发明名称
具有相关构件的燃料关闭阀组件及其制造和组装方法

摘要
一种关闭阀组件(20)，包括具有入口(24)和出口(28)的单件外壳(30)。在制造过程中，外壳(30)形成有入口端板(40)和与端板(40)相对的完全开放端(34)。包括挡板门(50)的阀门组件(32)固定于外壳(30)中，阀门组件(32)包括在挡板门(50)和外壳(30)之间的密封体(100，130)，还包括相对于入口(24)来密封接合挡板门(50)的偏置元件(52)。然后改造成开放端(34)来提供外壳(30)的出口(28)。在燃料系统中，遮盖体组件(210)可释放地固定于壳体(30)上。
1. 一种燃料关闭阀组件，包括：
 形成出口和入口的单件外壳，出口连接燃料系统，入口形成将燃料加压
 喷嘴接收在其中的开口；
 在所述外壳中的挡板门，可相对所述外壳移动来打开和关闭所述入口，
 所述挡板门具有伸入所述入口的中心部分和环绕所述中心部分的环形凸缘；
 设在所述挡板门和所述入口之间的密封体；
 将所述门推至关闭位置来压缩所述密封体的偏置装置；和
 在所述外端和所述内端之间的喷嘴导引结构，用于将通过所述入口插入
 的喷嘴端导向所述出口。

2. 根据权利要求 1 所述的燃料关闭阀组件，所述密封体连接于所述挡板
 门。

3. 根据权利要求 1 所述的燃料关闭阀组件，所述密封体连接于所述入口。

4. 根据权利要求 3 所述的燃料关闭阀组件，所述入口具有形成所述开口
 的向内突出的凸边，所述密封体具有接合所述凸边的通道。

5. 根据权利要求 4 所述的燃料关闭阀组件，所述偏置装置大体在所述挡
 板门中心处对其施力。

6. 根据权利要求 4 所述的燃料关闭阀组件，所述偏置装置是双螺旋弹簧。

7. 根据权利要求 1 所述的燃料关闭阀组件，所述密封体具有沿所述中心
 部分和所述凸缘的密封区域。

8. 根据权利要求 1 所述的燃料关闭阀组件，包括托架，托架具有枢装于
 其上的所述门，所述托架牢固固定在所述外壳内。

9. 根据权利要求 1 所述的燃料关闭阀组件，所述偏置装置是与所述挡板
 门和所述外壳导电接触的导电弹簧。

10. 根据权利要求 1 所述的燃料关闭阀组件，所述喷嘴导引结构包括在
 所述入口和所述出口之间的所述外壳的内壁表面。

11. 根据权利要求 1 所述的燃料关闭阀组件，所述喷嘴导引结构包括置
 于所述外壳中的锥形体。
12. 根据权利要求 11 所述的燃料关闭阀组件，所述挡板及枢组件接于所述锥形体。

13. 根据权利要求 1 所述的燃料关闭阀组件，所述密封体具有与所述中心部分密封接合的主干和从所述主干伸出的分支并密封接合所述凸缘和所述外壳。

14. 根据权利要求 1 所述的燃料关闭阀组件，遮盖体组件连接于所述外壳并遮盖所述入口，所述遮盖体组件包括外部开口。

15. 根据权利要求 14 所述的燃料关闭阀组件，所述遮盖体组件包括连接于所述外壳的基体和连接于所述基体的外部遮盖体。

16. 根据权利要求 15 所述的燃料关闭阀组件，所述基体和所述遮盖体中的每一个都包括隔开的凸部，用于与另一个上的凸部交错接合。

17. 根据权利要求 16 所述的燃料关闭阀组件，所述基体的所述凸部具有向内突出的挂钩，所述外壳具有与所述挂钩接合的向外伸出的环。

18. 根据权利要求 17 所述的燃料关闭阀组件，所述遮盖体组件包括绕所述外壳遮盖体和所述基体的所述交叉接合的凸部设置的保持环。

19. 根据权利要求 18 所述的燃料关闭阀组件，所述基体的所述凸部和所述遮盖体的所述凸部具有自其向外突出的限制部，且所述环设在所述基体的所述凸部上的所述限制部和所述遮盖体的所述凸部上的所述限制部之间。

20. 根据权利要求 1 所述的燃料关闭阀组件，其中所述外壳是无接缝的单体外壳。

21. 一种制造汽车的主燃料系统关闭阀组件的方法，该方法包括步骤：

形成具有大体圆柱形壁的外壳，圆柱形壁具有开放端和闭合端，形成外壳的有限直径的喷嘴入口；

提供入口的阀门组件，包括可动挡板门和密封体，密封体在挡板门和邻近入口的闭合端之间，所述挡板门具有伸入所述入口的中心部分和环绕所述中心部分的环形凸缘；

将阀门组件通过外壳的开放端插入外壳；

在外壳内固定阀门组件；和

在固定步骤后，改造邻近开放端的圆柱形壁的至少一部分以减小其直径。
并产生连接汽车燃料系统的外壳出口。

22. 根据权利要求 21 的方法，包括去除自所述形成步骤所得外壳内的应力，所述去除应力的步骤在所述改造步骤前完成。

23. 根据权利要求 22 的方法，所述去除应力的步骤在所述将阀门组件固定于外壳内的步骤后完成。

24. 根据权利要求 22 的方法，所述去除应力的步骤通过退火来完成。

25. 根据权利要求 22 的方法，仅通过感应退火邻近开放端的部分外壳来完成所述去除应力的步骤。

26. 根据权利要求 21 的方法，包括将密封体固定于外壳的闭合端的另外步骤。

27. 根据权利要求 21 的方法，包括将密封体固定于挡板门的另外步骤。

28. 根据权利要求 21 的方法，包括：

提供托架；
将挡板门连接于托架；
将弹簧连接于托架，使弹簧的一部分偏置挡板门；
将托架通过外壳的开放端插入外壳；和
使托架接合外壳。

29. 根据权利要求 21 的方法，包括在挡板门和外壳之间建立导电路径。

30. 根据权利要求 21 的方法，所述改造圆柱形壁的至少一部分的步骤通过在锥进操作中压制来完成。

31. 根据权利要求 21 的方法，所述改造圆柱形壁的至少一部分的步骤通过旋转成形来完成。

32. 一种组装无盖加油系统的方法，所述方法包括步骤：

提供燃料系统关闭阀组件，包含具有入口的外壳、关闭入口的挡板门、位于挡板门和外壳之间的密封体和从外壳径向向外突出的环；
提供基体，具有接合外壳的环的可变形凸部；
通过在环上接合可变形凸部来将基体固定于外壳；
提供外部遮盖体，外部遮盖体包括用于接合基体凸部的凸部；
使遮盖体的凸部和基体的凸部交错接合；
提供保持环来环绕遮盖体组件和基体的交错接合的凸部；和
将保持环置于交错接合的凸部上，来固定交错接合的凸部的相对位置并
将遮盖体组件锁定于基体。

33. 根据权利要求 32 的方法，所述提供保持环的步骤包括提供通过脆性
连接体固定于遮盖体凸部的保持环；并且所述方法还包括通过使保持环和遮
盖体组件的凸部之间的脆性连接体断裂来使环脱离遮盖体组件的步骤。

34. 一种汽车主燃料系统关闭阀组件的制造设备，包括：
形成具有大体圆柱形壁的外壳的装置，圆柱形壁具有开放端和闭合端，
形成外壳的有限直径的喷嘴入口；
提供入口的阀门组件的装置，包括可动挡板门和位于挡板门和邻近入口
的闭合端之间的密封体，所述挡板门具有伸入所述入口的中心部分和环绕所
述中心部分的环形凸缘；
将阀门组件通过外壳的开放端插入外壳的装置；
将阀门组件固定于外壳内的装置；和
改造邻近开放端的圆柱形壁的至少一部分以减小其直径并产生连接汽车
燃料系统的外壳出口的装置。
具有相关构件的燃料关闭阀组件及其制造和组装方法

相关申请的相互参照

本申请要求 2003 年 12 月 9 日提交的第 60/528,037 号美国临时申请、2004
年 3 月 29 日提交的第 60/557,182 号美国临时申请和 2004 年 6 月 23 日提交的
第 60/582,380 号美国临时申请的权益。

技术领域

本发明涉及用于机动车辆的燃料系统，尤其涉及无盖加油系统中的主燃
料关闭阀及其制造和组装方法。

背景技术

用于机动车辆的燃料系统已知包括燃料箱和漏斗管，燃料通过漏斗管添
加到箱中。已知在漏斗管的端部使用可取下的盖来关闭漏斗管。螺纹燃料盖
是大多数家用车辆的燃料系统的主要密封手段。为了使螺纹盖正确地密封燃
料系统，必须正确地拧上盖。如果燃料盖没有正确拧紧，丢失或故障，则大
量燃料可通过蒸发而从燃料箱释放到大气中。

已知使用可取下的挡板和橡胶密封体来关闭燃料系统以作为主关闭阀或
次关闭阀来辅助关闭。该类型的已知组件包括金属管或套筒和适于容纳于套
筒中的塑料插入体或覆盖物。环形槽提供于塑料插入体的外表面上，且橡胶
密封体等在金属套筒的内表面和塑料插入体的外表面之间定位于凹槽中。通
过适当地发挥功能，该类型的组件可有效地使燃料系统的燃料损失减到最小。
然而，通过密封体及相关构件的老化、失效和劣化，插入体和外部套筒之间
的密封区域为蒸汽从燃料箱溢出提供了路径。即使小泄漏也可导致燃料的大
量损失以及环境污染。

还已知使用刚性密封物插入到漏斗管端部并将无盖加油关闭单元用于漏
斗管端部。因此，可知无盖加油系统复杂且成本高。此类系统的组件困难且
费时。维修分解性、整体性或耐撞性和整体密封效果在许多系统中不能令人
满意。
车辆耐碰性标准需要燃料系统在方式碰撞时保持结构整体性。这包括燃料箱、漏斗管和关体的整体性，因此，燃料不会漏出并产生火灾。这在连接端关体组件中是一挑战，因为燃料箱通常连接到车辆框架上且漏斗管延伸或延伸到在碰撞中损坏严重的外部挡泥板。即使漏斗管的外部部分沿漏斗管在其中延伸的车身大面积损坏，用于漏斗管的关体（从而成为用于燃料箱的关体）也必须保持其整体性和有效性。

技术所需的是包括有效的关阀组件的车辆燃料系统过滤器组件，关阀组件具有较小的潜在泄漏区域和外部关体，从而可以快速简单地组装，还可因耐碰性或所需维修而分离。

发明内容

本发明提供燃料关阀，其包括单件的外壳，外壳具有用于燃料供给喷嘴的入口且不具有其它需要密封的开口区域。关阀组件与外部关体配合从而成为易于连接的扣合组装，及因维修而拆卸且在碰撞时分离以保护漏斗管关体。

在本发明的一个方面中，本发明提供具有单件的外壳的燃料关阀组件，外壳形成出口和入口，且输出连接燃料系统，入口形成在其中接收燃料加油喷嘴的开口。外壳中的挡板门可相对外壳移动来打开和关闭入口。密封体放置于挡板门和入口之间。偏置装置使门推至压缩密封体的关闭位置。

在本发明的另一方面中，本发明提供制造主燃料系统关阀组件的方法，具有步骤：形成具有圆柱形壁的外壳，圆柱形壁具有开放端和闭合端，形成外壳的有限直径的喷嘴开口；将阀组件通过外壳的开放端插入外壳，和改造邻近开放端的圆柱形壁的至少一部分以减小其直径并产生连接汽车燃料系统的外壳出口。

在本发明的又一方面中，本发明提供组装无盖加油系统的方法，具有步骤：提供燃料系统关阀组件，包含具有入口的外壳，关闭入口的挡板门、位于挡板门和外壳之间的密封体和环，通过在环上接合可变形凸部来将基体固定于外壳；使遮盖体的凸部和基体的凸部交错接合；以及将保持环置于交错接合的凸部上，来固定交错接合的凸部的相对位置并将遮盖体组件锁定于基体。
在本发明的再一方面中，本发明提供汽车主燃料系统关闭阀组件的制造设备，具有：形成具有大体圆柱形壁的外壳的装置，圆柱形壁具有开放端和闭合端，形成外壳的有限直径的喷嘴入口；将阀组件通过外壳的开放端插入外壳的装置；和改造邻近开放端的圆柱形壁的至少一部分以减小其直径并产生连接汽车燃料系统的外壳出口的装置。

本发明的优点是提供燃料系统关闭阀组件，组件具有单件的外壳，外壳仅具有有限的通道以用于燃料加油喷嘴而没有其它开口，因而仅提供需要密封的较小区域以关闭燃料系统。

本发明的另一优点是提供燃料关闭阀组件，其缓解燃料箱内部和外部之间的不平衡压力条件。

本发明的又一优点是提供燃料系统关闭阀组件，其具有可方便快速组装的外壳组件。

本发明的再一优点是提供燃料关闭阀组件，其在加油结束时能够可靠地关闭。

本发明的最后一个优点是提供燃料关闭阀组件，其在车辆碰撞事件过程中保持密封体的整体性。

通过阅读以下的详细说明、权利要求和附图，本领域技术人员会明白本发明的其他特点和优点，图中相同的标记表示相同的部件。

附图说明

图 1 是根据本发明的燃料关闭阀组件的立体图。
图 2 是图 1 中所示的燃料关闭阀组件的剖视图。
图 3 是类似于图 2 的剖视图，但却表示经燃料关闭阀组件插入的燃料喷嘴。
图 4 是本发明的阀门的立体图。
图 5 是用于本发明的阀组件中的托架的立体图。
图 6 是阀组件的偏置弹簧的立体图。
图 7 是该阀组件中密封体的剖视图。
图 8 是本发明的可选择形式在第一制造步骤中的剖视图。
图 9 是类似于图 8 的剖视图，但却表示本发明的制造过程中的后继步骤。
图 10 是用于本发明的密封体的另一实施例的剖视图。
图 11 是具有外部关闭体或关闭体组件的关闭件组件在无盖加油系统中的立体图。
图 12 是本发明的用于无盖加油系统的最终组装的第一步骤的立体图。
图 13 是图 12 中所示的组件的剖视图。
图 14 是图 12 中所示的组件的剖视图，表示部件互相卡紧以适应地最终定向的结构。
图 15 是用于关闭件组件和遮盖体在无盖加油系统中组装的最终阶段的立体制图。
图 16 是图 15 中组件的组成部分视图。
图 17 是最终组装的部分立体图。
图 18 是用于本发明的阀组件中的托架的第二实施例的立体图。
图 19 是用于本发明的阀组件的第一实施例的立体图。

在详细说明本发明实施方案前，应当理解，本发明不限于应用在下述描述或图示的构造细节和部件配置中。本发明可以具有其他实施方案，并能以多种方式实施或执行。还应当理解，在此使用的措词和术语用于说明而不应当认为是限制。“包含”、“包含”及其变型的使用意味着包括此后所列对象及其等同物，以及另外的对象及其等同物。

具体实施方式

现在具体参照附图且特别参照图 1，标记 20 表示根据本发明的主燃料关闭件组件。阀组件 20 包括入口端 22，入口端 22 具有形成了插入燃料添加系统的燃料加油喷嘴 26（图 3）以用于给安装有阀组件 20 的车辆加油的环形入口 24。阀组件 20 的出口 28 与入口端 22 相对设置。如图 2 清晰所示，燃料关闭件组件 20 包括其中形成有入口 24 和出口 28 的外壳 30。提供阀组件 32 以用于在喷嘴 26 没有插入入口 26 时关闭入口 24。

外壳 30 是可由任意合适材料例如不锈钢、碳钢、冷轧钢或铝制造的单件结构。外壳 30 可由冲压或其它类似技术形成，其首先形成大体关闭且已完成的入口端 22 和大体打开的出口端 34，如图 8 所示，大体打开的出口端构造 34 为组件所需。阀组件 32 经大体打开的出口端构造 34 被插入到外壳 30。
中且在入口端 22 被固定于外壳 30 上。然后，出口端构造 34 被改造以形成其中具有出口 28 的已完成出口端 36（图 9）。出口端 36 通过合适的方式例如焊接、粘接等连接到燃料系统过滤管（未示出）。

适用于将打开的出口端 34 改造成已完成出口端 36 的处理包括在加压旋转形成的多个锥进操作。在最初的形成和改造处理中，外壳 30 中产生应力。为减小压力产生裂缝的可能性，外壳 30 的全部或一部分可进行退火。局部感应退火仅用于外壳 30 的被改造部分。多个退火步骤可用作最初的成形和改造产生。

在附图中所示的示例性实施例中，外壳 30 包括通过夹捏等形成的径向向外延伸的外环 38。外壳 30 包括大体关闭的端板 40，底部 40 形成了入口 24。凹部或扩展部 42 设于端板 40 中。在外壳 30 内部，环 38 和扩展部 42 分别形成了通道 44 和空腔 46，以用于阀门组件 32 的固定和操作，这将在后面进行详细描述。

阀门组件 32 包括挡板门 50，偏置元件 52 和托架 54。托架 54 固定于外壳 30 中，挡板门 50 和偏置元件 52 连接到托架 54 上并由托架 54 支撑以相对于出口 28 进行操作。

挡板门 50 为帽状形状且包括伸过入口 24 的杯形中心部分 56 以及中心部分 56 的周边凸缘 58。在凸缘 58 的外边缘设有铰臂 60 和滚动销铰元件 62，销铰元件 62 在臂 60 的末端横穿臂 60。中心部分 56 的尺寸和形状为从外壳 30 内部突出到入口 24 中。如图 1 所示，入口 24 形成从端板 40 的外表面突出的比中心部分 56 高的边缘以防止中心部分 56 在碰撞或其它情况下意外打开。

托架 54 是具有相对侧部 64、66 和相对侧部 64、66 之间的相对端 68、70 的框架状结构。一个或多个边缘元件 72 被设计成及布置成容纳于通道 44 中以将托架 54 固定于外壳 30 内。在附图所示的示例性实施例中，两个边缘元件 72 被表示为每个皆在侧部 64、66 和端部 68 之间位于角部连接器。端部 68 进一步形成支柱 74 来作为止部以用于挡板门 50 相对于托架 54 的移动。

托架 54 的端部 70 被设计成用于在操作位置处枢轴地支撑挡板门 50 和偏置元件 52，这将在下面进行更充分描述。端部 70 大体为拱形，且具有也被
设计成和布置成容纳于通道 44 中以用于将托架 54 定位和固定于外壳 30 中的顶点区域 76。一个或多个夹紧臂 78 相对于已组装的阀组件 20 的外壳 30 而在大体轴向上从端部 70 向外突出。在附图所示的示例性实施例中，提供了两个夹紧臂 78。空腔 46 形成了空间以用于容纳夹紧臂 78 的末端，从而将托架 54 相对于外壳 30 定向和定位。夹紧臂 78 容纳和保持挡板门 50 的铰销 62，从而允许挡板门 50 绕由销 62 形成的轴进行绕枢轴转动。

偏置元件 52 是双挠曲弹簧，确定弹簧尺寸以在挡板门 50 上提供适当的转矩从而密封挡板门 50 相对于入口 24 的接合。偏置元件 52 包括每个皆具有从其延伸的单个臂 84、86 的螺旋弹簧部分 80、82。分别来自弹簧部分 80、82 的腿部 88、90 由通用脚部元件 92 互相连接。在已组装的阀组件 20 中，脚部 92 放置为大体靠在中心部分 56 的中心处，从而弹力作用于挡板门 50 的中心处以便载荷均匀地分布于挡板门 50 上。因而，偏置元件 52 提供了在挡板门 50 和入口 24 之间在封闭区域内提供稳定且相等的密封力。臂 84、86 的末端部分 94、96 在已组装的阀组件 20 中分别放置为靠在外壳 30 上。因而，偏置元件 52 通过阀组件 20 在挡板门 50 和外壳 30 之间起到接地路径的作用，从而在加油操作中经喷嘴 26 传递到挡板门 50 的储存静电可经阀组件 20 导向地下。因此减小了燃料蒸汽被静电释放点燃的风险。

在图 7 的示例性的实施例中，密封体 100 功能性地布置于入口 24 和挡板门 50 之间。密封体 100 是人造的橡胶状环形体，且形成环形槽 102。入口 24 具有向内延伸的环部 104。密封体 100 通过按压密封体 100 从而使环部 104 滑入环形槽 102 中而连接到入口 24。密封体 100 的环形尾部元件 106 密封地与挡板门 50 的凸缘 58 接合以在入口 24 处在挡板门 50 和外壳 30 之间建立主密封区域。密封体 100 的环形凸边 108 顶住中心部分 56 的外表面，从而也提供最初的外部密封以防止水和污染物进入尾部元件 106 建立的主密封。

在随后进一步描述的实施例中，外壳 30 的表面 110 提供导引面，喷嘴 26 在加油操作中可依靠该导引面滑动以被导引到出口 28。然而，也可在外壳 30 内提供单独结构以用于导引喷嘴 26。图 8 和图 9 表示提供锥形体 120 以作为从托架 54 的延伸部。锥形体 120 可以是大体连续的插入体，或可以提供为附图中所示的大体纵向间隔地延伸的带状体 122 和端部环 124 的结构。
图 10 表示在门 50 下面是紧固于外壳 30 上的密封元件 130 的可选择实施例。密封体 103 大体为 Y 形，且具有中心主干 132 和从其延伸的相对定向的分支 134。密封体 130 绕挡板门 50 的中心部分的外边缘提供，中心部分 56 可包括环形轴部 138 以在轴部 138 和凸缘 58 之间形成区域来容纳密封体 130。当挡板门 50 被支撑于关闭位置时，分支 134、136 顶住凸缘 58 和临近入口 24 的端板 40 的内表面而建立密封。

图 10 也表示偏置元件 150 的可选择实施例单个弹性部分 152 具有与端板 40 接触的臂 154 和与凸缘 58 接触的腿部 156。凸缘 58 具有突出部 158 以用于将腿部 156 在适当位置处靠凸缘 58 支撑。挡板门铰臂 160 形成了可转动地接纳于在外壳 30 上支撑的销 164 上的钩端 162。

在使用主燃料关闭阀组件 20 时，当拧紧 26 相对于挡板门 50 推动时应力作用于挡板门 50 上。来自偏置元件 52 的应力被克服且挡板门 50 绕枢轴转动打开以允许拧紧 26 完全进入。当加油结束时，抽出拧紧 26，偏置元件 52 使挡板门 50 绕枢轴转动关闭。由偏置元件 52 施加足够的应力以便在挡板门 50 和外壳 30 之间由密封体 100 或密封元件 130 产生有效密封。既然外壳 30 是无接缝的，连续的主体，那么不存在泄漏的潜在路径。

作用来自偏置元件 52 的应力以在燃料箱（然后是外壳 30）中的压力和周围环境压力之间实现压力平衡。由于燃料从燃料箱中被取走，所以可产生比周围环境压力稍低的压力。挡板门 50 的相对两侧所经受的压差导致挡板门 50 轻微短暂的运动。该被控制的“泄漏”是定向的，即从周围环境到外壳 30 内部，以允许压力平衡。一旦且只要压差不足以克服来自偏置元件 52 的应力，则提供有效密封。

图 18 表示托架第二实施例 170。托架 70 具有板状主体 172，板状主体 172 可方便地由金属制造并形成了圆形开口 174。形成了开口 172 的主体 172 的边缘 176 可倾斜以支撑或与密封体（未示出）接合。从主体 172 伸出的腿部 178 绕主体 172 的周向提供并确定形状、尺寸并被设计成容纳于通道 44 中以用于将托架 170 固定于外壳 30 中。在图 18 的示例性实施例中，表示了三个腿部 178。主体 172 进一步形成可通过弯曲及切断主体 172 的一部分来形成的止部 180，如图所示。相对的，间隔的臂 182、184 分别形成杯状空腔 186、
188，以用于绕枢轴转动地支撑挡板门 190（图 19）。可提供多种形状、尺寸和位置的凹部 192，以增强主体 172，这对本地域技术人员来说易于理解。虽然示出三个凹部 192，但也可使用大于三个或少于三个的凹部 192。

挡板门 190（图 19）在形状上为类似于挡板门 50 的帽状。因此，挡板门 190 还包括杯状中心部分 56 以用于从开口 174 和入口 24 突出，且周围凸缘 58 绕中心部分 56。在凸缘 58 外部边缘附近，提供了铰臂 60 和滚动销铰元件 194，销元件 194 在臂 60 的末端横穿臂 60。销元件 194 足够长以在杯状空腔 186，188 之间延伸并在杯状空腔 186，188 中可转动地容纳。

在完全组装的无盖加油系统 200（图 11）中，主燃料关闭阀组件 20 连接到其中具有在喷嘴 26 插入时将滑走的可滑动的橡胶圆盘 212 的遮盖体组件 210 上。图 11－17 表示组装无盖加油系统 200 的方式。在所示的示例性实施例中，在遮盖体组件 210 和主燃料关闭阀组件 20 之间提供有基体 214。基体 214 是的大体为板状结构，其具有大体位于其中心的穴 216 以对其主燃料关闭阀组件 20 的入口 24。基体 214 中的凸出部分 218 的尺寸和形状为扩展部 42 以用于精确地相对于主燃料关闭阀组件 20 来定位基体 214。卡紧凸部 220 提供于基体 214 的圆周且提供在壳外 30 上与环 38 的卡紧式接合。为了清楚，一些但不是全部卡紧凸部 220 在附图中标以相同参考标记。通过控制部 42 位于凸出部分 218（图 14）中，且卡紧凸部 220 接合环 38，基体 214 固定地且准确地相对于主燃料关闭阀组件 20 定位。

图 13 的缝的剖视图中表示了一个卡紧凸部 220。卡紧凸部 220 包括在卡紧凸部 220 末端倾斜向下的悬挂挂钩 222。当将基体 214 推向环 38 时，挂钩 222 上的倾斜导引面迫使卡紧凸部 220 向上弯曲。一旦卡紧凸部 220 且特别是其挂钩 222 经过环 38，卡紧凸部 220 恢复到未弯曲位置且挂钩 222 限制基体 214 从主燃料关闭阀组件 20 拔出。卡紧凸部 220 的外表面上具有向外定向的限制部 224，其目的将在后面描述。

基体 214 进一步包括柱体 226 以用于可转动地容纳轴摆摇状橡胶圆盘 212 的臂。弹簧或其它装置与橡胶圆盘 212 相关以使其移向关闭位置，遮盖体组件 210 和橡胶圆盘 212 的内部结构不是本发明的一部分，且不需为完全理解本发明而进行描述，所以将不在此处赘述。
遮盖组件 210 也包括外部遮盖体 230，外部遮盖体 230 是具有大体轴向定向的开口 232 以与穴 216 和入口 24 对齐的杯状结构。橡胶圆盘 212 在遮盖体 230 内操作以在喷嘴 26 插入其中或从其中拔出时打开或关闭开口 232。

多个遮盖凸部 240 从杯状遮盖体 230 向外延伸并被设计成和布置成大体与基体 214 的卡紧凸部 220 交叉。环 242 通过易碎连接体 244 而连接到遮盖凸部 240 的端部。遮盖凸部限制部 246 设于遮盖凸部 240 的外端部分或末端部分。在装配过程中，遮盖体 230 滑过包括橡胶圆盘 212 的内部结构并沿基体 214 的外部边缘滑动，且遮盖凸部 240 与卡紧凸部 220 相交。当遮盖体 230 位于完全插入位置时，脆性连接体 244 破裂从而环 242 变松。然后，环 242 在内弯曲的遮盖凸部 240 上滑动。环 242 在遮盖凸部 240 上滑动直到其在卡紧凸部 220 上邻近限制部 224。环 242 将完全经过使遮盖凸部 240 向内弯曲的遮盖凸部止部 246。一旦遮盖凸部止部 246 完全经过环 242，则遮盖凸部 240 将回到非弯曲位置。在该点处，环 242 固定于遮盖凸部止部 246 和限制部 224 之间。在该方式下，遮盖体 230 固定地连接于基体 214 上。如果需要维护，则环 242 断裂以使遮盖体 230 可从基体 214 脱出。可使用尺寸和形状与环 242 类似的分离的，单独的环来在基体 214 上重新固定遮盖体 230。也可使用其它类型的软管夹等。在碰撞情况下，遮盖体组件 210 可从阀组件 20 断裂，这将保持关闭和密封以防止燃料泄漏。

前述的变动和修改都在本发明的范围之内。应当理解，在此公开和限定的发明可扩展到本文和/或附图提及或从中可明显得出的两个或多个独立特征的所有可选组合。所有这些不同的组合构成本发明的多个可选方面。在此描述的实施方案解释了实施本发明的已知最佳方式，并能使本领域技术人员应用本发明。应当认为权利要求包括了现有技术允许范围内的可选实施方案。本发明的各种特征列于随附的权利要求中。