(54) Title: LIQUID CARTRIDGE, LIQUID EJECTING DEVICE WITH THE LIQUID CARTRIDGE, AND METHOD FOR REFURBISHING THE LIQUID CARTRIDGE

FIG. 3

(57) Abstract: A liquid cartridge includes a liquid storing portion (42) configured to store liquid therein, a sealing member (50; 751) having elasticity and being configured to close an opening (43b) of the liquid storing portion (42), and a memory (141) storing an insertion number information from which a total insertion number, which is a total number of times the sealing member (50; 751) has been penetrated to provide a liquid communication through the sealing member (50; 751), can be derived, and storing a liquid ejecting device number information, from which the number of liquid ejecting devices (1) in which the sealing member (50; 751) has been penetrated, can be derived.
Title of Invention

LIQUID CARTRIDGE, LIQUID EJECTING DEVICE WITH THE LIQUID CARTRIDGE, AND METHOD FOR REFURBISHING THE LIQUID CARTRIDGE

Technical Field

[0001] The invention relates to a liquid cartridge storing liquid such as ink, a liquid ejecting device including the liquid cartridge and a main unit to which the liquid cartridge is detachably mounted, and a method for refurbishing the liquid cartridge.

Background Art

[0002] An ink cartridge including a non-volatile memory is disclosed in Japanese laid-open patent publication No. 2006-192792. The non-volatile memory stores the number of times the ink cartridge was mounted to and removed from a liquid ejecting device as a guideline for replacement of the ink cartridge.

Citation List

Patent Literature

PTL1: Japanese laid-open patent publication No. 2006-192792

Summary of Invention

[0003] In an ink cartridge having a sealing member which is penetrated during installation in a liquid ejecting device to provide a liquid communication through the sealing member, the lifetime of the sealing is not determined alone by the number of times the ink cartridge was mounted to and removed from a liquid ejecting device. Therefore, the maximum number of times the ink cartridge can be mounted and removed from a liquid ejecting device may vary in accordance with further circumstances.

[0004] It is, however, necessary to determine the maximum number of times the ink cartridge can be mounted and removed from a liquid ejecting device before ink may leak through the sealing member to warn the user from further use of the ink cartridge before ink may leak through the sealing member.

[0005] Therefore, in view of the above, it is the object of the invention to provide a liquid cartridge, a liquid ejecting device, and a method for refurbishing the liquid cartridge, with
which the potential of liquid leakage from the liquid cartridge can be reduced by determining more reliably the maximum number of times the ink cartridge can be mounted and removed from a liquid ejecting device before ink may leak through the sealing member.

[0006] The object of the present invention is attained by a liquid cartridge comprising: a liquid storing portion (42) configured to store liquid therein; a sealing member (50; 751) having elasticity and being configured to close an opening (43b) of the liquid storing portion (42); and a memory (141) storing an insertion number information from which a total insertion number, which is a total number of times the sealing member (50; 751) has been penetrated to provide a liquid communication through the sealing member (50; 751), can be derived, and storing a liquid ejecting device number information, from which the number of liquid ejecting devices (1) in which the sealing member (50; 751) has been penetrated, can be derived.

[0007] Preferably, the insertion number information comprises at least a first insertion number information indicating a first insertion number (a) which is a number of times the sealing member (50; 751) has been penetrated in a first liquid ejecting device (1) and a second insertion number information indicating a second insertion number (b) which is a number of times the sealing member (50; 751) has been penetrated in a second liquid ejecting device (1).

[0008] Preferably, the insertion number information comprises the total insertion number.

[0009] Preferably, the memory (141) further storing a first maximum insertion number information from which a first maximum insertion number (X) can be derived which is a maximum number of times the sealing member (50; 751) can be penetrated without breakage in one liquid ejecting device (1) if the sealing member (50; 751) is penetrated only in this one liquid ejecting device (1).

[0010] Preferably, the memory (141) further storing a second maximum insertion number information from which a second maximum insertion number (Y) can be derived which is a maximum number of times the sealing member (50; 751) can be penetrated without breakage in each one of two liquid ejecting devices (1), respectively, if the sealing member (50; 751) is penetrated only in each one of these two liquid ejecting devices (1), respectively.

[0011] Preferably, the memory (141) further storing a third maximum insertion number information from which a third maximum insertion number can be derived which is a maximum number of times the sealing member (50; 751) can be penetrated without breakage in each one of three liquid ejecting devices (1), respectively, if the sealing member (50; 751)
is penetrated only in each one of these three liquid ejecting devices (1), respectively.

[0012] Preferably, the third maximum insertion number is one.

[0013] Preferably, the maximum insertion number (X, Y) decreases with increasing number of liquid ejecting devices (1) in which the sealing member (50, 751) is penetrated.

[0014] Preferably, the sealing member (50, 751) is capable of being penetrated at different positions.

[0015] Preferably, the liquid cartridge further comprises a sensor (70) configured to detect the penetration of the sealing member (50, 751).

[0016] Preferably, the liquid cartridge further comprises a movable member (62, 752), wherein the sensor (70) is configured to detect the penetration of the sealing member (50, 751) by detecting the position of the movable member (62, 752).

[0017] Preferably, the liquid ejection device number information comprises an identification number (ID1, ID2) of each liquid ejection device (1) in which the sealing member (50, 751) has been penetrated.

[0018] The object of the present invention is attained by a liquid ejection device comprising: the liquid cartridge (40) described above; and a main unit, wherein the main unit comprises: a mount portion (C) in which the liquid cartridge (40) is mounted; a liquid ejection head (2) configured to eject liquid supplied from the liquid storing portion (42) of the liquid cartridge (40) mounted in the mount portion (C); a hollow member (153) communicating with the liquid ejection head (2) and configured to be penetrated through the sealing member (50, 751) of the liquid cartridge (40) mounted in the mount portion (C) to provide fluid communication between the liquid storing portion (42) and the liquid ejection head (2).

[0019] Preferably, the main unit further comprises: a reading section (M33) configured to read information stored in the memory (141) of the liquid cartridge (40) mounted in the mount portion (C); and a writing section (M38) configured to write information into the memory (141) of the liquid cartridge (40) mounted in the mount portion (C); and a determining section (M36) configured to determine whether to provide a notification of a possibility of breakage of the sealing member (50, 751) of the liquid cartridge (40) mounted in the mount portion (C) based on the insertion number information, the liquid ejection device number information and a maximum insertion number information indicating a maximum insertion number, which is a maximum number of times the sealing member (50, 751) can be penetrated without breakage.
[0020] Preferably, the determining section (M36) is configured to determine whether to provide the notification by comparing the insertion number with the maximum insertion number (X, Y) depending on the liquid ejecting device number.

[0021] Preferably, the liquid ejecting device further comprising: a mount detection section (M31) configured to detect that the liquid cartridge (40) is mounted in the mount portion (C); and a moving control section (M32) configured to control the hollow member (153) to move between a non-penetrating position where the hollow member (153) is separated from the sealing member (50; 751) of the liquid cartridge (40) mounted in the mount portion (C) and a penetrating position where the hollow member (153) penetrates through the sealing member (50; 751), wherein the determining section (M36) is configured to make the determination when the mount detection section (M31) detects that the liquid cartridge (40) is mounted in the mount portion (C).

[0022] Preferably, the main unit further comprises a main unit memory (M39) storing an identification number associated with the main unit as a unique label of the liquid ejecting device (1).

[0023] The object of the present invention is attained by a method of refurbishing the liquid cartridge according to a method for refurbishing the liquid cartridge described above, the method comprising the steps of: providing the liquid cartridge (40) described above which is used; replacing the sealing member (50; 751) with a new sealing member (50; 751); injecting liquid into the liquid storing portion (42); and resetting the insertion number information and the liquid ejecting device number information stored in the memory (141) of the used liquid cartridge (40).

[0024] Preferably, the method further comprising the following steps: determining a maximum insertion number information indicating the first (X), second (Y) and third maximum insertion number in accordance with specifications of the new sealing member (50; 751); and writing the maximum insertion number information into the memory (141) of the liquid cartridge (40).

[0025] The inventor found out that the maximum number of times the ink cartridge can be mounted and removed from a liquid ejecting device before ink may leak through the sealing member depends not only on the characteristics of the ink cartridge and on the total number of penetrations of a sealing member, but also on the number of liquid ejecting devices in which the sealing member is penetrated. Therefore, the information stored in the memory of the ink cartridge enables to predict the maximum number of times the ink cartridge can be
mounted and removed from a liquid ejecting device before ink may leak through the sealing member more reliably.

[0026] In a preferred embodiment, the cartridge memory stores the maximum insertion number information. The maximum insertion number information depends on the characteristics of the sealing member of the liquid cartridge. If the characteristics of the sealing member are changed with a new sealing member having different characteristics, the maximum insertion number information has to be changed. If the maximum insertion number information is stored in the memory of the liquid cartridge, then there is no need for the user to do troublesome operation, e.g., rewrite the maximum insertion number information stored in the liquid ejecting device. Thus, without the need to do troublesome operation, the potential of liquid leakage from the liquid cartridge can be reduced.

[0027] Other objects, features, and advantages will be apparent to persons of ordinary skill in the art from the following detailed description of the invention and the accompanying drawings.

Brief Description of Drawings

[0028] For a more complete understanding of the present invention, and the needs satisfied thereby, reference is made to the following descriptions referring to the accompanying drawings. In the Figures:

[0029] Fig. 1 is a perspective view of an inkjet printer including an ink cartridge according to a first embodiment;

[0030] Fig. 2 is a schematic side view of the internal structure of the inkjet printer;

[0031] Fig. 3 is a perspective view of the ink cartridge;

[0032] Fig. 4 schematically illustrates the internal structure of the ink cartridge;

[0033] Fig. 5A is a partial cross sectional view of the ink cartridge wherein a hollow tube of the printer is not inserted into a plug of the ink cartridge and a valve is in a closed position;

[0034] Fig. 5B is a partial cross sectional view of the ink cartridge wherein the hollow tube of the printer is inserted into the plug of the ink cartridge and the valve is in an open position;

[0035] Fig. 6 is a partial cross sectional view taken along a line VI-VI of Fig. 5A;

[0036] Figs. 7A and 7B are schematic plan views illustrating how the ink cartridge is mounted to the printer;

[0037] Fig. 8 is a block diagram illustrating the electrical configuration of the ink
cartridge and the printer;

[0038] Fig. 9 is a graph illustrating relationship between a valve position and output values of a Hall device;

[0039] Fig. 10 is a flow chart illustrating steps performed by the controller of the printer according to the first embodiment;

[0040] Fig. 11 illustrates information stored in the memory of the ink cartridge according to the first embodiment;

[0041] Fig. 12 is a function block diagram illustrating sections of the controller according to the first embodiment;

[0042] Fig. 13 is a flow chart illustrating steps performed by the controller of the printer according to a second embodiment;

[0043] Fig. 14 is a flow chart illustrating operation of a controller of the printer according to a third embodiment;

[0044] Fig. 15 illustrates information stored in the memory of the ink cartridge mounted in the printer according to the third embodiment;

[0045] Fig. 16 is a function block diagram illustrating sections of the controller according to the third embodiment;

[0046] Fig. 17 is a flow chart illustrating steps performed by a controller of an inkjet printer according to a fourth embodiment;

[0047] Fig. 18A is a partial cross sectional view of an ink cartridge according to a fifth embodiment, similar to that of Fig. 5A;

[0048] Fig. 18B is a partial cross sectional view of the ink cartridge, similar to that of Fig. 5B;

[0049] Fig. 19 is a flow chart illustrating a method for manufacturing the ink cartridge according to the embodiments;

[0050] Fig. 20 is a flow chart illustrating a method for refurbishing the ink cartridge according to the embodiments; and

[0051] Fig. 21 shows a plug which was penetrated in different printers.

Description of Embodiments

[0052] Embodiments and their features and technical advantages may be understood by referring to Figs. 1 – 21, like numerals being used for like corresponding portions in the various drawings.
[0053] Referring to Figs. 1 and 2, a general structure of a liquid ejecting device, e.g., an ink jet printer 1, according to a first embodiment will be described.

[0054] The printer 1 comprises a main unit and ink cartridges 40 (see Fig. 2) configured to be mounted to the main unit. The main unit of the printer 1 comprises a housing 1a having substantially a rectangular parallelepiped shape. A sheet discharge portion 31 is provided at the top of the housing 1a. The housing 1a has three openings 10d, 10b, and 10c formed in one of its vertically extending outer faces. The openings 10d, 10b, and 10c are vertically aligned in this order from above. A sheet feed unit 1b and an ink unit 1c are inserted into the housing 1a though the openings 10b and 10c, respectively. The printer 1 comprises a door 1d fitted into the opening 10d and configured to pivot about a horizontal axis at its lower end. When the door 1d is pivoted to be opened and closed, the opening 10d is covered and uncovered. The door 1d is disposed facing a transporting unit 21 (see Fig. 2) in a primary direction.

[0055] Referring to Fig. 2, a general inner structure of the printer 1 will be described.

[0056] The interior of the housing 1a is divided into spaces A, B, and C in the vertical direction in this order from above. Four ink jet heads 2, the transporting unit 21, and a controller 100 are disposed in the space A. The four ink jet heads 2 are configured to discharge inks of magenta, cyan, yellow, and black, respectively. The transporting unit 21 is configured to transport sheets P. The controller 100 is configured to control operations of each component of the printer 1. The sheet feed unit 1b is disposed in the space B, and the ink unit 1c is disposed in the space C. A sheet transport path along which sheets P are transported is formed in the housing 1a to extend from the sheet feed unit 1b toward the sheet discharge portion 31, as shown by bold arrows in Fig. 2.

[0057] The controller 100 comprises a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM) such as a nonvolatile RAM, and an interface. The ROM stores programs to be executed by the CPU, and various fixed data. The fixed data includes a printer ID, which is assigned to the printer as its unique label. The printer can be distinguished from other printers by reading its printer ID. The RAM temporarily stores data, e.g., image data, necessary for the CPU to execute programs. The controller 100 receives data from a memory 141 (see Fig. 4) of a liquid cartridge, e.g., an ink cartridge 40, transmits and receives data to and from a sensor unit 70 (see Fig. 5A/B) and the memory 141 of the ink cartridge 40, and transmits and receives data to and from an external device, e.g., a personal computer connected to the printer 1.
The sheet feed unit 1b comprises a sheet feed tray 23 and a sheet feed roller 25. The sheet feed tray 23 is configured to be detachably attached to the housing 1a in the primary direction. The sheet fed tray 23 is a box open upward and configured to store sheets P of different sizes. The sheet feed roller 25 is configured to feed out the topmost sheet P in the sheet feed tray by being driven by a sheet feed motor 125 (see Fig. 8) that is controlled by the controller 100. The sheet P fed out by the sheet feed roller 25 is sent to the transporting unit 21 while being guided by guides 27a and 27b and nipped by a feed roller pair 26.

The transport unit 21 comprises two belt rollers 6 and 7, and an endless transport belt 8 wound around the belt rollers 6 and 7. The belt roller 7 is a driving roller configured to rotate in the clockwise direction in Fig. 2 when a shaft of the belt roller 7 is driven by a transport motor 127 (see Fig. 8) controlled by the controller 100. The belt roller 6 is a driven roller configured to rotate in the clockwise direction in Fig. 2 along with the running of the transport belt 8 caused by the rotation of the belt roller 7.

A platen 19 having substantially a rectangular parallelepiped shape is disposed within the loop of the transport belt 8. An outer surface 8a of the transport belt 8 at an upper portion of the loop faces lower surfaces 2a of the ink jet heads 2, and extends in parallel with the lower surfaces 2a with a slight gap formed between the lower surfaces 2a and the outer surface 8a. The platen 19 supports an inner surface of the transport belt 8 at the upper portion of the loop 8. The lower surface 2a of each ink jet head 2 is a discharge surface where multiple discharge nozzles for discharging ink are formed.

A silicone layer having a low adhesive property is formed on the outer surface 8a of the transport belt 8. The sheet P fed out from the sheet feed unit 1b toward the transport unit 21 is pressed by a pressing roller 4 against the outer surface 8a of the transport belt 8. While being held on the outer surface 8a by the adhesive property, the sheet P is transported in a secondary direction as shown by the bold arrows.

The secondary direction is parallel with a transporting direction in which the transporting unit 21 transports the sheet P. The primary direction is a direction perpendicular to the secondary direction. Each of the primary direction and the secondary direction is a horizontal direction.

When the sheet P held on the outer surface 8a of the transport belt 8 passes immediately below the four ink jet heads 2, the ink jet heads 2 discharge inks of respective colors from the lower surfaces 2a sequentially, thereby forming a desired color image on the
sheet P. A separating plate 5 is configured to separate the sheet P from the outer surface 8a of the transport belt 8. The sheet P is transported upward while being guided by guides 29a, 29b and being nipped by two pairs of transport rollers 28, and is discharged onto the sheet discharge portion 31 from an opening 30 formed at the top of the housing 1a. One roller of each transport roller pair 28 is driven by a feed motor 128 (see Fig. 8) controlled by the controller 100.

[0064] The head 2 is a line type head elongated in the primary direction and has substantially a rectangular parallelepiped shape. The four heads 2 are arranged with a predetermined pitch in the secondary direction and are supported by the housing 1a via a frame 3. A joint is disposed at an upper surface of each head 2 for receiving a flexible tube, and multiple discharge nozzles are formed in the lower surface 2a of each head 2. An ink path is formed inside each head 2 such that ink supplied from a corresponding ink cartridge 40, via a corresponding tube and a corresponding joint, flows to corresponding discharge nozzles.

[0065] The ink unit 1c comprises a cartridge tray 35, and four ink cartridges 20 arranged in the ink cartridge tray 35. The ink cartridge 40 at the leftmost position in Fig. 2 stores black ink, and has a greater size in the secondary direction and a greater ink capacity than the other three ink cartridges 40. The other three ink cartridges 40 have the same ink capacity, and store magenta, cyan, and yellow ink, respectively. The ink stored in each ink cartridge 40 is supplied, via a corresponding tube and a corresponding joint, to a corresponding head 2.

[0066] The ink cartridge tray 35 is detachably attached to the housing 1a in the primary direction in a state where the ink cartridges 40 are disposed in the ink cartridge tray 35. Accordingly, the ink cartridges 40 in the ink cartridge tray 35 can be replaced with a new one selectively in a state where the ink cartridge tray 35 is detached from the housing 1a.

[0067] Referring to Figs. 3 to 6, a structure of the ink cartridge 40 will be described. The four ink cartridges 40 to be disposed in the ink cartridge tray 35 have the same structure except that the black ink cartridge has a greater size in the secondary direction and a greater ink capacity than the other three ink cartridges.

[0068] The ink cartridge 40 comprises a housing 41, a reservoir 42 as an example of a liquid storing portion, an ink outlet tube 43, a plug 50 as an example of a sealing member, a valve 60, the sensor unit 70, the memory 141, a contact 142, and an electric power input portion 147.

[0069] As shown in Fig. 3, the housing 41 has substantially a rectangular parallelepiped
shape. The dimension of the housing 41 in a first direction is greater than the dimension of the housing 41 in a second direction, and the dimension of the housing 41 in the second direction is greater than the dimension of the housing in a third direction. The first direction, the second direction, and the third direction are perpendicular to each other.

When the ink cartridge 40 is mounted in the ink cartridge tray 35 of the printer 1, the first dimension is aligned with the primary direction, the second direction is aligned with the secondary direction, and the third direction is aligned with the vertical direction.

[0070] Referring to Fig. 4, the interior of the housing 41 is divided into two chambers 41a and 41b in the first direction. The reservoir 42 is disposed in the right chamber 41a, and the ink outlet tube 43 is disposed in the other chamber 41b.

[0071] The reservoir 42 is a bag-shaped member for storing ink therein and is disposed in the housing 41. The reservoir 42 has an opening to which one end of the ink outlet tube 43 is connected.

[0072] The ink outlet tube 43 defines a liquid path, e.g., an ink outlet path 43a for discharging the ink stored in the reservoir 42 to the head 2.

[0073] As shown in Fig. 4, the other end of the ink output tube 43 protrudes from the housing 41 of the cartridge 40. The ink outlet tube 43 has an opening 43b at a side opposite to the reservoir 42. The plug 50 is made of an elastic material, e.g., rubber, and is disposed in a compressed state at the end of the ink outlet tube 43 such that the plug 51 closes the opening 43b of the ink outlet path 43a (see Fig. 5A). A cap 46 is disposed at the other end of the ink outlet tube 43 and outside the plug 50. The cap 46 has an opening 46a formed substantially in its center. A surface, which is an opposite side of a surface facing the valve 60, of the plug 50 is partially exposed through the opening 46a.

[0074] As shown in Figs. 5A and 5B, the valve 60 is disposed in the ink outlet path 43a, and comprises an O ring 61 and a valve body 62.

[0075] As shown in Figs. 5A, 5B and 6, the valve body 62 is a cylindrical-shaped magnetic body having an axis extending in the first direction.

[0076] As shown in Fig. 6, the ink outlet tube 43 has a substantially cylindrical-shape. The valve body 62 is disposed at a portion in the ink outlet tube 43. The portion of the ink outlet tube 43 comprises flat top and bottom walls and curved side walls. The portion of the ink outlet tube 43 is elongated in the second direction in cross section which extends in a direction perpendicular to the first direction. Protrusions 43p are provided at inner surfaces of the respective side walls of the ink outlet tube 43 in the second direction so as to protrude
toward the inside of the ink outlet tube 43. Each protrusion 43p extends along the first
direction within an area in which the valve body 62 is movable. The valve body 62 is held
by the protrusions 43p and the top and bottom walls of the ink outlet tube 43 such that the
valve body 62 is positioned substantially at the center of the ink outlet tube 43a when viewed
in cross-section. A flow path is defined by a gap between the valve body 62 and the ink
outlet tube 43 at a portion where the valve body 62, the protrusions 43p and the top and
bottom walls of the ink outlet tube 43 do not contact with each other.

[0077] The O-ring 61 is made of an elastic material, e.g., rubber. The O-ring 61 is fixed
to a surface, facing the plug 50, of the valve body 62.

[0078] The valve 60 is urged toward an opening 43y by a coil spring 63. The coil spring
63 is fixed, at its one end, to one end of the ink outlet tube 43, and is, at its other end, in
contact with the other surface of the valve body 62.

[0079] As shown in Fig. 5A, the ink outlet tube 43 comprises a valve seat 43z that
protrudes toward the center of the diameter of the ink outlet tube 43 from one end (which is
provided near the opening 43b) of a narrowed portion 43x. When the valve 60 is in a closed
position where the valve 60 closes the ink outlet path 43a, the O ring 61 is in contact with
valve seat 43z such that the opening 43y at one end of the narrow portion 43x is blocked.
With this structure, fluid communication between the reservoir 42 and the outside of the ink
cartridge 40 via the ink outlet path 43a is blocked. At this time, the O ring 61 becomes
elastically deformed due to the urging force of the coil spring 63.

[0080] The sensor unit 70 includes a Hall device 71 and a magnet 72.

[0081] The magnet 72 produces a magnetic field.

[0082] The Hall device 71 is a magnetic sensor that detects a magnetic field of the
magnet 72, converts the detected magnetic field into an electrical signal and outputs the
electrical signal to the controller 100 via the contact 142. In this embodiment, the Hall
device 71 is configured to output a signal indicating a voltage proportional to the magnitude
of a magnetic field varying in accordance with the movement of the valve body 62, to the
controller 100.

[0083] As shown in Fig. 5A, the Hall device 71 is disposed at a position where the Hall
device 71 is capable of detecting the magnetic field produced by the magnet 72 and the valve
body 62 (see Fig. 5A).

[0084] As shown in Fig. 5A, the Hall device 71 and the magnet 72 are fixed to the top
wall and the bottom wall of the ink outlet tube 43, respectively, facing each other in the third
direction.

[0085] When the valve 60 is in the closed position, the Hall device 71 and the magnet 72 face each other while sandwiching the valve body 62 there between, i.e., the valve body 62 is interposed between the Hall device 71 and the magnet 72. In this state, the magnetic filed produced by the magnet 72 efficiently reaches the Hall device 71 via the valve body 62. Accordingly, the Hall device 71 detects a high magnetic field magnitude and outputs a signal indicating a high voltage.

[0086] While the valve 60 moves from the closed position shown in Fig. 5A to an open position shown in Fig. 5B where the ink outlet path 43a is open, the magnetic field strength detected by the Hall device 71 becomes lower in accordance with the movement of the valve body 62 to the position where the valve body 62 does not face the Hall device 71 and the magnet 72 in the vertical direction, i.e., the valve body 62 is not positioned between the Hall device 71 and the magnet 72. Thus, the voltage indicated by a signal outputted from the Hall device 71 becomes lower.

[0087] The controller 100 determines whether the valve 60 is in the open position or closed position based on the voltage indicated by the signal received from the Hall device 71.

[0088] The ink cartridge 40 may be mounted in a printer and then removed therefrom. After that, the ink cartridge 40 may be mounted in the same printer again or mounted in another printer.

[0089] For example, an assumption is made that there are two printers, a first printer 1 and a second printer 1, which are located away from each other and the ink cartridge 40 is mounted in the first printer 1. When the second printer 1 is used, the ink cartridge 40 is removed from the first printer 1 and mounted in the second printer 1. When the first printer 1 is used again, the ink cartridge 40 is removed from the second printer 1 and mounted in the first printer 1.

[0090] If the mounting and removing of the ink cartridge 40 relative to one printer or among plural printers is frequently carried out, a significant load may be placed on the plug 50 of the ink cartridge 40. When the number of times of the mounting and removing of the ink cartridge 40 exceeds a predetermined number of times, a crack may be created in the plug 50 of the ink cartridge 40 thereby forming a wide hole from which ink may leak.

[0091] The position of a hole to be formed in the plug 50 (or the position of the plug 50 at which the hollow tube 153 penetrates the plug 50) may be slightly different in different printers because there is a printer-to-printer variation in the hollow tube position and the
position where the cartridge is mounted. When the plug is penetrated in three different
printers, the following situation described with reference to Fig. 21 may occur. Plug 50
shown in Fig. 21 was first penetrated in two different printers. Accordingly, two holes 201
and 202 are formed in the plug at different positions. The two holes 201 and 202 are
separated from each other only by a thin portion of the plug there between. If the plug is now
penetrated in a third printer at a position 203 between the two holes 201 and 202, then the
hole formed by penetration of the plug 50 in the third printer can disrupt the thin portion
of the plug 50 between the two holes 201 and 202 such that one big hole is formed which can
not be closed by elasticity of the plug anymore. In this case, the penetration of the plug 50 in
three different printers leads to leakage of ink when the hollow tube 153 is removed after the
penetration in the third printer 1. As long as the hollow tube 153 penetrates the plug in the
third printer at the position 203, the elasticity of the plug can, however, still prevent and ink
leakage through holes 201 and 202.

[0092] The invention overcomes the above problem by storing characteristic information
in the memory 141 as described in more detail below with reference to Fig. 11.

[0093] As shown in Fig. 11, the memory 141 of the ink cartridge 40 mounted in the
printer of the first embodiment includes a ROM area, e.g. an EEPROM, and a RAM area,
wherein a first table is stored in the RAM area and a second table is stored in the ROM area.

[0094] The first table stores printer IDs and an insertion number. In the first table, the
printer IDs are not associated with the insertion number. The printer IDs stored in the first
table are an example for liquid ejecting device number information, from which the number
of printers 1 in which the plug 50 has been penetrated by a hollow tube 153, can be derived.
The insertion number stored in the first table is an example for insertion number information
from which a total insertion number, which is a total number of times the plug 50 has been
penetrated to provide a liquid communication through the plug 50, can be derived.

[0095] The second table stores the number of printer IDs and maximum insertion
numbers, which are associated with each other in a one-to-one relationship.

[0096] Each printer has a printer ID to identify the printer, and the printer ID of the
printer 1 is stored in the ROM of the controller 100. The number of printers in which the
plug 50 was penetrated is equal to the total number of printer IDs stored in the first table. It
is noted that "printers" of "the number of printers in which the plug 50 was penetrated" are
unique and different from each other. If the ink cartridge 40 was mounted in the same
printer again and again, and the plug 50 was penetrated each time after mounting of the ink
cartridge, the number of printers in which the plug 50 was penetrated is still 1.

[0097] As discussed above, the position of a hole to be formed in the plug 50 (or the position of the plug 50 at which the hollow tube 153 penetrates the plug 50) may be slightly different in different printers because there is a printer-to-printer variation in the hollow tube position and the position where the cartridge is mounted. Thus, each printer ID corresponds to a position of the plug 50 at which the hollow tube 153 penetrates the plug 50. The number of printer IDs corresponds to the number of printers and the number of positions of the plug 50 at which the hollow tube 153 of each printer has penetrated the plug 50.

[0098] In an example shown in Fig. 11, the first table stores that the ink cartridge 40 has been mounted to a total of two printers ID1 and ID2 in which the plug 50 was penetrated, and that the hollow tubes 153 of the printers ID1 and ID2 penetrated the plug 50 a total of “a” times. The second table stores the number of IDs, 1, 2, and 3 and the maximum insertion numbers X, Y, and 0 (zero) associated with these numbers of IDs, respectively. The maximum insertion numbers X, Y, and 0 (zero), are different from each other (X > Y > 0). Specifically, the maximum insertion number decreases with increasing number of IDs, that is the number of liquid ejecting devices in which the sealing member is penetrated.

[0099] The maximum insertion number X is a first maximum insertion number which is a maximum number of times the plug 50 can be penetrated without breakage (resulting in leakage of ink) in one printer if the sealing member 50 is penetrated only in this one printer 1. The maximum insertion number Y is a second maximum insertion number which is a maximum number of times the plug 50 can be penetrated without breakage in each one of two liquid ejecting devices 1, respectively, if the plug 50 is penetrated only in each one of these two printers 1, respectively.

[00100] Referring to Figs. 5 - 9 and 11, steps for mounting the ink cartridge 40 will be described. In Fig. 8, electric power supply lines are shown in thick lines, and signal lines are shown in thin lines.

[00101] Before the ink cartridge 40 is mounted in the printer 1, as shown in Fig. 5A, the hollow tube 153 is not inserted into the plug 50 (i.e. penetrated through the plug 50), and the valve 60 is maintained in the closed position. At this stage, electrical connections, shown in Fig. 8, between the contact 142 and a contact 152 and between the electric power input portion 147 and an electric power output portion 157, are not yet established. Thus, no signals are transmitted between the ink cartridge 40 and the printer 1, and no electric power is supplied to the sensor unit 70 and the memory 141.
[00102] In order to mount the ink cartridge 40 to the printer 1, the ink cartridge 40 is placed together with other ink cartridges 40 in the ink cartridge tray 35 (see Fig. 2) of the printer 1, and the ink cartridge tray 35 is inserted into the space C of the housing 1a in the primary direction (in a direction shown by an open arrow in Fig. 7A). At this time, as shown in Fig. 7A, the contact 142 of the ink cartridge 40 first makes contact with the contact 152 of the printer 1 to establish electric connection between the ink cartridge 40 and the printer 1. This allows the ink cartridge 40 and the printer 1 to transmit and receive signals therebetween. The contact 152 is formed on a wall surface defining the space C in the housing 1a and functions as an interface of the controller 100.

[00103] At substantially the same time when the contact 142 makes contact with the contact 152, the electric power input portion 147 of the ink cartridge 40 makes contact with the electric power output portion 157 of the printer 1 to establish electric connection therebetween, as shown in Fig. 7A. Accordingly, as shown in Fig. 8, electric power is supplied from the electric power source 158 via the electric power input portion 147 and the electric power output portion 157 to the sensor unit 70 and the memory 141.

[00104] The electric power source 158 is disposed in the housing 1a and supplies electric power to each component of the printer 1. The electric power output portion 157 is electrically connected to the electric power source 158 and is disposed on the wall surface defining the space C in the housing 1a at a position facing the electric input portion 147 of the ink cartridge 40 (see Figs. 7A and 7B). The electric power input portion 147 is electrically connected to the sensor unit 70 and the memory 141, and is disposed on an outer exposed surface of the housing 41 at a position adjacent to the contact 142. The contact 152 and the electric power output portion 157 are provided for each of the ink cartridges 40 placed on the ink cartridge tray 35.

[00105] In a state shown in Fig. 7A, the ink cartridge 40 is spaced away from the hollow tube 153, and the reservoir 42 is not in fluid communication with the ink path of the head 2. In other words, the hollow tube 153 is located in the non-penetration position (Fig. 7A) away from the plug 50 of the ink cartridge 40 mounted in the space C.

[00106] The hollow tube 153 is fixed to a base portion 154 configured to move in the primary direction relative to the housing 1a, and is in fluid communication with a tube attached to the joint of the head 2. The hollow tube 153 and the contact 152 are provided for each of the ink cartridges 40 placed in the ink cartridge tray 35.

[00107] The printer 1 includes a mount detection switch 159 (see Fig. 8), which is
configured to detect when the ink cartridge 40 has been mounted in a predetermined position in the space C (where the contact 142 contacts the contact 152 and the electric power input portion 147 contacts the power output portion 157 as shown in Fig. 7A, in this embodiment). The mount detection switch 159 is configured to send, to the controller 100, an ON signal when the printer 1 and the ink cartridge 40 are electrically connected and an OFF signal when the printer 1 and the ink cartridge 40 are not electrically connected.

[00108] As shown in Fig. 10, the controller 100 determines in step S31 whether the ink cartridge 40 is mounted in the predetermined position in the space C based on a signal received from the mount detection switch 159.

[00109] When the controller 100 detects in step S31 that the ink cartridge 40 is mounted in response to receipt of the ON signal from the mount detection switch 159 (S31: Yes), the controller 100 controls in step S32 a moving mechanism 155 (see Fig. 8) to move the base portion 154 in the primary direction (in a direction shown by a solid arrow in Fig. 7B) along with the hollow tube 153 supported by the base portion 154.

[00110] In step S32, the hollow tube 153 starts to move from the non-penetration position (Fig. 7A) to a penetration position (Fig. 7B) in which the hollow tube 153 penetrates through the plug 50. At this time, as shown in Fig. 5B, the hollow tube 153 penetrates through approximately a center of the plug 50 via the opening 46a in the primary direction, so that a hole is formed in the plug 50. Thus, an opening 153b formed near the tip of the hollow tube 153 is disposed in the ink outlet path 43a, and the inlet path 153a in the hollow tube 153 is in fluid communication with the ink outlet path 43a. Although a hole is formed in the plug 50 by the hollow tube 153. Therein, this hole in the plug 50 tends to be closed around the hollow tube 153 by elasticity of the plug 50. Thus, the potential for ink leakage between the hole in the plug 50 and the hollow tube 153 can be reduced.

[00111] The tip of the hollow tube 153 contacts the valve body 62. As the hollow tube 153 is inserted further into the ink outlet path 43a, the valve body 62 moves together with the O ring 61, and the O ring 61 separates from the valve seat 43z (Fig. 5B). At this time, the valve 60 changes from the closed position to the open position.

[00112] When the valve 60 is in the open position, fluid communication between the reservoir 42 and the outside via the ink outlet path 43a is allowed. In other words, as shown in Fig. 5B, when the hollow tube 153 penetrates through the plug 50 and the valve 60 is in the open position, the reservoir 42 is in fluid communication with the ink path of each head 2 via the ink outlet path 43a and the inlet path 153a.
[00113] After step S32, the controller 100 reads in step S33 information (see Fig. 11) stored in the memory 141 of the ink cartridge 40.

[00114] After step S33, the controller 100 calculates in step S34 a total number of IDs stored in information read in step S33. In the example shown in Fig. 11, the controller 100 calculates that the total number of IDs is 2.

[00115] After step S34, the controller 100 determines in step S35 whether the information read in step S33 includes an ID stored in the ROM of the controller 100. When the controller 100 determines that the information read in step S33 includes the ID stored in the ROM (S35: Yes), the controller 100 proceeds to step S37. When the controller 100 determines that the information read in step S33 does not include the ID stored in the ROM (S35: No), the controller 100 calculates in step S36 a number by adding one to the number of IDs calculated in step S34 and then proceeds to step S37.

[00116] In step S37, the controller 100 identifies a maximum insertion number that is associated with the number calculated in step S34 or S36 from the maximum insertion number information read in step S33. For example, when the printer has ID1 and the ink cartridge 40 having the memory 141 that stores the information shown in Fig. 11 is mounted in the printer, the controller 100 determines in step S35 that the information read in step S33 includes the printer ID1 (S35: Yes), and identifies in step S37 the maximum insertion number "Y" associated with the number (the total number of IDs = 2) calculated in step S34.

[00117] After step S37, the controller 100 determines in step 38 whether a number "a+1", which is made by adding one to the number "a" representing the insertion number stored in the insertion number information read in step S33, exceeds the maximum insertion number identified in step S37. When the number "a+1" does not exceed the number "X" (S38: No), the controller 100 determines in step S41 whether the valve 60 is in the open position based on a value output from the Hall device 71.

[00118] Fig. 9 is a graph illustrating relationship between the amount of movement of the valve 60 and output values of the Hall device 71. The horizontal axis of the graph represents the amount of movement of the valve 60 in a direction away from the plug 50 from the closed position shown in Fig. 5A along the primary direction. In this embodiment, the controller 100 determines that, when the output value of the Hall device 71 is smaller than or equal to a threshold Vt the valve 60 is in the open position.

[00119] If a predetermined time has elapsed with the valve 60 remaining in the closed position (S42: Yes), the controller 100 executes in step S39 error notification, and stops in
step S40 the operation of each components of the printer 1. In this case, it is assumed that
the ink cartridge 40 has a problem in, e.g., the sensor unit 70, the plug 50, or the valve 60, or
the printer 1 has a problem in, e.g., the hollow tube 153 or the moving mechanism 155.

[00120] When the controller 100 determines in step S41 that the valve 60 is in the open
position (S41: Yes), the controller 100 determines in step S43 whether the information read in
step S33 includes the ID stored in the ROM of the controller 100. When the controller 100
determines that the information read in step S33 includes the ID stored in the ROM (S43:
Yes), the controller 100 proceeds to step S45. When the controller 100 determines in step
S43 that the information read in step S33 does not include the ID stored in the ROM (S43:
No), the controller 100 writes in step S44 the ID stored in the ROM in the first table of the
memory 141, and then proceeds to step S45.

[00121] In step S45 the controller 100 writes the number “a+1” representing the insertion
number “a”, stored in the insertion number information read in step S33, plus one, into the
RAM area of the memory 141 as new insertion number information.

[00122] After step S45, the controller 100 executes in step 46 a recording control for
recording a color image on a sheet P, and ends the routine.

[00123] In the recording control in step 46, the controller 100 performs operation in
accordance with a color image recording direction received from an external device, e.g.,
controls to drive the sheet feed motor 125, the transport motor 127, the feed motor 128 (see
Fig. 8) and the heads 2.

[00124] When cartridges 40 are simultaneously mounted to the printer 1, the controller
100 executes the routine shown in Fig. 10 for each cartridge 40.

[00125] In order to remove the ink cartridge 40 from the printer 1, the ink cartridge tray 35
is removed from the housing 1a. At this time, each of the four ink cartridges 40 is separated
from the corresponding base portion 154, the corresponding contact 152, and the
corresponding electric power output portion 157. Electric connections between the contact
142 and the contact 152 and between the electric power input portion 147 and the electric
power output portion 157 are canceled. This disables transmission and reception of signals
between the ink cartridges 40 and the printer 1 and stops electric power supply from the
electric power source 158 to the sensor unit 70 and the memory 141. At this time, the signal
output from the mount detection switch 159 changes from ON to OFF. In addition, the ink
outlet tube 43 moves rightward in Fig. 5B, the hollow tube 153 is disconnected from the ink
outlet path 43a, and the valve 60 moves leftward in Fig. 5B due to the urging force of the coil
spring 63 and contacts the valve seat 43z. At this time, the valve 60 changes from the open position to the closed position. Then, the hollow tube 153 is disconnected from the plug 50. The hole formed in the plug 50 by the hollow tube 153 shrinks, due to elasticity of the plug 50, to such a degree that the potential for ink leakage is reduced.

[00126] When the controller 100 detects that the ink cartridge 40 is removed in response to receipt of the OFF signal from the mount detection switch 159, the controller 100 controls the moving mechanism 155 such that the hollow tube 153 moves from the penetration position (Fig. 7B) to the non-penetration position (Fig. 7A).

[00127] In the first embodiment, as shown in Fig. 12, the controller 100 includes a mount detection section M31 corresponding to step S31 of Fig. 10, a moving control section M32 corresponding to step S32, a reading section M33 corresponding to step S33, a calculating section M34 corresponding to steps S34 – S36, an identifying section M35 corresponding to step S37, a determining section M36 corresponding to step S38, a notifying control section M37 corresponding to step S39, a writing section M38 corresponding to steps S44 – S45, and a main unit memory M39 corresponding to the ROM of the controller 100.

[00128] Referring to Fig. 13, an inkjet printer according to a second embodiment will be described.

[00129] The printer of the second embodiment is identical in structure to the printer of the first embodiment except for the controls the controller 100 executes. The ink cartridges 40 of the first embodiment are mounted to the printer of the second embodiment.

[00130] In the second embodiment, the controller 100 first executes a step S51, which is similar to step S31 of Fig. 10. When the controller 100 determines in step S51 that the ink cartridge 40 has been mounted (S51: Yes), the controller 100 reads in step S52 information (see Fig. 11) stored in the memory 141 of the ink cartridge 40, before starting to move the hollow tube 153. After step S52, the controller 100 executes steps S53 – S57, which are similar to steps S34 – S38. When the number “a+1” representing the insertion number plus one does not exceed the maximum insertion number “X” (S57: No), the controller 100 executes a step S60, which is similar to step S32. After step S60, the controller 100 executes steps S61 – S66, which are similar to steps S41 – S46, and ends the routine.

[00131] The second embodiment is different from the first embodiment in the timing of movement of the hollow tube 153.

[00132] Referring to Figs. 14 - 16, an inkjet printer according to a third embodiment will be described.
[00133] The printer of the third embodiment is identical in structure to the printer of the first embodiment except for the control. The controller 100 executes and information stored in the memory 141 of the ink cartridge 40.

[00134] As shown in Fig. 15, the memory 141 of the ink cartridge 40 mounted in the printer of the third embodiment stores a first table in the RAM area and a second table in the ROM area.

[00135] In the third embodiment, the first table stores printer IDs and insertion numbers which are associated with each other in a one-to-one relationship. Specifically, the memory 141 stores the insertion numbers and the printer IDs and how they are associated with each other in the one-to-one relationship. Therein, the insertion number associated with a printer ID is the number of times, the plug 50 has been penetrated in the printer having that printer ID. The second table stores the number of printer IDs and maximum insertion numbers in the same way as shown in Fig. 11.

[00136] The printer IDs stored in the first table are an example for liquid ejecting device number information, from which the number of printers 1 in which the plug 50 has been penetrated by a hollow tube 153, can be derived. The first insertion number "a" stored in the first table is an example for a first insertion number information indicating a first insertion number which is a number of times the plug 50 has been penetrated in a first printer ID1, and the second insertion number "b" stored in the first table is an example for a second insertion number information indicating a second insertion number which is a number of times the plug 50 has been penetrated in a second printer ID2.

[00137] In Fig. 15, the first table stores that the ink cartridge 40 has been mounted to two printers ID1 and ID2 and that the plug 50 was penetrated a total of "a" times with the hollow tube 153 of the printer ID1 and a total of "b" times with the hollow tube 153 of the printer ID2.

[00138] In the third embodiment, as shown in Fig. 14, the controller 100 executes steps S71 - S77, which are similar to steps S31 - S37, respectively. After step S77, the controller 100 determines in step S78 whether the information read in step S73 includes an ID stored in the ROM of the controller 100.

[00139] When the controller 100 determines in step S78 that the information read in step S73 includes the ID stored in the ROM (S78: Yes), the controller 100 sets in step S79 a number made by adding one to an insertion number associated with the ID read in step S73 as a new insertion number "n". For example, when the printer has ID1 and the ink cartridge 40
having the memory 141 storing the information shown in Fig. 15 is mounted in the printer, the controller 100 sets, as a new insertion number “n”, a number “a+1” made by adding one to a number “a” representing the insertion number associated with the printer ID1 in the first table. Alternatively, when the printer has ID2 and the ink cartridge 40 having the memory 141 storing the information shown in Fig. 15 is mounted in the printer, the controller 100 sets, as a new insertion number “n”, a number “b+1” made by adding one to a number “b” representing the insertion number associated with the printer ID2 in the first table.

[00140] When the controller 100 determines that the information read in step S73 does not include the ID stored in the ROM (S78: No), the controller 100 sets in step S80 a new insertion number “n” to 1.

[00141] After step S79 or S80, the controller 100 determines in step S81 whether the insertion number “n” set in step S79 or S80 exceeds the maximum insertion number identified in step S77. Then, the controller 100 executes steps S82 – S86, which are similar to steps S39 – S43, respectively.

[00142] When the controller 100 determines in step S86 that the information read in step S73 includes the ID stored in the ROM (S86: Yes), the controller 100 writes in step S87 the number “a+1” or “b+1”, which is made by adding one to the insertion number “a” or “b” associated with the printer ID read in step S73, as a new insertion number associated with the printer ID, into the first table of the memory 141.

[00143] When the controller 100 determines in step S86 that the information read in step S73 does not include the ID stored in the ROM (S86: No), the controller 100 writes in step S88 the ID stored in the ROM and “1” as an insertion number associated with the printer ID into the first table of the memory 141.

[00144] After step S87 or S88, the controller 100 executes a step S89, which is similar to step S46 and ends the routine.

[00145] In the third embodiment, as shown in Fig. 16, the controller 100 includes a mount detection section M71 corresponding to step S71 of Fig. 14, a moving control section M72 corresponding to step S72, a reading section M73 corresponding to step S73, a calculating section M74 corresponding to steps S74 – S76, an identifying section M75 corresponding to step S77, a setting section M76 corresponding to steps S79 and S80, a determining section M77 corresponding to step S81, a notifying control section M78 corresponding to step S82, a writing section M79 corresponding to steps S87 and S88, and a main unit memory M80 corresponding to the ROM of the controller 100.
[00146] Referring to Fig. 17, an inkjet printer according to a fourth embodiment will be described.

[00147] The printer of the fourth embodiment is identical in structure to the printer 1 of the third embodiment except for the controls the controller 100 executes. The ink cartridges 40 of the third embodiment are mounted to the printer of the fourth embodiment.

[00148] In the fourth embodiment, the controller 100 executes a step S91, which is similar to step S71 of Fig. 14. When the controller 100 determines in step S91 that the ink cartridge 40 has been mounted (S91: Yes), the controller 100 reads in step S92 information (see Fig. 15) stored in the memory 141 of the ink cartridge 40, before starting to move the hollow tube 153. After step S92, the controller 100 executes steps S93 – S102, which are similar to steps S74 – S83. When the controller 100 determines in step S100 that the new insertion number “n” set in step S98 or 99 does not exceed the maximum insertion number identified in step S96 (S100: No), the controller 100 executes a step S103, which is similar to step S72. After step S103, the controller 100 executes steps S104 – S109, which are similar to steps S84 – S89, and ends the routine.

[00149] The fourth embodiment is different from the third embodiment in the timing of movement of the hollow tube 153.

[00150] Referring to Fig. 18, a fifth embodiment will be described.

[00151] A printer of the fifth embodiment is identical in structure to the printer 1 of the first embodiment except for that the printer of the fifth embodiment does not include the moving mechanism 155 (see Fig. 8) and the hollow tube 153 is fixed to the wall surface defining the space C of the housing 1a.

[00152] An ink cartridge of the fifth embodiment is identical in structure to the ink cartridge 40 of the first embodiment except for that an open/close unit 750 is provided instead of the plug 50, the valve 60, and the coil spring 63, the Hall element 71 and the magnet 72 are disposed in different positions, and an ink outlet tube 743 is different in shape from the ink outlet tube 143.

[00153] The open/close unit 750 includes a valve seat 751, a valve body 752, and a coil spring 753.

[00154] The valve seat 751 is made of an elastic material, e.g., rubber, and is formed by providing a through hole 751a in the center of the plug 50. The through hole 751a has a diameter smaller than an outside diameter of the hollow tube 153.

[00155] The valve body 752 is a cylindrical shape magnetic member formed by excluding
the O ring 61 from the valve body 62.

[00156] The coil spring 753 is identical in structure to the coil spring 63 and is configured to contact the rear side of the valve body 752 to urge the valve body 752 toward the valve seat 751.

[00157] The ink outlet tube 743 does not include the valve seat 43z of the first embodiment. The ink outlet tube 743 has a constant diameter from the inner surface, facing the valve body 752, of the valve seat 751 toward one end of the ink outlet tube 743 opposite to the valve seat 751.

[00158] As shown in Fig. 18A, the Hall element 71 and the magnet 72 are disposed opposite to each other via the valve body 752 when the open/close unit 750 is in a closed state where the ink outlet path 43a is closed.

[00159] As shown in Fig. 18A, before the ink cartridge 40 is mounted to the printer, the hollow tube 153 is not inserted in the open/close unit 750, and the open/close unit 750 is maintained in the closed state.

[00160] In order to mount the ink cartridge 40 to the printer 1, the ink cartridge 40 is placed together with other ink cartridges 40 in the ink cartridge tray 35 (see Fig. 2) of the printer 1, and the ink cartridge tray 35 is inserted into the space C of the housing 1a in the primary direction (in a direction shown by an open arrow in Fig. 7A).

[00161] When the ink cartridge 40 is disposed in the predetermined position in the space C (where the contacts 142 contacts the contact 152 and the electric power input portion 147 contacts the power output portion 157 as shown in Fig. 7A), as shown in Fig. 18B, the hollow tube 153 fixed to the wall surface of the housing 1a passes through the through hole 751a of the valve seat 751 and moves the valve body 752 in a direction away from the valve seat 751 against the urging force of the coil spring 753. At this time, the open/close unit 750 changes from the closed state to an open state where the ink outlet path 43a is open. When the open/close unit 750 is in the open state, fluid communication between the reservoir 42 and the outside via the ink outlet path 43a is allowed. In this manner, the fifth embodiment shows that, when the ink cartridge 40 is mounted to the printer, the contacts 142 and 152 are electrically connected to each other, the electric power input portion 147 and the electric power output portion 157 are electrically connected to each other, the hollow tube 153 is inserted into the open/close unit 750, and the open/unit 750 changes from the closed state to the open state.

[00162] In order to remove the ink cartridge 40 from the printer 1, the ink cartridge tray 35...
is removed from the housing 1a. At this time, as the ink outlet tube 743 moves rightward in Fig. 18B so that the hollow tube 153 is removed from the ink outlet path 43a, the valve body 752 moves leftward in Fig. 18B due to the urging force of the coil spring 753, and contacts the valve seat 751. At this time, the open/close unit 750 changes from the open state to the closed state.

[00163] In the fifth embodiment, the controller 100 may execute the similar controls of the first to fourth embodiments except that the controller 100 does not execute the control for moving the hollow tube 153 (steps S32, S60, S72, S103).

[00164] Referring to Fig. 19, an example of a method for manufacturing the ink cartridges 40 according to the first to fourth embodiments will be described.

[00165] Each step in the method for manufacturing the ink cartridge may be carried out by a manufacturing device or an operator. In this embodiment, all steps are carried out by the manufacturing device. The manufacturing device includes an injector, a part assembling unit, a controller, and a display.

[00166] The manufacturing device determines the specifications of the plug 50, e.g., material, and thickness of the plug 50 relative to the insertion direction of the hollow tube 153 (S201).

[00167] After step S201, the manufacturing device determines in step 202 a maximum insertion number adequate to the specification of the plug 50 determined in step S201.

[00168] In step S202, the manufacturing device performs experiments in consideration of the specifications determined in step S201 and a moving speed of the hollow tube 153 inserted into the plug 50 to find how many times the hollow tube 153 can be inserted into (that is penetrated through) the plug 50 until ink leaks due to deterioration of the plug 50.

[00169] To manufacture the ink cartridge 40 according to the first to fourth embodiments, the manufacturing device determines the number of times to prevent ink leakage for each of the number of printers or printer IDs as maximum insertion number information by the number of printer IDs, in consideration of the position of the plug 50 to which the hollow tube 153 is inserted, which may be different according to the printers.

[00170] After step S202, the manufacturing device causes the controller in step S203 to write the maximum insertion number information representing the maximum insertion number determined in step S202 in the ROM area of the memory 141.

[00171] After step S203, the manufacturing device activates in step S204 the part assembling unit to assemble parts constituting the ink cartridge 40, e.g., the case 41, the
reservoir 42, the ink outlet tube 43, the valve 60, the sensor unit 70, the memory 141, and the contact 142, except for the plug 50 and the cap 46.

[00172] After step S204, the manufacturing device actuates in step S205 the injector (not shown) to inject ink into the reservoir 42.

[00173] In step S205, the manufacturing device moves the valve 60 from the closed position to the open position by inserting a needle of the injector into the ink outlet path 43a from the opening 43b such that the needle contacts the valve body 62 to move and press the valve body 62 against the urging force of the coil spring 63. The manufacturing device actuates an injector pump to inject ink into the reservoir 42 via the needle while maintaining the valve 60 in the open position.

[00174] After ink is injected into the reservoir 42, the manufacturing device removes the needle from the ink outlet path 43a. Accordingly, the valve 60 moves from the open position to the closed position by the urging force of the coil spring 63.

[00175] After step S205, while maintaining the valve 60 in the closed position, the manufacturing device actuates in step S206 the part assembling unit to attach the plug 50 and the cap 46 to the opening 43b.

[00176] Thus, manufacturing of the ink cartridge 40 is completed.

[00177] Referring to Fig. 20, an example of a method for refurbishing the ink cartridge 40 according to the first to fourth embodiments will be described.

[00178] Each step in the method for refurbishing the ink cartridge may be carried out by a refurbishing device or an operator. In this embodiment, all steps are carried out by the refurbishing device. The refurbishing device includes an injector, a part attaching/detaching unit, a controller, and a display.

[00179] The refurbishing device prepares a used cartridge 40 (S300). Used cartridges are not limited to the ones to which the hollow tube 153 has been inserted into their respective plugs 50.

[00180] After step S300, the refurbishing device determines in step S301 the specifications of a new plug 50 to be newly attached to the ink cartridge 40 prepared in step S300, e.g., material, and thickness of the plug 50 relative to the insertion direction of the hollow tube 153.

[00181] After step S301, the refurbishing device determines in step S302 the maximum insertion number adequate to the specifications determined in step S301, in the same manner as in step S202.
[00182] After step S302, the refurbishing device causes in step S303a the controller to write the maximum insertion number determined in step S302 in the ROM area of the memory 141.

[00183] In step S303a, the controller overwrites the maximum insertion number stored in the memory 141. Alternatively, the controller may read the maximum insertion number stored in the memory 141 in advance; when the maximum insertion number stored in the memory 141 is equal to the maximum insertion number determined in step S302, the controller may not overwrite the maximum insertion number stored in the memory 141; and when the maximum insertion number determined in step S302, the controller may overwrite the maximum insertion number stored in the memory 141.

[00184] After step S303a, the refurbishing device causes in step S303b the controller to erase (i.e. to reset) the insertion number information and information about printer IDs (i.e. the liquid ejecting device number information) stored in the RAM area of the memory 141.

[00185] After step S303b, the refurbishing device actuates in step S304 the part attaching/detaching unit to remove the plug 50 and the cap 46 from the opening 43b.

[00186] After step S304, the refurbishing device actuates in step S305 the injector (not shown) to inject ink into the reservoir 42 in the same manner as in step S205.

[00187] After step S305, the refurbishing device actuates in step S306 the part attaching/detaching unit to attach a new plug 50 having the specifications determined in step S301 and a cap 46 to the opening 43b. At this time, the cap 46 to be attached in step S306 may be the one removed in step S304 or a new one.

[00188] Thus, refurbishing of the ink cartridge 40 is completed.

[00189] In indicated below, the ink cartridge does not necessarily store the maximum insertion number information. Accordingly, the method of refurbishing such ink cartridge does not comprise the above steps S301, S302 and S303a.

[00190] In order to manufacture or refurbish the ink cartridge 40 of the fifth embodiment, the above description of a manufacturing method and a refurbishing method may be read by replacing the plug 50 with the open/close unit 750. In steps S201 and S301, the manufacturing device and the refurbishing device determine the specifications of the open/close unit 750, especially for the valve seat 751, e.g., material and thickness of the valve seat 751 relative to the insertion direction of the hollow tube 153.

[00191] The controller 100 of the printer executes controls shown in Figs. 10, 13, 14 and
17 regardless of whether the ink cartridge 40 is a refurbished one or a new one (excluding the refurbished one).

[00192] According to the first to fifth embodiments and embodiments in the manufacturing method and the refurbishing method, the memory 141 of the ink cartridge 40 stores the maximum insertion number information (see Figs. 11 and 15). Even when the plug 50 or the open/close unit 750 is replaced with a new one, the user is not required to rewrite the maximum insertion number information. Thus, this can reduce the potential for ink leakage without the need for the user to perform a burdensome operation.

[00193] According to the first to fifth embodiments, the memory 141 of the ink cartridge 40 further stores the insertion number information (see Figs. 11 and 15).

[00194] Thus, storing both of the maximum insertion number information and the insertion number information in the memory 141 of the ink cartridge 40 facilitates the controls by the controller 100 of the printer.

[00195] In the first to fourth embodiments, the memory 141 of the ink cartridge 40 stores the maximum insertion number information in association with the number of IDs (see Figs. 11 and 15).

[00196] The position of the plug 50 into which the hollow tube 153 is inserted may be different according to printers. As the number of positions of the plug 50 increases, the number of holes formed in the plug 50 increases, the plug 50 may be broken at one of thin walls between the holes close together, thereby forming a wide hole from which ink may leak as discussed above with reference to Fig. 21. As described above, storing the maximum insertion number information in association with the number of IDs in the memory 141 of the ink cartridge 40 can reduce the potential for ink leakage effectively.

[00197] In the first to fourth embodiments, the maximum insertion number associated with the number of IDs = 3 is zero. In other words, the hollow tube 153 of the third printer is not allowed to be inserted into the plug 50 of the ink cartridge 40.

[00198] This can reduce the potential for ink leakage more reliably. However, the maximum insertion number associated with the number of IDs = 3 may also be 1. In this case, a leakage may occur during removal of the hollow tube 153 from the plug 50 upon penetration of the plug 50 in a third printer. In this case, the ink cartridge should be refurbished after the removal of the in cartridge from the third printer. In the third and fourth embodiments, the memory 141 of the ink cartridge 40 is capable of storing the insertion numbers associated with the printer IDs in a one-to-one relationship (see Fig. 15).
[00199] The position of the plug 50 into which the hollow tube 153 is inserted may be different according to printers. When the hollow tube 153 is inserted at a certain position of the plug 50 more times than other positions thereof, as compared with a case when the hollow tube 153 is inserted at plural positions of the plug 50 on average, the plug 50 may be broken at a thin wall between a hole at the certain position and an adjacent hole, and ink may be likely to leak. Thus, the potential for ink leakage from the plug 50 can be effectively reduced by storing the insertion number information associated with the printer IDs in the memory 141 of the ink cartridge 40 and executing step S81 or S100 based on the insertion number information as described above.

[00200] According to the first to fifth embodiments, the ink cartridge 40 includes the Hall device 71.

[00201] Based on the signal from the Hall device 71, the controller 100 of the printer can find the number of times the hollow tube 153 has been inserted into the plug 50 or the open/close unit 750.

[00202] According to the second embodiment, when the controller 100 determines that the number representing the insertion number read from the memory 141 of the ink cartridge 40 plus one does not exceed the maximum insertion number read from the memory 141 of the ink cartridge 40, the controller 100 causes the hollow tube 153 to move from the non-penetration position to the penetration position (see steps S57 and S60 of Fig. 13). According to the fourth embodiment, when the controller 100 determines that the new insertion number “n” set in steps S98 or S99 does not exceed the maximum insertion number identified in steps S96, the controller 100 causes the hollow tube 153 to move from the non-penetration position to the penetration position (see step S100 and S103 of Fig. 17).

[00203] This can reduce the potential for ink leakage more reliably.

[00204] About components of ink cartridge:

[00205] The above embodiments show, but the disclosure is not limited to, a magnetic sensor, e.g. the Hall device 71, as a sensor for detecting an object in a liquid path of a liquid cartridge, e.g. an ink cartridge 40. Instead of the magnetic sensor, various types of sensors, e.g., a reflecting type photo sensor, a transparent type photo sensor, and a mechanical sensor for detecting an object in contact therewith, may be used.

[00206] The sensor may be configured to detect an object directly or indirectly. For example, the Hall device 71 is used for detecting the position of the valve 60 and the open/close unit 750 in the above embodiments. When a hollow member (object) is inserted
into an open/close member (e.g., a plug 50 disposed in a liquid path) at substantially the same
time when the liquid cartridge is mounted in a mounting portion as shown in the fifth
embodiment, a mount detection sensor for detecting that the liquid cartridge is mounted may
be used. As the mount detection sensor, the mount detection switch 159 shown in the above
embodiments, a photo sensor, and a mechanical sensor (for detecting that a protrusion formed
on a surface of a cartridge case is pressed by a wall surface of the mount portion when the
cartridge is mounted, and withdrawn toward the cartridge, for example) may be used.

[00207] The components of the cartridge, e.g., the housing 41, the reservoir 42, the ink
outlet tube 43, the plug 50, the valve 60, the sensor unit 70, the memory 141, and the
open/close unit 750, may be modified as appropriate. Alternatively, a different component
may be added and some components may be omitted.

[00208] About information stored in a cartridge memory or a main unit memory:

[00209] In the above embodiments, the maximum insertion number information was
described to be stored in cartridge memory 141. However, in modified embodiments, the
maximum insertion number information may also be stored in a main unit memory.

[00210] The maximum insertion number information may include the maximum insertion
numbers by the number of positions (or the number of IDs) from 1 to n (a natural number
greater than or equal to 2), as the maximum insertion number information by the number of
positions (the number of IDs). Specifically, in the third and fourth embodiments, the
maximum insertion number information includes maximum insertion numbers associated
with the number of positions or IDs from 1 to 3, but may also include maximum insertion
numbers associated with only 2 positions or IDs or may also include maximum insertion
numbers associated with 4 or more positions or IDs. In addition, the maximum insertion
numbers indicated in the maximum insertion number information by the number of positions
(the number of IDs) are not limited to the numbers indicated in the above embodiments.

[00211] The maximum insertion number information and the insertion number information
are not limited to the number of times, but may be information that can lead to the number of
times (that is information from which the number of times can be derived).

[00212] The invention is feasible even when the maximum insertion number information
and the insertion number information are replaced with maximum detection number
information and detection number information, respectively. In other words, the above
embodiments show that the maximum insertion number information and the insertion number
information are specified in view of the insertion of the hollow members into the open/close
unit. However, the invention is feasible even when the maximum insertion number information and the insertion number information are specified in view of detection of an object in the liquid path of the liquid cartridge by the sensor.

[00213] Time to transmit and receive signals between the cartridge and the liquid ejecting device and time to supply electric power from the liquid ejecting device to the cartridge are not limited to descriptions in the above embodiments, but may be changed as appropriate. The positions of the contact and the electric power input portion in the cartridge and the positions of the contact and the electric power output portion of the liquid ejecting device may be changed as appropriate.

[00214] Time when each section implements capability, e.g., time when the reading section reads information stored in the cartridge memory, time when the writing section writes in the cartridge memory, time when the moving control section moves the hollow member, time when the determining section makes a determination may be changed as appropriate.

[00215] The liquid ejecting device may not include the notifying control section. For example, instead of notifying a user, the liquid ejecting device may stop each component.

[00216] About mount detection section:

[00217] The above embodiments show, but the disclosure is not limited to, as the mount detection section, the mount detection switch 159 that outputs an ON signal when the printer 1 and the ink cartridge 40 are electrically connected. Instead, a photo sensor, a mechanical sensor or other sensor may be used.

[00218] The liquid ejecting device may not include the mount detection section.

[00219] About moving control section:

[00220] Moving of the hollow member from the non-penetration position to the penetration position may be performed by moving at least one of the hollow member and the liquid cartridge. The first to fourth embodiments show, but the disclosure is not limited to, that the hollow tube 153 is moved by the moving mechanism 155. The liquid ejecting device may include a motor and gears to move the ink cartridge 40 to the hollow tube 153 in a fixed position.

[00221] The liquid ejecting device may not include the moving control section as shown in the fifth embodiment.

[00222] About methods for manufacturing and refurbishing:

[00223] In each of the methods for manufacturing and refurbishing the cartridge, a step for
determining specifications may be carried out after a step for determining the maximum insertion number. In other words, after the maximum insertion number is determined, the specification appropriate to the maximum insertion number may be determined and the open/close member having the specifications may be used.

[00224] Time to execute a step for determining the maximum insertion number and a step for writing, and time to execute a step for injecting ink and a step for assembling components may be changed as appropriate. For example, the step for determining the maximum insertion number and the step for writing may be executed after the step for injecting ink and the step for assembling components.

[00225] In the method for refurbishing the cartridge, time to execute a replacement step (corresponding to steps S304 and S306 in the above embodiment in which the open/close member is removed and replaced with a new one) and time to execute the step for determining the maximum insertion number and the step for writing may be changed as appropriate. For example, the step for determining the maximum insertion number and the step for writing may be executed after the replacement step. Alternatively, the step for determining the maximum insertion number and the step for writing may be executed before the replacement step in which the open/close member is removed and replaced with a new one.

[00226] Any step in the methods for manufacturing and refurbishing the cartridge may be performed by the operator. In this case, it is favorable that the manufacturing device and the refurbishing device include a display.

[00227] The above embodiments show, but the disclosure is not limited to, that the hollow member has a pointed end like a needle.

[00228] Liquid stored in a liquid storing portion is not limited to ink. For example, a liquid for improving quality of image formed on a recording medium, and a liquid for washing the transport belt may be stored in the liquid storing portion.

[00229] The number of liquid ejecting heads included in the liquid ejecting device is not limited to four. The liquid ejecting device may include one liquid ejecting head or more.

[00230] The liquid ejecting device according to the invention may be a line type device or a serial type device. The liquid ejecting device is not limited to a printer. The liquid ejecting device may be a facsimile or a copier.

[00231] Although an illustrative embodiment and examples of modifications of the present invention have been described in detail herein, the scope of the invention is not limited
thereto. It will be appreciated by those skilled in the art that various modifications may be made without departing from the scope of the invention. Accordingly, the embodiment and examples of modifications disclosed herein are merely illustrative. It is to be understood that the scope of the invention is not to be so limited thereby, but is to be determined by the claims which follow.
CLAIMS

1. A liquid cartridge comprising:
 a liquid storing portion (42) configured to store liquid therein;
 a sealing member (50; 751) having elasticity and being configured to close an
 opening (43b) of the liquid storing portion (42); and
 a memory (141) storing an insertion number information from which a total insertion
 number, which is a total number of times the sealing member (50; 751) has been penetrated to
 provide a liquid communication through the sealing member (50; 751), can be derived, and
 storing a liquid ejecting device number information, from which the number of liquid ejecting
 devices (1) in which the sealing member (50; 751) has been penetrated, can be derived.

2. The liquid cartridge according to claim 1 wherein the insertion number information
 comprises at least a first insertion number information indicating a first insertion number (a)
 which is a number of times the sealing member (50; 751) has been penetrated in a first liquid
 ejecting device (1) and a second insertion number information indicating a second insertion
 number (b) which is a number of times the sealing member (50; 751) has been penetrated in a
 second liquid ejecting device (1).

3. The liquid cartridge according to claim 1 or 2, wherein the insertion number
 information comprises the total insertion number.

4. The liquid cartridge according to any one of claims 1 to 3, the memory (141) further
 storing a first maximum insertion number information from which a first maximum insertion
 number (X) can be derived which is a maximum number of times the sealing member (50; 751)
 can be penetrated without breakage in one liquid ejecting device (1) if the sealing
 member (50; 751) is penetrated only in this one liquid ejecting device (1).

5. The liquid cartridge according to any one of claims 1 to 4, the memory (141) further
 storing a second maximum insertion number information from which a second maximum
 insertion number (Y) can be derived which is a maximum number of times the sealing
 member (50; 751) can be penetrated without breakage in each one of two liquid ejecting
 devices (1), respectively, if the sealing member (50; 751) is penetrated only in each one of
these two liquid ejecting devices (1), respectively.

6. The liquid cartridge according to any one claims 1 to 5, the memory (141) further storing a third maximum insertion number information from which a third maximum insertion number can be derived which is a maximum number of times the sealing member (50; 751) can be penetrated without breakage in each one of three liquid ejecting devices (1), respectively, if the sealing member (50; 751) is penetrated only in each one of these three liquid ejecting devices (1), respectively.

7. The liquid cartridge according to claim 6, wherein the third maximum insertion number is one.

8. The liquid cartridge according to any one of claims 5 to 7, wherein the maximum insertion number (X, Y) decreases with increasing number of liquid ejecting devices (1) in which the sealing member (50; 751) is penetrated.

9. The liquid cartridge according to any one of claims 1 to 8, wherein the sealing member (50; 751) is capable of being penetrated at different positions.

10. The liquid cartridge according to any one of claims 1 to 9, further comprising a sensor (70) configured to detect the penetration of the sealing member (50; 751).

11. The liquid cartridge according to claim 10, further comprising a movable member (62; 752), wherein the sensor (70) is configured to detect the penetration of the sealing member (50; 751) by detecting the position of the movable member (62; 752).

12. The liquid cartridge according to any one of claims 1 to 11, wherein the liquid ejecting device number information comprises an identification number (ID1, ID2) of each liquid ejecting device (1) in which the sealing member (50; 751) has been penetrated.

13. A liquid ejecting device comprising:

 the liquid cartridge (40) according to any one of claims 1 to 12; and

 a main unit, wherein the main unit comprises:
a mount portion (C) in which the liquid cartridge (40) is mounted;

a liquid ejection head (2) configured to eject liquid supplied from the liquid storing portion (42) of the liquid cartridge (40) mounted in the mount portion (C);

a hollow member (153) communicating with the liquid ejection head (2) and configured to be penetrated through the sealing member (50; 751) of the liquid cartridge (40) mounted in the mount portion (C) to provide fluid communication between the liquid storing portion (42) and the liquid ejection head (2).

14. The liquid ejecting device according to claim 13, wherein the main unit further comprises:

a reading section (M33) configured to read information stored in the memory (141) of the liquid cartridge (40) mounted in the mount portion (C); and

a writing section (M38) configured to write information into the memory (141) of the liquid cartridge (40) mounted in the mount portion (C); and

a determining section (M36) configured to determine whether to provide a notification of a possibility of breakage of the sealing member (50; 751) of the liquid cartridge (40) mounted in the mount portion (C) based on the insertion number information, the liquid ejecting device number information and a maximum insertion number information indicating a maximum insertion number, which is a maximum number of times the sealing member (50; 751) can be penetrated without breakage.

15. The liquid ejecting device according to claim 14, wherein the determining section (M36) is configured to determine whether to provide the notification by comparing the insertion number with the maximum insertion number (X, Y) depending on the liquid ejecting device number.

16. The liquid ejecting device according to any one of claims 13 to 15, further comprising:

a mount detection section (M31) configured to detect that the liquid cartridge (40) is mounted in the mount portion (C); and

a moving control section (M32) configured to control the hollow member (153) to move between a non-penetrating position where the hollow member (153) is separated from the sealing member (50; 751) of the liquid cartridge (40) mounted in the mount portion (C)
and a penetrating position where the hollow member (153) penetrates through the sealing member (50; 751),

wherein the determining section (M36) is configured to make the determination when the mount detection section (M31) detects that the liquid cartridge (40) is mounted in the mount portion (C).

17. The liquid ejecting device according to any one of claims 13 to 16, wherein the main unit further comprises a main unit memory (M39) storing an identification number associated with the main unit as a unique label of the liquid ejecting device (1).

18. A method for refurbishing a liquid cartridge according to any one of claims 1 to 12, the method comprising the steps of:

- providing the liquid cartridge (40) according to any one of claims 1 to 12 which is used;
- replacing the sealing member (50; 751) with a new sealing member (50; 751);
- injecting liquid into the liquid storing portion (42); and
- resetting the insertion number information and the liquid ejecting device number information stored in the memory (141) of the used liquid cartridge (40).

19. The method according to claim 18, the method further comprising the following steps:

- determining a maximum insertion number information indicating the first (X), second (Y) and third maximum insertion number in accordance with specifications of the new sealing member (50; 751); and
- writing the maximum insertion number information into the memory (141) of the liquid cartridge (40).
FIG. 9

OUTPUT FROM HALL DEVICE OF INK CARTRIDGE

\[V_t \]

VALVE POSITION

CLOSED OPEN
FIG. 10

START

S31

IS CARTRIDGE MOUNTED?

NO

YES

S32

START TO MOVE HOLLOW TUBE

S33

READ INFORMATION IN MEMORY

S34

CALCULATE ID TOTAL NUMBER

S35

IS ID INCLUDED?

NO

YES

S36

ID TOTAL NUMBER + 1

S37

IDENTIFY MAXIMUM INSERTION NUMBER

S38

MAXIMUM INSERTION NUMBER < (a+1)?

YES

S39

ERROR NOTIFICATION

NO

S40

STOP

S41

IS VALVE IN OPEN POSITION?

NO

S42

HAS PREDETERMINED TIME ELAPSED?

YES

S43

WRITE PRINTER ID IN MEMORY

NO

YES

S44

WRITE INSERTION NUMBER IN MEMORY (INSERTION NUMBER: a → a +1)

S45

RECORDING CONTROL

S46

END
FIG. 11

<INFORMATION STORED IN MEMORY OF CARTRIDGE>

FIRST TABLE (RAM AREA)

<table>
<thead>
<tr>
<th>PRINTER ID</th>
<th>INSERTION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID1</td>
<td>a</td>
</tr>
<tr>
<td>ID2</td>
<td></td>
</tr>
</tbody>
</table>

SECOND TABLE (ROM AREA)

<table>
<thead>
<tr>
<th>NUMBER OF IDS</th>
<th>MAXIMUM INSERTION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>ZERO</td>
</tr>
</tbody>
</table>
FIG. 13

START

S51

IS CARTRIDGE MOUNTED?

YES

READ INFORMATION IN MEMORY

S52

CALCULATE ID TOTAL NUMBER

S53

IS ID INCLUDED?

NO

ID TOTAL NUMBER + 1

S54

YES

IDENTIFY MAXIMUM INSERTION NUMBER

S56

MAXIMUM INSERTION NUMBER < \(a+1\)?

YES

ERROR NOTIFICATION

S58

NO

START TO MOVE HOLLOW TUBE

S57

HAS PREDETERMINED TIME ELAPSED?

YES

STOP

S59

NO

IS VALVE IN OPEN POSITION?

S61

WRITE ID IN MEMORY

S64

NO

WRITE INSERTION NUMBER IN MEMORY

(INsertion Number: \(a \rightarrow a+1\))

S65

RECORDING CONTROL

S66

END
FIG. 14

14/21

START

S71
IS CARTRIDGE MOUNTED?

NO

YES

S72
START TO MOVE HOLLOW TUBE

S73
READ INFORMATION IN MEMORY

S74
CALCULATE ID TOTAL NUMBER

S75
IS ID INCLUDED?

NO

ID TOTAL NUMBER +1

YES

IDENTIFY MAXIMUM INSERTION NUMBER

S76

S77

S78
IS ID INCLUDED?

NO

YES

S79
SET INSERTION NUMBER \(n = \alpha \text{ or } b + 1 \)

S80
SET INSERTION NUMBER \(n = 1 \)

S81
MAXIMUM INSERTION NUMBER \(X \leq n \)?

YES

ERROR NOTIFICATION

STOP

S82

S83

S84
NO

NO

S85
HAS PREDETERMINED TIME ELAPSED?

YES

STOP

S86
IS VALVE IN OPEN POSITION?

S87
IS PRINTER ID INCLUDED?

NO

YES

WRITE INSERTION NUMBER ASSOCIATED WITH ID IN MEMORY \((a \text{ or } b \rightarrow a \text{ or } b + 1) \)

WRITE ID AND INSERTION NUMBER "1" IN MEMORY

RECORDING CONTROL

S88

S89

END
FIG. 15

<INFORMATION STORED IN MEMORY OF CARTRIDGE>

FIRST TABLE (RAM AREA)

<table>
<thead>
<tr>
<th>PRINTER ID</th>
<th>INSERTION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID1</td>
<td>a</td>
</tr>
<tr>
<td>ID2</td>
<td>b</td>
</tr>
</tbody>
</table>

SECOND TABLE (ROM AREA)

<table>
<thead>
<tr>
<th>NUMBER OF IDS</th>
<th>MAXIMUM INSERTION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>ZERO</td>
</tr>
</tbody>
</table>
FIG. 17

START
S91
IS CARTRIDGE MOUNTED?

S92
READ INFORMATION IN MEMORY

S93
CALCULATE ID TOTAL NUMBER

S94
IS ID INCLUDED?

S95
ID TOTAL NUMBER +1

S96
IDENTIFY MAXIMUM INSERTION NUMBER

S97
IS ID INCLUDED?

S98
SET INSERTION NUMBER n (n = a or b +1)

S99
SET INSERTION NUMBER n (n = 1)

S100
MAXIMUM INSERTION NUMBER < n?

S101
ERROR NOTIFICATION

S102
STOP

S103
START TO MOVE HOLLOW TUBE

S104
IS VALVE IN OPEN POSITION?

S105
HAS PREDETERMINED TIME ELAPSED?

S106
IS ID INCLUDED?

S107
WRITE INSERTION NUMBER ASSOCIATED WITH ID IN MEMORY (a or b - a or b +1)

S108
WRITE ID AND INSERTION NUMBER "1" IN MEMORY

S109
RECORDING CONTROL

END
FIG. 19

METHOD FOR MANUFACTURING CARTRIDGE

S201
DETERMINE PLUG SPEC.

S202
DETERMINE MAXIMUM INSERTION NUMBER

S203
WRITE MAXIMUM INSERTION NUMBER INFORMATION IN MEMORY

S204
ASSEMBLE COMPONENTS (EXCEPT FOR PLUG AND CAP)

S205
INJECT INK

S206
ATTACH PLUG AND CAP

END
FIG. 20

METHOD FOR REFURBISHING CARTRIDGE

S300 PREPARE USED CARTRIDGE

S301 DETERMINE NEW PLUG SPEC.

S302 DETERMINE MAXIMUM INSERTION NUMBER

S303a WRITE MAXIMUM INSERTION NUMBER INFORMATION IN MEMORY

S303b ERASE INSERTION NUMBER INFORMATION AND IDs STORED IN MEMORY

S304 REMOVE CAP AND PLUG

S305 INJECT INK

S306 ATTACH NEW PLUG AND CAP

END
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2011/067822

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl. B41J2/175 (2006.01)i, B41J2/01 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl. B41J2/175, B41J2/01

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Published examined utility model applications of Japan 1992-1996
Published examined utility model applications of Japan 1997-2011
Published registered utility model applications of Japan 1994-2011

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 6973409 B1 (SHIMIZU, Yoshiaki) 2005.12.06, column 5 to 8, Fig.1</td>
<td>1-3, 9-13</td>
</tr>
<tr>
<td>A</td>
<td>& JP 2004-50823 A</td>
<td>4-8, 14-19</td>
</tr>
<tr>
<td></td>
<td>CN 101249756 A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 1790480 A1 (BROTHER KOGYO KABUSHIKI KAISHA) 2007.05.30, the whole document</td>
<td>1-19</td>
</tr>
<tr>
<td></td>
<td>HK 1116451 A & CN 1974223 A</td>
<td></td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed
 “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 “K” document member of the same patent family

Date of the actual completion of the international search
24.10.2011

Date of mailing of the international search report
01.11.2011

Name and mailing address of the ISA/JP
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer
MAKISHIMA, Hajime
Telephone No. +81-3-3581-1101 Ext. 3261

Form PCT/ISA/210 (second sheet) (July 2009)