Trading Web
15 </comment>

<namespace prefix="GtwParticipants" namespace="urn:x-

commerceone:document:gtw:GtwParticipants.sox$1.0"/>

20 <comment>
GtwRoot Can be extended in this elementype

</comment>

<elementtype name="GtwRoot">
25 - <model>
<sequence>
<element name="GtwRootOwner" type="Owner" prefix="GtwParticipants"/>
<element name="GtwRootOperator" type="Operator" prefix="GtwParticipants"/>
<element name="GtwRootTechnicalContact" type="TechnicalContact"

30 prefix="GtwParticipants"/> »

<element name="GtwRootAdministrativeContact" type="AdministrativeContact"

prefix="GtwParticipants"/>

<element name="GtwOperation" type="URI" occurs="+"/>
35 </sequence>
</model>

</elementtype>

-33-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</schema>
GtwSecurity.sox

<?xml version="1.0"?>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwSecurity.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the security in the Global Tradihg Web. -

</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-

commerceone:document: gtw:GtwParticipants.sox$1.0"/>

<comment>
GtwSecurity Can be extended in this elementype

</comment>

<elementtype name="GtwSecurity">
<model>
<sequence>
<element name="CertifcateAuthority" type="URI"/>
<element name="RegistrationAuthority" type="URI"/>
</sequence>
</model>
</elementtype>

</schema>
GtwService.sox

<?xml version="1.0"?>

-34 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwService.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define a basic service in the GTW.

</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-

commerceone:document: gtw:GtwParticipants.sox$1.0"/>

<comment>
GtwService Can be extended with elementypes

</comment>

<elementtype name="GtwService">
<model>
<sequence>

<element name="GtwServiceOwner" type="Owner" prefix="GtwParticipants"/>
<element name="GtwServiceOperator" type="Operator" prefix="GtwParticipants"/>
<element name="GtwServiceTechnicalContact" type="TechnicalContact"

prefix="GtwParticipants"/>
<element name="GtwServiceAdministrativeContact" type="AdministrativeContact"

prefix="GtwParticipants"/>

<element name="GtwInteraction" type="DocumentExchange" occurs="+"/>
</sequence>
</model>
</elementtype>

<elementtype name="DocumentExchange">
<model>

<sequence>

-135-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<element name="DocumentExchangeName" type="string"/>
<element name="DocumentExchangeType" type="docxchangetype"/>
<element name="DocumentExchangeProtocol" type="docxchangeprotocol"/>
<element name="DocumentExchangeLocation" type="URI"/>
<element name="DocumentExchangeQOS" type="URI"/>
<element name="DocumentExchangelnputDoc" type="URI"/>
<element name="DocumentExchangeOutputDoc" type="URI"/>
<element name="DocumentExchangeErrorDoc" type="URI"/>
<element name="DocumentExchangeCancelDoc" type="URI"/>
<element name="Documentﬁxchange[nquiryDoc" type="URI"/>
</sequence>
</model>
</elementtype>

<datatype name="docxchangetype">
<enumeration datatype="NMTOKEN">
<option>request</option>
<option>response</option>
<option>error</option>
<option>cancel</option>
<option>inqufry</option>
</enumeration>

</datatype>

<datatype name="docxchangeprotocol">

<enumeration datatype="NMTOKEN">
<option>http</option>
<option>https</option>
<option>iiop</option>
<option>mq</option>
<option>xa</option>
<option>smtp</option>
<option>ftp</option>
<option>edi</option>
<option>fax</option>

</enumeration>

</datatype>

-136 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</schema>
GtwServiceProvider.sox

<?xml version="1.0"7>
<!IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwServiceProvider.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer |

Created Date: 10/1/99

Purpose:To define a basic ServiceProvider in the GTW. It is defined here as a profile in a named
MarketSite Instance for the organization and the root of a descriptionof the applications they use which is
not required to be in the same Marketplace if they are already defined elsewhere on the GTW.

</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-
commerceone:document: gtw:GtwParticipants.sox$1.0"/>

<namespace prefix="GtwTradingPartner" namespace="urn:x-

commerceone:document: gtw:GtwTradingPartner.sox$1.0"/>
<comment>
GtwServiceProvider Can be extended with elementypes, and is a type of GtwTradingPartber

' </comment>

<elementtype name="GtwServiceProvider">

<model>
<sequence>
<element name="GtwServiceProviderName" type="string"/>
<element name="GtwServiceProviderID" type="guuid" prefix="GtwParticipants"/>
<element name="GtwServiceProviderOrganizationProfileRoot" type="URI"/>
<element name="GtwServiceProviderServiceInformationRoot" type="URI"/>
</sequence>
</model>

-37 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</elementtype>
</schema>
GtwSupplier.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwSupplier.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define a basic Supplier in the GTW. It is defined here as a profile in a named MarketSite
Instance for the organization and the root of a descriptionof the applications they use which is not required
to be in the same Marketplace if they are already defined elsewhere on the GTW.

</comment>

<pamespace prefix="GtwParticipants" namespace="urn:x-
commerceone:document:gtw:GtwParticipants.sox$1.0"/>

=",

<namespace prefix="GtwTradingPartner" namespace="urn:x-

commerceone:document: gtw:GtwTradingPartner.sox$1.0"/>

<comment>
GtwSupplier Can be extended with elementypes, and is a type of GtwTradingPartber

</comment>

<elementtype name="GtwSupplier">
<model>
<sequence>
<element name="GtwSupplierName" type="string"/>
<element name="GtwSupplierID" type="guuid" prefix="GtwParticipants"/>
<element name="GtwSupplierOrganizationProfileRoot" type="URI"/>
<element name="GtwSupplierApplicationInformationRoot" type="URI"/>

-38 -

10

15

20

25

30

35

WO 01/33369

</sequence>
</model>
</elementtype>
</schema>

GtwSupplierApplication.sox

<?xml version="1.0"7>

' <IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwSupplierApplication.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the Supplier Apllication in the GTW.

</comment>

<namespace prefix="GtwApplication" namespace="urn:x-

commerceone:document: gtw:GtwApplication.sox$1.0"/>

<comment>

GtwSupplierApplication Can be extended in this elementype and is a wrapper for GtwApplication

.component.

</comment>

<elementtype name="GtwSupplierApplication">
<model>
<element name="ApplicationInformation" type="GtwApplication"
prefix="GtwApplication"/>
</model>
</elementtype>

</schema>

-39

PCT/US00/30068

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

GtwSupplierOrganization.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwSupplierOrganization.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99 -

Purpose:To define the Supplier Organization details of the Global Trading Web

</comment>

<comment>
Need to get copy of TP Registry Supplier Organization Profile and Supplier Individual Profile

</comment>
</schema>
GtwTermsAndConditions.sox

<?xml version="1.0"?>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:gtw:GtwTermsAndConditions.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc. .

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the TermsAndConditions in the Global Trading Web. An operation defines terms and

conditions in each Marketsite that are consistent with GTW Policy.

- 40 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</comment>
<namespace prefix="GtwParticipants" namespace="urn:x-

commerceone:document:gtw:GtwParticipants.sox$1.0"/>

<comment>
GtwTermsAndConditions Can be extended in this elementype
. Terms and Conditions needs to be structured beyond what is here now.

</comment>

<elementtype name="GtwTermsAndConditions">
<model>
<string/>
</model>
</elementtype>

</schema>
GtwTradingPartner.sox

<?xml version="1.0"?>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document: gtw:GtwTradingPartner.sox$1.0">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Crgated Date: 10/1/99

Purpose:To define a basic Trading Partner in the GTW. It is defined here as a profile in a named
MarketSite Instance.

</comment>

<namespace prefix="GtwParticipants" namespace="urn:x-

commerceone:document: gtw:GtwParticipants.sox$1.0"/>

-41 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<comment>

GtwTradingPartner Can be extended with elementypes, but should never redefine the Marketplace
profile established with the guuid. It is ok to extend beyond the Marketplace profile for GTW purposes.
The GtwTradingPartner URI is meant to be a query back to the Trading Partner Registry in the GTW
where the Trading Partner is defined.
GtwTradingPartnerName needs to be TPName instead of string
GtwTradingPartnerID needs to be MPID which is itself of type guuid

</comment>

<elementtype name="GtwTradingPartner">
<model>
<sequence>
<element name="GtwTradingPartnerName" type="string"/>
<e1ement name="GtwTradingPartnerID" type="guuid" prefix="GtwParticipants"/>
<element name="GtwTradingPartnerProfilePointer" type="URI"/>
</sequence>
</model>
</elementtype>
</schema>

GtwWireFormat.sox

<?xml version="1.0"7>
<IDOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0™>

<schema uri="urn:x-commerceone:document: gtw:GmBuyefOrganization.soxS 1.o">

<comment>

Copyright 1999 Commerce One Inc.

Created By:Bart Meltzer

Created Date: 10/1/99

Purpose:To define the Wire Format details of the Global Trading Web

</comment>

<comment>

-42 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

Need to get copy of envelope specification for MIME supported in MarketSite 3.0 as well as
transmitter characteristics.

</comment>

</schema>

In this schema, GtwPortalService.sox is a specialization of GtwService.sox. In
the Java programming language, GtwService.Sox may represent a superclass which
includes the class GtwPortalService.sox. In this schema, a namespace prefix is used to
shorten references. A universal resource name is associated with the namespace prefix.
The model for the element type "GtwService" includes an owner, operator, technical
contact and administrative contact as depicted in Fig. 7. In addition, an element type for
document exchange is deﬁned. Data types used in the document exchange element type
are also defined as part of the schenia. When this schema has been defined, it can be
specialized, as in "GtwPortalService.sox". With these examples, one having skill in
XML programming and reference to Fig. 7 will be able to follow the schema in Fig. 8
which is one embodiment of the present invention.

Fig. 8 is a heuristic diagram of nested structures in a business interface definition
BID which is established for market participants in the network according to the present
invention. The business interface definition illustrated in Fig. 8 is a data structure that
consists of logic structures and storage units arranged according to a formal definition of
a document structure, such as a XML document type definition DTD. The structure of
Fig. 8 includes a first logic structure 800 for identifying a party. Associated with the
logic structure 800 are nested logic structures for carrying the name 801, the physical
address 802, the network address or location 803, and a set of transactions for a service
804. For each transaction in the service set, an interface definition is provided, including
the transaction BID 805, the transaction BID 806, and the transaction BID 807. Within
each transaction BID, such as transaction BID 805, logical structures are provided for
including a name 808, a location on the network at which the service is performed 809,
the operations performed by the service 810, and a set of input documents indicated by
the tag 811. Also, the service BID 805 includes a set of output documents indicated by
the tag 812. The set of input documents 811 includes a business interface definition for

each input document for which the services are designed to respond, including input

-43 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

document Business interface definitions 813, 814, and 815. Each business interface
definition for an input document includes a name 816, a location on the network at
which a description of the document can be found 817, and the modules to be carried in
the document as indicated by the field 818. In a similar manner, the output document set
812 includes interface definitions for output documents including the output document
BID 819, output document BID 820, and output document BID 821. For each output
document BID, a name 822, a location on the network or elsewhere 823, and the
modules of the document 824 are specified. The business interface definition for the
participant as illustrated in Fig. 8 includes actual definitions of a logic structures to be
utilized for the input and output documents of the respective services, or pointers or
other references to locations at which these definitions can be found.

In the system of this example, the document of Fig. 8 is specified in an XML
document type definition DTD, although other document definition architectures could
be used, and includes interpretation information for the logical structures used in
interpretation of instances of the documents. In addition, each of the transaction BIDs,
input document BIDs and output document BIDs are specified according to an XML
document type definitions. The XML type document is an example of a system based on
parsed data that includes mark-up data and character data. Mark-up data identifies
logical structures within the document and sets of character data identify the content of
the logical structures. In addition, unparsed data can be carried in the document for a
variety of purposes. See for example the specification of the Extensible Mark-up
Language XML 1.0 REC-XML-19980210 published by the WC3 XML Working Group
at WWW.W3.0RG/TR/1998/REC-XML-19980210. »

Thus in an exemplary system, participant nodes in the network establish virtual
enterprises by interconnecting business systems and services with XML encoded
documents that businesses accept and generate. For exafnple, the business interface
definition of a particular service establishes that if a document matching the BID of a
request for a catalog entry is received, then a document matching a BID of a catalog
entry will be returned. Also, if a document matching the BID of a purchase order is
received, and it is acceptable to the receiving terminal, a document matching the BID of
an invoice will be returned. The nodes in the network process the XML documents
before they enter the local business system, which is established according to the variant

transaction processing architecture of any given system in the network. Thus, the system

-44 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

unpacks sets of related documents, such as MIME-encoded sets of XML documents,
parses them to create a stream of "mark-up messages". The messages are routed to the
appropriate applications and services using for example an event listener model like that
described below. ‘ |

The documents exchanged between business services are encoded using an XML
language built from a repository of building blocks (a common business language) from
which more complex document definitions may be created. The repository stores
modules of interpretation information that are focused on the functions and information
common to business domains, including business description primitives like companies,
services and products; business forms like catalogs, purchase orders and invoices;
standard measurements, like time, date, location; classification codes and the like
providing interpretation information for logical structures in the XML documents.

The business interface definition is a higher level document that acts as a schema
used for designing interfaces that trade documents according to the present invention.
Thus the business interface definition bridges the gap between the documents specified
according to XML and the programs which execute on the front end of the transaction
processing services at particular nodes. Such front ends are implementéd by JAVA
virtual machines, or by other common architectures providing for interconnection of
systems across a network. Thus, the business interface definition provides a technique
by which a transaction protocol is programmed using the business interface definition
document. The program for the protocol of the transaction is established by a detailed
formal sbeciﬁcation of a document type.

An example business interface definition BID based on a market participant
document which conforms to an XML format is provided below. The market participant
DTD groups business information about market participants, associating contact and
address information with a description of services and financial information. This
business information is composed of names, codes, addresses, a dedicated taxonomic
mechanism for describing business organization, and a pointer to terms of business. In
addition, the services identified by the market participant DTD will specify the input and
output documents which that participant is expected respond to and produce. Thus,
documents which define schema using an exemplary common business language for a
market participant DTD, a service DTD, and a transaction document DTD specified in

XML with explanatory comments follow:

-45 -

WO 01/33369 PCT/US00/30068
CMRC 1000-2

- 46 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

Market Participant Sample

<!DOCTYPE SCHEMA SYSTEM "bidl.dtd">

<SCHEMA>

<H1>Market Participant Sample BID</H1>

<META

WHO.OWNS="Veo Systems" WHO.COPYRIGHT="Veo Systems"
WHEN.COPYRIGHT="1998" DESCRIPTION="Sample BID"

WHO.CREATED="+" WHEN.CREATED="*"
WHAT.VERSION="+" WHO.MODIFIED="*"
WHEN.MODIFIED="*" " WHEN.EFFECTIVE="*"
WHEN EXPIRES="+" WHO.EFFECTIVE="+"
WHO EXPIRES="+"> '
</META>

<PROLOG>

<XMLDECL STANDALONE="no"></XMLDECL>
<DOCTYPE NAME="market.participant">
<SYSTEM>maIkpart.dtd</SYSTEM><)DOCT YPE>
</PROLOG>

<DTD NAME-="markpart.dtd">

<H2>Market Participant</H2>

<H3>Market Participant</H3>

<ELEMENTTYPE NAME="market.participant">

<EXPLAIN><TITLE>A Market Participant</TITLE>

<SYNOPSIS>A business or person and its service interfaces.</SYNOPSIS>

<P>A market participant is a document definition that is created to describe a business and at least one
person with an email address, and it presents a set of pointers to service interfaces located on the network.
In this example, the pointers have been resolved and the complete BID is presented
here.</P></EXPLAIN>

<MODEL><CHOICE>

<ELEMENT NAME-="business"></ELEMENT>

<ELEMENT NAME="person"></ELEMENT>

</CHOICE></MODEL></ELEMENTTYPE>

<H3>Party Prototype</H3>
<PROTOTYPE NAME-="party">

-47 -

10

15

20

25

30

35.

WO 01/33369 PCT/US00/30068

<EXPLAIN><TITLE>The Party Prototype</TITLE></EXPLAIN>
<MODEL><SEQUENCE>

<ELEMENT NAME="party.name" OCCURS="+"></ELEMENT>
<ELEMENT NAME-="address.set"></ELEMENT>
</SEQUENCE></MODEL>

</PROTOTYPE>

<H3>Party Types</H3>

<ELEMENTTYPE NAME-="business">

<EXPLAIN><TITLE>A Business</TITLE>

<SYNOPSIS>A business (party) with a business number attribute.</SYNOPSIS>

<P>This element inherits the content model of the party prototype and adds a business number attribute,
which serves as a key for database lookup. The bﬁsiness number may be used as a cross-reference to/from
customer id, credit limits, contacts lists, etc.</P></EXPLAIN>

<EXTENDS HREF="party">

<ATTDEF NAME="business.number"><REQUIRED></REQUIRED></ATTDEF>

</EXTENDS>

</ELEMENTTYPE>

<H3>Person Name</H3>

<ELEMENTTYPE NAME="person">

<EXPLAIN><TITLE>A Person</TITLE></EXPLAIN>
<EXTENDS HREF="party">

<ATTDEF NAME="SSN"><IMPLIED></IMPLIED></ATTDEF>
</EXTENDS>

</ELEMENTTYPE>

<H3>Party Name</H3> _

<ELEMENTTYPE NAME="party.name">

<EXPLAIN><TITLE>A Party's Name</TITLE>

<SYNOPSIS>A party's name in a string of character.</SYNOPSIS></EXPLAIN>
<MODEL><STRING></STRING></MODEL>

</ELEMENTTYPE>

<H3>Address Set</H3>

<ELEMENTTYPE NAME="address.set">
<MODEL><SEQUENCE>

<ELEMENT NAME-="address.physical"></ELEMENT>

-48 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<ELEMENT NAME-="telephone" OCCURS="*"></ELEMENT>
<ELEMENT NAME="fax" OCCURS="*"></ELEMENT>
<ELEMENT NAME="email" OCCURS="*"></ELEMENT>
<ELEMENT NAME="internet” OCCURS="*"></ELEMENT>
</SEQUENCE></MODEL>

</ELEMENTTYPE>

<H3>Physical Address</H3>

<ELEMENTTYPE NAME-="address.physical">
<EXPLAIN><TITLE>Physical Address</TITLE>
<SYNOPSIS>The street address, city, state, and zip code.</SYNOPSIS></EXPLAIN>
<MODEL><SEQUENCE>

<ELEMENT NAME="street"></ELEMENT>

<ELEMENT NAME-="city"></ELEMENT>

<ELEMENT NAME="state"></ELEMENT>

<ELEMENT NAME="postcode" OCCURS="?"></ELEMENT>
<ELEMENT NAME-="country"></ELEMENT>
</SEQUENCE></MODEL>

</ELEMENTTYPE>

<H3>Street</H3>

<ELEMENTTYPE NAME="street">

<EXPLAIN><TITLE>Street Address</TITLE>
<SYNOPSIS>Street or postal address.</SYNOPSIS></EXPLAIN>
<MODEL><STRING></STRING></MODEL>
</ELEMENTTYPE>

<H3>City</H3>

<ELEMENTTYPE NAME="city">

<EXPLAIN><TITLE>City Name or Code</TITLE>

<P>The city name or code is a string that contains sufficient information to identify a city within a
designated state.</P>

</EXPLAIN>

<MODEL><STRING></STRING></MODEL>

</ELEMENTTYPE>

<H3>State</H3>
<ELEMENTTYPE NAME="state">

- 49 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<EXPLAIN><TITLE>State, Province or Prefecture Name or Code</TITLE>

<P>The state name or code contains sufficient information to identify a state within a designated
country.</P></EXPLAIN>

<MODEL><STRING DATATYPE="COUNTRY.US.SUBENTITY"></STRING></MODEL>
</ELEMENTTYPE>

<H3>Postal Code</H3>

<ELEMENTTYPE NAME="postcode">

<EXPLAIN><TITLE>Postal Code</TITLE>

<P>A postal code is an alphanumeric code, designated by an appropriate postal authority, that is used to
identify a location or region within the jurisdiction of that postal authority. Postal authorities include
designated national postal authorities.</P></EXPLAIN>

<MODEL><STRING DATATYPE="string"></STRING></MODEL>

</ELEMENTTYPE>

<H3>Country</H3>

<ELEMENTTYPE NAME="country">

<EXPLAIN><TITLE>Country Code</TITLE>

<P>A country code is a two-letter code, designated by ISO, that is used to uniquely identify a
country.</P></EXPLAIN>

<MODEL><STRING DATATYPE="country"></STRING></MODEL>
</ELEMENTTYPE>

<H3>Network Addresses</H3>

<ELEMENTTYPE NAME="telephone">

<EXPLAIN><TITLE>Telephone Number</TITLE>

<P>A telephone number is a string of alphanumerics and punctuation that uniquely identifies a telephone
service terminal, including extension number.</P></EXPLAIN>
<MODEL><STRING></STRING></MODEL>

</ELEMENTTYPE>

<H3>Fax</H3>

<ELEMENTTYPE NAME="fax">

<EXPLAIN><TITLE>Fax Number</TITLE>

<P>A fax number is a string of alphanumerics and punctuation that uniquely identifies a fax service
terminal </P>

</EXPLAIN>

<MODEL><STRING></STRING></MODEL>

-50-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</ELEMENTTYPE>

<H3>Email</H3>

<ELEMENTTYPE NAME="email">

<EXPLAIN><TITLE>Email Address</TITLE>

<P>An email address is a datatype-constrained string that uniquely identifies a mailbox on a
server.</P></EXPLAIN>

<MODEL><STRING DATATYPE="email"></STRING></MODEL>
</ELEMENTTYPE>

<H3>Internet Address</H3>

<ELEMENTTYPE NAME="internet">

<EXPLAIN><TITLE>Internet Address</TITLE>

<P>An Internet address is a datatype-constrained string that uniquely identifies a resource on the Internet
by means of a URL.</P></EXPLAIN> '
<MODEL><STRING DATATYPE="url"></STRING></MODEL>

</ELEMENTTYPE>

</DTD>
</SCHEMA>

Service Description Sample

<!DOCTYPE schema SYSTEM "bidl.dtd">

<SCHEMA>

<H1>Service Description Sample BID</H1>

<META

WHO.OWNS="Veo Systems" WHO.COPYRIGHT="Veo Systems"
WHEN.COPYRIGHT="1998" DESCRIPTION="Sample BID"

WHO.CREATED="*" WHEN.CREATED="*"
WHAT.VERSION="*" WHO.MODIFIED="*"
WHEN.MODIFIED="*" WHEN.EFFECTIVE="*"
WHEN EXPIRES="*" WHO.EFFECTIVE="+"
WHO.EXPIRES="*">

- </META>
-<PROLOG>

<XMLDECL STANDALONE="no"></XMLDECL>

-51-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<DOCTYPE NAME="service">
<SYSTEM>service.dtd</SYSTEM></DOCTYPE>
</PROLOG>

<DTD NAME="service.dtd">
<H?2>Services</H2>

<H3>Includes</H3>
<!-- INCLUDE><SYSTEM>comments.bim</SYSTEM></INCLUDE -->

<H3>Service Set</H3>

<ELEMENTTYPE NAME="service.set">
<EXPLAIN><TITLE>Service Set</TITLE>

<SYNOPSIS>A set of services.</SYNOPSIS></EXPLAIN>
<MODEL>

<ELEMENT NAME="service" OCCURS="+"></ELEMENT>
</MODEL></ELEMENTTYPE>

<H3>Services Prototype</H3>

<PROTOTYPE NAME-="prototype.service">
<EXPLAIN><TITLE>Service</TITLE></EXPLAIN>
<MODEL><SEQUENCE> -

<ELEMENT NAME-="service.name"></ELEMENT>

<ELEMENT NAME="service.terms" OCCURS="+"></ELEMENT>
<ELEMENT NAME="service.location” OCCURS="+"></ELEMENT>
<ELEMENT NAME:"service.oberation" OCCURS="+"></ELEMENT>
</SEQUENCE></MODEL>

<!-- ATTGROUP><IMPLEMENTS HREF="common.attrib"></IMPLEMENTS></ATTGROUP -->
</PROTOTYPE>

<H3>Service</H3> '
<INTRO><P>A service is an addressable network resource that provides interfaces to specific operations
by way of input and output documents.</P></INTRO>

<ELEMENTTYPE NAME-="service">

<EXPLAIN><TITLE>Service</TITLE>

<P>A service is defined in terms of its name, the location(s) at which the service is available, and the
operation(s) that the service performs.</P></EXPLAIN>

<MODEL><SEQUENCE>

-52-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

<ELEMENT NAME="service.name"></ELEMENT>
<ELEMENT NAME-="service.location"></ELEMENT>
<ELEMENT NAME-="service.operation" QCCURS="+"></ELEMENT>

' <ELEMENT NAME-="service.terms"></ELEMENT>

</SEQUENCE></MODEL>
</ELEMENTTYPE>

<H3>Service Name</H3>

<ELEMENTTYPE NAME="service.name">

<EXPLAIN><TITLE>Service Name</TITLE>

<P>The service name is a human-readable string that ascribes a moniker for a service. It may be
employed is user interfaces and documentation, or for other purposes.</P></EXPLAIN>
<MODEL><STRING></STRING></MODEL>

</ELEMENTTYPE>

<H3>Service Location</H3>

<ELEMENTTYPE NAME-="service.location">

<EXPLAIN><TITLE>Service Location</TITLE>

<SYNOPSIS>A URI of a service.</SYNOPSIS>

<P>A service location is a datatype-constrained string that locates a service on the Internet by means of a
URIL.</P></EXPLAIN>

<MODEL><STRING DATATYPE="url"></STRING></MODEL>

</ELEMENTTYPE>

<H3>Service Operations</H3>

<INTRO><P>A service operation consists of a name, location and its interface, as identified by the type
of input document that the service operation accepts and by the type of document that it will return as a
result.</P></INTRO>

<ELEMENTTYPE NAME="service.operation">

<EXPLAIN><TITLE>Service Operations</TITLE>

<P>A service operation must have a name, a location, and at least one document type as an input, with
one or more possible document types returned as a result of the operation.</P>

</EXPLAIN>

<MODEL><SEQUENCE>

<ELEMENT NAME-="service.operation.name"></ELEMENT>

<ELEMENT NAME-="service.operation.location"></ELEMENT>

<ELEMENT NAME-="service.operation.input"></ELEMENT>

<ELEMENT NAME-="service.operation.output"></ELEMENT>

-53 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

</SEQUENCE></MODEL>
</ELEMENTTYPE>

<H3>Service Operation Name</H3>

<ELEMENTTYPE NAME-="service.operation.name">

<EXPLAIN><TITLE>Service Operation Name</TITLE>

<P>The service operation name is a human-readable string that ascribes a moniker to a service operation.
It may be employed in user interfaces and documentation, or for other purposes.</P></EXPLAIN>
<MODEL><STRING></STRING></MODEL>

</ELEMENTTYPE>

~ <H3>Service Operation Location</H3>

<INTRO><P>The service location is a network resource. That is to say, a URL.</P></INTRO>
<ELEMENTTYPE NAME="service.operation.location">

<EXPLAIN><TITLE>Service Operation Location</TITLE>

<SYNOPSIS>A URI of a service operation.</SYNOPSIS>

<P>A service operation location is a datatype-constrained string that locates a service operation on the
Internet by means of a URL.</P></EXPLAIN>

<MODEL><STRING DATATYPE="url"></STRING></MODEL>

</ELEMENTTYPE>

<H3>Service Operation Input Document</H3>

<INTRO><P>The input to a service operation is defined by its input document type. That is, the service
operation is invoked when the service operation location receives an input document whose type
corresponds to the document type specified by this element.</P>

<P>Rather than define the expected input and output document types in the market participant document,
this example provides pointers to externally-defined BIDs. This allows reuse of the same BID as the input
and/or output document type for multiple operations. In addition, it encourages parallel design and
implenientation.</P></INT RO>

<ELEMENTT YPE NAME="service.operation.input">

<EXPLAIN><TITLE>Service Operation Input</TITLE>

<SYNOPSIS>Identifies the type of the service operation input document.</SYNOPSIS>

<P>Service location input is a datatype-constrained string that identifies a BID on the Internet by means
of a URL</P>

</EXPLAIN>

<MODEL><STRING DATATYPE="url"></STRING></MODEL>

</ELEMENTTYPE>

-54 -

10

15

20

25

30

35

40

WO 01/33369 PCT/US00/30068

<H3>Servicé Operation Output Document Type</H3>

<INTRO><P>The output of a service operation is defined by its output document type(s). That is, the
service operation is expected to emit a document whose type corresponds to the document type specified
by this element.</P></INTRO>

<ELEMEN'I'I‘YPE NAME-="service.operation.output">

<EXPLAIN><TITLE>Service Operation Output</TITLE>

<SYNOPSIS>Identifies the type of the service operation output document.</SYNOPSIS>

<P>Service location output is a datatype-constrained string that identifies a BID on the Internet by means
of a URL</P> '

</EXPLAIN>

<MODEL><STRING DATATYPE="url"></STRING></MODEL>

</ELEMENTTYPE>

<H3>Service Terms</H3>

<INTRO><P>This is a simple collection of string elements, describing the terms of an
agreement.</P></INTRO>

<ELEMENTTYPE NAME="service.terms">

<EXPLAIN><TITLE>Service Terms</TITLE>

<SYNOPSIS>Describes the terms of a given agreement.</SYNOPSIS> -
</EXPLAIN>

<MODEL><STRING DATATYPE="string"></STRING></MODEL>
</ELEMENTTYPE>

</DTD>
</SCHEMA>

The service DTD schema may be extended with a service type element in a

common business language repository as follows:

<IELEMENT service.type EMPTY>
<IATTLIST service.type
service.type.name (
catalog.operator
| commercial.directory.operator
| eft.services.provider
| escrower
| fulfillment.service
| insurer
| manufacturer
| market.operator
| order.originator
| ordering.service

-55-

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

| personal.services.provider
| retailer

| retail.aggregator

| schema.resolution.service
| service.provider

| shipment.acceptor

| shipper

| van

| wholesale.aggregator

) #REQUIRED
%common.attrib;

The service type element above illustrates interpretation information carried by a

business interface definition, in this example a content form allowing identification of

any one of a list of valid service types. Other interpretation information includes data
typing, such as for example the element <H3>Internet Address</H3> including the
content form "url" and expressed in tﬁe data type "string." Yet other interpretation
information includes mapping of codes to elements of a list, such as for example the
element <H3>State</H3> including the code mapping for states in the file
"COUNTRY.US.SUBENTITY."

The service description referred to by the market participant DTD defines the

* documents that the service accepts and generates upon competition of the service. A

basic service description is specified below as a XML document transact.dtd.
Transact.dtd models a transaction description, such as an invoice, or a description
of an exchange of value. This document type supports many uses, so the transaction
description element has an attribute that allows user to distinguish among invoices,
performance, offers to sell, requests for quotes and so on. The exchange may occur
among more than two parties, but only two are called out, the offeror and the counter
party, each of whom is represented by a pointer to a document conforming to the market
participant DTD outlined above: The counter party pointer is optional, to accommodate
offers to sell. The exchange description is described in the module tranprim.mod listed
below, and includes pricing and subtotals. Following the exchange description, charges
applying to the transaction as a whole may be provided, and a total charge must be
supplied. Thus, the transaction description schema document transact.dtd for this

example is set forth below:

<!-- transact.dtd Version: 1.0 -->
<!-- Copyright 1998 Veo Systems, Inc. -->

-56 -

10

15

20

25

30

35

40

45

50

55

WO 01/33369 PCT/US00/30068

<!ELEMENT transaction.description (meta?, issuer.pointer,
counterparty.pointer?, exhange.descrptiont, general.charges?,
net.total?)>
<IATTLIST transaction.description
transaction.type (invoice | pro.forma | offer.to.sell | order
| request.for.quote | request.for.bid
| request.for.proposal | response.to.request.for.quote
| response.to.request.for.bid
| response.to.request.for.proposal) "invoice"
%common.attrib;
%ealtrep.attrib;
%ttl.attrib;
>

Representative market participant, and service DTDs, created according to the

definitions above, are as follows:

Market Participant DTD

<!ELEMENT business (party.name+ , address.set) >
<IATTLIST business business.number CDATA #REQUIRED
>
<IELEMENT party.name (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT internet (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!IELEMENT email (#PCDATA)>
<!ELEMENT address.physical (street, city , state , postcode? , country) >
<IELEMENT telephone (#PCDATA)> »
<IELEMENT person (party.name+ , address.set) >
<!ATTLIST person SSN CDATA #IMPLIED
S -
<IELEMENT fax (#PCDATA)>
<!ELEMENT street (#PCDATA)>

- <IELEMENT address.set (address.physical , telephone* , fax* , email* , internet*) >

<!ELEMENT postcode (#PCDATA)>
<!ELEMENT market.participant (business | person) >

Service DTD

<!ELEMENT service.location (#PCDATA)>

<IELEMENT service.terms (#PCDATA)>

<!ELEMENT service.operation.name (#PCDATA)>

<!ELEMENT service.operation (service.operation.name , service.operation.location ,
service.operation.input , service.operation.output) >

<!ELEMENT service (service.name , service.location , service.operation+ , service.terms) >
<IELEMENT service.operation.input (#PCDATA)>

<!ELEMENT service.operation.location (#PCDATA)>

<IELEMENT service.name (#PCDATA)>

<!ELEMENT service.set (servicet+)>

<IELEMENT service.operation.output (#{PCDATA)>

-57-

10

15

20

25

30

35

40

45

50

55

WO 01/33369 PCT/US00/30068

One instance of a document produced according to the transact.dtd follows:

<?xml version="1.0"7>
<!-- rorder.xml Version: 1.0 -->
<!-- Copyright 1998 Veo Systems, Inc. -->

<IDOCTYPE transaction.description SYSTEM "urn:x-veosystems:dtd:cbl:transact:1.0:>
<transaction.description transaction.type="order">
<meta>
<urn?urn:x-veosystems:doc:00023
<furn>
<thread.id party.assigned. by—"reqorg">FRT876
</thread.id>
</meta>
<issuer.pointer>
<xlIl.locator urllink="reqorg.xml">Customer
Pointer
</xll.locator>
</issuer.pointer>
<counterparty.pointer>
<xlIlL.locator urllink="compu.xml">Catalog entry owner pointer
</xll.locator>
</counterparty.pointer>
<exchange.description>
<line.item>
<product.instance> _
<product.description.pointer> :
<xlLlocator urllink="cthink.xml">Catalogue Entry Pointer
</xll.locator>
</product.description.pointer>
<product.specifics>
<info.description.set>
<info.description>
<xml.descriptor>
<doctype> _
<dtd system.id="urn:x-veosystems:dtd:cbl:gprod:1.0"/>
</doctype>
<xml.descriptor.details>
<xlL.xptr.frag>DESCENDANT(ALL,0s)STRING("Windows 95")
</x1l.xptr.frag>
<x1l.xptr.frag>DECENDANT(ALL,p.speed)STRING("200")
</x1l.xptr.frag>
<xll.xptr.frag>DESCENDANT(ALL,hard.disk.capacity)
STRING("4")
</x1l.xptr.frag>
<xll.xptr.frag>DESCENDANT(ALL, d size)STRING("14.1")
</xll.xptr.frag>
</xml.descriptor.details>
</xml.descriptor>
</info.description>
</info.description.set>
</product.specifics>
<quantity>1
</quantity>
</product.instance>
<shipment.coordinates.set>

-58-

10

15

20

25

30

35

40

45

50

WO 01/33369 PCT/US00/30068

<shipment.coordinates>
<shipment.destination>
<address.set>
<address.named>SW-1
</address.named>
<address.physical>
<building.sublocation>208C</building.sublocation>
<location.in.street>123
</location.in.street>
<street>Frontage Rd.
</street>
<city>Beltway
</city>
<country.subentity.us
country.subentity.us.name="MD"/>
<postcode>20000
</postcode>
</address.physical>
<telephone>
<telephone.number>617-666-2000
</telephone.number>
<telephone.extension>1201
</telephone.extension>
</telephone>
</address.set>
</shipment.destination>

<shipment.special>No deliveries after 4 PM</shipment.special>
</shipment.coordinates>
</shipment.coordinates.set>
<payment.set>
<credit.card
issuer.name="VISA"
instrument.number="3787-812345-67893"
expiry.date="12/97"
currency.code="USD"/>
<amount.group>
<amount.monetary currency.code="USD">3975
</amount.monetary>
</amount.group>
</payment.set>
</line.item>
</exhange.description>
</transaction.description>

Accordingly, the present invention provides a technique by which a market
participant is able to identify itself, and identify the types of input documents and the
types of output documents with which it is willing to transact business. The particular
manner in which the content carried in such documents is processed by the other parties
to the transaction, or by the local party, is not involved in establishing a business

relationship nor carrying out transactions.

_59-

10

15

20

25

30

WO 01/33369 PCT/US00/30068

Fig. 9 provides a simplified view of a participant node in a network practicing
aspects of the present invention. The node illustrated in Fig. 9 includes a network
interface 900 which is coupled to a communication network on port 901. The network
interface is coupled to a document parser 901. The parser 901 supplies the logical
structures from an incoming document to a translator module 902, which provides for
translating the incoming document into a form usable by the host transaction system, and
vice versa translating the output of host processes into the format of a document which
matches the output document form in the business interface definition for transmission to
a destination. The parser 901 and translator 902 are responsive to the business interface
definition stored in the participant module 903.

The output data structures from the translator 902 are supplied to a transaction
process front end 904 along wfth events signaled by the parser 901. The front end 904 in
one embodiment consists of a JAVA virtual machine or other similar interface adapted
for communication amongst diverse nodes in a network. The transaction processing
front end 904 responds to the events indicated by the parser 901 and the translator 902 to
route the incoming data to appropriate functions in the enterprise systems and networks
to which the participant is coupled. Thus, the transaction process front end 904 in the
example of Fig. 9 is coupled to commercial functions 905, database functions 906, other
enterprise functions such as accounting and billing 907, and to the specific event
listeners and processors 908 which are designed to respond to the events indicated by the
parser.

The parser 901 takes a purchase order like that in the example above, or other
document, specified according to the business interface definition and creates a set of
events that are recognized by the local transaction processing architecture, such as a set
of JAVA events for a JAVA virtual machine. |

The parser of the present invention is uncoupled from the programs that listen for

events based on the received documents. Various pieces of mark-up in a received

document or a complete document meeting certain specifications serve as instructions
for listening functions to start processing. Thus listening programs carry out the
business logic associated with the document information. For example, a program
associated with an address element may be code that validates the postal code by

checking the database. These listeners subscribe to events by registering with a

-60 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

document router, which directs the relevant events to all subscribers who are interested
in them.

For example, the purchase order specified above may be monitored by programs
listening for events generated by the parser, which would connect the document or its
contents to an order entry program. Receipt of product descriptions within the purchase
order, might invoke a program to check inventory. Receipt of address information
within the purchase order, would then invoke a program to check availability of services
for delivery. Buyer information fields in the document, could invoke processes to check
order history for credit worthiness or to offer a promotion or similar processing based on
knowing the identity of the consumer.

- Complex listeners can be created as configurations of primitive ones. For
example, a purchase order listener may contain and invoke the list listeners set out in the
previous paragraph, or the list members may be invoked on their own. Note that the
applications that the listeners run are unlikely to be native XML processes or native
JAVA processes. In these cases, the objects would be transformed into the format
required by the receiving trans application. When the application finishes processing, its
output is then transformed back to the XML format for communication to other nodes in
the network.

It can be seen that the market participant document type description, and the
transaction document type description outlined above include a schematic mapping for
logic elements in the documents, and include mark-up language based on natural
language. The natural language mark-up, and other natural language attributes of XML
facilitate the use of XML type mark-up languages for the specification of business
interface definitions, service descriptions, and the descriptions of input and output
documents.

The participant module 903 in addition to storing the business interface definition
includes a compiler which is used to compile objects or other data structures to be used
by the transaction process front end 904 which corresponds to the logical structures in
the incoming documents, and to compile the translator 902. Thus, as the business
interface definition is modified or updated by the participant as the transactions with
which the participant is involved c}\lange, the translator 902 and parser 901 are
automatically kept up to date.

-61 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

In one system practicing aspects of the present invention, the set of JAVA events
is created by a compiler which corresponds to the grove model of SGML, mainly the
standard Element Structure Information Set augmented by the "property set" for each
element. International Standard ISO/IEC 10179:1996 (E), Information Technology --
Processing Languages -- Document Style Semantics and Specification Ldnguage
(DSSSL). Turning the XML document into a set of events for the world to process
contrasts with the normal model of parsing in which the parser output is maintained as an
internal data structure. By translating the elements of the XML document into JAVA
events or other programming structures that are suitable for use by the transaction
processing front end of the respective nodes enables rich functionality at nodes utilizing
the documents being traded.

Thus, the transaction process front end 904 is able to operate in a publish and
subscribe architecture that enables the addition of new listener programs without the
knowledge of or impact on other listening programs in the system. Each listener, 905,
906, 907, 908 in Fig. 9, maintains a queue in which the front end 904 directs events.
This enables multiple listeners to handle events in parallel at their own pace. »

Furthermore, according to the present invention the applications that the listeners
run need not be native XML functions, or native functions which match the format of the
incoming document. Rather, these listeners may be JAVA functions, if the transaction
process front end 904 is a JAVA interface, or may be functions which run according to a
unique transaction processing architecture. In these cases, the objects would be
transformed into the format required by the receiving application. When the application
of the listener finishes, its output is then transformed back into the format of a document
as specified by the business interface definition in the module 903. Thus, the translator
902 is coupled to the network interface 900vdirectly for supplying the composed
documents as outputs.

The listeners coupled to the transaction processing front end may include
listeners for input docﬁments, listeners for specific elements of the input documents, and
listeners for attributes stored in particular elements of the input document. This enables
diverse and flexible implementations of transaction processes at the participant nodes for
filtering and responding to incoming documents.

Fig. 10 illustrates a process of receiving and processing an incoming document

for the system of Fig. 9. Thus, the process begins by receiving a document at the

-62 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

network interface (step 1000). The parser identifies the document type (1001) in
response to the business interface definition. Using the business interface definition,
which stores a DTD for the document in the XML format, the document is parsed (step
1002). Next, the elements and attributes of the document are translated into the format
of the host (step 1003). In this example, the XML logic structures are translated into
JAVA objects which carry the data of the XML element as well as methods associated
with the data such as get and set functions. Next, the host objects are transferred to the
host transaction processing front end (step 1004). These objects are routed to processes
in response to the events indicated by the parser and the translator. The processes which
receive the elements of the document are executed and produce an output (step 1005).
The output is translated to the format of an output document as defined by the business
interface definition (step 1006). In this example, the translation proceeds from the form
of a JAVA object to that of an XML document. Finally, the output document is
transmitted to its destination through the network interface (step 1007).

Fig. 11 is a more detailed diagram of the event generator/event listener
mechanism for the system of Fig. 9. In general the approach illustrated in Fig. 11 is a
refinement of the JAVA JDK 1.1 event model. In this model, three kinds of objects are
considered. A first kind of object is an event object which contains information about
the occurrence of an event. There may be any number of kinds of event objects,
corresponding to all the different kinds of events which can occur. A second kind of
object is an Event generator, which monitors activity and generates event objects when
something happens. Third, event listeners, listen for event obj ects generated by event
generators. Event listeners generally listen to specific event generators, such as for
mouse clicks on a particular window. Event listeners call an "ADD event listener"
method on the event generator. This model can be adapted to the environment of Fig. 9
in which the objects are generated in response to parsing and walking a graph of objects,
such as represented by an XML document.

The system illustrated in Fig. 11 includes a generic XML parser 1100. Such
parser can be implemented using a standard call back model. When a parsing event
occurs, the parser calls a particular method in an application object, passing in the
appropriate information in the parameters. Thus a single application 1101 resides with
the parser. The application packages the information provided by the parser in an XML

event object and sends it to as many event listeners as have identified themselves, as

-63 -

© 10

15

20

25

30

WO 01/33369 PCT/US00/30068

indicated by the block 1102. The set of events 1102 is completely parser independent.
The events 1102 can be supplied to any number of listeners and any number of threads
on any number of machines. The events are based on the element structure information
set ESIS in one alternative. Thus, they consist of a list of the important aspects of a
document structure, such as the starts and ends of elements, or of the recognition of an
attribute. XML (and SGML) parsers generally use the ESIS structure as a default set of
information for a parser to return to its application. |

A specialized ESIS listener 1103 is coupled to the set of events 1102. This
listener 1103 implements the ESIS listener API, and listens for all XML events from one
or more generators. An element event generator 1104 is a specialized ESIS listener
which is also an XML event generator. Its listeners are objects only interested in events
for particular types of elements. For example in an HTML environment, the listener
may only be interested in ordered lists, that is only the part of the document between the
 and tags. For another example, a listener may listen for "party.name"
elements, or for "service.name" elements according to the common business language,
from the example dbcuments above, proceés the events to ensure that the elements carry
data that matches the schematic mapping for the element, and react according to the
process needed at the receiving node.

This allows the system to have small objects that listen for particular parts of the
document, such as one which only adds up prices. Since listeners can both-add and
remove themselves from a generator, there can be a listener which only listens to for
example the <HEAD> part of an HTML document. Because of this and because of the
highly recursive nature of XML documents, it is possible to write highly targeted code,
and to write concurrent listeners. For example, an listener can set up an
listener completely separate from the manner in which the (unordered list) listener
sets up its listener. Alternatively, it can create a listener which generates a graphic
user interface and another which searches a database using the same input. Thus, the
document is treated as a program executed by the listeners, as opposed to the finished
data structure which the application examines one piece at a time. If an application is
written this way, it is not necessary to have the entire document in memory to execute an
application.

The next listener coupled to the set of events 1102 is an attribute filter 1105. The

attribute filter 1105 like the element filter 1104 is an attribute event generator according

-64 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

to the ESIS listener model. The listener for an attribute filter specifies the attributes it is
interested in, and receives events for any element having that attribute specified. So for
example, a font manager might receive events only for elements having a font attribute,
such as the <P FONT= "Times Roman" /P>.
The element event generator 1104 supplies such element objects to specialize the
element listeners 1104A. ‘
The attribute event generator 1105 supplies the attribute event objects to attribute |
listeners 1105A. Similarly, the attribute objects are supplied to a "architecture” in the
sense of an SGML/XML transformation from one document type to another using
attributes. Thus the architecture of 1105B allows a particular attribute with a particular
name to be distinguished. Only elements with that attribute defined become part of the
output document, and the name of the element in the output document is the value of the
attribute in the input document. For example, if the architecture 1105B is HTML, the
string: <PURCHASES HTML="OL"><ITEM HTML="LI"><NAME
HTML="B">STUFF</NAME><PRICE
HTML="B">123</PRICE></ITEM></PURCHASES>
translates into: 4
STUFF123
which is correct HTML.

The next module which is coupled to the set of events 1102 is a tree builder 1106.

" The tree builder takes a stream of XML events and generates a tree representation of the

underlying document. One preferred version of the tree builder 1106 generates a
document object model DOM object 1107, according to the specification of the W3C
(See, http://www.w3.0org/TR/1998/ WD-DOM-19980720/ introduction.html). However
listeners in event streams can be used to handle most requirements, a tree version is
useful for supporting queries around a documenf,. reordering of nodes, creation of new
documents, and supporting a data structure in memory from which the same event
stream can be generated multiple times, for example like parsing the document many
times. A specialized builder 1108 can be coupled to the tree builder 1106 in order to
build special subtrees for parts of the document as suits a particular implementation.

In addition to responses to incoming documents, other sources of XML events
1102 can be provided. Thus, an event stream 1110 is generated by walking over a tree of

DOM objects and regenerating the original event stream created when the document was

-65 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

being parsed. This allows the system to present the appearance that the document is
being parsed several times.

The idea of an object which walks a tree and generates a stream of events can be
generalize beyond the tree of DOM objects, to any tree of objects which can be queried.
Thus, a JAVA walker 1112 may be an application which walks a tree of JAVA bean
components 1113. The walkgr walks over all the publicly accessible fields and methods.
The walker keeps track of the objects it has already visited to ensure that it doesn't go
into an endless cycle. JAVA events 1114 are the type of events generated by the JAVA
walker 1112. This currently includes most of the kinds of information one can derive
from an object. This is the JAVA equivalent of ESIS and allows the same programming
approach applied to XML to be applied to JAVA objects generally, although particularly
to JAVA beans.

The JAVA to XML event generator 1115 constitutes a JAVA listener and a
JAVA event generator. It receives the stream of events 1114 from the JAVA walker
1112 and translates selected ones to present a JAVA object as an XML document. In the
one preferred embodiment, the event generator 1115 exploits the JAVA beans API.

Each object seen becomes an element, with the element name the same as the class
name. Within that element, each embedded method also becomes an element whose

content is the value returned by invoking the method. If it is an object or an array of

objects, then these are walked in turn.

Fig. 12 outlines a particular application built on the framework of Fig. 11. This
application takes in an XML document 1200 and applies it to a parser/generator 1201.
ESIS events 1202 are generated and supplied to an attribute generator 1203 and tree
builder 1204. The attribute generator corresponds to the generator 505 of Fig. 5. It
supplies the events to the "architecture" 505B for translating the XML input to an HTML
output for example. These events are processed in parallel as indicated by block 1205
and processed by listeners. The output of the listeners are supplied to a document writer
506 and then translated back to an XML format for output. Thus for example this
application illustrated in Fig. 12 takes an XML document and outputs an HTML
document containing a form. The form is then sent to a browser, and the result is
converted back to XML. For this exercise, the architecture concept provides the
mapping from XML to HTML. The three architectures included in Fig. 12 include one
for providing the structure of the HTML document, such as tables and lists, a second

- 66 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

specifying text to be displayed, such as labels for input fields on the browser document,
and the third describes the input fields themselves. The elements of the XML document
required to maintain the XML documents structure become invisible fields in the HTML
form. This is useful for use in reconstruction of the XML document from the
information the client will put into the HTTP post message that is sent back to the server.
Each architecture takes the input document and transforms it into an architecture based
on a subset of HTML. Listeners listening for these events, output events for the HTML
document, which then go to a document writer object. The document writer object
listens to XML events and turns them back into an XML document. The document
writer object is a listener to all the element generators listening to the architectures in this
example. Y,

The organization of the processing module illustrated in Figs. 11 and 12 is
representative of one embodiment of the parser and transaction process front end for the
system of Fig. 9. As can be seen, a very flexible interface is provided by which diverse
transaction processes can be executed in response to the incoming XML documents, or
other structured document formats.

Fig. 13 illustrates a node similar to that of Fig. 9, except that it includes a

business interface definition builder module 1300. Thus, the system of Fig. 13 includes

" a network interface 1301, a document parser 1302, and a document translator 1303. The

translator 1303 supplies its output to a transaction processing front end 1304, which in
turn is coupled to listening fuhctions such as commercial functions 1305, a database
1306, enterprise functions 1307, and other generic listeners and processors 1308. As
illustrated in Fig. 13, the business interface definition builder 1300 includes a user
interface, a common business library CBL repository, a process for reading
complementary business interface definitions, and a compiler. The user interface is used
to assist an enterprise in the building of a business interface definition relying on the
common business library repository, and the ability to read complementary business
interface definitions. Thus, the input document of a complementary business interface
definition can be specified as the output document of a particular transaction, and the
output document of the complementary business interface definition can be specified as
the input to such transaction process. In a similar manner a transaction business
interface definition can be composed using components selected from the CBL

repository. The use of the CBL repository encourages the use of standardized document

-67 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

formats, such as the example schema (bid1) documents above, logical structures and
interpretation information in the building of business interface definitions which can be
readily adopted by other people in the network.

The business interface definition builder module 1300 also includes a compiler
which is used for generating the translator 1303, the objects to be produced by the
translator according to the host transaction processing architecture, and to manage the ‘
parsing function 1302. .

Fig. 14 is a heuristic diagram showing logical structures stored in the repository
in the business interface deﬁnition: builder 1300. Thus, the repository storage
representative party business interface definitions 1400, including for example a
consumer BID 1401, a catalog house BID 1402, a warehouse BID 1403, and an auction -
house BID 1404. Thus, a new participant in an online market may select as a basic
interface description one of the standardized BIDs which best matches its business. In
addition, the repository will store a set of service business interface definitions 1405.
For example, an order entry BID 1406, an order tracking BID 1407, an order fulfillment
BID 1408, and a catalog service BID 1409 could be stored. As a new participant in the
market builds a business interface definition, it may select the business interface
definitions of standardized services stored in the repository.

In addition to the party and service BIDs, input and output document BIDs are
stored in the repository as indicated by the field 1410. Thus, a purchase order BID 1411,
an invoice BID 1412, a request for quote BID 1413, a product availability report BID
1414, and an order status BID 1415 might be stored in the repository.

The repository, in addition to the business interface definitions which in a
preferred system are specified as document type definitions according to XML, stores
interpretation information in the form of semantic maps as indicated by the field 1416.
Thus, semantic maps which are used for specifying weights 1417, currencies 1418, sizes
1419, product identifiers 1420, and product features 1421 in this example might be
stored in the repository. Further, the interpretation information provides for typing of
data structures within the logical structures of documents.

In addition, logical structures used in the composing of business interface
definitions could be stored in the repository as indicated by block 1422. Thus, forms for
providing address information 1423, forms for providing pricing information 1424, and

forms for providing terms of contractual rélationships could be provided 1425. As the

-68 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

network expands, the CBL repository will also expand and standardize tending to make
the addition of new participants, and the modification of business interface definitions
easier.

Fig. 15 illustrates the process of building a business interface definition using the
system of Fig. 13. The process begins by displaying a BID builder graphical interface to
the user (step 1500). The system accepts user input identifying a participant, service and
document information generated by the graphical interface (step 1501).

Next, any referenced logical structures, interpretation information, document
definitions and/or service definitions are retrieved from the répository in response to user
input via the graphical user interface (step 1502). In the next step, any compleﬁlentary
business interface definitions or components of business interface definitions are
accessed from other participants in the network selected via user input, by customized
search engines, web browsers or otherwise (step 1503). A document definition fof the
participant is created using the information gathered (step 1504). The translators for the
document to host and host to document mappers are created by the compiler (step 1505).
Host architecture data structures corresponding to the definition are created by the
compiler (step 1506), and the business interface definition which has been created is
posted on the network, such as by posting on a website or otherwise, making it
accessible to other nodes in the network (step 1507).

Business intefface deﬂnitionsbtell potential trading partners the online services
the company offers and which documents to use to invoke those services. Thus, the
services are deﬁned in the business interface definition by the documents that they
accept and produce. This is illustrated in the following fragment of an XML service
definition.

<service>

<service.name>Order Service</service.name>

<service.location>www.veosystems.com/order</service.location>

<service.op>

<service.op.name>Submit Order</service.op.name>

<service.op.inputdoc>www.commerce.net/po.dtd</service.op.inputdoc>

<service.op.outputdoc>

www.veosystems.com/invoice.dtd</service.op.outputdoc>

</service.op>

< service.op>

- 69 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

< service.op.name>Track Order</service.op.name>

<service.op.inputdoc> www.commerce.net
/request.track.dtd<service.op.inputdoc>

<service.op.outputdoc>
www.veosystems.com/response.track.dtd<service.op.outputdoc>

</service.op>

</service>

This XML fragment defines a service consisting of two transactions, one for
taking orders and the other for tracking them. Each definition expresses a contract or
promise to carry out a service if a valid request is submitted to the specified Web
address. The Order service here requires an input document that conforms to a standard
“po.dtd” Document Type Definition located in the repository, which may be local, or
stored in an industry-wide registry on the network. If a node can fulfill the order, it will
return a document conforming to a customized “invoice.dtd” whose definition is local.
In effect, the company is promising to do business with anyone who can submit a
Purchase Order that conforms to the XML specification it declares. No prior
arrangement is necessary.

The DTD is the formal specification or grammar for documents of a given type;
it describes the elements, their attributes, and the order in which they must appear. Fof
example, purchase orders typically contain the names and addresses of the buyer and
seller, a set of product descriptions, and associated terms and conditions such as price
and delivery dates. In Electronic Data Intercﬁange EDI for example, the X12 850
specification is a commonly used model for purchase orders.

The repository encourages the development of XML document models from
reusable semantic components that are common to many business domains. Such
documents can be understood from their common message elements, even though they
may appear quite different. This is the role of the Common Business Library repository.

The Common Business Library repository consists of information models for

generic business concepts including:

. business description primitives like companies, services, and products;
. business forms like catalogs, purchase orders, and invoices;
. standard measurements, date and time, location, classification codes.

-170 -

10

15

20

25

30

35

WO 01/33369 PCT/US00/30068

This information is represented as an extensible, public set of XML building
blocks that companies can customize and assemble to develop XML applications
quickly. Atomic CBL elements implenient industry messaging standards and
conventions such as standard ISO codes for countries, currencies, addresses, and time.
Low level CBL semantics have also come from analysis of proposed metadata
frameworks for Internet resources, such as Dublin Core.

The next level of elements use these building blocks to implement the basic
business forms such as those used in X12 EDI transactions as well as those used in
emerging Internet standards such as OTP (Open Trading Protocol) and OBI (Open
Buying on the Internet).

CBL's focus is on the functions and information that are common to all business
domains (business description primitives like companies, services, and products;
business forms like catalogs, purchase orders, and invoices; standard measurements, date
and time, location, classification codes). CBL builds on standards or industry
conventions for semantics where possible (e.g., the rules that specify "day/month/year"
in Europe vs "month/day/year" in the U.S. are encoded in separate CBL modules).

The CBL is a language that is used for designing applications. It is designed to
bridge the gap between the "document world" of XML and the "programming world" of
JAVA or other transaction processing architectures. Schema embodies a philosophy of
"programming with documents" in which a detailed formal specification of a document
type is the master source from which a variety of related forms can be generated. These
forms include XML DTDs for CBL, JAVA objects, programs for converting XML
instances to and from the corresponding JAVA objects, and supporting documentation.

The CBL creates a single source from which almost all of the pieces of a system
can be automatically generafed by a compiler. The ICBL works by extending
SGML/XML, which is normally used to formally define the structures of particular
document types, to include specification of the semantics associated with each
information element and attribute. The limited set of (mostly) character types in
SGML/XML can be extended to declare any kind of datatype.

Here is a fragment from the CBL definition for the "datetime" module:

<!-- datetime.mod Version: 1.0 -->
<!-- Copyright 1998 Veo Systems, Inc. -->

<! ELEMENT year (#PCDATA)>
<! ATTLIST year

-71 -

10

15

20

25

30

35

40

WO 01/33369 PCT/US00/30068

schema CDATA #FIXED "urn:x-veosystems:stds:is0:8601:3.8"
>

<! ELEMENT month (#PCDATA)>
<! ATTLIST month

schema CDATA #FIXED "urn:x-veosystems:stds:is0:8601:3.12"
> : :

- In this fragment, the ELEMENT "year" is defined as character data, and an
associated "schema" attribute, also character data, defines the schema for "year" to be
section 3.8 of the ISO 8601 standard.

This "datetime" CBL module is in fact defined as an instance of the Schema
DTD. First, the module name is defined. Then the "datetime" element "YEAR" is

bound to the semantics of ISO 8601:

<! DOCTYPE SCHEMA SYSTEM "schema.dtd">
<SCHEMA><HI1>Date and Time Module</H1>

<ELEMNTTYPE NAME="year" DATATYPE="YEAR"><MODEL>
<STRING

DATATYPE="YEAR"></STRING></MODEL>

<ATTDEF NAME=:schema:iso8601" DATATYPE="CDATA">
<FIXED>3.8

Gregorian calendar</FIXED></ATTDEF></ELEMENTTYPE>

The example market participant and service modules above are also stored in the
CBL repository.

In Fig. 16, an Airbill 1600 is being defined by customizing a generic purchase
order DTD 1601, adding more specific information about shipping weight 1602. The
generic purchase order 1601 was initially assembled from the ground up out of CBL
modules for address, date and time, currency, and vendor and product description. Using
CBL thus significantly speeds fhe development and implementation of XML commerce
applications. More importantly, CBL makes it easier for commercial applications to be
interconnected.

In the CBL, XML is extended with a schema. The extensions add strong-typing
to XML elements so that content can be readily validated. For example, an element
called <CPU_clock speed> can be defined as an integer with a set of valid values: {100,

133, 166, 200, 233, 266 Mhz.}. The schema also adds class-subclass hierarchies, so that

-T2 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

information can be readily instantiated from class definitions. A laptop, for instance, can
be described as a computer with additional tags for features such as display type and
battery life. These and other extensions facilitate data entry, as well as automated
translations between XML and traditional Object-Oriented and relational data models.

Thus the completed BID is run through the compiler which produces the DTDs
for the actual instance of a participant and a service as outlined above, the JAVA beans
which correspond to the logical structures in the DTD instances, and transformation code
for transforming from XML to JAVA and from JAVA to XML. In alternative systems
documentation is also generated for display on a user interface or for printing by a user
to facilitate use of the objects. An example of this is found in U.S. patent application No.
09/173,858, entitled DOCUMENTS FOR COMMERCE IN TRADING PARTNER
NETWORKS AND INTERFACE DEFINITIONS BASED ON THE DOCUMENTS
which is hereby incorporated by reference.

An application of CBL and the BID processor of the present invention in an
XML/JAVA environment can be further understood by the following explanation of the
processing of a Purchase Order. . |

Company A defines its Purchase Order document type using a visual
programming environment that contains a library of CBL DTDs and modules, all defined
using common business language elements so that they contain data type and other
interpretation information. Company A's PO might just involve minor customizations to
a more generic "transaction document" specification that comes with the CBL library, or
it might be built from the ground up from CBL modules for address, date and time,
currency, etc.

The documentation for the generic "transaction document” specification (such as
the transact.dtd set out above) typifies the manner in which CBL specifications are built
from modules and are interlinked with other CBL DTDs.

A compiler takes the purchase order definition and generates several different
target forms. All of these target forms can be derived through "tree to tree"
transformations of the original specification. The most important for this example are:

(a) the XML DTD for the purchase order.

(b) aJAVA Bean that encapsulates the data structures for a purchase order
(the JAVA classes, arguments, datatypes, methods, and exception

-73 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

structures are created that correspond to information in the Schema

definition of the purchase order).

(c) A "marshaling" program that converts purchase orders that conform to the
Purchase Order DTD into a Purchase Order JAVA Bean or loads them
into a database, or creates HTML (or an XSL style sheet) for displaying

purchase orders in a browser.

(d) An "unmarshaling" program that extracts the data values from Purchase
Order JAVA Beans and converts them into an XML document that
conforms to the Purchase Order DTD.

Now, back to the scenario. A purchasing application generates a Purchase Order
that conforms to the DTD specified as the service interface for a supplier who accepts
purchase orders.

The parser uses the purchase order DTD to decompose the purchase order
instance into a stream of information about the elements and attribute values it contains.
These "property sets" are then transformed into corresponding JAVA event objects by -
wrapping them with JAVA code. This transformation in effect treats the pieces of
marked-up XML document as instructions in a custom programming language whose
grammar is defined by the DTD. These JAVA events can now be processed by the
marshéling épplications generated by the compiler to "load" JAVA Bean data structures.

Turning the XML document into a set of events for JAVA applications to
process, is unlike the normal model of parsing in which the paréer output is maintained
as an internal data structure and processing does not begin until parsing completes. The
event based processing, in response to the BID definitions, is the key to enabling the
much richer functionality of the processor because it allows concurrent document
application processing to begin as soon as the first event is emitted.

JAVA programs that "listen for" events of various types are generated from the
Schema definition of those events. These listeners are programs created to carry out the
business logic associated with the XML definitions in the CBL; for example, associated

with an "address" element may be code that validates the postal code by checking a

-74 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

database. These listeners "subscribe" to events by fegistering with the document router,
which directs the relevant events to all the subscribers who are interested in them.

This publish and subscribe architecture means that new listener programs can be
added without knowledge by or impact on existing ones. Each listener has a queue into
which the router directs its events, which enables multiple listeners can handle events in
parallel at their own pace.

For the example purchase order here, there might be listeners for:

. the purchase order, which would connect it to an order entry program,

. product descriptions, which might check inventory,

. address information, which could check Fed Ex or other service for
delivery availability,

. buyer information, which could check order history (for creditworthiness,

or to offer a promotion, or similar processing based on knowing who the
customer is).

Complex listeners can be created as configurations of primitive ones (e.g., a
purchase order listener may contain and invoke these listeners here, or they may be
invoked on their own).

Fig. 17 illustrates the market maker node in the network of Fig. 3. The market
maker node includes the basic structures of the system of Fig. 9, including a network
interface 1701, a document parser 1702, a document to host and host to document
translator 1703, and a front end 1704, referred to as a router in this example. The market
maker module 1705 in this example includes a set of business interface definitions, or
other identifiers sufficient to support the market maker function, for participants in the
market, a CBL repository, and a compiler all serving the participants in the market. The
router 1704 includes a participant registry and document filters which respond to the
events generated at the output of the translator and by the parser to route incoming
documents according to the participant registry and according to the element and
attribute filters amongst the listeners to the XML event generators. Thus, certain
participants in the market may register to receive documents that meet prespecified
parameters. For example, input documents according to a particular DTD, and including
an attribute such as numbers of products to be purchased greater than a threshold, or such
as a maximum price of a document request to be purchased, can be used to filter

documents at the router 1704. Only such documents as match the information registered

-75 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

in the participant registry at the router 1704 are then passed on to the registered
participant.

The router 1704 may also serve local host services 1705 and 1706, and as such
act as a participant in the market as well as the market maker. Typically, documents that '
are received by the router 1704 are traversed to determine the destinations to which such
documents should be routed, there again passed back through the translator 1703, if
necessary, and out the network interface 1701 to the respective destinations.

The market maker is a server that binds together a set of internal and external -
business services to create a virtual enterprise or trading community. The server parses
incoming documenté and invokes the appropriate services by, for example, handing off a
request for product data to a catalog server or forwarding a purchase order to an ERP
system. The server also handles translation tasks, mapping the information from a
company’s XML documents onto document formats used by trading partners and into
data formats required by its legacy systems.

With respect to the service definition above; when a company submits a purchase
order, the XML parser in the server uses the purchase order DTD to transform the
purchase order instance into a stream of information events. These events are then routed
to any application that is programmed to handle events of a given type; in some cases,
the information is forwarded over the Internet to a different business entirely. In the

purchase order example, several applications may act on information coming from the

parser:

e An order entry program processes the purchase order as a cbmplete
message;

. An ERP system checks inventory for the products described in the
purchase order;

. A customer database verifies or updates the customer’s address;

. A shipping company uses the address information to schedule a delivery

. A bank uses the credit card information to authorize the transaction.

Trading partners need only agree on the structure, content, and sequencing of the
business documents they exchange, not on the details of APIs. How a document is
processed and what actions result is strictly up to the business providing the service.

This elevates integration from the system level to the business level. It enables a business

-76 -

10

15

20 .

25

30

WO 01/33369 PCT/US00/30068

to present a clean and stable interface to its business partners despite changes in its
internal technology implementation, organization, or processes.

Figs. 18, 19 and 20 illustrate processes executed at a market maker node in the
system of Fig. 17. In Fig. 18, an input document is received at the network interface
from an originating participant node (step 1800). The document is parsed (step 1801).
The document is translated to the format of the host, for example XML to JAVA (step
1802). The host formatted events and objects are then passed to the router service (step
1803). The services registered to accept the document according to the document type
and content of the document are identified (step 1804). The document or a portion of the
document is passed to the identified services (step 1805). As service is performed in
response to the document content (step 1806). The output data of the service is produced
(step 1807). 'fhe output is converted to the document format, for example from a JAVA
format to an XML foﬁnat (step 1808). Finally, the output document is sent to a
participant node (step 1809). 7

The registration service is one such function which is managed by the router.
Thus, a market participant document is accepted at the network interface as shown in
Fig. 19 (step 1900). The market participant document is stored in the business interface
definition repository (step 1901) for the market maker node. In addition, the document
is parsed (step 1902). The parsed document is translated into thé format of the host (step
1903). Next, the document is passed to the router service (step 1904). The router
service includes a listener which identifies the registration service as the destination of
the. document according to the document type and content (step 1905). The document or
elements of the document are passed to the registration service (step 1906). In the |
registration service, the needed service specifications are retrieved according to the
business interface definition (step 1907). If the service specifications are gathered, at
step 1908, the router service filters are set according to the business interface definition
and the service specifications (step 1909). Registration acknowledgment data is
produced (1910). The registration acknowledgment data is converted to a document
format (step 1911). Finally, the acknowledgment document is sent to the participant
node indicating to the participant that is successfully registered with the market maker
(step 1912).

The process at step 1907 of gathering needed service specifications is illustrated

for one example in Fig. 20. This process begins by locating a service business interface

-77 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

definition supported by the market participant (step 2000). The service definition is
retrieved, for example by an E-mail transaction or web access to repository node (step
2001). The service specification is stored in the BID repository (step 2002). The service
business interface déﬁnition document is parsed (step 2003). The parsed document is
translated into the format of the host (step 2004). Host objects are passed to the router
service (step 2005). The registration service is identified according to the document type
and content (step 2006). Finally, the information in the service business interface
definition document is passed to the registration service (step 2007) for use according to
the process of Fig. 19.

Fig. 21 illustrates the processor, components and sequence of processing of
incoming data at market maker node according to the present invention. The market
maker node includes a communication agent 2100 at the network interface. The
communication agent is coupled with an XML parser 2101 which supplies events to an
XML processor 2102. The XML processor supplies events to a document router. The
document router feeds a document service 2104 that provides an interface for supplying
the received documents to the enterprise solution software 2105 in the host system. The
communication agent 2100 is an Internet interface which includes appropriate protocol
stacks supporting such protocols as HTTP, SMTP, FTP, or other protocols. Thus, the
incoming data could come in an XML syntax, an'ASCII data syntax or other syntax as
suits a particular communication channel. All the documents received in non-XML
syntaxes are translated into XML and passed the XML parser. A translation table 2106
is used to support the translation from non-XML form into XML form.

The converted documents are supplied to the parser 2101. The XML parser
parses the received XML document according to the document type definition which
matches it. If an error is found, then the parser sends the document back to the
communication agent 2100. A business interface definition compiler BIDC 2107 acts as
a compiler for business interface definition data. The DTD file for the XML parser,
JAVA beans corresponding to the DTD file, and translation rules for translating DTD
files to JAVA beans are created by compiling the BID data. An XML instance is |
translated to JAVA instance by referring to these tools. Thus the BID compiler 2107
stores the DTD documents 2108 and produces JAVA documents which correspond
2109. The XML documents are passed to the processor 2102 which translates them into
the JAVA format. In a preferred system, JAVA documents which have the same status

-78 -

10

15

20

25

30

WO 01/33369 PCT/US00/30068

as the document type definitions received in the XML format are produced. The JAVA
beans are passed to the document router 2103. The document router 2103 receives the
JAVA beans and passes the received class to the appropriate document service using a
registry program, for example using the event listener architecture described above. The
document service 2104 which receives the document in the form of JAVA beans from
the router 2103 acts as the interface to the enterprise solution software. This includes a
registry service 2110 by which listeners to XML events are coupled with the incoming
data streams, and a service manager 2111 to manage the routing of the incoming
documents to the appropriate services. The document service manager 2111 provides for
administration of the registry service and for maintaining document consistency and the
like. |

The document service communicates with the back end system using any
proprietary API, or using such more common forms as the CORBA/COM interface or
other architectures. ‘

Fig. 22 provides a heuristic diagram of the market maker and market participant
structures according to the present in?ention. This model has been largely adopted by
eCo as a standard. Thus, the electronic commerce market according to the present
invention can be logically organized as set forth in Fig. 22. At the top of the
organization, a market maker node 2200 is established. The market maker node includes

resources that establish a marketplace 2201. Such resources include a market registry

- service and the like. Businesses 2202 register in the marketplace 2201 by publishing a

business interface definition. The business interface definition defines the services 2203
for commercial transactions in which the businesses will participate. The transactions
2204 and services 2203 use documents 2205 to define the inputs and outputs, and outline
the commercial relationship between participants in the transaction. The documents
have content 2206 which carries the particulars of each transaction. The manner in
which the content is processed by the participants in the market, and by the market
maker is completely independent of the document based electronic commerce network

which is established according to the present invention. Overall, a robust, scalable,

Jintuitive structure is presented for enabling electronic commerce on communication

networks is provided.
Thus, the present invention in an exemplary system provides a platform based on

the XML processor and uses XML documents as the interface between loosely coupled

-79 -

10

15

WO 01/33369 PCT/US00/30068

business systems. The documents are transferred between businesses and processed by
participant nodes before entering the company business system. Thus the platform
enables electronic commerce applications between businesses where each business
system operates using different internal commerce platforms, processes and semantics,
by specifying a common set of business documents and forms.

According to the present invention, virtual enterprises are created by
interconnecting business systems and service, are primarily defined in terms of the

documents (XML-encoded) that businesses accept and generate:

. "if you send me a request for a catalog, I will send you a catalog:
. "if you send me a purchase order and I can accept it, I will send you an
invoice".

The foregoing description of an exemplary embodiment of the invention has been
presented for purposes of illustration and description. It is not intended to be exhaustive
or to limit the invention to the precise forms disclosed. Obviously, many modifications
and variations will be apparent to practitioners skilled in this art. It is intended that the
scope of the invention be defined by the following claims and their equivalents.

‘What is claimed is:

-80-

10
11
12

WO 01/33369 PCT/US00/30068

CLAIMS

1. A registry supporting transactions among a plurality of participants in a
network including one or more market nodes and a plurality of participant nodes,
comprising, a machine readable registry accessible to at least one participant node with
entries for |

traders utilizing participant nodes;

service processes executing on the market nodes;

terms and conditions applicable to at least a portion of the transactions among the
participant nodes; and '

a machine readable specification of an interface to transaction processes stored in
memory accessible by at least one participant node in the network, including
intefpretation information providing a definition of an input document, and a definition

of an output document.

2. The registry of claim 1, wherein the entries comprise storage units and logical

structures for the sets of storage units.

3. The registry of claim 1, wherein the respectivé definitions of input and output

documents comprise storage units and logical structures for the sets of storage units.

4. The registry of claim 3, wherein the interpretation information includes at
least one data structure mapping predefined sets of storage units for a particular logical
structure in the definitions of the input and output documents, to respective elements in a

list.

5. The registry of claim 3, including a repository in memory accessible by at
least one participant node storing a library of logical structures, and interpretation

information for logic structures.

6. The registry of claim 3, wherein the machine readable specification includes a
document compliant with a definition of an interface document including logical

structures for storing an identifier of a particular transaction, and at least one of

-81-

WO 01/33369 PCT/US00/30068

definitions and references to definitions of input and output documents for the particular

transaction.

7. The registry of claim 3, wherein the machine readable specification includes a
document compliant with a definition of an interface document including logical
structures for storing an identifier of the interface, and for storing at least one of
specifications and references to specifications of a set of one or more transactions

supported by the interface.

8. The registry of claim 7, wherein the machine readable spcciﬁcétion includes a
reference to a specification of a particular transaction, and the specification of the
particular transaction includes a document including logical structures for storiﬁg at least
one of definitions and references to definitions of input and output documents for the

particular transaction.
9. The registry of claim 3, wherein the storage units comprise parsed data.

10. The registry of claim 9, wherein the parsed data in at least one of the input
and output documents comprises:
character data encoding text characters in the one of the input and output

documents, and
markup data identifying sets of storage units according to the logical structure of

the one of the input and output documents.

11. The registry of claim 10, wherein at least one of the sets of storage units

encodes a plurality of text characters providing a natural language word.

12. The registry of claim 9, wherein the interpretation information for at least
one of the sets of storage units identified by a particular logical structure of at least one
of the input and output documents, encodes respective definitions for sets of parsed

characters.

13. The registry of claim 9, wherein the storage units éomprise unparsed data.

-82-

WO 01/33369 PCT/US00/30068

14. The registry of claim 3, including a repository stored in memory accessible
by at least one node in the network of document types for use in a plurality of
transactions, and wherein the definition of one of the input and output documents

includes a reference to a document type in the repository.

15. The registry of claim 14, wherein the repository of document types

includes a document type for identifying participant processes in the network.

16. The registry of claim 3, wherein the definitions of the input and output
documents comprise document type definitions compliant with a standard Extensible

Markup Language XML.

17. The registry of claim 3, wherein the machine readable data structure
including interpretation information comprises a document organizéd according to a

document type definition compliant with a standard Extensible Markup Language XML.

18. The registry of claim 1, wherein the entries for traders are associated with

roles including buyer, supplier and service provider.

19. The registry of claim 1, wherein the entries for traders are associated with

identifiers of organizations or natural persons.

20. The registry of claim 1, wherein the entries for traders are associated with
identifiers of organizations or natural persons and with applications executing on the

participant nodes.
21. The registry of claim 1, wherein the entries for traders are associated with

identifiers of natural persons having roles including operator, technical contact, and

administrative contact.

-83-

0 0 AN

10
11
12
13

WO 01/33369 PCT/US00/30068

22. The registry of claim 1, wherein the entries for service processes are
associated with roles including system services, business services, portal services and

community services.

23. The registry of claim 1, wherein the entries for service processes are
associated with roles including system services, business services, portal services and
community services, the respective services being identified by universal resource

names.

24. The registry of claim 1, wherein the entries for service processes are
associated with roles including system services, business services, portal services and
community services, the respective services being identified by universal resource

locators.

25. The registry of claim 1, wherein the registry entries comprise data received

from the participant nodes and cached in memory.

26. The registry of claim 1, wherein the registry entries comprise meta data

references to one or more locations where data is available.

27. A registry supporting transactions among a plurality of participants in a
network including a plurality of market nodes and a plurality of participant nodes,
comprising a machine readable multi-market registry accessible to at least one
participant node with entries for

the market nodes;

traders utilizing participant nodes;

service processes eXecuting on the market nbdes;

terms and conditions applicable to at least a portion of the transactions among the
participant nodes; and

a machine readable specification of an interface to transaction processes stored in
memory accessible by at least one participant node in the network, including
interpretation information providing a definition of an input document, and a definition

of an output document.

-84 -

WO 01/33369 PCT/US00/30068

28. The registry of claim 27, wherein the respective definitions of input and
output documents comprise storage units and logical structures for the sets of storage

units.

29. The registry of claim 28, wherein the interpretation information includes at
least one data structure mapping predefined sets of storage units for a particular logical
structure in the definitions of the input and output documents, to respective elements in a

list.

30. The registry of claim 28, including a repository in memory accessible by at
least one node in the network storing a library of logical structures, and interpretation

information for logic structures.

31. The registry of claim 28, wherein the machine readable specification
includes a document compliant with a definition of an interface document including
logical structures for storing an identifier of a particular transaction, and at least one of
definitions and references to definitions of input and output documents for the particular

transaction.

32. The registry of claim 28, wherein the machine readable specification
includes a document compliant with a definition of an interface document including
logical structures for storing an identifier of the interface, and for storing at least one of
specifications and references to specifications of a set of one or more transactions

supported by the interface.

33. The registry of claim 32, wherein the machine readable specification
includes a reference to a specification of a particular transaction, and the specification of
the particular transaction includes a document including logical structures for storing at
least one of definitions and references to definitions of input and output documents for

the particular transaction.

34. The registry of claim 28, wherein the storage units comprise parsed data.

-85-

WO 01/33369 PCT/US00/30068

35. The registry of claim 34, wherein the parsed data in at least one of the input
and output documents comprises:

character data encoding text characters in the one of the input and output
documents, and

markup data identifying sets of storage units according to the logical structure of

the one of the input and output documents.

36. The registry of claim 32, wherein the storage units comprise unparsed

data.

37. The registry of claim 28, including a repository stored in memory
accessible by at least one node in the network of document types for use in a plurality of
transactions, and wherein the definition of one of the input and output documents

includes a reference to a document type in the repository.

38. The registry of claim 37, wherein the repository of document types

includes a document type for identifying participant processes in the network.

39. Theregistry of claim 28, wherein the definitions of the input and output
documents comprise document type definitions compliant with a standard Extensible

Markup Language XML.
40. The registry of claim 28, wherein the machine readable data structure
including interpretation information comprises a document organized according to a

document type definition compliant with a standard Extensible Markup Language XML.

41. The registry of claim 27, wherein the entries for traders are associated with

roles including buyer, supplier and service provider.

42. The registry of claim 27, wherein the entries for traders are associated with

identifiers of organizations or natural persons.

- 86 -

WO 01/33369 PCT/US00/30068

43. The registry of claim 27, wherein the entries for traders are associated with
identifiers of natural persons having roles including operator, technical contact, and

administrative contact.

44. The registry of claim 27, wherein the entries for service processes are
associated with roles including system services, business services, portal services and

community services.

45. The registry of claim 27, wherein the entries for service processes are
associated with roles including system services, business services, portal services and
community services, the respective services being identified by universal resource

names.

46. The registry of claim 27, wherein the entries for service processes are
associated with roles including system services, business services, portal services and
community services, the respective services being identified by universal resource

locators.

47. The registry of claim 27, wherein the multi-market registry entries comprise

data received from the participant nodes and cached in memory.

48. The registry of claim 27, wherein the multi-market registry entries comprise

meta data references to one or more locations where data is available.

49. The registry of claim 27, wherein the multi-market registry entries comprise

data replicated from the market nodes.

50. A method for executing transactions among participant nodes in a
network including a root node, a plurality of market nodes and a plurality of participant
nodes which execute processes involved in the transactions, comprising:

submitting a machine-readable specification of an interface for a transaction to a
market node, the specification including a definition of an input document, and a

definition of an output document;

-87 -

10
11
12
13
14

WO 01/33369 PCT/US00/30068

receiving data comprising a document through a communication network;

parsing the document according to the specification to identify an input
document;

providing at least a portion of the input document in a machine-readable format
to a transaction process which produces an output;

forming, based on the specification, an output document comprising the output
according to the definition of an outpﬁt document; and

transmitting the output document on the communication network.
51. The method of claim 50, wherein the definitions of the input and output
documents comprising respective descriptions of sets of storage units and logical

structures for the sets of storage units.

52. The method of claim 50, wherein the document is received by a participant

node directly from an additional participant node.

53. The method of claim 52, further including reporting to a market node

 communication of the document between the participant node and the additional

participant node.

54. The method of claim 53, wherein the document creates a binding obligation,

further comprising reporting to the market node the binding obligation.

55. The method of claim 53, wherein the documenf creates a binding obligation,

further comprising applying stored terms and conditions to the binding obligation.

56. A method for executing transactions among a plurality of participants in a
network including a root node, a plurality of market nodes and a plurality of participant
nodes, comprising: '

accessing at least one of a root node or of a plurality of market nodes to obtain
registry information regarding a trader, including a location;

sending the trader, through the network to the location, data comprising a

document, said document conforming to a machine-readable specification of an interface

- 88 -

10
11
12
13
14
15
16
17
18
19

WO 01/33369 PCT/US00/30068

for a transaction, the specification including a definition of an input document, and a
definition of an output document, the definitions of the input and output documents
comprising respective descriptions of sets of storage units and logical structures for the
sets of storage units; i

receiving data comprising an additional document through a communication
network;

parsing the additional document according to the specification;

providing at least a portion of the parsed data in a machine-readable formattoa
transaction process which produces an output; _

forming, based on the specification, an output document comprisihg the output

according to the definition of an output document; and

transmitting the output document on the communication network.

57. The method of claim 56, further including:

accessing a specification of a complementary interface provided for another node
in the network for the transaction, the accessed specification including a definition of an
input document for the complementary interface, and a definition of an output document
for the complementary interface; and

establishing the stored specification of the interface by including at least part of
the definition of the output document of the complementary interface in the definition of

the input document of the interface in the stored specification. -

58. The method of claim 57, including:

finding the complementary interface in the network.

59. The method of claim 57, wherein the establishing the stored specification
includes accessing elements of the machine-readable specification from a repository, the
repository storing a library of logical structures, schematic maps for logic structures, and

definitions of documents comprising logic structures used to build interface descriptions.

60. The method of claim 57, including:

-89 -

WO 01/33369 PCT/US00/30068

establishing the stored specification of the interface by including at least part of
the definition of the input document of the complementary interface in the definition of

the output document of the interface in the stored specification.

61. Thc method of claim 56, including providing access to the specification

through the communication network to other nodes in the network.

62. The method of claim 56, including sending the specification of the
interface to another node in the network, at which access to the specification is provided

for other nodes in the network.

63. The method of claim 56, wherein the machine-readable specification
includes a document compliant with a definition of an interface document including
logical structures for storing an identifier of a particular transaction, and at least one of
definitions and references to definitions of input and output documents for the particular

transaction.

64. The method of claim 56, wherein the machine-readable specification
includes a document compliant with a definition of an interface document including
logical structures for storing an identifier of the interface, and for storing at least one of
specifications and references to specifications of a set of one or more transactions

supported by the interface.

65. The method of claim 64, wherein the machine-readable specification
includes a reference to a specification of a particular transaction, and the specification of
the pafticular transaction includes a document including logical structures for storing at
least one of definitions and references to definitions of input and output documents for

the particular transaction.
66. The method of claim 57, wherein the storage units comprise parsed data.

67. The method of claim 66, wherein the parsed data in at least one of the

input and output documents comprises:

-90 -

WO 01/33369 PCT/US00/30068

character data encoding text characters in the one of the input and output
documents, and
markup data identifying sets of storage units according to the logical structure of

the one of the input and output documents.

68. The method of claim 67, wherein at least one of the sets of storage units

encodes a plurality of text characters providing a natural language word.

69. The method of claim 66, wherein the specification includes interpretation
information for at least one of the sets of storage units identified by the logical structure
of at least one of the input and output documents, encoding respective definitions for

sets of parsed characters.

70. The method of claim 66, wherein the storage units comprise unparsed

data.

71. The method of claim 56, wherein the transaction process has a variant
transaction processing architecture, and including translating at least of portion of the
input document into a format readable according to the variant transaction processing

architecture of the transaction process.

72. The method of claim 71, wherein the translating includes i)roducing
programming objects including variables and methods according to the variant

transaction processing architecture of the transaction process.

73. The method of claim 71, wherein the variant transaction processing
architecture of the transaction process includes a process compliant with an interface

description language.

74. The method of claim 56, wherein the definitions of the input and output
documents comprise document type definitions compliant with a standard Extensible

Markup Language XML.

-91-

PCT/US00/30068

WO 01/33369

1/22

(sway pue siayddng 1oy A10j0a11Q [BqOlS ‘AlUNdas ‘Jexiely jodS b_uoEEoo
‘Ajuoyiny a1esyis) ‘uonjelpnday-uoN ‘lusws(ies uswabeuepy oyjel | ‘Buyig)

' S9OIAIDS gopA Bulpel] [ego|D =0k

(" *sai01j0d. AoeAlld ‘sjuawiaaiby Bulieys anusAsy ‘sadepsiu| ‘sjo30jold B sjewlo-)

aunjon.yselyu] gap buipel] [eqo|o v0}

ades() 201AI9G.
SUOIIESULI Lo
jrodsuea].

- sausiBay sausibay sapysibay seuysibay

@ sSo[eie). [eo0y’ 18207 12307 jeao

uuoje|d wiojiejd wiopeld wuofjeld

@ouddng —— €01
: : feyod leyod . jeyod leyod : \
é Jeujo) Buig JULIN - u'Lg Joua)ISIoNEIN e

al

Buipe.] |Jeqo|o

NJOSYYDIY o]

PCT/US00/30068
2/22

WO 01/33369

Z ainbi4

S d
m \
(snwouy)
ynosg |[ag aNSIONIEN
1A% jeoniap/papuesg

cie

di1 reyrod

g _
JoN"alISIoNIEIN
gle
(LLN) | _
11N) J8ujred (1Lg) Jauped
3v 8
ajigiotepy jeuothay AERIRSY o.m_.o..a._m SnuaAy ajig}olep jeuoiboy
Sie Lie
S a1 yuedonieg
YICIAL S9I1AXAQ Suipeay, SIIAIG AJUNWUIO))
eqoH ¥0¢ [eqorD €0¢
: - \ 7 >
SINAIIS G0C ainjonijselju] qapp Kioyisoday/Ansiday
NIPO Yord N Buipe.], jeqo|9 U2 (U9 TP
102 i

ABojodo] M1O

WO 01/33369

3/22

314

PCT/US00/30068

MARKET
PARTICIPANT
W/ BID
33— T | |—315
MARKET o
PARTICIPANT W/ BID REG
W/ BID :
‘—'316
319 MARKET
12 —
3 PARTICIPANT
MARKET Internet WIBID
PARTICIPANT
W/ BID
|—-317
MARKET
MARKET MAKER
PARTICIPANT W/ BID REG.
W/ BID
o
MARKET
PARTICIPANT
W/ BID
l31 8

FIG. 3

PCT/US00/30068

WO 01/33369

4/22

3, ainbiy

(LLN) 48upied

Gl

ajisiasejy jeuoibay

0cv |

JOJSULL, Judwundoq MLO

XA

(Lg) seuysed

ajiS1aJel\l jeuolbay

(ya3eq 10 dwy) JBAI)
UONECUIOJU dJJer],

ainjonJiselju] qo
Buipeli] |eqo|9
0}~

uondo uonejuswa|duy >>G

PCT/US00/30068

WO 01/33369

5122

05§

g oinbiq

Security, Reliability, Availability, Scalability, Management

0€s : aBelsojg ejeq eja A1ystbay
o " (ewayss TWX <> Bieq uonEayddy pue ewayss TWX <> 00§°X)
ijake Buiddep juawnooq o} abeio}g ejeq ON.W
_ =l c P —)
E|S ZI1E|E|E 324 |alZ
ol5|5| |5(8|2|8| |=|e| | 8SE|2|E
2l g|= ololelel |6]a EE O =
2 ElE|® =N ol Rl R S51 3 EcS5 %
m) | e|el= sls|lslsl | 8]8 EEZ 3|8
ElalT® S{S1 3135 o | o O Q -1 ol
3l s> Ohlalwlo O)
ol ®
Q- Z1§ b,yox3 ‘oju| uonesiuebiQ -oju|
| 148y €La saolAl1ag Asojisoday Llg 0Ls
* 205 @oeyiajul yuswnoso(: L0 G 9oRJIBJU| GO

(adA1 uopewiojuj uo pasegq)
abelolg eleq ovs

m:o:.mu__a:n_ ..m:o:m_humn:m ‘6uiynoy ‘sdiysuoyie|ay di
‘swiajf uojewioju] ‘'syuawnso(‘sadAIag .mu:ma_u_tmm;wfms_ “yo)dep TPPY 9NBA

— e

3105 UJjqnQg 'SISEQ .splepuejs uo paseg

._ 9.1N}29}12.1Yy
_m>3.._m__._a&_moo_mm\?m_mmm

WO 01/33369 PCT/US00/30068
6/22

601 Network Layer

Commerce One Root

602 Community Layer

Regional of Vertical Partner Roots

603 Marketplace Definition Layer

Regional or Vertical Marketplace
Instances

604 Marketplace Specifics Layer

Regional or Vertical Marketplace
Instance Details

Figure .6- Commerce Community Schema Entity and Relationship Diagram

WO 01/33369

PCT/US00/30068
7/22
701 Commerce One Root
Owner (R)
Operator (R)
Technical Contact (R)
Adminstrative Contact (R)
@ S &
11 Commerce One 712 81 713 NTT
MarketSite Operation MarketSite Operation MarketSite Operation
Owner :
Operator

Contacts (Tech&Adm)

X

721 MarketSite.net

Market
Information Registry

(Other MarketSite Instances)

(Single MarketSite Instance)

TR) 2 Q Q
i\ L 2 Y N
731 Security Model 732 Terms and Condiﬁods 733 Participants 734 Core Business Documenfs | 735 Core Services
Certifcate Authority Do's Market CBL Registration
Credentials Dont's Participant Registry XML Schema Language
Expirations Document Guide
JOSUUOOREE -
? Leamcessscsansnnnancanes. Q
741 Trading Partnefs 742 Services
Trading Partner Service Registry
Registry
? (A.?..........................: """"""""""" .Q‘ Q
N 753 Service
751 Buyers 752 Suppliers Providers 754 Others
Buyer Registry Supplier Registry Service Provider Any Organization
Pointer (URN) Pointer (URN) Registry Pointer Registry Painter
~ (URN) : (URN)
R — "“? ?
System Services = Business Services Portal Services Community Services
System Service l Business Service Portal Service Comnjunity Sgrvi_ce
Registry Pointer | ; Registry Painter Registry Pointer Registry Pointer
761 (URN) |} 762 (URN) 763 (URN) 764 (URN)
|
Q Q Q R
771 Buying Organizations 772 Buying Applications | 773 Selling Orgs 774 Selling Applications
Purchasing Managers Name Sales Manager Name
Versions Sales Adminstrator Versions

Purchasing Adminsitrators
System Adminstrators
Desktop Requisitioners

IT Mangers

E-Catalog Manager
System Administrators

Figure 7

WO 01/33369

8/22

FIG. g

PCT/US00/30068

PARTY — 00
NAME 0|
ADDRESS PHY. 202
LOCATION (NET) - 203
SERVICE SET: oA
TRANSACTIONBID |}— <205
NAME 209
LOCATION (NET) 309
OPERATION(S) €10
INPUT DOC SET: pb—— ¥l
INPUT DOC BID g1y
NAME — si6
LOCATION (e.g. NET) }— 817
MODULES — <8
INPUT DOC BID —2%14
INPUTDOCBID pb— @15 -
OUTPUT DOC SET: 812
OUTPUT DOC BID _|— %19
NAME g22
LOCATION (e.g. NET) p——923
MODULES ' 824
OUTPUT DOC BID = |—32
OUTPUT DOC BID gl
TRANSACTION BID : 6
TRANSACTION BID bt

WO 01/33369

9/22

PCT/US00/30068

07
'—q

FIG. 9

—<306 _
|—‘|05 - : ENTERPRISE
DATA BASE | FUNCTIONS -
COMMERCIAL ' o8
FUNCTIONS EVENT
LISTENERS/
PROCESSORS
- 903 /
PARTICIPANT TRANSACTION
| — —»|PROCESSFRONT {— 404
~-BID END
— COMPILER
- 2
/@
Q
, o
l——qOO | \
© q01— DOCUMENT TO HOST
| | NETWORK DOCUMENT || AND HOST TO
INTFC ™ PARSER DOCUMENT
| TRANSLATOR
4]
Q01 - q02 -

WO 01/33369

10/22

PCT/US00/30068

RECEIVE DOCUMENT
AT NETWORK
INTERFACE

— VD00

Y

IDENTIFY DOCUMENT |
TYPE

— 100\

v

PARSE DOCUMENT

L— 002

L

TRANSLATE TO
FORMAT OF HOST
(e.g. XML TO JAVA)

— 1003

v

PASS TO HOST
TRANSACTION FRONT
END (e.g. JVM)

- (004

Y

EXECUTE PROCESS
WHICH PRODUCES
OUTPUT

| (005

Y

TRANSLATE TO
FORMAT OF OUTPUT
DOCUMENT
(e.g. JAVA TO XML)

— (006

Y

“TRANSMIT OUTPUT

DOCUMENT TO
DESTINATION
THROUGH NETWORK

e LOOTF

INTERFACE

FIG. 10

PCT/US00/30068

WO 01/33369

11/22

RE

Sjuang sisg

el — IdY
uonos|jey/ueag
h - 9old v
o zit —{ 19)epN BARP
Hn - + a4 TNX
P11l ——— sjuang eaep
—— 123lq0 Woda « 01§ — lassed
IdV Jeuaysi eaep
O\ — weang jusng St —{ usongxzeaer o — uagAgY
Sjuanl TNX 2011 _
w/
]] lojerauan) 10}eIBUS) . Jauajsi sisg
o 1oPIng 83IL - zou wagmy | AT usweg hotl pezijeroads
I +_:m N \+ _._+ M:ﬁ ._¢c_ m%m_ mo:I...n_
| epn , S13Ua)si] S| jusw :
B9 pazyeradg vsou aInquIY pazijeinads
. a1N}03)Iyol —.gcq;
roi—| pelao woa R asan,

PCT/US00/30068

WO 01/33369

12/22

AN O] E

19U
X Alu:mE:uon_

90721 L

>I0JEIUIDIAJIUSWRIT <& a1njos)Iyoly

> 10}RJBUSDATIUBWIS|T <&~ 3INJO3}IYIIY

> I0]BJoUSDIATIUSWS|T -4— BIN}IBUYDIY

son —1

Japjng @91

Jojeisuanquny

cor1—

L.)

2072\

|
Y

Jojeiauan)
Jasied

TAX

ON.L

m ooz

WO 01/33369

13/22

-

PCT/US00/30068

e \HOF

%06 - |
[120 ENTERPRISE ‘
DATA BASE FUNCTIONS | — 1303
COMMERCIAL ‘
FUNCTIONS LISTENERS/
PROCESSES
—= 1300 f
BID BIULDER

— USER INTERFACE TRANSACTION o
— CBLREPOSITORY | . —] PROCESS FRONT 130y
-- COMPLEMENTARY END

BID READER
— COMPILER

2 w
AN ~
| AN - ~
— 130l \ \

TWORK 06 DOCUMENT TO HOST
NE | CUMENT | AND HOST TO

INTFC 11 PARSER [DOCUMENT

TRANSLATOR
1 T

FIG. 3

WO 01/33369 PCT/US00/30068
14/22

PARTY BIDs L 1400
CONSUMERBID j—140!
CATALOG BID }—14a0z,
~WAREHOUSE BID |— 1403
AUCTION HOUSE BID }—!14o4
SERVICEBIDs = }—1405
ORDER ENTRY BID 1406
ORDER TRACKING BID }— 140%
ORDER FULFILLMENT BID }— 408
CATALOG SERVICE BID |—'404
INPUT/OUTPUT DOC BIDs }—1410
PURCHASE ORDER BID | AN
INVOICE BID | 1412
REQUEST FOR QUOTE BID |—)41%
PRODUCT AVAILABILITY REPORT BID }— 414
ORDER STATUS BID 1415
SEMANTIC MAPS 141k
WEIGHTS 1413
~ CURRENCIES L (418
SIZES . 1419
PRODUCT IDENTIFIERS }—1420
PRODUCT FEATURES |—i42i
LOGICAL STRUCTURES }— 1422
ADDRESS FORMS }—— 1423
PRICING FORMS }—1424
TERMS FORMS |———1425

FIG. 4

WO 01/33369

DISPLAY BID BIULDER
GRAPHICAL — 500

INTERFACE TO USER

Y

ACCEPT USER INPUT
IDENTIFYING

PARTICIPANT,

SERVICE AND — 1501
DOCUMENT

INFORMATION

y

RETRIEVE
REFERENCED
LOGICAL
STRUCTURES,

DOCUMENT
DEFINITIONS, AND/OR
SERVICE DEFINITIONS
FROM REPOSITORY

y
ACCESS
COMPLEMETARY

OTHER
PARTICIPANT(s)

Y

CREATE DOCUMENT

PARTICIPANT

\

DOCUMENTS FROM }—14503

DEFINITION FOR — 1504

15/22

SEMANTIC MAPS I— \s02

/

FIG. 15

PCT/US00/30068

/

w |

CREATE
TRANSLATORS_FOR
DOCUMENT TO HOST

. AND
HOST TO DOCUMENT
MAPPINGS

Y

| ARCHITECTURE DATA

CREATE HOST

STRUCTURES
CORREPONDING TO
DOCUMENT :
DEFINITION

v

PUBLISH BID ON
NETWORK (e.g. POST
ON WEB SITE)

PCT/US00/30068

WO 01/33369

16/22

QON

2\ "9l

2091 /

3 a
9S4 2109 abenbue] N\ ubiem
SOIVN 2102 Anuno) KAouaun)
oIS 2109 ssaIppy awi|
uogesyisse}) 9jes07] sjuswaInsesyy
82l0AU| sjonpold
_, 48p10 sseyaind 2102 S92IAIRS
\ "Bojeye 2109 Jopua
109 7 [eyed Pusa
sulo4 ssauisng suonduaseg ssauisng

g1y x3pe4

a0

WO 01/33369

17/22

1305

—

- HOST
SERVICE

PCT/US00/30068

, ok

C pedt
Serv ke

| e
| '—— 1705 ' /
- ROUTER
MARKET MAKER |
: _ —»| —PARTICIPANT
- BIDs il REGISTRY
- CBL REPOSITORY ~ FILTERS
- COMPILER
-V &
AN ~
\
— 1301 N N :
- DOCUMENT TO #HosT
NETWORK DOCUMENT | _ | AND HOST To©
«—> "NTFC [| PARSER [DOCUMENT
' TRANSLATQ R
t | i L? ,
—— 1702 1303

FIG. |+

WO 01/33369

18/22

ACCEPT DOCUMENT
AT NETWORK
INTERFACE FROM
ORIGINATING
PARTICIPANT NODE

e 4 €00

Y

PARSE DOCUMENT

e (30

Y

TRANSLATE TO
FORMAT OF HOST
(e.g. XML TO JAVA)

— 302"

Y

PASS TO ROUTER
SERVICE

— | 308

Y

IDENTIFY SERVICE(S)

REGISTERED TO
ACCEPT DOCUMENT
- ACCORDING TO
DOCUMENT TYPE/
- CONTENT

— \§0Y{

Y

PASS TO IDENTIFIED
SERVICE(S)

1905,

PCT/US00/30068

p

N

| ¥ 06]

PERFORM SERVICE IN
RESPONSE TO
DOCUMENT CONTENT

¥

1807 —

PRODUCE QUTPUT
DATA

v

1808 —f

CONVERT TO
DOCUMENT FORMAT
(JAVA TO XML)

v

1809 ——

SEND TO
PARTICIPANT NODE

FIG. ¢

WO 01/33369

19/22

ACCEPT MARKET
PARTICIPANT
DOCUMENT AT
NETWORK INTERFACE

b 1900

y

STORE IN BID
REPOSITORY

— 190!

v

PARSE DOCUMENT

~—— 1902

v

TRANSLATE TO
FORMAT OF HOST
(e.g. XML TO JAVA)

— 1903

Y

PASS TO ROUTER
SERVICE

e i°104

v

IDENTIFY
REGISTRATION
SERVICE ACCORDING
TO DOCUMENT TYPE/
CONTENT

— 205

¥

PASS TO
REGISTRATION
SERVICE

— 1906 |

PCT/US00/30068

/

\a07F

L

Y

\

GATHER NEEDED
SERVICE
~ SPECIFICATIONS -

1908 —

1909 =i

19 =

1912 =

(e.g. RETRIEVE
IDENTIFIED SERVICE
BIDs)

Y

SERVICE SPECS
GATHERED?

Y

SET ROUTER SERVICE
FILTERS ACCORDING
TOBID

PRODUCE
REGISTRATION

190 —| ACKNOWLEGEMENT

DATA

v

CONVERT TO
DOCUMENT FORMAT
(e.g. JAVA TO XML)

y

SEND
ACKNOWLEGEMENT
DOCUMENT TO
'PARTICIPANT NODE

FIG. 9

WO 01/33369

20/22

LOCATE SERVICE BIDs
- SUPPORTED BY
MARKET PARTICIPANT

Y

RETRIEVE SERVICE
BIDs (e.g. EMAIL OR
- WEB ACCESS TO
REPOSITORY NODE)

Y

STORE IN BID
REPOSITORY

Y

PARSE SERVICE BID
DOCUMENT

*.

TRANSLATE TO
FORMAT OF HOST
(e.g. XML TO JAVA)

Y

PASS TO ROUTER
SERVICE

v

IDENTIFY
REGISTRATION
SERVICE ACCORDING
TO DOCUMENT TYPE/
CONTENT

¥

PASS TO
REGISTRATION
SERVICE

PCT/US00/30068

2806

'z_OD] '

290k

20 6F

FQZO

PCT/US00/30068
21/22

WO 01/33369

a|qe| uonejsuei]

S . ‘aoud fejojiwnu

Iz "o] ‘aoud’sweu

. N2, Jonpoid:aoud
| 318 'WOD _Son_:sc_mo:m

: ; : ‘aweu j1onpol
VHY0D sidv _ . ‘aoud [ejojiwnu

< sueog ener , ‘aoudiaweu

< yonpoudiaond
SaOINRG . sueaq eae 59 jejoywnuisoud
juawnoo(g erer V\./ 840 ‘aweu jonpoid

ajeudoidde o} *'s,algse : , . ‘JSIp'aaInos
sueag eAaef snjels awes ‘adA)iapoaialeq

.Bunnoy yim sooQqg dViN
aoIneg ener Buisn TNX \

ez’ Ansiboy s00Q \MEzm 'did

1 ‘dLiH : sjoo0j01d ~
e

, ""019 ‘eleQg-|IOSY

oowmag Ansibey o} Lor2 TAXOHESAOO = 1 - xewiks

= TV ET .
‘00Q Buuajsibay 19beuepy
uonessiuiwpy adnusg
90IA9S JUBWIND0Qg

90INIOg
juswINo0(]

/oy
usWINo0(g

10SS9901
TANX

lasied
TAX

uognjog
asudiajug

uaby
uonesIuNWWo)

fr0r Sorz’ —29rz Iatz @2

WO 01/33369 PCT/US00/30068
22/22

Market Maker —

L sSponsors 1

Marketplace

Lwherej

2207
, Businesses . —
I— deﬁne'—}
22073
Services —

L forj

Zzo'f
Transactions e
L— use’——q'
- L1205
Documents _
L— with
FIG. 2.2 v

20l
Content —

INTERNATIONAL SEARCH REPORT Intemational application No.
PCT/US00/30068

A. CLASSIFICATION QF SUBJECT MATTER
IPC(7) :GO6F 13/00, 13/14, 15/16, 17/30, 17/60
US CL :Please See Extra Sheet.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : Please See Extra Sheet.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y,P US 6,125,352 A (FRANKLIN et al) 26 September 2000. 1-74
abstract, figures 1-5, column 1 line 45 to column 3 line 36, column
7 line 25 to column 11 line 10, and column 14 line 1 to column 19
line 27.

Y,P US 6,016,504 A (ARNOLD et al) 18 January 2000. 1-74
’ abstract, figures 1A-1B and §-7, columns 1-3, column 4 lines 1-32,
column 6 line 65 to column 8 line 6, and column 9 lines 10-64.

Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: T later d t published after the i ional filing date or priority
. . L. N date and not in conflict with the application but cited to understand
Al document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
e X document of particular relevence; the claimed invention cannot be
E carlier document published on or after the intemational filing date considered novel or cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone

cited to blish the publication date of another citation or other

special reason (as specified) "y document of particular relevence; the claimed invention cannot be

) considered to involve an inventive step when the document is

Q* document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art
*pr document published prior to the intemnational filing date but later than »g» document member of the same patent family

the priority date claimed
Date of the actual completion of the intemational search Date of mailing of the intemational search report

22 FEBRUARY 2001 1 9 MAR 200‘

Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks :
Box FCT BHARAT BAROT V @oG™|

Washington, D.C. 20231
Facsimile No. (703) 305-3230 : Telephone No. (703) 305-4092

Form PCT/ISA/210 (second sheet) (July 1998)x

INTERNATIONAL SEARCH REPORT International application No.

PCT/USG0/30068

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y,P |US 6,012,098 A (BAYEH et al) 04 January 2000. 1-74

abstract, figures 2 and 4-5, column 3 line 30 to column $ line 5,

column 5 line 54 to column 6 line 50, and column 7 line 58 to

column 12 line 28.
AP US 6,125,391 A (MELTZER et al) 26 September 2000.) 1-74
A US 5,948,054 A (NIELSEN) 07 September 1999, 1-74

Form PCT/ISA/210 (continuation of second sheet) (July 1998)«

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/30068

A. CLASSIFICATION OF SUBJECT MATTER:
USCL :

709/200-203, 206, 217-219, 227-229, 233, 236-237, 246,
707/10, 104, 513; '
705/8, 10, 17, 26-27

B. FIELDS SEARCHED
Minimum documentation searched
Classification System: U.S.

709/200-203, 206, 217-219, 227-229, 233, 236-237, 246;
707/10, 104, 513;
705/8, 10, 17, 26-27

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

WEST > Search Terms : registry, transaction, network, node, interface, storage, logical structure, mapping, parse?,
natural language, encod?, ,HTML, XML, client, server, service, cache, meta data, market, tread?, web

Form PCT/ISA/210 (extra sheet) (July 1998)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

