Cyclohexanone compounds and herbicides comprising the same

(54) Title: CYCLOHEXANONE COMPOUNDS AND HERBICIDES COMPRISING THE SAME

Abstract: The present invention provides a compound having an excellent efficacy for controlling weeds. A cyclohexanone compound of the formula (I): wherein m is an integer of 1, 2 or 3; n is an integer of any one of 1 to 5; X represents \(\text{CH}_2\sim \text{O}, \text{S(O)} \) or \(\text{S} \); \(R^1 \) represents a hydrogen atom or a methyl group; \(R^2 \) and \(R^3 \) represents a hydrogen atom, a \(\text{C}_1\sim\text{C}_4 \) alkyl group and the like; \(R^4 \) represents a \(\text{C}_1\sim\text{C}_6 \) aryl group or a five- to six-membered heteroaryl group; \(G \) represents a hydrogen atom and the like; \(Z \) represents a halogen atom, a cyano group, a nitro group, a phenyl group, a \(\text{C}_1\sim\text{C}_6 \) alkyl group and the like; is useful as an active ingredient for herbicides.

(57)
DESCRIPTION

CYCLOHEXANONE COMPOUNDS AND HERBICIDES COMPRISING THE SAME

TECHNICAL FIELD

The present invention relates to cyclohexanone compounds and herbicides comprising the same.

BACKGROUND ART

Heretofore, some compounds that are useful as active ingredients in herbicides for controlling weeds have been widely developed and some compounds having an efficacy for controlling weeds have been found.

Some cyclohexanone compounds having herbicidal activity have been known (see e.g. USP 4,209,532, USP 4,303,669, USP 4,351,666, USP 4,409,513, USP 4,659,372, WO 2001/017972, WO 2003/059065, WO 2008/110308, WO 2010/046194 pamphlet).

DISCLOSURE of INVENTION

(PROBLEMS TO BE SOLVED BY INVENTION)

An object of the present invention is to provide a compound having an excellent efficacy for controlling weeds.

(MEANS TO SOLVE PROBLEMS)

The present inventors have intensively studied to find
that cyclohexanone compounds of the following formula (I)
(hereinafter, sometimes referred to as 'the present
compound') have an excellent efficacy for controlling
weeds, which thus have completed the present invention.

Specifically, the present invention includes:

[1] A cyclohexanone compound of the formula (I):

\[\text{(I)} \]

wherein

\(m \) is an integer of 1, 2 or 3;

\(n \) is an integer of any one of 1 to 5;

\(X \) represents \(\text{CH}_2, 0, \text{NR}^3, \text{S, S(O)} \text{ or S(O)}_2 \);

\(R^1 \) represents a hydrogen atom or a methyl group;

\(R^2 \) and \(R^3 \) represent independently of each other a
hydrogen atom, a \(\text{C}_1-6 \) alkyl group, a \(\text{C}_1-6 \) haloalkyl group, a
\(\text{C}_3-8 \) cycloalkyl group, a \(\text{C}_3-8 \) halocycloalkyl- group, a \((\text{C}_1-6 \)
alkyl \() \text{C}_3-8 \) cycloalkyl group, a \((\text{C}_3-8 \) cycloalkyl \() \text{C}_1-6 \) alkyl
group, a \((\text{C}_3-8 \) cycloalkyl \() \text{C}_3-8 \) cycloalkyl group, a \((\text{C}_3-8 \)
halocycloalkyl \() \text{C}_1-6 \) alkyl group or a \((\text{C}_1-6 \) alkyl \() \text{C}_3-8 \)
cycloalkyl) \text{C}_1-6 \) alkyl group, or \(R^2 \) and \(R^3 \) connect each other
to represent a \(\text{C}_2-5 \) alkylene chain, or \(R^2 \) and \(R^3 \) combine
each other to represent a \(\text{C}_1-3 \) alkylidene group optionally
having one or more halogen atoms (with the proviso that
when m is 2 or 3, two or three R^2 may be same or different to each other and two or three R^3 may be same or different to each other;

R^4 represents a C_6-C_{10} aryl group or a five- to six-membered heteroaryl group (with the proviso that the C_6-C_{10} aryl group and the five- or six- membered heteroaryl group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group, an amino group, a (C_1-C_{6} alkyl) amino group, a (C_1-C_{6} alkyl) (alkyl) amino group, a benzyloxyamino group, an aminocarbonyl group, a (C_1-C_{6} alkyl)aminocarbonyl group, a (C_1-C_{6} alkyl)aminocarbonyl group, a pentfluorothio group, a C_1-C_{6} alkyl group, a C_1-C_{6} alkenyl group, a C_2-C_{6} alkynyl group, a C_1-C_{6} alkoxy group, a C_1-C_{6} alkythio group, a C_3-C_{6} alkenyloxy group, a C_3-C_{6} alkynyloxy group, a C_6-C_{10} aryl group, a C_6-C_{10} aryloxy group, a C_1-C_{6} alkylsulf inyl group, a C_1-C_{6} alkylsulf onyl group, a hydroxyl group, a (C_1-C_{6} alkyl)carbonyl group, a hydroxy carbonyl group, a (C_1-C_6 alkoxy) carbonyl group and a (C_6-C_{10} aryl)C_{1-6} alkoxy group, and when two or more substituents exist, the substituents may be same or different to each other; and the (C_1-C_{6} alkyl) amino group, the (C_1-C_{6} alkyl) (C_1-C_{6} alkyl) amino group, the benzyloxyamino group, the (C_1-C_{6} alkyl)aminocarbonyl group, the (C_1-C_6 alkyl) (C_1-C_{6} alkyl)aminocarbonyl group, the C_1-C_{6} alkyl group, the C_2-C_{6} alkenyl group, the C_2-C_{6} alkynyl group,
the CI₆ alkoxy group, the CI₆ alkylthio group, the C₃₋₆ alkenyloxy group, the CI₆ alkyloxy group, the C₆₋₁₀ aryl group, the C₆₋₁₀ aryloxy group, the CI₋₆ alkylsulfanyl group, the CI₋₆ alkylsulfonyl group, the (CI₋₆ alkoxy) carbonyl group and the (C₆₋₁₀ aryl) CI₋₆ alkoxy group may each have one or more halogen atoms or CI₋₃ haloalkyl groups, and when two or more halogen atoms or CI₋₃ haloalkyl groups exist, the halogen atoms or the CI₋₃ haloalkyl groups may be same or different to each other respectively);

G represents a hydrogen atom or a group of any one of the following formulae:

\[
\begin{align*}
\text{L} & \quad \text{O} \quad \begin{array}{c}
\text{S} \\
\text{R}^6
\end{array} \\
\text{R}^5
\end{align*}
\]

(wherin)

L represents an oxygen atom or a sulfur atom;

R⁵ represents a CI₋₆ alkyl group, a CI₋₆ cycloalkyl group, a CI₋₂₋₆ alkenyl group, a CI₋₂₋₆ alkynyl group, a CI₋₆ aryl group, a (CI₋₆ aryl) CI₋₆ alkyl group, a CI₋₆ alkoxy group, a C₃₋₆ cycloalkoxy group, a CI₋₆ alkenyloxy group, a CI₋₆ alkyloxy group, a CI₋₆ alkynloxy group, a C₆₋₁₀ aryloxy group, a (C₆₋₁₀ aryl) CI₋₆ alkoxy group, a (CI₋₆ alkyl) (CI₋₆ alkyl) amino group, a (C₃₋₆ alkenyl) (C₃₋₆ alkenyl) amino group, a (CI₋₆ alkyl) (C₆₋₁₀ aryl) amino group or a five- to six- membered heteroaryl group (with the proviso that these groups may each one or more halogen atoms, and when two or more halogen atoms...
exist, the halogen atoms may be same or different to each other; and the C₈-S cycloalkyl group, the C₆-1₀ aryl group, an aryl moiety of the (C₆-1₀ aryl)C₈-S alkyl group, a C₃-S cycloalkoxy group, a C₆-1₀ aryloxy group, an aryl moiety of the (C₆-1₀ aryl)C₈-S alkoxy group, an aryl moiety of the (C₁-₆ alkyl) (C₆-1₀ aryl) amino group and a five- to six-membered heteroaryl group may each have one or more C₁-₆ alkyl groups, and when two or more C₁-₆ alkyl groups exist, the alkyl groups may be same or different to each other);

R₆ represents a C₁-₆ alkyl group, a C₆-1₀ aryl group or a (C₁-₆ alkyl) (C₁-₆ alkyl) amino group (with the proviso that these groups may each have one or more halogen atoms and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C₆-1₀ aryl group may have one or more C₁-₆ alkyl groups and when two or more C₁-₆ alkyl groups exist, the alkyl groups may be same or different to each other);

R₇ represents a hydrogen atom or a C₁-₆ alkyl group;

W represents a C₁-₆ alkoxy group, a C₁-₆ alkylthio group, a C₁-₆ alkylsulfanyl group or a C₁-₆ alkylsulfonyl group (with the proviso that these groups may each have one or more halogen atoms and when two or more halogen atoms exist, the halogen atoms may be same or different to each other)));

R₉ represents a hydrogen atom, a C₁-₆ alkyl group, a C₆-1₀ aryl group, a C₆-1₀ arylthio group, a C₆-1₀ arylsulfanyl
group, a C₆-ι₀ arylsulfonyl group (with the proviso that the
ci-6 alkyl group may have one or more halogen atoms, and
when two or more halogen atoms exist, the halogen atoms may
be same or different to each other; the ce-ι₀ aryl group,
the C₆-ι₀ arylthio group, the C₆-ι₀ arylsulfinyl group and
the C₆-ι₀ arylsulfonyl group may have one or more
substituents selected from the group consisting of a
halogen atom, a cyano group, a nitro group and an amino
group) ;

Z represents a halogen atom, a cyano group, a nitro
group, a C₁-6 alkyl group, a C2-6 alkenyl group, a C2-6
alkynyl group, a ci-6 alkoxy group, a (C₁-6 alkyl) carbonyl
group, a C₁-6 alkythio group, a C6-ι₀ aryloxy group, a five-
or six- membered heteroaryloxy group, a C₃-₈ cycloalkyl
group, a C6-ι₀ aryl group or a five- to six- membered
heteroaryl group (with the proviso that the Ci-6 alkyl group,
the C₂-6 alkenyl group, the C2-6 alkynyl group, the C₁-6
alkoxy group, the (Ci-6 alkyl) carbonyl group and the Ci-6
alkythio group may each have one or more halogen atoms,
and when two or more halogen atoms exist, the halogen atoms
may be same or different to each other; and the C₆-ι₀ aryl
group, a five- to six- membered heteroaryl group, a C6-ι₀
arlyloxy group and the five- to six- membered heteroaryloxy
group may each have one or more substituents selected from
the group consisting of a halogen atom, a ci-6 alkyl group
and a C$_{1-6}$ haloalkyl group, and when two or more substituents exist, the substituents may be same or different to each other; and the C$_{3-8}$ cycloalkyl group may have one or more substituents selected from the group consisting of a halogen atom and a C$_{1-6}$ alkyl group, and when two or more substituents exist, the substituents may be same or different to each other; when n is an integer of 2 or more, Z may be same or different to each other).

[2] The cyclohexanone compound of [1] wherein n is an integer of any one of 1 to 3;
X represents CH$_2$, O, NR$_9$, S, S(0) or S(0)$_2$;
R1 represents a hydrogen atom;
R2 and R3 represent independently of each other a hydrogen atom or a C$_{1-3}$ alkyl group, or R2 and R3 connect each other to represent a C$_{2-5}$ alkylenec chain (with the proviso that when m is 2 or 3, two or three R2 may be same or different to each other and two or three R3 may be same or different to each other);
R4 represents a phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrimidinyl group, a 2-pyrazinyl group, a 2-pyridazinyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrazinyl group, a 2-pyrazinyl group, a 3-pyridyl group, a 4-pyridyl group,
pyridazinyl group, the 3-furyl group, the 2-thienyl group and the 2-thiazolyl group may each have one or more substituents selected from the group consisting of a halogen atom, a \(\text{C}_1-3 \) alkyl group, a hydroxyl group, a \((\text{C}_1-3 \text{ alkyl}) \) carbonyl group, a \((\text{C}_1-3 \text{ alkoxy}) \) carbonyl group, a \(\text{C}_1-3 \) alkoxy group, a \(\text{C}_1-3 \) haloalkyl group, a \(\text{C}_1-3 \) alkylthio group, a \(\text{C}_1-3 \) haloalkylthio group, a cyano group, a nitro group, an amino group, a pentfluorothio group, a benzylationino group and a \(\text{C}_1-3 \) haloalkoxy group, and when two or more substituents exist, the substituents may be same or different to each other; and the 1,2,3-triazolyl group may be substituted with \(\text{C}_6-10 \) aryl group and the \(\text{C}_6-10 \) aryl group may have one or more halogen atoms or \(\text{C}_1-3 \) haloalkyl groups, and when two or more halogen atoms or \(\text{C}_1-3 \) haloalkyl groups exist, the halogen atoms or the \(\text{C}_1-3 \) haloalkyl groups may be same or different respectively);

\(\text{G} \) represents a hydrogen atom or a group of any one of the following formulae:

\[
\text{O} \quad \text{O} \quad \text{S} \quad \text{S} \quad \text{CH}_2 \text{W}^8
\]

\(\text{R}^6 \) represents a \(\text{C}_1-6 \) alkyl group, a \(\text{C}_6-10 \) aryl group, a \(\text{C}_1-6 \) alkoxy group, a \(\text{C}_3-6 \) alkenyloxy group, a \(\text{C}_3-6 \) alkynylxoyo group or a \(\text{C}_6-10 \) aryloxy group;

\(\text{R}^6 \) represents a \(\text{C}_1-6 \) alkyl group;
represents a C1-3 alkoxy group; R^9 represents a hydrogen atom, a C1-6 alkyl group or a C6-10 arylsulfonyl group (with the proviso that the C1-6 alkyl group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C6-10 arylsulfonyl group may have one or more substituents selected from the group consisting of a halogen atom and a nitro group, and when two or more substituents exist, the substituents may be same or different to each other); Z represents a halogen atom, a C1-3 alkyl group, a C1-6 alkenyl group, a C2-6 alkynyl group, a C1-3 alkoxy group, a C3-8 cycloalkyl group, a nitro group, a phenyl group or a five- to six- membered heteroaryloxy group (with the proviso that the C1-3 alkyl group, the C1-6 alkenyl group, the C2-6 alkynyl group, the C1-3 alkoxy group, the phenyl group and the five- to six- membered heteroaryloxy group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other.

The cyclohexanone compound of [2] wherein m is 2;

X represents CH$_2$, O, NR9, S, S(O) or S(O)$_2$;

R^2 and R^3 represents independently of each other a hydrogen atom, a methyl group or an ethyl group, or R^2 and
R³ connect each other to represent an ethylene chain (with the proviso that two R² may be same or different to each other and two R³ may be same or different to each other);

R⁴ represents a phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrimidinyl group, a 2-pyrazinyl group, a 3-pyridazinyl group, a 3-furyl group, a 2-thienyl group, a 2-thiazolyl group or a 1,2,3-triazolyl group (with the proviso that the phenyl group, the 2-pyridyl group, the 3-pyridyl group, the 4-pyridyl group, the 2-pyrimidinyl group, the 2-pyrazinyl group, the 3-pyridazinyl group, the 3-furyl group, the 2-thienyl group and the 2-thiazolyl group have each one or more substituents selected from the group consisting of a chlorine atom, a bromine atom, an iodine atom, a fluorine atom, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a methoxy group, a nitro group, an amino group, a cyano group, a hydroxyl group, an acetyl group, a methoxycarbonyl group, a pentafluorothyio group, a pentafluoroethyl group, a difluoroethyl group, a heptafluoroisopropyl group, a trifluoromethylothio group, a benzoylamino group, a trifluoromethoxy group and a trifluoromethyl group; and the 1,2,3-triazolyl group may be substituted with a phenyl group, and the phenyl group has one or more substituents selected from the group consisting of a chlorine atom, a bromine atom, an iodine atom, a
fluorine atom and a trifluoromethyl group);

G represents a hydrogen atom, an acetyl group, a propionyl group, a butyryl group, a benzoyl group, a methylsulf onyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an allyloxy carbonyl group, a phenoxy carbonyl group, a methoxymethyl group or an ethoxymethyl group;

R\(^9\) represents a hydrogen atom, a 2-nitrophenylsulf onyl group or a methyl group;

Z represents a methyl group, an ethyl group, a phenyl group, a vinyl group, a cyclopropyl group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, a trifluoromethyl group, a 5-trifluoromethyl-2-chloropyridyloxy group or an ethynyl group.

\[\text{[II]} \]

A cyclohexanone compound of the formula (II):

\[
\begin{align*}
\text{wherein} & \\
p & \text{is an integer of 1, 2 or 3;} \\
g & \text{is an integer of any one of 1 to 5;} \\
X^b & \text{represents CH}_2, 0, S, S(0) \text{ or } S(0)_2; \\
R^{1b} & \text{represents a hydrogen atom or a methyl group;} \\
R^{2b} & \text{and } R^{3b} \text{ represent independently of each other a} \\
\end{align*}
\]
hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-8 cycloalkyl group, a C3-8 halocycloalkyl group, a (C1-6 alkyl) C3-8 cycloalkyl group, a (C3-8 cycloalkyl) C1-6 alkyl group, a (C3-8 cycloalkyl) C3-8 cycloalkyl group, a (C1-6 alkyl) C3-8 halocycloalkyl group, or a (C3-8 cycloalkyl) C1-6 alkyl group or a (C1-6 alkyl) C3-8 cycloalkyl group, or R2b and R3b connect each other to represent a C2-5 alkyne chain, or R2b and R3b combine each other to represent a C1-3 alkylidene group optionally having one or more halogen atoms (with the proviso that when p is 2 or 3, two or three R2b may be same or different to each other and R3b may be same or different to each other);

R4b represents a C6-10 aryl group or a five- to six-membered heteroaryl group (with the proviso that the C6-10 aryl group and the five- to six-membered heteroaryl group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group, a pentfluorothio group, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group, a C1-6 alkoxy group, a C2-6 alkynyl group, a C3-6 alkenyloxy group, a C3-6 alkynyloxy group and a (C6-10 aryl) C1-6 alkoxy group, and when two or more substituents exist, the substituents may be same or different to each other; and the C1-6 alkyl group, the C2-6 alkenyl group, the C2-6 alkynyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the C3-6 alkenyloxy group, the C3-6
alkynyloxy group and the \((C_6-10\text{ aryl})C_{1-6}\) alkoxy group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other;

\[\text{G}^b \text{ represents a hydrogen atom or a group of any one of the following formulae:} \]

\[
\begin{align*}
&\text{L}^b, \\
&\text{O}, \\
&-H^b \\
&\text{or} \\
&\text{R}_7^b
\end{align*}
\]

(wherein

\[\text{L}^b \text{ represents an oxygen atom or a sulfur atom;} \]

\[\text{R}_{5b}^b \text{ represents a C}_{1-6}\text{ alkyl group, a C}_{3-8}\text{ cycloalkyl group, a C}_{2-6}\text{ alkenyl group, a C}_{2-6}\text{ alkynyl group, a C}_{6-10}\text{ aryl group, a (C}_{6-10}\text{ aryl})C_{1-6}\text{ alkyl group, a C}_{1-6}\text{ alkoxy group, a C}_{3-8}\text{ cycloalkoxy group, a C}_{2-6}\text{ alkenyloxy group, a C}_{6-10}\text{ aryloxy group, a (C}_{6-10}\text{ aryl})C_{1-6}\text{ alkoxy group, a (C}_{1-6}\text{ alkyl}) (C}_{1-6}\text{ alkyl) amino group, a (C}_{3-6}\text{ alkenyl} (C}_{3-6}\text{ alkenyl) amino group, a (C}_{1-6}\text{ alkyl}) (C}_{6-10}\text{ aryl) amino group or a five- to six- membered heteroaryl group (with the proviso that these groups may each have one or more halogen atoms, when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C}_{3-8}\text{ cycloalkyl group, the C}_{6-10}\text{ aryl group, an aryl moiety of the (C}_{6-10}\text{ aryl})C_{1-6}.\text{ alkyl group, the C}_{3-8}\text{ cycloalkoxy group, the C}_{6-10}\text{ aryloxy group, an aryl moiety of the (C}_{6-10}\text{ aryl})C_{1-6}\text{ alkoxy group, an aryl moiety of the}
\]
(C\textsubscript{i-6} alkyl) (C\textsubscript{6-10} aryl) amino group and a five- to six-membered heteroaryl group may each one or more C\textsubscript{i-6} alkyl groups, and when two or more C\textsubscript{i-6} alkyl groups exist, the alkyl groups may be same or different to each other); R6b represents a C\textsubscript{i-6} alkyl group, a C\textsubscript{6-10} aryl group or a (C\textsubscript{i-6} alkyl) (C\textsubscript{i-6} alkyl) amino group (with the proviso that these groups may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C\textsubscript{6-10} aryl group may have one or more C\textsubscript{i-6} alkyl groups, and when two or more C\textsubscript{i-6} alkyl groups exist, the alkyl groups may be same or different to each other); R6b represents a hydrogen atom or a C\textsubscript{i-6} alkyl group; Wb represents a C\textsubscript{i-6} alkoxy group, a C\textsubscript{i-6} alkylthio group, a C\textsubscript{i-6} alkylsulfanyll group or a C\textsubscript{i-6} alkylsulfanyl group (with the proviso that these groups may each have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other)); Zb represents a halogen atom, a cyano group, a nitro group, a phenyl group, a C\textsubscript{i-6} alkyl group, a C\textsubscript{2-6} alkenyl group, a C\textsubscript{i-6} alkynyl group, a C\textsubscript{i-6} alkoxy group, a C\textsubscript{i-6} alkylthio group, a C\textsubscript{6-10} aryloxy group, a five- to six-membered heteroaryloxy group or a C\textsubscript{3-8} cycloalkyl group (with the proviso that the C\textsubscript{i-6} alkyl group, the C\textsubscript{2-6} alkenyl
group, the C$_2$-6 alkynyl group, the C$_1$-$
6$ alkoxy group and the C$_1$-$
6$ alkylthio group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the phenyl group, the Ce-10 aryloxy group and the five- to six- membered heteroaryloxy group may have one or more substituents selected from the group consisting of a halogen atom, a C$_1$-$
6$ alkyl group and a C$_1$-$
6$ haloalkyl group, and when two or more substituents exist, the substituents may be same or different to each other; and the C$_3$-$
8$ cycloalkyl group may have one or more substituents selected from the group consisting of a halogen atom and a C$_1$-$
6$ alkyl group, and when two or more substituents exist, the substituents may be same or different to each other; when q is an integer of 2 or more, Z^b may be same or different to each other).

n is an integer of any one of 1 to 3;
R^{1b} represents a hydrogen atom;
R^{2b} and R^{3b} represent independently of each other a hydrogen atom or a C$_1$-$
3$ alkyl group (with the proviso that when p is 2 or 3, two or three R^{2b} may be same or different to each other and two or three R^{3b} may be same or different to each other); R^{4b} represents a phenyl group or a 2-pyridyl group (with the proviso that the phenyl group and the 2-pyridyl
group may have one or more substituents selected from the

group consisting of a halogen atom, a C\textsubscript{1-3} alkyl group, a
C\textsubscript{1-3} alkoxy group, a C\textsubscript{1-3} haloalkyl group, a nitro group, a
pentfluorothio group and a C\textsubscript{1-3} haloalkoxy group, and when
two or more substituents exist, the substituents may be
same or different to each other;

Gb represents a hydrogen atom or a group of any one of
the following formulae:

\[
\begin{align*}
\text{O} & \quad \text{R}\text{5a} \quad \text{or} \quad \text{-CH}\text{\textsubscript{2}}\text{W}\text{a}
\end{align*}
\]

(wherein

R\text{5a} represents a C\textsubscript{1-6} alkyl group, a C\textsubscript{6-10} aryl group, a
C\textsubscript{1-6} alkoxy group, a C\textsubscript{3-6} alkenyloxy group, a C\textsubscript{3-6} alkynyloxy
group or a C\textsubscript{6-10} arlyloxy group; and

W\text{a} represents a C\textsubscript{1-3} alkoxy group); and

Zb represents a C\textsubscript{1-3} alkyl group.

p is 2;

R2b and R3b represent independently of each other a
hydrogen atom or a methyl group (with the proviso that two
R2b may be same or different to each other and two R3b may
be same or different to each other);

R4b represents a phenyl group or a 2-pyridyl group
(with the proviso that the phenyl group and the 2-pyridyl
group have one or more substituents selected from the group
consisting of a chlorine atom, a fluorine atom, a methyl
group, a methoxy group and a trifluoromethyl group);
 \(G^b \) represents a hydrogen atom, an acetyl group, a
propionyl group, a benzoyl group, a methoxycarbonyl group,
an ethoxycarbonyl group, an allyloxycarbonyl group, a
phenoxy carbonyl group, a methoxymethyl group or an
ethoxymethyl group; and
 \(Z^b \) represents a methyl group or an ethyl group.
wherein \(G \) represents a hydrogen atom.
[8] A herbicide comprising a cyclohexanone compound of any
one of [1] to [7] as an active ingredient and an inert
carrier.
[9] A method for controlling weeds which comprises
applying an effective amount of the cyclohexanone compound
of any one of [1] to [7] to weeds or soil where weeds grow.
[10] Use of the cyclohexanone compound of any one of [1] to

(EFFECT OF INVENTION)
The compound of the present invention shows an
efficacy for controlling weeds and is therefore useful as
an active ingredient for herbicides.
Hereinafter, the present invention is explained in detail.

The substituent of the present invention is explained.

The 'Ci-6 alkyl group' to be used herein means an alkyl group having 1 to 6 carbon atoms, and includes for example, a methyl group, an ethyl group, a normalpropyl group, an isopropyl group, a normalbutyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a normalpentyl group, a sec-pentyl group, an isopentyl group, a neopentyl group, a normalhexyl group and an isohexyl group.

The 'Ci-6 haloalkyl group' to be used herein means a C1-6 alkyl group substituted with one or more halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and includes for example, a trifluoromethyl group, a chloromethyl group, a 2,2,2-trichloroethyl group, a 2,2,2-trifluoroethyl group and a 2,2,2-trifluoro-1,1-dichloroethyl group.

The 'C3-8 cycloalkyl group' to be used herein means a cycloalkyl group having 3 to 8 carbon atoms and includes for example, a cyclopropyl group, a cyclopentyl group and a cyclohexyl group.

The 'C3-8 halocycloalkyl group' to be used herein means a cycloalkyl group having 3 to 8 carbon atoms substituted with one or more halogen atoms such as a
fluorine atom, a chlorine atom, a bromine atom and an iodine atom and includes for example, a 2-chlorocyclopropyl group and a 4,4-difluorocyclohexyl group.

The '\(\text{(CI-6 alkyl)C}_3\text{-cycloalkyl group}\)' to be used herein means a cycloalkyl group having 3 to 8 carbon atoms substituted with an alkyl group having 1 to 6 carbon atoms and includes for example, an ethylcyclopropyl group, an isobutylcyclopropyl group, a 3-methylcyclopentyl group and a 4-methylcyclohexyl group.

The '\(\text{(C}_3\text{-cycloalkyl)CI-6 alkyl group}\)' to be used herein means an alkyl group having 1 to 6 carbon atoms substituted with a cycloalkyl group having 3 to 8 carbon atoms and includes for example, a cyclopropylmethyl group and a cyclopentylmethyl group.

The '\(\text{(C}_3\text{-halocycloalkyl)CI-6 alkyl group}\)' to be used herein means an alkyl group having 1 to 6 carbon atoms substituted with a (cycloalkyl group having 3 to 8 carbon atoms substituted with one or more halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom) and includes for example, a 2-
chlorocyclopropylmethyl group and a 3-
chlorocyclopentylethyl group.

The ' (C\textsubscript{1-6} alkyl)C\textsubscript{3-8} cycloalkyl) C\textsubscript{1-6} alkyl group' to be used herein means an alkyl group having 1 to 6 carbon atoms substituted with a (cycloalkyl group having 3 to 8 carbon atoms substituted with an alkyl group having 1 to 6 carbon atoms) and includes for example, a 2-
methylcyclopropylmethyl group and a 3-
methylcyclopentylmethyl group.

The 'C\textsubscript{2-5} alkylene chain' to be used herein means an alkylene chain having 2 to 5 carbon atoms and includes for example, an ethylene chain, a propylene chain (i.e., a trimethylene chain), a butylene chain (i.e., a tetramethylene chain) and a pentylene chain (i.e., a pentamethylene chain).

When R\textsubscript{2} and R\textsubscript{3} or R\textsubscript{2b} and R\textsubscript{3b} connect each other respectively to represent a C\textsubscript{2-5} alkylene chain, R\textsubscript{2} and R\textsubscript{3} combine together with the carbon to which they are attached to form a C\textsubscript{3-6} cycloalkyl group. Also when R\textsubscript{2} and R\textsubscript{3} connect each other to represent an ethylene chain, R\textsubscript{2} and R\textsubscript{3} combine together with the carbon to which they are attached to form a C\textsubscript{3} cycloalkyl group, i.e. a cyclopropyl group.

The 'C\textsubscript{1-3} alkylidene chain' to be used herein means an alkylidene chain having 1 to 3 carbon atoms and includes
for example, a methylidene group, an ethylidene group and an isopropylidene group.

The 'halogen atom' to be used herein includes for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

The 'C₂₋₆ alkenyl group' to be used herein means an alkenyl group having 2 to 6 carbon atoms and includes for example, a vinyl group, an allyl group, a 1-butene-3-yl group and a 3-butene-1-yl group.

The 'C₂₋₆ alkynyl group' to be used herein means an alkynyl group having 2 to 6 carbon atoms and includes for example, an ethynyl group, a propargyl group and a 2-butynyl group.

The 'C₁₋₆ alkoxy group' to be used herein means an alkoxy group having 1 to 6 carbon atoms and includes for example, a methoxy group, an ethoxy group, a normalpropyloxy group, an isopropyloxy group, a normalbutoxy group, an isobutoxy group, a see-butoxy group, a tert-butoxy group, a normalpentyloxy group, a sec-pentyloxy group, an isopentyloxy group, a neopentyloxy group, a normalhexyloxy group and an isohexyloxy group.

The 'C₁₋₆ alkylthio group' to be used herein means an alkylthio group having 1 to 6 carbon atoms and includes for example, a methylthio group, an ethylthio group and an
isopropylthio group.

The "'C₃₋₆ alkenyloxy group'" to be used herein means an alkenyloxy group having 3 to 6 carbon atoms and includes for example, an allyloxy group and a 2-butenyloxy group.

The "'C₃₋₆ alkynyloxy group'" to be used herein means an alkynyloxy group having 3 to 6 carbon atoms and includes for example, a propargyloxy group and a 2-butynylxyloxy group.

The "'(C₆₋₁₀ aryl)C₁₋₆ alkoxy group'" to be used herein means an alkoxy group having 1 to 6 carbon atoms substituted with an aryl group having 6 to 10 carbon atoms and includes for example, a benzyloxy group and a phenethyloxy .

The "'(C₆₋₁₀ aryl)C₁₋₆ alkyl group'" to be used herein means an alkyl group having 1 to 6 carbon atoms substituted with an aryl group having 6 to 10 carbon atoms and includes for example, a benzyl group and a phenethyl group.

The "'C₃₋₆ cycloalkoxy group'" to be used herein means a cycloalkoxy group having 3 to 8 carbon atoms and includes for example, a cyclopropyloxy group, a cyclopentyloxy group and a cyclohexyloxy group.

The "'(C₁₋₆ alkyl) (C₁₋₆ alkyl) amino group'" to be used herein means an amino group substituted with two alkyl groups having 1 to 6 carbon atoms that may be same or different to each other and includes for example, a dimethylamino group, a diethylamino group and an
ethylmethylamino group.

The ' (C₃ - alkenyl) (C₃ - 6 alkenyl) amino group' to be used herein means an amino group substituted with two alkenyl groups having 3 to 6 carbon atoms that may be same or different to each other and includes for example, a diallylamino group and a di (3-butenyl) amino group.

The ' (C₁ - 6 alkyl) (C₆-10 aryl) amino group' to be used herein means an amino group substituted with an alkyl group having 1 to 6 carbon atoms and a C₆-10 aryl group and includes for example, a methylphenylamino group and an ethylphenylamino group.

The ' (C₁ - 6 alkylsulf inyl group' to be used herein means an alkylsulf inyl group having 1 to 6 carbon atoms and includes for example, a methylsulf inyl group, an ethylsulf inyl group and an isopropylsulf inyl group.

The ' (C₁ - 6 alkylsulf onyl group' to be used herein means an alkylsulf onyl group having 1 to 6 carbon atoms and includes for example, a methylsulf onyl group, an ethylsulf onyl group and an isopropylsulf onyl group.

The 'C₆-10 aryl group' to be used herein means an aryl group having 6 to 10 carbon atoms and includes for example, a phenyl group and a naphthyl group.

The 'five- to six- membered heteroaryl group' to be used herein means an aromatic five- or six- membered heterocyclic group having 1 to 3 heteroatoms selected from
a nitrogen atom, an oxygen atom or a sulfur atom and includes for example, a 2-pyridyl group, a 4-pyridyl group, a 3-furyl group, a pyrimidinyl group, a 3-thienyl group and a 1-pyrazolyl group.

The 'c₆₋₁₀ aryloxy group' to be used herein means an aryloxy group having 6 to 10 carbon atoms and includes for example, a phenoxy group and a naphthoxy group.

The 'five- to six- membered heteroaryloxy group' to be used herein means an aromatic five- or six- membered heterocyclxyloxy group having 1 to 3 heteroatoms selected from a nitrogen atom, an oxygen atom or a sulfur atom and includes for example, a 2-pyridyloxy group and a 3-pyridyloxy group.

The '(Cᵢ₋₆ alkoxy) carbonyl group' to be used herein means a carbonyl group substituted with an alkoxy group having 1 to 6 carbon atoms and includes for example, a methoxycarbonyl group and an ethoxycarbonyl group.

The '(Cᵢ₋₆ alkyl) amino group' to be used herein means an amino group substituted with an alkyl group having 1 to 6 carbon atoms and includes for example, a monomethylamino group and a monoethylamino group.

The '(Cᵢ₋₆ alkyl)aminocarbonyl group' to be used herein means an aminocarbonyl group substituted with an alkyl group having 1 to 6 carbon atoms and includes for example, a monomethylaminocarbonyl group and a
monoethylaminocarbonyl group.

The "'(C\textsubscript{1-6} alkyl) (Ci\textsubscript{6} alkyl)aminocarbonyl group'" to be used herein means an aminocarbonyl group substituted with two alkyl groups having 1 to 6 carbon atoms that may be same or different to each other and includes for example, a dimethylaminocarbonyl group, a diethylaminocarbonyl group and an ethylmethylaminocarbonyl group.

The "'(C\textsubscript{1-6} alkyl)carbonyl group'' to be used herein means a carbonyl group substituted with an alkyl group having 1 to 6 carbon atoms and includes for example, a methylcarbonyl group, an ethylcarbonyl group and an isopropylcarbonyl group.

The "'C\textsubscript{6-10} arylthio group'' to be used herein means an arylthio group having 1 to 6 carbon atoms and includes for example, a phenylthio group and a naphthylthio group.

The "'Ci\textsubscript{3} alkyl group'' to be used herein means an alkyl group having 1 to 3 carbon atoms and includes for example, a methyl group, an ethyl group, a normalpropyl group and an isopropyl group.

The "'Ci\textsubscript{3} alkoxy group' ' to be used herein means an alkoxy group having 1 to 3 carbon atoms and includes for example, a methoxy group, an ethoxy group, a normalpropyloxy group and an isopropyloxy group.

The "'Ci\textsubscript{3} haloalkyl group' ' to be used herein means a Ci\textsubscript{3} alkyl group substituted with one or more halogen atoms.
selected from a fluorine atom, a chlorine atom, a bromine atom or an iodine atom and includes for example, a trifluoromethyl group, a chloromethyl group, a 2,2,2-trichloroethyl group, a 2,2,2-trifluoroethyl group and a 2,2,2-trifluoro-1,1-dichloroethyl group.

The 'Ci-3 haloalkoxy group' to be used herein means a Ci-3 alkoxy group substituted with one or more halogen atoms selected from a fluorine atom, a chlorine atom, a bromine atom or an iodine atom and includes for example, a trifluoromethoxy group, a 2,2,2-trichloroethoxy group, a 3,3-difluoropropoxy group and a 2,2,2-trifluoroethoxy group.

The 'Ci-3 haloalkylthio group' to be used herein means a Ci-3 alkylthio group substituted with one or more halogen atoms selected from a fluorine atom, a chlorine atom, a bromine atom or an iodine atom and includes for example, a trifluoromethylthio group, a chloromethylthio group, a 2,2,2-trichloroethylthio group, a 2,2,2-trifluoroethylthio group and a 2,2,2-trifluoro-1,1-dichloroethylthio group.

For the present compound, the cyclohexanone compounds of the formula (I) and (II) may form agronomically acceptable salts with inorganic bases or organic bases and the present invention may encompass the salt forms of the
cyclohexanone compound. The salt includes for example, salts that are formed by mixing the compound with inorganic bases (for example, hydroxides, carbonates, hydrogen carbonates, acetates or hydrides of alkali metals (for example, lithium, sodium and potassium), hydroxides or hydrides of alkaline-earth metals (for example, magnesium, calcium and barium) and ammonia), organic bases (for example, dimethylamine, triethylamine, piperazine, pyrrolidine, piperidine, 2-phenylethylamine, benzylamine, ethanolamine, diethanolamine, pyridine and collidine) or metal alkoxides (for example, sodium methoxide, potassium tert-butoxide and magnesium methoxide).

When the present compound has one or more asymmetric centers, two or more stereoisomers (for example, enantiomer and diastereomer) may exist. The present compound may encompass all these stereoisomers and a mixture of two or more arbitrary stereoisomers.

Also when the present compound contains geometric isomers due to a double bond and the like, two or more geometric isomers (for example, each E/Z or trans/cis isomer, each S-trans/S-cis isomer and the others) may exist. The present compound may encompass all these geometric isomers and a mixture of two or more arbitrary geometric isomers.
As an embodiment of the present compound, the following compounds are included for example.

- A compound wherein \(m \) is 2;
- A compound wherein \(n \) is 3;
- A compound wherein \(m \) is 2 and \(n \) is 3;
- A compound wherein \(X \) is S;
- A compound wherein \(R^2 \) is a hydrogen atom;
- A compound wherein \(R^3 \) is a hydrogen atom;
- A compound wherein a moiety represented by the formula:

\[
-X^X_{\text{m}}
\]

\[
R^2 \quad R^3
\]

in the formula (I) represents -S-CH\(_2\)CH\(_2\)-, -S-CH\(_2\)CH(CH\(_3\))-, -S-CH(CH\(_3\))CH\(_2\)-, -O-CH\(_2\)CH\(_2\)-, -CH\(_2\)-CH\(_2\)CH\(_2\)-, -S (0) -CH\(_2\)CH\(_2\)-, -S (0) -O-CH\(_2\)CH\(_2\)-, -S (0) 2-CH\(_2\)CH\(_2\)-, -S (0) 2-CH\(_2\)CH(CH\(_3\))-, -S-CH\(_2\)CH(CH\(_3\))\(_2\)-, -S-CH\(_2\)C (cyclopropyl) -, -S-CH\(_2\)CH (c\(_5\)H\(_5\))-, -S-CH\(_2\)-, -S-CH\(_2\)CHCH\(_2\)-, -N (CH\(_3\))\(_2\)-CH\(_2\)CH (CH\(_3\))-, or -N (CH\(_3\))\(_2\)-CH\(_2\)CH\(_2\)-;

- A compound wherein \(R^4 \) represents a phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrimidinyl group, a 2-pyrazinyl group, a 3-pyridazinyl group or a 3-furyl group;

- A compound wherein \(Z \) is a phenyl group or a \(C_{16} \) alkyl group optionally having one or more halogen atoms;

- A cyclohexanone compound wherein
m is an integer of 1, 2 or 3;

n is an integer of 1, 2 or 3;

X represents CH₂, O, S, S(0), S(0)₂ or N(CH₃);

R¹ represents a hydrogen atom;

R² and R³ represent independently of each other a hydrogen atom or a C₁₆ alkyl group, or R² and R³ connect each other to represent a C₂₋₅ alkylene chain;

R⁴ represents a C₆₋₁₀ aryl group or a five- to six-membered heteroaryl group (with the proviso that the C₆₋₁₀ aryl group and the five- to six-membered heteroaryl group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group, a pentafluorothio group, a C₁₋₆ alkyl group and a C₁₋₆ alkoxy group, and two or more substituents exist, the substituents may be same or different to each other), and the C₁₋₆ alkyl group and the C₁₋₆ alkoxy group may have one or more halogen atoms);

G represents a hydrogen atom or a group of any one of the following formulae:

\[
\begin{align*}
\text{L} & \quad \begin{align*}
\text{R}^5 & \quad \text{O} \quad \text{R}^6 \\
\text{or} & \\
\text{H} & \quad \text{C} \quad \text{W} \\
\text{R}^7
\end{align*}
\end{align*}
\]

(wherein

L represents an oxygen atom;

R⁵ represents a C₁₋₆ alkyl group, a C₁₋₆ alkoxy group, a C₃₋₆ alkenyloxy group or a C₆₋₁₀ aryloxy group;
R^6 represents a Ci-6 alkyl group;
R^7 represents a hydrogen atom;
W represents a Ci_ alkoxy group;
Z represents a halogen atom, a phenyl group, a Ci-6 alkyl group, a C_6-alkenyl group, a C_6-alkynyl group or a six-membered heteroaryloxy group (with the proviso that the phenyl group and the six-membered heteroaryloxy group may have one or more substituents selected from the group consisting of a halogen atom and a Ci-6 haloalkyl group, and two or more substituents exist, the substituent may be same or different to each other));

[1-1] a cyclohexanone compound of the formula (I):

\[
\begin{align*}
\text{wherein} \quad m & \text{ is an integer of 1, 2 or 3;} \\
\text{n is an integer of any one of 1 to 5;} \\
X & \text{ represents CH}_2, \text{ NH}, \text{ NHR}, \text{ NH}_2, \text{ S, SH, SO, or SO}_2; \\
R^1 & \text{ represents a hydrogen atom or a methyl group;} \\
R^2 & \text{ and R^3 represent independently of each other a hydrogen atom, a Ci-6 alkyl group, a Ci-6 haloalkyl group, a C_3-8 cycloalkyl group, a C_3-8 halocycloalkyl group, a (Ci-6}
\end{align*}
\]
alkyl)C₁₋₈ cycloalkyl group, a (C₃₋₈ cycloalkyl)C₁₋₆ alkyl group, a (C₃₋₈ cycloalkyl)C₃₋₈ cycloalkyl group, a (C₃₋₈ halocycloalkyl) C₁₋₆ alkyl group or a ((C₁₋₆ alkyl) C₃₋₈ cycloalkyl) C₁₋₆ alkyl group, or R₂ and R₃ connect each other to represent a C₂₋₅ alkyne chain, or R₂ and R₃ combine each other to represent a C₁₋₃ alkyldiene group optionally having one or more halogen atoms (with the proviso that when m is 2 or 3, two or three R₂ may be same or different to each other — and two or three R₃ may be same or different to each other);

R⁴ represents a C₆₋₁₀ aryl group or a five- to six-membered heteroaryl group (with the proviso that the C₆₋₁₀ aryl group and the five- or six- membered heteroaryl group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group, an amino group, a (C₁₋₆ alkyl) amino group, a (C₁₋₆ alkyl) amino group, a benzyolamino group, an aminocarbonyl group, a (C₁₋₆ alkyl) aminocarbonyl group, a (C₁₋₆ alkyl) aminocarbonyl group, a pentafluorothio group, a C₁₋₆ alkyl group, a C₂₋₆ alkenyl group, a C₂₋₆ alkynyl group, a C₁₋₆ alkoxy group, a C₁₋₆ alkylthio group, a C₃₋₆ alkenyloxy group, a C₃₋₆ alkynyloxy group, a C₃₋₆ alkynyl group, a C₁₋₆ alkysulf inyl group, a C₁₋₆ alkylsulf onyl group, a hydroxycarbonyl group, a (C₁₋₆ alkoxy) carbonyl group and a (C₁₋₆ aryl)Ci₆ alkoxy group,
and when two or more substituents exist, the substituents may be same or different to each other; and the (C\textsubscript{1-6} alkyl) amino group, the (C\textsubscript{1-6} alkyl) (C\textsubscript{1-6} alkyl) amino group, the benzoylamino group, the (C\textsubscript{1-6} alkyl)aminocarbonyl group, the (C\textsubscript{1-6} alkyl) (C\textsubscript{1-6} alkyl)aminocarbonyl group, the C\textsubscript{1-6} alkyl group, the C\textsubscript{2-6} alkenyl group, the C\textsubscript{2-6} alkynyl group, the C\textsubscript{1-6} alkoxy group, the C\textsubscript{1-6} alkylthio group, the C\textsubscript{3-6} alkenyloxy group, the C\textsubscript{1-6} alkynyloxy group, the C\textsubscript{1-6} aryloxy group, the C\textsubscript{6-10} aryl group, the C\textsubscript{6-10} aryloxy group, the C\textsubscript{1-6} alkylsulf onyl group, the (C\textsubscript{1-6} alkoxy) carbonyl group and the (C\textsubscript{6-10} aryl)C\textsubscript{1-6} alkoxy group may each have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other respectively) ;

G represents a hydrogen atom or a group of any one of the following formulae:

\[
\begin{align*}
\text{R}^5, & \\
\text{L} & \text{R}^6, \\
\text{H} & \text{W}
\end{align*}
\]

(wherein

L represents an oxygen atom or a sulfur atom;

R5 represents a C\textsubscript{1-6} alkyl group, a C\textsubscript{3-8} cycloalkyl group, a C\textsubscript{1-6} alkenyl group, a C\textsubscript{2-6} alkynyl group, a C\textsubscript{6-10} aryl group, a (C\textsubscript{6-10} aryl)C\textsubscript{1-6} alkyl group, a C\textsubscript{1-6} alkoxy group, a C\textsubscript{3-8} cycloalkoxy group, a C\textsubscript{3-6} alkenyloxy group, a C\textsubscript{3-6} alkynyloxy group, a C\textsubscript{6-10} aryloxy group, a (C\textsubscript{6-10} aryl)C\textsubscript{1-6} alkoxy group and the (C\textsubscript{6-10} aryl)C\textsubscript{1-6} alkoxy group may each have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other respectively) ;
alkoxy group, a \((\text{C}_1-6 \text{ alkyl}) (\text{C}_1-6 \text{ alkyl})\) amino group, a \((\text{C}_3-6 \text{ alkenyl}) (\text{C}_3-6 \text{ alkenyl})\) amino group, a \((\text{C}_1-6 \text{ alkyl}) (\text{C}_6-10 \text{ aryl})\) amino group or a five- to six-membered heteroaryl group (with the proviso that these groups may each one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the \(\text{C}_3-8 \text{ cycloalkyl}\) group, the \(\text{C}_6-10 \text{ aryl}\) group, an aryl moiety of the \((\text{C}_6-10 \text{ aryl})\text{C}_1-6 \text{ alkyl}\) group, a \(\text{C}_3-8 \text{ cycloalkoxy}\) group, a \(\text{C}_6-10 \text{ arlyloxy}\) group, an aryl moiety of the \((\text{C}_6-10 \text{ aryl})\text{C}_1-6 \text{ alkoxy}\) group, an aryl moiety of the \((\text{C}_1-6 \text{ alkyl}) (\text{C}_6-10 \text{ aryl})\) amino group and a five- to six-membered heteroaryl group may each have one or more \(\text{C}_1-6 \text{ alkyl}\) groups, and when two or more \(\text{C}_1-6 \text{ alkyl}\) groups exist, the alkyl groups may be same or different to each other).

\(R^6\) represents a \(\text{C}_1-6 \text{ alkyl}\) group, a \(\text{C}_6-10 \text{ aryl}\) group or a \((\text{C}_1-6 \text{ alkyl}) (\text{C}_1-6 \text{ alkyl})\) amino group (with the proviso that these groups may each have one or more halogen atoms and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the \(\text{C}_6-10 \text{ aryl}\) group may have one or more \(\text{C}_1-6 \text{ alkyl}\) groups and when two or more \(\text{C}_1-6 \text{ alkyl}\) groups exist, the alkyl groups may be same or different to each other);

\(R^7\) represents a hydrogen atom or a \(\text{C}_1-6 \text{ alkyl}\) group;

\(W\) represents a \(\text{C}_1-6 \text{ alkoxy}\) group, a \(\text{C}_1-6 \text{ alkylthio}\) group, a \(\text{C}_1-6 \text{ alkylsulfinyl}\) group or a \(\text{C}_1-6 \text{ alkylsulfonyl}\) group.
(with the proviso that these groups may each have one or more halogen atoms and when two or more halogen atoms exist, the halogen atoms may be same or different to each other);

\(R^9 \) represents a hydrogen atom, a \(\text{C}_6\text{-i} \) aryl group, a \(\text{C}_6\text{-i} \) arylthio group, a \(\text{C}_6\text{-i} \) arylsulfinyl group, a \(\text{C}_6\text{-i} \) arylsulfanyl group (with the proviso that the \(\text{C}_1\text{-i} \) alkyl group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; the \(\text{C}_6\text{-i} \) aryl group, the \(\text{C}_6\text{-i} \) arylthio group, the \(\text{C}_6\text{-i} \) arylsulfinyl group and the \(\text{C}_6\text{-i} \) arylsulfanyl group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group and an amino group);

\(Z \) represents a halogen atom, a cyano group, a nitro group, a \(\text{C}_1\text{-i} \) alkyl group, a \(\text{C}_2\text{-i} \) alkenyl group, a \(\text{C}_2\text{-i} \) alkenyl group, a \(\text{C}_1\text{-i} \) alkoxy group, a \(\text{C}_1\text{-i} \) alkyl)carbonyl group, a \(\text{C}_1\text{-i} \) alkylthio group, a \(\text{C}_6\text{-i} \) aryloxy group, a five- or six-membered heteroaryloxy group, a \(\text{C}_3\text{-i} \) cycloalkyl group, a \(\text{C}_6\text{-i} \) aryl group or a five- to six-membered heteroaryl group (with the proviso that the \(\text{C}_i\text{-i} \) alkyl group, the \(\text{C}_2\text{-i} \) alkenyl group, the \(\text{C}_2\text{-i} \) alkenyl group, the \(\text{C}_1\text{-i} \) alkoxy group, the \(\text{C}_i\text{-i} \) alkyl)carbonyl group and the \(\text{C}_i\text{-i} \) alkylthio group may each have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms
may be same or different to each other; and the C₆₋₁₀ aryl group, a five- to six- membered heteroaryl group, a C₆₋₁₀ aryloxy group and the five- to six- membered heteroaryloxy group may each have one or more substituents selected from the group consisting of a halogen atom, a C₁₋₆ alkyl group and a C₁₋₆ haloalkyl group, and when two or more substituents exist, the substituents may be same or different to each other; and the C₃₋₈ cycloalkyl group may have one or more substituents selected from the group consisting of a halogen atom and a C₁₋₆ alkyl group, and when two or more substituents exist, the substituents may be same or different to each other; when n is an integer of 2 or more, Z may be same or different to each other); [2-1] The cyclohexanone compound of [1-1] wherein

n is an integer of any one of 1 to 3;

X represents CH₂, 0, NR₉, S, S(0) or S(0)₂;

R¹ represents a hydrogen atom;

R² and R³ represent independently of each other a hydrogen atom or a C₁₋₃ alkyl group, or R² and R³ connect each other to represent a C₂₋₅ alkyene chain (with the proviso that when m is 2 or 3, two or three R² may be same or different to each other and two or three R³ may be same or different to each other);

R⁴ represents a phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrimidinyl group, a
2-pyrazinyl group, a 3-pyridazinyl group or a 3-furyl group (with the proviso that the phenyl group, the 2-pyridyl group, the 3-pyridyl group, the 4-pyridyl group, the 2-pyrimidinyl group, the 2-pyrazinyl group, the 3-pyridazinyl group or the 3-furyl group may each have one or more substituents selected from the group consisting of a halogen atom, a C\textsubscript{1-3} alkyl group, a C\textsubscript{1-3} alkoxy group, a C\textsubscript{1-3} haloalkyl group, a C\textsubscript{1-3} alkylthio group, a C\textsubscript{1-3} haloalkylthio group, a cyano group, a nitro group, an amino group, a pentfluorothio group, a benzoylamino group and a C\textsubscript{1-3} haloalkoxy group, and when two or more substituents exist, the substituents may be same or different to each other).

G represents a hydrogen atom or a group of any one of the following formulae:

\begin{align*}
\text{R}^{5a} & \quad \text{O} & \quad \text{S}^{6a} & \quad \text{CH}_2W^a
\end{align*}

\begin{align*}
\text{wherein}
\text{R}^{5a} & \quad \text{represents a C}_{1-6} \text{ alkyl group, a C}_{6-10} \text{ aryl group, a C}_{1-6} \text{ alkoxy group, a C}_{3-6} \text{ alkenyloxy group, a C}_{3-6} \text{ alkynlyloxy group or a C}_{6-10} \text{ aryloxy group;}
\text{R}^{6a} & \quad \text{represents a C}_{1-6} \text{ alkyl group;}
\text{W}^a & \quad \text{represents a C}_{1-3} \text{ alkoxy group;}
\text{R}^9 & \quad \text{represents a hydrogen atom, a C}_{1-6} \text{ alkyl group or a C}_{6-10} \text{ arylsulfonyl group (with the proviso that the C}_{1-6} \text{ alkyl group may have one or more halogen atoms, and when}}
\end{align*}
two or more halogen atoms exist, the halogen atoms may be
same or different to each other; and the C₆₋₁₀ arylsulfonyl
group may have one or more substituents selected from the
group consisting of a halogen atom and a nitro group, and
when two or more substituents exist, the substituents may
be same or different to each other);

Z represents a halogen atom, a C₁₋₃ alkyl group, a C₂₋₆
alkenyl group, a C₂₋₆ alkenyl group, a C₁₋₃ alkoxy group, a
C₃₋₈ cycloalkyl group, a nitro group, a phenyl group or a
five- to six- membered heteroaryloxy group (with the
proviso that the C₁₋₃ alkyl group, the C₂₋₆ alkenyl group,
the C₂₋₆ alkenyl group, the -C₁₋₃ alkoxy group, the phenyl
group and the five- to six- membered heteroaryloxy group
may have one or more halogen atoms, and when two or more
halogen atoms exist, the halogen atoms may be same or
different to each other;

[3-1] a cyclohexanone compound of [2-1] wherein
m is 2;

X represents CH₂, O, NR₉, S, S(O) or S(O)₂;

R² and R³ represents independently of each other a
hydrogen atom, a methyl group or an ethyl group, or R² and
R³ connect each other to represent an ethylene chain (with
the proviso that two R² may be same or different to each
other and two R³ may be same or different to each other);

R⁴ represents a phenyl group, a 2-pyridyl group, a 3-
pyridyl group, a 4-pyridyl group, a 2-pyrimidinyl group, a 2-pyrazinyl group, a 3-pyridazinyl group or a 3-furyl group (with the proviso that the phenyl group, the 2-pyridyl group, the 3-pyridyl group, the 4-pyridyl group, the 2-pyrimidinyl group, the 2-pyrazinyl group, the 3-pyridazinyl group and the 3-furyl group have each one or more substituents selected from the group consisting of a chlorine atom, a bromine atom, an iodine atom, a fluorine atom, a methyl group, a methoxy group, a nitro group, an amino group, a cyano group, a pentafluorothio group, a pentafluoroethyl group, a difluoroethyl group, a heptafluoroisopropyl group, a trifluoromethylthio group, a benzoylamino group, a trifluoromethoxy group and a t-trifluoromethyl group);

G represents a hydrogen atom, an acetyl group, a propionyl group, a butyryl group, a benzoyl group, a methylsulfonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an allyloxyacarbonyl group, a phenoxyacarbonyl group, a methoxymethyl group or an ethoxymethyl group;

R⁹ represents a hydrogen atom, a 2-nitrophenylsulfonyl group or a methyl group;

Z represents a methyl group, an ethyl group, a phenyl group, a vinyl group, a cyclopropyl group, a nitro group, a fluorine atom, a chlorine atom, a methoxy group, a
trifluoromethyl group, a 5-trifluoromethyl-2-chloropyridyloxy group or an ethynyl group;

\[4-1 \] a cyclohexanone compound of the formula (II):

\[
\begin{align*}
\text{(II)}
\end{align*}
\]

wherein

- \(p \) is an integer of 1, 2 or 3;
- \(q \) is an integer of any one of 1 to 5;
- \(X^b \) represents \(\text{CH}_2, \text{O, S, S(O) or S(O)}_2 \);
- \(R^{1b} \) represents a hydrogen atom or a methyl group;
- \(R^{2b} \) and \(R^{3b} \) represent independently of each other a hydrogen atom, a \(\text{C}_1-6 \) alkyl group, a \(\text{C}_1-6 \) haloalkyl group, a \(\text{C}_3-8 \) cycloalkyl group, a \(\text{C}_3-8 \) halocycloalkyl group, a \((\text{C}_1-6 \text{ alkyl})\text{C}_1-6 \) cycloalkyl group, a \((\text{C}_3-8 \text{ cycloalkyl})\text{C}_1-6 \) alkyl group, a \((\text{C}_3-8 \text{ cycloalkyl})\text{C}_3-8 \) cycloalkyl group, a \((\text{C}_3-8 \text{ halocycloalkyl})\text{C}_1-6 \) alkyl group or a \((\text{C}_1-6 \text{ alkyl})\text{C}_3-8 \text{ cycloalkyl})\text{C}_1-6 \) alkyl group, or \(R^{2b} \) and \(R^{3b} \) connect each other to represent a \(\text{C}_2-5 \) alkyene chain, or \(R^{2b} \) and \(R^{3b} \) combine each other to represent a \(\text{C}_1-3 \) alkylidene group optionally having one or more halogen atoms (with the proviso that when \(p \) is 2 or 3, two or three \(R^{2b} \) may be same or different to each other and \(R^{3b} \) may be same or different to each other);
R^{4b} represents a C6-10 aryl group or a five- to six-membered heteroaryl group (with the proviso that the C6-10 aryl group and the five- to six-membered heteroaryl group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group, a pentafluorothio group, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C3-6 alkenyloxy group, a C3-6 alkynyloxy group and a (C6-i0 aryl)C1-6 alkoxy group, and when two or more substituents exist, the substituents may be same or different to each other; and the C1-6 alkyl group, the C2-6 alkenyl group, the C2-6 alkynyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the C3-6 alkenyloxy group, the C3-6 alkynyloxy group and the (C6-i0 aryl)C1-6 alkoxy group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other);

G^{b} represents a hydrogen atom or a group of any one of the following formulae:

\[
\begin{align*}
&\overset{\text{b}}{L} &\quad &\text{R}^{5b} &\quad &\text{O} &\quad &\text{O} &\quad &\text{R}^{6b} &\quad &\text{or} &\quad &\text{H} &\quad &\text{W}^{b} &\quad &\text{R}^{7b}
\end{align*}
\]

(wherin)

L^{b} represents an oxygen atom or a sulfur atom;

R^{5b} represents a C1-6 alkyl group, a C3-8 cycloalkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group, a C6-i0
aryl group, a (C6-10 aryl)Ci-6 alkyl group, a CI-6 alkoxy group, a C3-8 cycloalkoxy group, a C3-6 alkenyloxy group, a C3-6 alkynyloxy group, a (C1-6 aryl)Ci-6 alkoxy group, a (CI-6 alkyl) (CI-6 alkyl) amino group, a (C3-6 alkenyl) (C3-6 alkenyl) amino group or a five- to six-membered heteroaryl group (with the proviso that these groups may each have one or more halogen atoms, when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C3-8 cycloalkyl group, the C6-10 aryl group, an aryl moiety of the (C6-10 aryl)Ci-6 alkyl group, the C3-8 cycloalkoxy group, the C6-10 aryloxy group, an aryl moiety of the (C6-10 aryl)Ci-6 alkoxy group, an aryl moiety of the (C1-6 alkyl) C6-10 aryl) amino group and a five- to six-membered heteroaryl group may each one or more CI-6 alkyl groups, and when two or more CI-6 alkyl groups exist, the alkyl groups may be same or different to each other);

R6b represents a CI-6 alkyl group, a C6-10 aryl group or a (CI-6 alkyl) (CI-6 alkyl) amino group (with the proviso that these groups may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C6-10 aryl group may have one or more CI-6 alkyl groups, and when two or more CI-6 alkyl groups exist, the alkyl groups may be same or different to each other);
R7b represents a hydrogen atom or a C\textsubscript{1-6} alkyl group;
\textit{W}b represents a C\textsubscript{1-6} alkoxy group, a C\textsubscript{1-6} alkylthio group, a C\textsubscript{1-6} alkylsulf inyl group or a C\textsubscript{1-6} alkylsulf onyl group (with the proviso that these groups may each have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other);
\textit{Z}b represents a halogen atom, a cyano group, a nitre-group, a phenyl group, a C\textsubscript{1-6} alkyl group, a C\textsubscript{2-6} alkenyl group, a C\textsubscript{2-6} alkynyl group, a C\textsubscript{1-6} alkoxy group, a C\textsubscript{1-6} alkylthio group, a C\textsubscript{6-10} aryloxy group, a five- to six-membered heteroaryloxy group or a C\textsubscript{3-8} cycloalkyl group (with the proviso that the C\textsubscript{1-6} alkyl group, the C\textsubscript{2-6} alkenyl group, the C\textsubscript{2-6} alkynyl group, the C\textsubscript{1-6} alkoxy group and the C\textsubscript{1-6} alkylthio group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the phenyl group, the C\textsubscript{6-10} aryloxy group and the five- to six-membered heteroaryloxy group may have one or more substituents selected from the group consisting of a halogen atom, a C\textsubscript{1-6} alkyl group and a C\textsubscript{1-6} haloalkyl group, and when two or more substituents exist, the substituents may be same or different to each other; and the C\textsubscript{3-8} cycloalkyl group may have one or more substituents selected from the group consisting of a halogen atom and a C\textsubscript{1-6} alkyl group, and
when two or more substituents exist, the substituents may be same or different to each other; when \(q \) is an integer of 2 or more, \(Z^b \) may be same or different to each other);

\[{\text{5-1}} \quad \text{a cyclohexanone compound of [4-1] wherein} \]

\(n \) is an integer of any one of 1 to 3;

\(R^{1b} \) represents a hydrogen atom;

\(R^{2b} \) and \(R^{3b} \) represent independently of each other a hydrogen atom or a \(\text{C}_1-3 \) alkyl group (with the proviso that when \(p \) is 2 or 3, two or three \(R^{2b} \) may be same or different to each other and two or three \(R^{3b} \) may be same or different to each other);

\(R^{4b} \) represents a phenyl group or a 2-pyridyl group (with the proviso that the phenyl group and the 2-pyridyl group may have one or more substituents selected from the group consisting of a halogen atom, a \(\text{C}_1-3 \) alkyl group, a \(\text{C}_1-3 \) alkoxy group, a \(\text{C}_1-3 \) haloalkyl group, a nitro group, a pentafluorothio group and a \(\text{C}_1-3 \) haloalkoxy group, and when two or more substituents exist, the substituents may be same or different to each other;

\(G^b \) represents a hydrogen atom or a group of any one of the following formulae:

\[\text{\text{O}} \quad R^{5a} \quad \text{or} \quad \text{CH}_2 W^a \]

(wherein

\(R^{5a} \) represents a \(\text{C}_1-6 \) alkyl group, a \(\text{C}_6-10 \) aryl group, a
ci-6 alkoxy group, a C₃₋₆ alkenyloxy group, a C₃₋₆ alkynyloxy group or a C₆₋₁₀ aryloxy group; and

Wₐ represents a C₁₋₃ alkoxy group; and

Zₐ represents a C₁₋₃ alkyl group;

[6-1] a cyclohexanone compound of [5-1] wherein q is 2;

R²ᵇ and R³ᵇ represent independently of each other a hydrogen atom or a methyl group (with the proviso that two R²ᵇ may be same or different to each other and two R³ᵇ may be same or different to each other);

R⁴ᵇ represents a phenyl group or a 2-pyridyl group (with the proviso that the phenyl group and the 2-pyridyl group have one or more substituents selected from the group consisting of a chlorine atom, a fluorine atom, a methyl group, a methoxy group and a trifluoromethyl group);

Gᵇ represents a hydrogen atom, an acetyl group, a propionyl group, a benzoyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an allyloxycarbonyl group, a phenoxy carbonyl group, a methoxymethyl group or an ethoxymethyl group; and

Zᵇ represents a methyl group or an ethyl group;

[7-1] a cyclohexanone compound of any one of [1-1] to [6-1] wherein G represents a hydrogen atom.

The herbicide of the present invention comprises the
present compound and inert carriers (hereinafter, sometimes referred to as 'the present herbicide'). The present herbicide can be usually prepared by further adding auxiliary agents for formulation such as surfactants, stickers, dispersers and stabilizers to formulate into wettable powders, water dispersible granules, flowables, granules, dry flowables, emulsifiable concentrates, aqueous solutions, oil solutions, smoking agents, microcapsules and the others. The present herbicide usually contains the present compound in 0.1 to 80% by weight.

The inert carrier includes a solid carrier, a liquid carrier and a gaseous carrier.

Examples of the solid carrier include clays (for example, kaolin, diatomaceous earth, synthetic hydrated silicon dioxide, Fubasami clay, bentonite and acid clay), talcs or the other inorganic minerals (for example, sericite, quartz powder, sulfur powder, activated charcoal, calcium carbonate and hydrated silica) in the form of fine powders or particulates, and examples of the liquid carries include water, alcohols (for example, methanol and ethanol), ketones (for example, acetone and methyl ethyl ketone), aromatic hydrocarbons (for example, benzene, toluene, xylene, ethylbenzene and methyl naphthalene), aliphatic hydrocarbons (for example, n-hexane, cyclohexane and kerosene), esters (for example, ethyl acetate and butyl
acetate), nitriles (for example, acetonitrile and isobutyronitrile), ethers (for example, dioxane and diisopropylether), acid amides (for example, N,N-dimethyl formamide and dimethylacetamide), halogenated hydrocarbons (for example, dichloroethane, trichloroethylene and carbon tetrachloride) and the others.

Examples of the surfactants include alkyl sulfates, alkyl sulfonates, alkyl aryl sulfonates, alkyl aryl ethers and polyoxyethylenated compounds thereof, polyethylene glycol ethers, polyol esters and sugar alcohol derivatives.

Examples of other auxiliary agents for formulation include stickers and dispersers, specifically casein, gelatin, polysaccharides (for example, starch, gum arabic, cellulose derivatives and alginic acid), lignin derivatives, bentonite, sugars, water-soluble synthetic polymers (for example, polyvinyl alcohol, polyvinyl pyrrolidone and polyacrylic acids), PAP (acidic isopropyl phosphate), BHT (2, 6-di-tert-butyl-4-methylphenol), BHA (a mixture of 2-tert-butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol), vegetable oils, mineral oils, fatty acids or fatty acid esters thereof and the others.

The method for controlling weeds of the present invention comprises applying an effective amount of the present compound to weeds or to a soil where weeds grow.
(hereinafter, sometimes referred as to "the present weeds controlling method"). In the method for controlling weeds of the present invention, the present herbicide is usually used. The method of application comprises, for example, a foliage treatment of the weeds using the present herbicide, a treatment of the soil surface where the weeds grow, and a soil incorporation treatment of the soil where the weeds grow. In the present weeds controlling method, the present compound is applied in amount of usually 1 to 5000g and preferably 10 to 1000g per 10000 m² of area to be controlled weeds.

The present compound can be applied to an agricultural land and the others where 'plant' as below-mentioned is cultivated.

'Plant':

Crops: corn, rice, wheat, barley, rye, oat, sorghum, cotton, soybean, peanut, buckwheat, beet, rapeseed, sunflower, sugar cane, tobacco, hop, and the others;

Vegetables: solanaceous vegetables (for example, eggplant, tomato, pimento, pepper and potato), cucurbitaceous vegetables (for example, cucumber, pumpkin, zucchini, watermelon and melon),
cruciferous vegetables (for example, Japanese radish, white turnip, horseradish, kohlrabi, Chinese cabbage, cabbage, leaf mustard, broccoli and cauliflower),
asteraceous vegetables (for example, burdock, crown daisy, artichoke and lettuce),
liliaceous vegetables (for example, green onion, onion, garlic and asparagus),
ammiaceous vegetables (for example, carrot, parsley, celery and parsnip),
chenopodiaceous vegetables (for example, spinach and Swiss chard),
lamiaceous vegetables (for example, Perilla frutescens, mint and basil),
strawberry, sweet potato, Dioscorea japonica, colocasia and the others;
Fruits:
pomaceous fruits (for example, apple, pear, Japanese pear, Chinese quince and quince),
stone fleshy fruits (for example, peach, plum, nectarine, Prunus mume, cherry fruit, apricot and prune),
citrus fruits (for example, Citrus unshiu, orange, lemon, lime and grapefruit),
nuts (for example, chestnut, walnuts, hazelnuts, almond, pistachio, cashew nuts and macadamia nuts),
berry fruits (for example, blueberry, cranberry, blackberry
and raspberry), grape, kaki persimmon, olive, Japanese plum, banana, coffee, date palm, coconuts, oil palm and the others;

Trees other than fruit trees:

5 tea, mulberry, flowering plant (for example, dwarf azalea, camellia, hydrangea, sasanqua, Illicium anisatum, cherry trees, tulip tree, crape myrtle and fragrant olive), roadside trees (for example, ash, birch, dogwood, Eucalyptus, Ginkgo biloba, lilac, maple, Quercus, poplar, Judas tree, Liquidambar formosana, plane tree, zelkova, Japanese arborvitae, fir wood, hemlock, juniper, Pinus, Picea, Taxus cuspidate, elm and Japanese horse chestnut), Sweet viburnum, Podocarpus macrophyllus, Japanese cedar, Japanese cypress, croton, Japanese spindletree and Photinia glabra);

Others: flowers (for example, rose, carnation, chrysanthemum, Eustoma, gypsophila, gerbera, marigold, salvia, petunia, verbena, tulip, aster, gentian, lily, pansy, cyclamen, orchid, lily of the valley, lavender, stock, ornamental cabbage, primula, poinsettia, gladiolus, cattleya, daisy, cymbidium and begonia), bio-fuel plants (for example, jatropha, safflower, Camelina, switch grass, Miscanthus giganteus, Phalaris arundinacea,
Arundo donax, Kenaf (Hibiscus cannabinus), cassava (Manihot esculenta), willow (Salicaceae), etc.), and ornamental foliage plants, and the others.

The "crops" include genetically modified crops.

The present compound can be mixed or combined with other pesticides, miticides, nematicides, fungicides and/or synergists.

Examples of the active ingredient as the pesticides include the followings:

(1) Organophosphorous compound

acephate, butathiofos, chlorethoxyf os, chlorf envinphos, chlorpyrif os, chlorpyrif os-methyl, cyanophos (abbrev. CYAP), diazinon, dichlof enthion (abbrev. ECP), dichlorvos (abbrev. DDVP), dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, etrimfos, fenthion (abbrev. MPP), fenitrothion (abbrev. MEP), fosthiazate, formothion, isofenphos, isoxathion, malathion, mesulfenfos, methidathion (abbrev. DMTP), monocrotophos, naled (abbrev. BRP, oxydeprofos (abbrev. ESP), parathion, phosalone, phosmet (abbrev. PMP), pirimiphos-methyl, pyridaf enthion, quinalphos, phenthoate (abbrev. PAP), profenofos, propaphos, prothiofos, pyraclorfos, salithion, sulprofos, tebupirimf os, temephos, tetrachlorvinphos, terbufos, thiometon, trichlorphon (abbrev. DEP), vamidothion, phorate, cadusafos.
(2) Carbamate compounds

alanycarb, bendiocarb, benfuranarb, BPMC, carbaryl, carbofuran, carbosulfan, cloethocarb, ethiofencarb, fenobucarb, fenothiocarb, fenoxycarb, furathiocarb, isoprocarb (abbrev. MIPC), metolcarb, methomyl, methiocarb, oxamyl, pirimicarb, propoxur (abbrev. PHC), XMC, thiodicarb, xylylcarb, aldicarb.

(3) Pyrethroid compounds

acrinathrin, allethrin, beta-cyfluthrin, bifenthrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin, empenthrin, deltamethrin, esfenvalerate, ethofenprox, fenpropathrin, fenvalerate, flucythrinate, flufenoxapro, flumethrin, fluvalinate, halfenprox, imiprothrin, permethrin, prallethrin, pyrethrins, resmethrin, sigma-cypermethrin, silafluofen, tefluthrin, tralomethrin, transf luthrin, tetrachlorvinphos, phenothrin, cyphenothrin, alpha-cypermethrin, zeta-cypermethrin, Lambda-cyhalothrin, gamma-cyhalothrin, furamethrin, tau-fluvalinate, metof luthrin, profluthrin, dimefluthrin, 2,3,5,6-tetrafluoro-4- (methoxymethyl)benzyl 2,2-dimethyl-3- (2-cyano-1-propenyl)cyclopropanecarboxylate, 2,3,5,6-tetrafluoro-4- (methoxymethyl)benzyl 2,2,3,3-tetramethylcyclopropanecarboxylate, protrif enbute.

(4) Nereis toxin compounds

cartap, bensultap, thiocyclam, monosultap, bisultap.
Neonicotinoid compounds
imidacloprid, nitenpyram, acetamiprid, thiamethoxam, thiacloprid, dinotefuran, clothianidin.

Benzoylurea compounds
chlorfluazuron, bistri fluoron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, triflumuron.

Phenylpyrazole compounds
acetoprole, ethiprole, fipronil, vaniliprole, pyriprole, pyrafiprole.

Bt toxins
live spores and crystal toxins originated from Bacillus thuringiensis and a mixture thereof.

Hydrazine compounds
chromafenozide, halofenozide, methoxyfenozide, tebufenozide.

Organochlorine compounds
aldrin, dieldrin, chlordane, DDT, dienochlor, endosulfan, methoxychlor.

Other pesticide active ingredients
machine oil, nicotine-sulfate; avermectin-B, bromopropylate, buprofezin, chlorphenapyr, cyromazine, DCIP (dichlorodiisopropyl ether), D-D (1,3-Dichloropropene), emamectin-benzoate, fenazaquin, flupyrazofos, hydroprene, methoprene, indoxacarb, metoxadiazone, milbemycin-A,
pymetrozine, pyridalyl, pyriproxyfen, spinosad, sulfluramid, tolfenpyrad, triazamate, flubendiamide, lepimectin, aluminium phosphide, arsenous oxide, benclothiaz, calcium cyanamide, calcium polysulfide, DSP, flonicamid, flurimfen, formetanate, hydrogen phosphide, metarn-ammonium, metam-sodium, methyl bromide, potassium oleate, spiromesifen, Sulfoxaflor, sulfur, metaflumizone, spirotetramat, pyrifluquinazone, spinetoram, chlorantraniliprole, tralopyril, diafenothion.

A compound of the formula (A):

![Chemical Structure](attachment:image)

wherein

X^{a1} represents a methyl group, a chlorine atom, a bromine atom or a fluorine atom, X^{a2} represents a fluorine atom, a chlorine atom, a bromine atom, a c_1-c_4 haloalkyl group or a c_1-c_4 haloalkoxy group, X^{a3} represents a fluorine atom, a chlorine atom or a bromine atom, X^{a4} represents an optionally substituted c_1-c_4 alkyl group, an optionally substituted c_3-c_4 alkenyl group, an optionally substituted...
C₃-C⁴ alkynyl group, an optionally substituted C₃-C⁵ cycloalkylalkyl group or a hydrogen atom, X₅ represents a hydrogen atom or a methyl group, X₆ represents a hydrogen atom, a fluorine atom or a chlorine atom, and X₇ represents a hydrogen atom, a fluorine atom or a chlorine atom.

A compound of the formula (B):

\[
\begin{array}{c}
\text{X}^{b1} \quad \text{X}^{b4}
\end{array}
\]

wherein

X₈ represents a X₈²-NH-C(=O) group, a X₈²-C(-O)-NH-CH₃ group, a X₈³-S(0) group, an optionally substituted pyrrol-1-yl group, an optionally substituted imidazol-1-yl group, an optionally substituted pyrazol-1-yl group or an optionally substituted 1,2,4-triazol-1-yl group, X₈² represents an optionally substituted C₁-C₄ haloalkyl group such as a 2,2,2-trifluoroethyl group or an optionally substituted C₃-C₆ cycloalkyl group such as a cyclopropyl group, X₈³ represents an optionally substituted C₁-C₄ alkyl group such as a methyl group, and X₈⁴ represents a hydrogen atom, a chlorine atom, a cyano group or a methyl group.

A compound of the formula (C):
wherein

X^1 represents an optionally substituted C_1-C_4 alkyl group such as a 3,3,3-trifluoropropyl group, an optionally substituted C_1-C_4 alkoxy group such as a 2,2,2-trichloroethoxy group, an optionally substituted phenyl group such as a 4-cyanophenyl group or an optionally substituted pyridyl group such as a 2-chloro-3-pyridyl group, X^2 represents a methyl group or a trifluoromethylthio group, and X^3 represents a methyl group or a halogen atom.

Examples of the active ingredient as the miticides include the followings:

aceguinocyl, amitraz, benzoxylic acid, bifenthrin, bromopropylate, chinomethionat, chlorobenzilate, CPCBS (chlorfenosen), clofentezine, cyflumetofen, keltane (which is also referred to as dicofol), etoxazole, fenbutatin oxide, fenothiocarb, fenpyroximate, fluacrypyrim, halfenprox, hexythiazox, propargite (abbrev. BPPS), polynactins, pyridaben, pyrimidifen, tebufenpyrad,
tetradifon, spirodiclofen, spiromesifen, spirotetramat, amidoflumet and cyenopyrafen.

Examples of the active ingredient as the nematicides include the followings:

DCIP, fosthiazate, levamisol, methyisothiocyanate, morantel tartarate and imicyafos.

Examples of the active ingredient as the fungicides include the followings:

(1) Polyhaloalkylthio compounds
captan, folpet and the others.

(2) Organophosphorous compounds
IBP, EDDP, tolclofos-methyl and the others.

(3) Benzimidazole compounds
benomyl, carbendazim, thiophanate-methyl, thiabendazole and the others.

(4) Carboxyamide compounds
carboxin, mepronil, flutolanil, thifluzamid, furametpyr, boscalid, pencytopyrad and the others.

(5) Dicarboxyimide compounds
procymidone, iprodione, vinclozolin and the others.

(6) Acylalanine compounds
metalaxyl and the others.

(7) Azole compounds
triadimefon, triadimenol, propiconazole, tebuconazole, cyproconazole, epoxiconazole, prothioconazole, ipconazole,
triflumizole, prochloraz, penconazole, flusilazole,
diniconazole, bromuconazole, difenoconazole, metconazole,
tetraconazole, myclobutanil, fenbuconazole, hexaconazole,
fluquinconazole, triticonazole, bitertanol, imazalil,
flutriafol and the others.

(8) Morpholine compounds
dodemorph, tridemorph, fenpropimorph and the others.

(9) Strobilurin compounds
azoxystrobin, kresoxim-methyl, metominostrobin,
trifloxystrobin, picoxystrobin, pyraclostrobin,
fluoxastrobins, dimoxystrobin and the others.

(10) Antibiotics
validamycin A, blasticidin S, kasugamycin, polyoxin
and the others.

(11) Dithiocarbamate compounds
mancozeb, maneb, thiuram and the others.

(12) The Other fungicidal active ingredients
fthalide, probenazole, isoprothiolane, tricyclazole,
pyroquilon, ferimzone, acibenzolar S-methyl, carpropamid,
diclocymet, fenoxanil, tiadinil, diclomezine, teclofthalam,
pencycuron, oxolinic acid, TPN, triforine, fenpropidin,
spiroxamine, fluazinam, iminoctadine, fenpiclonil,
fludioxonil, quinoxyfen, fenhexamid, silthiofam,
proquinazid, cyflufenamid, bordeaux mixture, dichlofluanid,
cyprodinil, pyrimethanil, mepanipyrim, diethofencarb,
pyribencarb, famoxadone, fenamidone, zoxamide, ethaboxam,
amisulbrom, iprovalicarb, benthiavalicarb, cyazofamid,
mandipropamid, metrafenone, fluopiram, bixafen and the
others.

Examples of the active ingredient as the synergists include the followings:
piperonyl butoxide, sesamex, sulfoxide, N-(2-
ethylhexyl)-8,9,10-trinorborn-5-ene-2,3-dicarboximide (MGK
264), N-declyimidazole, WARF-antiresistan, TBPT, TPP, IBP,
PSCP, methyl iodide (CH$_3$I), t-phenylbutenone,
diethylmaleate, DMC, FDMC, ETP and ETN.

Examples of the subjects to be controlled by the present herbicide include the followings:

Weeds:

Digitaria ciliaris, *Eleusine indica*, *Setaria viridis*,
Setaria faberi, *Setaria glauca*, *Echinochloa crus-galli*,
Panicum dichotomiflorum, *Panicum texanum*, *Brachiaria
platyphylla*, *Brachiaria plantaginea*, *Brachiaria decumbens*,
Sorghum halepense, *Andropogon sorghum*, *Cynodon dactylon*,
Avena fatua, *Lolium multiflorum*, *Alopecurus myosuroides*,
Bromus tectorum, *Bromus sterilis*, *Phalaris minor*, *Apera
spica-venti*, *Poa annua*, *Agropyron repens*, *Cyperus iria*,
Cyperus rotundus, *Cyperus esculentus*, *Portulaca oleracea*,
Amaranthus retroflexus, *Amaranthus hybridus*, *Amaranthus
palmeri, Amaranthus rudis, Abut Hon theophrasti, Sida spinosa, Fallopia convolvulus, Polygonum scabrum, Persicaria pennsylvanica, Persicaria vulgaris, Rumex crispus, Rumex obtusifolius, Fallopia japonica, Chenopodium album, Kochia scoparia, Polygonum longisetum, Solanum nigrum, Datura stramonium, Ipomoea purpurea, Ipomoea hederacea, Ipomoea hederacea var. integriuscula, Ipomoea lacunosa, Convolvulus arvensis, Lamium purpureum, Lamium amplexicaule, Xanthium pensylvanicum, Helianthus annuus, Matricaria perforata or inodora, Matricaria chamomilla, Chrysanthemum segetum, Matricaria matricarioides, Ambrosia artemisiae folia, Ambrosia trifida, Erigeron canadensis, Artemisia princeps, Solidago altissima, Conyza bonariensis, Sesbania exaltata, Cassia obtusifolia, Desmodium tortuosum, Trifolium repens, Pueraria lobata, Vicia angustifolia, Commelina communis, Commelina benghalensis, Galium aparine, Stellaria media, Raphanus raphanistrum, Sinapis arvensis, Capsella bursa-pastoris, Veronica persica, Veronica hederifolia, Viola arvensis, Viola tricolor, Papaver rhoeas, Myosotis scorpioides, Asclepias syriaca, Euphorbia helioscopia, Chamaesyce nutans, Geranium carolinianum, Erodium cicutarium, Equisetum arvense, Leersia japonica, Echinochloa oryzicola, Echinochloa crus-galli var. formosensis, Leptochloa chinensis, Cyperus difformis, Fimbristyli...
uncoides, Scirpus wallichii, Cyperus serotinus, Eleocharis kuroguwai, Bolboschoenus koshevnikovii, Schoenoplectus nipponicus, Monochoria vaginalis, Lindernia procumbens, Dopatrium junceum, Rotala indica, Ammannia multiflora, Elatine triandra, Ludwigia epilobioides, Sagittaria pygmaea, Alisma cana, Limnion, Sagittaria trifolia, Potamogeton distinctus, Oenanthe javanica, Callitriche palustris, Lindernia micrantha, Lindernia dubia, Eclipta prostrata, Murdannia keisak, Paspalum distichum, Leersia oryzoides and the others;

Aquatic plants:

Alternanthera philoxeroides, Limnobium spongia, Ceratopteris (Salvinia sp.), Pistia stratiotes, Hydrotylle verticillata (Hydrocotyle sp.), filamentous algae (Pithophora sp., Cladophora sp.), Ceratophyllum demersum, duckweed (Lemna sp.), Cabomba caroliniana, Hydrilla verticillata, Najas guadalupensis, pond weeds (Potamogeton crispus, Potamogeton illinoensis, Potamogeton pectinatus and the like), watermeals (Wolffia sp.), watermillf oils (Myriophyllum spicatum, Myriophyllum heterophyllum and the like), Eichhornia crassipes and the others;

Moss, Liverworts, Hornworts;

Cyanobacterium;

Ferm;

Sucher of perennial plants (such as pomaceous fruits, stone
fleshy fruits, berry fruits, nuts, citrus fruits, hop and grape).

The present compound can be prepared for example, according to the below-mentioned process.

Process 1

The present compound of the formula (1a) wherein G represents a hydrogen atom can be prepared by reacting the compound of the formula (2) and the compound of the formula (3) in the presence of a base.

\[
\begin{align*}
&\text{(2)} \quad \text{base} \quad \text{(3)} \quad \text{base} \\
\end{align*}
\]

[wherein, \(R^1, R^2, R^3, R^4, X, n, m\) and \(Z\) are the same as defined above]

This reaction is usually carried out in a solvent. Examples of the solvent that can be used include aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; amides such as dimethylformamide and dimethylacetamide; sulfones such as sulfolane; and mixed solvents thereof.
Examples of the base to be used in this reaction includes organic bases such as triethylamine, tripropylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo[5.4.0]7-undecene. The amount used of the base is usually within a range of 1 to 10 molar equivalents and preferably within a range of 2 to 5 molar equivalents of the amount of the compound of the formula (2). The amount used of the compound of the formula (3) is usually within a range of 1 to 3 molar equivalents of the amount of the compound of the formula (2).

The reaction temperature is usually within a range of -60 to 180°C and preferably within a range of -10 to 100°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of this reaction can be confirmed by sampling a part of the reaction mixtures followed by performing analytical means such as thin-layer chromatography and high-performance liquid chromatography. When this reaction is completed, for example, the reaction mixtures is acidified with an acid, mixed with water, extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula (1a).
The present compound of the formula (1b) wherein G represents a group other than a hydrogen atom can be prepared by reacting the compound of the formula (1a) and the compound of the formula G'-X^1.

(1a) \[\begin{array}{c}
R^1 & R^2 & R^3 \\
\hline
\end{array} \]

(1b) \[\begin{array}{c}
R^1 & R^2 & R^3 \\
\hline
\end{array} \]

The present compound of the formula (1b) wherein G represents a group of any one of the formulae:

\[\begin{array}{c}
L & R^5 & O\text{SO}_2 & R^6 \\
\hline
H-W & R^7
\end{array} \]

(wherein L, R^5, R^6, R^7 and W are the same as defined above)

X^1 represents a halogen atom (for example, a chlorine atom, a bromine atom, an iodine atom and the like) or a C_{1-3} alkylsulfonyloxy group optionally substituted with one or more halogen atoms (for example, a methylsulfonyloxy group, a trifluoromethylsulfonyloxy group) or a group of the formula: OG^1 (with the proviso that when G^1 represents a group of the formula:

\[\begin{array}{c}
\text{H} & \text{W} \\
\hline
\text{R}^7
\end{array} \]

X^1 represents a halogen atom or a C_{1-3} alkylsulfonyloxy group optionally substituted with one or more halogen atoms),

R^1, R^2, R^3, R^4, X, n, m and Z are the same as defined
This reaction can be carried in a solvent. Examples of the solvent that can be used includes aromatic hydrocarbons such as benzene and toluene; ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; amides such as dimethylformamide and dimethylacetamide; sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; and mixed solvents thereof.

Examples of the compound of the formula (4) to be used in this reaction include carboxylic halides such as acetyl chloride, propionyl chloride, isobutryl chloride, pivaloyl chloride, benzoyl chloride and cyclohexanecarboxylic acid chloride; carboxylic anhydrides such as acetic anhydride and trifluoroacetic anhydride; halides of carbonate half ester such as methyl chloroformate, ethyl chloroformate and phenyl chloroformate; carbamic halides such as dimethylcarbamoyl chloride; sulfonic halides such as methanesulfonyl chloride and p-toluenesulfonyl chloride; sulfonic anhydrides such as methanesulfonic anhydride and trifluoromethanesulfonic anhydride; alkyl halogenoalkyl ethers such as chloromethyl methyl ether and ethyl chloromethyl ether. The amount used of the compound of the formula (4) is usually within a range of 1 molar equivalent.
or more and preferably within a range of 1 to 3 molar equivalents of the amount of the compound of the formula (1a).

This reaction is usually carried out in the presence of a base. Examples of the base to be used in this reaction include organic bases such as triethylamine, tripropylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo[5.4.0]7-undecene; and inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, calcium carbonate and sodium hydride. The amount used of the base is usually within a range of 0.5 to 10 molar equivalents and preferably within a range of 1 to 5 molar equivalents of the amount of the compound of the formula (1a).

The reaction temperature is usually within a range of -30 to 180°C and preferably within a range of -10 to 50°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of this reaction can be confirmed by sampling a part of the reaction mixtures followed by performing analytical means such as thin-layer chromatography and high-performance liquid chromatography. When this reaction is completed, for example, the reaction mixtures is mixed with water and extracted with an organic
solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula (1b).

The compound of the formula (4) is a known compound, or may be prepared from a known compound.

Process 3

The present compound wherein X represents S(0) can be prepared by oxidizing the compound wherein X represents S. When an alkylthio group, an alkylsulfinyl group, a haloalkylthio group and/or a haloalkylsulfinyl group is/are contained at any position other than X in the compound of the formula (1c), these groups may be oxidized.

\[\text{wherein } R^1, R^2, R^3, R^4, G, n, m \text{ and } Z \text{ are the same as defined above} \]

An oxidizing agent is used in this reaction. Examples of the oxidizing agent includes hydrogen peroxide; peracids such as peracetic acid, perbenzoic acid and m-chloroperbenzoic acid; sodium periodate, ozone, selenium dioxide, chromic acid, dinitrogen tetraoxide, acetyl nitrate, iodine, bromine, N-bromosuccinimide and
iodosylbenzene. The oxidizing agent is used usually within a range of 0.8 to 1.2 moles opposed to 1 mole of the compound of the formula (1c).

The reaction is carried out in a solvent. Examples of the solvent to be used in the reaction include saturated hydrocarbons such as hexane, heptane, octane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene and dichlorobenzene; halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane and carbon tetrachloride; alcohols such as methanol, ethanol and propanol; nitriles such as acetonitrile; amides such as dimethylformamide and dimethylacetamide; sulfones such as sulfolane; organic acids such as acetic acid and propionic acid; and mixed solvents thereof.

The reaction temperature is usually within a range of -50 to 100°C and preferably within a range of 0 to 50°C. The reaction period of this reaction is usually within a range of 10 minutes to 100 hours. The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography. When this reaction is completed, for example, the reaction mixtures is mixed with water and extracted with an organic solvent and the resulting organic layers are treated (for
example, drying and concentration) to obtain the compound of the formula (Id).

Process 4

The present compound wherein \(X \) represents \(S(0) \), can be prepared by oxidizing the compound wherein \(X \) represents \(S \) or \(S(0) \). When an alkylthio group, an alkylsulfinyl group, a haloalkylthio group and/or a haloalkylsulfinyl group is/are contained at any position other than \(X \) in the compound of the formula (1e), these groups may be oxidized.

\[
\begin{align*}
\text{oxidation} &
\end{align*}
\]

(wherein \(r \) is an integer of 0 or 1, and \(R^1, R^2, R^3, R^4, G, n, m \) and \(Z \) are the same as defined above)

An oxidizing agent is used in the reaction. Examples of the oxidizing agent include hydrogen peroxide; peracids such as peracetic acid, perbenzoic acid - and m-chloroperbenzoic acid; sodium periodate, ozone, selenium dioxide, chromic acid, dinitrogen tetraoxide, acetyl nitrate, iodine, bromine, \(N \)-bromosuccinimide, iodosylbenzene, a combination of hydrogen peroxide and tungsten catalyst, a combination of hydrogen peroxide and vanadium, and potassium permanganate. When the compound of

\[
\begin{align*}
\end{align*}
\]
the formula (le) wherein \(r \) is 0 is used, the amount of the oxidizing agent is usually within a range of 2 to 10 moles and preferably within a range of 2 to 4 moles opposed to 1 mole of the compound. Also when the compound of the formula (le) wherein \(r \) is 1 is used, the amount of the oxidizing agent is usually within a range of 1 to 10 moles and preferably within a range of 1 to 3 moles opposed to 1 mole of the compound.

The reaction is carried out in a solvent. Examples of the solvent to be used in the reaction include saturated hydrocarbons such as hexane, heptane, octane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene and dichlorobenzene; halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane and carbon tetrachloride; alcohols such as methanol, ethanol and propanol; nitriles such as acetonitrile; amides such as dimethylformamide and dimethylacetamide; sulfones such as sulfolane; organic acids such as acetic acid and propionic acid; water; and mixed solvents thereof.

The reaction temperature is usually within a range of 0 to 200°C and preferably 20 to 150°C. The reaction period of the reaction is usually within a range of 30 minutes to 100 hours. The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical
means such as thin-layer chromatography and high-performance liquid chromatography. When this reaction is completed, for example, the reaction mixtures is mixed with water and extracted with organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula (If).

Process 5

The present compound of the formula (1a) wherein \(G\) represents a hydrogen atom can be prepared by reacting the compound of the formula (2) and the compound of the formula (31) in the presence of a base.

\[
\text{[wherein, } R^1, R^2, R^3, R^4, X, n, m \text{ and } Z \text{ are the same as defined above]}
\]

The reaction is usually carried out in a solvent. Examples of the solvent that can be used include aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-
dichloroethane; amides such as dimethylformamide and dimethylacetamide; sulfones such as sulfolane; and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, tripropylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo[5.4.0]7-undecene. The amount used of the base is usually within a range of 1 to 10 molar equivalents and preferably within a range of 1 to 5 molar equivalents of the amount of the compound of the formula (2). The amount used of the compound of the formula (3) is usually within a range of 1 to 3 molar equivalents of the amount of the compound of the formula (2).

The reaction temperature is usually within a range of -60 to 180°C and preferably within a range of -10 to 100°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours. The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography. When the reaction is completed, for example, after an acid is added to the reaction mixtures, the reaction mixtures is mixed with water and extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the
Process 6

The present compound of the formula (1g) can be prepared by reacting the compound of the formula (22) and the compound of the formula (21) in the presence of a phosphine.

\[
\begin{array}{c}
\text{(la)}
\\[\text{Process 6}]
\\[\text{The present compound of the formula (1g) can be prepared by reacting the compound of the formula (22) and the compound of the formula (21) in the presence of a phosphine.}
\\[\text{[wherein } G^3 \text{ represents a group of the formula:}
\\[L] \quad \text{R}^5
\\[\text{(wherein L and } R^5 \text{ are the same as defined above)},
\\[G^4 \text{ represents a hydrogen atom or a group of the formula:}
\\[L] \quad \text{R}^5
\\[\text{(wherein L and } R^5 \text{ are the same as defined above)},
\\[R^1, R^2, R^3, R^4, n, m \text{ and } Z \text{ are the same as defined above}]\end{array}
\]

The reaction is usually carried out in a solvent. Examples of the solvent include ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and
dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; and mixed solvents thereof.

Examples of the phosphine include trinormalbutylphosphine and triphenylphosphine. The amount used of the phosphine to be used in the reaction is usually within a range of 1 mole or more and preferably within a range of 1 to 3 moles opposed to 1 mole of the compound of the formula (22). The amount used of the compound of the formula (21) to be used in the reaction is usually within a range of 1 mole or more and preferably within a range of 1 to 3 moles opposed to 1 mole of the compound of the formula (22).

The reaction temperature is usually within a range of -60 to 180°C and preferably within a range of -10 to 100°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours. The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography. When the reaction is completed, for example, after an acid is added to the reaction mixtures, the reaction mixtures is mixed with water and extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the
Process 7

The present compound of the formula (lg) can be prepared by reacting the compound of the formula (34) and the compound of the formula (10).

\[
\begin{align*}
R^{10} & \text{ represents a } C_{16} \text{ alkyl group or a } C_{6-10} \text{ aryl group} \\
& \text{(with the proviso that the } C_{16} \text{ alkyl group and the } C_{6-10} \text{ aryl group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the } C_{6-10} \text{ aryl group may have one or more } C_{1-6} \text{ alkyl groups and when two or more } C_{16} \text{ alkyl groups exist, the alkyl groups may be same or different to each other;}
R^1, R^2, R^3, R^4, n, m, z, G^3 \text{ and } G^4 \text{ are the same as defined above)}
\end{align*}
\]

The reaction is usually carried out in a solvent. Examples of the solvent include ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; halogenated hydrocarbons such as
dichloromethane, chloroform and 1,2-dichloroethane; amides such as dimethylformamide and dimethylacetamide; and mixed solvents thereof. The amount used of the compound of the formula (10) to be used in the reaction is usually within a range of 1 mole or more and preferably within a range of 1 to 5 moles opposed to 1 mole of the compound of the formula (34).

The reaction temperature is usually within a range of -60 to 180°C and preferably within a range of -10 to 100°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours. The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography. When the reaction is completed, for example, after an acid is added to the reaction mixtures, the reaction mixtures is mixed with water and extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula (Ig).

Process 8

The present compound of the formula (lh) can be prepared by hydrolyzing the compound of the formula (lg) in the presence of a base.
[wherein \(R_1, R_2, R_3, R_4, n, m, Z \) and \(G^4 \) are the same as defined above]

The reaction is usually carried out in a solvent. Examples of the solvent include ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; alcohols such as methanol and ethanol; amides such as dimethylformamide and dimethylacetamide; and mixed solvents thereof.

Examples of the base to be used in the reaction include lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium methoxide and sodium ethoxide. The amount used of the base is usually within a range of 1 to 10 molars and preferably within a range of 1 to 5 molars opposed to 1 mole of the compound of the formula \((lg)\).

The reaction temperature is usually within a range of \(-60\) to \(180^\circ C\) and preferably within a range of \(-10\) to \(100^\circ C\). The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-
performance liquid chromatography. When the reaction is completed, for example, after an acid is added to the reaction mixtures, the reaction mixtures is mixed with water and extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula (1h).

Process 9

The present compound of the formula (1i) can be prepared by reacting the compound of the formula (35) and the compound of the formula (11) in the presence of cupper sulfate and sodium ascorbate.

\[\text{wherein} \]

\(R^{11}\) represents a C6-10 aryl group (with the proviso that the C6-10 aryl group may have one or more halogen atoms or C1-3 haloalkyl groups, and when two or more halogen atoms or C1-3 haloalkyl groups exist, the halogen atoms or the C1-3 haloalkyl groups may be same or different to each other respectively);

\(R^1, R^2, R^3, n, m\) and \(Z\) are the same as defined above]
The reaction is usually carried out in a solvent. Examples of the solvent include nitriles such as acetonitrile; amides such as dimethylformamide; sulfoxides such as dimethyl sulfoxide; and mixed solvents thereof.

The amount used of the compound of the formula (11) is usually within a range of 1 to 10 molar equivalents and preferably within a range of 1 to 3 molar equivalents of the amount of the compound of the formula (35). The amount used of copper sulfate is usually within a range of 0.02 to 0.2 molar equivalents of the amount of the compound of the formula (35). The amount used of sodium ascorbate is usually within a range of 0.05 to 0.5 molar equivalents of the amount of the compound of the formula (35).

The reaction temperature is usually within a range of 20 to 100°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography. When the reaction is completed, for example, after an acid is added to the reaction mixtures, the reaction mixtures is mixed with water and extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula.
The compounds that are prepared according to the above-mentioned processes 1 to 9 may be isolated and/or purified by other known means such as concentration, concentration under reduced pressure, extraction, re-extraction, crystallization, recrystallization and chromatography.

Reference process 1

The compound of the formula (3) can be prepared for example, by reacting the compound of the formula (5) and lead tetraacetate in the presence of a base according to a method described in Journal of Chemical Society Perkin Transition 1 (1990) p.721 by Marie-Luise Huber and John T. Pinhey.

[wherein Z and n are the same as defined above]

The compound of the formula (5) is a known compound, or may be prepared from a known compound. The compound can be prepared for example, according to the method described in JP 2008-133252 A or the similar method thereof.
Reference process 2

The compound of the formula (2) can be prepared for example, according to the below-mentioned reaction scheme.

\[\text{(1) hydrolysis} \]
\[\text{(2) decarboxylation} \]

[wherein \(R^8 \) represents a C1-3 alkyl group, and \(X, m, R^1, R^2, R^3, R^4 \) and \(n \) are the same as defined above]

The compound of the formula (2) can be prepared for example, according to a method described in JP 63-146856.

In the step 1, the present compound of the formula (7) can be prepared by Wittig Reaction between the compound of the formula (9) and 1-triphenylphosphoranylidene-2-propanone.

In the step 2, the compound of the formula (6) can be prepared by reacting the compound of the formula (7) and the compound of the formula (8) under basic condition. Among the compound of the formula (8), the dimethyl malonate or diethyl malonate is preferred. This reaction
is carried out in an appropriate solvent such as tetrahydrofuran, methanol, ethanol and toluene.

In the step 3, the compound of the formula (6) is hydrolyzed and then decarboxylated to prepare the compound of the formula (2).

The compound of the formula (9) is a known compound, or may be prepared from a known compound, and may be prepared for example, according to the methods described in Tetrahedron letter 28 (1987) 2893-2894, Tetrahedron letter 47 (2006) 5869-5873, Tetrahedron 42 (1986) 6071-6095 or JP 63-146856 or the similar methods thereof.

Reference process 3

The compound of the formula (3-1) can be prepared for example, according to the below-mentioned methods.

\[
\begin{align*}
\text{(32)} & \quad \text{(31)} \\
\text{[wherein } Q \text{ represents a halogen atom, and } Z \text{ and } n \text{ are the same as defined above]} \\
\text{The compound of the formula (31) can be prepared for example, from the compound of the formula (3-2) according to the method described in Bull. Chem. Soc. Jpn., 65, 3504-3506 (1992).}
\end{align*}
\]
The compound of the formula (32) is a known compound, or may be prepared from a known compound, and may be prepared for example, according to the method described in WO 2010102761 or WO 2006084663 or the similar methods thereof.

Reference Preparation Example 4

The compound of the formula (22) can be prepared for example, according to the below-mentioned method.

\[\text{wherein } G^2 \text{ represents a benzyl group or a para-methoxybenzyl group, and } G^3, m, R^1, R^2, R^3, R^8, Z, X^1 \text{ and } n \text{ are the same as defined above}\]

The compound of the formula (25) can be prepared for
example, according to the method described in JP 63-146856 A.

Step 1

The compound of the formula (27) can be prepared by Wittig Reaction between the compound of the formula (29) and 1-triphenylphosphoranylidene-2-propanone.

Step 2

The compound of the formula (26) can be prepared by reacting the compound of the formula (27) and the compound of the formula (8) under basic condition.

Examples of the compound of the formula (8) include dimethylmalonate or diethylmalonate. Examples of the solvent to be used in the reaction include tetrahydrofuran, methanol, ethanol and toluene.

Step 3

The compound of the formula (25) can be prepared by hydrolyzing the compound of the formula (26) followed by decarboxylation.

Step 4

The compound of the formula (24) can be prepared by reacting the compound of the formula (25) and the compound of the formula (3) in the presence of a base.

The reaction is usually carried out in a solvent.

Examples of the solvent include aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as diethyl
ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; amides such as dimethylformamide and dimethylacetamide; sulfones such as sulfolane; and mixed solvents thereof.

Examples of the base to be used in the reaction include organic bases such as triethylamine, tripropylamine, pyridine, dimethylaminopyridine and 1,8-diazabicyclo[5.4.0]7-undecene. The amount used of the base is usually within a range of 1 to 10 molars and preferably within a range of 2 to 5 molars opposed to 1 mole of the compound of the formula (25). The amount used of the compound of the formula (3) is usually within a range of 1 to 3 molar equivalents of the amount of the compound of the formula (25).

The reaction temperature is usually within a range of -60 to 180°C and preferably within a range of -10 to 100°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography. When the reaction is completed, for example, after an acid is added to the reaction mixtures, the reaction mixtures is mixed with
water and extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula (24).

Step 5

The compound of the formula (23) can be prepared by reacting the compound of the formula (24) and the compound of G^3-X^1 in the presence of a base. The reaction is usually carried out in a solvent. Examples of the solvent include aromatic hydrocarbons such as benzene and toluene; ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; amides such as dimethylformamide and dimethylacetamide; sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; and mixed solvents thereof.

Examples of the compound of G^3-X^1 to be used in the reaction include carboxylic halides such as acetyl chloride, propionyl chloride, isobutyryl chloride, pivaloyl chloride, benzoyl chloride, cyclohexanecarboxylic acid chloride; carboxylic anhydrides such as acetic anhydride and trifluoroacetic anhydride; halides of carbonate ester such as methyl chloroformate, ethyl chloroformate and phenyl chloroformate; carbamic halides such as dimethylcarbamoyl chloride; sulfonic halides such as methanesulfonyl chloride
and p-toluenesulfonyl chloride; sulfonic anhydrides such as methanesulfonic anhydride and trifluoromethanesulfonic anhydride; alkyl halogenoalkyl ethers such as chloromethyl methyl ether and ethyl chloromethyl ether.

The amount used of the compound of G^3-X^1 to be used in the reaction is usually within a range of 1 mole or more and preferably within a range of 1 to 3 moles opposed to 1 mole of the compound of the formula (24).

Examples of the base to be used in the reaction include organic bases such as triethylamine, tripropylamine, pyridine, dimethylaminopyridine and 1,8-diazabicyclo[5.4.0]7-undecene; and inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, calcium carbonate and sodium hydride.

The amount used of the base is usually within a range of 0.5 to 10 moles and preferably within a range of 1 to 5 moles opposed to 1 mole of the compound of the formula (24).

The reaction temperature is usually within a range of -30 to 180°C and preferably within a range of -10 to 50°C.

The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-
performance liquid chromatography. When the reaction is completed, for example, the reaction mixtures is mixed with water and extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula (23).

The compound of G^3-X^1 is a known compound, or may be prepared from a known compound.

Step 6

The compound of the formula (22) can be prepared by reacting the compound of the formula (23) in the presence of a metal.

The reaction is usually carried out in a solvent. Examples of the solvent include aromatic hydrocarbons such as benzene and toluene; ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; alcohols such as methanol and ethanol; esters such as ethyl acetate; and mixed solvents thereof.

Examples of the metal to be used in the reaction include palladium and platinum. The amount used of the metal to be used in the reaction is usually within a range of 0.01 mole or more and preferably within a range of 0.01 to 0.5 mole opposed to 1 mole of the compound of the formula (23).

The reaction temperature is usually within a range of
-30 to 180°C and preferably within a range of -10 to 50°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography. When the reaction is completed, for example, the reaction mixtures is filtered through Celite (registered trademark) and the resulting filtrates are treated (for example, concentration under reduced pressure) to obtain the compound of the formula (22).

Reference Preparation Example 5

The compound of the formula (34) can be prepared by reacting the compound of the formula (22) and the compound of the formula (35).

[wherein R^{10}, X^1, R^3, R^2, R^3, n, m and Z are the same as defined above]

The reaction is usually carried out in a solvent. Examples of the solvent include aromatic hydrocarbons such
as benzene and toluene; ethers such as diethyl ether, diisopropylether, dioxane, tetrahydrofuran and dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; amides such as dimethyl formamide and dimethylacetamide; sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; and mixed solvents thereof.

Examples of the compound of the formula (35) to be used in the reaction include sulfonic halides such as methanesulfonyl chloride and p-toluenesulfonyl chloride; sulfonic anhydrides such as methanesulfonic anhydride and trifluoromethanesulfonic anhydride. The amount used of the compound of the formula (35) to be used in the reaction is usually within a range of 1 mole or more and preferably within a range of 1 to 3 moles opposed to 1 mole of the compound of the formula (22).

The reaction is usually carried out in the presence of a base. Examples of the base to be used in this reaction include organic bases such as triethylamine, tripropylamine, pyridine, dimethylaminopyridine and 1,8-diazabicyclo[5.4.0]7-undecene; and inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, calcium carbonate and sodium hydride. The amount used of the base is usually within a range of 0.5 to
10 moles and preferably within a range of 1 to 5 moles opposed to 1 mole of the compound of the formula (22).

The reaction temperature is usually within a range of -30 to 180°C and preferably within a range of -10 to 50°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography.

When the reaction is completed, for example, the reaction mixtures is mixed with water and extracted with an organic solvent and the resulting organic layers are treated (for example, drying and concentration) to obtain the compound of the formula (34).

The compound of the formula (35) is a known compound, or may be prepared from a known compound.

Reference Preparation Example 6

The compound of the formula (35) can be prepared by reacting the compound of the formula (34-a) and sodium azide in the presence of 15-crown-5-ether.
[wherein R_0, R_1, R_2, R_3, G_3, n, m and Z are the same as defined above]

The reaction is usually carried out in a solvent.

Examples of the solvent include amides such as dimethylformamide and dimethylacetamide; sulfoxides such as dimethyl sulfoxide; and mixed solvents thereof. The amount used of the sodium azide is usually within a range of 1 to 20 molar equivalents and preferably within a range of 2 to 10 molar equivalents of the amount of the compound of the formula (34-a). The amount used of the 15-crown-5 is usually within a range of 0.02 to 0.2 molar equivalents of the amount of the compound of the formula (34-a).

The reaction temperature is usually within a range of -10 to 120°C. The reaction period of this reaction is usually within a range of 10 minutes to 30 hours.

The completion of the reaction can be confirmed by analyzing a part of the reaction mixtures on analytical means such as thin-layer chromatography and high-performance liquid chromatography.

When the reaction is completed, for example, the reaction mixtures are concentrated to obtain the compound
of the formula (35).

The compound of the formula (34) can be prepared for example, according to the methods described in the Reference Preparation Example 5.

Some examples of the present compounds that can be prepared according to the above-mentioned processes are shown below.
EXAMPLES

The present invention is described below in more detail with Preparation Examples, Reference Examples, Formulation Examples and Test Examples, but the present invention should not be construed to be limited thereto.

The 'room temperature' (hereinafter sometimes abbreviated to as 'RT') described in Preparation Example and Reference Example means usually 10 to 30°C. 1H NMR means a proton nuclear magnetic resonance spectrum and Tetramethyl silane is used as an internal standard and chemical shift (δ) is expressed in ppm.

The following abbreviations are sometimes used in Preparation Example and Reference Example.

CDCl$_3$: Deuterated chloroform, s: singlet, d: doublet, t: triplet, q: quartet, brs: broad singlet, m: multiplet, J: coupling constant, Me: methyl group, Et: ethyl group, Phe: phenyl group, OMe: methoxy group, OAc: acetoxy group, Pyr:
Preparation Example 1-1: Preparation of the compound of the formula (1-1)

<Preparation of the compound of the formula 9-1>

At room temperature, the compound of the formula (10-1) 10g and tetrahydrofuran 15ml were mixed and stirred and the resulting mixture was cooled to 0°C and then thereto were added dropwise 95% acrolein 4.0g and triethylamine 0.1g. The resulting mixture was stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixture was added to water. The resulting mixture was extracted with tert-butyl methyl ether. The organic layer was washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-1) 18.1g.

1H NMR (CDCl$_3$)

δ ppm: 9.77 (1H, s), 7.51 (2H, d), 7.36 (2H, d), 3.28-3.20 (2H, m), 2.87-2.80 (2H, m)

<Preparation of the compound of the formula 7-1>
At room temperature, the compound of the formula (9-1) 65.7g and triphenylphosphine acetylmethylene 100g were dissolved in chloroform 330ml. The resulting solution was stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residue were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-1) 28.6g.

1H-NMR (CDCl$_3$)

δ ppm: 7.52 (2H, d), 7.39 (2H, d), 6.82-6.74 (1H, m), 6.13 (1H, dd), 3.11 (2H, m), 2.63-2.56 (2H, m), 2.23 (3H, s)

<Preparation of the compound of the formula 6-1>

At RT, 28% sodium methoxide methanol solution 22g and the compound of the formula (8-1) 7.6g were dissolved in
tetrahydrofuran 250ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, heating was stopped and to the resulting mixtures were added the compound of the formula (7-1) 28.6g. Thereafter, the resulting mixtures were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed thoroughly with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-1) 24.5g.

1H NMR (d-DMSO)

δ ppm: 7.63 (2H, d), 7.45 (2H, d), 4.39 (1H, s), 3.46 (3H, s), 3.11 (1H, m), 2.95 (1H, m), 2.83 (1H, d), 2.34-2.26 (1H, m), 2.12 (1H, dd), 1.78 (1H, dd), 1.53-1.47 (2H, m)

<Preparation of the compound of the formula 2-1>

At RT, the compound of the formula (6-1) 12g was dissolved in water 180ml. To the resulting solutions were added anhydrous sodium carbonate 10g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the
aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers was concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-1) 18g.

\[^1H \text{NMR (d- DMSO)} \]
\[\delta \text{ ppm: 11.07 (1H, s), 7.63 (2H, d), 7.48 (2H, d), 5.22 (1H, s), 3.16-3.05 (2H, m), 2.33-1.69 (7H, m)} \]

<Preparation of the compound of the formula 3-1>

\[
\begin{array}{c}
\begin{array}{c}
\text{B(OH)}_2 \\
(5-1) \\
\end{array}
\end{array}
\xrightarrow{\text{Pb(OAc)}_3} \begin{array}{c}
\begin{array}{c}
Pb(OAc)_3 \\
(3-1) \\
\end{array}
\end{array}
\]

Under nitrogen atmosphere, at RT, lead tetraacetate 26.5g, mercury acetate 0.83g and the compound of the formula (5-1) 10g were dissolved in chloroform 110ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, the reaction solutions were stirred at 40°C for 4 hours. The reaction solutions were cooled to rt and filtered through Celite (TM). The resulting filtrates were concentrated under reduced pressure to give yellow oils. To the oils was added hexane and the resulting mixtures were concentrated under reduced pressure to yellow solids.
Under nitrogen atmosphere, at RT, the resulting solids were dissolved in chloroform 260ml. To the resulting solutions was added potassium carbonate 86.2g and the resulting mixtures were stirred quickly for 10 minutes. Thereafter, the reaction solutions were filtered through Celite (TM). The resulting filtrates were concentrated under reduced pressure to give the compound of the formula (3-1) 21g.

1H NMR (CDCl$_3$)

δ ppm: 7.05 (2H, s), 2.90 (4H, m), 2.35 (3H, s), 2.06 (9H, s), 1.33-1.27 (6H, m).

<Preparation of the compound of the formula 1-1>

Under nitrogen atmosphere, at RT, the compound of the formula (2-1) 240mg and dimethylaminopyridine 460mg were dissolved in a mixture of chloroform 2.5ml and toluene 0.5ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter to the resulting solutions was added the compound of the formula (3-1) 440mg under nitrogen atmosphere. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered.
through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-1) 120mg.

\[\text{H NMR (CDC} \text{1)} \]
\[\delta \text{ ppm: 7.54 (2H, d), 7.38 (2H, d), 6.98 (2H, s), 5.50 (1H, s), 3.07 (2H, ddd), 2.71 (2H, td), 2.47-2.24 (10H, m), 1.88 (2H, g), 1.10-1.03 (6H, m)} \]

Preparation Example 1-2: Preparation of the compound of the formula (1-2)

<Preparation of the compound of the formula 3-2>

\[
\begin{align*}
\text{B(OH)}_2 & \quad \text{Pb(OAc)}_3 \\
(5-2) & \quad (3-2)
\end{align*}
\]

Under nitrogen atmosphere, at RT, lead tetraacetate 6.2g, mercury acetate 194mg and the compound of the formula (5-2) 2g were dissolved in chloroform 25ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, the reaction solutions were stirred at 40°C for 4 hours. The
reaction solutions were cooled to rt and filtered through Celite (TM). The resulting filtrates were concentrated under reduced pressure to give yellow oils. To the resulting oils added hexane and the resulting mixtures were concentrated under reduced pressure to yellow oils. Under nitrogen atmosphere, at RT, the resulting solids were dissolved in chloroform 50ml. To the resulting solutions was added potassium carbonate 20g and the resulting mixtures were stirred quickly for 10 minutes. Thereafter, the reaction solutions were filtered through Celite (TM). The resulting filtrates were concentrated under reduced pressured to give the compound of the formula (3-2) 4g.

\[^1H \text{ NMR (CDCl}_3) \]
\[\delta \text{ ppm: 6.99 (2H, s), 2.57 (6H s), 2.30 (3H, s), 2.06 (9H, s)} \]

<Preparation of the compound of the formula 1-2>

\[
\begin{align*}
&\text{F}_3\text{C}-\text{S} \quad \text{O} \\
&(2-1) \quad \text{H} \\
&\text{+} \\
&(3-2) \quad \text{Pb(OAc)}_3 \\
&\Rightarrow \text{F}_3\text{C}-\text{S} \\
&(1-2) \quad \text{O} \\
&\text{OH}
\end{align*}
\]

Under nitrogen atmosphere, at RT, the compound of the formula (2-1) 240mg and dimethylaminopyridine 460mg were dissolved in a mixture of chloroform 2.5ml and toluene 0.5ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter under nitrogen atmosphere, to the resulting solutions was added
the compounds of the formula (3-2) 420mg. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-2) 125mg.

1H NMR (CDCl$_3$)

δ ppm: 7.54 (2H, d), 7.37 (2H, d), 6.94 (2H, s), 5.72 (1H, s), 3.11-3.01 (2H, m), 2.70 (2H, td), 2.44-2.01 (12H, m), 1.87 (2H, q)

Preparation Example 1-3: Preparation of the compound of the formula (1-3)

<Preparation of the compound of the formula 3-3>

\[
\begin{align*}
\text{Phe} & \quad \text{B(OH)}_2 \\
(5-3) & \quad \rightarrow \\
\text{Phe} & \quad \text{Pb(OAc)}_3
\end{align*}
\]

Under nitrogen atmosphere, at RT, lead tetraacetate 8.4g, mercury acetate 263mg and the compound of the formula
4.2g were dissolved in chloroform 35ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, the reaction solutions were stirred at 40°C for 4 hours. The reaction solutions were cooled to rt and filtered through Celite (TM). The resulting filtrates were concentrated under reduced pressure to give yellow oils.

To the resulting oils was added hexane and the resulting mixtures were concentrated under reduced pressure to give yellow solids. Under nitrogen atmosphere, at RT, the resulting solids were dissolved in chloroform 80ml. To the resulting solutions was added potassium carbonate 27.4g and the resulting mixtures were stirred quickly for 10 minutes. Thereafter, the reactions solutions were filtered through Celite (TM). The resulting filtrates were concentrated under reduced pressure to give the compound of the formula (3-3) 6.4g.

1H NMR (CDCl$_3$)

δ ppm: 7.60-7.31 (7H, m), 3.06-2.93 (4H, m), 2.07 (9H, s), 1.39-1.32 (6H, m)
Under nitrogen atmosphere, at RT, the compound of the formula (2-1) 240mg and dimethylaminopyridine 460mg were dissolved in a mixture of chloroform 2.5ml and toluene 0.5ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-3) 500mg. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-3) 190mg.

1H NMR (CDCl$_3$)

δ ppm: 7.57 (4H, td), 7.45 (2H, dd), 7.40-7.34 (5H, m), 5.56 (1H, s), 3.10 (2H, dt), 2.78-2.71 (2H, m), 2.53-2.30 (7H, m), 1.90 (2H, q), 1.17-1.09 (6H, m)

Preparation Example 1-4: Preparation of the compound of the formula (1-4)
<Preparation of the compound of the formula 9-2>

At RT, the compound of the formula (10-2) 10g and tetrahydrofuran 30ml were mixed and stirred, and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 4.0g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-2) 13g.

1H NMR (CDCl$_3$) 15 ppm: 9.80 (1H, s), 8.67-8.66 (1H, m), 7.67 (1H, dd), 7.26 (1H, dd), 3.48 (2H, ddd), 2.98-2.95 (2H, m)

<Preparation of the compound of the formula 7-2>

At RT, the compound of the formula (9-2) 13g and triphenylphosphine acetylmethylene 20g were dissolved in
chloroform 65ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-2) 13g.

1H NMR (CDCl$_3$)

δ ppm: 8.67 (1H, dd), 7.69-7.66 (1H, m), 7.29 (1H, d), 6.88-6.80 (1H, m), 6.16 (1H, dt), 3.36 (2H, t), 2.67 (2H, tt), 2.24 (3H, s)

<Preparation of the compound of the formula 6-2>

At RT, 28% sodium methoxide methanol solution 10g and the compound of the formula (8-1) 6.7g were dissolved in tetrahydrofuran 130ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-2) 13g. Thereafter, the
resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-2) 15.4g.

1H NMR (d-DMSO)

δ ppm: 8.78 (1H, d), 7.98 (1H, dd), 7.50 (1H, d), 4.40 (1H, s), 3.49 (3H, s), 3.26 (1H, dq), 3.06 (1H, dt), 2.83 (1H, d), 2.34-2.24 (1H, m), 2.13 (1H, dd), 1.79 (1H, dt), 1.63-1.49 (2H, m)

<Preparation of the compound of the formula 2-2>

At RT, the compound of the formula (6-2) 5g was dissolved in water 70ml. To the resulting solutions was added anhydrous sodium carbonate 4g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting
crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-2) 3.1g.

\[^1\text{H NMR (d-DMSO)} \]

\[\delta \text{ ppm}: 11.07 (1H, s), 8.80 (1H, d), 7.98 (1H, dd), 7.52 (1H, d), 5.21 (1H, s), 3.23 (2H, t), 2.34 (2H, d), 2.13 (3H, m), 1.73 (2H, m) \]

<Preparation of the compound of the formula 1-4>

Under nitrogen atmosphere, at RT, the compound of the formula (2-2) 540mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate.
and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-4) 320mg.

1H NMR (CDCl$_3$)

δ ppm: 8.68-8.67 (1H, m), 7.67 (1H, dd), 7.27 (1H, d), 6.98 (2H, s), 5.52 (1H, s), 3.31 (2H, tt), 2.75 (2H, ddd), 2.51-2.23 (10H, m), 1.92 (2H, ddd), 1.5 (6H, dt)

Preparation Example 1-5: Preparation of the compound of the formula (1-5)

$<$Preparation of the compound of the formula 1-5$>$

Under nitrogen atmosphere, at RT, the compound of the formula (2-2) 570mg and dimethylaminopyridine 1.1g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-2) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt
and, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-5) 410mg.

1H NMR (CDCl₃)

δ ppm: 8.66 (1H, s), 7.66 (1H, dd), 7.26 (1H, d), 6.93 (2H, s), 5.66 (1H, s), 3.32-3.28 (2H, m), 2.74 (2H, t), 2.46-2.04 (12H, m), 1.91 (2H, m)

Preparation Example 1-6: Preparation of the compound of the formula (1-6)

At RT, the compound of the formula (10-3) 10g and tetrahydrofuran 30ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 6.6g and triethylamine 0.2g. The resulting mixtures were stirred under ice-cooling for
1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-3) 15g.

1H NMR (CDCl$_3$)

δ ppm: 9.74 (1H, s), 7.36-7.17 (5H, m), 3.17 (2H, t), 2.75 (2H, t)

<Preparation of the compound of the formula 7-3>

At RT, the compound of the formula (9-3) 10g and triphenylphosphine acetylmethylene 21g were dissolved in chloroform 70ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-3) 7.2g.
NMR (CDCl₃)

δ ppm: 7.35-7.25 (4H, m), 7.18 (1H, m), 6.80-6.71 (1H, m), 6.07 (1H, dt), 3.01 (2H, tt), 2.51 (2H, ddd), 2.23 (3H, s)

<Preparation of the compound of the formula 6-3>

At RT, 28% sodium methoxide methanol solution 7.5g and the compound of the formula (8-1) 5g were dissolved in tetrahydrofuran 100ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-3) 7.2g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering, washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-3) 10g.

1H NMR (d-DMSO)

δ ppm: -7.33-7.27 (4H, m), 7.17 (1H, dq), 4.37 (1H, s), 3.48 (3H, s), 3.02-2.96 (1H, m), 2.87-2.78 (2H, m), 2.33-2.23 (1H, m), 2.08 (1H, dd), 1.74 (1H, dd), 1.44 (2H, m)

<Preparation of the compound of the formula 2-3>
At RT, the compound of the formula (6-3) 5g was dissolved in water 80ml. To the resulting solutions was added anhydrous sodium carbonate 4.8g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-3) 3.4g.

1H NMR (d-DMSO)

δ ppm: 11.05 (1H, s), 7.31 (4H, m), 7.18 (1H, m), 5.19 (1H, s), 3.00 (2H, t), 2.33-1.99 (5H, m), 1.63 (2H, m)

<Preparation of the compound of the formula 1-6>

Under nitrogen atmosphere, at RT, the compound of the formula (2-3) 430mg and dimethylaminopyridine 1.05g were
dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to the compound of the formula (1-6) 310mg.

1H NMR (CDCl$_3$)

δ ppm: 7.36-7.20 (5H, m), 6.97 (2H, s), 5.59 (1H, s), 3.00 (2H, ddd), 2.67 (2H, ddt), 2.47-2.20 (10H, m), 1.82 (2H, q), 1.10-1.02 (6H, m)

Preparation Example 1-7: Preparation of the compound of the formula (1-7)

<Preparation of the compound of the formula 9-4>
At RT, the compound of the formula (10-4) 5g and tetrahydrofuran 15ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 3.0g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-4) 7.4g.

1H NMR (CDCl$_3$)

δ ppm: 9.72 (1H, s), 7.24 (2H, d), 7.18 (2H, d), 3.12 (2H, t), 2.71 (2H, t), 2.31 (3H, s)

<Preparation of the compound of the formula 6-4>

At RT, the compound of the formula (9-4) 7.4g and triphenylphosphine acetylmethylene 14.4g were dissolved in chloroform 50ml. The resulting solutions were stirred at
0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to the compound of the formula (7-4) 6.0g.

Continuously, at RT, 28% sodium methoxide methanol solution 5.8g and the compound of the formula (8-1) 4.0g were dissolved in tetrahydrofuran 80ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-4) 6.0g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-4) 6.7g.

1H NMR (d-DMSO)

δ ppm: 7.19 (2H, d), 7.12 (2H, d), 4.39 (1H, s), 3.48 (3H, s), 2.97-2.90 (1H, m), 2.82-2.75 (2H, m), 2.24 (3H, s), 2.10-2.04 (1H, m), 1.72 (1H, dd), 1.49-1.35 (2H, m)
At RT, the compound of the formula \((6-4)\) 5g was dissolved in water 80ml. To the resulting solution was added anhydrous sodium carbonate 4.6g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula \((2-4)\) 2.9g.

\(^1\)H NMR (\(d\)-DMSO)

\(\delta\) ppm: 11.04 (1H, s), 7.23 (2H, d), 7.13 (2H, d), 5.19 (1H, s), 2.95 (2H, t), 2.42-1.99 (8H, m), 1.60-1.58 (2H, m)
Under nitrogen atmosphere, at RT, the compound of the formula (2-4) 450mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-7) 340mg.

1H NMR (CDCl$_3$)

δ ppm: 7.27 (2H, d), 7.12 (2H, d), 6.98 (2H, s), 5.47 (1H, s), 2.96 (2H, dt), 2.67 (2H, ddd), 2.45-2.21 (13H, m), 1.80 (2H, q), 1.06 (6H, dt)

Preparation Example 1-8: Preparation of the compound of the formula (1-8)
At RT, the compound of the formula (10-5) 4g and tetrahydrofuran 15ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 2.5g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-5) 5.5g.

1H NMR (CDCl$_3$)

δ ppm: 9.73 (1H, s), 7.36 (2H, d), 6.85 (2H, d), 3.80 (3H, s), 3.06 (2H, t), 2.68 (2H, t)

At RT, the compound of the formula (9-5) 5.5g and triphenylphosphine acetylmethylene 10g were dissolved in
chloroform 40ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-5) 5.4g.

Continuously, at RT, 28% sodium methoxide methanol solution 4.8g and the compound of the formula (8-1) 3.3g were dissolved in tetrahydrofuran 70ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-5) 5.4g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-5) 5.7g.

1H NMR (d-DMSO)

δ ppm: 7.28 (2H, d), 6.90 (2H, d), 4.38 (1H, s), 3.75 (3H, s), 3.47 (3H, s), 2.90-2.69 (3H, m), 2.30-2.22 (1H, m),
<Preparation of the compound of the formula 1-8>

At RT, the compound of the formula (6-5) 5g was dissolved in water 80ml. To the resulting solutions was added anhydrous sodium carbonate 4.4g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure, and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-5) 3.8g.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-5) 480mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula
(3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-8) 174mg.

1. NMR (CDCl₃)

δ ppm: 7.36 (2H, dd), 6.97 (2H, d), 6.86 (2H, dd), 5.57 (1H, s), 3.80 (3H, 3H), 2.92-2.88 (2H, m), 2.69-2.60 (2H, m), 2.44-2.19 (10H, m), 1.75 (2H, dd), 1.06 (6H, dt)

Preparation Example 1-9: Preparation of the compound of the formula (1-9)

<Preparation of the compound of the formula 9-6>

At RT, the compound of the formula (10-6) 10g and tetrahydrofuran 20ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were
added dropwise 95% acrolein 5.6g and triethylamine 0.2g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-6) 13g.

1H NMR (CDCl$_3$)

δ ppm: 9.73 (1H, s), 7.29-7.20 (4H, m), 3.14 (2H, t), 2.75 (2H, t)

<Preparation of the compound of the formula 7-6>

At RT, the compound of the formula (9-6) 10g and triphenylphosphine acetylmethylene 17.4g were dissolved in chloroform 60ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected
to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-6) 9.4g.

1H NMR (CDCl$_3$)

δ ppm: 7.31-7.22 (4H, m), 6.80-6.70 (1H, m), 6.08 (1H, d), 3.00 (2H, m), 2.52 (2H, m), 2.23 (3H, s)

<Preparation of the compound of the formula 6-6>

At RT, 28% sodium methoxide methanol solution 8.3g and the compound of the formula (8-1) 5.7g were dissolved in tetrahydrofuran 100ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting mixtures was added the compound of the formula (7-6) 9.4g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-6) 10g.

1H NMR (d-DMSO)

δ ppm: 7.36 (2H, d), 7.30 (2H, d), 4.38 (1H, s), 3.48 (3H, s),
At RT, the compound of the formula (6-6) 5g was dissolved in water 80ml. To the resulting solutions was added anhydrous sodium carbonate 4.4g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-6) 2.9g.

1H NMR (d-DMSO)

δ ppm: 11.06 (1H, s), 7.36 (4H, m), 5.19 (1H, s), 3.01 (2H, t), 2.32-1.99 (5H, m), 1.62 (2H, m)
Under nitrogen atmosphere, at RT, the compound of the formula (2-6) 490mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-9) 350mg.

^1H NMR (CDC13)
δ ppm: 7.29-7.24 (4H, m), 6.97 (2H, s), 5.66 (1H, s), 3.02-2.93 (2H, m), 2.66 (2H, tt), 2.45-2.21 (10H, m), 1.80 (2H, q), 1.10-1.01 (6H, m)
Preparation Example 1-10: Preparation of the compound of the formula 1-10

<Preparation of the compound of the formula 6-7>

At RT, the compound of the formula (10-7) 10g and tetrahydrofuran 25ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 6.7g and triethylamine 0.2g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-7) 14g.

Continuously, at RT, the compound of the formula (9-7) 14g and triphenylphosphine acetylmethylene 30g were dissolved in chloroform 100ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures
were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-7) 13g.

Continuously, at RT, 28% sodium methoxide methanol solution 12g and the compound of the formula (8-1) 8.4g were dissolved in tetrahydrofuran 150ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-7) 13g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-7) 14.2g.

1H NMR (d-DMSO)

δ ppm: 7.36 (2H, ddd), 7.17 (2H, tt), 4.37 (1H, s), 3.49 (3H, s), 3.00-2.93 (1H, m), 2.85-2.77 (2H, m), 2.27 (1H, tdd), 2.06 (1H, dd), 1.73 (1H, dt), 1.42 (2H, tt)

<Preparation of the compound of the formula 2-7>
At RT, the compound of the formula (6-7) 5g was dissolved in water 80ml. To the resulting solutions was added anhydrous sodium carbonate 4.6g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure, and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to the compound of the formula (2-7) 2.4g.

\[\text{H NMR (d-DMSO)} \]

\[\delta \text{ ppm: 11.04 (1H, s), 7.40 (2H, ddd), 7.17 (2H, tt), 5.19 (1H, s), 2.98 (2H, t), 2.28-1.91 (5H, m), 1.60 (2H, dd)} \]

<Preparation of the compound of the formula 1-10>

Under nitrogen atmosphere, at RT, the compound of the formula (2-7) 460mg and dimethylaminopyridine 1.05g were
dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-10) 330mg.

1H NMR (CDCl$_3$)

δ ppm: 7.39-7.33 (2H, m), 7.04-6.98 (2H, m), 6.97 (2H, s), 5.62 (1H, s), 2.95 (2H, ddd), 2.65 (2H, dd), 2.45-2.21 (10H, m), 1.78 (2H, g), 1.06 (6H, ddd)

Preparation Example 1-11: Preparation of the compound of the formula (1-11)

<Preparation of the compound of the formula 9-8>
At RT, the compound of the formula (10-1) 5g and tetrahydrofuran 15ml were mixed and stirred, and the resulting mixtures were cooled to 0°C and then thereto were added dropwise methacrolein 2.6g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to the compound of the formula (9-8) 6.9g.

1H NMR (CDCl$_3$)

δ ppm: 9.69 (1H, s), 7.53 (2H, d), 7.40 (2H, d), 3.42-3.35 (1H, m), 3.00-2.95 (1H, m), 2.67 (1H, dd), 1.28 (3H, dd)

<Preparation of the compound of the formula 7-8>

At RT, the compound of the formula (9-8) 6.9g and triphenylphosphine acetylmethylene 10g were dissolved in chloroform 50ml. The resulting solutions were stirred at
0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-8) 5.3g.

1H NMR (CDCl$_3$)

δ ppm: 7.52 (2H, d), 7.36 (2H, d), 6.72 (1H, dd), 6.09 (1H, dd), 3.03 (2H, ddd), 2.67 (1H, dt), 2.24 (3H, s), 1.25 (3H, d)

<Preparation of the compound of the formula 2-8>

At RT, 28% sodium methoxide methanol solution 3.9g and the compound of the formula (8-1) 2.7g were dissolved in tetrahydrofuran 60ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixture was added the compound of the formula (7-8) 5.3g. Thereafter, the resulting mixture solutions were heated under reflux for 30
minutes. The resulting reaction solutions were cooled to rt and thereto was added hexane. Thereafter, the reaction solutions were ice-cooled and the precipitated crystals were collected by filtering and washed thoroughly with hexane to give the compound of the formula (6-8) 4.4g.

Continuously, at RT, the compound of the formula (6-8) 1.6g was dissolved in water 30ml. To the resulting solution was added anhydrous sodium carbonate 1.3g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure to give the compound of the formula (2-8) 1.3g.

1H NMR (d-DMSO)

δ ppm: 7.52 (2H, t), 7.35 (2H, d), 5.51 (1H, s), 3.42 (1H, s), 3.09-2.82 (2H, m), 2.67 (1H, d), 2.46 (2H, dt), 2.25 (2H, ddd), 1.90-1.84 (1H, m), 1.09 (3H, dd)

<Preparation of the compound of the formula 1-11>

Under nitrogen atmosphere, at RT, the compound of the
formula (2-8) 570mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-11) 480mg.

1H NMR (CDCl$_3$)

δ ppm: 7.53 (2H, d), 7.38 (2H, d), 6.98 (2H, s), 5.54 (1H, s), 3.22-3.14 (1H, m), 2.87 (1H, ddd), 2.67-2.23 (12H, m), 1.95-1.88 (1H, m), 1.16 (3H, dd), 1.11-1.04 (6H, m)

Preparation Example 1-12: Preparation of the compound of the formula (1-12)

<Preparation of the compound of the formula 1-12>
In a flask, under nitrogen atmosphere, at RT, the compound of the formula \((2-8)\) 600mg and dimethylaminopyridine 1.1g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula \((3-2)\) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula \((1-12)\) 540mg.

\[^1H\text{ NMR (CDCl}_3\text{)} \]

\(\delta\) ppm: 7.53 (2H, d), 7.38 (2H, d), 6.94 (2H, s), 5.56 (1H, s), 3.16 (1H, ddd), 2.87 (1H, ddd), 2.65-2.25 (8H, m), 2.08 (3H, d), 2.01 (3H, s), 1.90 (1H, td), 1.15 (3H, dd)
The present compound prepared according to preparation Example 1-12 is shown below.

<Compound of the formula 1-162>

\[^1H \text{ NMR (CDCl}_3) \]

\[\delta \text{ ppm: } 7.28-7.22 \text{ (1H, m)}, 7.09 \text{ (1H, d)}, 7.03 \text{ (1H, dt)}, 6.93 \text{ (2H, s)}, 6.90-6.85 \text{ (1H, m)}, 5.73 \text{ (1H, s)}, 3.10 \text{ (1H, s)}, 2.83 \text{ (1H, dt)}, 2.60-2.22 \text{ (8H, m)}, 2.06-1.97 \text{ (6H, m)}, 1.86 \text{ (1H, s)}, 1.13 \text{ (3H, d)} \]

Preparation Example 1-13: Preparation of the compound of the formula (1-13)

<Preparation of the compound of the formula 9-9>

At RT, the compound of the formula (10-2) 5g and tetrahydrofuran 15ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise methacrolein 2.6g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated.
under reduced pressure to give the compound of the formula (9-9) 6.3g.

°H NMR (CDCl₃)
δ ppm: 9.72 (1H, s), 8.66 (1H, s), 7.66 (1H, d), 7.27 (1H, d), 3.56 (1H, ddd), 3.38-3.31 (1H, m), 2.84 (1H, dd), 1.27-1.25 (3H, m)

<Preparation of the compound of the formula 7-9>

At RT, the compound of the formula (9-9) 6.6g and triphenylphosphine acetylmethylene 9g were dissolved in chloroform 40ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-9) 2.8g.

°H NMR (CDCl₃)
δ ppm: 8.66 (1H, s), 7.67-7.65 (1H, m), 7.28 (1H, d), 6.77
<Preparation of the compound of the formula 2-9>

At RT, 28% sodium methoxide methanol solution 2.1g and the compound of the formula (8-1) 1.4g were dissolved in tetrahydrofuran 40ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixture was added the compound of the formula (7-9) 2.8g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt and there was added hexane. Thereafter, the reaction solutions were ice-cooled, and the precipitated crystals were collected by filtering and washed with hexane thoroughly to give the compound of the formula (6-9) 2.0g.

Continuously, in the flask, at RT, the compound of the formula (6-9) 1.8g was dissolved in water 25ml. To the resulting solutions was added anhydrous sodium carbonate 1.5g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities.
and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure to give the compound of the formula (2-9) 1.3g.

\[^1H \text{NMR (CDC}_3\text{)} \]
\[\delta \text{ ppm: 8.66 (1H, s), 7.67-7.64 (1H, m), 7.25-7.19 (1H, m), 5.52 (1H, s), 3.49-3.41 (1H, m), 3.05-2.96 (1H, m), 2.75 (1H, dd), 2.58-2.45 (2H, m), 2.37-2.18 (2H, m), 1.98-1.88 (1H, m), 1.06 (3H, dd) } \]

<Preparation of the compound of the formula 1-13>

Under nitrogen atmosphere, at RT, the compound of the formula (2-9) 570mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were
extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-13) 570mg. Continuously, Compound of the formula (1-13) were subjected to a chiral column chromatography (condition: CHIRALPAK IC-3, temperature 40°C, CO₂: 2.0ml/min, MeOH: 0.15ml/min) to give the compound of retention time 13min (1-13-A) and the compound of retention time 16min (1-13-B).

1H NMR (CDCl₃)
δ ppm: 8.67 (1H, s), 7.66 (1H, dd), 7.28 (1H, d), 6.98 (2H, s), 5.54 (1H, s), 3.59 (1H, ddd), 3.02 (1H, dddd), 2.76-2.26 (12H, m), 1.95 (1H, t), 1.15 (3H, dt), 1.09-1.02 (6H, m)

Preparation Example 1-14: Preparation of the compound of the formula (1-14)

<Preparation of the compound of the formula 1-14>

Under nitrogen atmosphere, at RT, the compound of the
formula (2-9) 450mg and dimethylaminopyridine 600mg were dissolved in a mixture of chloroform 2.5ml and toluene 0.5ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-2) 500mg. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-14) 320mg.

1H NMR (CDCl₃)

δ ppm: 8.66 (1H, s), 7.66 (1H, dd), 7.27 (1H, d), 6.93 (2H, s), 5.65 (1H, s), 3.57 (1H, ddd), 3.07-2.96 (1H, m), 2.74-2.27 (6H, m), 2.07-1.94 (9H, m), 1.17-1.10 (3H, m)

Preparation Example 1-15: Preparation of the compound of the formula (1-15)

<Preparation of the compound of the formula 7-10>
At RT, the compound of the formula \((10-1)\) 3g and tetrahydrofuran 10ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise crotonaldehyde 1.5g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula \((9-10)\) 4.4g.

Continuously, at RT, the compound of the formula \((9-10)\) 4.4g and triphenylphosphine acetylmethylene 6.2g were dissolved in chloroform 25ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula \((10-1)\) \((9-10)\) \((7-10)\).
At RT, 28% sodium methoxide methanol solution 2.7g and the compound of the formula (8-1) 1.8g were dissolved in tetrahydrofuran 40ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-10) 3.7g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt and thereto was added hexane. Thereafter, the reaction solutions were ice-cooled and the precipitated crystals were collected by filtering and washed with hexane thoroughly to give the compound of the formula (6-10) 2.9g.

Continuously, at RT, the compound of the formula (6-10) 2.9g was dissolved in water (40ml). To the resulting solutions was added anhydrous sodium carbonate 2.3g. The
resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure to give the compound of the formula (2-10) 2.1g.

${}_1^1$H NMR (CDCl₃)

δ ppm: 7.54 (2H, t), 7.42 (2H, dd), 5.48 (1H, s), 3.36 (2H, tt), 2.78 (2H, d), 2.53-2.34 (2H, m), 2.13 (1H, dd), 1.75-1.53 (2H, m), 1.34-1.29 (3H, m)

<Preparation of the compound of the formula 1-15>

[Chemical structure image]

Under nitrogen atmosphere, at RT, the compound of the formula (2-10) 570mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt,
adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-15) 360mg.

\[\text{H NMR (CDCl}_3\text{)} \]

\[\delta \text{ ppm: } 7.56-7.52 \text{ (2H, m), } 7.46-7.41 \text{ (2H, m), } 6.98 \text{ (2H, s), } \\
5.53 \text{ (1H, s), } 3.49-3.42 \text{ (1H, m), } 2.76-2.23 \text{ (12H, m), } 1.83-1.71 \text{ (2H, m), } 1.38 \text{ (3H, dd), } 1.06 \text{ (6H, tt)} \]

Preparation Example 1-16: Preparation of the compound of the formula (1-16)

<Preparation of the compound of the formula 9-11>

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{F}_3\text{C} \\
\text{Cl} & \quad \text{Cl} \\
\text{N} & \quad \text{N} \\
\text{H} & \quad \text{O} \\
\text{(10-8)} & \quad \text{(9-11)}
\end{align*}
\]

At RT, the compound of the formula (10-8) 2g and tetrahydrofuran 10ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 0.8g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for
1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-11) 2.5g.

1H NMR (CDCl$_3$)

δ ppm: 9.84 (1H, s), 8.59 (1H, s), 7.76 (1H, s), 3.49 (2H, t), 2.96 (2H, t)

<Preparation of the compound of the formula 7-11>

At RT, the compound of the formula (9-11) 2.5g and triphenylphosphine acetylmethylene 3.4g were dissolved in chloroform 15ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula
(7-11) 1.2g.

1H NMR (CDCl$_3$)

δ ppm: 8.60 (1H, s), 7.76 (1H, s), 6.84 (1H, dt), 6.16 (1H, dt), 3.36 (2H, t), 2.68 (2H, ddd), 2.26 (3H, s)

<Preparation of the compound of the formula 6-11>

\[
\begin{array}{c}
\text{F}_3\text{C} \quad \text{Cl} \\
\text{S} \quad \text{=} \quad \text{O} \\
\text{7-11} \\
\end{array}
\quad \xrightarrow{\text{(8-1)}} \quad \begin{array}{c}
\text{F}_3\text{C} \quad \text{Cl} \\
\text{MeO}_2\text{C} \quad \text{CO}_2\text{Me} \\
\text{6-11} \\
\end{array}
\]

At RT, 28% sodium methoxide methanol solution 0.8g and the compound of the formula (8-1) 0.56g were dissolved in tetrahydrofuran 15ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-11) 1.2g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-11) 0.8g.

1H NMR (d-DMSO)

δ ppm: 8.81 (1H, s), 8.34 (1H, s), 4.38 (1H, s), 3.50 (3H, s), 3.42-3.25 (1H, m), 3.15-3.07 (1H, m), 2.82 (1H, d), 2.33-2.23 (1H, m), 2.12 (1H, dd), 1.79 (1H, dt), 1.63-1.50
In the flask, at RT, the compound of the formula (6-11) 0.8g was dissolved in water 10ml. To the resulting solutions was added anhydrous sodium carbonate 0.6g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-11) 0.6g.

\(^1 \text{H NMR (d-DMSO)} \)

\(\delta \text{ ppm: } 11.06 \ (1\text{H, s}), \ 8.81 \ (1\text{H, d}), \ 8.35 \ (1\text{H, d}), \ 5.20 \ (1\text{H, s}), \ 3.27 \ (2\text{H, t}), \ 2.51-1.91 \ (5\text{H, m}), \ 1.74 \ (2\text{H, d}) \)
Under nitrogen atmosphere, at RT, the compound of the formula (2-11) 600mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added dropwise the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-16) 360mg.

\[^1\text{H}\text{ NMR} (\text{CDCl}_3)\]

δ ppm: 8.60 (1H, s), 7.75 (1H, d), 6.97 (2H, s), 5.71 (1H, s), 3.31 (2H, ddd), 2.75 (2H, t), 2.51-2.23 (10H, m), 1.94-1.88 (2H, m), 1.09-1.00 (6H, m)
Preparation Example 1-17: Preparation of the compound of the formula (1-17)

<Preparation of the compound of the formula 7-12>

At RT, the compound of the formula (9-12) 9.3g and triphenylphosphine acetylmethylene 22g were dissolved in chloroform 90ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-12) 2.1g.

1H NMR (CDCl$_3$)

δ ppm: 7.31-7.23 (2H, m), 6.95 (1H, tt), 6.92-6.82 (3H, m), 6.21-6.14 (1H, m), 4.09 (2H, t), 2.69 (2H, q), 2.24 (3H, s)

<Preparation of the compound of the formula 6-12>
At RT, 28% sodium methoxide methanol solution 2.3g and the compound of the formula (8-1) 1.6g were dissolved in tetrahydrofuran 40ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-12) 2.1g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt and, the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-12) 2.6g.

1H NMR (d-DMSO)

δ ppm: 7.27 (2H, t), 6.92-6.89 (3H, m), 4.40 (1H, s), 4.38-3.89 (2H, m), 3.54 (3H, s), -2.87 (1H, d), 2.40-2.30 (1H, m), 2.08 (1H, dd), 1.81 (1H, dd), 1.72-1.64 (1H, m), 1.60-1.51 (1H, m)
At RT, the compound of the formula (6-12) 2.0g was dissolved in water 40ml. To the resulting solutions was added anhydrous sodium carbonate 2.0g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities, and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure, and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-12) 1.2g.

1H NMR (d-DMSO)

δ ppm: 11.06 (1H, s), 7.28 (2H, t), 6.92 (2H, dd), 5.20 (1H, s), 4.02 (2H, t), 2.50-1.99 (5H, m), 1.79 (2H, d)

<Preparation of the compound of the formula 1-17>

Under nitrogen atmosphere, at RT, the compound of the formula (2-12) 400mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under
nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-17) 380mg.

1H NMR (CDCl$_3$)

δ ppm: 7.32-7.27 (2H, m), 6.97-6.89 (5H, m), 5.68 (1H, s), 4.11-4.06 (2H, m), 2.78-2.69 (2H, m), 2.60-2.25 (10H, m), 1.97 (2H, ddd), 1.11-1.05 (6H, m)

Preparation Example 1-18: Preparation of the compound of the formula (1-18)

<Preparation of the compound of the formula 7-13>

At RT, the compound of the formula (9-13) 3.5g and
triphenylphosphine acetylmethylene 7.5 g were dissolved in chloroform 30 ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-13) 1.1 g.

\(^{1}\text{H NMR (CDCl}_3\)\\
\(\delta \text{ ppm: } 7.14-7.09 \text{ (2H, m)}, 6.99-6.93 \text{ (2H, m)}, 6.79 \text{ (1H, dt)}, 6.08 \text{ (1H, dt)}, 2.62 \text{ (2H, t)}, 2.27-2.20 \text{ (5H, m)}, 1.82-1.74 \text{ (2H, m)}\)

Preparation of the compound of the formula 2-13>

At RT, 28% sodium methoxide methanol solution 1.1 g and the compound of the formula (8-1) 0.8 g were dissolved in tetrahydrofuran 20 ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added
the compound of the formula (7-13) 1.1g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-13) 1.0g.

Continuously, at RT, the compound of the formula (6-13) 1.0g was dissolved in water 20ml. To the resulting solutions was added anhydrous sodium carbonate 1.0g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-13) 650mg.

\[\delta \text{ ppm: } 10.99 \ (1\text{H, s}), \ 7.25-7.21 \ (2\text{H, m}), \ 7.11-7.05 \ (2\text{H, m}), \ 5.18 \ (1\text{H, s}), \ 2.55 \ (2\text{H, t}), \ 2.43-1.91 \ (5\text{H, m}), \ 1.61-1.53 \ (2\text{H, m}), \ 1.35-1.32 \ (2\text{H, m}) \]

<Preparation of the compound of the formula 1-18>
Under nitrogen atmosphere, at RT, the compound of the formula (2-13) 430mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-18) 440mg.

1H NMR (CDCl$_3$)

δ ppm: 7.15-7.11 (2H, m), 6.99-6.93 (4H, m), 5.60 (1H, s), 2.67-2.61 (4H, m), 2.40-2.19 (10H, m), 1.74-1.66 (2H, m), 1.52-1.46 (2H, m), 1.08-1.00 (6H, m)
Preparation Example 1-19: Preparation of the compound of the formula (1-19).

<Preparation of the compound of the formula 7-14>

At RT, the compound of the formula (10-14) 9.0g and tetrahydrofuran 30ml were mixed and stirred, and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 3.6g and triethylamine 0.1g.

The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-14) 11g.

Continuously, at RT, the compound of the formula (9-14) 11g and triphenylphosphine acetylmethylene 15.8g were dissolved in chloroform 50ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures
were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:5) to give the compound of the formula (7-14) 2.65-g.

\[
\text{H NMR (CDCl}_3\text{)} \\
\delta \text{ ppm: } 6.79-6.71 \text{ (1H, m), } 6.11 \text{ (1H, dt), } 3.02 \text{ (2H, td), } 2.51 \text{ (2H, dt), } 2.25 \text{ (3H, dd) }
\]

<Preparation of the compound of the formula 6-14>

At RT, 28% sodium methoxide methanol solution 1.9g and the compound of the formula (8-1) 1.3g were dissolved in tetrahydrofuran 35ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-14) 2.65g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-14) 1.1g.
\[\text{H NMR (d-DMSO)} \]
\[\delta \text{ ppm: 4.39 (1H, s), 3.49 (3H, s), 2.99-2.92 (1H, m), 2.86-2.76 (2H, m), 2.28-2.19 (1H, m), 2.05-1.99 (1H, m), 1.76-1.65 (1H, m), 1.44-1.33 (2H, m)} \]

<Preparation of the compound of the formula 1-69>

At RT, the compound of the formula (6-14) 1.1g was dissolved in water 20ml. To the resulting solutions was added anhydrous sodium carbonate 840mg. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt, washed with tert-butyl methyl ether to remove impurities and then acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-14) 800mg.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-14) 580mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for
15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-69) 150mg.

\[^1\text{H NMR (CDCl}_3\text{)}\]

\[\delta \text{ ppm: } 6.99 (2H, s), 5.56 (1H, s), 3.00-2.95 (2H, m), 2.71-2.62 (2H, m), 2.47-2.22 (10H, m), 1.75 (2H, dd), 1.10-1.04 (6H, m)\]

Preparation Example 1-20: Preparation of the compound of the formula (1-31)

<Preparation of the compound of the formula 9-15>

At RT, the compound of the formula (10-15) 3.3g and
tetrahydrofuran 15ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 1.4g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-15) 4.2g.

1H NMR (CDCl$_3$)

δ ppm: 9.76 (1H, s), 7.52 (2H, d), 7.37 (2H, d), 3.21-3.16 (2H, m), 2.80-2.76 (2H, m)

<Preparation of the compound of the formula 7-15>

At RT, the compound of the formula (9-15) 4.2g and triphenylphosphine acetylmethylene 6.0g were dissolved in chloroform 20ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were
filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-15) 2.7g.

1H NMR (CDCl$_3$)

δ ppm: 7.37 (2H, d), 7.16 (2H, d), 6.77 (1H, dt), 6.09 (1H, d), 3.04 (2H, t), 2.58-2.52 (2H, m), 2.23 (3H, s)

<Preparation of the compound of the formula 6-15>

At RT, 28% sodium methoxide methanol solution 2g and the compound of the formula (8-1) 1.4g were dissolved in tetrahydrofuran 40ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-15) 2.7g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-15) 1.8g.
1H NMR (d-DMSO)
δ ppm: 7.39 (2H, d), 7.31 (2H, d), 4.40 (1H, s), 3.47 (3H, s), 3.07-3.01 (1H, m), 2.92-2.80 (2H, m), 2.34-2.24 (1H, m), 2.09 (1H, dd), 1.75 (1H, dd), 1.51-1.40 (2H, m)

<Preparation of the compound of the formula 1-31>

At RT, the compound of the formula (6-15) 1.8g was dissolved in water 35ml. To the resulting solutions was added anhydrous sodium carbonate 1.4g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt, washed with tert-butyl methyl ether to remove impurities and then acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-15) 1.6g.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-15) 570mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting
solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solution was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-31) 290mg.

1H NMR (CDCl$_3$)

δ ppm: 7.36 (2H, d), 7.15 (2H, d), 6.98 (2H, s), 5.59 (1H, s), 3.00 (2H, ddd), 2.71-2.65 (2H, m), 2.48-2.22 (10H, m), 1.83 (2H, g), 1.10-1.03 (6H, m)

Preparation Example 1-21: Preparation of the compound of the formula (1-73)

<Preparation of the compound of the formula 7-16>
At RT, the compound of the formula (10-16) 5.0g and tetrahydrofuran 30ml were mixed and stirred, and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 95% acrolein 2.8g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-16) 6.7g.

Continuously, at RT, the compound of the formula (9-16) 6.7g and triphenylphosphine acetylmethylene 11.2g were dissolved in chloroform 40ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (7-16) 5.0g.

1H NMR (CDCl₃)

δ ppm: 9.23 (1H, d), 8.25-8.21 (1H, m), 7.32-7.28 (1H, m),
6.83 (1H, dt), 6.16 (1H, d), 3.41 (2H, t), 2.72-2.67 (2H, m), 2.24 (3H, s)

<Preparation of the compound of the formula 6-14>

\[
\begin{align*}
&\text{At RT, 28% sodium methoxide methanol solution 4.2g and} \\
&\text{the compound of the formula (8-1) 2.9g were dissolved in} \\
&\text{tetrahydrofuran 80ml. The resulting solutions were heated} \\
&\text{under reflux for 15 minutes. Thereafter, the heating was} \\
&\text{stopped and to the resulting reaction mixture was added the} \\
&\text{compound of the formula (7-16) 5.0g. Thereafter, the} \\
&\text{resulting mixture solutions were heated under reflux for 30} \\
&\text{minutes. The resulting reaction solutions were cooled to} \\
&\text{rt, and the precipitated crystals were collected by} \\
&\text{filtering and washed with tert-butyl methyl ether and} \\
&\text{hexane sequentially to give the compound of the formula (6-} \\
&\text{16) 4.9g.}
\end{align*}
\]

\[^{1}\text{H NMR (d-DMSO)}\]
\[
\delta \text{ ppm: 9.21 (1H, d), 8.36 (1H, dd), 7.54 (1H, dd), 4.38 (1H, s), 3.52 (3H, s), 3.34-2.82 (3H, m), 2.33-2.24 (1H, dt), 2.16-2.11 (1H, m), 1.83-1.74 (1H, m), 1.61-1.53 (2H, m)}
\]

<Preparation of the compound of the formula 1-73>
At RT, the compound of the formula (6-16) 3.0g was dissolved in water 65ml. To the resulting solutions was added anhydrous sodium carbonate 2.7g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities, and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-16) 1.1g.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-16) 500mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with
2N hydrochloric acid and filtered through Celite' (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 2:3) to give the compound of the formula (1-73) 50mg.

1H NMR (CDCl$_3$)

δ ppm: 9.25 (1H, d), 8.23 (1H, dt); 7.30 (1H, d), 6.98 (2H, s), 5.58 (1H, s), 3.36 (2H, t), 2.80-2.71 (2H, m), 2.52-2.25 (10H, m), 1.96-1.90 (2H, m), 1.09-1.03 (6H, m)

Preparation Example 1-22: Preparation of the compound of the formula (1-74)

<Preparation of the compound of the formula 7-17>

At RT, the compound of the formula (10-2) 3.0g and tetrahydrofuran 15ml were mixed and stirred, and the resulting mixtures were cooled to 0°C and then thereto were added dropwise 2-ethylacrolein 1.85g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 1.5 hours. Thereafter, the resulting mixtures were added
to water. The resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-17) 4.3g.

Continuously, at RT, the compound of the formula (9-17) 4.3g and triphenylphosphine acetylmethylene 5.8g were dissolved in chloroform 20ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-17) 1.1g.

<Preparation of the compound of the formula l-74>

\[\delta \text{ ppm: } 8.66 (1H, s), 7.67-7.64 (1H, m), 7.28-7.24 (1H, m), 6.66-6.59 (1H, m), 6.10 (1H, dd), 3.45-3.24 (2H, m), 2.53-2.47 (1H, m), 2.20 (3H, s), 1.79-1.46 (2H, m), 0.96-0.92 (3H, m)\]
At RT, 28% sodium methoxide methanol solution 810mg and the compound of the formula (8-1) 560mg were dissolved in tetrahydrofuran 15ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-17) 1.1g. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-17) 1.6g.

Continuously, at RT, the compound of the formula (6-17) 1.6g was dissolved in water (30ml). To the resulting solutions was added anhydrous sodium carbonate 1.2g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt, washed with tert-butyl methyl ether to remove impurities and then acidified
with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-17) 1.2g.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-17) 600mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:5) to give the compound of the formula (1-74) 200mg.

^{1}H NMR (CDCl$_3$)

δ ppm: 8.67 (1H, s), 7.66 (1H, dd), 7.27 (1H, d), 6.98 (2H,
Preparation Example 1-23: Preparation of the compound of the formula (1-21)

<Preparation of the compound of the formula 12-1>

\[
\begin{align*}
\text{(11-1)} & \quad \text{HO} & \quad \text{OH} \\
\text{(12-1)} & \quad \text{HO} & \quad \text{OTs}
\end{align*}
\]

At RT, the compound of the formula (1-11) 31g, pyridine 17ml and methylene chloride 100ml were mixed and stirred, and the resulting mixtures were cooled to 0°C and then added dropwise to mixture solutions that were prepared by dissolving para-toluenesulphonylchloride 11.4g into methylenecarbonate 60ml. The resulting mixture solutions were stirred at 0°C under ice-cooling for three hours. The resulting reaction mixture solutions were diluted with ethyl acetate and washed with a saturated sodium hydrogen carbonate aqueous solution. The resulting ethyl acetate layers were washed with saturated saline, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 3:2) to give the compound of the formula (12-1) (colorless...
<Preparation of the compound of the formula 13-1>

Under nitrogen atmosphere, to 60% sodium hydrate 1.55g was added anhydrous N,N-dimethylformamide 30ml. To the resulting mixtures was added dropwise the compound of the formula (10-1) 7.2g under ice-cooling. The resulting mixtures were stirred under ice-cooling for 25 minutes and then thereto was added dropwise a solution of the compound of the formula (12-1) 8g in anhydrous DMF 15ml and the resulting mixtures were stirred at RT for 1 hour, then heated so as to increase the reaction temperature to 90°C and stirred for 8 hours. The resulting reaction mixtures were extracted with t-butylmethyl ether. The organic layers were combined, washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give crude products. The crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4 → 2:3) to give the compound of the
<Preparation of the compound of the formula 9-18>

Under nitrogen atmosphere, a mixture solution of oxalyl chloride 3.4ml and methylene chloride 120ml was cooled to -78°C and then thereto was added dropwise dimethyl sulfoxide 5.7ml slowly and the resulting mixtures were stirred for 10 minutes. Thereafter, to the resulting mixture solutions was added dropwise a solution of the compound of the formula (13-1) 7.6g in methylene chloride 50ml and the resulting mixtures were stirred for 30 minutes. Thereafter, to the resulting mixture solutions was added triethylamine 11.6g and the resulting mixtures were stirred at -78°C for 1 hour and then at 0°C under ice-cooling for another 6 hours. The resulting reactions were diluted with chloroform and washed with IN aqueous sodium hydroxide solution. The resulting chloroform layers were washed with saturated saline, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated
under reduced pressure to give the compound of the formula (9-18) (oils) 6.7g.

1H NMR (CDCl$_3$)

δ ppm: 9.50 (1H, s), 7.51 (2H, d), 7.40 (2H, d), 3.16 (2H, s), 1.24 (6H, s)

<Preparation of the compound of the formula 7-18>

At RT, the compound of the formula (9-18) 4.2g and triphenylphosphine acetylmethylene 5.6g were dissolved in xylene 20ml. The resulting solutions were heated under reflux for 8 hours. Thereafter, under reduced pressure, xylene was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-18) 4.1g.

1H NMR (CDCl$_3$)

δ ppm: 7.50 (2H, d), 7.38 (2H, d), 6.73 (1H, dd), 6.05 (1H, dd), 3.06 (2H, s), 2.17 (3H, s), 1.23 (6H, s)
At RT, 28% sodium methoxide methanol solution 2.9g and the compound of the formula (8-1) 2.0g were dissolved in 1,4-dioxane 35ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-18) 4.1g. Thereafter, the resulting mixture solutions were heated under reflux for 1 hour. The resulting reaction solutions were cooled to rt and concentrated under reduced pressure and the crude crystals precipitated were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-18) 5.7g.

Continuously, at RT, the compound of the formula (6-18) 5.7g was dissolved in water 25ml. To the resulting solutions was added anhydrous sodium carbonate 1.05g. The resulting solutions were heated under reflux for 5 hours.
The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-18) 970mg.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-18) 970mg and dimethylaminopyridine 1.7g were dissolved in a mixture of chloroform 7.5ml and toluene 2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solution was added the compound of the formula (3-1) 1.5g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, and dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl
acetate : hexane = 1:4) to give the compound of the formula (1-21) (white solids) 300mg.

1H NMR (CDCl$_3$)

δ ppm: 7.52 (2H, d), 7.41 (2H, d), 6.99 (2H, s), 5.54 (1H, s), 3.04 (2H, dd), 2.67-2.24 (12H, m), 1.13-1.06 (12H, m)

Preparation Example 1-24: Preparation of the compound of the formula (1-22)

<Preparation of the compound of the formula 13-2>

Under nitrogen atmosphere, to 60% sodium hydrate 1.55g was added dropwise anhydrous N,N-dimethylformamide 30ml. To the resulting mixtures was added dropwise the compound of the formula (10-2) 7.2g under ice-cooling. The resulting mixtures were stirred under ice-cooling for 25 minutes, and then thereto was added dropwise a solution of the compound of the formula (12-1) 8g in anhydrous N,N-dimethylformamide 15ml, and the resulting mixtures were stirred at RT for 1 hour and then heated so as to increase the reaction temperature to 90°C and stirred for 8 hours. The resulting reaction mixtures were extracted with tert-butyl methyl ether. The organic layers were combined, washed with water, dried over anhydrous sodium sulfate and
then concentrated under reduced pressure to give crude products. The crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (13-2) 6.7g.

1H NMR (CDCl$_3$)

δ ppm: 8.61 (1H, s), 7.70-7.67 (1H, m), 7.36-7.32 (2H, m), 3.30 (2H, d), 3.23 (2H, d), 1.04 (6H, s)

<Preparation of the compound of the formula 9-19>

Under nitrogen atmosphere, a mixture of oxalyl chloride 3.1ml and methylene chloride 120ml was cooled to -78°C and then thereto was added dropwise dimethyl sulfoxide 5.0ml slowly and the resulting mixtures were stirred for 10 minutes. Thereafter, to the resulting mixture solutions was added triethylamine 10.3g and the resulting mixtures were stirred at -78°C for 1 hour and at 0°C under ice-cooling for 6 hours. The resulting reaction solutions were diluted with chloroform and washed with IN aqueous sodium hydroxide solution. The resulting chloroform layers were washed with saturated saline, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure to give the compound of
the formula (9-19) 6.2g.

1H NMR (CDCl$_3$)

δ ppm: 9.51 (1H, s), 8.64 (1H, s), 7.65 (1H, d), 7.27 (1H, d), 3.52 (2H, s), 1.24 (6H, s)

<Preparation of the compound of the formula 7-19>

At RT, the compound of the formula (9-19) 4.6g and triphenylphosphine acetylmethylene 6.2g were dissolved in xylene 25ml. The resulting solutions were heated under reflux for 8 hours. Thereafter, xylene was removed from the resulting reaction solutions under reduced pressure. To the resulting residues were added tert-butyl methyl ether and hexane. Continuously, the resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-19) 3.8g.

1H NMR (CDCl$_3$)

δ ppm: 8.64 (1H, s), 7.64 (1H, dd), 7.27 (1H, d), 6.04 (1H, d), 6.04 (1H, d), 3.43 (2H, s), 2.17 (3H, s), 1.22 (6H, s)
At RT, 28% sodium methoxide methanol solution 2.7g and the compound of the formula (8-1) 1.8g were dissolved in 1,4-dioxane 35ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-19) 3.8g. Thereafter, the resulting mixtures were heated under reflux for 1 hour. The resulting reaction solutions were cooled to rt and concentrated under reduced pressure and the crude crystals precipitated were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-19) 5.3g.

Continuously, at RT, the compound of the formula (6-19) 5.3g was dissolved in water 95ml. To the resulting solutions was added anhydrous sodium carbonate 4.0g. The resulting solutions were heated under reflux for 5 hours.
The reaction solutions were cooled to rt and washed with tert-butyl methyl ether to remove impurities and then the aqueous layers were acidified with 2N hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-19) 2.8g.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-19) 600mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.0g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane =
1:5) to give the compound of the formula (1-22) (white solids) 290mg.

1H NMR (CDCl$_3$)

δ ppm: 8.65 (1H, s), 7.65 (1H, dd), 7.30 (1H, d), 6.98 (2H, s), 5.54 (1H, s), 3.41 (2H, dd), 2.78-2.51 (3H, m), 2.48-2.26 (9H, m), 1.18-1.00 (12H, m)

Preparation Example 1-25: Preparation of the compound of the formula \((1-40)\)

<Preparation of the compound of the formula \((3-3)\)>

\[
\begin{array}{c}
\text{BnO} \\
\text{B(OH)$_2$} \\
\text{(5-3)}
\end{array}
\xrightarrow{}
\begin{array}{c}
\text{BnO} \\
\text{Pb(OAc)$_3$} \\
\text{(3-3)}
\end{array}
\]

Under nitrogen atmosphere, at RT, lead tetraacetate 10g, mercury acetate 310mg and the compound of the formula (5-3) 5g were dissolved in chloroform 40ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, the reaction solutions were stirred at 40°C for 4 hours. The reaction solutions were cooled to rt and filtered through Celite (TM). The resulting filtrates were concentrated under reduced pressure to give red oils. To the resulting oils was added hexane and the resulting mixtures were concentrated under reduced pressure to give the compound of the formula (3-3) (red solids) 10.2g.
\[\text{H NMR (CDCl}_3) \]
\[\delta \text{ ppm: } 7.61-7.59 \text{ (1H, m), } 7.41-7.34 \text{ (5H, m), } 7.00-6.97 \text{ (2H, m), } 5.08 \text{ (2H, s), } 2.83 \text{ (2H, q), } 2.09 \text{ (9H, s), } 1.29 \text{ (3H, t) } \]

5. <Preparation of the compound of the formula 34-1>

Under nitrogen atmosphere, rt, the compound of the formula (2-2) 540mg and dimethylaminopyridine 1.05g were dissolved in a mixture of chloroform 4.8ml and toluene 1.2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-3) 1.1g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:2) to give the
compound of the formula (34-1) 386mg.

\[^1H \text{ NMR (CDCl}_3\text{)} \]
\[\delta \text{ ppm: } 8.67 \,(1\text{H, s}), \, 7.67 \,(1\text{H, dd}), \, 7.46-7.26 \,(6\text{H, m}), \]
\[6.98-6.92 \,(2\text{H, m}), \, 6.86 \,(1\text{H, dt}), \, 5.74 \,(1\text{H, s}), \, 5.08 \,(2\text{H, s}), \, 3.30 \,(2\text{H, t}), \, 2.79-2.67 \,(2\text{H, m}), \, 2.50-2.24 \,(5\text{H, m}), \]
\[1.93-1.87^* \,(2\text{H, m}), \, 1.08 \,(3\text{H, dt}) \]

<Preparation of the compound of the formula 1-40>

At RT, the compound of the formula (34-1) 300mg was dissolved in acetic acid 2.2ml and to the resulting mixtures was added dropwise 47% hydrogen bromide 0.7ml. The resulting reaction solutions were heated to 100°C and stirred for 30 minutes. To the resulting reaction solutions was iced water 10ml and the resulting mixtures were extracted with ethyl acetate. The resulting ethyl acetate layers were washed with water, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure to give the compound of the formula (35-1) 240mg.

Continuously, at RT, the compound of the formula (35-1) 240mg, cesium carbonate 200mg and 2,3-dichloro-5-trifluoromethylpyridine 118mg were dissolved in N,N-
dimethylformamide 2ml. The resulting reaction solutions were heated to 70°C and stirred for 2 hours. The resulting reaction solutions were extracted with ethyl acetate and the resulting ethyl acetate layers were washed with saturated saline, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure and then subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:2) to give the compound of the formula (1-40) 80mg.

$^1{H}$ NMR (CDCl$_3$)

δ ppm: 8.68 (1H, s), 8.24 (1H, dd), 8.00 (1H, d), 7.67 (1H, dd), 7.28-7.26 (1H, m), 7.14-7.03 (3H, m), 6.33 (1H, s), 3.31 (2H, t), 2.79-2.68 (2H, m), 2.52-2.26 (5H, m), 1.94-1.89 (2H, m), 1.10 (3H, dt)

Preparation Example 1-26: Preparation of the compound of the formula (1-75)

<Preparation of the compound of the formula 7-20>

At RT, the compound of the formula (7-20) 10g was dissolved in acetic acid 33ml. To the resulting mixtures was added 35% sulfuric acid 100ml. Thereafter, the resulting reaction mixtures were cooled to 0°C and then
thereto were added dropwise a mixture of sodium nitrite 3.3g and water 25ml and the resulting mixtures were stirred at 0°C for 10 minutes.

Thereafter, the resulting reaction solutions were added dropwise to a mixture of sodium sulfide 15g, sulfur 2g and sodium hydroxide 3.3g dissolved in water 100ml at 60°C, and the resulting mixtures were stirred for 30 minutes. The reaction solutions were cooled to rt, extracted with tert-butyl methyl ether, washed with 10% hydrochloric acid, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure, dissolved in diethyl ether 300ml and thereto was added dropwise lithium aluminium hydride 1.8g at 0°C under nitrogen atmosphere, and then the resulting mixture solutions were stirred at RT for 1 hour. To the resulting reaction mixtures was added 10% hydrochloric acid 500ml and the resulting mixtures were extracted with diethyl ether. The resulting organic layers were washed with saturated saline, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure to give the compound of the formula (10-17) as crude products. The resulting crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (10-17) 3.1g.
Thereafter, at RT, the compound of the formula (10-17) 3.0g and tetrahydrofuran 10ml were mixed and stirred and the resulting mixtures were cooled to 0°C and then thereto were added dropwise acrolein 1.05g and triethylamine 0.1g. The resulting mixtures were stirred under ice-cooling for 2 hours. Thereafter, to the resulting mixtures was added water and the resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the compound of the formula (9-20) 1.2g.

Continuously, at RT, the compound of the formula (9-20) 1.2g and triphenylphosphine acetylmethylene 1.4g were dissolved in chloroform 5ml. The resulting solutions were stirred at 0°C for 8 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-20) 340mg.

1H NMR (CDCl$_3$)

δ ppm: 7.66 (2H, d), 7.32 (2H, d), 6.78 (1H, dt), 6.14 (1H,
d), 3.12 (2H, t), 2.61 (2H, q), 2.25 (3H, s)

<Preparation of the compound of the formula 6-20>

At RT, 28% sodium methoxide methanol solution 220g and the compound of the formula (8-1) 150mg were dissolved in tetrahydrofuran 4mL. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixture was added the compound of the formula (7-20) 340mg. Thereafter, the resulting mixture solutions were heated under reflux for 30 minutes. The resulting reaction solutions were cooled to 0°C and thereto was added hexane, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-20) 460mg.

^1H NMR (d-DMSO)

δ ppm: 7.80 (2H, d), 7.44 (2H, d), 4.39 (1H, s), 3.65-3.48 (4H, m), 3.17-3.10 (1H, m), 2.99-2.91 (1H, m), 2.83 (1H, d), 2.32-2.25 (1H, m), 2.15-2.03 (1H, m), 1.85-1.74 (1H, m), 1.53-1.47 (1H, m)

<Preparation of the compound of the formula 1-75>
At RT, the compound of the formula (6-20) 460mg was dissolved in water 10ml. To the resulting solutions was added anhydrous sodium carbonate 323mg. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt, washed with tert-butyl methyl ether and then to the aqueous layers was added 2N hydrochloric acid and the resulting mixtures were extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-20) 400mg.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-20) 400mg and dimethylaminopyridine 620mg were dissolved in a mixture of chloroform 3ml and toluene 1ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 600mg. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction
solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-75) 150mg.

\[^1H \text{ NMR (CDCl}_3) \]

\[\delta \text{ ppm: } 7.66 \ (2H, d), \ 7.32 \ (2H, d), \ 6.98 \ (2H, s), \ 5.57 \ (1H, s), \ 3.13-3.01 \ (2H, m), \ 2.77-2.68 \ (2H, m), \ 2.49-2.22 \ (10H, m), \ 1.88 \ (2H, q), \ 1.06 \ (6H, ddd) \]

Preparation Example 1-27: Preparation of the compound of the formula (1-23)

<Preparation of the compound of the formula 21-1>

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{F}_3\text{C} \\
\text{S} \quad \text{S} & \\
(10-1) & \quad (21-1)
\end{align*}
\]

At RT, the compound of the formula (10-1) 10g was dissolved in dimethylformamide 50ml. To the resulting mixtures was added triethylamine 5.7g at RT and the resulting mixture solutions were stirred under ultrasonication for 6 hours. The resulting reaction
mixtures were extracted with tert-methylethylether and the resulting organic layers were washed with water, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure to give the compound of the formula (21-1) (colorless solid) 9.3g.

1H NMR (CDCl$_3$)

δ ppm: 7.60-7.53 (8H, m)

<Preparation of the compound of the formula 13-3>

The compound of the formula (1-12) 5g and the compound of the formula (21-1) 9.3g were dissolved in tetrahydrofuran 250ml. Under nitrogen atmosphere, at RT, to the resulting mixture solutions was added dropwise tributylphosphine 5.8g and the resulting mixtures were stirred for 2 hours. The resulting reaction mixture solutions were concentrated under reduced pressure and the resulting crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (13-3) (colorless solids) 4.5g.

1H NMR (CDCl$_3$)
δ ppm: 7.50 (2H, d), 7.41 (2H, d), 3.58 (2H, s), 3.17 (2H, s), 0.58 (4H, s)

<Preparation of the compound of the formula 7-21>

Under nitrogen atmosphere, a mixture of oxalyl chloride 2.5g and methylene chloride 45ml was cooled to -78°C and then thereto was added dropwise a solution of dimethyl sulfoxide 2.7g in methylene chloride 20ml and the resulting mixtures were stirred for 10 minutes. Thereafter, to the resulting mixture solutions was added dropwise a solution of the compound of the formula (13-3) 4.5g in methylene chloride 5ml and the resulting mixtures were stirred for 30 minutes. Thereafter, to the resulting mixture solutions was added triethylamine 8.8g and the resulting mixtures were warmed to rt and stirred for 3 hours. The resulting reaction solutions were poured into IN hydrochloric acid 60ml and extracted with chloroform. The resulting organic layers were dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure to give the compound of the formula (9-21) 4.5g as crude products.

Continuously, at RT, the compound of the formula (9-
4.5 g as crude products and triphenylphosphine acetylmethylene 6.1 g were dissolved in xylene 45 ml. The resulting reaction mixture solutions were heated under reflux for 8 hours. Thereafter, the resulting reaction solutions were concentrated under reduced pressure to remove xylene. To the resulting residues were added tert-butyl methyl ether and hexane. Continuously, the resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-21) 3.8 g.

1H NMR (CDCl$_3$)
δ ppm: 7.52 (2H, d), 7.35 (2H, d), 6.49 (1H, d), 6.17 (1H, d), 3.19 (2H, s), 2.22 (3H, s), 1.10-1.00 (4H, m)

<Preparation of the compound of the formula 6-21>

At RT, 28% sodium methoxide methanol solution 2.7 g and the compound of the formula (8-1) 1.8 g were dissolved in 1,4-dioxane 30 ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was
stopped and to the resulting reaction mixture was added the compound of the formula (7-21) 3.8g. Thereafter, the resulting mixture solutions were heated under reflux for 1 hour. The resulting reaction solutions were cooled to 0°C and thereto was added hexane, and the precipitated crystals were filtered and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-21) 4.5g.

1H NMR (CDCl$_3$)

δ ppm: 7.62 (2H, d), 7.45 (2H, d), 4.42 (1H, s), 3.57 (3H, s), 3.39–3.35 (1H, m), 3.23 (1H, d), 3.07 (1H, d), 2.32 (1H, t), 1.93 (1H, dd), 1.76 (1H, td), 0.46–0.34 (4H, m)

At RT, the compound of the formula (6-21) 4.5g was dissolved in water 100ml. To the resulting solutions was added anhydrous sodium carbonate 3.37g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether and then to the aqueous layers was added 2N hydrochloric acid, and the resulting mixtures were
extracted with ethyl acetate. The ethyl acetate layers were dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give the compound of the formula (2-21) 3.4g.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (2-21) 1.75g as crude products and dimethylaminopyridine 3.13g were dissolved in a mixture of chloroform 14ml and toluene 4ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 3g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt and, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-23) 1.9g.

1H NMR (CDCl$_3$)

δ ppm: 7.52 (2H, d), 7.35 (2H, d), 6.97 (2H, s), 5.99 (1H, s), 3.12 (2H, dd), 2.65-2.58 (3H, m), 2.46-2.13 (9H, m),
Preparation Example 1-28: Preparation of the compound of the formula (1-36)

<Preparation of the compound of the formula 27-1>

Under nitrogen atmosphere, a mixture of oxalyl chloride 8.6g and methylene chloride 150ml was cooled to -78°C and to the resulting mixture solutions was added dropwise a solution of dimethyl sulfoxide 9.4g in methylene chloride 60ml and the resulting mixtures were stirred for 10 minutes. Thereafter, to the resulting mixture solutions was added dropwise a solution of the compound of the formula (28-1) 10g in methylene chloride 20ml and the resulting mixtures were stirred for 30 minutes. Thereafter, to the resulting mixture solutions was added triethylamine 30.4g and the resulting mixtures were warmed to rt and stirred for 1 hour. The resulting reaction solutions were poured into IN hydrochloric acid 200ml and the resulting mixtures were extracted with chloroform. The resulting organic layers were dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under reduced pressure to give the compound of the formula (29-1) 9.8g as crude products.
Continuously, at RT, the compound of the formula (29-1) 9.8g as crude products and 1-triphenylphosphoranylidene-2-propanone 22.6g were dissolved in chloroform 80ml. The resulting reaction mixture solutions were heated under reflux for 8 hours. Thereafter, the resulting reaction solutions were concentrated under reduced pressure to remove chloroform. To the resulting residues were added tert-butyl methyl ether and hexane. Continuously, the resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (27-1) (colorless oils) 7.4g.

1H NMR (CDCl$_3$)

δ ppm: 7.38-7.26 (5H, m), 6.82 (1H, dt), 6.13 (1H, dt), 4.51 (2H, s), 3.63-3.57 (2H, m), 2.53 (2H, ddd), 2.24 (3H, s)

<Preparation of the compound of the formula 25-1>

At RT, 28% sodium methoxide methanol solution 7.7g and
the compound of the formula (8-1) 5.3g were dissolved in tetrahydrofuran 100ml. The resulting solutions were heated under reflux for 15 minutes. Thereafter, the heating was stopped and to the resulting reaction mixture was added the compound of the formula (27-1) 7.4g. Thereafter, the resulting mixture solutions were heated under reflux for 1 hour. The resulting reaction solutions were cooled to 0°C and thereto was added hexane, and the precipitated crystals were filtered and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (25-1) 7.2g.

1H NMR (CDCl$_3$)

δ ppm: 7.37-7.26 (5H, m), 4.50-4.38 (3H, m), 3.59 (3H, s), 3.43-3.40 (3H, m), 2.84 (1H, d), 2.32-2.24 (1H, m), 2.08 (1H, dd), 1.76 (1H, dd), 1.57-1.36 (2H, m)

<Preparation of the compound of the formula 24-1>

At RT, the compound of the formula (25-1) 3g was dissolved in water 90ml. To the resulting solutions was added anhydrous sodium carbonate 2.9g. The resulting
solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and washed with tert-butyl methyl ether and then to the aqueous layers was added 2N hydrochloric acid and the resulting mixtures were extracted with ethyl acetate. The ethyl acetate layers were dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give the compound of the formula (26-1) (yellow solids) 2g as crude products.

Continuously, under nitrogen atmosphere, at RT, the compound of the formula (26-1) 730mg as crude products and dimethylaminopyridine 1.8g were dissolved in a mixture of chloroform 8ml and toluene 2ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.7g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane =
To give the compound of the formula (24-1) 890mg.

1H NMR (CDCl$_3$)

δ ppm: 7.39-7.27 (5H, m), 6.97 (2H, s), 5.70 (1H, s), 4.53 (2H, s), 3.62-3.53 (2H, m), 2.69-2.62 (2H, m), 2.52-2.22 (10H, m), 1.83-1.74 (2H, m), 1.08 (6H, ddd)

<Preparation of the compound of the formula 23-1>

To the compound of the formula (24-1) 4.5g was added a solution of triethylamine 1.8g in anhydrous tetrahydrofuran 30ml. To the resulting mixtures was added a solution of acetyl chloride 1.8g in anhydrous tetrahydrofuran 10ml under ice-cooling. The resulting mixtures were stirred at RT for 12 hours. To the reaction mixtures was added water and the resulting mixtures were extracted with chloroform. The chloroform layers extracted were dried over anhydrous sodium sulfate, then concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (23-1) (colorless oils) 3.7g.

1H NMR (CDCl$_3$)
δ ppm: 7.35-7.24 (5H, m), 6.88 (2H, s), 4.50 (2H, dd), 3.56 (2H, t), 2.72-2.28 (12H, m), 1.86-1.73 (5H, m), 1.12-1.03 (6H, m)

<Preparation of the compound of the formula 23-1>

The compound of the formula (23-1) 3.7g were dissolved in ethyl acetate 150ml. To the resulting mixture solutions was added 10% palladium-carbon 1.5g and the resulting mixtures were stirred at 35°C under hydrogen atmosphere for 4 hours.

The resulting reaction mixture solutions were filtered through Celite (™) and the resulting filtrates were concentrated under reduced pressure to give the compound of the formula (22-1) (colorless solids) 2.4g.

1H NMR (CDCl₃)
δ ppm: 6.89 (2H, s), 3.79 (2H, d), 2.79-2.69 (3H, m), 2.60-2.53 (1H, m), 2.42-2.25 (7H, m), 1.88 (3H, s), 1.82-1.73 (2H, m), 1.63-1.61 (2H, m), 1.07 (6H, q)

<Preparation of the compound of the formula l-36>
The compound of the formula (22-1) 344mg and the compound of the formula (21-2) 227mg were dissolved in tetrahydrofuran 5ml. Under nitrogen atmosphere, at RT, to the resulting mixture solutions was added dropwise tributylphosphine 223mg, and the resulting mixtures were stirred for 2 hours. The resulting reaction mixture solutions were concentrated under reduced pressure and the resulting crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-36) (colorless oils) 400mg.

1H NMR (CDCl$_3$)

δ ppm: 7.29 (1H, d), 6.96 (2H, s), 6.34 (1H, d), 5.88 (1H, s), 2.71-2.60 (4H, m), 2.44-2.16 (13H, m), 1.70 (2H, dd), 1.10-1.01 (6H, m)

Preparation Example 1-29: Preparation of the compound of the formula (1-33)

<Preparation of the compound of the formula 1-33>
The compound of the formula (22-1) 344mg and the compound of the formula (21-3) 121mg were dissolved in tetrahydrofururan 5ml. Under nitrogen atmosphere, at RT, to the resulting mixture solutions was added dropwise tributylphosphine 121mg and the resulting mixtures were stirred for 2 hours. The resulting reaction mixture solutions were concentrated under reduced pressure and the resulting crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:2) to give the compound of the formula (1-33) 80mg.

1H NMR (CDCl$_3$)

δ ppm: 8.41 (2H, dd), 7.13 (2H, dd), 6.90 (1H, s), 3.08 (2H, t), 2.82-2.67 (3H, m), 2.58-2.24 (9H, m), 1.95-1.84 (3H, m), 1.13-1.03 (6H, m)

Preparation Example 1-30: Preparation of the compound of the formula (1-76)

<Preparation of the compound of the formula 1-76>
The compound of the formula (22-1) 172mg and the compound of the formula (21-4) 124mg were dissolved in tetrahydrofuran 2.5ml. Under nitrogen atmosphere, at RT, to the resulting mixture solutions was added dropwise tributylphosphine 0.14ml and the resulting mixtures were stirred for 2 hours. The resulting reaction mixture solutions were concentrated under reduced pressure and the resulting crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3 → 1:2 → 1:1) to give the compound of the formula (1-76) 160mg.

1H NMR (CDCl3)

δ ppm: 7.26-7.22 (2H, m), 6.97 (2H, s), 6.61 (2H, dt), 2.86-2.82 (2H, m), 2.67-2.59 (2H, m), 2.44-2.18 (10H, m), 1.73 (2H, dd), 1.11-1.02 (6H, m)

Preparation Example 1-31: Preparation of the compound of the formula (1-77)
The compound of the formula (22-1) 344mg and the compound of the formula (21-5) 456mg were dissolved in tetrahydrofuran 5ml. Under nitrogen atmosphere, at RT, to the resulting mixture solutions was added dropwise tributylphosphate 111mg and the resulting mixtures were stirred for 2 hours. The resulting reaction mixture solutions were concentrated under reduced pressure and the resulting crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4 → 1:2) to give the compound of the formula (1-77) 210mg.

1H NMR (CDCl$_3$)

δ ppm: 9.40 (1H, s), 8.61 (1H, dd), 7.98-7.95 (2H, m), 7.61-7.51 (4H, m), 7.42 (1H, td), 7.11 (1H, td), 6.87 (2H, s), 2.87-2.83 (2H, m), 2.68-2.54 (3H, m), 2.46-2.22 (9H, m), 1.85 (3H, s), 1.79-1.73 (2H, m), 1.04 (6H, dt)

Preparation Example 1-32: Preparation of the compound of the formula (1-78)

<Preparation of the compound of the formula 1-78>
At RT, the compound of the formula (1-77) 150mg was dissolved in methanol 20ml and thereto was added potassium carbonate 100mg and the resulting mixtures were stirred for 1 hour. The resulting reaction solutions were concentrated under reduced pressure to give the compound of the formula (1-78) as crude products. Thereafter, the resulting crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-78) 160mg.

1H NMR (CDCl$_3$)

δ ppm: 9.39 (1H, s), 8.59 (1H, dd), 7.95 (2H, m), 7.60-7.51 (4H, m), 7.44-7.39 (1H, m), 7.11 (1H, td), 6.94 (2H, s), 5.91 (1H, s), 2.88-2.83 (2H, m), 2.60-2.57 (2H, m), 2.32-2.15 (9H, m), 1.76-1.71 (2H, m), 1.06-0.97 (6H, dt)

Preparation Example 1-33: Preparation of the compound of the formula (1-97)

<Preparation of the compound of the formula 31-1>
Under nitrogen atmosphere, at 0°C, to tetramethylethylenediamine 3.2ml was added n-butyllithium 16ml (1.6M hexane solution) and the resulting mixtures were stirred for 10 minutes. Thereafter, at 0°C under ice-cooling, thereto was added the compound of the formula (32-1) 5g. Thereafter, the resulting solutions were cooled to -78°C and then thereto was added a suspension of trichlorobismuth 2.3g in tetrahydrofuran 15ml and the resulting mixtures were stirred for 1 hour with heating to rt. Thereafter, to the resulting reaction solutions was added water 20ml and the aqueous layers were extracted with chloroform. The resulting chloroform layers were washed with saturated saline, dried over anhydrous sodium sulfate and filtered, and the resulting filtrates were concentrated under reduced pressure to give the compound of the formula (33-1) 2.6g as crude products.

Continuously, at RT, the compound of the formula (33-1) 2.6g as crude products were dissolved in dehydrated chloroform 25ml and cooled to 0°C and then thereto was added sulfuryl chloride 0.4ml. Thereafter, the resulting mixtures were warmed to rt and stirred four 1 hour. The
resulting reaction solutions were concentrated under reduced pressure, and to the resulting oils was added hexane to precipitate crystals and the crystals were filtered to give the compound of the formula (31-1) 1.3g.

1H NMR (CDCl$_3$)

δ ppm: 8.00 (1H, dd), 7.66 (1H, dd), 7.54-7.46 (2H, m), 3.03 (2H, q), 1.38 (3H, t)

<Preparation of the compound of the formula 1-97>

Under nitrogen atmosphere, at RT, the compound of the formula (31-1) 550mg and the compound of the formula (2-9) 290mg were dissolved in a mixture of chloroform 1ml and toluene 4ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solution was added diazabicycloundecene 0.17ml. Under nitrogen atmosphere, at RT, the resulting mixtures were stirred for 12 hours. The resulting reaction solutions were diluted with chloroform. The resulting diluted solutions were washed with hydrochloric acid adjusted to pH 1 to 2 and continuously, washed with saturated saline. Thereafter,
the resulting organic layers were dried over anhydrous sodium sulfate and filtered, and the resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-97) 240mg.

\[^1H \text{ NMR (CDCl}_3) \]
\[
\delta \text{ ppm: } 8.67 \text{ (1H, s)}, 7.66 \text{ (1H, dd)}, 7.36-7.23 \text{ (4H, m)}, 7.04-7.01 \text{ (1H, m)}, 5.91-5.87 \text{ (1H, m)}, 3.61-3.51 \text{ (1H, m)}, 3.08-2.98 \text{ (1H, m)}, 2.74-2.28 \text{ (7H, m)}, 2.04-1.95 \text{ (1H, m)}, 1.17-1.03 \text{ (6H, m)}
\]

Preparation Example 1-34: Preparation of the compound of the formula (1-19)

<Preparation of the compound of the formula 1-19>

At RT, to the compound of the formula (1-1) 250mg was added chloroform 3ml. The resulting mixtures were cooled to 0°C with stirring and thereto was added dropwise a mixture of meta-chloroperbenzoic acid 120mg dissolved in chloroform 2ml. The resulting mixtures were stirred for 1 hour. Thereafter, the resulting mixtures were warmed to rt
and stirred at RT overnight. The reaction solutions were
diluted with chloroform and washed with 10% sodium sulfite
aqueous solution. The resulting chloroform layers were
washed with saturated saline, dried over anhydrous sodium
sulfate and then filtered. The resulting filtrates were
concentrated under reduced pressure to give oils. The
resulting oils were subjected to a silica gel column
chromatography (eluates, ethyl acetate : hexane = 9:1) to
give the compound of the formula (1-19) 154mg.

\[\text{H NMR (CDCl}_3\text{)} \]
\[\delta \text{ ppm: 7.83-7.75 (4H, m), 6.97 (2H, s), 5.53 (1H, s), 3.03-} \]
\[2.94 (1H, m), 2.89-2.62 (3H, m), 2.46-2.19 (10H, m), 2.13-} \]
\[1.78 (2H, m), 1.08-1.00 (6H, m) \]

The present compounds prepared according to
preparation Example 1-34 are shown below.

<Compound of the formula 1-79>

\[\text{H NMR (CDCl}_3\text{)} \]
\[\delta \text{ ppm: 11.51 (1H, s), 8.72 (1H, d), 8.05 (2H, d), 7.60-7.50} \]
\[(4H, m), 7.31 (1H, d), 7.19 (1H, t), 6.94 (2H, s), 5.82 (1H,} \]
\[s), 3.34-3.24 (1H, m), 3.09-3.01 (1H, m), 2.62-2.55 (2H, m),} \]
\[2.36-2.14 (10H, m), 1.96-1.80 (2H, m), 1.05-1.01 (6H, m) \]

<Compound of the formula 1-81>

\[\text{H NMR (CDCl}_3\text{)} \]
\[\delta \text{ ppm: 7.83-7.77 (4H, m), 6.90-6.88 (2H, m), 2.99-2.19 (15H,} \]
<Compound of the formula 1-83>

\(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 8.89 (1H, s), 8.23-8.16 (2H, m), 6.96 (2H, d), 3.36-3.28 (1H, m), 3.01-2.84 (1H, m), 2.70-2.21 (13H, m), 1.37-1.17 (3H, m), 1.11-1.03 (6H, m)

<Compound of the formula 1-85>

\(\frac{3}{4}\) NMR (CDCl\(_3\))

\(\delta\) ppm: 8.99 (1H, s), 8.04 (1H, s), 6.97 (2H, s), 5.78 (1H, s), 3.21-3.13 (2H, m), 2.76-2.65 (2H, m), 2.48-1.82 (12H, m), 1.06-1.02 (6H, m)

<Compound of the formula 1-87>

\(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 7.80 (4H, dd), 6.98 (2H, s), 3.00-2.92 (1H, m), 2.76-2.22 (13H, m), 1.36-1.33 (6H, m), 1.11-1.05 (6H, m)

<Compound of the formula 1-89>

\(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 8.90 (1H, s), 8.24-8.18 (2H, m), 6.98 (2H, s), 3.24 (1H, dd), 2.89 (1H, dd), 2.76-2.67 (2H, m), 2.57-2.23 (10H, m), 1.40-1.35 (6H, m), 1.11-1.05 (6H, m)

<Compound of the formula 1-91>

\(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 7.84-7.76 (4H, m), 6.98 (1H, s), 5.86 (1H, s), 2.95-2.25 (14H, m), 1.11-1.06 (6H, m), 1.00-0.94 (1H, m), 0.86-0.74 (2H, s), 0.64-0.59 (1H, s)
<Compound of the formula 1-98>

1H NMR (CDCI3)

δ ppm: 7.96-7.93 (4H, m), 6.92 (1H, d), 3.01-2.84 (2H, m), 2.66-2.26 (9H, m), 2.09-1.97 (6H, m), 1.40-1.15 (3H, m)

<Compound of the formula 1-154>

1H NMR (CDCI3)

δ ppm: 8.90 (1H, s), 8.24 (1H, dt), 8.18 (1H, dd), 6.98 (2H, s), 5.50 (1H, d), 3.35-3.19 (1H, m), 3.11-2.99 (1H, m), 2.73-2.64 (2H, m), 2.44-2.23 (12H, m), 1.08-1.03 (6H, m)

<Compound of the formula 1-156>

1H NMR (CDCI3)

δ ppm: 9.21 (1H, s), 8.55 (1H, d), 8.12 (1H, dd), 6.97 (2H, s), 5.48 (1H, d), 4.00 (3H, s), 3.34-3.24 (1H, m), 3.11-3.00 (1H, m), 2.68-2.63 (2H, m), 2.38-2.06 (12H, m), 1.08-1.01 (6H, m)

<Compound of the formula 1-159>

1H NMR (CDCI3)

δ ppm: 9.33 (1H, d), 8.98 (1H, s), 6.98 (2H, s), 5.53 (1H, d), 3.36-3.28 (1H, m), 3.20-3.11 (1H, m), 2.75-2.66 (2H, m), 2.49-2.20 (11H, m), 1.84-1.63 (1H, m), 1.08-1.01 (6H, m)
<Compound of the formula 1-165>

1H NMR (CDCl$_3$)

δ ppm: 8.39 (1H, dd), 8.12 (1H, dd), 6.97 (2H, s), 5.52 (1H, d), 3.49-3.42 (1H, m), 3.27-3.20 (1H, m), 2.74-2.64 (2H, m), 2.46-2.14 (11H, m), 1.76-1.66 (1H, m), 1.08-1.02 (6H, m)

Preparation Example 1-35: Preparation of the compound of the formula (1-20)

<Preparation of the compound of the formula 1-20>

At RT, to the compound of the formula (1-1) 250mg was added chloroform 3ml. The resulting mixtures were cooled to 0°C with stirring and thereeto was added dropwise a mixture of meta-chloroperbenzoic acid 440mg dissolved in chloroform 2ml. The resulting mixtures were stirred for 1 hour. Thereafter, the resulting mixtures were warmed to rt and stirred at RT overnight. The reaction solutions were diluted with chloroform and the resulting diluted solutions were washed with 10% sodium sulfite aqueous solution. The resulting chloroform layers were washed with saturated saline, dried over anhydrous sodium sulfate and then filtered. The resulting filtrates were concentrated under
reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane - 1:2) to give the compound of the formula (1-20) 154mg.

5

1H NMR (CDCl$_3$)

δ ppm: 8.08 (2H, d), 7.88 (2H, d), 6.97 (2H, s), 5.52 (1H, s), 3.27-3.15 (2H, m), 2.73-2.60 (2H, m), 2.45-2.21 (10H, m), 2.02-1.90 (2H, m), 1.08-1.00 (6H, m)

10 The present compounds prepared according to preparation Example 1-35 are shown below.

<Compound of the formula 1-80>

1H NMR (CDCl$_3$)

δ ppm: 10.46 (1H, s), 8.69 (1H, d), 8.05-7.91 (2H, m), 7.73 (1H, td), 7.64-7.52 (4H, m), 7.34 (1H, td), 6.95 (2H, s), 3.26-3.16 (2H, m), 2.61-2.52 (2H, m), 2.35-2.11 (10H, m), 1.93-1.87 (2H, m), 1.03 (6H, dd)

<Compound of the formula 1-82>

1H NMR (CDCl$_3$)

δ ppm: 8.09 (2H, d), 7.88 (2H, d), 6.98 (2H, s), 3.28-2.99 (2H, m), 2.61-2.21 (13H, m), 1.28-1.22 (3H, m), 1.08-1.04 (6H, m)

<Compound of the formula 1-84>

1H NMR (CDCl$_3$)

δ ppm: 9.02 (1H, s), 8.27 (2H, s), 6.98 (2H, s), 5.67 (1H,
s), 3.69 (1H, dt), 3.32 (1H, ddd), 2.66-2.21 (13H, m), 1.28-1.24 (3H, m), 1.10-1.02 (6H, m)

<Compound of the formula 1-86>

1H NMR (CDCl$_3$)

δ ppm: 8.79 (1H, s), 8.18 (1H, s), 6.99 (2H, s), 3.86-3.66 (2H, m), 2.86-2.72 (2H, m), 2.54-2.09 (12H, m), 1.10-1.01 (6H, m)

<Compound of the formula 1-88>

1H NMR (CDCl$_3$)

δ ppm: 8.09 (2H, d), 7.86 (2H, d), 6.99 (2H, d), 3.11 (2H, dd), 2.68-2.24 (12H, m), 1.35 (6H, d), 1.08 (6H, dt)

<Compound of the formula 1-90>

1H NMR (CDCl$_3$)

δ ppm: 9.01 (1H, s), 8.27-8.22 (2H, m), 6.98 (2H, s), 3.59-3.49 (2H, m), 2.59-2.48 (2H, m), 2.42-2.27 (8H, m), 1.33-1.27 (6H, m), 1.08 (6H, td)

<Compound of the formula 1-92>

1H NMR (CDCl$_3$)

δ ppm: 8.08 (2H, d), 7.86 (2H, d), 6.98 (2H, d), 5.86 (1H, s), 3.26-3.08 (2H, m), 2.88-2.73 (1H, m), 2.68-2.52 (2H, m), 2.47-2.17 (9H, m), 1.12-1.05 (6H, m), 0.83-0.53 (4H, m)

<Compound of the formula 1-99>

1H NMR (CDCl$_3$)

δ ppm: 8.09 (2H, d), 7.88 (2H, d), 6.93 (2H, s), 5.59 (1H, s), 3.23 (1H, td), 3.05-2.98 (1H, m), 2.59-2.23 (9H, m),
Preparation Example 1-36: Preparation of the compound of the formula (1-59)

To the compound of the formula (1-4) 500mg added a solution of triethylamine 175mg in anhydrous tetrahydrofuran 3ml. To the resulting mixtures was added a solution of acetyl chloride 170mg in anhydrous tetrahydrofuran 1ml under ice-cooling. The resulting mixtures were stirred at RT for 12 hours. To the reaction mixtures was added water 5ml and the resulting mixtures were extracted with chloroform. The resulting chloroform layers were dried over anhydrous sodium sulfate, concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:6) to give the compound of the formula (1-59) (colorless oils) 530mg.

1H NMR (CDCl₃)
δ ppm: 8.67 (1H, m), 7.67 (1H, dd), 7.27 (1H, d), 6.89 (2H, s), 3.30 (2H, t), 2.84-2.25 (12H, m), 1.98-1.89 (5H, m), 2.06-1.97 (6H, m), 1.21 (3H, dt)
1.09-1.02 (6H, m)

The present compounds prepared according to preparation Example 1-36 are shown below.

5 <Compound of the formula l-60>
\[^1H \text{NMR (CDCl}_3 \text{)} \]
\[\delta \text{ ppm: } 8.67 \ (1H, m), \ 7.67 \ (1H, dd), \ 7.27 \ (1H, d), \ 6.88 \ (2H, s), \ 3.31 \ (2H, t), \ 2.77-2.23 \ (12H, m), \ 2.17-2.11 \ (2H, m), \ 1.98-1.88 \ (2H, m), \ 1.05 \ (6H, ddd), \ 0.84 \ (3H, t) \]

10 <Compound of the formula l-61>
\[^1H \text{NMR (CDCl}_3 \text{)} \]
\[\delta \text{ ppm: } 8.67 \ (1H, m), \ 7.67 \ (1H, dd), \ 7.27 \ (1H, d), \ 6.87 \ (2H, s), \ 3.31 \ (2H, td), \ 2.84-2.25 \ (12H, m), \ 1.94 \ (2H, dt), \ 1.05 \ (6H, dt), \ 0.88 \ (9H, s) \]

15 <Compound of the formula l-62>
\[^1H \text{NMR (CDCl}_3 \text{)} \]
\[\delta \text{ ppm: } 8.67 \ (1H, dd), \ 7.67 \ (1H, dd), \ 7.27 \ (1H, d), \ 6.90 \ (2H, s), \ 3.70 \ (3H, s), \ 3.31 \ (2H, t), \ 2.92-2.26 \ (12H, m), \ 1.99-1.89 \ (2H, m), \ 1.09-1.02 \ (6H, m) \]

20 <Compound of the formula l-63>
\[^1H \text{NMR (CDCl}_3 \text{)} \]
\[\delta \text{ ppm: } 8.67 \ (1H, dd), \ 7.67 \ (1H, dd), \ 7.27 \ (1H, d), \ 6.90 \ (2H, s), \ 4.12-4.07 \ (2H, m), \ 3.34-3.27 \ (2H, m), \ 2.91-2.27 \ (12H, m), \ 1.99-1.88 \ (2H, m), \ 1.18 \ (3H, t), \ 1.09-1.00 \ (6H, m) \]

25 <Compound of the formula l-66>
\[^1H \text{ NMR (CDCl}_3 \text{)} \]
\[\delta \text{ ppm: 8.67 (1H, dd), 7.66 (1H, dd), 7.26 (1H, d), 6.90 (2H, s), 5.80-5.71 (1H, m), 5.21-5.15 (2H, m), 4.52-4.50 (2H, m), 3.30 (2H, t), 2.82-2.26 (12H, m). 1.97-1.88 (2H, m), 1.09-1.00 (6H, m) } \]

<Compound of the formula 1-67>

\[^1H \text{ NMR (CDCl}_3 \text{)} \]
\[\delta \text{ ppm: 8.66 (1H, t), 7.66 (1H, dd), 7.35-7.18 (4H, m), 6.95 (2H, s), 6.87-6.83 (2H, m), 3.31 (2H, t), 2.99-2.29 (12H, m), 2.00-1.90 (2H, m), 1.08-1.03 (6H, m) } \]

<Compound of the formula 1-68>

\[^1H \text{ NMR (CDCl}_3 \text{)} \]
\[\delta \text{ ppm: 8.69 (1H, t), 7.67 (1H, dd), 7.27 (1H, d), 6.93 (2H, s), 3.66-3.27 (2H, m), 3.06 (1H, dd), 2.84-2.76 (2H, m), 2.56-2.26 (12H, m), 1.99-1.88 (2H, m), 1.14-1.04 (6H, m) } \]

<Compound of the formula 1-93>

\[^1H \text{ NMR (CDCl}_3 \text{)} \]
\[\delta \text{ ppm: 8.91 (1H, s), 8.24-8.18 (2H, m), 6.90 (2H, d), 4.13-4.05 (2H, m), 3.33 (1H, ddd), 3.07-2.24 (14H, m), 1.39-1.02 (12H, m) } \]

Preparation Example 1-37: Preparation of the compound of the formula (1-64)

<Preparation of the compound of the formula 1-64>
To 60% sodium hydrate 110mg was added anhydrous N,N-dimethylformamide 1ml. To the resulting mixtures was added dropwise a solution of the compound of the formula (1-4) 500mg in anhydrous N,N-dimethylformamide 3ml under ice-cooling. The resulting mixtures were stirred under ice-cooling for 10 minutes and then thereto was added dropwise a solution of chloromethyl methyl ether 200mg in anhydrous N,N-dimethylformamide 1ml and the resulting mixtures were stirred at RT for 2 hours. To the reaction mixtures was added water 5ml and the resulting mixtures were extracted with ethyl acetate. The resulting ethyl acetate layers were washed with water, dried over anhydrous sodium sulfate and then concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-64) (yellow oils) 208mg.

1H NMR (CDCl$_3$)

δ ppm: 8.67 (1H, m), 7.67 (1H, dd), 7.27 (1H, d), 6.90 (2H, s), 4.98 (2H, s), 3.39-3.22 (5H, m), 3.03-2.25 (12H, m), 1.99-1.89 (2H, m), 1.08-1.02 (6H, m)
The present compounds prepared according to preparation Example 1-37 are shown below.

<Compound of the formula 1-65>

\[^1H \text{NMR} \left(\text{CDCl}_3 \right) \delta \text{ppm: } 8.67 \ (1H, \text{ m}), 7.67 \ (1H, \text{ dd}), 7.27 \ (1H, \text{ d}), 6.91 \ (2H, \text{ s}), 5.05-4.99 \ (2H, \text{ m}), 3.56-3.51 \ (2H, \text{ m}), 3.37-3.28 \ (2H, \text{ m}), 3.04-2.23 \ (12H, \text{ m}), 1.97-1.90 \ (2H, \text{ m}), 1.17-0.99 \ (9H, \text{ m}) \]

Preparation Example 1-38: Preparation of the compound of the formula (1-30)

<Preparation of the compound of the formula 9-30>

\[
\begin{align*}
\text{CF}_3 & \quad \text{CF}_3 \\
\text{SH} & \quad \text{O} \\
(10-30) & \quad (9-30)
\end{align*}
\]

At RT, the compound of the formula (10-30) 7.10g and tetrahydrofuran 60ml were mixed and stirred and to the resulting mixtures were added dropwise 95% acrolein 3.64g and triethylamine 1.21g. The resulting mixtures were stirred at RT for 5.5 hours. Thereafter, the resulting reaction solutions were concentrated under reduced pressure to give the compound of the formula (9-30) 9.32g.

\[^1H \text{NMR} \left(\text{CDCl}_3 \right) \delta \text{ppm: } 9.78 \ (1H, \text{ s}), 7.67 \ (1H, \text{ d}), 7.54-7.46 \ (2H, \text{ m}), 7.35-7.31 \ (1H, \text{ m}), 3.24 \ (2H, \text{ t}), 2.80 \ (2H, \text{ dt}) \]
At RT, the compound of the formula (9-30) 9.32g was dissolved in chloroform 40ml. To the resulting solutions was added triphenylphosphine acetylmethylene 16.5g under ice-cooling. The resulting solutions were stirred at RT for 17 hours. Thereafter, under reduced pressure, chloroform was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-30) 9.76g.

1H NMR (CDCl$_3$)

δ ppm: 7.67 (1H, d), 7.52-7.43 (2H, m), 7.34-7.30 (1H, m), 6.79 (1H, dt), 6.11 (1H, dt), 3.10 (2H, t), 2.57 (2H, qd), 2.24 (3H, s)
At RT, 28% sodium methoxide methanol solution 7.55g and the compound of the formula (8-1) 5.17g were dissolved in tetrahydrofuran 70ml. The resulting solutions were heated under reflux for 10 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-30) 9.76g. Thereafter, the resulting mixture solutions were heated under reflux for 2 hours. The resulting reaction solutions were cooled to rt, and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-30) 6.80g.

1H NMR (d-DMSO)

δ ppm: 7.70 (1H, d), 7.61 (2H, dd), 7.36 (1H, q), 4.39 (1H, s), 3.47 (3H, s), 3.15-3.08 (1H, m), 3.00-2.93 (1H, m), 2.83 (1H, d), 2.33-2.23 (1H, m), 2.11 (1H, dd), 1.77 (1H, dd), 1.53-1.44 (2H, m)

<Preparation of the compound of the formula 1-30>
At RT, the compound of the formula (6-30) 6.80g was dissolved in water 90ml. To the resulting solutions was added anhydrous sodium carbonate 5.78g. The resulting solutions were heated under reflux for 5 hours. The reaction solutions were cooled to rt and acidified with 2N hydrochloric acid. The resulting reaction solutions were extracted with ethyl acetate to give the compound of the formula (2-30) 6.01g.

Under nitrogen atmosphere, at RT, the compound of the formula (2-30) 541mg and dimethylaminopyridine 1.04g were dissolved in a mixture of chloroform 5.0ml and toluene 2.0ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 1.00g. Under nitrogen atmosphere, the resulting mixtures were stirred at 75°C for 1.5 hours. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous sodium sulfate.
and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (1-30) 387mg.

1H NMR (CDCl$_3$)

δ ppm: 7.67 (1H, d), 7.49 (2H, t), 7.32-7.28 (1H, m), 6.98 (2H, s), 5.54 (1H, s), 3.07 (2H, ddd), 2.69 (2H, td), 2.48-2.24 (10H, m), 1.85 (2H, q), 1.08 (3H, t), 1.05 (3H, t)

Preparation Example 1-39: Preparation of the compound of the formula (1-29)

<Preparation of the compound of the formula 7-29>

15 At RT, the compound of the formula (10-29) 5.0g and tetrahydrofuran 56ml were mixed and stirred and to the resulting mixtures were added dropwise 95% acrolein 2.56g and triethylamine 852mg. The resulting mixtures were stirred at RT for 2 hours. Thereafter, the resulting reaction solutions were concentrated under reduced pressure to give the compound of the formula (9-29) 6.61g.

At RT, the compound of the formula (9-29) 6.61g and triphenylphosphine acetylmethylene 11.6g were dissolved in
tetrahydrofururan 28ml. The resulting solutions were stirred at RT for 5 hours. Thereafter, under reduced pressure, tetrahydrofururan was removed from the resulting reaction solutions. To the resulting residues were added tert-butyl methyl ether and hexane. The resulting mixtures were filtered and the resulting filtrates were concentrated under reduced pressure. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:4) to give the compound of the formula (7-29) 1.01g.

\(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 7.56 (1H, s), 7.51-7.40 (3H, m), 6.78 (1H, dt), 6.13 (1H, dt), 3.10 (2H, t), 2.59 (2H, qd), 2.25 (3H, s)

<Preparation of the compound of the formula 6-29>

At RT, 28% sodium methoxide methanol solution 781mg and the compound of the formula (8-1) 464mg were dissolved in tetrahydrofururan 7ml. The resulting solutions were heated under reflux for 10 minutes. Thereafter, the heating was stopped and to the resulting reaction mixtures was added the compound of the formula (7-29) 1.01g. Thereafter, the resulting mixture solutions were heated
under reflux for 1 hour. The resulting reaction solutions were cooled to rt and the precipitated crystals were collected by filtering and washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (6-29) 873mg.

1H NMR (CDCl$_3$)

δ ppm: 7.57-7.51 (4H, m), 4.38 (1H, s), 3.45 (3H, s), 3.10 (1H, m), 2.96 (1H, m), 2.81 (1H, d), 2.28 (1H, m), 2.11 (1H, d), 1.75 (1H, t), 1.47 (2H, m)

<Preparation of the compound of the formula 1-29>

At RT, the compound of the formula (6-29) 873mg was dissolved in water 12ml. To the resulting solutions was added anhydrous sodium carbonate 741mg. The resulting solutions were heated under reflux for 6.5 hours. The reaction solutions were cooled to rt and acidified with 2N hydrochloric acid. The resulting reaction solutions were extracted with ethyl acetate. The ethyl acetate layers were concentrated under reduced pressure and the resulting crystals were washed with tert-butyl methyl ether and hexane sequentially to give the compound of the formula (2-
Under nitrogen atmosphere, at RT, the compound of the formula (2-29) 430mg and dimethylaminopyridine 831mg were dissolved in a mixture of chloroform 4ml and toluene 1ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions was added the compound of the formula (3-1) 795mg. Under nitrogen atmosphere, the resulting mixtures were stirred at 80°C four 1 hour. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous magnesium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 15:85) to give the compound of the formula (1-29) 144mg.

\[\text{\textit{H NMR (CDCl}_3\text{)}} \]

\[\delta \text{ ppm: } 7.56 (1H, s), 7.50-7.40 (3H, m), 6.98 (2H, s), 5.54 (1H, s), 3.10-3.01 (2H, m), 2.70 (2H, t), 2.47-2.24 (10H, m), 1.86 (2H, q), 1.10-1.03 (6H, m) \]

Preparation Example 1-40: Preparation of the compound of
the formula (1-41)

<Preparation of the compound of the formula 3-1>

\[\text{Under nitrogen atmosphere, at RT, } 1,1'\text{-bis (diphenylphosphino) ferrocene-palladium (II)dichloride-dichloromethane complex 2.04g, cesium carbonate 48.8g and the compound of the formula (5-1) 10g were dissolved in N,N-dimethylformamide 125ml. To the resulting solutions was added dropwise triethylborane (32.5ml) (1.0M hexane solution) and the resulting mixtures were stirred at RT under nitrogen atmosphere for 16 hours. The reaction solutions were filtered through Celite (TM) and then to the filtrates was added water and the resulting mixtures were extracted with tert-butyl methyl ether, and the organic layers were washed with saturated saline and dried over anhydrous magnesium sulfate. The resulting organic layers were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:19 - 1:9) to give the compound of the formula (3-1) 3.18g.} \]

\[^1H \text{ NMR (CDCl}_3\text{)} \]

\[\delta \text{ ppm: 6.78 (2H, s), 3.49 (2H, s), 2.51 (2H, q), 2.23 (3H, s), 2.16 (3H, s), 1.24 (3H, t)} \]
At RT, the compound of the formula (12-4) 3.18g was dissolved in water 25ml. To the resulting solutions was added 48% hydrogen bromide 26.6ml and the resulting mixtures were stirred at 40°C for 15 minutes. To the resulting reaction solutions was added dropwise 2.34M sodium nitrite aqueous solution 10ml at 0°C and the resulting mixtures were stirred under ice-cooling for 20 minutes. The resulting mixtures were added dropwise to a mixture that was prepared by adding 48% hydrogen bromide 26.6ml to copper sulfate (II) pentahydrate 3.19g and copper (powder) 1.27g followed by cooling the resulting mixtures to 0°C. The resulting solutions were stirred at RT for 3.5 hours. The resulting reaction solutions were filtered through Celite (TM) and the resulting filtrates were extracted with ethyl acetate. The organic layers were washed with saturated saline and then dried over anhydrous magnesium sulfate. The resulting organic layers were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, hexane) to give the compound of the formula (11-4) 1.91g.
\textbf{1H NMR (CDCl3)}

\[\delta \text{ ppm: } 6.90 (1H, s), 6.88 (1H, s), 2.74 (2H, q), 2.38 (3H, s), 2.25 (3H, s), 1.21 (3H, t) \]

<Preparation of the compound of the formula 3-4>

Under nitrogen atmosphere, at RT, the compound of the formula (11-4) 1.91g were dissolved in tetrahydrofuran 23ml. The resulting solutions were cooled to -78°C and thereto was added dropwise n-butyllithium (1.63M hexane solution) under nitrogen atmosphere. Thereafter, under nitrogen atmosphere, the reaction solutions were stirred at 40°C for 4 hours. The resulting solutions were cooled to -78°C and thereto was added dropwise trimethoxyborane 1.12g under nitrogen atmosphere and the resulting mixtures were stirred at RT for 23 hours. The resulting solutions were cooled to 0°C and acidified with 1N hydrochloric acid. The resulting reaction solutions were extracted with chloroform, and the organic layers were washed with saturated saline and then dried over anhydrous magnesium sulfate. The organic layers were concentrated under reduced pressure and filtered and the residues were washed with hexane to give the compound of the formula (3-4) 654mg.
\[\text{H NMR (CDCl}_3) \]
\[\delta \text{ ppm: } 6.86 \text{ (1H, s), 6.85 (1H, s), 4.58 (2H, d), 2.63 (2H, q), 2.35 (3H, s), 2.29 (3H, s), 1.23 (3H, t) } \]

<Preparation of the compound of the formula 1-41>

Under nitrogen atmosphere, at RT, lead tetraacetate 1.87g, mercury acetate 58.5mg and the compound of the formula (5-4) 654mg were dissolved in chloroform 7ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, the reaction solutions were stirred at 45°C for 4 hours. The reaction solutions were cooled to rt and filtered through Celite (TM). The resulting filtrates were concentrated under reduced pressure to give yellow oils. To the resulting oils was added hexane and the resulting mixtures were concentrated under reduced pressure to give yellow solids. Under nitrogen atmosphere, at RT, the resulting solids were dissolved in chloroform 16ml. To the resulting solutions was added potassium carbonate 6.09g and the resulting mixtures were stirred for 15 minutes. Thereafter, the reaction solutions were filtered through
Celite (TM). The resulting filtrates were concentrated under reduced pressure to give the compound of the formula (3-4) 21g.

Under nitrogen atmosphere, at RT, the compound of the formula (2-1) 332mg and dimethylaminopyridine 644mg were dissolved in a mixture of chloroform 3ml and toluene 1ml. The resulting solutions were stirred at RT under nitrogen atmosphere for 15 minutes. Thereafter, under nitrogen atmosphere, to the resulting solutions were added the compound of the formula (3-4) 600mg. Under nitrogen atmosphere, the resulting mixtures were heated under reflux for 2 hours. The resulting reaction solutions were cooled to rt, adjusted to pH 1 with 2N hydrochloric acid and filtered through Celite (TM). The resulting filtrates were extracted with chloroform. The resulting chloroform layers were washed with water, dried over anhydrous magnesium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure to give yellow oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:9 → 3:17) to give the compound of the formula (1-41) 361mg.

1H NMR (CDCl$_3$)

δ ppm: 7.54 (2H, d), 7.37 (2H, d), 6.96 (2H, s), 5.50 (IH, s), 3.13-3.03 (2H, m), 2.71 (2H, t), 2.47-2.25 (8H, m), 2.06-2.00 (3H, m), 1.90-1.85 (2H, m), 1.10-1.02 (3H, m)
The present compounds prepared according to preparation Example 1-40 are shown below.

<Compound of the formula 1-128>

1H NMR (CDCl$_3$)

δ ppm: 7.53 (2H, d), 7.37 (3H, d), 7.23-7.12 (3H, m), 3.05 (2H, td), 2.69 (2H, d), 2.47-2.30 (3H, m), 1.87-1.81 (2H, m)

<Compound of the formula 1-167>

1H NMR (CDCl$_3$)

δ ppm: 7.55-7.49 (3H, m), 7.38-7.26 (4H, m), 7.19-7.14 (1H, m), 5.62 (1H, s), 3.07-3.06 (2H, m), 2.72-2.63 (2H, m), 2.48-2.21 (3H, m), 1.87 (2H, dt)

<Compound of the formula 1-168>

1H NMR (CDCl$_3$)

δ ppm: 8.67 (1H, s), 7.70-7.65 (2H, m), 7.38 (1H, tt), 7.29-7.23 (2H, m), 7.16 (1H, ddd), 5.58 (1H, d), 3.31 (2H, t), 2.81-2.67 (2H, m), 2.55-2.24 (3H, m), 1.97-1.88 (2H, m)

<Compound of the formula 1-170>

1H NMR (CDCl$_3$)

δ ppm: 8.63 (1H, s), 7.66 (1H, ddd), 7.25 (1H, d), 6.61 (2H, s), 3.25-3.21 (2H, m), 2.69 (2H, d), 2.37-2.31 (3H, m), 1.86-1.83 (2H, m)

<Compound of the formula 1-171>

1H NMR (CDCl$_3$)

δ ppm: 7.69 (1H, ddd), 7.54 (2H, d), 7.38 (3H, d), 7.28-7.13 (2H, m), 5.58 (1H, s), 3.07 (2H, q), 2.77-2.25 (5H, m),
Preparation Example 1-41: Preparation of the compound of the formula (1-105)

<Preparation of the compound of the formula 31-2>

Under nitrogen atmosphere, at RT, the compound of the formula (32-2) 2.52g was dissolved in tetrahydrofuran 15ml. The resulting solutions were cooled to -78°C and thereto was added n-butyllithium 10ml (1.6M hexane solution) and the resulting mixtures were stirred for 1 hour. Thereafter, thereto was added a suspension of trichlorobismuth 1.44g in tetrahydrofuran 10ml and the resulting mixtures were stirred for about 1 hour with heating to rt. To the resulting reaction solutions was added water 20ml and the resulting mixtures were filtered through Celite (TM). The filtrates were extracted with chloroform. The resulting chloroform layers were washed with saturated saline, dried over anhydrous magnesium sulfate and then filtered, and the resulting filtrates were concentrated under reduced pressure to give the compound of the formula (33-2) as crude products 2.18g.

Continuously, at RT, the compound of the formula (33-
2) 2.18g as crude products were dissolved in dehydrated chloroform 5ml and the resulting mixtures were cooled to 0°C and then thereto was added sulfuryl chloride 0.55ml. Thereafter, the resulting mixtures were warmed to rt and stirred for 30 minutes. To the resulting reaction solutions was added tert-butyl methyl ether to precipitate crystals and then the resulting mixtures were concentrated under reduced pressure and filtered to give the compound of the formula (31-2) 1.86g.

1H NMR (d-DMSO)
δ ppm: 8.03 (3H, dd), 7.62 (3H, t), 7.51 (3H, d), 7.34 (3H, t), 3.82 (9H, s)

<Preparation of the compound of the formula 1-105>

Under nitrogen atmosphere, at RT, the compound of the formula (2-9) 475mg, diazabicyclo[5.4.0]undeca-7-ene 274mg and the compound of the formula (31-2) 1.08g were dissolved in a mixture of chloroform 1ml and toluene 5ml and the resulting mixtures were stirred at RT under nitrogen atmosphere for 24 hours. The resulting reaction solutions were diluted with chloroform and washed with hydrochloric
acid adjusted to pH 1 to 2, and continuously, washed with saturated saline. Thereafter, the resulting organic layers were dried over anhydrous magnesium sulfate and then filtered, and the resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:9 → 3:7) to give the compound of the formula (1-105) 72.4mg.

\[^1H\text{ NMR (CDCl}_3\text{)} \]

δ ppm: 7.53 (2H, d), 7.38-7.34 (3H, m), 7.14-6.98 (3H, m), 6.30 (1H, s), 3.80 (3H, s), 3.10-3.02 (2H, m), 2.73-2.65 (2H, m), 2.47-2.39 (2H, m), 2.31-2.24 (1H, m), 1.88-1.82 (2H, m)

Preparation Example 1-42: Preparation of the compound of the formula (1-96)

<Preparation of the compound of the formula 31-3>

Under nitrogen atmosphere, at RT, the compound of the formula (32-3) 3.20g were dissolved in tetrahydrofuran 15ml. The resulting solutions were cooled to -78°C and thereto was added n-butyllithium 10ml (1.6M hexane solution) and the resulting mixtures were stirred for 1 hour. Thereafter,
thereto was added a suspension of trichlorobismuth 1.44g in tetrahydrofuran 10ml and the resulting mixtures were stirred for 1 hour with heating to rt. To the resulting reaction solutions was added water 20ml and the aqueous layers were extracted with chloroform. The resulting chloroform layers were washed with saturated saline, dried over anhydrous magnesium sulfate and then filtered, and the resulting filtrates were concentrated under reduced pressure to give the compound of the formula (33-3) 3.07g.

Continuously, the resulting compound of the formula (33-3) 3.07g as crude products was dissolved in dehydrated chloroform 5ml at RT and the resulting mixtures were cooled to 0°C and then thereto was added sulfuryl chloride 0.55ml. Thereafter, the resulting mixtures were warmed to rt and stirred for 30 minutes. The resulting reaction solutions were concentrated under reduced pressure, and to the resulting oils was added hexane to precipitate crystals. The resulting crystals were filtered to give the compound of the formula (31-3) 1.25g.

1H NMR (CDCl$_3$)
δ ppm: 8.11 (3H, d), 7.51-7.45 (9H, m), 7.30 (6H, d), 7.19-7.15 (3H, m), 7.05 (6H, t)
Under nitrogen atmosphere, at RT, the compound of the formula (2-9) 3.16mg, 1,8-diazabicyclo[5.4.0]undeca-7-ene 183mg and the compound of the formula (31-3) 887mg were dissolved in a mixture of chloroform 1ml and toluene 4ml and the resulting mixtures were stirred at RT under nitrogen atmosphere for 24 hours. The resulting reaction solutions were diluted with chloroform and the resulting diluted solutions were washed with hydrochloric acid adjusted to pH 1 to 2 and continuously, washed with saturated saline. Thereafter, the resulting organic layers were dried over anhydrous magnesium sulfate and filtered, and the resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 3:7) to give the compound of the formula (1-96) 99mg.

1H NMR (CDCl$_3$)

δ ppm: 7.54-7.17 (13H, m), 5.66 (1H, s), 3.02 (2H, m), 2.73 (2H, m), 2.59-2.17 (3H, m), 1.82-1.77 (2H, m)
preparation Example 1-42 are shown below.

<Compound of the formula 1-42>

1H NMR (CDCl$_3$)

δ ppm: 7.79 (1H, d), 7.63-7.53 (4H, m), 7.38 (2H, d), 7.20 (1H, dd), 5.40 (1H, s), 3.06 (2H, t), 2.75-2.25 (5H, m), 1.86 (2H, dt)

<Compound of the formula 1-166>

1H NMR (CDCl$_3$)

δ ppm: 7.54 (2H, d), 7.38 (2H, d), 7.31-7.06 (3H, m), 7.04 (1H, m), 5.65 (1H, d), 3.11-3.03 (2H, m), 2.75-2.65 (2H, m), 2.49-2.39 (2H, m), 2.32-2.23 (1H, m), 2.11 (3H, d), 1.87 (2H, q)

Preparation Example 1-43: Preparation of the compound of the formula (1-102)

<Preparation of the compound of the formula 32-4>

\[\text{(32-4)} \]

Under nitrogen atmosphere, under ice-cooling, diethylzinc 20ml (1.0M hexane solution) was dissolved in dichloromethane 20ml and thereto was added a solution of trifluoroacetic acid 2.28g in dichloromethane 20ml. The resulting mixture solutions were stirred under ice-cooling for 20 minutes and thereto was added a solution of
diiodomethane 5.36g in dichloromethane 20ml and the resulting mixtures were stirred for 20 minutes. To resulting solutions was added a solution of 2-bromostyrene 1.83g in dichloromethane 10ml under ice-cooling and the resulting mixtures were stirred at RT for 6 hours. To the resulting reaction solutions was added 2N hydrochloric acid to make the mixtures pH 1 to 2 and then the resulting mixtures were extracted with hexane. The organic layers were washed with saturated saline, dried over anhydrous magnesium sulfate and filtered, and the resulting filtrates were concentrated under reduced pressure to give the compound of the formula (32-4) 1.76g as crude products.

1H NMR (CDCl$_3$)

δ ppm: 7.54 (1H, dd), 7.20 (1H, td), 7.02 (1H, td), 6.93 (1H, dd), 2.16 (1H, tt), 1.01 (2H, ddd), 0.68 (2H, dt)

<Preparation of the compound of the formula 31-4>

![Chemical Diagram]

Under nitrogen atmosphere, at RT, the compound of the formula (32-4) 1.76g was dissolved in tetrahydrofuran 9ml. The resulting solutions were cooled to -78°C and thereto added n-butyllithium 6.6ml (1.6M hexane solution) and the
resulting mixtures were stirred for 30 minutes. Thereafter, to the resulting mixtures was added a suspension of trichlorobismuth 939mg in tetrahydrofuran 5ml and the resulting mixtures were stirred for 1 hour with heating to rt. To the resulting reaction solutions was added water 20ml and the resulting mixtures were extracted with chloroform. The resulting chloroform layers were washed with saturated saline, dried over anhydrous magnesium sulfate and then filtered, and the resulting filtrates were concentrated under reduced pressure to give the compound of the formula (33-4) 2.27g as crude products.

Continuously, at RT, the resulting compound of the formula (33-4) 2.27g as crude products was dissolved in dehydrated chloroform 5ml and the resulting mixtures were cooled to 0°C, and thereto was added sulfonyl chloride 0.36ml. Thereafter, the resulting mixtures were warmed to rt and stirred for 1 hour. To the resulting reaction solutions was added tert-butyl methyl ether to precipitate crystals and the resulting mixtures were concentrated under reduced pressure. The resulting crystals were filtered to give the compound of the formula (31-4) 1.05g.

1H NMR (d-DMSO)

δ ppm: 7.92 (3H, t), 7.58-7.52 (6H, m), 7.26 (3H, t), 2.36-2.28 (3H, m), 1.03-0.94 (12H, m)
<Preparation of the compound of the formula 1-102>

Under nitrogen atmosphere, at RT, the compound of the formula (2-9) 3.16mg, 1,8-diazabicyclo[5.4.0]undeca-7-ene 183mg and the compound of the formula (31-4) 887mg were dissolved in a mixture of chloroform 1ml and toluene 4ml. Under nitrogen atmosphere, at RT, the resulting mixtures were stirred for about 24 hours. The resulting reaction solutions were diluted with chloroform and washed with hydrochloric acid adjusted to pH 1 to 2 and continuously, washed with saturated saline. Thereafter, the resulting organic layers were dried over anhydrous magnesium sulfate and filtered, and the resulting filtrates were concentrated under reduced pressure to give oils. The resulting oils were subjected to a silica gel column chromatography (eluates, ethyl acetate: hexane = 3:7) to give the compound of the formula (1-102) 56mg.

1H NMR (CDCl$_3$)

δ ppm: 7.54 (2H, d), 7.38-7.22 (4H, m), 7.06-7.00 (2H, m), 5.76 (1H, d), 3.08-3.02 (2H, m), 2.75-2.68 (2H, m), 2.55-2.10 (4H, m), 1.90-1.86 (2H, m), 0.87-0.65 (3H, m), 0.57-0.47 (1H, m)
Preparation Example 1-44: Preparation of the compound of the formula (1-71)

<Preparation of the compound of the formula 23-2>

The compound of the formula (24-1) 6.60g and diisopropylethylamine 5.43g were dissolved in anhydrous N,N-dimethylformamide 50ml. To the resulting mixtures was added dropwise pivaloyl chloride under ice-cooling, and the resulting mixtures were stirred at RT for 30 minutes. To the resulting reaction mixtures was added water and the resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were dried over anhydrous magnesium sulfate, concentrated under reduced pressure to give crude products. These crude products were subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 3:17) to give the compound of the formula (23-2) 7.14g.

1H NMR (CDCl$_3$)

δ ppm: 7.38-7.26 (5H, m), 6.87 (2H, s), 4.53 (2H, dd), 3.63-3.54 (2H, m), 2.75-2.22 (12H, m), 1.86-1.76 (2H, m), 1.10-1.03 (6H, m), 0.87 (9H, s)
<Preparation of the compound of the formula 22-2>

The compound of the formula (23-2) 7.14g was dissolved in ethyl acetate 45ml. To the resulting mixture solutions was added 10% palladium-carbon 3.57g and the resulting mixtures were stirred at 35°C under hydrogen atmosphere for 18 hours. The reaction mixture solutions were filtered through Celite (TM) and the resulting filtrates were concentrated under reduced pressure to give the compound of the formula (22-2) 5.10g.

1H NMR (CDCl$_3$)

δ ppm: 6.87 (2H, s), 3.81 (2H, d), 2.78-2.24 (12H, m), 1.83-1.73 (2H, m), 1.39-1.36 (1H, m), 1.10-1.04 (6H, m), 0.87 (9H, s)

<Preparation of the compound of the formula 21-1>
The compound of the formula (21-2) 193mg and diisopropylethylamine 162mg were dissolved in N,N-dimethylformamide 5ml. To the resulting mixtures was added dropwise methanesulfonyl chloride 68.7mg under ice-cooling and the resulting mixtures were stirred at RT for 1 hour. To the reaction mixtures was added water and the resulting mixtures were extracted with tert-butyl methyl ether. The organic layers were dried over anhydrous magnesium sulfate and concentrated under reduced pressure. To the residues added hexane and the resulting mixtures were filtered to give the compound of the formula (21-1) 208mg.

1H NMR (CDCl$_3$)

δ ppm: 6.87 (2H, s), 4.37 (2H, dd), 3.05 (3H, s), 2.74-2.25 (12H, m), 2.00-1.97 (2H, m), 1.10-1.04 (6H, m), 0.88 (9H, s)

<Preparation of the compound of the formula 1-71>

The compound of the formula (21-1) 200mg and diisopropylethylamine 167mg were dissolved in N,N-dimethylformamide 5ml. To the resulting mixture solutions was added para-bromothiophenol 195mg and the resulting
mixtures were stirred at RT for 16 hours. The resulting mixtures were heated to 80°C and stirred for 2 hours and then thereto was added water and the resulting mixtures were extracted with tert-butyl methyl ether. The resulting organic layers were washed with water, dried over anhydrous magnesium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 0:100 - 1:4) to give the compound of the formula (1-71) 193mg.

\[^1H \text{ NMR (CDCl}_3) \]

\[\delta \text{ ppm: 7.42 (2H, dt), 7.21 (2H, dt), 6.98 (2H, s), 5.61 (1H, s), 3.05-2.93 (2H, m), 2.73-2.64 (2H, m), 2.48-2.21 (10H, m), 1.81 (2H, q), 1.10-1.03 (6H, m) } \]

Preparation Example 1-45: Preparation of the compound of the formula (1-132)

<Preparation of the compound of the formula 1-132>

The compound of the formula (22-2) 193mg and diisopropylethylamine 258mg were dissolved in N,N-dimethylformamide 5ml. To the resulting mixtures was added
dropwise methanesulfonyl chloride 68.7mg under ice-cooling and the resulting mixtures were stirred at RT for 30 minutes. To the resulting mixture solutions was added 2-mercaptopypyridine 123mg and the resulting mixtures were stirred at 80°C for 9 hours. To the resulting reaction solutions was added 2N hydrochloric acid to adjust them to pH 1 and the resulting mixtures were extracted with tert-butyl methyl ether. The resulting organic layers were washed with water, dried over anhydrous magnesium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 7:13) to give the compound of the formula (1-132) 171mg.

1H NMR (CDCl$_3$)

δ ppm: 8.52 (2H, dd), 6.98 (1H, dt), 6.87 (2H, d), 3.30-3.18 (2H, m), 2.85-2.67 (2H, m), 2.57-2.23 (10H, m), 1.96 (2H, q), 1.09-1.02 (6H, m), 0.87 (9H, s)

Preparation Example 1-46: Preparation of the compound of the formula (1-34)

<Preparation of the compound of the formula 1-34>
The compound of the formula (1-132) 170mg was dissolved in a mixture solution of tetrahydrofuran 10ml, methanol 10ml and water 10ml. To the resulting solutions was added lithium hydroxide monohydrate 44.5mg and the resulting mixtures were stirred at RT for 10 minutes. The reaction solutions were concentrated under reduced pressure and adjusted with 2N hydrochloric acid to pH 1 and the resulting mixtures were extracted with tert-butyl methyl ether. The resulting organic layers were washed with water, dried over anhydrous magnesium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 2:3) to give the compound of the formula (1-34) 126mg.

\(^1\)H NMR (CDCl\(_3\))
\[\delta \text{ ppm: } 8.53 \ (2H, d), \ 7.00-6.96 \ (3H, m), \ 5.57 \ (1H, s), \ 3.29-3.21 \ (2H, m), \ 2.81-2.73 \ (2H, m), \ 2.51-2.43 \ (2H, m), \ 2.41-2.25 \ (8H, m), \ 1.95 \ (2H, s), \ 1.09-1.03 \ (6H, m)\]

Preparation Example 1-47: Preparation of the compound of the formula (1-104)

<Preparation of the compound of the formula 1-104>
The compound of the formula (22-2) 178mg and diisopropylethylamine 238mg were dissolved in N,N-dimethylformamide 5ml. To the resulting mixtures was added dropwise methanesulfonyl chloride 63.3mg under ice-cooling and the resulting mixtures were stirred at RT for 30 minutes. To the resulting solutions was added para (methylthio) thiophenol 158mg and the resulting mixtures were stirred at RT for 1.5 hours. To the resulting reaction solutions was added 2N hydrochloric acid to make them pH 1 and the resulting mixtures were extracted with tert-butyl methyl ether. The resulting organic layers were washed with water, dried over anhydrous magnesium sulfate and filtered. The filtrates were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:9 = 7:13) to give the compound of the formula (1-104) 100mg.

1H NMR (CDCl$_3$)

δ ppm: 7.30 (2H, dt), 7.20 (2H, dt), 6.98 (2H, s), 5.58 (1H, s), 2.97 (2H, td), 2.70-2.64 (2H, m), 2.47 (3H, s), 2.45-2.22 (10H, m), 1.80 (2H, q), 1.10-1.03 (6H, m)
Preparation Example 1-48: Preparation of the compound of the formula (1-133)

<Preparation of the compound of the formula 1-133>

The compound of the formula (22-2) 387mg and diisopropylethylamine 516mg were dissolved in N,N-dimethylformamide 10ml. To the resulting mixtures was added dropwise methanesulfonyl chloride 137mg under ice-cooling and the resulting mixtures were stirred at RT for 1 hour. To the resulting mixture solutions was added 4-trifluoromethyl-2-pyrimidinethiol 396mg and the resulting mixtures were stirred at 80°C for 30 minutes. To the reaction solutions was added 2N hydrochloric acid to adjust them to pH 1 and then the resulting mixtures were extracted with tert-butyl methyl ether. The resulting organic layers were washed with water, dried over anhydrous magnesium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-133) 546mg.

¹H NMR (CDCl₃)
δ ppm: 8.76 (1H, d), 7.29 (1E, d), 6.87 (2H, d), 3.33-3.23 (2H, m), 2.82-2.68 (3H, m), 2.59-2.24 (9H, m), 1.97 (2H, q), 1.10-1.03 (6H, m), 0.88 (9H, s)

Preparation Example 1-49: Preparation of the compound of the formula (1-35)

The compound of the formula (1-133) 546mg was dissolved in a mixture solution of tetrahydrofuran 10ml, methanol 10ml and water 10ml. To the resulting solutions was added lithium hydroxide monohydrate 126mg, and the resulting mixtures were stirred at RT for 20 minutes. The reaction solutions were concentrated under reduced pressure and thereto was added 2N hydrochloric acid to make them pH 1 and then the resulting mixtures were extracted with tert-butyl methyl ether. The resulting organic layers were washed with water, dried over anhydrous magnesium sulfate and filtered. The resulting filtrates were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 1:3) to give the compound of the formula (1-35) 435mg.
1H NMR (CDCl$_3$)

δ ppm: 8.76 (1H, d), 7.29 (1H, d), 6.99 (2H, d), 5.62 (1H, s), 3.27 (2H, td), 2.78-2.71 (2H, m), 2.51-1.93 (12H, m), 1.07 (6H, m)

The present compounds prepared according to preparation Example 1-49 are shown below.

<Compound of the formula 1-136>

1H NMR (CDCl$_3$)

δ ppm: 7.38 (1H, t), 7.26 (1H, m), 7.10 (2H, m), 6.98 (2H, s), 5.51 (1H, s), 3.00 (2H, t), 2.77 (2H, t), 2.50-2.20 (10H, m), 1.79 (2H, q), 1.06 (6H, q)

<Compound of the formula 1-137>

1H NMR (CDCl$_3$)

δ ppm: 7.37 (1H, d), 7.30-7.20 (2H, m), 7.15-7.06 (1H, m), 6.98 (2H, s), 5.51 (1H, s), 3.02 (2H, q), 2.71 (2H, t), 2.51-2.22 (10H, m), 1.87 (2H, q), 1.06 (6H, q)

<Compound of the formula 1-138>

1H NMR (CDCl$_3$)

δ ppm: 7.57 (1H, d), 7.55-7.25 (2H, m), 7.07-7.04 (1H, m), 6.98 (2H, s), 5.51 (1H, s), 3.04-3.00 (2H, m), 2.71 (2H, t), 2.50-2.28 (10H, m), 1.89 (2H, q), 1.06 (6H, q)

<Compound of the formula 1-139>

1H NMR (CDCl$_3$)

δ ppm: 7.28-7.26 (1H, d), 7.19-7.05 (3H, m), 6.97 (2H, s),
5.51 (1H, s), 2.98 (2H, t), 2.70 (2H, t), 2.50-2.20 (10H, m), 1.85 (2H, q), 1.06 (6H, q)

<Compound of the formula 1-140>

1H NMR (CDCl$_3$)

δ ppm: 7.30-7.18 (4H, m), 6.97 (2H, s), 5.46 (1H, s), 3.00 (2H, t), 2.78 (2H, q), 2.65 (2H, t), 2.50-2.21 (10H, m), 1.84 (2H, q), 1.23 (3H, t), 1.06 (6H, q)

<Compound of the formula 1-141>

1H NMR (CDCl$_3$)

δ ppm: 7.34-7.10 (4H, m), 6.97 (2H, s), 5.53 (1H, s), 3.55-3.45 (1H, m), 2.98 (2H, t), 2.70 (2H, t), 2.50-2.22 (10H, m), 1.85 (2H, q), 1.24 (6H, d), 1.06 (6H, q)

<Compound of the formula 1-142>

1K NMR (CDCl$_3$)

δ ppm: 7.32-7.19 (4H, m), 6.98-6.84 (4H, m), 5.53 (1H, s), 3.91 (3H, s), 3.08-2.94 (2H, m), 2.69 (2H, t), 2.48-2.20 (10H, m), 1.80 (2H, q), 1.24 (6H, d), 1.06 (6H, q)

<Compound of the formula 1-143>

1H NMR (CDCl$_3$)

δ ppm: 7.30-7.20 (1H, m), 7.10-6.98 (4H, m), 6.90-6.80 (1H, t), 5.52 (1H, s), 3.05-3.00 (2H, m), 2.70 (2H, t), 2.49-2.23 (10H, m), 1.83 (2H, q), 1.06 (6H, q)

<Compound of the formula 1-144>

1H NMR (CDCl$_3$)

δ ppm: 7.30-7.15 (4H, m), 6.97 (2H, s), 5.54 (1H, s), 3.05-
3.00 (2H, m), 2.70 (2H, t), 2.48-2.22 (10H, m), 1.85 (2H, q), 1.06 (6H, q)
<Compound of the formula 1-145>

1H NMR (CDCl$_3$)

δ ppm: 7.48 (1H, s), 7.31-7.11 (3H, m), 6.95 (2H, s), 5.53 (1H, s), 3.09-3.00 (2H, m), 2.70 (2H, t), 2.47-2.25 (10H, m), 1.85 (2H, q), 1.06 (6H, q)
<Compound of the formula 1-146>

1H NMR (CDCl$_3$)

δ ppm: 7.20-7.10 (3H, m), 7.12-6.98 (3H, m), 5.51 (1H, s), 3.01-2.95 (2H, m), 2.65 (2H, t), 2.45-2.20 (13H, m), 1.82 (2H, q), 1.06 (6H, q)
<Compound of the formula 1-147>

1H NMR (CDCl$_3$)

δ ppm: 7.30-7.12 (3H, m), 6.98 (2H, s), 5.48 (1H, s), 3.10-3.00 (2H, m), 2.72 (2H, t), 2.52-2.22 (10H, m), 1.89 (2H, q), 1.06 (6H, q)
<Compound of the formula 1-148>

1H NMR (CDCl$_3$)

δ ppm: 7.12-7.05 (3H, m), 6.92 (2H, s), 5.50 (1H, s), 2.71 (2H, t), 2.55 (6H, s), 2.61 (2H, t), 2.42-2.17 (10H, m), 1.80 (2H, q), 1.06 (6H, q)
<Compound of the formula 1-149>

1H NMR (CDCl$_3$)

δ ppm: 7.36 (1H, dd), 7.14 (1H, dd), 6.99 (1H, dd), 6.96
(2H, s), 5.80 (1H, s), 2.86 (2H, t), 2.67-2.59 (2H, m),
2.47-2.18 (10H, m), 1.78 (2H, q), 1.07 (3H, t), 1.05 (3H, t)
<Compound of the formula 1-150>

5 \(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 7.68 (1H, d), 7.24 (1H, d), 6.99 (2H, s), 5.49 (1H, s), 3.32 (2H, t), 2.76-2.68 (2H, m), 2.46-2.25 (10H, m),
1.97 (2H, q), 1.08 (3H, t), 1.05 (3H, t)
<Compound of the formula 1-151>

10 \(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 7.88 (2H, d), 7.33 (2H, d), 6.99 (2H, s), 5.52 (1H, s), 3.10 (2H, dt), 2.75-2.69 (2H, m), 2.58 (3H, s), 2.47-
2.24 (10H, m), 1.90 (2H, q), 1.09 (3H, t), 1.05 (3H, t)
<Compound of the formula 1-152>

15 \(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 7.31 (2H, d), 6.97 (2H, s), 6.78 (2H, d), 5.57 (1H, s), 5.18 (1H, s), 2.89 (2H, t), 2.68-2.61 (2H, m), 2.43-
2.18 (10H, m), 1.76 (2H, q), 1.08 (3H, t), 1.04 (3H, t)
<Compound of the formula 1-153>

20 \(^1\)H NMR (CDCl\(_3\))

\(\delta\) ppm: 8.67 (1H, dd), 7.67 (1H, dd), 7.27-7.25 (1H, m),
6.99 (2H, s), 5.50 (1H, s), 3.33-3.29 (2H, m), 2.79-2.71
(2H, m), 2.51-2.24 (10H, m), 1.94-1.89 (2H, m), 1.07 (3H, t), 1.04 (3H, t)

<Compound of the formula 1-155>
\[^1\text{H NMR (CDCl}_3\text{)}\]
\[\delta \text{ ppm: } 9.02-9.01 \text{ (1H, m), 8.04 (1H, dd), 7.23 (1H, dd), 6.98 (2H, s), 5.53 (1H, s), 3.93 (3H, s), 3.32 (2H, t), 2.76 (2H, t), 2.51-2.23 (10H, m), 1.92 (2H, q), 1.05 (6H, q) }\]

<Compound of the formula 1-157>

\[^1\text{H NMR (CDCl}_3\text{)}\]
\[\delta \text{ ppm: } 8.36 \text{ (1H, dd), 7.55 (1H, dd), 6.98-6.95 (3H, m), 5.46 (1H, s), 3.30 (2H, dt), 2.80-2.73 (2H, m), 2.52-2.25 (10H, m), 1.92 (2H, q), 1.07 (3H, t), 1.04 (3H, t) }\]

<Compound of the formula 1-160>

\[^1\text{H NMR (CDCl}_3\text{)}\]
\[\delta \text{ ppm: } 6.98 \text{ (2H, s), 5.75 (1H, s), 5.55 (1H, s), 3.94 (6H, s), 3.29-3.18 (2H, m), 2.76-2.69 (2H, m), 2.47-2.26 (10H, m), 1.96 (2H, q), 1.07 (6H, q) }\]

<Compound of the formula 1-161>

\[^1\text{H NMR (CDCl}_3\text{)}\]
\[\delta \text{ ppm: } 6.98 \text{ (2H, s), 6.84-6.78 (2H, m), 6.62 (1H, tt), 5.52 (1H, s), 3.03 (2H, ddd), 2.72 (2H, dt), 2.48-2.25 (10H, m), 1.87 (2H, dd), 1.07 (6H, dt) }\]

<Compound of the formula 1-70>

\[^1\text{H NMR (CDCl}_3\text{)}\]
\[\delta \text{ ppm: } 7.61 \text{ (2H, d), 7.07 (2H, d), 6.97 (2H, s), 5.72 (1H, s), 3.04-2.92 (2H, m), 2.72-2.63 (2H, m), 2.45-2.21 (10H, m), 1.81 (2H, q), 1.08 (3H, t), 1.04 (3H, t) }\]
<Compound of the formula 1-75>

\(^1^E\) NMR (CDCl\(_3\))
\[\delta\] ppm: 7.34-7.28 (4H, m), 6.98 (2H, s), 5.46 (1H, s), 2.99 (2H, dt), 2.71-2.64 (2H, m), 2.43-2.23 (10H, m), 1.82 (2H, q), 1.31 (9H, s), 1.08 (3H, t), 1.04 (3H, t)

<Compound of the formula 1-109>

\(^1^H\) NMR (CDCl\(_3\))
\[\delta\] ppm: 8.74 (2H, d), 6.98 (2H, s), 5.50 (1H, s), 3.28 (2H, dt), 2.79-2.73 (2H, m), 2.52-2.25 (10H, m), 1.96 (2H, q), 1.09-1.03 (6H, m)

<Compound of the formula 1-112>

\(^1^H\) NMR (CDCl\(_3\))
\[\delta\] ppm: 8.62 (1H, d), 7.74 (1H, dd), 7.60 (1H, d), 6.98 (2H, s), 5.51 (1H, s), 3.15-3.07 (2H, m), 2.75-2.68 (2H, m), 2.47-2.24 (10H, m), 1.89 (2H, q), 1.09 (3H, t), 1.05 (3H, t)

<Compound of the formula 1-115>

\(^1^H\) NMR (CDCl\(_3\))
\[\delta\] ppm: 8.70 (1H, s), 8.51 (1H, s), 6.98 (2H, s), 5.49 (1H, s), 3.33 (2H, dt), 2.79-2.72 (2H, m), 2.51-2.24 (10H, m), 1.93 (2H, q), 1.07 (3H, t), 1.04 (3H, t)

<Compound of the formula 1-118>

\(^1^H\) NMR (CDCl\(_3\))
\[\delta\] ppm: 7.56 (1H, d), 7.49 (1H, d), 6.98 (2H, s), 5.48 (1H, s), 3.54-3.46 (2H, m), 2.79-2.70 (2H, m), 2.53-2.27 (10H,
m), 2.06-1.99 (2H, m), 1.08 (3H, t), 1.06 (3H, t)

<Compound of the formula 1-121>

1H NMR (CDCl$_3$)

δ ppm: 8.61 (1H, d), 7.72 (1H, dd), 7.23 (1H, dd), 6.98 (2H, s), 3.29 (2H, ddd), 2.76 (2H, ddd), 2.52-2.23 (10H, m), 1.95-1.89 (2H, m), 1.06 (3H, dt)

<Compound of the formula 1-169>

1H NMR (CDCl$_3$)

δ ppm: 7.21-7.06 (3H, m), 6.95 (2H, s), 5.64 (1H, s), 2.97 (2H, ddd), 2.68 (2H, dt), 2.48-2.22 (10H, m), 1.83-1.74 (2H, m), 1.12-0.99 (6H, m)

Preparation Example 1-50: Preparation of the compound of the formula (1-134)

<Preparation of the compound of the formula 35-1>

At RT, the compound of the formula (21-1) 360mg was dissolved in N,N-dimethylformamide 4ml and thereto were added sodium azide 500mg and 15-crown-5-ether 0.015ml. The resulting mixture solutions were heated to 100°C and stirred for about 4 hours. Thereafter, the resulting reaction mixtures were concentrated under reduced pressure
and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane = 34:66) to give the compound of the formula (35-1) 180mg.

1H NMR (CDCl$_3$)

δ ppm: 6.98 (2H, s), 5.79 (1H, s), 3.44-3.40 (2H, m), 2.71-2.64 (2H, m), 2.44-2.24 (10H, m), 1.77 (2H, q), 1.07 (6H, td)

<Preparation of the compound of the formula 1-134>

At RT, the compound of the formula (35-1) 100mg and 1-ethynyl-4-fluorobenzene 40mg were dissolved in a mixture solution of acetonitrile 4ml and dimethyl sulfoxide 1ml and to the resulting mixture solutions were added sodium ascorbate 7mg and copper sulfate 3mg and the resulting mixtures were heated under reflux for about 5 hours. Thereafter, the resulting reaction mixture solutions were concentrated under reduced pressure and subjected to a silica gel column chromatography (eluates, ethyl acetate : hexane 66:34) to give the compound of the formula (1-134).
54.1mg.

\(^1\text{H NMR (CDCl}_3\))

\(\delta\) ppm: 7.83-7.78 (2H, m), 7.75 (1H, s), 7.13 (2H, t), 6.98 (2H, s), 5.77 (1H, s), 4.57-4.46 (2H, m), 2.80-2.67 (2H, m), 2.52-2.12 (12H, m), 1.04 (6H, q)

The present compounds prepared according to preparation Example 1-50 are shown below.

<Compound of the formula 1-135>

\(^1\text{H NMR (CDCl}_3\))

\(\delta\) ppm: 7.95 (2H, d), 7.88 (1H, s), 7.69 (2H, d), 6.97 (2H, s), 5.79 (1H, s), 4.60-4.48 (2H, m), 2.80-2.68 (2H, m), 2.53-2.12 (12H, m), 1.04 (6H, q)

Next, the formulation examples are shown below. Here the present compound is expressed as the number of a structural formula.

Formulation 1

Wettable powder

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound (1-1)</td>
<td>50% by weight</td>
</tr>
<tr>
<td>Sodium ligninsulfonate</td>
<td>5% by weight</td>
</tr>
<tr>
<td>Polyoxyethylene alkyl ether</td>
<td>5% by weight</td>
</tr>
<tr>
<td>White carbon</td>
<td>5% by weight</td>
</tr>
<tr>
<td>Clay</td>
<td>35% by weight</td>
</tr>
</tbody>
</table>

The ingredients shown above are mixed and ground to
obtain a wettable powder.

The compound (1-1) is replaced with any of the compounds (1-2) to (1-171) to obtain respective formulations.

Formulation 2
Granules

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound (1-1)</td>
<td>1.5%</td>
</tr>
<tr>
<td>Sodium ligninsulfonate</td>
<td>2%</td>
</tr>
<tr>
<td>Talc</td>
<td>40%</td>
</tr>
<tr>
<td>Bentonite</td>
<td>56.5%</td>
</tr>
</tbody>
</table>

The ingredients shown above are mixed, and the resulting mixtures is added water and fully kneaded, and then subjected to granulation and drying to obtain a granule.

The compound (1-1) is replaced with any of the compounds (1-2) to (1-171) to obtain respective formulations.

Formulation 3
Suspension concentrates

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound (1-1)</td>
<td>10%</td>
</tr>
<tr>
<td>Mixture of polyoxyethylene alkylether sulfate ammonium salt and white carbon (weight ratio 1:1)</td>
<td>35%</td>
</tr>
</tbody>
</table>
Water 55% by weight

The ingredients shown above are mixed, and the resulting mixtures are then subjected to fine grinding according to wet grinding method, to obtain a suspension concentrate.

The compound (1-1) is replaced with any of the compounds (1-2) to (1-171) to obtain respective formulations.

Next, test examples are shown below.

Here an efficacy for controlling weeds on the present compound was visually observed and evaluated in 11 criteria of 0 to 10 (0 represents no action, 10 represents complete death and the intermediate efficacy were evaluated in 1 to 9 criteria).

Test 1-1 Post-emergence treatment test

Commercial soil for propagation was put in a pot measuring 8 cm in diameter and 6.5 cm in height, and in the pot, seeds of Echinochloa crus-galli were sown, and then covered with soil of about 0.5 cm thickness and the plants were grown in a greenhouse. When the plants were grown to 1-2 leaf stages, a predetermined amount of a chemical diluted solution containing a compound (1-1) was uniformly spayed on the whole plants. Here the chemical diluted solution was prepared by dissolving a predetermined amount
of the compound (1-1) in dimethylformamide solution containing 2% of Tween 20 (polyoxyethylene sorbitan fatty acid ester) (manufactured by MP Biomedicals Inc.) and then diluting the solution with deionized water. After spraying, plants were grown in a greenhouse and after 20 days of the treatment, the efficacy for Echinochloa crus-galli was observed and the controlling effect was evaluated.

Similarly, the present compounds (1-2)~(1-23), (1-29)~(1-31), (1-33)~(1-36), (1-40)~(1-41), (1-44), (1-58)~(1-71), (1-73)~(1-75), (1-78), (1-83)~(1-84), (1-91)~(1-92), (1-94)~(1-95), (1-97)~(1-98), (1-100), (1-102)~(1-105), (1-107)~(1-109), (1-112), (1-115), (1-118), (1-121), (1-127)~(1-128), (1-134)~(1-162), (1-165)~(1-169), (1-171), (1-13-A) and (1-13-B) were also tested.

As a result, compounds (1-1)~(1-23), (1-29)~(1-31), (1-33)~(1-36), (1-40)~(1-41), (1-44), (1-58)~(1-71), (1-73)~(1-75), (1-78), (1-83)~(1-84), (1-91)~(1-92), (1-94)~(1-95), (1-97)~(1-98), (1-100), (1-102)~(1-105), (1-107)~(1-109), (1-112), (1-115), (1-118), (1-121), (1-127)~(1-128), (1-134)~(1-162), (1-165)~(1-169), (1-171), (1-13-A) and (1-13-B) were all shown an efficacy of 9 or more at a treatment amount of chemicals of 1,000g/10000m².

Test 1-2 Post-emergence treatment test

Commercial soil for propagation was put in a pot
measuring 8 cm in diameter and 6.5 cm in height, and in the pot, seeds of *Galium sparine* were sown, and then covered with soil of about 0.5 cm thickness and the plants were grown in a greenhouse. When the plants were grown to 1-2 leaf stages, a predetermined amount of a chemical diluted solution containing a compound (1-2) was uniformly sprayed on the whole plants. Here the chemical diluted solution was prepared similarly to the test example 1-1. After spraying, plants were grown in a greenhouse and after 20 days of the treatment, the efficacy for *Galium sparine* was observed and evaluated.

Similarly, the present compounds (1-5), (1-12), (1-14), (1-98), (1-99), (1-100) and (1-162) were also tested.

As a result, compounds (1-5), (1-12), (1-14), (1-98), (1-99), (1-100) and (1-162) were all shown an efficacy of 7 or more at a treatment amount of chemicals of 1.000g/10000m².

Test 2-1 Pre-emergence treatment test

Steam sterilized field soil was put in a pot measuring 8 cm in diameter and 6.5 cm in height, and in the pot, seeds of *Echinochloa crus-galli* were sown, and then covered with soil of about 0.5 cm thickness. Then a predetermined amount of a chemical diluted solution containing a compound (1-1) was uniformly sprayed on the soil surface. Here the
chemical diluted solution was prepared similarly to the test example 1-1. After chemical treatment, plants were grown in a greenhouse, and after 3 weeks of the spraying, the efficacy for *Echinochloa crus-galli* was observed and evaluated.

Similarly, the present compounds (1-2)~(1-20), (1-23), (1-29)~(1-31), (1-33)~(1-36), (1-40)~(1-41), (1-44), (1-58)~(1-71), (1-73)~(1-75), (1-78), (1-83)~(1-84), (1-91)~(1-92), (1-94)~(1-95), (1-97)~(1-98), (1-100), (1-102)~(1-104), (1-109), (1-112), (1-115), (1-118), (1-121), (1-127)~(1-128), (1-134)~(1-146), (1-148)~(1-162), (1-165)~(1-169), (1-13-A) and (1-13-B) were also tested.

As a result, compounds (1-1)~(1-20), (1-23), (1-29)~(1-31), (1-33)~(1-36), (1-40)~(1-41), (1-44), (1-58)~(1-71), (1-73)~(1-75), (1-78), (1-83)~(1-84), (1-91)~(1-92), (1-94)~(1-95), (1-97)~(1-98), (1-100), (1-102)~(1-104), (1-109), (1-112), (1-115), (1-118), (1-121), (1-127)~(1-128), (1-134)~(1-146), (1-148)~(1-162), (1-165)~(1-169), (1-13-A) and (1-13-B) were all shown an efficacy of 7 or more at a treatment amount of chemicals of 1.000g/10000m².

Industrial Applicability

The present compound shows an efficacy for controlling weeds.
1. A cyclohexanone compound of the formula (I):

\[
(I)
\]

wherein

- \(m \) is an integer of 1, 2 or 3;
- \(n \) is an integer of any one of 1 to 5;
- \(X \) represents \(\text{CH}_2, \text{O}, \text{NR}^3, \text{S}, \text{S(O)} \) or \(\text{S(O)}_2 \);
- \(R^1 \) represents a hydrogen atom or a methyl group;
- \(R^2 \) and \(R^3 \) represent independently of each other a hydrogen atom, a \(\text{C}_1-6 \) alkyl group, a \(\text{C}_1-6 \) haloalkyl group, a \(\text{C}_3-8 \) cycloalkyl group, a \(\text{C}_3-8 \) halocycloalkyl group, a \((\text{C}_1-6 \text{ alkyl})\text{C}_3-8 \) cycloalkyl group, a \((\text{C}_3-8 \text{ cycloalkyl})\text{C}_1-6 \) alkyl group, a \((\text{C}_3-8 \text{ cycloalkyl})\text{C}_3-8 \) cycloalkyl group, a \((\text{C}_3-8 \text{ halocycloalkyl})\text{C}_1-6 \) alkyl group or a \((\text{C}_1-6 \text{ alkyl})\text{C}_3-8 \) cycloalkyl) \(\text{C}_1-6 \) alkyl group, or \(R^2 \) and \(R^3 \) connect each other to represent a \(\text{C}_2-5 \) alkyene chain, or \(R^2 \) and \(R^3 \) combine each other to represent a \(\text{C}_1-3 \) alkylidene group optionally having one or more halogen atoms (with the proviso that when \(m \) is 2 or 3, two or three \(R^2 \) may be same or different to each other and two or three \(R^3 \) may be same or different to each other).
R represents a C_{6-10} aryl group or a five- to six-membered heteroaryl group (with the proviso that the C_{6-10} aryl group and the five- or six-membered heteroaryl group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group, an amino group, a (C_{1-6} alkyl) amino group, a (C_{1-6} alkyl) (C_{1-6} alkyl) amino group, a benzyolamino group, an aminocarbonyl group, a (C_{1-6} alkyl) aminocarbonyl group, a (C_{1-6} alkyl) (C_{1-6} alkyl) aminocarbonyl group, a pentfluorothio group, a C_{1-6} alkyl group, a C_{2-6} alkenyl group, a C_{3-6} alkynyl group, a C_{1-6} alkoxy group, a C_{1-6} alkylthio group, a C_{3-6} alkynolate group, a C_{6-10} aryl group, a C_{6-10} aryloxy group, a C_{6-10} alkylsulfynyl group, a C_{1-6} alkylsulfonyle group, a hydroxyl group, a (C_{1-6} alkyl) carbonyl group, a hydroxycarbonyl group, a (C_{1-6} alkoxy) carbonyl group and a (C_{6-10} aryl) C_{1-6} alkoxy group, and when two or more substituents exist, the substituents may be same or different to each other; and the (C_{1-6} alkyl) amino group, the (C_{1-6} alkyl) (C_{1-6} alkyl) amino group, the benzyolamino group, the (C_{1-6} alkyl) aminocarbonyl group, the (C_{1-6} alkyl) (C_{1-6} alkyl) aminocarbonyl group, the C_{1-6} alkyl group, the C_{3-6} alkenyl group, the C_{3-6} alkynyl group, the C_{1-6} alkoxy group, the C_{1-6} alkylthio group, the C_{3-6} alkenyloxy group, the C_{1-6} alkynyloxy group, the C_{6-10} aryl group, the C_{6-10} aryloxy group, the C_{6-10} alkylsulfynyl group, the C_{1-6} alkylsulfonyle group, the hydroxyl group, the C_{1-6} alkoxy group, the hydroxycarbonyl group, the (C_{1-6} alkoxy) carbonyl group and the (C_{6-10} aryl) C_{1-6} alkoxy group.
the C\textsubscript{1-6} alkylsulfonyl group, the (C\textsubscript{1-6} alkoxy) carbonyl group and the (C\textsubscript{6-i0} aryl)C\textsubscript{1-6} alkoxy group may each have one or more halogen atoms or C\textsubscript{1-3} haloalkyl groups, and when two or more halogen atoms or C\textsubscript{1-3} haloalkyl groups exist, the halogen atoms or the C\textsubscript{1-3} haloalkyl groups may be same or different to each other respectively;

G represents a hydrogen atom or a group of any one of the following formulae:

\[
\begin{align*}
L & \quad \text{O} \quad \text{SO} \quad \text{or} \quad \text{H} \quad \text{W} \\
R^5 & \quad \text{or} \quad R^6
\end{align*}
\]

(wherein)

\[
\begin{align*}
L & \quad \text{represents an oxygen atom or a sulfur atom;} \\
R^5 & \quad \text{represents a C\textsubscript{1-6} alkyl group, a C\textsubscript{3-8} cycloalkyl group, a C\textsubscript{2-6} alkenyl group, a C\textsubscript{2-6} alkynyl group, a C\textsubscript{6-i0} aryl group, a (C\textsubscript{6-i0} aryl)C\textsubscript{1-6} alkyl group, a C\textsubscript{1-6} alkoxy group, a C\textsubscript{3-8} cycloalkoxy group, a C\textsubscript{3-6} alkenyloxy group, a C\textsubscript{6-i0} arylxy group, a (C\textsubscript{6-i0} aryl)C\textsubscript{1-6} alkoxy group, a (C\textsubscript{1-6} alkyl) (C\textsubscript{1-6} alkyl) amino group, a (C\textsubscript{3-6} alkenyl) (C\textsubscript{1-6} alkenyl) amino group or a five- to six- membered heteroaryl group (with the proviso that these groups may each one or more halogen atom, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C\textsubscript{3-8} cycloalkyl group, the C\textsubscript{6-i0} aryl group, an aryl moiety of the (C\textsubscript{6-i0} aryl)C\textsubscript{1-6} alkyl group, a C\textsubscript{3-8} cycloalkoxy}
\end{align*}
\]
group, a Ce-io aryloxy group, an aryl moiety of the (C\textsubscript{i-6} aryl)C\textsubscript{i-6} alkoxy group, an aryl moiety of the (C\textsubscript{i-6} alkyl) (C\textsubscript{i-6} aryl) amino group and a five- to six-membered heteroaryl group may each have one or more C\textsubscript{i-6} alkyl groups, and when two or more C\textsubscript{i-6} alkyl groups exist, the alkyl groups may be same or different to each other);

R6 represents a C\textsubscript{i-6} alkyl group, a C\textsubscript{i-6} aryl group or a (C\textsubscript{i-6} alkyl) (C\textsubscript{i-6} alkyl) amino group (with the proviso that these groups may each have one or more halogen atoms and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C\textsubscript{i-6} aryl group may have one or more C\textsubscript{i-6} alkyl groups and when two or more C\textsubscript{i-6} alkyl groups exist, the alkyl groups may be same or different to each other);

R7 represents a hydrogen atom or a C\textsubscript{i-6} alkyl group;

W represents a C\textsubscript{i-6} alkoxy group, a C\textsubscript{i-6} alkylthio group, a C\textsubscript{i-6} alkylsulf inyl group or a C\textsubscript{i-6} alkylsulf onyl group (with the proviso that these groups may each have one or more halogen atoms and when two or more halogen atoms exist, the halogen atoms may be same or different to each other));

R9 represents a hydrogen atom, a C\textsubscript{i-6} alkyl group, a C\textsubscript{i-6} aryl group, a C\textsubscript{i-6} arylthio group, a C\textsubscript{6-10} arylsulf inyl group, a Ce-io arylsulf onyl group (with the proviso that the C\textsubscript{i-6} alkyl group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may
be same or different to each other; the Cg-io ary1 group, the C6-io ary1thio group, the Ce-io arylsulfinyl group and the Ce-io arylsulfon1 group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group and an amino group;

Z represents a halogen atom, a cyano group, a nitro group, a Cl-6 alkyl group, a C1-6 alkenyl group, a C2-6 alkynyl group, a C1-6 alkoxy group, a (C1-6 alkyl) carbonyl group, a C1-6 alkylthio group, a C6-10 aryl group or a five- to six-membered heteroaryl group (with the proviso that the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkynyl group, the C1-6 alkoxy group, the (C1-6 alkyl) carbonyl group and the C1-6 alkylthio group may each have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C6-10 aryl group, a five- to six-membered heteroaryl group, a C6-10 ary1oxy group and the five- to six-membered heteroary1oxy group may each have one or more substituents selected from the group consisting of a halogen atom, a Cl-6 alkyl group and a C1-6 haloalkyl group, and when two or more substituents exist, the substituents may be same or different to each other; and the C1-8 cycloalkyl group may
have one or more substituents selected from the group consisting of a halogen atom and a \(\text{Cl}_6 \) alkyl group, and when two or more substituents exist, the substituents may be same or different to each other; when \(n \) is an integer of 2 or more, \(Z \) may be same or different to each other).

2. The cyclohexanone compound according to claim 1 wherein

\[
\begin{align*}
&n \text{ is an integer of any one of 1 to 3;} \\
&X \text{ represents } \text{CH}_2, \text{O, NR}, 9, \text{S, S(O), or S(O)}, 2; \\
&R^1 \text{ represents a hydrogen atom;}
\end{align*}
\]

\[
\begin{align*}
&R^2 \text{ and } R^3 \text{ represent independently of each other a hydrogen atom or a } \text{C}_1-3 \text{ alkyl group, or } R^2 \text{ and } R^3 \text{ connect each other to represent a C}_2-5 \text{ alkylene chain (with the proviso that when } m \text{ is 2 or 3, two or three } R^2 \text{ may be same or different to each other and two or three } R^3 \text{ may be same or different to each other);} \\
&R^4 \text{ represents a phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrimidinyl group, a 2-pyrazinyl group, a 3-pyridazinyl group, a 3-furyl group, a 2-thienyl group, a 2-thiazolyl group or a 1,2,3-triazolyl group (with the proviso that the phenyl group, the 2-pyridyl group, the 3-pyridyl group, the 4-pyridyl group, the 2-pyrimidinyl group, the 2-pyrazinyl group, the 3-pyridazinyl group and the 3-furyl group, the 2-thienyl group and the 2-thiazolyl group may each have one or more}
\end{align*}
\]
substituents selected from the group consisting of a halogen atom, a C1-3 alkyl group, a hydroxyl group, a (C1-3 alkyl) carbonyl group, a (C1-3 alkoxy) carbonyl group, a C1-3 alkoxy group, a C1-3 haloalkyl group, a C1-3 alkylthio group, a C1-3 haloalkylthio group, a cyano group, a nitro group, an amino group, a pentfluorothio group, a benzoylamino group and a C1-3 haloalkoxy group, and when two or more substituents exist, the substituents may be same or different to each other; and the 1,2,3-triazolyl group may be substituted with a C6-10 aryl group and the C6-10 aryl group may have one or more halogen atoms or C1-3 haloalkyl groups, and when two or more halogen atoms or C1-3 haloalkyl groups exist, the halogen atoms or the C1-3 haloalkyl groups may be same or different respectively; G represents a hydrogen atom or a group of any one of the following formulae:

\[
\begin{array}{c}
\text{O} \\
R^5a
\end{array}
\quad
\begin{array}{c}
\text{S} \\
\text{O}
\end{array}
R^5a \\
\text{or} \\
\begin{array}{c}
\text{CH}_2W^a
\end{array}
\]

{wherein

\(R^{5a} \) represents a C1-6 alkyl group, a C6-10 aryl group, a C1-6 alkoxy group, a C3-6 alkenyloxy group, a C3-6 alkynyloxy group or a C6-10 aryloxy group;

\(R^{6a} \) represents a C1-6 alkyl group;

\(W^a \) represents a C1-3 alkoxy group;

\(R^9 \) represents a hydrogen atom, a C1-6 alkyl group or a
c6-10 arylsulfonyl group (with the proviso that the c1-6 alkyl group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the c6-10 arylsulfonyl group may have one or more substituents selected from the group consisting of a halogen atom and a nitro group, and when two or more substituents exist, the substituents may be same or different to each other); Z represents a halogen atom, a c1-3 alkyl group, a c2-6 alkenyl group, a c2-6 alkynyl group, a c1-3 alkoxy group, a c3-8 cycloalkyl group, a nitro group, a phenyl group or a five- to six- membered heteroaryloxy group (with the proviso that the c1-3 alkyl group, the c2-6 alkenyl group, the c2-6 alkynyl group, the c1-3 alkoxy group, the phenyl group and the five- to six- membered heteroaryloxy group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other).

3. The cyclohexanone compound according to claim 2 wherein

m is 2;

X represents CH2, 0, NR9, S, S(O) or S(O)2;

R2 and R3 represents independently of each other a hydrogen atom, a methyl group or an ethyl group, or R2 and R3 connect each other to represent an ethylene chain (with
the proviso that two R^2 may be same or different to each other and two R^3 may be same or different to each other);

R^4 represents a phenyl group, a 2-pyridyld group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrimidinyl group, a 2-pyrazinyl group, a 3-pyridazinyl group, a 3-furyl group, a 2-thienyl group, a 2-thiazolyl group or a 1,2,3-triazolyl group (with the proviso that the phenyl group, the 2-pyridyl group, the 3-pyridyl group, the 4-pyridyl group, the 2-pyrimidinyl group, the 2-pyrazinyl group, the 3-pyridazinyl group and the 3-furyl group, the 2-thienyl group and the 2-thiazolyl group have each one or more substituents selected from the group consisting of a chlorine atom, a bromine atom, an iodine atom, a fluorine atom, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a methoxy group, a nitro group, an amino group, a cyano group, a hydroxyl group, an acetyl group, a methoxycarbonyl group, a pentfluorothio group, a pentfluoroethyl group, a difluoroethyl group, a heptfluoroisopropyl group, a trifluoromethylthio group, a benzyolamino group, a trifluoromethoxy group and a trifluoromethyl group; and the 1,2,3-triazolyl group may be substituted with a phenyl group, and the phenyl group has one or more substituents selected from the group consisting of a chlorine atom, a bromine atom, an iodine atom, a fluorine atom and a trifluoromethyl group);
G represents a hydrogen atom, an acetyl group, a propionyl group, a butyryl group, a benzoyl group, a methylsulf onyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an allyloxycarbonyl group, a phenoxy carbonyl group, a methoxymethyl group or an ethoxymethyl group;

R^9 represents a hydrogen atom, a 2-nitrophenylsulf onyl group or a methyl group;

Z represents a methyl group, an ethyl group, a phenyl group, a vinyl group, a cyclopropyl group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, a trifluoromethyl group, a 5-trifluoromethyl-2-chloropyridyloxy group or an ethynyl group.

4. A cyclohexanone compound of the formula (II):

$$\text{(II)}$$

wherein

- p is an integer of 1, 2 or 3;
- q is an integer of any one of 1 to 5;
- X_b^b represents CH_2, 0, s, $S(0)$ or $S(0)_2$;
- R_{1b}^b represents a hydrogen atom or a methyl group;
- R_{2b}^b and R_{3b}^b represent independently of each other a hydrogen atom, a C_i-C_6 alkyl group, a C_i-C_6 haloalkyl group, a
C₁₋₈ cycloalkyl group, a C₃₋₈ halocycloalkyl group, a (C₁₋₆ alkyl)C₃₋₈ cycloalkyl group, a (C₃₋₈ cycloalkyl)C₁₋₆ alkyl group, a (C₃₋₈ cycloalkyl)C₃₋₈ cycloalkyl group, a (C₃₋₈ halocycloalkyl)C₁₋₆ alkyl group or a (C₁₋₆ alkyl)C₃₋₈ cycloalkyl group, or R^{2b} and R^{3b} connect each other to represent a C₂₋₅ alkylene chain, or R^{2b} and R^{3b} combine each other to represent a C₁₋₃ alkylidene group optionally having one or more halogen atoms (with the proviso that when p is 2 or 3, two or three R^{2b} may be same or different to each other and R^{3b} may be same or different to each other);

R^{4b} represents a C₆₋₁₀ aryl group or a five- to six-membered heteroaryl group (with the proviso that the C₆₋₁₀ aryl group and the five- to six-membered heteroaryl group may have one or more substituents selected from the group consisting of a halogen atom, a cyano group, a nitro group, a pentaf luorothio group, a C₁₋₆ alkyl group, a C₂₋₆ alkenyl group, a C₂₋₆ alkynyl group, a C₁₋₆ alkoxy group, a C₁₋₉ alkylthio group, a C₃₋₆ alkenyloxy group, a C₃₋₆ alkynyloxy group and a (C₆₋₁₀ aryl)C₁₋₆ alkoxy group, and when two or more substituents exist, the substituents may be same or different to each other; and the C₁₋₆ alkyl group, the C₂₋₆ alkenyl group, the C₂₋₆ alkynyl group, the C₁₋₆ alkoxy group, the C₂₋₆ alkylthio group, the C₃₋₆ alkenyloxy group, the C₃₋₆ alkynyloxy group and the (C₆₋₁₀ aryl)C₁₋₆ alkoxy group may
have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other);

G^b represents a hydrogen atom or a group of any one of the following formulae:

\[
L^b, \quad \text{SO}_{2}^{\text{R}^b} \quad \text{or} \quad \text{H-C-W}^b
\]

(wherein

L^b represents an oxygen atom or a sulfur atom;

R^b represents a C_{1-6} alkyl group, a C_{3-7} cycloalkyl group, a C_{1-6} alkenyl group, a C_{1-6} alkynyl group, a C_{6-10} aryl group, a (C_{6-10} aryl)C_{1-6} alkyl group, a C_{1-6} alkoxy group, a C_{3-7} cycloalkoxy group, a C_{1-6} alkenyloxy group, a C_{3-6} alkynyloxy group, a C_{6-10} aryloxy group, a (C_{6-10} aryl)C_{1-6} alkoxy group, a (C_{1-6} alkyl)C_{1-6} alkyl) amino group, a (C_{3-6} alkenyl) (C_{3-6} alkenyl) amino group, a (C_{1-6} alkyl) (C_{6-10} aryl) amino group or a five- to six- membered heteroaryl group (with the proviso that these groups may each have one or more halogen atoms, when two or more halogen atoms exist, the halogen atoms may be same or different to each other;

and the C_{3-8} cycloalkyl group, the C_{6-10} aryl group, an aryl moiety of the (C_{6-10} aryl)C_{1-6} alkyl group, the C_{3-8} cycloalkoxy group, the C_{6-10} aryloxy group, an aryl moiety of the (C_{6-10} aryl)C_{1-6} alkoxy group, an aryl moiety of the C_{1-6} alkyl) (C_{6-10} aryl) amino group and a five- to six-
membered heteroaryl group may each one or more C1-6 alkyl groups, and when two or more C1-6 alkyl groups exist, the alkyl groups may be same or different to each other;

R$_6^b$ represents a C1-6 alkyl group, a C6-10 aryl group or a (C1-6 alkyl) (C1-6 alkyl) amino group (with the proviso that these groups may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the C6-10 aryl group may have one or more C1-6 alkyl groups, and when two or more C1-6 alkyl groups exist, the alkyl groups may be same or different to each other);

R$_7^b$ represents a hydrogen atom or a C1-6 alkyl group;

W$_b^b$ represents a C1-6 alkoxy group, a C1-6 alkylthio group, a C1-6 alkylsulf inyl group or a C1-6 alkylsulf onyl group (with the proviso that these groups may each have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other);

Z$_b^b$ represents a halogen atom, a cyano group, a nitro group, a phenyl group, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group, a C1-6 aryl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C6-10 aryloxy group, a five- to six-membered heteroaryloxy group or a C3-8 cycloalkyl group (with the proviso that the C1-6 alkyl group, the C1-6 alkenyl group, the C2-6 alkynyl group, the C1-6 alkoxy group and the
alkylthio group may have one or more halogen atoms, and when two or more halogen atoms exist, the halogen atoms may be same or different to each other; and the phenyl group, the C₆-H aryloxy group and the five- to six- membered heteroaryloxy group may have one or more substituents selected from the group consisting of a halogen atom, a C₁₋₆ alkyl group and a C₁₋₆ haloalkyl group, and when two or more substituents exist, the substituents may be same or different to each other; and the C₃₋₆ cycloalkyl group may have one or more substituents selected from the group consisting of a halogen atom and a C₁₋₆ alkyl group, and when two or more substituents exist, the substituents may be same or different to each other; when g is an integer of 2 or more, Zᵇ may be same or different to each other).

5. The cyclohexanone compound according to claim 4 wherein

n is an integer of any one of 1 to 3;
Rᵇ¹ represents a hydrogen atom;
Rᵇ² and Rᵇ³ represent independently of each other a hydrogen atom or a C₁₋₁ alkyl group (with the proviso that when p is 2 or 3, two or three Rᵇ² may be same or different to each other and two or three Rᵇ³ may be same or different to each other);
Rᵇ⁴ represents a phenyl group or a 2-pyridyl group (with the proviso that the phenyl group and the 2-pyridyl
group may have one or more substituents selected from the group consisting of a halogen atom, a \(\text{C}_1-3 \) alkyl group, a \(\text{C}_1-3 \) alkoxy group, a \(\text{C}_1-3 \) haloalkyl group, a nitro group, a pentfluorothio group and a \(\text{C}_1-3 \) haloalkoxy group, and when two or more substituents exist, the substituents may be same or different to each other;

\(G^b \) represents a hydrogen atom or a group of any one of the following formulae:

\[
\begin{align*}
\text{O} & \quad \text{or} \quad \text{CH}_2\text{W}^a \\
\text{R}^3 & \quad \text{or} \quad \text{W}^a
\end{align*}
\]

10 (wherein

\(\text{R}^3 \) represents a \(\text{C}_1-6 \) alkyl group, a \(\text{C}_6-10 \) aryl group, a \(\text{C}_1-6 \) alkoxy group, a \(\text{C}_3-6 \) alkenyloxy group, a \(\text{C}_3-6 \) alkynyloxy group or a \(\text{C}_6-10 \) aryloxy group; and

\(\text{W}^a \) represents a \(\text{C}_1-3 \) alkoxy group); and

\(Z^b \) represents a \(\text{C}_1-3 \) alkyl group.

6. The cyclohexanone compound according to claim 5 wherein

\(p \) is 2;

\(\text{R}^{2b} \) and \(\text{R}^{3b} \) represent independently of each other a hydrogen atom or a methyl group (with the proviso that two \(\text{R}^{2b} \) may be same or different to each other and two \(\text{R}^{3b} \) may be same or different to each other);

\(\text{R}^{4b} \) represents a phenyl group or a 2-pyridyl group (with the proviso that the phenyl group and the 2-pyridyl
group have one or more substituents selected from the group consisting of a chlorine atom, a fluorine atom, a methyl group, a methoxy group and a trifluoromethyl group);

\[G^b \] represents a hydrogen atom, an acetyl group, a propionyl group, a benzoyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an allyloxy carbonyl group, a phenoxycarbonyl group, a methoxymethyl group or an ethoxymethyl group; and

\[Z^b \] represents a methyl group or an ethyl group.

7. The cyclohexanone compound of any one of claims 1 to 6 wherein \(G \) represents a hydrogen atom.

8. A herbicide comprising a cyclohexanone compound of any one of claims 1 to 7 as an active ingredient.

9. A method for controlling weeds comprising applying an effective amount of the cyclohexanone compound of any one of claims 1 to 7 to weeds or soil where weeds grow.

10. Use of the cyclohexanone compound of any one of claims 1 to 7 for controlling weeds.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A01P13/00 C07C225/18 C07C49/747 C07C311/21 C07C317/24
C07C323/22 C07D213/70 C07D237/18 C07D239/38 C07D241/18
C07D249/06 C07D277/36 C07D307/68 C07D333/34

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07C C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>wo 2008/110308 A2 (SYNGENTA PARTICIPATIONS AG [CH]; MUEHLEBACH MICHEL [CH]; LUTZ W LLIAM) 18 September 2008 (2008-09-18) cited in the application claims 1,45</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>wo 2010/046194 A1 (SYNGENTA LTD [GB]; MATHews CHRISTOPHER JOHN [GB]; CL0UGH JOHN MARTIN []) 29 April 2010 (2010-04-29) cited in the application claims 1,17</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>wo 2010/081689 A2 (BAYER CR0PSCI ENCE AG [DE]; BRETSCHNEIDER THOMAS [DE]; FISCHER REINER []) 22 July 2010 (2010-07-22) claim 1</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) one which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search: 13 September 2012
Date of mailing of the international search report: 20/09/2012

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Scheid, GLinther
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2008110308 A2</td>
<td>18-09-2008</td>
<td>AU 2008226027 Al</td>
<td>18-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2679194 Al</td>
<td>18-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102007097 A</td>
<td>06-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6220851 A2</td>
<td>19-11-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010520867 A</td>
<td>17-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090119931 A</td>
<td>20-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2009136671 A</td>
<td>20-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010173774 Al</td>
<td>08-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008110308 A2</td>
<td>18-09-2008</td>
</tr>
<tr>
<td>WO 2010046194 Al</td>
<td>29-04-2010</td>
<td>AU 2009306639 Al</td>
<td>29-04-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2738752 Al</td>
<td>29-04-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102186834 A</td>
<td>14-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2350034 Al</td>
<td>03-08-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012505848 A</td>
<td>08-03-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012035053 Al</td>
<td>09-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010046194 Al</td>
<td>29-04-2010</td>
</tr>
<tr>
<td>WO 2010081689 A2</td>
<td>22-07-2010</td>
<td>CN 102355820 A</td>
<td>15-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2387309 A2</td>
<td>23-11-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012515181 A</td>
<td>05-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110106448 A</td>
<td>28-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012046464 Al</td>
<td>23-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010081689 A2</td>
<td>22-07-2010</td>
</tr>
</tbody>
</table>