
(12) STANDARD PATENT (11) Application No. AU 2013201583 B2
(19)

(54)

(51)

(21)

(43)
(43)
(44)

(62)

(71)

(72)

(74)

(56)

AUSTRALIAN PATENT OFFICE

Title
AUDIO DECODERAND DECODING METHOD USING EFFICIENT DOWNMIXING

International Patent Classification(s)
G10L 19/00 (2006.01) H04S 3/00 (2006.01)

Application No: 2013201583 (22) Date of Filing: 2013.03.18

Publication Date: 2013.04.04
Publication Journal Date: 2013.04.04
Accepted Journal Date: 2015.07.16

Divisional of:
2011218351

Applicant(s)
Dolby Laboratories Licensing Corporation;Dolby International AB

Inventor(s)
Thesing, Robin;Silva, James M.;Andersen, Robert L.

Agent / Attorney
Tatlocks Chrysiliou IP, Level 2 294-296 Collins Street, Melbourne, VIC, 3000

Related Art
ATSC: "N52B, ATSC standard, Digital audio compression standard (AC-3, E-
AC-3), revision B", 14 June 2005
US 2007/0233296 A1

20
13

20
15

83

18
 M

ar
 2

01
3 ABSTRACT

A method, an apparatus, a computer readable storage medium configured with instructions

for carrying out a method, and logic encoded in one or more computer- readable tangible

medium to carry out actions. The method is to decode audio data that includes N.n channels

to M.m decoded audio channels, including unpacking metadata and unpacking and decoding

frequency domain exponent and mantissa data; determining transform coefficients from the

unpacked and decoded frequency domain exponent and mantissa data; inverse transforming

the frequency domain data; and in the case M<N, downmixing according to downmixing

data, the downmixing carried out efficiently.

20
13

20
15

83

18
 M

ar
 2

01
3

8/13

FI
G

. 7

20
13

20
15

83

18
 M

ar
 2

01
3 AUDIO DECODERAND DECODING METHOD USING EFFICIENT

DOWNMIXING

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional application of Australian Patent Application No.

2011218351, the entire contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0001] The present disclosure relates generally to audio signal processing.

BACKGROUND

[0002] Digital audio data compression has become an important technique in the audio industry.

New formats have been introduced that allow high quality audio reproduction without the need for

the high data bandwidth that would be required using traditional techniques. AC- 3 and more

recently Enhanced AC- 3 (E-AC-3) coding technology has been adopted by the Advanced Television

Systems Committee (ATSC) as the audio service standard for High Definition Television (HDTV) in the

United States. E-AC-3 has also found applications in consumer media (digital video disc) and direct

satellite broadcast. E-AC-3 is an example of perceptual coding, and provides for coding multiple

channels of digital audio to a bitstream of coded audio and metadata.

[0003] There is interest in efficiently decoding a coded audio bit stream. For example, the battery

life of portable devices is mainly limited by the energy consumption of its main processing unit. The

energy consumption of a processing unit is closely related to the computational complexity of its

tasks. Hence, reducing the average computational complexity of a portable audio processing system

should extend the battery life of such a system.

[0004] The term x86 is commonly understood by those having skill in the art to refer to a family of

processor instruction set architectures whose origins trace back to the Intel 8086 processor. As

result of the ubiquity of the x86 instructions set architecture, there also is interest in efficiently

decoding a coded audio bit stream on a processor or processing system that has an x86 instruction

set architecture. Many decoder implementations are general in nature, while others are specifically

designed for embedded processors. New processors, such as AMD's Geode and the new Intel Atom

are examples of 32-bit and 64-bit designs that use the x86 instruction set and that are being used in

small portable devices.

The above references to and descriptions of prior proposals or products are not intended to be, and

are not to be construed as, statements or admissions of common general knowledge in the art. In

1

20
13

20
15

83

25
 Ju

n
20

15 particular, the above prior art discussion does not relate to what is commonly or well known by the

person skilled in the art, but assists in the understanding of the inventive step of the present

invention of which the identification of pertinent prior art proposals is but one part.

SUMMARY OF THE INVENTION

[0004A] According to a first aspect of the present invention, there is provided a method of operating

an audio decoder to decode audio data that includes encoded blocks of N.n channels of audio data

to form decoded audio data that includes M.m channels of decoded audio, M>1, n being the number

of low frequency effects channels in the encoded audio data, and m being the number of low

frequency effects channels in the decoded audio data, the method comprising: accepting the audio

data that includes blocks of N.n channels of encoded audio data encoded by an encoding method,

the encoding method including transforming N.n channels of digital audio data, and forming and

packing frequency domain exponent and mantissa data; and decoding the accepted audio data, the

decoding including: unpacking and decoding the frequency domain exponent and mantissa data;

determining transform coefficients from the unpacked and decoded frequency domain exponent

and mantissa data; inverse transforming the frequency domain data and applying further processing

to determine sampled audio data; and time domain downmixing at least some blocks of the

determined sampled audio data according to downmixing data for the case M<N, wherein the

method includes identifying one or more non-contributing channels of the N.n input channels, a

non-contributing channel being a channel that does not contribute to the M.m channels, and

wherein method need not carry out inverse transforming the frequency domain data and need not

carry out applying further processing on the one or more identified non-contributing channels.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 shows pseudocode 100 for instructions that, when executed, carry out a typical AC-3

decoding process.

[0006] FIGS. 2A-2D show, in simplified block diagram form, some different decoder configurations

that can advantageously use one or more common modules.

[0007] FIG. 3 shows a pseudocode and a simplified block diagram of one embodiment of a front

end decode module.

[0008] FIG. 4 shows a simplified data flow diagram for the operation of one embodiment of a front

end decode module.

[0009] FIG. 5A shows pseudocode and a simplified block diagram of one embodiment of a back-end

decode module.

2

20
13

20
15

83

25
 Ju

n
20

15

[0010] FIG. 5B shows pseudocode and a simplified block diagram of another

embodiment of a back-end decode module.

[0011] FIG. 6 shows a simplified data flow diagram for the operation of one embodiment of a back

end decode module.

[0012] FIG. 7 shows a simplified data flow diagram for the operation of another

embodiment of a back-end decode module.

[0013] FIG. 8 shows a flowchart of one embodiment of processing for a back-end decode module

such as the one shown in FIG. 7.

[0014] FIG. 9 shows an example of processing five blocks that includes downmixing from 5.1 to 2.0

using an embodiment of the present invention for the case of a non- overlap transform that includes

downmixing from 5.1 to 2.0.

[0015] FIG. 10 shows another example of processing five blocks that includes

downmixing from 5.1 to 2.0 using an embodiment of the present invention for the case of an

overlapping transform.

[0016] FIG. 11 shows a simplified pseudocode for one embodiment of time domain downmixing.

[0017] FIG. 12 shows a simplified block diagram of one embodiment of a processing system that

includes at least one processor and that can carry out decoding, including one or more features of

the present invention.

Overview

[0018] Embodiments of the present invention include a method, an apparatus, and logic encoded in

one or more computer-readable tangible medium to carry out actions.

[0019] Particular embodiments include a method of operating an audio decoder to decode audio

data that includes encoded blocks of N.n channels of audio data to form decoded audio data that

includes M.m channels of decoded audio, M>1, n being the number of low frequency effects

channels in the encoded audio data, and m being the number of low frequency effects channels in

the decoded audio data. The method comprises accepting the audio data that includes blocks of N.n

channels of encoded audio data encoded by an encoding method that includes transforming N.n

channels of digital audio data, and forming and packing frequency domain exponent and mantissa

data; and decoding the accepted audio data. The decoding includes: unpacking and decoding the

frequency domain exponent and mantissa data; determining transform coefficients from the

3

20
13

20
15

83

18
 M

ar
 2

01
3 unpacked and decoded frequency domain exponent and mantissa data; inverse transforming the

frequency domain data and applying further processing to determine sampled audio data; and time

domain downmixing at least some blocks of the determined sampled audio data according to

downmixing data for the case M<N. At least one of Al, Bl, and Cl is true:

[0020] Al being that the decoding includes determining block by block whether to apply frequency

domain downmixing or time domain downmixing, and if it is determined for a particular block to

apply frequency domain downmixing, applying frequency domain downmixing for the particular

block,

[0021] Bl being that the time domain downmixing includes testing whether the

downmixing data are changed from previously used downmixing data, and, if changed, applying

cross-fading to determine cross-faded downmixing data and time domain downmixing according to

the cross-faded downmixing data, and if unchanged, directly time domain downmixing according to

the downmixing data, and

[0022] Cl being that the method includes identifying one or more non-contributing channels of the

N.n input channels, a non-contributing channel being a channel that does not contribute to the M.m

channels, and that the method does not carry out inverse transforming the frequency domain data

and the applying further processing on the identified one or more non-contributing channels.

[0023] Particular embodiments of the invention include a computer-readable storage medium

storing decoding instructions that when executed by one or more processors of a processing system

cause the processing system to carry out decoding audio data that includes encoded blocks of N.n

channels of audio data to form decoded audio data that includes M.m channels of decoded audio,

M>1, n being the number of low frequency effects channels in the encoded audio data, and m being

the number of low frequency effects channels in the decoded audio data. The decoding instructions

include: instructions that when executed cause accepting the audio data that includes blocks of N.n

channels of encoded audio data encoded by an encoding method, the encoding method including

transforming N.n channels of digital audio data, and forming and packing frequency domain

exponent and mantissa data; and instructions that when executed cause decoding the accepted

audio data. The instructions that when executed cause decoding include: instructions that when

executed cause unpacking and decoding the frequency domain exponent and mantissa data;

instructions that when executed cause determining transform coefficients from the unpacked and

decoded frequency domain exponent and mantissa data; instructions that when executed cause

inverse transforming the frequency domain data and applying further processing to determine

sampled audio data; and instructions that when executed cause ascertaining if M<N and instructions

4

20
13

20
15

83

18
 M

ar
 2

01
3 that when executed cause time domain downmixing at least some blocks of the determined sampled

audio data according to downmixing data if M<N. At least one of A2, B2, and C2 is true:

[0024] A2 being that the instructions that when executed cause decoding include

instructions that when executed cause determining block by block whether to apply frequency

domain downmixing or time domain downmixing, and instructions that when executed cause

applying frequency domain downmixing if it is determined for a particular block to apply frequency

domain downmixing,

[0025] B2 being that the time domain downmixing includes testing whether the

downmixing data are changed from previously used downmixing data, and, if changed, applying

cross-fading to determine cross-faded downmixing data and time domain downmixing according to

the cross-faded downmixing data, and if unchanged, directly time domain downmixing according to

the downmixing data, and

[0026] C2 being that the instructions that when executed cause decoding include

identifying one or more non-contributing channels of the N.n input channels, a non- contributing

channel being a channel that does not contribute to the M.m channels, and that the method does

not carry out inverse transforming the frequency domain data and the applying further processing

on the one or more identified non-contributing channels.

[0027] Particular embodiments include an apparatus for processing audio data to decode the audio

data that includes encoded blocks of N.n channels of audio data to form decoded audio data that

includes M.m channels of decoded audio, M>1, n being the number of low frequency effects

channels in the encoded audio data, and m being the number of low frequency effects channels in

the decoded audio data. The apparatus comprises: means for accepting the audio data that includes

blocks of N.n channels of encoded audio data encoded by an encoding method, the encoding

method including transforming N.n channels of digital audio data, and forming and packing

frequency domain exponent and mantissa data; and means for decoding the accepted audio data.

The means for decoding includes: means for unpacking and decoding the frequency domain

exponent and mantissa data; means for determining transform coefficients from the unpacked and

decoded frequency domain exponent and mantissa data; means for inverse transforming the

frequency domain data and for applying further processing to determine sampled audio data; and

means for time domain downmixing at least some blocks of the determined sampled audio data

according to downmixing data for the case M<N. At least one of A3, B3, and C3 is true:

[0028] A3 being that the means for decoding includes means for determining block by block

whether to apply frequency domain downmixing or time domain downmixing, and means for

5

20
13

20
15

83

18
 M

ar
 2

01
3 applying frequency domain downmixing, the means for applying frequency domain downmixing

applying frequency domain downmixing for the particular block if it is determined for a particular

block to apply frequency domain downmixing,

[0029] B3 being that the means for time domain downmixing carries out testing whether the

downmixing data are changed from previously used downmixing data, and, if changed, applies cross

fading to determine cross-faded downmixing data and time domain downmixing according to the

cross-faded downmixing data, and if unchanged, directly applies time domain downmixing according

to the downmixing data, and

[0030] C3 being that the apparatus includes means for identifying one or more non- contributing

channels of the N.n input channels, a non-contributing channel being a channel that does not

contribute to the M.m channels, and that the apparatus does not carry out inverse transforming the

frequency domain data and the applying further processing on the one or more identified non

contributing channels.

[0031] Particular embodiments include an apparatus for processing audio data that

includes N.n channels of encoded audio data to form decoded audio data that includes M.m

channels of decoded audio, M>1, n=0 or 1 being the number of low frequency effects channels in

the encoded audio data, and m=0 or 1 being the number of low frequency effects channels in the

decoded audio data. The apparatus comprises: means for accepting the audio data that includes N.n

channels of encoded audio data encoded by an encoding method, the encoding method comprising

transforming N.n channels of digital audio data in a manner such that inverse transforming and

further processing can recover time domain samples without aliasing errors, forming and packing

frequency domain exponent and mantissa data, and forming and packing metadata related to the

frequency domain exponent and mantissa data, the metadata optionally including metadata related

to transient pre-noise processing; and means for decoding the accepted audio data. The means for

decoding comprises: one or more means for front-end decoding and one or more means for back

end decoding. The means for front-end decoding includes means for unpacking the metadata, for

unpacking and for decoding the frequency domain exponent and mantissa data. The means for back

end decoding includes means for determining transform coefficients from the unpacked and

decoded frequency domain exponent and mantissa data; for inverse transforming the frequency

domain data; for applying windowing and overlap-add operations to determine sampled audio data;

for applying any required transient pre-noise processing decoding according to the metadata related

to transient pre-noise processing; and for time domain downmixing according to

downmixing data, the downmixing configured to time domain downmix at least some blocks of data

according to downmixing data in the case M<N. At least one of A4, B4, and 4C is true:

6

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US2011/023533

[0032] A4 being that the means for back end decoding include means for determining

block by block whether to apply frequency domain downmixing or time domain

downmixing, and means for applying frequency domain downmixing, the means for

applying frequency domain downmixing applying frequency domain downmixing for the

5 particular block if it is determined for a particular block to apply frequency domain

downmixing,

[0033] B4 being that the means for time domain downmixing carries out testing whether

the downmixing data are changed from previously used downmixing data, and, if

changed, applies cross-fading to determine cross-faded downmixing data and time

10 domain downmixing according to the cross-faded downmixing data, and if unchanged,

directly applies time domain downmixing according to the downmixing data, and

[0034] C4 being that the apparatus includes means for identifying one or more non

contributing channels of the N.n input channels, a non-contributing channel being a

channel that does not contribute to the M.m channels, and that the means for back end

15 decoding does not carry out inverse transforming the frequency domain data and the

applying further processing on the one or more identified non-contributing channels.

[0035] Particular embodiments include a system to decode audio data that includes N.n

channels of encoded audio data to form decoded audio data that includes M.m channels of

decoded audio, M>1, n being die number of low frequency effects channels in the

20 encoded audio data, and m being the number of low frequency effects channels in the

decoded audio data. The system comprises: one or more processors; and a storage

subsystem coupled to the one or more processors. The system is to accept the audio data

that includes blocks of N.n channels of encoded audio data encoded by an encoding

method, the encoding method including transforming N.n channels of digital audio data,

25 and forming and packing frequency domain exponent and mantissa data; and further to

decode the accepted audio data, including to: unpack and decode the frequency domain

exponent and mantissa data; determine transform coefficients from the unpacked and

decoded frequency domain exponent and mantissa data; inverse transform the frequency

domain data and apply further processing to determine sampled audio data; and time

30 domain downmix at least some blocks of the determined sampled audio data according to

downmixing data for the case M<N. At least one of A5, B5, and C5 is true:

7

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[0036] A5 being that the decoding includes determining block by block whether to apply

frequency domain downmixing or time domain downmixing, and if it is determined for a

particular block to apply frequency domain downmixing, applying frequency domain

downmixing for the particular block,

5 [0037] B5 being that the time domain downmixing includes testing whether the

downmixing data are changed from previously used downmixing data, and, if changed,

applying cross-fading to determine cross-faded downmixing data and time domain

downmixing according to the cross-faded downmixing data, and if unchanged, directly

time domain downmixing according to the downmixing data, and

10 [0038] C5 being that the method includes identifying one or more non-contributing

channels of the N.n input channels, a non-contributing channel being a channel that does

not contribute to the M.m channels, and that the method does not carry out inverse

transforming the frequency domain data and the applying further processing on the one or

more identified non-contributing channels.

15 [0039] In some versions of the system embodiment, the accepted audio data are in the

form of a bitstream of frames of coded data, and the storage subsystem is configured with

instructions that when executed by one or more of the processors of the processing

system, cause decoding the accepted audio data.

[0040] Some versions of the system embodiment include one or more subsystems that are

20 networked via a network link, each subsystem including at least one processor.

[0041] In some embodiments in which Al, A2, A3, A4 or A5 is true, the determining

whether to apply frequency domain downmixing or time domain downmixing includes

determining if there is any transient pre-noise processing, and determining if any of the N

channels have a different block type such that frequency domain downmixing is applied

25 only for a block that has the same block type in the N channels, no transient pre-noise

processing, and M<N.

[0042] In some embodiments in which Al, A2, A3, A4 or A5 is true, and wherein the

transforming in the encoding method uses an overlapped-transform and the further

processing includes applying windowing and overlap-add operations to determine

30 sampled audio data, (i) applying frequency domain downmixing for the particular block

includes determining if downmixing for the previous block was by time domain

8

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

downmixing and, if the downmixing for the previous block was by time domain

downmixing, applying time domain downmixing (or downmixing in a pseudo-time

domain) to the data of the previous block that is to be overlapped with the decoded data

of the particular block, and (ii) applying time domain downmixing for a particular block

5 includes determining if downmixing for the previous block was by frequency domain

downmixing, and if the downmixing for the previous block was by frequency domain

downmixing, processing the particular block differently than if the downmixing for the

previous block was not by frequency domain downmixing.

[0043] In some embodiments in which Bl, B2, B3, B4 or B5 is true, at least one x86

10 processor is used whose instruction set includes streaming single instruction multiple data

extensions (SSE) comprising vector instiuctions, and the time domain downmixing

includes running vector instructions on at least one of the one or more x86 processors.

[0044] In some embodiments in which Cl, C2, C3, C4 or C5 is true, n=l and m=0, such

that inverse transforming and applying further processing are not carried out on the low

15 frequency effect channel. Furthermore, in some embodiments in which C is true, the

audio data that includes encoded blocks includes information that defines the

downmixing, and wherein the identifying one or more non-contributing channels uses the

information that defines the downmixing. Furthermore, in some embodiments in which C

is true, the identifying one or more non-contributing channels further includes identifying

20 whether one or more channels have an insignificant amount of content relative to one or

more other channels, wherein a channel has an insignificant amount of content relative to

another channel if its energy or absolute level is at least 15 dB below that of the other

channel. For some cases, a channel has an insignificant amount of content relative to

another channel if its energy or absolute level is at least 18 dB below that of the other

25 channel, while for other applications, a channel has an insignificant amount of content

relative to another channel if its energy or absolute level is at least 25 dB below that of

the other channel.

[0045] In some embodiments the encoded audio data are encoded according to one of the

set of standards consisting of the AC-3 standard, the E-AC-3 standard, a standard

30 backwards compatible with the E-AC-3 standard, the MPEG-2 AAC standard, and the

HE-AAC standard.

9

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[0046] In some embodiments of the invention, the transforming in the encoding method

uses an overlapped-transform, and the further processing includes applying windowing

and overlap-add operations to determine sampled audio data.

[0047] In some embodiments of the invention, the encoding method includes forming and

5 packing metadata related to the frequency domain exponent and mantissa data, the

metadata optionally including metadata related to transient pre-noise processing and to

downmixing.

[0048] Particular embodiments may provide all, some, or none of these aspects, features,

or advantages. Particular embodiments may provide one or more other aspects, features,

10 or advantages, one or more of which may be readily apparent to a person skilled in the art

from the figures, descriptions, and claims herein.

Decoding an encoded stream

[0049] Embodiments of the present invention are described for decoding audio that has

been coded according to the Extended AC-3 (E-AC-3) standard to a coded bitstream. The

15 E-AC-3 and the earlier AC-3 standards are described in detail in Advanced Television

Systems Committee, Inc., (ATSC), “Digital Audio Compression Standard (AC-3, E-AC-

3),” Revision B, Document A/52B, 14 June 2005, retrieved 1 December 2009 on the

World Wide Web of the Internet at wwwAdotAatscAdotAorg/standards/a_52bAdotApdf,

(where AdotA denoted the period (“.”) in the actual Web address). The invention, however,

20 is not limited to decoding a bitstream encoded in E-AC-3, and may be applied to a

decoder and for decoding a bitstream encoded according to another coding method, and to

methods of such decoding, apparatuses to decode, systems that carry out such decoding,

to software that when executed cause one or more processors to cany out such decoding,

and/or to tangible storage media on which such software is stored. For example,

25 embodiments of the present invention are also applicable to decoding audio that has been

coded according to the MPEG-2 AAC (ISO/IEC 13818-7) and MPEG-4 Audio (ISO/IEC

14496-3) standards. The MPEG-4 Audio standard includes both High Efficiency AAC

version 1 (HE-AAC vl) and High Efficiency AAC version 2 (HE-AAC v2) coding,

referred to collectively as HE-AAC herein.

30 [0050] AC-3 and E-AC-3 are also known as DOLBY ® DIGITAL and DOLBY ®

DIGITAL PLUS. A version of HE-AAC incorporating some additional, compatible

improvements is also known as DOLBY ® PULSE. These are trademarks of Dolby

10

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

Laboratories Licensing Corporation, the assignee of the present invention, and may be

registered in one or more jurisdictions. E-AC-3 is compatible with AC-3 and includes

additional functionality.

The x86 architecture

5 [0051] The term x86 is commonly understood by those having skill in the art to refer to a

family of processor instruction set architectures whose origins trace back to the Intel 8086

processor. The architecture has been implemented in processors from companies such as

Intel, Cyrix, AMD, VIA, and many others. In general, the term is understood to imply a

binary compatibility with the 32-bit instruction set of the Intel 80386 processor. Today

10 (early 2010), the x86 architecture is ubiquitous among desktop and notebook computers,

as well as a growing majority among servers and workstations. A large amount of

software supports the platform, including operating systems such as MS-DOS, Windows,

Linux, BSD, Solaris, and Mac OS X.

[0052] As used herein, the term x86 means an x86 processor instruction set architecture

15 that also supports a single instruction multiple data (SIMD) instruction set extension

(SSE). SSE is a single instruction multiple data (SIMD) instruction set extension to the

original x86 architecture introduced in 1999 in Intel’s Pentium IH series processors, and

now common in x86 architectures made by many vendors.

AC-3 and E-AC-3 bitstreams

20 [0053] An AC-3 bitstream of a multi-channel audio signal is composed of frames,

representing a constant time interval of 1536 pulse code modulated (PCM) samples of the

audio signal across all coded channels. Up to five main channels and optionally a low

frequency effects (LFE) channel denoted “.1” are provided for, that is, up to 5.1 channels

of audio are provided for. Each frame has a fixed size, which depends only on sample rate

25 and coded data rate.

[0054] Briefly, AC-3 coding includes using an overlapped transform—the modified

discrete cosine transform (MDCT) with a Kaiser Bessel derived (KBD) window with

50% overlap—to convert time data to frequency data. The frequency data are

perceptually coded to compress the data to form a compressed bitstream of frames that

30 each includes coded audio data and metadata. Each AC-3 frame is an independent entity,

sharing no data with previous frames other than the transform overlap inherent in the

MDCT used to convert time data to frequency data.

11

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[0055] At the beginning of each AC-3 frame are the SI (Sync Information) and BSI (Bit

Stream Information) fields. The SI and BSI fields describe the bitstream configuration,

including sample rate, data rate, number of coded channels, and several other systems-

level elements. There are also two CRC (cyclic redundancy code) words per frame, one at

5 the beginning and one at the end, that provide a means of error detection.

[0056] Within each frame are six audio blocks, each representing 256 PCM samples per

coded channel of audio data. The audio block contains the block switch flags, coupling

coordinates, exponents, bit allocation parameters, and mantissas. Data sharing is allowed

within a frame, such that information present in Block 0 may be reused in subsequent

10 blocks.

[0057] An optional aux data field is located at the end of the frame. This field allows

system designers to embed private control or status information into the AC-3 bitstream

for system-wide fransmission.

[0058] E-AC-3 preserves the AC-3 frame sfructure of six 256-coefficient fransforms,

15 while also allowing for shorter frames composed of one, two, and three 256-coefficient

transform blocks. This enables the transport of audio at data rates greater than 640 kbps.

Each E-AC-3 frame includes metadata and audio data.

[0059] E -AC-3 allows for a significantly larger number of channels than AC-3’s 5.1, in

particular, E-AC-3 allows for the carriage of 6.1 and 7.1 audio common today, and for the

20 carriage of at least 13.1 channels to support, for example, future multichannel audio

sound tracks. The additional channels beyond 5.1 are obtained by associating the main

audio program bitstream with up to eight additional dependent subsfreams, all of which

are multiplexed into one E-AC-3 bitstteam. This allows the main audio program to

convey the 5.1-channel format of AC-3, while the additional channel capacity comes

25 from the dependent bitstreams. This means that a 5.1-channel version and the various

conventional downmixes are always available and that matrix subtraction-induced coding

artifacts are eliminated by the use of a channel substitution process.

[0060] Multiple program support is also available through the ability to carry seven more

independent audio streams, each with possible associated dependent substreams, to

30 increase the channel carriage of each program beyond 5.1 channels.

12

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[0061] AC-3 uses a relatively short transform and simple scalar quantization to

perceptually code audio material. E-AC-3, while compatible with AC-3, provides

improved spectral resolution, improved quantization, and improved coding. With E-AC-

3, coding efficiency has been increased from that of AC-3 to allow for the beneficial use

5 of lower data rates. This is accomplished using an improved filterbank to convert time

data to frequency domain data, improved quantization, enhanced channel coupling,

spectral extension, and a technique called transient pre-noise processing (TPNP).

[0062] In addition to the overlapped transform MDCT to convert time data to frequency

data, E-AC-3 uses an adaptive hybrid transform (AHT) for stationary audio signals. The

10 AHT includes the MDCT with the overlapping Kaiser Bessel derived (KBD) window,

followed, for stationary signals, by a secondary block transform in the form of a non

windowed, non-overlapped Type II discrete cosine transform (DCT). The AHT thus adds

a second stage DCT after the existing AC-3 MDCT/KBD filterbank when audio with

stationary characteristics is present to convert the six 256-coefficient transform blocks

15 into a single 1536-coefficient hybrid transform block with increased frequency resolution.

This increased frequency resolution is combined with 6-dimensional vector quantization

(VQ) and gain adaptive quantization (GAQ) to improve the coding efficiency for some

signals, e.g., “hard to code” signals. VQ is used to efficiently code frequency bands

requiring lower accuracies, while GAQ provides greater efficiency when higher accuracy

20 quantization is required.

[0063] Improved coding efficiency is also obtained through the use of channel coupling

with phase preservation. This method expands on AC-3’s channel coupling method of

using a high frequency mono composite channel which reconstitutes the high-frequency

portion of each channel on decoding. The addition of phase information and encoder-

25 controlled processing of spectral amplitude information sent in the bitstream improves the

fidelity of this process so that the mono composite channel can be extended to lower

frequencies than was previously possible. This decreases the effective bandwidth

encoded, and thus increases the coding efficiency.

[0064] E-AC-3 also includes spectral extension. Spectral extension includes replacing

30 upper frequency transform coefficients with lower frequency spectral segments translated

up in frequency. The spectral characteristics of the translated segments are matched to the

original through spectral modulation of the transform coefficients, and also through

13

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

blending of shaped noise components with the translated lower frequency spectral

segments.

[0065] E-AC-3 includes a low frequency effects (LFE) channel. This is an optional single

channel of limited (<120 Hz) bandwidth, which is intended to be reproduced at a level

5 +10 dB with respect to the full bandwidth channels. The optional LFE channel allows

high sound pressure levels to be provided for low frequency sounds. Other coding

standards, e.g., AC-3 and HE-AAC also include an optional LFE channel.

[0066] An additional technique to improve audio quality at low data rates is the use of

transient pre-noise processing, described further below.

10 AC-3 decoding

[0067] In typical AC-3 decoder implementations, in order to keep memory and decoder

latency requirements as small as possible, each AC-3 frame is decoded in a series of

nested loops.

[0068] A first step establishes frame alignment. This involves finding the AC-3

15 synchronization word, and then confirming that the CRC error detection words indicate

no errors. Once frame synchronization is found, the BSI data are unpacked to determine

important frame information such as the number of coded channels. One of the channels

may be an LFE channel. The number of coded channels is denoted N.n herein, where n is

the number of LFE channels, and N is the number of main channels. In currently used

20 coding standards, n=0 or 1. In the future, there may be cases where n>l

[0069] The next step in decoding is to unpack each of the six audio blocks. In order to

minimize the memory requirements of the output pulse code modulated data (PCM)

buffers, the audio blocks are unpacked one-at-a-time. At the end of each block period the

PCM results are, in many implementations, copied to output buffers, which for real-time

25 operation in a hardware decoder typically are double- or circularly buffered for direct

interrupt access by a digital-to-analog converter (DAC).

[0070] The AC-3 decoder audio block processing may be divided into two distinct stages,

referred to here as input and output processing. Input processing includes all bitstream

unpacking and coded channel manipulation. Output processing refers primarily to the

30 windowing and overlap-add stages of the inverse MDCT transform.

14

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US2011/023533

[0071] This distinction is made because the number of main output channels, herein

denoted M>1, generated by an AC-3 decoder does not necessarily match the number of

input main channels, herein denoted N, N>1 encoded in the bitstream, with typically, but

not necessarily, N>M. By use of downmixing, a decoder can accept a bitstream with any

5 number N of coded channels and produce an arbitrary number M, M>1, of output

channels. Note that in general, the number of output channels is denoted M.m herein,

where M is the number of main channels, and m is the number of LFE output channels. In

today’s applications, m=0 or 1. It may be possible to have m>l in the future.

[0072] Note that in the downmixing, not all of the coded channels are included in the

10 output channels. For example, in a 5.1 to stereo downmix, the LFE channel information is

usually discarded. Thus, in some downmixing, n=l andm=0, that is, there is no output

LFE channel.

[0073] FIG. 1 shows pseudocode 100 for instructions, that when executed, carry out a

typical AC-3 decoding process.

15 [0074] Input processing in AC-3 decoding typically begins when the decoder unpacks the

fixed audio block data, which is a collection of parameters and flags located at the

beginning of the audio block. This fixed data includes such items as block switch flags,

coupling information, exponents, and bit allocation parameters. The term "fixed data"

refers to the fact that the word sizes for these bitstream elements are known a priori, and

20 therefore a variable length decoding process is not required to recover such elements.

[0075] The exponents make up the single largest field in the fixed data region, as they

include all exponents from each coded channel. Depending on the coding mode, in AC-3,

there may be as many as one exponent per mantissa, up to 253 mantissas per channel.

Rather than unpack all of these exponents to local memory, many decoder

25 implementations save pointers to the exponent fields, and unpack them as they are

needed, one channel at a time.

[0076] Once the fixed data are unpacked, many known AC-3 decoders begin processing

each coded channel. First, the exponents for the given channel are unpacked from the

input frame. A bit allocation calculation is then typically performed, which takes the

30 exponents and bit allocation parameters and computes the word sizes for each packed

mantissa. The mantissas are then typically unpacked from the input frame. The mantissas

are scaled to provide appropriate dynamic range control, and if needed, to undo coupling

15

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

operation, and then denormalized by the exponents. Finally, an inverse transform is

computed to determine pre-overlap-add data, data in what is called the “window domain,”

and the results are downmixed into the appropriate downmix buffers for subsequent

output processing.

5 [0077] In some implementations, the exponents for the individual channel are unpacked

into a 256-sample long buffer, called the "MDCT buffer." These exponents are then

grouped into as many as 50 bands for bit allocation purposes. The number of exponents in

each band increases toward higher audio frequencies, roughly following a logarithmic

division that models psychoacoustic critical bands.

1 o [0078] For each of these bit allocation bands, the exponents and bit allocation parameters

are combined to generate a mantissa word size for each mantissa in that band. These word

sizes are stored in a 24-sample long band buffer, with the widest bit allocation band made

up of 24 frequency bins. Once the word sizes have been computed, the corresponding

mantissas are unpacked from the input frame and stored in-place back into the band

15 buffer. These mantissas are scaled and denormalized by the corresponding exponent, and

written, e.g., written in-place back into the MDCT buffer. After all bands have been

processed, and all mantissas unpacked, any remaining locations in the MDCT buffer are

typically written with zeros.

[0079] An inverse transform is performed, e.g., performed in-place in the MDCT buffer.

20 The output of this processing, the window domain data, can then be downmixed into the

appropriate downmix buffers according to downmix parameters, determined according to

metadata, e.g., fetched from pre-defined data according to metadata.

[0080] Once the input processing is completed and the downmix buffers have been fully

generated with window domain downmixed data, the decoder can perform the output

25 processing. For each output channel, a downmix buffer and its corresponding 128-sample

long half-block delay buffer are windowed and combined to produce 256 PCM output

samples. In a hardware sound system that includes a decoder and one or more DACs,

these samples are rounded to the DAC word width and copied to the output buffer. Once

this is done, half of the downmix buffer is then copied to its corresponding delay buffer,

30 providing the 50% overlap information necessary for proper reconstruction of the next

audio block.

16

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US2011/023533

E-AC-3 decoding

[0081] Particular embodiments of the present invention include a method of operating an

audio decoder to decode audio data that includes a number, denoted N.n of channels of

encoded audio data, e.g., an E-AC-3 audio decoder to decode E-AC-3 encoded audio data

5 to form decoded audio data that includes M.m channels of decoded audio, n=0 or 1, m=0

or 1, and M>1. n=l indicates an input LFE channel, m=l indicates an output LFE

channel. M<N indicates downmixing, M>N indicates upmixing.

[0082] The method includes accepting the audio data that includes N.n channels of

encoded audio data, encoding by the encoding method, e.g., by an encoding method that

10 includes transforming using an overlapped-transform N channels of digital audio data,

forming and packing frequency domain exponent and mantissa data, and forming and

packing metadata related to the frequency domain exponent and mantissa data, the

metadata optionally including metadata related to transient pre-noise processing, e.g., by

an E-AC-3 encoding method.

15 [0083] Some embodiments described herein are designed to accept encoded audio data

encoded according to the E-AC-3 standard or according to a standard backwards

compatible with the E-AC-3 standard, and may include more than 5 coded main channels.

[0084] As will be described in more detail below, the method includes decoding the

accepted audio data, decoding including: unpacking the metadata and unpacking and

20 decoding the frequency domain exponent and mantissa data; determining transform

coefficients from the unpacked and decoded frequency domain exponent and mantissa

data; inverse trans forming the frequency domain data; applying windowing and overlap

add to determine sampled audio data; applying any required transient pre-noise

processing decoding according to the metadata related to transient pre-noise processing;

25 and, in the case M<N, downmixing according to downmixing data. The downmixing

includes testing whether the downmixing data are changed from previously used

downmixing data, and, if changed, applying cross-fading to determine cross-faded

downmixing data and downmixing according to the cross-faded downmixing data, and if

unchanged, directly downmixing according to the downmixing data.

30 [0085] In some embodiments of the present invention, the decoder uses at least one x86

processor that executes streaming single-instruction- multiple-data (SIMD) extensions

17

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

(SSE) instructions, including vector instructions. In such embodiments, the downmixing

includes running vector instructions on at least one of the one or more x86 processors.

[0086] In some embodiments of the present invention, the decoding method for E-AC-3

audio, which might be AC-3 audio, is partitioned into modules of operations that can be

5 applied more than once, i.e., instantiated more than once in different decoder

implementations. In the case of a method that includes decoding, the decoding is

partitioned into a set of front-end decode (FED) operations, and a set of back-end decode

(BED) operations. As will be detailed below, the front-end decode operations including

unpacking and decoding frequency domain exponent and mantissa data of a frame of an

10 AC-3 or E-AC-3 bitstream into unpacked and decoded frequency domain exponent and

mantissa data for the frame, and the frame’s accompanying metadata. The back-end

decode operations include determining of the transform coefficients, inverse transforming

the determined transform coefficients, applying windowing and overlap-add operations,

applying any required transient pre-noise processing decoding, and applying downmixing

15 in the case there are fewer output channels than coded channels in the bitstream.

[0087] Some embodiments of the present invention include a computer-readable storage

medium storing instructions that when executed by one or more processors of a

processing system cause the processing system to cany out decoding of audio data that

includes N.n channels of encoded audio data, to form decoded audio data that includes

20 M.m channels of decoded audio, M>1. In today’s standards, n=0 or 1 and m=0 or 1, but

the invention is not so limited. The instructions include instructions that when executed

cause accepting the audio data that includes N.n channels of encoded audio data encoded

by an encoding method, e.g., AC-3 or E-AC-3. The instructions further include

instructions that when executed cause decoding the accepted audio data.

25 [0088] In some such embodiments, the accepted audio data are in the form of an AC-3 or

E-AC-3 bitstream of frames of coded data. The instructions that when executed cause

decoding the accepted audio data are partitioned into a set of reusable modules of

instructions, including a front-end decode (FED) module, and a back-end decode (BED)

module. The front-end decode module including instructions that when executed cause

30 carrying out the unpacking and decoding the frequency domain exponent and mantissa

data of a frame of the bitstream into unpacked and decoded frequency domain exponent

and mantissa data for the frame, and the frame’s accompanying metadata. The back-end

18

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

decode module including instructions that when executed cause determining of the

transform coefficients, inverse transforming, applying windowing and overlap-add

operations, applying any required transient pre-noise processing decoding, and applying

downmixing in the case that there are fewer output channels than input coded channels.

5 [0089] FIGS. 2A-2D show in simplified block diagram forms some different decoder

configurations that can advantageously use one or more common modules. FIG. 2A

shows a simplified block diagram of an example E-AC-3 decoder 200 for AC-3 or E-AC-

3 coded 5.1 audio. Of course the use of the term “block” when referring to blocks in a

block diagram is not the same as a block of audio data, the latter referring to an amount of

10 audio data. Decoder 200 includes a front-end decode (FED) module 201 that is to accept

AC-3 or E-AC-3 frames and to carry out, frame by frame, unpacking of the frame’s

metadata and decoding of the frame’s audio data to frequency domain exponent and

mantissa data. Decoder 200 also includes a back-end decode (BED) module 203 that

accepts the frequency domain exponent and mantissa data from the front-end decode

15 module 201 and decodes it to up to 5.1 channels of PCM audio data.

[0090] The decomposition of the decoder into a front-end decode module and a back-end

decode module is a design choice, not a necessary partitioning. Such partitioning does

provide benefits of having common modules in several alternate configurations. The FED

module can be common to such alternate configurations, and many configurations have in

20 common the unpacking of the frame’s metadata and decoding of the frame’s audio data to

frequency domain exponent and mantissa data as carried out by an FED module.

[0091] As one example of an alternate configuration, FIG. 2B shows a simplified block

diagram of an E-AC-3 decoder/converter 210 for E-AC-3 coded 5.1 audio that both

decodes AC-3 or E-AC-3 coded 5.1 audio, and also converts an E-AC-3 coded frame of

25 up to 5.1 channels of audio to an AC-3 coded frame of up to 5.1 channels.

Decoder/converter 210 includes a front-end decode (FED) module 201 that accepts AC-3

or E-AC-3 frames and to carry out, frame by frame, unpacking of the frame’s metadata

and decoding of the frame’s audio data to frequency domain exponent and mantissa data.

Decoder/converter 210 also includes a back-end decode (BED) module 203 that is the

30 same as or similar to the BED module 203 of decoder 200, and that accepts the frequency

domain exponent and mantissa data from the front-end decode module 201 and decodes it

to up to 5.1 channels of PCM audio data. Decoder/converter 210 also includes a metadata

19

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

converter module 205 that converts metadata and a back-end encode module 207 that

accepts the frequency domain exponent and mantissa data from the front-end decode

module 201 and to encode the data as an AC-3 frame of up to 5.1 channels of audio data

at no more than the maximum data rate of 640 kbps possible with AC-3.

5 [0092] As one example of an alternate configuration, FIG. 2C shows a simplified block

diagram of an E-AC-3 decoder that decodes an AC-3 frame of up to 5.1 channels of

coded audio and also to decode an E-AC-3 coded frame of up to 7.1 channels of audio.

Decoder 220 includes a frame information analyze module 221 that unpacks the BSI data

and identifies the frames and frame types and provides the frames to appropriate front-

10 end decoder elements. In a typical implementation that includes one or more processors

and memory in which instructions are stored that when executed cause carrying out of the

functionality of the modules, multiple instantiations of a front-end decode module, and

multiple instantiations of a back-end decode module may be operating. In some

embodiments of an E-AC-3 decoder, the BSI unpacking functionality is separated from

15 the front-end decode module to look at the BSI data. That provides for common modules

to be used in various alternate implementations. FIG. 2C shows a simplified block

diagram of a decoder with such architecture suitable for up to 7.1 channels of audio data.

FIG. 2D shows a simplified block diagram of a 5.1 decoder 240 with such architecture.

Decoder 240 includes a frame information analyze module 241, a front-end decode

20 module 243, and a back-end decode module 245. These FED and BED modules can be

similar in structure to FED and BED modules used in the architecture of FIG. 2C.

[0093] Returning to FIG. 2C, the frame information analyze module 221 provides the

data of an independent AC-3/E-AC3 coded frame of up to 5.1 channels to a front-end

decode module 223 that accepts AC-3 or E-AC-3 frames and to carry out, frame by

25 frame, unpacking of the frame’s metadata and decoding of the frame’s audio data to

frequency domain exponent and mantissa data. The frequency domain exponent and

mantissa data are accepted by a back-end decode module 225 that is the same as or

similar to the BED module 203 of decoder 200, and that accept the frequency domain

exponent and mantissa data from the front-end decode module 223 and to decode the data

30 to up to 5.1 channels of PCM audio data. Any dependent AC-3/E-AC3 coded frame of

additional channel data are provided to another front-end decode module 227 that is

similar to the other FED module, and so unpacks the frame’s metadata and decode the

frame’s audio data to frequency domain exponent and mantissa data. A back-end decode

20

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

module 229 that accepts the data from FED module 227 and to decode the data to PCM

audio data of any additional channels. A PCM channel mapper module 231 is used to

combine the decoded data from the respective BED modules to provide up to 7.1

channels of PCM data.

5 [0094] If there are more than 5 coded main channels, i.e., case N>5, e.g., there are 7.1

coded channels, the coded bitstream includes an independent frame of up to 5.1 coded

channels and at least one dependent frame of coded data. In software embodiments for

such a case, e.g., embodiments comprising a computer-readable medium that stores

instructions for execution, the instructions are arranged as a plurality of 5.1 channel

10 decode modules, each 5.1 channel decode module including a respective instantiation of a

front-end decode module and a respective instantiation of a back-end decode module. The

plurality of 5.1 channel decode modules includes a first 5.1 channel decode module that

when executed causes decoding of the independent frame, and one or more other channel

decode modules for each respective dependent frame. In some such embodiments, the

15 instructions include a frame information analyze module of instructions that when

executed causes unpacking the Bit Stream Information (BSI) field front each frame to

identify the frames and frame types and provides the identified frames to the appropriate

front-end decoder module instantiation, and a channel mapper module of instructions that

when executed and in the case N>5 cause combining the decoded data from respective

20 back-end decode modules to form the N main channels of decoded data.

A method for operating an AC-3/E-AC-3 dual decoder converter.

[0095] One embodiment of the invention is in the form of a dual decoder converter

(DDC) that decodes two AC-3/E-AC-3 input bitstreams, designated as “main” and

“associated,” with up to 5.1 channels each, to PCM audio, and in the case of conversion,

25 converts the main audio bitstream from E-AC-3 to AC-3, and in the case of decoding,

decodes the main bitstream and if present associated bitstream. The dual decoder

converter optionally mixes the two PCM outputs using mixing metadata extracted from

the associated audio bitstream.

[0096] One embodiment of the dual decoder converter carries out a method of operating a

30 decoder to carry out the processes included in decoding and/or converting the up to two

AC-3/E-AC-3 input bitstreams. Another embodiment is in the form of a tangible storage

medium having instructions, e.g., software instructions thereon, that when executed by

21

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

one or more processors of a processing system, causes the processing system to carry out

the processes included in decoding and/or converting the up to two AC-3/E-AC-3 input

bitstreams.

5 subcomponents, some of which include common subcomponents. The modules are:

[0097] One embodiment of the AC-3/E-AC-3 dual decoder converter has six

[0098] Decoder-converter: The decoder-converter is configured when executed to

decode an AC-3/E-AC-3 input bitstream (up to 5.1 channels) to PCM audio,

and/or to convert the input bitstream from E-AC-3 to AC-3. The decoder

converter has three main subcomponents, and can implement an embodiment

10 210 shown in FIG. 2B above. The main subcomponents are:

[0099] Front-end decode: The FED module is configured, when executed, to

decode a frame of an AC-3/E-AC-3 bitstream into raw frequency domain

audio data and its accompanying metadata.

[00100] Back-end decode: The BED is module is configured, when executed, to

15 complete the rest of the decode process that was initiated by the FED

module. In particular, the BED module decodes the audio data (in mantissa

and exponent format) into PCM audio data.

[00101] Back-end encode: The back-end encode module is configured, when

executed to encode an AC-3 frame using six blocks of audio data from the

20 FED. The back-end encode module is also configured, when executed, to

synchronize, resolve and convert E-AC-3 metadata to Dolby Digital

metadata using an included metadata converter module.

[00102] 5.1 Decoder: The 5.1 decoder module is configured when executed to decode an

AC-3/E-AC-3 input bitstream (up to 5.1 channels) to PCMi audio. The 5.1

25 decoder also optionally outputs mixing metadata for use by an external

application to mix two AC-3/E-AC-3 bitstreams. The decoder module includes

two main subcomponents: an FED module as described herein above and a

BED module as described herein above. A block diagram of an example 5.1

decoder is shown in FIG. 2D.

22

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00103] Frame information: The frame information module is configured when executed

to parse an AC-3/E-AC-3 frame and unpack its bitstream information. A CRC

check is performed on the frame as part of the unpacking process.

[00104] Buffer descriptors: The buffer descriptors module contains AC-3, E-AC-3 and

5 PCM buffer descriptions and functions for buffer operations.

[00105] Sample rate converter: The sample rate converter module is optional, and

configured, when executed to upsample PCM audio by a factor of two.

[00106] External mixer: The external mixer module is optional, and configured when

executed to mix a main audio program and an associated audio program to a

10 single output audio program using mixing metadata supplied in the associated

audio program.

Front-end decode module design

[00107] The front-end decode module decodes data according to AC-3’s methods, and

according to E-AC-3 additional decoding aspects, including decoding AHT data for

15 stationary signals, E-AC-3’s enhanced channel coupling, and spectral extension.

[00108] In the case of an embodiment in the form of a tangible storage medium, the front

end decode module comprises software instructions stored in a tangible storage medium

that when executed by one or more processors of a processing system, cause the actions

described in the details provided herein for the operation of the front-end decode module.

20 In a hardware implementation, the front-end decode module includes elements that are

configured in operation to carry out the actions described in the details provided herein

for the operation of the front-end decode module.

[00109] In AC-3 decoding, block-by-block decoding is possible. With E-AC-3, the first

audio block—audio block 0 of a frame includes the AHT mantissas of all 6 blocks.

25 Hence, block-by-block decoding typically is not used, but rather several blocks are

processed at once. The processing of actual data, however, is of course carried out on

each block.

[00110] In one embodiment, in order to use a uniform method of decoding/architecture of

a decoder regardless of whether the AHT is used, the FED module carries out, channel-

30 by-channel, two passes. A first pass includes unpacking metadata block-by-block and

saving pointers to where the packed exponent and mantissa data are stored, and a second

23

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

pass includes using the saved pointers to the packed exponents and mantissas, and

unpacking and decoding exponent and mantissa data channel-by-channel.

[00111] FIG. 3 shows a simplified block diagram of one embodiment of a front-end

decode module, e.g., implemented as a set of instructions stored in a memory that when

5 executed causes FED processing to be carried out. FIG. 3 also shows pseudocode for

instructions for a first pass of two-pass front-end decode module 300, as well as

pseudocode for instructions for the second pass of two-pass front-end decode module.

The FED module includes the following modules, each including instructions, some such

instructions being definitional in that they define structures and parameters:

10 [00112] Channel: The channel module defines structures for representing an audio

channel in memory and provides instructions to unpack and decode an audio

channel from an AC-3 or E-AC-3 bitstream.

[00113] Bit allocation: The bit allocation module provides instructions to calculate the

masking curve and calculate the bit allocation for coded data.

15 [00114] Bitstream operations: The bitstream operations module provides instructions for

unpacking data from an AC-3 or E-AC-3 bitstream.

[00115] Exponents: The exponents module defines structures for representing exponents

in memory and provides instructions configured when executed to unpack and

decode exponents from an AC-3 or E-AC-3 bitstream.

20 [00116] Exponents and mantissas: The exponents and mantissas module defines

structures for representing exponents and mantissas in memory and provides

instructions configured when executed to unpack and decode exponents and

mantissas from an AC-3 or E-AC-3 bitstream.

[00117] Matrixing: The matrixing module provides instructions configured when

25 executed to support dematrixing of matrixed channels.

[00118] Auxiliary data: The auxiliary data module defines auxiliary data structures used

in the FED module to carry out FED processing.

[00119] Mantissas: The mantissas module defines structures for representing mantissas in

memory and provides instructions configured when executed to unpack and

30 decode mantissas from an AC-3 or E-AC-3 bitstream.

24

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00120] Adaptive hybrid transform: The AHT module provides instractions configured

when executed to unpack and decode adaptive hybrid transform data from an

E-AC-3 bitstream.

[00121] Audio frame: The audio frame module defines structures for representing an

5 audio frame in memory and provides instructions configured when executed to

unpack and decode an audio frame from an AC-3 or E-AC-3 bitstream.

[00122] Enhanced coupling: The enhanced coupling module defines structures for

representing an enhanced coupling channel in memory and provides

instructions configured when executed to unpack and decode an enhanced

1 o coupling channel from an AC-3 or E-AC-3 bitstream. Enhanced coupling

extends traditional coupling in an E-AC-3 bitstream by providing phase and

chaos information.

[00123] Audio block: The audio block module defines structures for representing an audio

block in memory and provides instructions configured when executed to

15 unpack and decode an audio block from an AC-3 or E-AC-3 bitstream.

[00124] Spectral extension: The spectral extension module provides support for spectral

extension decoding in an E-AC-3 bitstream.

[00125] Coupling: The coupling module defines structures for representing a coupling

channel in memory and provides instructions configured when executed to

20 unpack and decode a coupling channel from an AC-3 or E-AC-3 bitstream.

[00126] FIG. 4 shows a simplified data flow diagram for the operation of one embodiment

of the front-end decode module 300 of FIG. 3 that describes how the pseudocode and sub

modules elements shown in FIG. 3 cooperate to cany out the functions of a front-end

decode module. By a functional element is meant an element that carries out a processing

25 function. Each such element may be a hardware element, or a processing system and a

storage medium that includes instructions that when executed cany out the function. A

bitstream unpacking functional element 403 accepts an AC-3/E-AC-3 frame and

generates bit allocation parameters for a standard and/or AHT bit allocation functional

element 405 that produces further data for the bitstream unpacking to ultimately generate

30 exponent and mantissa data for an included standard/enhanced decoupling functional

element 407. The functional element 407 generates exponent and mantissa data for an

25

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

included rematrixing functional element 409 to carry out any needed rematrixing. The

functional element 409 generates exponent and mantissa data for an included spectral

extension decoding functional element 411 to cany out any needed spectral extension.

Functional elements 407 to 411 use data obtained by the unpacking operation of the

5 functional element 403. The result of the front-end decoding is exponent and mantissa

data as well as additional unpacked audio frame parameters and audio block parameters.

[00127] Referring in more detail to the first pass and second pass pseudocode shown in

FIG. 3, the first pass instructions are configured, when executed to unpack metadata from

an AC-3/E-AC-3 frame. In particular, the first pass includes unpacking the BSI

10 information, and unpacking the audio frame information. For each block, starting with

block 0 to block 5 (for 6 blocks per frame), the fixed data are unpacked, and for each

channel, a pointer to the packed exponents in the bitstream is saved, exponents are

unpacked, and the position in the bitstream at which the packed mantissas reside is saved.

Bit allocation is computed, and, based on bit allocation, mantissas may be skipped.

15 [00128] The second pass instructions are configured, when executed, to decode the audio

data from a frame to form mantissa and exponent data. For each block starting with block

0, unpacking includes loading the saved pointer to packed exponents, and unpacking the

exponents pointed thereby, computing bit allocation, loading the saved pointer to packed

mantissas, and unpacking the mantissas pointed thereby. Decoding includes performing

20 standard and enhanced decoupling and generating the spectral extension band(s), and, in

order to be independent from other modules, transferring the resulting data into a

memory, e.g., a memory external to the internal memory of the pass so that the resulting

data can be accessed by other modules, e.g., the BED module. This memory, for

convenience, is called the “external” memory, although it may, as would be clear to those

25 skilled in the art, be part of a single memory structure used for all modules.

[00129] In some embodiments, for exponent unpacking, the exponents unpacked during

first pass are not saved in order to minimize memory transfers. If AHT is in use for a

channel, the exponents are unpacked from block 0 and copied to the other five blocks,

numbered 1 to 5. If AHT is not in use for a channel, pointers to packed exponents are

30 saved. If the channel exponent strategy is to reuse exponents, the exponents are unpacked

again using the saved pointers.

26

WO 2011/102967 PCT7US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00130] In some embodiments, for coupling mantissa unpacking, if the AHT is used for

the coupling channel, all six blocks of AHT coupling channel mantissas are unpacked in

block 0, and dither regenerated for each channel that is a coupled channel to produce

uncorrelated dither. If the AHT is not used for the coupling channel, pointers to the

5 coupling mantissas are saved. These saved pointers are used to re-unpack the coupling

mantissas for each channel that is a coupled channel in a given block.

Back-end decode module design

[00131] The back-end decode (BED) module is operative to take frequency domain

exponent and mantissa data and to decode it to PCM audio data. The PCM audio data are

10 rendered based on user selected modes, dynamic range compression, and downmix

modes.

[00132] In some embodiments, in which the front-end decode module stores exponent and

mantissa data in a memory—we call it the external memory—separate from the working

memory of the front-end module, the BED module uses block-by-block frame processing

15 to minimize downmix and delay buffer requirements, and, to be compatible with the

output of the front-end module, uses transfers from the external memory to access

exponent and mantissa data to process.

[00133] In the case of an embodiment in the form of a tangible storage medium, the back

end decode module comprises software instructions stored in a tangible storage medium

20 that when executed by one or more processors of a processing system, cause the actions

described in the details provided herein for the operation of the back-end decode module.

In a hardware implementation, the back-end decode module includes elements that are

configured in operation to carry out the actions described in the details provided herein

for the operation of the back-end decode module.

25 [00134] FIG. 5A shows a simplified block diagram of one embodiment of a back-end

decode module 500 implemented as a set of instructions stored in a memory that when

executed causes BED processing to be earned out. FIG. 5A also shows pseudocode for

instructions for the back-end decode module 500. The BED module 500 includes the

following modules, each including instructions, some such instructions being definitional:

30 [00135] Dynamic range control: The dynamic range control module provides

instructions, that when executed cause carrying out functions for controlling

27

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

the dynamic range of the decoded signal, including applying gain ranging, and

applying dynamic range control.

[00136] Transform: The transform module provides instructions, that when executed

cause carrying out the inverse transforms, including carrying out an inverse

5 modified discrete cosine transform (IMDCT), which includes carrying out pre

rotation used for calculating the inverse DCT transform, carrying post-rotation

used for calculating the inverse DCT transform, and determining the inverse

fast Fourier transform (IFFT).

[00137J Transient pre-noise processing: The transient pre-noise processing module

10 provides instructions, that when executed cause carrying out transient pre

noise processing.

[00138] Window & overlap-add: The window and overlap-add module with delay buffer

provides instructions, that when executed cause carrying out the windowing,

and the overlap/add operation to reconstruct output samples from inverse

15 transformed samples.

[00139] Time domain (TD) downmix: The TD downmix module provides instructions,

that when executed cause carrying out downmixing in the time domain as

needed to a fewer number of channels.

[00140] FIG. 6 shows a simplified data flow diagram for the operation of one embodiment

20 of the back-end decode module 500 of FIG. 5A that describes how the code and sub

modules elements shown in FIG. 5A cooperate to carry out the functions of a back-end

decode module. A gain control functional element 603 accepts exponent and mantissa

data from the front-end decode module 300 and applies any required dynamic range

control, dialog normalization, and gain ranging according to metadata. The resulting

25 exponent and mantissa data are accepted by a denormalize mantissa by exponents

functional element 605 that generates the transform coefficients for inverse transforming.

An inverse transform functional element 607 applies the IMDCT to the transform

coefficients to generate time samples that are pre-windowing and overlap-add. Such pre

overlap-add time domain samples are called “pseudo-time domain” samples herein, and

30 these samples are in what is called herein the pseudo-time domain. These are accepted by

a windowing and overlap-add functional element 609 that generates PCM samples by

applying windowing and overlap-add operations to the pseudo-time domain samples. Any

28

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

transient pre-noise processing is applied by a transient pre-noise processing functional

element 611 according to metadata. If specified, e.g., in the metadata or otherwise, the

resulting post transient pre-noise processing PCM samples are downmixed to the number

M.m of output channels of PCM samples by a Downmixing functional element 613.

5 [00141] Referring again to FIG. 5A, the pseudocode for the BED module processing

includes, for each block of data, transferring the mantissa and exponent data for blocks of

a channel from the external memory, and, for each channel: applying any required

dynamic range control, dialog normalization, and gain ranging according to metadata;

denormalizing mantissas by exponents to generate the transform coefficients for inverse

10 transforming; computing an IMDCT to the transform coefficients to generate pseudo-time

domain samples; applying windowing and overlap-add operations to the pseudo-time

domain samples; applying any transient pre-noise processing according to metadata; and,

if required, time domain downmixing to the number M.m of output channels of PCM

samples.

15 [00142] Embodiments of decoding shown in FIG. 5 A include carrying out such gain

adjustments as applying dialogue normalization offsets according to metadata, and

applying dynamic range control gain factors according to metadata. Performing such gain

adjustments at the stage that data are provided in mantissa and exponent form in the

frequency domain is advantageous. The gain changes may vary over time, and such gain

20 changes made in the frequency domain results in smooth cross-fades once the inverse

transform and windowing/overlap-add operations have occurred.

Transient Pre-Noise Processing

[00143] E-AC-3 encoding and decoding were designed to operate and provide better audio

quality at lower data rates than in AC-3. At lower data rates the audio quality of coded

25 audio can be negatively impacted, especially for relatively difficult-to-code, transient

material. This impact on audio quality is primarily due to the limited number of data bits

available to accurately code these types of signals. Coding artifacts of transients are

exhibited as a reduction in the definition of the transient signal as well as the “transient

pre-noise” artifact which smears audible noise throughout the encoding window due to

30 coding quantization errors.

[00144] As described above and in FIGS. 5 and 6, the BED provides for transient pre

noise processing. E-AC-3 encoding includes transient pre-noise processing coding, to

29

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

reduce transient pre-noise artifacts that may be introduced when audio containing

transients is encoded by replacing the appropriate audio segment with audio that is

synthesized using the audio located prior to the transient pre-noise. The audio is

processed using time scaling synthesis so that its duration is increased such that it is of

5 appropriate length to replace the audio containing the transient pre-noise. The audio

synthesis buffer is analyzed using audio scene analysis and maximum similarity

processing and then time scaled such that its duration is increased enough to replace the

audio which contains the transient pre-noise. The synthesized audio of increased length is

used to replace the transient pre- noise and is cross-faded into the existing transient pre-

1 o noise just prior to the location of the transient to ensure a smooth transition from the

synthesized audio into the originally coded audio data. By using transient pre-noise

processing, the length of the transient pre-noise can be dramatically reduced or removed,

even for the case when block-switching is disabled.

[00145] In one E-AC-3 encoder embodiment, time scaling synthesis analysis and

15 processing for the transient pre-noise processing tool is performed on time domain data to

determine metadata information, e.g., including time scaling parameters. The metadata

information is accepted by the decoder along with the encoded bitstream. The transmitted

transient pre-noise metadata are used to perform time domain processing on the decoded

audio to reduce or remove the transient pre-noise introduced by low bit-rate audio coding

20 at low data rates.

[00146] The E-AC-3 encoder performs time scaling synthesis analysis and determines time

scaling parameters, based on the audio content, for each detected transient. The time

scaling parameters are transmitted as additional metadata, along with the encoded audio

data.

25 [00147] At an E-AC-3 decoder, the optimal time scaling parameters provided in E-AC-3

metadata are accepted as part of accepted E-AC-3 metadata for use in transient pre-noise

processing. The decoder performs audio buffer splicing and cross- fading using the

transmitted time scaling parameters obtained from the E-AC-3 metadata.

[00148] By using the optimal time scaling information and applying it with the appropriate

30 cross-fading processing, the transient pre-noise introduced by low-bit rate audio coding

can be dramatically reduced or removed in the decoding.

30

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00149] Thus, transient pre-noise processing overwrites pre-noise with a segment of audio

that most closely resembles the original content. The transient pre-noise processing

instructions, when executed, maintain a four-block delay buffer for use in copy over. The

transient pre-noise processing instructions, when executed, in the case where overwriting

5 occurs, cause performing a cross fade in and out on overwritten pre-noise.

Downmixing

[00150] Denote by N.n the number of channels encoded in the E-AC-3 bitstream, where N

is the number of main channels, and n=0 or 1 is the number of LFE channels. Often, it is

desired to downmix the N main channels to a smaller number, denoted M, of output main

10 channels. Downmixing from N to M channels, M<N is supported by embodiments of the

present invention. Upmixing also is possible, in which case M>N.

[00151] Thus, in the most general implementation, audio decoder embodiments are

operative to decode audio data that includes N.n channels of encoded audio data to

decode audio data that includes M.m channels of decoded audio, and M>1, with n, m

15 indicating the number of EFE channels in the input, output respectively. Downmixing is

the case M<N and according to a set of downmixing coefficients is included in the case

M<N.

Frequency domain vs. time domain downmixing.

[00152] Downmixing can be done entirely in the frequency domain, prior to the inverse

20 transform, in the time domain after the inverse transform but, in the case of overlap-add

block processing prior to the windowing and overlap-add operations, or in the time

domain after the windowing and overlap-add operation.

[00153] Frequency domain (FD) downmixing is much more efficient than time domain

downmixing. Its efficiency stems, e.g., from the fact that any processing steps subsequent

25 to the downmixing step are only carried out on the remaining number of channels, which

is generally lower after the downmixing. Thus, the computational complexity of all

processing steps subsequent to the downmixing step is reduced by at least the ratio of

input channels to output channels.

[00154] As an example, consider a 5.0 channel to stereo downmix. In this case, the

30 computational complexity of any subsequent processing step will be reduced by

approximately a factor of 5/2 - 2.5.

31

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00155] Time domain (TD) downmixing is used in typical E-AC-3 decoders and in the

embodiments described above and illustrated with FIGS. 5A and 6. There are three main

reasons that typical E-AC-3 decoders use time domain downmixing:

[00156] Channels with different block types

5 Depending on the to-be-encoded audio content, an E-AC-3 encoder can

choose between two different block types - short block and long block - to

segment the audio data. Harmonic, slowly changing audio data is typically

segmented and encoded using long blocks, whereas transient signals are

segmented and encoded in short blocks. As a result, the frequency domain

10 representation of short blocks and long blocks is inherently different and

cannot be combined in a frequency domain downmixing operation.

[00157] Only after the block type specific encoding steps are undone in the decoder,

the channels can be mixed together. Thus, in the case of block-switched

transforms, a different partial inverse transform process is used, and the results

15 of the two different transforms cannot be directly combined until just prior to

the window stage.

[00158] Methods are known, however, for first converting the short-length transform

data to the longer frequency domain data, in which case, the downmixing can

be carried out in the frequency domain. Nevertheless, in most known decoder

20 implementations, downmixing is earned out post inverse transforming

according to downmixing coefficients.

[00159] Up-mix

If the number of output main channels is higher than the number of input main

channels, M>N, a time domain mixing approach is beneficial, as this moves

25 the up-mixing step towards the end of the processing, reducing the number of

channels in processing.

[00160] TPNP

Blocks that are subject to transient pre-noise processing (TPNP) may not be

downmixed in the frequency domain, because TPNP operates in the time

30 domain. TPNP requires a history of up to four blocks of PCM data (1024

samples), which must be present for the channel in which TPNP is applied.

32

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

Switching to time domain downmix is hence necessary to fill up the PCM data

history and to perform the pre-noise substitution.

Hybrid downmixing using both frequency domain and time domain downmixing

[00161] The inventors recognize that channels in most coded audio signals use the same

5 block type for more than 90% of the time. That means that the more efficient frequency

domain downmixing would work for more than 90% of the data in typical coded audio,

assuming there is no TPNP. The remaining 10% or less would require time domain

downmixing as occurs in typical prior art E-AC-3 decoders.

[00162] Embodiments of the present invention include downmix method selection logic to

1 o determine block-by-block which downmixing method to apply, and both time domain

downmixing logic, and frequency domain downmixing logic to apply the particular

downmixing method as appropriate. Thus a method embodiment includes determining

block by block whether to apply frequency domain downmixing or time domain

downmixing. The downmix method selection logic operates to determine whether to

15 apply frequency domain downmixing or time domain downmixing, and includes

determining if there is any transient pre-noise processing, and determining if any of the N

channels have a different block type. The selection logic determines that frequency

domain downmixing is to be applied only for a block that has the same block type in the

N channels, no transient pre-noise processing, and M<N.

20 [00163] FIG. 5B shows a simplified block diagram of one embodiments of a back-end

decode module 520 implemented as a set of instructions stored in a memory that when

executed causes BED processing to be carried out. FIG. 5B also shows pseudocode for

instructions for the back-end decode module 520. The BED module 520 includes the

modules shown in FIG. 5A that only use time domain downmixing, and the following

25 additional modules, each including instructions, some such instructions being

definitional:

[00164] Downmix method selection module that checks for (i) change of block type; (ii)

whether there is no true downmixing (M<N), but rather upmixing, and (iii)

whether the block is subject to TPNP, and if none of these is true, selecting

30 frequency domain downmixing. This module carries out determining block by

block whether to apply frequency domain downmixing or time domain

downmixing.

33

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00165] Frequency domain downmix module that carries out, after denormalization of

the mantissas by exponents, frequency domain downmixing. Note that the

Frequency domain downmix module also includes a time domain to frequency

domain transition logic module that checks whether the preceding block used

5 time domain downmix, in which case the block is handled differently as

described in more detail below. In addition, the transition logic module also

deals with processing steps associated with certain, non-regularly reoccurring

events, e.g. program changes such as fading out channels.

[00166] FD to TD downmix transition logic module that checks whether the preceding

10 block used frequency domain downmix, in which case the block is handled

differently as described in more detail below. In addition, the transition logic

module also deals with processing steps associated with certain, non-

regularly reoccurring events, e.g. program changes such as fading out

channels.

15 [00167] Furthermore, the modules that are in FIG. 5A might behave differently in

embodiments that include hybrid downmixing, i.e., both FD and TD downmixing

depending on one or more conditions for the current block.

[00168] Referring to the pseudocode of FIG. 5B, some embodiments of the back end

decoding method include, after transferring the data of a frame of blocks from external

20 memory, ascertaining whether FD downmixing or TD downmixing. For FD downmixing,

for each channel, the method includes (i) applying dynamic range control and dialog

normalization, but, as discussed below, disabling gain ranging; (ii) denormalizing

mantissas by exponents; (iii) carrying out FD downmixing; and (iv) ascertaining if there

are fading out channels or if the previous block was downmixed by time domain

25 downmixing, in which case, the processing is carried out differently as described in more

detail below. For the case of TD downmixing, and also for FD downmixed data, the

process includes for each channel: (i) processing differently blocks to be TD downmixed

in the case the previous block was FD downmixed and also handling any program

changes; (ii) determining the inverse transform (iii). Carrying out window overlap add;

30 and, in the case of TD downmixing, (iv) performing any TPNP and downmixing to the

appropriate output channel.

34

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US20U/023533

[00169] FIG. 7 shows a simple data flow diagram. Block 701 corresponds to the downmix

method selection logic that tests for the three conditions: block type change, TPNP, or

upmixing, and any condition is true, directs the dataflow to a TD downmixing branch 721

that includes in 723 FD downmix transition logic to process differently a block that

5 occurs immediately following a block processed by FD downmixing, program change

processing, and in 725 denormalizing the mantissa by exponents. The dataflow after

block 721 is processed by common processing block 731. If the downmix method

selection logic block 701 tests determines the block is for FD downmixing the dataflow

branches to FD downmixing processing 711 that includes a frequency domain downmix

1 o process 713 that disables gain ranging, and for each channel, denormalizes the mantissas

by exponents and carries out FD downmixing, and a TD downmix transition logic block

715 to determine whether the previous block was processed by TD downmixing, and to

process such a block differently, and also to detect and handle any program changes, such

as fading out channels. The dataflow after the TD downmix transition block 715 is to the

15 same common processing block 731.

[00170] The common processing block 731 includes inverse transforming and any further

time domain processing. The further time domain processing includes undoing gain

ranging, and windowing and overlap-and processing. If the block is from the TD

downmixing block 721, the further time domain processing further includes any TPNP

20 processing and time domain downmixing.

[00171] FIG. 8 shows a flowchart of one embodiment of processing for a back-end decode

module such as the one shown in FIG. 7. The flowchart it partitioned as follows, with the

same reference numerals used as in FIG. 7 for similar respective functional dataflow

blocks: a downmix method selection logic section 701 in which a logical flag FD_dmx is

25 used to indicate when 1 that frequency domain downmixing is used for the block; a TD

downmixing logic section 721 that includes a FD downmix transition logic and program

change logic section 723 to process differently a block that occurs immediately following

a block processed by FD downmixing and carry out program change processing, and a

section to denormalize the mantissa by exponents for each input channel. The dataflow

30 after block 721 is processed by a common processing section 731. If the downmix

method selection logic block 701 determines the block is for FD downmixing, the

dataflow branches to FD downmixing processing section 711 that includes a frequency

domain downmix process that disables gain ranging, and for each channel, denormalizes

35

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

the mantissas by exponents and carries out FD downmixing, and a TD downmix

transition logic section 715 to determine for each channel of the previous block whether

there is a channel fading out or whether the previous block was processed by TD

downmixing, and to process such a block differently. The dataflow after the TD downmix

5 transition section 715 is to the same common processing logic section 731. The common

processing logic section 731 includes for each channel inverse transforming and any

further time domain processing. The further time domain processing includes undoing

gain ranging, and windowing and overlap-add processing. If FD_dmx is 0, indicating TD

downmixing, the further time domain processing in 731 also includes any TPNP

1 o processing and time domain downmixing.

[00172] Note that after the FD downmixing, in the TD downmix transition logic section

715, in 817, the number of input channels N is set to be the same as the number of output

channels M, so that the remainder of the processing, e.g., the processing in common

processing logic section 731 is carried out only on the downmixed data. This reduces the

15 amount of computation. Of course the time domain downmixing of the data from the

previous block when there is a transition from a block that was TD downmixed—such TD

downmixing shows as 819 in section 715—is earned out on all of those of the N input

channels that are involved in the downmixing.

Transition handling

20 [00173] In decoding, it is necessary to have smooth transitions between audio blocks. E-

AC-3 and many other encoding methods use a lapped transform, e.g., a 50% overlapping

MDCT. Thus, when processing a current block, there is 50% overlap with the previous

block, and furthermore, there will be 50% overlap with the following block in the time

domain. Some embodiments of the present invention use overlap-add logic that includes

25 an overlap-add buffer. When processing a present block, the overlap-add buffer contains

data from the previous audio block. Because it is necessary to have smooth transitions

between audio blocks, logic is included to handle differently transitions from TD

downmixing to FD downmixing, and from FD downmixing to TD downmixing.

[00174] FIG. 9 shows an example of processing five blocks, denoted as block k, k+1,...,

30 k+4 of five channel audio including as is common: left, center, right, left surround and

right surround channels, denoted L, C, R, LS, and RS, respectively, and downmixing to a

stereo mix using the formula:

36

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00175] Left output denoted L'=aC+bL+cLS, and

Right output denoted R'= aC+bR+cRS.

[00176] FIG. 9 supposes that a non-overlapped transform is used. Each rectangle

represents the audio contents of a block. The horizontal axes from left to right represents

5 the blocks k, ..., k+4 and the vertical axes from top to bottom represents the decoding

progress of data. Suppose block k is processed by TD downmixing, blocks k+1 and k+2

processed by FD downmixing, and blocks k+3 and k+4 by TD downmixing. As can be

seen, for each of the TD downmixing blocks, the downmixing does not occur until after

the time domain downmixing towards the bottom after which the contents are the

10 downmixed L' and R' channels, while for the FD downmixed block, the left and right

channels in the frequency domain are already downmixed after frequency domain

downmixing, and the C, LS, and RS channel data are ignored. Since there is no overlap

between blocks, no special case handling is required when switching from TD

downmixing to ED downmixing or from FD downmixing to TD downmixing.

15 [00177] FIG. 10 describes the case of 50% overlapped transforms. Suppose overlap-add is

carried out by overlap-add decoding using an overlap-add buffer. In this diagram, when

the data block is shown as two triangles, the lower left triangle is data in the overlap-add

buffer from the previous block, while the top right triangle shows the data from the

current block.

20 Transition handling for a TD downmix to FD downmix transition

[00178] Consider block k+1 which is a FD downmixing block that immediately follows a

TD downmixing block. After the TD downmixing, the overlap-add buffer contains the L,

C, R, LS, and RS data from the last block which needs to be included for the present

block. Also included is the current block k+l’s contribution, already FD downmixed. In

25 order to properly determine the downmixed PCM data for output, both the present block’s

and the previous block’s data needs to be included. For this, the previous block’s data

needs to be flushed out and, since it is not yet downmixed, downmixed in the time

domain. The two contributions need to be added to determine the downmixed PCM data

for output. This processing is included in the TD downmix transition logic 715 of FIGS. 7

30 and 8, and by the code in the TD downmix transition logic included in the FD downmix

module shown in FIG. 5B. The processing carried out therein is summarized in the TD

37

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US20U/023533

downmix transition logic section 715 of FIG. 8. In more detail, transition handling for a

TD downmix to FD downmix transition includes:

[00179] · Flush out overlap buffers by feeding zeros into overlap-add logic and carrying

out windowing and overlap-add. Copy the flushed out output from the

5 overlap-add logic. This is the PCM data of the previous block of the particular

channel prior to downmixing. Overlap buffer now contains zeroes.

[00180] · Time domain downmix the PCM data from the overlap buffers to generate

PCM data of the TD downmix of the previous block.

[00181] · Frequency domain downmix of the new data from the current block. Carry out

1 o the inverse transform and feed new data after FD downmixing and inverse

transform into overlap-add logic. Cany out windowing and overlap-add, and

so forth with the new data to generate PCM data of the FD downmix of the

current block.

[00182] · Add the PCM data of the TD downmix and of the FD downmix to generate

15 PCM output.

[00183] Note that in an alternate embodiment, assuming there was no TPNP in the

previous block, the data in the overlap-add buffers are downmixed, then an overlap-add

operation is performed on the downmixed output channels. This avoids needing to carry

out an overlap-add operation for each previous block channel. Furthermore, as described

20 above for AC-3 decoding, when a downmix buffer and its corresponding 128-sample long

half-block delay buffer is used and windowed and combined to produce 256 PCM output

samples, the downmix operation is simpler because the delay buffer is only 128 samples

rather than 256. This aspect reduces the peak computational complexity that is inherent to

the transition processing. Therefore, in some embodiments, for a particular block that is

25 FD downmixed following a block whose data was TD downmixed, the transition

processing includes applying downmixing in the pseudo-time domain to the data of the

previous block that is to be overlapped with the decoded data of the particular block.

Transition handling for a FD downmix to TD downmix transition.

[00184] Consider block k+3 which is a TD downmixing block that immediately follows a

30 FD downmixing block k+2. Because the previous block was a FD domain downmixing

block, the overlap-add buffer at the earlier stages, e.g., prior to TD downmixing contain

38

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US2011/023533

the downmixed data in the left and right channels, and no data in the other channels. The

current block’s contributions are not downmixed until after the TD downmixing. In order

to properly determine the downmixed PCM data for output, both the present block’s and

the previous block’s data needs to be included. For this, the previous block’s data needs

5 to be flushed out. The present block’s data needs to be downmixed in the time domain

and added to the inverse transformed data that was flushed out to determine the

downmixed PCM data for output. This processing is included in the FD downmix

transition logic 723 of FIGS. 7 and 8, and by the code in the FD downmix transition logic

module shown in FIG. 5B. The processing carried out therein is summarized in the FD

10 downmix transition logic section 723 of FIG. 8. In more detail, assuming there are output

PCM buffers for each output channel, transition handling for a FD downmix to TD

downmix transition includes:

[00185] · Flush the overlap buffers by feeding zeros into overlap-add logic and carrying

out windowing and overlap-add. Copy the output into the output PCM buffer.

15 The data flushed out is the PCM data of the FD downmix of the previous

block. The overlap buffer now contains zeros.

[00186] · Cany out inverse transforming of the new data of the current block to generate

pre- downmixing data of the cunent block. Feed this new time domain data

(after transform) into the overlap-add logic.

20 [00187] · Cany out windowing and overlap-add, TPNP if any, and TD downmix with

the new data from the current block to generate PCM data of the TD downmix

of the cunent block

[00188] · Add the PCM data of the TD downmix and of the FD downmix to generate

PCM output.

25 [00189] In addition to transitions from time domain downmixing to frequency domain

downmixing, program changes are handled in the time domain downmix transition logic

and program change handler. Newly emerging channels are automatically included in the

downmix and hence do not need any special treatment. Channels which are no longer

present in the new program need to be faded out. This is carried out, as shown in section

30 715 in FIG. 8 for the FD downmixing case, by flushing out the overlap buffers of the

fading channels. Flushing out is carried out by feeding zeros into the overlap-add logic

and carrying out windowing and overlap-add.

39

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US2011/023533

[00190] Note that the flowchart shown and in some embodiments, the Frequency domain

downmix logic section 711 includes disabling the optional gain ranging feature for all

channels that are part of the frequency domain downmix. Channels may have different

gain ranging parameters which would induce different scaling of a channel’s spectral

5 coefficients, thus preventing a downmix.

[00191] In an alternative implementation, the FD downmixing logic section 711 is

modified such that the minimum of all gains is used to perform gain ranging for a

(frequency domain) downmixed channel.

Time domain downmixing with changing downmixing coefficients and need for
1 o explicit cross fading

[00192] Downmixing can create several problems. Different downmix equations are called

for in different circumstances, thus, the downmix coefficients may need to change

dynamically based on signal conditions. Metadata parameters are available that allow

tailoring the downmix coefficients for optimal results.

15 [00193] Thus, the downmixing coefficients can change over time. When there is a change

from a first set of downmixing coefficients to a second set of downmixing coefficients,

the data should be cross-faded from the first set to the second set.

[00194] When downmixing is carried out in the frequency domain, and also in many

decoder implementations, e.g., in a prior art AC-3 decoder, such as shown in FIG. 1, the

20 downmixing is carried out prior to the windowing and overlap-add operations. The

advantage of carrying out downmixing in the frequency domain, or in the time domain

prior to windowing and overlap-add is that there is inherent cross-fading as a result of the

overlap-add operations. Hence, in many known AC-3 decoders and decoding methods in

which the downmixing is earned out in the window domain after inverse transforming, or

25 in the frequency domain in the hybrid downmixing implementations, there is no explicit

cross-fade operation.

[00195] In the case of time domain downmixing and transient pre-noise processing

(TPNP), there would be a one block delay in transient pre-noise processing decoding

caused by program change issues, e.g., in a 7.1 decoder. Thus, in embodiments of the

30 present invention, when downmixing is carried out in the time domain and TPNP is used,

time domain downmixing is carried out after the windowing and overlap-add. The order

of processing in the case time domain downmixing is used, is: carrying out the inverse

40

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

transform, e.g., MDCT, carrying out windowing and overlap-add, carrying out any

transient pre-noise processing decoding (no delay), and then time domain downmixing.

[00196] In such a case, the time domain downmixing requires cross-fading of previous and

current downmixing data, e.g., downmixing coefficients or downmixing tables to ensure

5 that any change in downmix coefficients are smoothed out.

[00197] One option is to so carry out cross-fade operation to compute the resultant

coefficient. Denote by c[z] the mixing coefficient to use, where z denotes the time index of

256 time domain samples, so that the range is /=0,.. .,255. Denote by w2[z] · a positive

window function such that w2[/] +w2[255-/] = 1 for /=0,.. .,255. Denote by coy the pre-

10 update mixing coefficient and by c„e)V the updated mixing coefficient. The cross-fade

operation to apply is:

[00198] c[z] = w2[z] · cnew + M’2 [255 -z] ·coU for /=0,...,255.

[00199] After each pass through the coefficient cross fade operation, the old coefficients

are updated with the new, as cM <— cnew.

15 [00200] In the next pass, if the coefficients are not updated,

[00201] c[z] = w2[z] · + w2 [255 - z] · cnew = c„m.

[00202] In other words, the influence of the old coefficient set is completely gone!

[00203] The inventors observed that in many audio streams and downmixing situations,

mixing coefficients do not often change. To improve the performance of the time domain

20 downmixing process, embodiments of the time domain downmixing module include

testing to ascertain if the downmixing coefficients have changed from their previous

value, and if not, to cany out downmixing, else, if they have changed, to cany out cross

fading of the downmixing coefficients according to a pre-selected positive window

function. In one embodiment, the window function is the same window function as used

25 in the windowing and overlap-add operations. In another embodiment, a different window

function is used.

[00204] FIG. 11 shows simplified pseudocode for one embodiment of downmixing. The

decoder for such an embodiment uses at least one x86 processor that executes SSE vector

instructions. The downmixing includes ascertaining if the new downmixing data are

41

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

unchanged from the old downmixing data. If so, the downmixing includes setting up for

mnning SSE vector instructions on at least one of the one or more x86 processors, and

downmixing using the unchanged downmixing data including executing at least one

running SSE vector instruction. Otherwise, if the new downmixing data are changed from

5 the old downmixing data, the method includes determining cross-faded downmixing data

by cross-fading operation.

Excluding processing unneeded data

[00205] In some downmixing situations, there is at least one channel that does not

contribute to the downmixed output. For example, in many cases of downmixing from 5.1

10 audio to stereo, the LFE channel is not included, so that the downmix is 5.1 to 2.0. The

exclusion of the LFE channel from the downmix may be inherent to the coding format, as

is the case for AC-3, or controlled by metadata, as is the case for E-AC-3. In E-AC-3, the

lfemixlevcode parameter determines whether or not the LFE channel is included in the

downmix. When the lfemixlevcode parameter is 0, the LFE channel is not included in the

15 downmix.

[00206] Recall that downmixing may be earned out in the frequency domain, in the

pseudo-time domain after inverse transforming but before the windowing and overlap add

operation, or in the time domain after inverse transforming and after the windowing and

overlap add operation. Pure time domain downmixing is earned out in many known E-

20 AC-3 decoders, and in some embodiments of the present invention, and is advantageous,

e.g., because of the presence of TPNP, pseudo-time domain downmixing is carried out in

many AC-3 decoders and in some embodiments of the present invention, and is

advantageous because the overlap-add operation provides inherent cross-fading that is

advantageous for when downmixing coefficients change, and frequency domain

25 downmixing is carried out in some embodiments of the present invention when conditions

allow.

[00207] As discussed herein, frequency-domain downmixing is the most efficient

downmixing method, as it minimizes the number of inverse transform and windowing

and overlap-add operations required to produce a 2-channel output from a 5.1-channel

30 input. In some embodiments of the present invention, when ED downmixing is carried

out, e.g., in FIG. 8, in the FD downmix loop section 711 in the loop that starts with

42

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

element 813, ends with 814 and increments in 815 to the next channel, those channels not

included in the downmix are excluded in the processing.

[00208] Downmixing in either the pseudo-time domain after the inverse transform but

before the windowing and overlap-add, or in the time domain after the inverse transform

5 and the windowing and overlap-add is less computationally efficient than in the frequency

domain. In many present day decoders, such as present-day AC-3 decoders, downmixing

is earned out in the pseudo-time domain. The inverse transform operation is earned out

independently from downmixing operation, e.g., in separate modules. The inverse

transform in such decoders is carried out on all input channels. This is computationally

10 relatively inefficient, because, in the case of the LFE channel not being included, the

inverse transform is still carried out for this channel. This unnecessary processing is

significant because, even though the LFE channel is limited bandwidth, applying the

inverse transform to the LFE channel requires as much computation as applying the

inverse transform to any full bandwidth channel. The inventors recognized this

15 inefficiency. Some embodiments of the present invention include identifying one or more

non-contributing channels of the N.n input channels, a non-contributing channel being a

channel that does not contribute to the M.m output channels of decoded audio. In some

embodiments, the identifying uses information, e.g., metadata that defines the

downmixing. In the 5.1 to 2.0 downmixing example, the LFE channel is so identified as a

20 non-contributing channel. Some embodiments of the invention include performing a

frequency to time transformation on each channel which contributes to the M.m output

channels, and not performing any frequency to time transformation on each identified

channel which does not contribute to the M.m channel signal. In the 5.1 to 2.0 example in

which the LFE channel does not contribute to the downmix, the inverse transform, e.g.,

25 an IMCDT is only carried out on the five full-bandwidth channels, so that the inverse

transform portion is carried out with roughly 16% reduction of the computational

resources required for all 5.1 channels. Since the IMDCT is a significant source of

computational complexity in the decoding method, this reduction may be significant.

[00209] In many present day decoders, such as present-day E-AC-3 decoders, downmixing

30 is carried out in the time domain. The inverse transform operation and overlap-add

operations are carried out prior to any TPNP and prior to downmixing, independent from

the downmixing operation, e.g., in separate modules. The inverse transform and the

windowing and overlap-add operations in such decoders are carried out on all input

43

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

channels. This is computationally relatively inefficient, because, in the case of the LFE

channel not being included, the inverse transform and windowing/overlap add are still

carried out for this channel. This unnecessary processing is significant because, even

though the LFE channel is limited bandwidth, applying the inverse transform and

5 overlap-add to the LFE channel requires as much computation as applying the inverse

transform and windowing/overlap-add to any full bandwidth channel. In some

embodiments of the present invention, downmixing is carried out in the time domain, and

in other embodiments, downmixing may be carried out in the time domain depending on

the outcome of applying the downmix method selection logic. Some embodiments of the

10 present invention in which TD downmixing is used include identifying one or more non

contributing channels of the N.n input channels. In some embodiments, the identifying

uses information, e.g., metadata that defines the downmixing. In the 5.1 to 2.0

downmixing example, the LFE channel is so identified as a non-contributing channel.

Some embodiments of the invention include performing an inverse transform, i.e.,

15 frequency to time transformation on each channel which contributes to the M.m output

channels, and not performing any frequency to time transformation and other time

domain processing on each identified channel which does not contribute to the M.m

channel signal. In the 5.1 to 2.0 example in which the LFE channel does not contribute to

the downmix, the inverse transform, e.g., an IMCDT, the overlap-add, and the TPNP are

20 only carried out on the five full-bandwidth channels, so that the inverse transform and

windowing/overlap-add portions are carried out with roughly 16% reduction of the

computational resources required for all 5.1 channels. In the flowchart of FIG. 8, in the

common processing logic section 731, one feature of some embodiments includes that the

processing in the loop starting with element 833, continuing to 834, and including the

25 increment to next channel element 835 is carried out for all channels except the non

contributing channels. This happens inherently for a block that is FD downmixed.

[00210] While in some embodiments, the LFE is a non-contributing channel, i.e., is not

included in the downmixed output channels, as is common in AC-3 and E-AC-3, in other-

embodiments, a channel other than the LFE is also or instead a non-contributing channel

30 and is not included in the downmixed output. Some embodiments of the invention include

checking for such conditions to identify which one or more channels, if any, are non

contributing in that such a channel is not included in the downmix, and, in the case of

44

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

time domain downmixing, not performing processing through inverse transform and

window overlap-add operations for any identified non-contributing channel.

[00211] For example, in AC-3 and E-AC-3, there are certain conditions in which the

surround channels and/or the center channel are not included in the downmixed output

5 channels. These conditions are defined by metadata included in the encoded bitstream

taking predefined values. The metadata, for example, may include information that

defines the downmixing including mix level parameters.

[00212] Some such examples of such mix level parameters are now described for

illustration purposes for the case of E-AC-3. In downmixing to stereo in E-AC-3, two

1 o types of downmixing are provided: downmix to an LtRt matrix surround encoded stereo

pair and downmix to a conventional stereo signal, LoRo. The downmixed stereo signal

(LoRo, or LtRt) may be further mixed to mono. A 3-bit LtRt surround mix level code

denoted Itrtsurmixlev, and a 3-bit LoRo surround mix level code denoted Iorosurmixlev

indicate the nominal downmix level of the surround channels with respect to the left and

15 right channels in a LtRt, or LoRo downmix, respectively. A value of binary ‘111’

indicates a downmix level of 0, i.e., -codB. 3-bit LtRt and LoRo center mix level codes

denoted ltrtcmixlev, lorocmixlev indicate the nominal downmix level of the center

channel with respect to the left and right channels in an LtRt and LoRo downmix,

respectively. A value of binary ‘111’ indicates a downmix level of 0, i.e., -<odB.

20 [00213] There are conditions in which the surround channels are not included in the

downmixed output channels. In E-AC-3 these conditions are identified by metadata.

These conditions include the cases where surmixlev-’ lO’ (AC-3 only),

Itrtsurmixlev=’lll’, and lorosurmixIev=’lH’. For these conditions, in some

embodiments, a decoder includes using the mix level metadata to identify that such

25 metadata indicates the surround channels are not included in the downmix, and not

processing the surround channels through the inverse transform and windowing/overlap-

add stages. Additionally, there are conditions in which the center channel is not included

in the downmixed output channels, identified by ltrtcmixlev—’ll 1 ’,

lorocmixlev==’lll’. For these conditions, in some embodiments, a decoder includes

30 using the mix level metadata to identify that such metadata indicates the center channel is

not included in the downmix, and not processing the center channel through the inverse

transform and windowing/overlap-add stages.

45

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US2011/023533

[00214] In some embodiments, the identifying of one or more non-contributing channels is

content dependent. As one example, the identifying includes identifying whether one or

more channels have an insignificant amount of content relative to one or more other

channels. A measure of content amount is used. In one embodiment, the measure of

5 content amount is energy, while in another embodiment, the measure of content amount is

the absolute level. The identifying includes comparing the difference of the measure of

content amount between pairs of channels to a settable threshold. As an example, in one

embodiment, identifying one or more non-contributing channels includes ascertaining if

the surround channel content amount of a block is less than each front channel content

10 amount by at least a settable threshold in order to ascertain if the surround channel is a

non-contributing channel.

[00215] Ideally, the threshold is selected to be as low as possible without introducing

noticeable artifacts into the downmixed version of the signal in order to maximize

identifying channels as non-contributing to reduce the amount of computation required,

15 while minimizing the quality loss. In some embodiments, different thresholds are

provided for different decoding applications, with the choice of threshold for a particular

decoding application representing an acceptable balance between quality of downmix

(higher thresholds) and computational complexity reduction (lower thresholds) for the

specific application.

20 [00216] In some embodiments of the present invention, a channel is considered

insignificant with respect to another channel if its energy or absolute level is at least 15

dB below that of the other channel. Ideally, a channel is insignificant relative to another

channel if its energy or absolute level is at least 25 dB below that of the other channel.

[00217] Using a threshold for the difference between two channels denoted A and B that is

25 equivalent to 25dB is roughly equivalent to saying that the level of the sum of the

absolute values of the two channels is within 0.5 dB of the level of the dominant channel.

That is, if channel A is at -6 dBFS (dB relative to full scale) and channel B is at -31

dBFS, the sum of the absolute values of channel A and B will be roughly -5.5 dBFS, or

about 0.5 dB greater than the level of channel A.

30 [00218] If the audio is of relatively low quality, and for low cost applications, it may be

acceptable to sacrifice quality to reduce complexity, the threshold could be lower than 25

dB. In one example, a threshold of 18dB is used. In such a case, the sum of the two

46

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

channels may be within about 1 dB of the level of the channel with the higher level. This

may be audible in certain cases, but should not be too objectionable. In another

embodiment, a threshold of 15 dB is used, in which case the sum of the two channels is

within 1.5 dB of the level of the dominant channel.

5 [00219] In some embodiments, several thresholds are used, e.g., 15dB, 18dB, and 25dB.

[00220] Note that while identifying non-contributing channels is described herein above

for AC-3 and E-AC-3, the identifying non-contributing channel feature of the invention is

not limited to such formats. Other formats, for example, also provide information, e.g.,

metadata regarding the downmixing that is usable for the identifying of one or more non-

10 contributing channels. Both MPEG-2 AAC (ISO/IEC 13818-7) and MPEG-4 Audio

(ISO/IEC 14496-3) are capable of transmitting what is referred to by the standard as a

“matrix-mixdown coefficient.” Some embodiments of the invention for decoding such

formats use this coefficient to construct a stereo or mono signal from a 3/2, i.e., Left,

Center, Right, Left Surround, Right Surround signal. The matrix-mixdown coefficient

15 determines how the surround channels are mixed with the front channels to construct the

stereo or mono output. Four possible values of the matrix-mixdown coefficient are

possible according to each of these standards, one of which is 0. A value of 0 results in

the surround channels not being included in the downmix. Some MPEG-2 AAC decoder

or MPEG-4 Audio decoder embodiments of the invention include generating a stereo or

20 mono downmix front a 3/2 signal using the mixdown coefficients signalled in the

bitstream, and further include identifying a non-contributing channel by a matrix-

mixdown coefficient of 0, in which case, the inverse transforming and

windowing/overlap-add processing is not carried out.

[00221] FIG. 12 shows a simplified block diagram of one embodiment of a processing

25 system 1200 that includes at least one processor 1203. In this example, one x86 processor

whose instruction set includes SSE vector instructions is shown. Also shown in simplified

block form is a bus subsystem 1205 by which the various components of the processing

system are coupled. The processing system includes a storage subsystem 1211 coupled to

the processor(s), e.g., via the bus subsystem 1205, the storage subsystem 1211 having one

30 or more storage devices, including at least a memory and in some embodiments, one or

more other storage devices, such as magnetic and/or optical storage components. Some

embodiments also include at least one network interface 1207, and an audio input/output

47

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

subsystem 1209 that can accept PCM data and that includes one or more DACs to convert

the PCM data to electric waveforms for driving a set of loudspeakers or earphones. Other

elements may also be included in the processing system, and would be clear to those of

skill in the art, and that are not shown in FIG. 12 for the sake of simplicity.

5 [00222] The storage subsystem 1211 includes instructions 1213 that when executed in the

processing system, cause the processing system to carry out decoding of audio data that

includes N.n channels of encoded audio data, e.g., E-AC-3 data to form decoded audio

data that includes M.m channels of decoded audio, M>1 and, for the case of downmixing,

M<N. For today’s known coding formats, n=0 or 1 and m=0 or 1, but the invention is not

10 so limited. In some embodiments, the instructions 1211 are partitioned into modules.

Other instructions (other software) 1215 also typically are included in the storage

subsystem. The embodiment shown includes the following modules in instructions 1211:

two decoder modules: an independent frame 5.1 channel decoder module 1223 that

includes a front-end decode module 1231 and a back-end decode module 1233, a

15 dependent frame decoder module 1225 that includes a front-end decode module 1235 and

a back-end decode module 1237, a frame information analyze module of

instructions 1221 that when executed causes unpacking Bit Stream Information (BSI)

field data from each frame to identify the frames and frame types and to provide the

identified frames to appropriate front-end decoder module instantiations 1231 or 1235,

20 and a channel mapper module of instructions 1227 that when executed and in the case

N>5 cause combining the decoded data from respective back-end decode modules to form

the N.n channels of decoded data.

[00223] Alternate processing system embodiments may include one or more processors

coupled by at least one network link, i.e., be distributed. That is, one or more of the

25 modules may be in other processing systems coupled to a main processing system by a

network link. Such alternate embodiments would be clear to one of ordinary skill in the

art. Thus, in some embodiments, the system comprises one or more subsystems that are

networked via a network link, each subsystem including at least one processor.

[00224] Thus, the processing system of FIG. 12 forms an embodiment of an apparatus for

30 processing audio data that includes N.n channels of encoded audio data to form decoded

audio data that includes M.m channels of decoded audio, M>1, in the case of

downmixing, M<N, and for upmixing, M>N. While for today’s standards, n-0 or 1 and

48

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

m=0 or 1, other embodiments are possible. The apparatus includes several functional

elements expressed functionally as means for carrying out a function. By a functional

element is meant an element that carries out a processing function. Each such element

may be a hardware element, e.g., special purpose hardware, or a processing system that

5 includes a storage medium that includes instructions that when executed carry out the

function. The apparatus of FIG. 12 includes means for accepting the audio data that

includes N channels of encoded audio data encoded by an encoding method, e.g., an E-

AC-3 coding method, and in more general terms, an encoding method that comprises

transforming using an overlapped-transfomi N channels of digital audio data, forming and

10 packing frequency domain exponent and mantissa data, and forming and packing

metadata related to the frequency domain exponent and mantissa data, the metadata

optionally including metadata related to transient pre-noise processing.

[00225] The apparatus includes means for decoding the accepted audio data.

[00226] In some embodiments the means for decoding includes means for unpacking the

15 metadata and means for unpacking and for decoding the frequency domain exponent and

mantissa data, means for determining transform coefficients from the unpacked and

decoded frequency domain exponent and mantissa data; means for inverse transforming

the frequency domain data; means for applying windowing and overlap-add operations to

determine sampled audio data; means for applying any required transient pre-noise

20 processing decoding according to the metadata related to transient pre-noise processing;

and means for TD downmixing according to downmixing data. The means for TD

downmixing, in the case M<N, downmixes according to downmixing data, including in

some embodiment, testing whether the downmixing data are changed from previously

used downmixing data, and, if changed, applying cross-fading to determine cross-faded

25 downmixing data and downmixing according to the cross-faded downmixing data, and if

unchanged directly downmixing according to the downmixing data.

[00227] Some embodiments include means for ascertaining for a block whether TD

downmixing or FD downmixing is used, and means for FD downmixing that is activated

if the means for ascertaining for a block whether TD downmixing or FD downmixing is

30 used ascertains FD downmixing, including means for TD to FD downmix transition

processing. Such embodiments also include means for FD to TD downmix transition

processing. The operation of these elements is as described herein.

49

20
13

20
15

83

18
 M

ar
 2

01
3 WO 2011/102967 PCT/US2011/023533

[00228] In some embodiments, the apparatus includes means for identifying one or more

non-contributing channels of the N.n input channels, a non-contributing channel being a

channel that does not contribute to the M.m channels. The apparatus does not cany out

inverse transforming the frequency domain data and the applying further processing such

5 as TPNP or overlap-add on the one or more identified non-contributing channels.

[00229] In some embodiments, the apparatus includes at least one x86 processor whose

instruction set includes streaming single instruction multiple data extensions (SSE)

comprising vector instructions. The means for downmixing in operation runs vector

instructions on at least one of the one or more x86 processors.

10 [00230] Alternate apparatuses to those shown in FIG. 12 also are possible. For example,

one or more of the elements may be implemented by hardware devices, while others may

be implemented by operating an x86 processor. Such variations would be straightforward

to those skilled in the art.

[00231] In some embodiments of the apparatus, the means for decoding includes one or

15 more means for front-end decoding and one or more means for back-end decoding. The

means for front-end decoding includes the means for unpacking the metadata and the

means for unpacking and for decoding the frequency domain exponent and mantissa data.

The means for back-end decoding includes the means for ascertaining for a block whether

TD downmixing or FD downmixing is used, the means for FD downmixing that includes

20 the means for TD to FD downmix transition processing, the means for FD to TD

downmix transition processing, the means for determining transform coefficients from the

unpacked and decoded frequency domain exponent and mantissa data; for inverse

transforming the frequency domain data; for applying windowing and overlap-add

operations to determine sampled audio data; for applying any required transient pre-noise

25 processing decoding according to the metadata related to transient pre-noise processing;

and for time domain downmixing according to downmixing data. The time domain

downmixing, in the case M<N, downmixes according to downmixing data, including, in

some embodiments, testing whether the downmixing data are changed from previously

used downmixing data, and, if changed, applying cross-fading to determine cross-faded

30 downmixing data and downmixing according to the cross-faded downmixing data, and if

unchanged, downmixing according to the downmixing data.

50

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00232] For processing E-AC-3 data of more than 5.1 channels of coded data, means for

decoding includes multiple instances of the means for front-end decoding and of the

means for back-end decoding, including a first means for front-end decoding and a first

means for back-end decoding for decoding the independent frame of up to 5.1 channels, a

5 second means for front-end decoding and a second means for back-end decoding for

decoding one or more dependent frames of data. The apparatus also includes means for

unpacking Bit Stream Information field data to identify the frames and frame types and to

provide the identified frames to appropriate means of front-end decoding, and means for

combining the decoded data from respective means for back-end decoding to form the N

1 o channels of decoded data.

[00233] Note that while E-AC-3 and other coding methods use an overlap-add transform,

and in the inverse transforming, include windowing and overlap-add operations, it is

known that other forms of transforms are possible that operate in a manner such that

inverse transforming and further processing can recover time domain samples without

15 aliasing errors. Therefore, the invention is not limited to overlap-add transforms, and

whenever is mentioned inverse transforming frequency domain data and carrying out

windowed-overlap-add operation to determine time domain samples, those skilled in the

art will understand that in general, these operations can be stated as “inverse transforming

the frequency domain data and applying further processing to determine sampled audio

20 data.”

[00234] Although the terms exponent and mantissa are used throughout the description

because these are the terms used in AC-3 andE-AC-3, other coding formats may use other

terms, e.g., scale factors and spectral coefficients in the case of HE-AAC, and the use of

the terms exponent and mantissa does not limit die scope of the invention to formats

25 which use the terms exponent and mantissa.

[00235] Unless specifically stated otherwise, as apparent from the following description, it

is appreciated that diroughout the specification discussions utilizing terms such as

“processing,” “computing,” “calculating,” “determining,” “generating” or the like, refer

to the action and/or processes of a hardware element, e.g., a computer or computing

30 system, a processing system, or similar electronic computing device, that manipulate

and/or transform data represented as physical, such as electronic, quantities into other

data similarly represented as physical quantities.

51

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

[00236] In a similar manner, the term “processor-” may refer to any device or portion of a

device that processes electronic data, e.g., from registers and/or memory to transform that

electronic data into other electronic data that, e.g., may be stored in registers and/or

memory. A “processing system” or “computer” or a “computing machine” or a

5 “computing platform” may include one or more processors.

[00237] Note that when a method is described that includes several elements, e.g., several

steps, no ordering of such elements, e.g., steps is implied, unless specifically stated.

[00238] In some embodiments, a computer-readable storage medium is configured with,

e.g., is encoded with, e.g., stores instructions that when executed by one or more

10 processors of a processing system such as a digital signal processing device or subsystem

that includes at least one processor element and a storage subsystem, cause carrying out a

method as described herein. Note that in the description above, when it is stated that

instructions are configured, when executed, to carry out a process, it should be understood

that this means that the instructions, when executed, cause one or more processors to

15 operate such that a hardware apparatus, e.g., the processing system carries out the

process.

[00239] The methodologies described herein are, in some embodiments, perfomiable by

one or more processors that accept logic, instructions encoded on one or more computer-

readable media. When executed by one or more of the processors, the instructions cause

20 carrying out at least one of the methods described herein. Any processor capable of

executing a set of instructions (sequential or otherwise) that specify actions to be taken is

included. Thus, one example is a typical processing system that includes one or more

processors. Each processor may include one or more of a CPU or similar element, a

graphics processing unit (GPU), and/or a programmable DSP unit. The processing system

25 further includes a storage subsystem with at least one storage medium, which may include

memory embedded in a semiconductor device, or a separate memory subsystem including

main RAM and/or a static RAM, and/or ROM, and also cache memory. The storage

subsystem may further include one or more other storage devices, such as magnetic

and/or optical and/or further solid state storage devices. A bus subsystem may be included

30 for communicating between the components. The processing system further may be a

distributed processing system with processors coupled by a network, e.g., via network

interface devices or wireless network interface devices. If the processing system requires

52

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

a display, such a display may be included, e.g., a liquid crystal display (LCD), organic

light emitting display (OLED), or a cathode ray tube (CRT) display. If manual data entry

is required, the processing system also includes an input device such as one or more of an

alphanumeric input unit such as a keyboard, a pointing control device such as a mouse,

5 and so forth. The term storage device, storage subsystem, or memory unit as used herein,

if clear from the context and unless explicitly stated otherwise, also encompasses a

storage system such as a disk drive unit. The processing system in some configurations

may include a sound output device, and a network interface device.

[00240] The storage subsystem thus includes a computer-readable medium that is

10 configured with, e.g., encoded with instructions, e.g., logic, e.g., software that when

executed by one or more processors, causes carrying out one or more of the method steps

described herein. The software may reside in the hard disk, or may also reside,

completely or at least partially, within the memory such as RAM and/or within the

memory internal to the processor during execution thereof by the computer system. Thus,

15 the memory and the processor that includes memory also constitute computer-readable

medium on which are encoded instructions.

[00241] Furthermore, a computer-readable medium may form a computer program

product, or be included in a computer program product.

[00242] In alternative embodiments, the one or more processors operate as a standalone

20 device or may be connected, e.g., networked to other processor(s), in a networked

deployment, the one or more processor's may operate in the capacity of a server or a client

machine in server-client network environment, or as a peer machine in a peer-to-peer or

distributed network environment. The term processing system encompasses all such

possibilities, unless explicitly excluded herein. The one or more processors may form a

25 personal computer (PC), a media playback device, a tablet PC, a set-top box (STB), a

Personal Digital Assistant (PDA), a game machine, a cellular telephone, a Web appliance,

a network router, switch or bridge, or any machine capable of executing a set of

instructions (sequential or otherwise) that specify actions to be taken by that machine.

[00243] Note that while some diagram(s) only show(s) a single processor and a single

30 storage subsystem, e.g., a single memory that stores the logic including instructions, those

skilled in the art will understand that many of the components described above are

included, but not explicitly shown or described in order not to obscure the inventive

53

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

aspect. For example, while only a single machine is illustrated, the term “machine” shall

also be taken to include any collection of machines that individually or jointly execute a

set (or multiple sets) of instructions to perform any one or more of the methodologies

discussed herein.

5 [00244] Thus, one embodiment of each of the methods described herein is in the form of a

computer-readable medium configured with a set of instructions, e.g., a computer

program that when executed on one or more processors, e.g., one or more processors that

are part of a media device, cause carrying out of method steps. Some embodiments are in

the form of the logic itself. Thus, as will be appreciated by those skilled in the art,

10 embodiments of the present invention may be embodied as a method, an apparatus such

as a special purpose apparatus, an apparatus such as a data processing system, logic, e.g.,

embodied in a computer-readable storage medium, or a computer-readable storage

medium that is encoded with instructions, e.g., a computer-readable storage medium

configured as a computer program product. The computer-readable medium is configured

15 with a set of instructions that when executed by one or more processors cause carrying

out method steps. Accordingly, aspects of the present invention may take the form of a

method, an entirely hardware embodiment that Includes several functional elements,

where by a functional element is meant an element that carries out a processing function.

Each such element may be a hardware element, e.g., special purpose hardware, or a

20 processing system that includes a storage medium that includes instructions that when

executed carry out the function. Aspects of the present invention may take the form of an

entirely software embodiment or an embodiment combining software and hardware

aspects. Furthermore, the present invention may take the form of program logic, e.g., in a

computer readable medium, e.g., a computer program on a computer-readable storage

25 medium, or the computer readable medium configured with computer-readable program

code, e.g., a computer program product. Note that in the case of special purpose

hardware, defining the function of the hardware is sufficient to enable one skilled in the

art to write a functional description that can be processed by programs that automatically

then determine hardware description for generating hardware to carry out the function.

30 Thus, the description herein is sufficient for defining such special purpose hardware.

[00245] While the computer readable medium is shown in an example embodiment to be a

single medium, the term "medium" should be taken to include a single medium or

multiple media (e.g., several memories, a centralized or distributed database, and/or

54

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

associated caches and servers) that store the one or more sets of instructions. A computer

readable medium may take many forms, including but not limited to non-volatile media

and volatile media. Non-volatile media includes, for example, optical, magnetic disks,

and magneto-optical disks. Volatile media includes dynamic memory, such as main

5 memory.

[00246] It will also be understood that embodiments of the present invention are not

limited to any particular implementation or programming technique and that the invention

may be implemented using any appropriate techniques for implementing the functionality

desciibed herein. Furthermore, embodiments are not limited to any particular

10 programming language or operating system.

[00247] Reference throughout this specification to “one embodiment” or “an embodiment”

means that a particular feature, structure or characteristic described in connection with the

embodiment is included in at least one embodiment of the present invention. Thus,

appearances of the phrases “in one embodiment” or “in an embodiment” in various places

15 throughout this specification are not necessarily all referring to the same embodiment, but

may. Furthermore, the particular features, structures or characteristics may be combined

in any suitable manner, as would be apparent to one of ordinary skill skilled in the art

from this disclosure, in one or more embodiments.

[00248] Similarly it should be appreciated that in the above description of example

20 embodiments of the invention, various features of the invention are sometimes grouped

together in a single embodiment, figure, or description thereof for the purpose of

streamlining the disclosure and aiding in the understanding of one or more of the various

inventive aspects. This method of disclosure, however, is not to be interpreted as

reflecting an intention that the claimed invention requires more features than are

25 expressly recited in each claim. Rather, as the following claims reflect, inventive aspects

lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims

following the DESCRIPTION OF EXAMPLE EMBODIMENTS are hereby expressly

incorporated into this DESCRIPTION OF EXAMPLE EMBODIMENTS, with each

claim standing on its own as a separate embodiment of this invention.

30 [00249] Furthermore, while some embodiments described herein include some but not

other features included in other embodiments, combinations of features of different

embodiments are meant to be within the scope of the invention, and form different

55

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

embodiments, as would be understood by those skilled in the art. For example, in the

following claims, any of the claimed embodiments can be used in any combination.

[00250] Furthermore, some of the embodiments are described herein as a method or

combination of elements of a method that can be implemented by a processor of a

5 computer system or by other means of carrying out the function. Thus, a processor with

the necessary instructions for carrying out such a method or element of a method forms a

means for carrying out the method or element of a method. Furthermore, an element

described herein of an apparatus embodiment is an example of a means for carrying out

the function performed by the element for the purpose of carrying out the invention.

10 [00251] In the description provided herein, numerous specific details are set forth.

However, it is understood that embodiments of the invention may be practiced without

these specific details. In other instances, well-known methods, structures and techniques

have not been shown in detail in order not to obscure an understanding of this description.

[00252] As used herein, unless otherwise specified, the use of the ordinal adjectives

15 “first”, “second”, “third”, etc., to describe a common object, merely indicate that different

instances of like objects are being referred to, and are not intended to imply that the

objects so described must be in a given sequence, either temporally, spatially, in ranking,

or in any other manner.

[00253] It should be appreciated that although the invention has been described in the

20 context of the E-AC-3 standard, the invention is not limited to such contexts and may be

utilized for decoding data encoded by other methods that use techniques that have some

similarity to E-AC-3. For example, embodiments of the invention are applicable also for

decoding coded audio that is backwards compatible with E-AC-3. Other embodiments are

applicable for decoding coded audio that is coded according to the HE-AAC standard,

25 and for decoding coded audio that is backwards compatible with HE-AAC. Other coded

streams can also be advantageously decoded using embodiments of the present invention.

[00254] All U.S. patents, U.S. patent applications, and International (PCT) patent

applications designating the United States cited herein are hereby incorporated by

reference. In the case the Patent Rules or Statutes do not permit incorporation by

30 reference of material that itself incorporates information by reference, the incorporation

by reference of the material herein excludes any information incorporated by reference in

56

WO 2011/102967 PCT/US2011/023533

20
13

20
15

83

18
 M

ar
 2

01
3

such incorporated by reference material, unless such information is explicitly

incorporated herein by reference.

[00255] Any discussion of prior art in this specification should in no way be considered an

admission that such prior art is widely known, is publicly known, or forms part of the

5 general knowledge in the field.

[00256] In the claims below and the description herein, any one of the terms comprising,

comprised of or which comprises is an open term that means including at least the

elements/features that follow, but not excluding others. Thus, the term comprising, when

used in the claims, should not be interpreted as being limitative to the means or elements

10 or steps listed thereafter. For example, the scope of the expression a device comprising A

and B should not be limited to devices consisting of only elements A and B. Any one of

the terms including or which includes or that includes as used herein is also an open term

that also means including at least the elements/features that follow the term, but not

excluding others. Thus, including is synonymous with and means comprising.

15 [00257] Similarly, it is to be noticed that the term coupled, when used in the claims, should

not be interpreted as being limitative to direct connections only. The terms “coupled” and

“connected,” along with their derivatives, may be used. It should be understood that these

terms are not intended as synonyms for each other. Thus, the scope of the expression a

device A coupled to a device B should not be limited to devices or systems wherein an

20 output of device A is directly connected to an input of device B. It means that there exists

a path between an output of A and an input of B which may be a path including other

devices or means. “Coupled” may mean that two or more elements are either in direct

physical or electrical contact, or that two or more elements are not in direct contact with

each other but yet still co-operate or interact with each other.

25 [00258] Thus, while there has been described what are believed to be the preferred

embodiments of the invention, those skilled in the art will recognize that other and further

modifications may be made thereto without departing from the spirit of the invention, and

it is intended to claim all such changes and modifications as fall within the scope of the

invention. For example, any formulas given above are merely representative of

30 procedures that may be used. Functionality may be added or deleted from the block

diagrams and operations may be interchanged among functional elements. Steps may be

added or deleted to methods described within the scope of the present invention.

57

20
13

20
15

83

18
 M

ar
 2

01
3 The Claims defining the invention are as follows:

1. A method of operating an audio decoder to decode audio data that includes encoded

blocks of N.n channels of audio data to form decoded audio data that includes M.m

channels of decoded audio, M>1, n being the number of low frequency effects

5 channels in the encoded audio data, and m being the number of low frequency effects

channels in the decoded audio data, the method comprising:

accepting the audio data that includes blocks of N.n channels of encoded audio data

encoded by an encoding method, the encoding method including transforming N.n

channels of digital audio data, and forming and packing frequency domain exponent

10 and mantissa data; and

decoding the accepted audio data, the decoding including:

unpacking and decoding the frequency domain exponent and mantissa data;

determining transform coefficients from the unpacked and decoded frequency

domain exponent and mantissa data;

15 inverse transforming the frequency domain data and applying further

processing to determine sampled audio data; and

time domain downmixing at least some blocks of the determined sampled

audio data according to downmixing data for the case M<N,

wherein the method includes identifying one or more non-contributing channels of the

20 N.n input channels, a non-contributing channel being a channel that does not

contribute to the M.m channels, and

wherein method need not carry out inverse transforming the frequency domain data

and need not carry out applying further processing on the one or more identified non

contributing channels.

25 2. The method according to claim 1, wherein the transforming in the encoding method

uses an overlapped-transform, and wherein the further processing includes applying

windowing and overlap-add operations to determine sampled audio data.

3. The method according to claim 1 or claim 2, wherein the encoding method includes

forming and packing metadata related to the frequency domain exponent and mantissa

58

20
13

20
15

83

18
 M

ar
 2

01
3 data, the metadata optionally including metadata related to transient pre-noise

processing and to downmixing.

4. The method according to any preceding claim, wherein the decoder uses at least one

x86 processor whose instruction set includes streaming single instruction multiple

5 data extensions (SSE) comprising vector instructions, and wherein the time domain

downmixing includes running vector instructions on at least one of the one or more

x86 processors.

5. The method according to any one of claim 1 to claim 3, wherein the accepted audio

data are in the form of a bitstream of frames of coded data, and wherein the decoding

10 is partitioned into a set of front-end decode operations, and a set of back-end decode

operations, the front-end decode operations including the unpacking and decoding the

frequency domain exponent and mantissa data of a frame of the bitstream into

unpacked and decoded frequency domain exponent and mantissa data for the frame,

and the frame’s accompanying metadata, the back-end decode operations including

15 the determining of the transform coefficients, the inverse transforming and applying

further processing, applying any required transient pre-noise processing decoding, and

downmixing in the case M<N.

6. The method according to claim 5, wherein the front-end decode operations are carried

out in a first pass followed by a second pass, the first pass comprising unpacking

20 metadata block-by-block and saving pointers to where the packed exponent and

mantissa data are stored, and the second pass comprising using the saved pointers to

the packed exponents and mantissas, and unpacking and decoding exponent and

mantissa data channel-by-channel.

7. The method according to any one of claim 1 to claim 6, wherein the encoded audio

25 data are encoded according to one of the set of standards consisting of the AC-3

standard, the E-AC-3 standard, a standard backwards compatible with the E-AC-3

standard, and the HE-AAC standard, and a standard backwards compatible with HE-

AAC.

8. A computer-readable storage medium storing decoding instructions that when

30 executed by one or more processors of a processing system cause the processing

system to carry out the method recited in any of the preceding method claims.

59

20
13

20
15

83

18
 M

ar
 2

01
3 9. An apparatus for processing audio data to decode the audio data that includes encoded

blocks of N.n channels of audio data to form decoded audio data that includes M.m

channels of decoded audio, M>1, n being the number of low frequency effects

channels in the encoded audio data, and m being the number of low frequency effects

5 channels in the decoded audio data, the apparatus comprising means for carrying out

the method of any of claims 1 to 7.

10. A system configured to decode audio data that includes N.n channels of encoded

audio data to form decoded audio data that includes M.m channels of decoded audio,

M>1, n being the number of low frequency effects channels in the encoded audio

10 data, and m being the number of low frequency effects channels in the decoded audio

data, the system comprising:

one or more processors; and

a storage subsystem coupled to the one or more processors,

wherein the system is configured to accept the audio data that includes blocks

15 of N.n channels of encoded audio data encoded by an encoding method, the

encoding method including transforming N.n channels of digital audio data,

and forming and packing frequency domain exponent and mantissa data,

wherein the storage subsystem includes instructions that when executed cause

carrying out the method recited in any of claims 1 to 7.

60

20
13

20
15

83

18
 M

ar
 2

01
3

1/13

Unpack BSI data
For block = 1 to B (the number of blocks)

Unpack fixed data
Save pointers to packed exponents
For chan = 1 to N (the number of coded channels)

Unpack exponents
For band = 1 to L (the number of bands)

Compute bit allocation
Unpack mantissas
Unpack coupling channel (save ptrs)
Scale mantissas / undo coupling
Denormalize mantissas by exponents

Compute inverse transform to window domain
Downmix to appropriate number M of output channel(s)

For chan = 1 to M (the number of output channels)
Window & overlap-add with a delay buffer
Copy downmix buffer values to delay buffer

FIG. 1
(Prior Art)

100

20
13

20
15

83

18
 M

ar
 2

01
3

2/13

AC-3/E-AC-3 frame

Up to 5.1 channels of PCM

AC-3/E-AC-3 frame

Up to 5.1 channels 640 kbs
of PCM A C-3 frame

FIG. 2A FIG. 2B

AC-3/E-AC-3 frame

Up to 7.1 channels of PCM

AC-3/E-AC-3 frame

Up to 5.1 channels of PCM

FIG. 2DFIG. 2C

20
13

20
15

83

18
 M

ar
 2

01
3

3/13

Front-end decode

/* First pass front-end decode 7
For block = 0 to B-1 (B=number of blocks)

Unpack fixed data
For chan = Oto N-1 (N-number of coded channels)

Save bitstream pointer to packed exponents
Unpack exponents
Save bitstream pointer to packed mantissas
Compute bit allocation
Skip Mantissas based on bit allocation

/* Second pass front-end decode 7
For channel = Oto N-1 (N-number of coded channels)

For block -Oto B-1 (B-number of blocks)

/* unpack */
Load saved bitstream pointer to packed exponents
Unpack exponents
Compute bit allocation
Load saved bitstream pointer to packed mantissas
Unpack mantissas
/* decode */
Perform standard/enhanced (amplitude-only) decoupling
Generate spectral extension band

transfer exponent and mantissa data from internal to external memory

Channel

Bit allocation

Bitstream operations

Exponents

Exponents and mantissas

Matrixing

Auxiliary data

Mantissas

AHT

Audio frame

Enhanced coupling

Audio block

Spectral extension

Coupling

FIG. 3

20
13

20
15

83

18
 M

ar
 2

01
3

4/13

AC-3/E-AC-3 frame

FIG. 4

Metadata and
audio frame data,
audio block data

20
13

20
15

83

18
 M

ar
 2

01
3

5/13

500
Back-end decode:

For block -Oto B-1 (B=blocks per frame)

Transfer in all blocks of a channel from external memoiy
For channel = Oto N-1 and LFE ifn=1 (N.n= number ofcoded channels)

Apply dynamic range control, dialog normalization, and gain ranging
Denormalize mantissas by exponents
Compute inverse transform
Window/ overlap-add with delay buffer
Perform transient pre-noise processing
Downmix to apprpriate output channelfs)

Dynamic range control module
(dialog normalization, dynamic

range control)

T ransform

Transient pre-noise
processing

Window-overlap-add

TD downmix

FIG. 5A

20
13

20
15

83

18
 M

ar
 2

01
3

% Back-end decode:

6/13

For block = 0 to B-1 (B-blocks per frame)

Transfer in all blocks of a channel from external memory
Ascertain if FD downmixing or TD downmixing
If FD downmixing:

For channel - Oto N-1 and LFE if n-1

Apply dynamic range control, dialog normalization, but disable gain ranging
Denormalize mantissas by exponents
FD downmix
Process differently transition block following TD downmixed block
Deal with any fading out channels

fzise % TD downmixing

For channel -Oto N-1 and LFE if n=1 (BUT only for channels in downmix)

Process differently transition block following FD downmixed block
Apply dynamic range control, dialog normalization, but disable gain ranging
Denormalize mantissas by exponents

For channel = Oto N-1 and LFE ifn= 1 (BUT only, for channels in downmix; N-M ifFD

{

520

}
}

'downmix)

Compute inverse transform
Window / overlap-add with delay buffer
If TD downmix

Perform transient pre-noise processing
}Downmix to appropriate output channel(s)

Dynamic range control module
(dialog normalization, dynamic

range control)

Downmix method selection
module

FD downmix transition logic
module

FD Down mix
(includes TD downmix
transition logic module

Transform

Transient pre-noise
processing

Window-overlap-add

TD down mix

FIG. 5B

20
13

20
15

83

18
 M

ar
 2

01
3

7/13

MetadataExponents Mantissas

PCM samples

FIG. 6

20
13

20
15

83

18
 M

ar
 2

01
3

8/13

FI
G

. 7

20
13

20
15

83

18
 M

ar
 2

01
3

9/13

FD
down mix
transition
logic

start

rDownmix method
| selection logic

1 b- FD dmx
~ 1

1
1
1
. 701

l> FD_

StarTwiH?

1st chan.
Clear

>| transform
Icoeff. buffer

Flush overlap
' add buffer

,ye El amxsi
last
dock>

no

Next
chan.
~T

no

723

channels in
block

Detect &
handle

program
change

Start with
1st chan.__

J Mantissa/exp.
£Zr denormalizationNext

chan.
~~4“

yes More
hanne s?

Start with/
1st chan.
inverse

transform n~
una^gain"

ranging

WoAD
decode

I 731
| Common
processing

I logic

834
More

hanne s?

■no·

Tpfap—
decode

TD down mix

ilffereN
block
.type?.,

I s

ηι TPNP? >m . noN < M? >—

j

715

/e
s

γτθ
J _S_

Disable gain
ranging

StartwifFTL—I
1st chan.Mantissa/exp1.-

denormalizatio 4
n

FD downmix

814

Start with 1 st
chan.;

Set N =M

More
hanne s?

Frequency domain I
downmix logicj

813

815
Next chan,

(except those not
in downmix)

■yes—I

817

833

Time
domain
Down mi

-Jjg-

chan.
>t those

not in downmix)

TD down mix -
transition logic!

and program]
change handler

hanne s i
rev. b ock

"1
I

Clear
transform

coeff.
buffer

Flush
> overlap

add '
7)0

TO
down mixV

CD

Ο
(Μ
&
s
oo

10/13

CD
OO
UD

O
(N
CD

O
(N

cn

ο
(Μ
cS
s

oo

11/13

cn
oo
IT)

o
(N
cn

o
(N

20
13

20
15

83

18
 M

ar
 2

01
3

12/13

/* TD downmix according to downmixing data*/

if (new downmixing data = old downmixing data)

set up for SSE instructions;
downmix using downmixing data;

else

cross-fade old data to new data using a window
downmix using cross-faded downmixing data;

FIG. 11

20
13

20
15

83

18
 M

ar
 2

01
3

13/13

Processing system 1200

Network
1207

interface(s)

1203
x86 processor

1209
Audio I/O
devices

1205
Bus subsystem

Storage subsystem of storage device(s): memory
and possibly other storage device(s)

1215
Other software

Frame
information

analyze
1221

Independent
frame 5.1 decoder

Dependent frame
decoder

Front-end Front-end
decode decode

1231 1235

Back-end Back-end
decode decode

1233 1237

1223 1225

Channel mapper
 1227

FIG. 12

