(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 101994888 A
(45) 授权公告日 2013.07.10

(21) 申请号 200580038186.9
(22) 申请日 2005.09.02
(30) 优先权数据
 60/607,377 2004.09.03 US
(85) PCT申请进入国家阶段日 2007.05.08
(86) PCT申请的申请数据
 PCT/US2005/031401 2005.09.02
(87) PCT申请的公布数据
 WO2006/026759 EN 2006.03.09
(73) 专利权人 健泰科生物技术公司
 地址 美国加利福尼亚州
(72) 发明人 马克·S·丹尼斯 方湘文
(74) 专利代理机构 北京市柳沈律师事务所
 代理人 张红春

(51) Int. Cl.
 C07K 16/28 (2006.01)
 A61K 39/395 (2006.01)
 C07K 16/18 (2006.01)

(56) 对比文件
 WO 9624673 A, 1996.08.15, 全文.
 Wu H et al. stepwise in vitro affinity maturation of bitaxin, an alphavbeta3–specific humanized mab. PNAS95

(54) 发明名称
 人源自的抗-β7拮抗剂及其应用

(57) 摘要
 本发明提供了治疗性的抗-β7抗体，含这些抗体的组合物，和应用这些抗体的方法。
1. 人源化抗 β7 抗体，其包含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每一个依次包含 RASESVDDLLH (SEQ ID NO: 9)、KYASQSIGS (SEQ ID NO: 2)、QQGNSLPNNT (SEQ ID NO: 3)、GFFTINNYWG (SEQ ID NO: 4)、GYISYSGSTSYNSPKS (SEQ ID NO: 5) 和 ARTGSSGYFDF (SEQ ID NO: 64)。

2. 人源化抗 β7 抗体，其包含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每一个依次包含 RASESVDDLLH (SEQ ID NO: 9)、KYASQSIGS (SEQ ID NO: 2)、QQGNSLPNNT (SEQ ID NO: 3)、GFFTINNYWG (SEQ ID NO: 4)、GYISYSGSTSYNSPKS (SEQ ID NO: 5) 和 RTGSSGYFDF (SEQ ID NO: 63)。

3. 人源化抗 β7 抗体，其包含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每一个依次包含 RASESVDDLLH (SEQ ID NO: 9)、KYASQSIGS (SEQ ID NO: 2)、QQGNSLPNNT (SEQ ID NO: 3)、GFFTINNYWG (SEQ ID NO: 4)、GYISYSGSTSYNSPKS (SEQ ID NO: 5) 和 AMTGSSGYFDF (SEQ ID NO: 66)。

4. 人源化抗 β7 抗体，其包含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每一个依次包含 RASESVDDLLH (SEQ ID NO: 9)、KYASQSIGS (SEQ ID NO: 2)、QQGNSLPNNT (SEQ ID NO: 3)、GFFTINNYWG (SEQ ID NO: 4)、GYISYSGSTSYNSPKS (SEQ ID NO: 5) 和 RTGSSGYFDF (SEQ ID NO: 66)。

5. 人源化抗 β7 抗体，其包含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每一个依次包含 RASESVDDLLH (SEQ ID NO: 9)、SEQ ID NO: 2、SEQ ID NO: 3、SEQ ID NO: 4、SEQ ID NO: 5 和 SEQ ID NO: 64。

6. 人源化抗 β7 抗体，其包含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每一个依次包含 RASESVDDLLH (SEQ ID NO: 9)、SEQ ID NO: 2、SEQ ID NO: 3、SEQ ID NO: 4、SEQ ID NO: 5 和 SEQ ID NO: 6。

7. 人源化抗 β7 抗体，其包含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每一个依次包含 RASESVDDLLH (SEQ ID NO: 9)、SEQ ID NO: 2、SEQ ID NO: 3、SEQ ID NO: 4、SEQ ID NO: 5 和 SEQ ID NO: 64。

8. 人源化抗 β7 抗体，其包含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每一个依次包含 RASESVDDLLH (SEQ ID NO: 9)、SEQ ID NO: 2、SEQ ID NO: 3、SEQ ID NO: 4、SEQ ID NO: 5 和 SEQ ID NO: 6。

9. 权利要求 1-8 任一项的抗 β7 抗体，其中所述抗 β7 抗体在其重链和 / 或轻链可变域中包含一条或多条人和 / 或人共有的框架序列。

10. 权利要求 9 的抗 β7 抗体，其中所述抗 β7 抗体包含至少一部分或整个人 κ 亚类 I 框架共有序列。

11. 权利要求 9 的抗 β7 抗体，其中所述抗 β7 抗体的重链可变域包含人亚类 IIII 共有框架序列。

12. 权利要求 9-11 任一项的抗 β7 抗体，其中重链框架第 71 位上的氨基酸选自由 R、A 和 T 组成的组，和 / 或重链框架第 73 位上的氨基酸选自由 N 和 T 组成的组，和 / 或重链框架第 78 位上的氨基酸选自由 F、A 和 L 组成的组。

13. 权利要求 9 的抗 β7 抗体，其中所述抗 β7 抗体包含变异的亚类 IIII 重链共有序列，其在第 71、73、78 和 / 或 94 位中的一个或多个位置上包含替换。
14. 权利要求 13 的抗 β7 抗体，其中所述替换是 R71A、N73T、L78A 和 / 或 R94M。

15. 权利要求 1-8 任一项的抗 β7 抗体，其是抗 β7 抗体或其 β7 结合片段，其中所述抗体或结合片段对人 β7 的单价亲和力等于或大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链可变序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链可变序列的抗体的单价亲和力。

16. 权利要求 15 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 2 倍。

17. 权利要求 16 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 5 倍。

18. 权利要求 17 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 10 倍。

19. 权利要求 18 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 50 倍。

20. 权利要求 19 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 100 倍。

21. 权利要求 20 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 500 倍。

22. 权利要求 21 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 1000 倍。

23. 权利要求 22 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 5000 倍。

24. 权利要求 23 的抗体或其结合片段，其中所述亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体至少 10,000 倍。

25. 权利要求 16-24 任一项的抗体或结合片段，其中所述抗体对人 β7 的单价亲和力大于包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体的单价亲和力至少 3 倍。

26. 权利要求 15-24 任一项的抗体或结合片段，其中包含图 1A 所示 SEQ ID NO:10 和图 1B 所示 SEQ ID NO:11 所示轻链和重链序列的抗体或包含图 9A 所示 SEQ ID NO:12 和图 9B 所示 SEQ ID NO:13 所示轻链和重链序列的抗体由美国典型培养物保藏中心保藏的登录
权利要求书

27. 权利要求 15 的抗体或结合片段，其中所述结合亲和力以 Kd 值表示。

28. 权利要求 15 的抗体或结合片段，其中所述结合亲和力由 Biacore™ 或放射免疫测试来测定。

29. 权利要求 1-14 任一项的抗 β7 抗体，其中所述抗体对人 β7 的单克隆亲和力等于或者大于包含图 1A 所示 SEQ ID NO: 10 和图 1B 所示 SEQ ID NO: 11 所示轻链和重链可变序列的抗体或包含图 9A 所示 SEQ ID NO: 12 和图 9B 所示 SEQ ID NO: 13 所示轻链和重链可变序列的抗体对人 β7 的单克隆亲和力。

30. 在体外抑制人 β7 整联蛋白亚基同第二整联蛋白亚基和 / 或配体相互作用的方法，其通过将权利要求 1-29 任一项的抗 β7 抗体与 β7 整联蛋白接触来进行。

31. 权利要求 30 的方法，其中所述第二整联蛋白亚基是 α4 整联蛋白亚基，且其中所述配体是 MadCAM、VCAM 或纤连蛋白。

32. 权利要求 31 的方法，其中所述 α4 整联蛋白亚基来源于人。

33. 权利要求 32 的方法，其中所述配体来源于人。

34. 权利要求 33 的方法，其中所述第二整联蛋白亚基是 αE 整联蛋白亚基，且其中所述配体是 E-钙粘着蛋白。

35. 权利要求 34 的方法，其中所述 αE 整联蛋白亚基来源于人。

36. 权利要求 35 的方法，其中所述配体来源于人。

37. 权利要求 1-29 任一项的抗 β7 抗体，其是用于治疗和 / 或预防疾病的抗体。

38. 权利要求 1-29 任一项的抗 β7 抗体在制备用于治疗和 / 或预防自身免疫性疾病或移植排斥的药物中的用途。

39. 权利要求 1-29 任一项的抗 β7 抗体在制备用于治疗和 / 或预防炎症性疾病、克罗恩氏病、溃疡性结肠炎、肝炎、CNS 炎症、慢性胰腺炎、系统性红斑狼疮、Sjogren 氏综合症、银屑病和皮肤炎症、哮喘、慢性阻塞性肺病、间质性肺炎、过敏、肾脏移植排斥、移植体抗宿主的疾病、糖尿病或癌症的药物中的用途。

40. 权利要求 1-29 任一项的抗 β7 抗体在制备通过与 β7 整联蛋白接触来抑制人 β7 整联蛋白亚基同第二整联蛋白亚基和 / 或配体相互作用的方法中所使用的药物中的用途，其中所述抑制减少或减轻由炎症所组成的组的疾病的症状。

41. 权利要求 1-29 任一项的抗 β7 抗体在制备通过与 β7 整联蛋白接触来抑制人 β7 整联蛋白亚基同第二整联蛋白亚基和 / 或配体相互作用的方法中所使用的药物中的用途，其中所述抑制减少或减轻由哮喘、炎症性肠病、克罗恩氏病、溃疡性结肠炎、糖尿病、器官移植造成的炎症、移植体抗宿主的疾病和同种异体移植疾病相关的炎症所组成的组的疾病的症状。

42. 包含权利要求 1-29 任一项的抗 β7 抗体和药物载体的组合物在制备在患有哺乳动物中调节 β7 整联蛋白介导的细胞粘附和 / 或募集的方法中所使用的药物中的用途。

43. 权利要求 42 的用途，其中所述疾病选自由炎症所组成的组。

44. 权利要求 42 的用途，其中所述疾病选自由哮喘、炎症性肠病、克罗恩氏病、溃疡性结肠炎、糖尿病、器官移植造成的炎症、移植体抗宿主的疾病和同种异体移植疾病相关的炎症所组成的组。
45. 权利要求 42-44 任一项的用途，其中所述哺乳动物是人。
46. 权利要求 42-45 任一项的用途，其中所述组合物进一步包含第二生物药剂或化学治疗剂。
47. 权利要求 42-46 任一项的用途，其中所述调节能抑制 β7 整联蛋白同 α4 整联蛋白、αE 整联蛋白、MAdCam、VCAM、E-钙粘着蛋白和 / 或纤连蛋白的相互作用。
48. 组合物，其包含权利要求 1-29 任一项的抗 β7 抗体和药物载体。
人源化的抗-β7拮抗剂及其应用

本文是根据 37CFR § 1.53 (b) (1) 提交的非临时申请，要求依照 35U.S.C. § 119 (e) 享有 2004 年 9 月 3 日提交的美国临时申请第 60/607,377 号的优先权，其全文纳入本文参考。

技术领域
本发明主要涉及分子生物学和生长因子调节调控领域。更具体而言，本发明涉及调节含 β7 亚基的整联蛋白生物活性的调节因子，以及所述调节因子的应用。

背景

需要有高度特异性化合物，如人源化抗体或其结合片段，其能抑制 α4β7 整联蛋白和其配体 MadCAM 和/或 VCAM 间的相互作用以及 αεβ7 整联蛋白和其配体 E-钙粘着蛋白间的相互作用。这些化合物可应用于治疗慢性炎症，如哮喘、克罗恩氏病、溃疡性结肠炎、糖尿病、器官移植的并发症，和与同种移植相关的病症。
说明书中引用的所有参考文献，包括专利申请和公开出版物，它们的全文都纳入参考。

发明内容

本发明部分是基于鉴定含β7的整联蛋白所涉及的生物学途径的构抗剂，其通常是显现出重要而有益的治疗靶位的生物体细胞过程。这些生物学途径包括但不限于，炎炎，尤其是慢性炎症疾病，如哮喘，过敏，IBD，糖尿病，移植和移植休克宿主的疾病。本发明提供了基于干扰β7整联蛋白介导的细胞粘附和/或募集的组合物和方法。结合但不局限于干扰MadCam和Vcam-1结合α4β7整联蛋白细胞外部分以及E-钙粘着蛋白同αEβ7整联蛋白相互作用。本发明的抗凝剂，如本文所述，其提供了重要的治疗和诊断剂，用于靶向与经异常或不需要的β7整联蛋白信号传递相关的病理状况。因此，本发明提供了与调节β7整联蛋白介导途径相关的组合物、试剂盒和制品，包括调节MadCam-α4β7同肠上皮细胞核的结合以及白细胞募集、结合和过敏、哮喘、IBD（如克罗恩氏病（Crohn’s disease）和溃疡性结肠炎）、糖尿病、与移植相关的炎症、移植休克宿主的疾病和/或同种异体移植疾病和其它由β7整联蛋白介导的生物/生理活性。

在一个方面，本发明提供了抗β7治疗剂，其适于治疗用途并能影响改变β7整联蛋白介导途径的阻断程度。例如，在一个具体实施方式中，本发明提供了人源化的抗β7抗体，其中Fab片段形式的抗体具有基本等同于小鼠Fab片段的人β7结合亲和力，所述小鼠Fab片段包括如图1A和1B或图9A和9B所述的轻链和重链可变结构域序列，或由或基本由如图1A和1B或图9A和9B所述的轻链和重链可变结构域序列组成。在另一个具体实施方式中，本发明提供了人源化的抗β7抗体，其中Fab片段形式的抗体具有较低的人β7结合亲和力，例如较小鼠或大鼠Fab片段低至少3、至少5、至少7或至少10倍，所述小鼠或大鼠Fab片段包括如图1A和1B所述的轻链和重链可变结构域序列或如图9A和9B所述的可变结构域序列，或由或基本由如图1A和1B所述的轻链和重链可变结构域序列或如图9A和9B所述的可变结构域序列组成。可选地，本发明的人源化抗β7抗体，或其β7结合片段，显示出与人β7的单价亲和力，所述亲和力基本等于或高于抗体对人β7的单价亲和力，所述抗体含如图1A (SEQ ID NO:10) 和/或图1B (SEQ ID NO:11)、或图9A (SEQ ID NO:12) 和/或图9B (SEQ ID NO:13) 所述的轻链和重链可变结构域序列，抗体或其结合片段具有与人β7的强亲和力，其大于含有图1A (SEQ ID NO:10) 和/或图1B (SEQ ID NO:11)、或图9A (SEQ ID NO:12) 和/或图9B (SEQ ID NO:13) 所述的轻链和重链序列的抗体至少2倍、至少5倍、至少10倍、至少50倍、至少100倍、至少500倍、至少1000倍、至少5000倍、或至少10,000倍。

在另一个具体实施方式中，本发明提供了抗β7人源化抗体，其中Fab片段形式的抗体具有高的人β7结合亲和力，例如较啮齿动物（大鼠或小鼠）Fab片段的高例如至少3、至少5、至少7、至少9、至少10、至少15、至少20、或至少100倍，所述啮齿动物Fab片段分别包含如图1A和1B所述的轻链和重链可变结构域序列，或由或基本由如图1A和1B所述的轻链和重链可变结构域序列组成。在具体实施方式中，所述啮齿动物Fab片段具有含大鼠抗体可变结构域序列的Fab片段的结合亲和性，所述大鼠抗体命名为FIB504.64，由保藏于美国典型培养物保藏中心的登录号为ATCC HB-293的杂交瘤细胞系产
在更进一步的具体实施方式中，本发明的人源化 Fab 片段具有含抗体可变结构域序列的 Fab 片段的结合亲和力，所述抗体由本发明的人源化抗 β7 抗体之任一所产生。作为已经成熟的技术，利用各种测试能够确定抗体同受体的结合亲和力，并以各种定量数值表示。因此，在一个具体实施方式中，结合亲和力用 Kd 值表示，反映了内在的结合亲和力（如，具有最小化亲合力的效应）。通常是通过在体外测量结合亲和力，测量可以在无细胞或与细胞相关的条件下进行。如本文所详细描述的，结合亲和力的倍数差异能用 Fab 形式的亲和抗体的结合亲和力与参照 / 比较 Fab 抗体（如，具有载体高变区序列的载体抗体）的结合亲和力的比率来量化，其中结合亲和力值在相似的测试条件下测量。而在一个具体实施方式中，结合亲和力的倍数差异分为 Fab 形式的人源化抗体与所选参照 / 比较 Fab 抗体的 Kd 值的比率。现有已知的大量测试，包括本文所述的那些，都能用来实现结合亲和力的测量，包括如，Biacore®（Biacore International Ab, Uppsala，瑞典）和 ELISA。

在其各个方面和具体实施方式中，本发明的 β7 抗体抗体直接表示为以下本申请权利要求的集合：包括抗 β7 抗体或其 β7 结合片段的抗体，其包含：

(a) 至少一、二、三、四、或五个高变区 (HVR) 序列，其各自或下文所组成的组：
(b) HVR-L1，其含序列 A1-A11，其中 A1-A11 为 RASESVDTYLL (SEQ ID NO: 1)
(c) HVR-L2，其含序列 B1-B8，其中 B1-B8 为 KYASQSIS (SEQ ID NO: 2)
(d) HVR-L3，其含序列 C1-C10，其中 C1-C10 为 QQGNSLLPTN (SEQ ID NO: 3)
(e) HVR-H1，其含序列 D1-D10，其中 D1-D10 为 GFFITNNYWG (SEQ ID NO: 4)
(f) HVR-H2，其含序列 E1-E17，其中 E1-E17 为 GY1SYGSTSYPNLK (SEQ ID NO: 5)

和
(g) HVR-H3，其含序列 F2-F11，其中 F2-F11 为 MTGSSGYDF (SEQ ID NO: 6)。

在权利要求 1 的多肽或抗体的具体实施方式中，多肽或抗体包含至少一个变体 HVR，其中该变体 HVR 包含 SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8 和 9 所述序列之至少一个序列的至少一个残基的修饰。在权利要求 1 或权利要求 2 的另一个具体实施方式中，本发明包括抗 β7 抗体或其 β7 结合片段，其包含一、二、三、四、五或六个高变区 (HVR)，所述高变区选自由 HVR-L1, HVR-L2, HVR-L3, HVR-H1, HVR-H2, 和 HVR-H3 组成的组，其中：

(i) HVR-L1，其含氨基酸序列 RASESVDTYLL (SEQ ID NO: 1); RASESVDSLHL (SEQ ID NO: 7), RASESVDTYLL (SEQ ID NO: 8); RASESVDTLHL (SEQ ID NO: 9)
(ii) HVR-L2，其含氨基酸序列 KYASQSIS (SEQ ID NO: 2); RYASQSIS (SEQ ID NO: 67, 或 KYASQSIS (SEQ ID NO: 68, 其中 X 表示任意氨基酸),
(iii) HVR-L3，其含氨基酸序列 QQGNSLLPTN (SEQ ID NO: 3),
(iv) HVR-H1，其含氨基酸序列 GFFITNNYWG (SEQ ID NO: 4),
(v) HVR-H2，其含氨基酸序列 GY1SYGSTSYPNLK (SEQ ID NO: 5), 和
(vi) HVR-H3，其含氨基酸序列 MTGSSGYDF (SEQ ID NO: 6) 或对应于第 F2-F11 位的 RTGSSGYDF (SEQ ID NO: 66); 或氨基酸序列 F1-F11，其中 F1-F11 为 MTGSSGYDF (SEQ ID NO: 63), ARTGSSGYDF (SEQ ID NO: 64), 或 ARTGSSGYDF (SEQ ID NO: 65)。

在权利要求 1 或任何具体实施方式的另一个具体实施方式中，本发明包括抗 β7 抗体或其 β7 结合片段，其包含一、二、三、四、五或六个高变区 (HVR)，所述高变区选自由 HVR-L1, HVR-L2, HVR-L3, HVR-H1, HVR-H2, 和 HVR-H3 组成的组，其中：
RASEVDSLHLH（SEQ ID NO:7）；RASEVDSLHLH（SEQ ID NO:8），或 RASEVDDDLHLH（SEQ ID NO:9）
或 SEQ ID NO:1、7、8 或 9 的变体，所述变体中氨基酸 A2 选自自由 A、G、S、T、和 V 组成的组，和 /
或氨基酸 A3 选自自由 S、G、I、K、N、P、Q、R、和 T 组成的组，和 / 或 A4 选自自由 E、V、Q、A、D、G、
H、K、L、N、R 组成的组，和 / 或氨基酸 A5 选自自由 S、Y、D、G、H、I、K、N、P、R、T、和 V 组
成的组，和 / 或氨基酸 A6 选自自由 V、R、I、A、G、K、L、M 和 Q 组成的组，和 / 或氨基酸 A7 选自
自由 D、V、S、A、E、G、H、I、K、L、N、P、S 和 T 组成的组，和 / 或氨基酸 A8 选自自由 D、G、N、E、
T、P 和 S 组成的组，和 / 或氨基酸 A9 选自自由 L、Y、I 和 M 组成的组，和 / 或氨基酸 A10 选自自由
L、A、I、M 和 V 组成的组，和 / 或氨基酸 A11 选自自由 H、Y、F、和 S 组成的组；
[0027] (ii) HVR-L2，其中氨基酸序列 B1-B8，其中 B1-B8 为 KYASQIS（SEQ ID NO:2）、
RYASQIS（SEQ ID NO:67）、或 XYASQIS（SEQ ID NO:68），其中 X 表示任意氨基酸）或 SEQ ID
NO:2、67 或 68 的变体，所述变体中氨基酸 B1 选自自由 K、R、N、V、A、F、Q、H、P、I、L、Y 和 X（其
中 X 表示任意氨基酸）组成的组，和 / 或氨基酸 B4 选自由 S 和 D 组成的组，和 / 或氨基酸
B5 选自由 Q 和 S 组成的组，和 / 或氨基酸 B6 选自由 S、D、L、和 R 组成的组，和 / 或氨基酸
B7 选自由 L、V、E 和 K 组成的组；
[0028] (iii) HVR-L3，其中氨基酸序列 C1-C9，其中 C1-C9 为 QQQNLSLPNT（SEQ ID NO:3）或
SEQ ID NO:3 的变体，所述变体中氨基酸 C8 选自自由 N、V、W、Y、R、S、T、A、F、H、I、L、M、和 Y
组成的组；
[0029] (iv) HVR-H1，其中氨基酸序列 D1-D10，其中 D1-D10 为 GFFITNYWG（SEQ ID NO:4）；
[0030] (v) HVR-H2，其中氨基酸序列 E1-E17，其中 E1-E17 为 GYISGYSNPSLKS（SEQ ID
NO:5），或 SEQ ID NO:5 的变体，所述变体中氨基酸 E2 选自由 Y、F、V、和 D 组成的组，和 / 或
氨基酸 E6 选自由 S 和 G 组成的组，和 / 或氨基酸 E10 选自由 S 和 Y 组成的组，和 / 或氨基
酸 E12 选自由 N、T、A、和 D 组成的组，和 / 或氨基酸 E13 选自由 P、H、D、和 A 组成的组，和 / 或
氨基酸 E15 选自由 L 和 V 组成的组，和 / 或氨基酸 E17 选自由 S 和 G 组成的组；
[0031] (vi) HVR-H3，其中氨基酸序列 F2-F11，其中 F2-F11 为 MTGSSYGDF（SEQ ID NO:6）
或 RTGSSYGDF（SEQ ID NO:66）；或氨基酸序列 F1-F11，其中 F1-F11 为 AMTGSYGDF（SEQ ID
NO:63），ARTGSSYGDF（SEQ ID NO:64），或 AQTGSSYGDF（SEQ ID NO:65），或含 SEQ ID
NO:6, 63, 64, 65, 或 66 的变体，所述变体中氨基酸 F2 为 R、M、A、E、G、Q、S，和 / 或氨基酸 F11
选自由 F 和 Y 组成的组。
[0032] 在权利要求 1 或本发明的任何抗体的一个具体实施方式中，重链框架 第 71 位上的
氨基酸（根据 Kabat 编号系统）选自由 A、R、和 T 组成的组，和 / 或重链框架第 73 位上的
氨基酸（Kabat 编号系统）选自由 N 和 T 组成的组，和 / 或重链框架第 78 位上的氨基酸
（Kabat 编号系统）选自由 Q、D、和 A 组成的组。
[0033] 在权利要求 1 或本发明的任何抗体的一个具体实施方式中，本发明抗体的 HVR-L1
含 SEQ ID NO:1 序列。在一个具体实施方式中，本发明抗体的 HVR-L2 含 SEQ ID NO:2 序
列。在一个具体实施方式中，本发明抗体的 HVR-L3 含 SEQ ID NO:3 序列。在一个具体实施
方式中，本发明抗体的 HVR-L1 含 SEQ ID NO:1 序列。在一个具体实施方式中，本发明抗体
的 HVR-L2 含 SEQ ID NO:2 序列。在一个具体实施方式中，本发明抗体的 HVR-L3 含 SEQ ID
NO:3 序列。在一个具体实施方式中，本发明抗体的 HVR-L1 含 SEQ ID NO:1 序列。在一个具体实施方式中，本发明抗体的 HVR-L2 含 SEQ ID NO:2 序列。在一个具体实施方式中，本发明抗体的 HVR-L3 含 SEQ ID NO:3 序列。在一个具体实施方式中，本发明抗体的 HVR-L1 含 SEQ ID NO:1 序列。在一个具体实施方式中，本发明抗体的 HVR-L2 含 SEQ ID NO:2 序列。在一个具体实施方式中，本发明抗体的 HVR-L3 含 SEQ ID NO:3 序列。
64、或 65。在一个具体实施方式中，HVR-L1 含 RASESVDSLHH (SEQ ID NO:7)。在一个具体实施方式中，HVR-L1 含 RASESVDTLHH (SEQ ID NO:8)。在一个具体实施方式中，HVR-L1 含 RASESVDDLHH (SEQ ID NO:9)。在一个具体实施方式中，本发明含这些序列（在本文中所述的序列的组合）的抗体制是人源化的或人的。

[0034] 在一个方面，本发明提供了含一、二、三、四、五或六个 HVR 的抗体，其中每个 HVR 包含选自由 SEQ ID NO:1、2、3、4、5、6、7、8、9、组成和的序列，或由或基本由选自由 SEQ ID NO:1、2、3、4、5、6、7、8、9，组成和的序列组成，而且其中 SEQ ID NO:1、7、8 或 9 对应于 HVR-L1，SEQ ID NO:2 对应于 HVR-L2，SEQ ID NO:3 对应于 HVR-L3，SEQ ID NO:4 对应于 HVR-H1，SEQ ID NO:5 对应于 HVR-H2，和 SEQ ID NO:6 对应于 HVR-H3。在一个具体实施方式中，本发明的抗体含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2、和 HVR-H3，其中每个依次含 SEQID NO:1、2、3、4、5 和 6。在一个具体实施方式中，本发明的抗体含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2、和 HVR-H3，其中每个依次含 SEQID NO:7、2、3、4、5 和 6。在一个具体实施方式中，本发明的抗体含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2、和 HVR-H3，其中每个依次含 SEQID NO:8、2、3、4、5 和 6。在一个具体实施方式中，本发明的抗体含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2、和 HVR-H3，其中每个依次含 SEQID NO:9、2、3、4、5 和 6。在一个具体实施方式中，本发明的抗体含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2、和 HVR-H3，其中每个依次含 SEQID NO:9、2、3、4、5、66，或含 SEQ ID NO:9、2、3、4、5、63，或 SEQID NO:9、2、3、4、5、64，或 SEQ ID NO:9、2、3、4、5、6，和 65 或 SEQID NO:9、67、3、4、5、64，或 SEQ ID NO:9，68、3、4、5、64。

[0035] 本发明抗体的 HVR 变体可在 HVR 中有一个个或多个残基修饰，而且 HVR 和 /或框架区域可以是人源化的。本发明带有 HVR 和 /或框架区修饰的具体实施方式包括但不限于以下本申请可能的专利要求：

[0036] 2. 权利要求 1 或其任何具体实施方式的抗体，其中变体 HVR-L1 中的 A8 是 S、D 或 T，而且 A9 是 L。

[0037] 3. 权利要求 1 或其任何具体实施方式的抗体，其中抗体是人源化的。

[0038] 4. 权利要求 1 或其任何具体实施方式的抗体，其中至少一部分框架序列是人共有框架序列。

[0039] 5. 权利要求 1 或其任何具体实施方式的抗体，其中所述修饰是替换、插入或缺失。

[0040] 6. 权利要求 1 或其任何具体实施方式的抗体，其中 HVR-L1 变体在以下任意组成的

[0041] 7. 权利要求 1 或其任何具体实施方式的抗体，其中其中 HVR-L2 变体在以下任意组合

[0042] 8. 权利要求 1 或其任何具体实施方式的抗体，其中 HVR-L3 变体在 C8 位置上至少一个替换（W、Y、R、S、A、F、H、I、L、M、N、T、或 V）。

[0043] 9. 权利要求 1 或其任何具体实施方式的抗体，其中 HVR-H2 变体在以下任意组合的
位置上含 1-7 (1,2,3,4,5,6,或 7) 个替换 :E2(V,D,或 F)、E6(G)、E10(Y)、E12(A,D,或 T)、
E13(D,A,或 H)、E15(V)、E17(G)。

【0044】10. 权利要求 1 或其任何具体实施方式的抗体，其中 HVR-H3 变体在以下任意组合
的位置上含 1 或 2 个替换 :F2(A,E,G,Q,R,或 S)、和 F11(Y)。

【0045】11. 权利要求 1 或其任何具体实施方式的抗体，其含具有 SEQ ID NO:7 序列的
HVR-L1。

【0046】12. 权利要求 1 或其任何具体实施方式的抗体，其含具有 SEQ ID NO:8 序列的
HVR-L1。

【0047】13. 权利要求 1 或其任何具体实施方式的抗体，其含具有 SEQ ID NO:9 序列的
HVR-L1。

【0048】14. 权利要求 11-13 之任一的抗体，其含重链人亚型 IIII 重链共有框架序列，其在
第 71,73 和 / 或 78 位上包含替换。

【0049】15. 权利要求 14 的抗体，其中替换是 R71A,N73T 或 N78A。

【0050】16. 权利要求 1 或其任何具体实施方式的抗体，其含具有 SEQ ID NO:3 序列的
HVR-L3。

【0051】17. 权利要求 1 或其任何具体实施方式的抗体，其中变体 HVR-L1 中的 A8 为 S。

【0052】18. 权利要求 1 或其任何具体实施方式的抗体，其中变体 HVR-L1 中的 A8 为 D。

【0053】19. 权利要求 1 或其任何具体实施方式的抗体，其中变体 HVR-L1 中的 A9 为 L。

【0054】20. 权利要求 1 或其任何具体实施方式的抗体，其中在序列 E1-E17 和 F1-F11 之
间的框架序列是 HFR3-1-HFR3-31，并且其中 HFR3-6 是 A 或 R, HFR3-8 是 N 或 T, 而且 HFR3-13
是 L 或 A 或 F。

【0055】21. 人源化抗 -β7 抗体，其中抗体对于人 β7 的单价亲和力基本等于含有如图 9
所述轻链和重链可变序列的大鼠抗体的单价亲和力。

【0056】22. 人源化抗 -β7 抗体，其中抗体对于人 β7 的单价亲和力大于含有如图 9 所述
轻链和重链可变序列的大鼠抗体的单价亲和力至少 3 倍。

【0057】23. 权利要求 21 或 22 的人源化抗体，其中大鼠抗体由美国典型培养物保藏中心保
藏的登录号为 ATCC HB-293 的杂交瘤细胞系产生。

【0058】24. 权利要求 21-23 任一项的抗体，其中结合亲和力以 Kd 值表示。

【0059】25. 权利要求 21-24 任一项的抗体，其中结合亲和力由 BiacoreTM 或放射免疫测试
来测定。

【0060】26. 权利要求 1 的抗体，其含人 κ 亚型 I 轻链共有框架序列。

【0061】27. 权利要求 1 的抗体，其含重链人亚型 IIII 重链共有框架序列。

【0062】28. 权利要求 27 的抗体，其中框架序列包含在第 71,73 和 / 或 78 位上的替换。

【0063】29. 权利要求 28 的抗体，其中所述替换是 R71A,N73T 和 / 或 N78A，或其中在第 71
位上替换的氨基酸是 R 或 A, 和 / 或在第 78 位上的氨基酸替换是 N 或 T, 和 / 或在第 78 为
上的氨基酸替换是 L 或 A 或 F。

【0064】30. 权利要求 28 的抗体，其中所述替换是 L78F 或 A78F 或 A78L 或 L78A。

【0065】31. 抑制人 β7 整联蛋白亚基同第二整联蛋白亚基和 / 或配体相互作用的方法，其
通过将权利要求 1-30 之任一的抗体与所述第二整联蛋白和 / 或所述配体接触来进行。
说明书中第7/94页

[0066] 32. 权利要求31的方法，其中所述第二整联蛋白亚基是α4整联蛋白亚基，而其中所述配体是MAcAM、VCM或纤连蛋白。

[0067] 33. 权利要求32的方法，其中α4整联蛋白亚基是人的。

[0068] 34. 权利要求33的方法，其中配体是人的。

[0069] 35. 权利要求32的方法，其中第二整联蛋白亚基是αE整联蛋白亚基，而且其中所述配基是E-钙粘着蛋白。

[0070] 36. 权利要求35的方法，其中αE整联蛋白亚基是人的。

[0071] 37. 权利要求36的方法，其中配体是人的。

[0072] 38. 权利要求31的方法，其中所述抑制能减少或减轻疾病症状，所述疾病选自多发性硬化症、肺气肿、鼻炎、支气管炎、哮喘、炎症性肠病、克罗恩氏病、溃疡性结肠炎、糖尿病、器官移植造成的炎症、移植者抗宿主的疾病、和同种异体移植疾病相关的炎症(immunity associated with allograft disease)所组成的组。

[0073] 本发明进一步的实施方式包括但不限于下列：

[0074] 在一个具体实施方式中，HVR-L1是SEQ ID NO:1、7、8、9或10或SEQ ID NO:11、7、8或9的HVR-L1变体，所述变体在对应的第A1-A11位中任意组合的位置上含1-10 (1, 2, 3, 4, 5, 6, 7, 8, 9, 或10) 个替换：A2 (A、G、S、T、或V)；A3 (S、G、I、K、P、Q、R、或T)；A4 (E、A、D、G、H、I、K、L、N、Q、R、或V)；A5 (S、A、G、H、I、K、N、P、R、T、V、或Y)；A6 (V、A、G、I、K、L、M、Q、或R)；A7 (D、A、E、G、H、I、K、L、N、P、T、或V)；A8 (T、S、D、E、G、P、T、或N)；A9 (Y、L、I、或M)；A10 (L、A、I、M、或V)；和A11 (H、F、S、或Y)。在一个具体实施方式中，HVR-L2是SEQ ID NO:2、6、7或8或SEQ ID NO:2、6、7或8的HVR-L2变体，所述HVR-L2变体在对应的第B1-B8位中任意组合的位置上含1-4 (1, 2, 3, 4, 或5) 个替换；B1 (K、R、N、V、A、F、Q、H、P、I、L、Y 或X)（其中X表示任意氨基酸）、B2 (S)、B5 (Q 或S)、B6 (S、R 或L)；和B7 (L、1、T、E、K、或V)。在一个具体实施方式中，HVR-L3是SEQ ID NO:3或SEQ ID NO:3的HVR-L3变体，所述变体在对应的第C1-C8位中至少一个替换，如在C8位 (W、Y、R、S、A、F、H、I、L、M、N、T、或V)。在一个具体实施方式中，HVR-H1是SEQ ID NO:4。在一个具体实施方式中，HVR-H2是SEQ ID NO:5或SEQ ID NO:5的HVR-H2变体，所述HVR-H2变体在对应的E1-E17位中任意组合的位置上含1-7 (1, 2, 3, 4, 5, 6, 或7) 个替换：E2 (Y、V、D、或F)；E6 (S 或G)；E9 (S 或Y)；E12 (N、A、D、或T)；E13 (P、D、A、或H)；E15 (L、或V)；E17 (S、或G)。在一个具体实施方式中，HVR-H3是SEQ ID NO:6、63、64、65、66或67 SEQ ID NO:6、63、64、65、66的HVR-H3变体，所述HVR-L3变体在SEQ ID NO:63、64、65和67所对应的第F1-F11位中或在SEQ ID NO:6和66所对应的第F2-F11位中，每个位置上至少有一个替换：F2 (M、A、E、G、Q、R、或S)；和F11 (F、或Y)。每个位置后括号中的字母直观地表示了将氨基酸替换（即置换）为共有的或其它的氨基酸，这对于所属领域技术人员来说是显然的。本文中所描述的其它氨基酸作为替换氨基酸的适宜程度能利用现有已知和/或本文所述的技术常规进行评估。

[0075] 在一个具体实施方式中，HVR-L1含SEQ ID NO:1序列。在一个具体实施方式中，变体HVR-L1的A8是D。在一个具体实施方式中，变体HVR-L1的A8是S。在一个具体实施方式中，变体HVR-L1的A9是L。在一个具体实施方式中，变体HVR-L1的A9是S。而且变体HVR-L1的A9是L。在一个具体实施方式中，变体HVR-L1的A8是S，而且变体HVR-L1的
A9 是 L。在本发明的具体实施方式中，包括在 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3 中的变化，所述 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。在一些具体实施方式中，HVR-H3 包含 (在对应的第 F2-F11 位上的) SEQ ID NO: 66 或 (在对应的第 F1-F11 位上的) SEQ ID NO: 63 或 64 或 65，或由或基本由 (在对应的第 F2-F11 位上的) SEQ ID NO: 66 或 66 (在对应的第 F1-F11 位上的) SEQ ID NO: 63 或 64 或 65 组成。

[0076] 在一个具体实施方式中，变体 HVR-L1 的 A8 是 1，而且变化 HVR-L1 的 A9 是 L，所述变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每個 HVR 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。

[0077] 在一个具体实施方式中，变体 HVR-L1 的 A8、A9 和 A10 分别是 D、L 和 V，所述变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每個 HVR 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。

[0078] 在一个具体实施方式中，变体 HVR-L1 的 A8 和 A9 分别是 N 和 L，所述变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每個 HVR 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。

[0079] 在一个具体实施方式中，变体 HVR-L1 的 A8 和 A9 分别是 P 和 L，而且变化 HVR-L2 的 B6 和 B7 分别是 R 和 T，所述变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每個 HVR 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。

[0080] 在一个具体实施方式中，变体 HVR-L1 的 A2、A4、A8、A9 和 A10 分别是 S、D、S、L、和 V，所述变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每個 HVR 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。

[0081] 在一个具体实施方式中，变体 HVR-L1 的 A5 和 A9 分别是 D 和 T，所述变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每個 HVR 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。

[0082] 在一个具体实施方式中，变体 HVR-L1 的 A5 和 A9 分别是 N 和 L，所述变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每個 HVR 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。

[0083] 在一个具体实施方式中，变体 HVR-L1 的 A9 是 L，所述变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每個 HVR 依次包含 SEQ ID NO: 2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 2、3、4、5、和 6 组成。

[0084] 在一个具体实施方式中，本发明的抗体或抗体 - β 7 结合多肽含 HVR-L1、HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，每个 HVR 依次包含 SEQ ID NO: 9、2、3、4、5、和 6，或依次由或基本由 SEQ ID NO: 9、2、3、4、5、和 6 组成。在另一个具体实施方式中，每个 HVR 依次包含 SEQ ID NO: 9、67、3、4、5、和 64，或依次由或基本由 SEQ ID NO: 9、67、3、4、5、和 64 组成。在另一个具体实施方式中，每个 HVR 依次包含 SEQ ID NO: 9、67、3、4、5、和 64，或依次由或基本由 SEQ ID NO: 9、67、3、4、5、和 64 组成。在另一个具体实施方式中，每个 HVR 依次包含 SEQ ID NO: 9、2 或 67 或 68、3、4、5、和 66，或依次由或基本由 SEQ ID NO: 9、2 或 67 或 68、3、4、5、和 66 组成。
在一些具体实施方式中，所述变体 HVR-L1 的抗体变体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2、和 HVR-H3，其中每个依次含 SEQ ID NO: 2, 3, 4, 5, 和 6 所述的序列。当抗体变体含 HVR-L1 A8 (P) 和 A9 (L) 和 HVR-L2B6 (R) 和 B7 (T) 时，在一些具体实施方式中，所述 HVR-L1、HVR-L2 变体进一步含 HVR-L3, HVR-H1, HVR-H2, 和 HVR-H3, 其中每个依次含 SEQ ID NO: 3, 4, 5, 和 6 所述的序列。

在一些具体实施方式中，这些抗体进一步包含人亚型 III 重链框架共有序列。在这些抗体的一个具体实施方式中，框架共有序列在第 71, 73 和 / 或 78 位上含有替换。在这些抗体的一些具体实施方式中，第 71 位是 A, 第 73 位是 T 和 / 或第 78 位是 A。这些抗体的一个具体实施方式中，这些抗体进一步包含人 κ I 重链框架共有序列。

在一些具体实施方式中，本发明的抗体含有 HVR-L1, 其包含 SEQ ID NO: 1。在一个具体实施方式中，本发明的变体抗体含变体 HVR-L1, 其中 A10 是 V。在一个具体实施方式中，所述变体抗体进一步含 HVR-L2, HVR-L3, HVR-H1, HVR-H2, 和 HVR-H3, 其中每个依次含 SEQ ID NO: 2, 3, 4, 5, 和 6 所述的序列。在一些具体实施方式中，这些抗体进一步包含人亚型 III 重链框架共有序列。在这些抗体的一个具体实施方式中，框架共有序列在第 71, 73 和 / 或 78 位上含有替换。在这些抗体的一些具体实施方式中，第 71 位是 A, 第 73 位是 T 和 / 或第 78 位是 A。这些抗体的一个具体实施方式中，这些抗体进一步包含人 κ I 重链框架共有序列。

在一些具体实施方式中，本发明的抗体含 HVR-L3, 其包含 SEQ ID NO: 3。在一个具体实施方式中，本发明的变体抗体含变体 HVR-L3, 其中 C8 是 L。在一个具体实施方式中，所述变体抗体进一步含 HVR-L1, HVR-L2, HVR-H1, HVR-H2, 和 HVR-H3, 其中每个依次含 SEQ ID NO: 1, 2, 4, 5, 和 6 所述的序列。在一些具体实施方式中，本发明的抗体含变体 HVR-L3, 其中 C8 是 W。在一个具体实施方式中，所述变体抗体进一步含 HVR-L1, HVR-L2, HVR-H1, HVR-H2, 和 HVR-H3, 其中每个依次含 SEQ ID NO: 1, 2, 4, 5, 和 6 所述的序列。在一些具体实施方式中，HVR-L1 含 SEQ ID NO: 7, 8, 或 9。在一些具体实施方式中，这些抗体进一步包含人亚型 III 重链框架共有序列。在这些抗体的一个具体实施方式中，框架共有序列在第 71, 73 和 / 或 78 位上含有替换。在这些抗体的一些具体实施方式中，第 71 位是 A, 第 73 位是 T 和 / 或第 78 位是 A。这些抗体的一个具体实施方式中，这些抗体进一步包含人 κ I 重链框架共有序列。

在一些具体实施方式中，本发明的抗体含 HVR-H3, 其包含 SEQ ID NO: 6。在一个具体实施方式中，所述抗体变体含变体 HVR-H3, 其中 F1 是 Q。在一个具体实施方式中，所述变体抗体进一步含 HVR-L1, HVR-L2, HVR-L3, HVR-H1, 和 HVR-H2, 其中每个依次含 SEQ ID NO: 1, 2, 3, 4, 和 5 所述的序列。在一个具体实施方式中，本发明的抗体含变体 HVR-H3, 其中 F1 是 R。在一个具体实施方式中，所述变体抗体进一步含 HVR-L1, HVR-L2, HVR-L3, HVR-H1, 和 HVR-H2, 其中每个依次含 SEQ ID NO: 1, 2, 3, 4, 和 5 所述的序列。在一个具体实施方式中，HVR-L1 含 SEQ ID NO: 7, 8, 或 9。在一些具体实施方式中，这些抗体进一步包含人亚型 III 重链框架共有序列。在这些抗体的一个具体实施方式中，框架共有序列在第 71, 73 和 / 或 78 位上含有替换。在这些抗体的一些具体实施方式中，第 71 位是 A, 第 73 位是 T 和 / 或第 78 位是 A。在这些抗体的一个具体实施方式中，这些抗体进一步包含人 κ I 重链框架共有序列。

在一些具体实施方式中，本发明的抗体含 HVR-L1, 其包含 SEQ ID NO: 1。在一个具体实施方式中，抗体含变体 HVR-L1, 其中 A4 是 Q。在一个具体实施方式中，所述变体抗体进一步含 HVR-L2, HVR-L3, HVR-H1, HVR-H2, 和 HVR-H3, 其中每个依次含 SEQ ID NO: 2, 3, 4, 5, 和 6 所述的序列。
和 6 所述的序列。在一个具体实施方式中，本发明的抗体含变体 HVR-L1，其中 A6 是 F。在一个具体实施方式中，所述变体抗体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每个依次含 SEQ ID NO:2,3,4,5,6 所述的序列。在一个具体实施方式中，本发明的抗体含变体 HVR-L1，其中 A7 是 S。在一个具体实施方式中，所述变体抗体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每个依次含 SEQ ID NO:2,3,4,5,6 所述的序列。在一个具体实施方式中，本发明的抗体含变体 HVR-L1，其中 A8 是 D 或 N。在一个具体实施方式中，所述变体抗体进一步含 HVR-L2、HVR-L3、HVR-H1、HVR-H2 和 HVR-H3，其中每个依次含 SEQ ID NO:2,3,4,5,6 所述的序列。在一个具体实施方式中，这些抗体进一步含人亚型 III 重链框架共有序列。在一个具体实施方式中，这些抗体进一步含人亚型 III 重链框架共有序列。在一个具体实施方式中，这些抗体进一步含人亚型 III 重链框架共有序列。在一个具体实施方式中，这些抗体进一步含人亚型 III 重链框架共有序列。在一个具体实施方式中，这些抗体进一步含人亚型 III 重链框架共有序列。在一个具体实施方式中，这些抗体进一步含人亚型 III 重链框架共有序列。
HVR-L3, HVR-H1 和 HVR-H3，其中每个依次含 SEQ ID NO: 1, 2, 3, 4, 和 6 所述的序列。在一些具体实施方式中，HVR-L1 含 SEQ ID NO: 7, 8, 9, 而 HVR-L2 含 SEQ ID NO: 1, 2, 3, 4, 和 6 所述的序列。在一些具体实施方式中，这些抗体进一步含人亚型 III 重链框架共有序列。在这些抗体的一个具体实施方式中，框架共有序列在第 71, 73 和/或第 78 位是 A, 第 79 位是 T 但/或第 82 位是 A。在这些抗体的一个具体实施方式中，这些抗体进一步含人 κ 1 轻链框架共有序列。

在一些具体实施方式中，本发明的抗体含 HVR-H3，其中 SEQ ID NO: 6。在一些具体实施方式中，本发明的抗体含人亚型 HVR-H3，其中 SEQ ID NO: 6。在一些具体实施方式中，所述抗体进一步含 HVR-L1, HVR-L2, HVR-L3, HVR-H1 和 HVR-H3，其中每个依次含 SEQ ID NO: 1, 2, 3, 4, 和 6 所述的序列。在一些具体实施方式中，HVR-L1 含 SEQ ID NO: 7, 8, 9, 而 HVR-L2 含 SEQ ID NO: 1, 2, 3, 4, 和 6 所述的序列。在一些具体实施方式中，这些抗体进一步含人亚型 III 重链框架共有序列。在这些抗体的一个具体实施方式中，框架共有序列在第 71, 73 和/或第 78 位是 A, 第 79 位是 T 但/或第 82 位是 A。在这些抗体的一个具体实施方式中，这些抗体进一步含人 κ 1 轻链框架共有序列。

这些抗体的一个具体实施方式中，本发明提供了这样的试剂。例如，一个具体实施方式中，本发明提供了人源化抗体，其在宿主受试者内，相对于含 SEQ ID NO: 10 和/或 11 (图 1A 和 1B) 或 SEQ ID NO: 12 和/或 13 (图 9A 和 9B 描述的大鼠抗-小鼠 Fab504 氨基酸序列) 序列的抗体，引发和/或预期引发人抗-啮齿动物抗体的抗应答 (如抗-小鼠或抗-大鼠应答) 或人抗-人应答的水平充分降低。在另一个例子中，本发明提供了人源化抗体，其不引发和/或预期不引发人抗-啮齿动物 (如人抗-小鼠 (HAMA) 或人抗-大鼠) 或人抗-人抗体的应答 (HANA)。

本发明的人源化抗体可以在其重和/或轻链可变结构域中包含一个或多个外/或人共有非高变区 (如，框架) 序列。在一些具体实施方式中，有一个或多个额外的修饰存在于人和/或人共有非高变区序列中。在一个具体实施方式中，本发明抗体的重链可变结构域含人共有框架序列，在一个具体实施方式中其为亚型 III 共有框架序列。在一个具体实施方式中，本发明的抗体含有在至少一个氨基酸位置上修饰的变体亚型 III 共有框架序列。例如，在一个具体实施方式中，变体亚型 III 共有框架序列可在第 71, 73, 78 和/或 94 位中一个或多个位置上含有替换。在一个具体实施方式中，所述替换是可任意组合的 R71A, N73T, L78A, 和/或 R94M。

由于现有已知的并且将在下文中更详细地描述，因此根据上下文和现有已知的各种定义 (如下所示)，描述抗体高变区的氨基酸位置/范围可以变化。可变结构域内的一些位置可视作杂合 (hybrid) 高变位，因此这些位置在一套标准下可被认为处于高变区内，而在另一套标准下可被认为处于高变区外。在 (如下文所定义的) 延伸的高变区中，也可发现这些位置中的一个或多个位置。本发明提供了在这些杂合高变位中含

一个具体实施方式中，抗体含 Y91G 替换。在一个具体实施方式中，抗体含 W96 替换为 N、L、W、Y、R、S、A、F、H、I、M、N、R、S、T、V 或 Y 的替换。参照图 1A 可以看出，这些替换在轻链的 HVR-L1、HVR-L2、和/或 HVR-L3 中。

【0100】如果抗体显示所需的生物特性（如，所需的结合亲和性），则本发明的抗体可含任何适合的人轻链框架序列或及共有人轻链框架序列。在一个具体实施方式中，本发明的抗体含至少一部分（或全部）人 κ 轻链的框架序列。在一个具体实施方式中，本发明的抗体含至少一部分（或全部）人 κ 亚型 I 框架共有序列。

【0101】在一个具体实施方式中，如果轻链第 49 位和重链第 94 位包含在延伸的 HVR 中，并且如果所述第 49 位是 K，而且所述第 94 位优选但不必须是 M 并可以是 R，则本发明的抗体含重和/或轻链可变结构域，其含 SEQ IDNO:34-41 所述的并处在图 1、7 和 8 中的框架序列为。

【0102】本发明的抗原剂可用于调节一个或多个方面的 β7 相关效应，包括但不限于与 α4 整联蛋白亚基的结合，与 αE 整联蛋白亚基的结合，与 α4β7 整联蛋白结合于 MadCAM、VCAM-1 或纤连蛋白和将 αEβ7 整联蛋白结合于 E-钙粘着蛋白。这些效应可通过生物学相关机理来调节，包括阻断配体结合于 β7 亚基或结合于 α4β7 或 αEβ7 二聚整联蛋白，和/或通过阻断 α 和 β 整联蛋白亚基之间的结合，由此抑制二聚整联蛋白的形成。因此，在一个具体实施方式中，本发明提供了 β7 抗原剂抗体，其抑制 α4 结合于 β7。在一个具体实施方式中，本发明的 β7 抗原剂抗体阻断 α4β7 同 MadCAM 的结合。在一个具体实施方式中，本发明的 β7 抗原剂抗体阻断 α4β7 同 VCAM-1 的结合。在一个具体实施方式中，本发明的 β7 抗原剂抗体阻断 αβ7 同纤连蛋白的结合。在一个具体实施方式中，本发明的 β7 抗原剂抗体阻断 αE 的结合。在一个具体实施方式中，本发明的 β7 抗原剂抗体阻断 α4β7 整联蛋白同 E-钙粘着蛋白的结合。干扰是可以是直接或间接的。例如，β7 抗原剂抗体可以结合到 α4β7 或 αEβ7 二聚区域序列内的 β7 上，由此抑制整联蛋白亚基的相互作用和整联蛋白二聚体的形成。在进一步的例子中，β7 抗原剂抗体可以结合到 β7 亚基配体结合结构域内的序列上，由此抑制所述结合结构域同其结合配偶体（如对于 α4β7 整联蛋白来说，有纤连蛋白，VCAM 和/或 MadCAM；或对于 αEβ7 整联蛋白来说，有 E-钙粘着蛋白）的相互作用。在另一个例子中，β7 抗原剂抗体可以结合到在不同整联蛋白亚基二聚化结构域或配体结合结构域内的序列上，但是其中所述 β7 抗原剂抗体的结合会导致阻断 β7 结构域同其结合配偶体（如 α4 或 αE 整联蛋白亚基和/或配体，如纤连蛋白，VCAM、MadCAM，或 E-钙粘着蛋白）的相互作用。在一个具体实施方式中，本发明的抗原剂抗体同 β7（例如，细胞外结构域）结合，由此阻断 β7 同 α4 或 αE 亚基的二聚化。在一个具体实施方式中，本发明的抗原剂抗体同 β7 结合，由此能够阻断 β7 和/或 α4β7 和/或 αEβ7 整联蛋白同其各自配体或多个配体的结合。例如，在一个具体实施方式中，本发明提供了抗原剂抗体，其同 β7 分子的结合抑制了所述分子的二聚化。在一个具体实施方式中，本发明的 β7 抗原剂抗体特异结合 β7 配体结合结构域中的序列。在一个具体实施方式中，本发明的 β7 抗原剂抗体特异结合 β7 配体结合结构域中的序列，由此阻断配体（即，纤连蛋白，VCAM 和/或 MadCAM）结合于 α4β7 整联蛋白上。在一个具体实施方式中，本发明的 β7 抗原剂抗体特异结合 β7 配体结合结构域中的序列，由此阻断配体（即，E-钙粘着蛋白）结合于 αEβ7 整联蛋白上。
在一个具体实施方式中，本发明的抗原抗体反应阻断 \(\beta 7 \) 二聚化，包括异二聚化（即，\(\beta 7 \) 同 \(\alpha 4 \) 或 \(\alpha E \) 整联蛋白亚基分子的二聚化）。

在一个具体实施方式中，本发明的抗原抗体结合 \(\beta 7 \) 整联蛋白亚基上的表位，所述亚基对应于氨基酸 176-237。在一个具体实施方式中，本发明的抗原抗体结合 \(\beta 7 \) 整联蛋白上相同的表位，该表位与 Fib504.64（ATCC HB-293）的表位基本相同。通过标准技术可确定表位结合，所述技术包括但不限于竞争性结合分析。

在一个方面，本发明提供了抗体，其包含一、二、三、四、五个或所有图 13 氨基酸替换表所述的 IVR 序列的组合。

用于宿主受试者的治疗剂优选在所述受试者内引发很小至不引发针对试剂的免疫应答。在一个具体实施方式中，本发明提供了这样的试剂。例如，在一个具体实施方式中，本发明提供了人源化抗体，其在宿主受试者内，相对于含 SEQ ID NO:10、11、12 和 / 或 SEQ ID NO:13 （大鼠抗 - 小鼠 Fib504 (ATCC HB-293)，图 1 和 9）序列的抗体，在充分降低水平上引发和 / 或预期引发人抗 - 大鼠或人抗 - 小鼠或人抗 - 人抗人体应答。在一个例子中，本发明提供了人源化抗体，其不引发和 / 或预期不引发人抗 - 小鼠、人抗 - 大鼠或人抗 - 人抗体的应答。

本发明的人源化抗体可以在其重链或轻链可变结构域中包含一个或多个和 / 或人源非高变区（如，框架）序列。在一些具体实施方式中，有一个或多个额外的修饰存在于人和 / 或人源非高变区序列中。在一个具体实施方式中，本发明抗体的重链可变结构域含人源共有框架序列。在一个具体实施方式中其为亚型 IIII 共有框架序列。在一个具体实施方式中，本发明的抗体含有至少一个氨基酸位置上经修饰的变体亚型 IIII 共有框架序列。例如，在一个具体实施方式中，尽管第 94 位是本发明延伸的重链高变区 - H3 的一部分，但是变体亚型 IIII 共有框架序列可在第 71、73、78 和 / 或 94 位中的一个或多个位置上含有替换。在一个具体实施方式中，所述替换是可任意组合的 R71A、N73T、L78A 和 / 或 R94M。

如果抗体显示出所需的生物活性（如，所需的结合亲和力），则本发明的抗体可含任何合适的人或人源轻链框架序列。在一个具体实施方式中，本发明的抗体含至少一部分（或全部）人 \(k \) 轻链的框架序列。在一个具体实施方式中，本发明的抗体含至少一部分（或全部）人 \(k \) 亚型 I 框架共有序列。

本发明的抗原抗体可用于调节一个或多个方面的 \(\beta 7 \) 相关效应。例如，\(\beta 7 \) 抗原抗体可以结合到 \(\alpha 4 \beta 7 \) 或 \(\alpha E \beta 7 \) 二聚区域序列内的 \(\beta 7 \) 上，由此抑制整联蛋白亚基的相互作用和整联蛋白二聚体的形成。在进一步的例子中，\(\beta 7 \) 抗原抗体可以结合到 \(\beta 7 \) 亚基配体结合结构域内的序列上，由此抑制所述结合结构域同其结合配偶体（如对于 \(\alpha 4 \beta 7 \) 整联蛋白来说，有纤连蛋白、VCAM 和 / 或 MadCAM；或对于 \(\alpha E \beta 7 \) 整联蛋白来说，有 E- 钙粘着蛋白）的相互作用。在另一个例子中，\(\beta 7 \) 抗原抗体可以结合到不在整联蛋白亚基二聚化结构域或配体结合结构域内的序列上，但是其中所述 \(\beta 7 \) 抗原抗体的结合会导致阻断 \(\beta 7 \) 结构域同其结合配偶体（如，\(\alpha 4 \) 或 \(\alpha E \) 整联蛋白亚基和 / 或配体，如纤连蛋白、VCAM、MadCAM、或 E- 钙粘着蛋白）的相互作用。在一个具体实施方式中，本发明的抗原抗体同 \(\beta 7 \) 结合（如，细胞外结缔）结合，由此阻断 \(\beta 7 \) 同 \(\alpha 4 \) 或 \(\alpha E \) 亚基的二聚化。在一个具体实施方式中，本发明的抗原抗体同 \(\beta 7 \) 结合，由此能够阻断 \(\beta 7 \) 和 / 或 \(\alpha 4 \beta 7 \) 和 / 或
αβ7整联蛋白同其各自配体或多个配体的结合。例如，在一个具体实施方式中，本发明提供了拮抗剂抗体，其中β7分子的结合抑制了所述分子的二聚化。在一个具体实施方式中，本发明的β7拮抗剂抗体特异结合β7配体结合结构域中的序列。在一个具体实施方式中，本发明的β7拮抗剂抗体特异结合β7配体结合结构域中的序列，由此阻断配体（如纤连蛋白、VCAM、和/或MadCAM）结合于α4β7整联蛋白上。在一个具体实施方式中，本发明的β7拮抗剂抗体特异结合β7配体结合结构域中的序列，由此阻断配体（如E-钙粘着蛋白）结合于αEβ7整联蛋白上。

[0110]在一个具体实施方式中，本发明的拮抗剂抗体阻断β7二聚化，包括异二聚化（即，β7同α4或αE整联蛋白亚基分子的二聚化）。

[0111]在一些情况下，有β7拮抗剂抗体是有效的，所述β7拮抗剂抗体不干扰配体（如纤连蛋白、VCAM、MadCAM、或αE）同以整联蛋白一部分形式的β7亚基结合或同以二聚体形式的α4β7整联蛋白或αEβ7整联蛋白结合。因此，在一个具体实施方式中，本发明提供了抗体，其不结合β7上的纤连蛋白、VCAM、MadCAM、或E-钙粘着蛋白的结合位点，但取而代之的，抑制β7亚基和α亚基（如α4或αE整联蛋白亚基）之间的相互作用，由此阻止形成有生物学活性的整联蛋白。在一个实例中，本发明的拮抗剂抗体可用于偶联一个或多个其它拮抗剂，其中所述拮抗剂靶向于β7整联蛋白轴的不同过程和/或功能。因而，在一个具体实施方式中，本发明的β7拮抗剂抗体结合β7上的表位，其不同于其它β7或α/β整联蛋白拮抗剂（如α4β7抗体，包括单克隆抗体或抗体，例如衍生自和/或与衍生自小鼠抗体的抗体具有相同或基本上相同的结合特异性或特异性的人源化抗体或单克隆抗体）所结合的表位。

[0112]在一个具体实施方式中，本发明提供了β7拮抗剂抗体，其阻断β7-α4或-αE与各自整联蛋白的多聚化及配体结合。例如，本发明抑制β7同α4或αE整联蛋白亚基二聚化的拮抗剂抗体可以进一步包括同结合β7或整联蛋白二聚体的配体（如，它可以干扰纤连蛋白、VCAM、和/或MadCAM同β7和/或α4β7的结合；或它可以干扰E-钙粘着蛋白同β7或αEβ7的结合）竞争的能力。

[0113]在本发明β7拮抗剂抗体的一个具体实施方式中，拮抗剂同β7的结合抑制由配体结合所活化的细胞粘附。在本发明β7拮抗剂抗体的另一个具体实施方式中，拮抗剂同β7在细胞中的结合抑制细胞向表达β7的整联蛋白的细胞和/或组织中募集。

[0114]在一个具体实施方式中，本发明的β7拮抗剂抗体特异结合β7细胞外结构域的至少一部分氨基酸176-250（参见Tidwell, M.等（1997）J. Immunol.159:1497-1505）或其变体，并减少或阻断配体MadCAM、VCAM-1、纤连蛋白、和/或E-钙粘着蛋白的结合。在一个具体实施方式中，这种配体结合的阻断可阻断、减少和/或阻止表达配体的细胞同表达β7配体的细胞的粘附。在一个具体实施方式中，本发明的拮抗剂抗体特异结合残基176-237的β7氨基酸序列。在一个具体实施方式中，本发明的拮抗剂抗体特异结合具有与人β7的残基176-237或残基176-250的氨基酸序列至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%、至少99%序列同一性或相似性的氨基酸序列。在一个具体实施方式中，本发明的拮抗剂抗-β7抗体结合与抗-β7抗体Fib504相同的表
位，所述抗-β7抗体Fib504由杂交瘤ATCC HB-293产生。

【0115】在一个方面，本发明提供了组合物，其包含本发明的一个或多个拮抗剂抗体和载体。在一个具体实施方式中，载体是药学上可接受的。

【0116】在一个方面，本发明提供了核酸，其编码本发明的β7拮抗剂抗体。

【0117】在一个方面，本发明提供了载体，其包含本发明的核酸。

【0118】在一个方面，本发明提供了宿主细胞，其包含本发明的核酸或载体。载体可以是任何类型的，例如重组载体，如表达载体。可使用各种宿主细胞。在一个具体实施方式中，宿主细胞是原核细胞，例如，大肠杆菌。在一个具体实施方式中，宿主细胞是真核细胞，例如哺乳动物细胞，如中国仓鼠卵巢（CHO）细胞。

【0119】在一个方面，本发明提供了制备本发明拮抗剂的方法。例如，本发明提供了制备β7拮抗剂抗体（其如本文所定义的，包括全长和其片段）的方法，所述方法包括在合适的宿主细胞中表达本发明的编码所述抗体（或其片段）的重组载体，并收集所述抗体。

【0120】在一个方面，本发明提供了制品，其包含容器；和包含在容器中的组合物，其中组合物含本发明的一个或多个β7拮抗剂抗体。在一个具体实施方式中，所述组合物含本发明的核酸。在一个具体实施方式中，含拮抗剂抗体的组合物进一步含载体，在一些具体实施方式中它是药学上可接受的。在一个具体实施方式中，本发明的制品进一步含将组合物（例如，拮抗剂抗体）向受试者给药的说明书。

【0121】在一个方面，本发明提供了试剂盒，其包含含组合物的第一容器，所述组合物含本发明的一种或多种β7拮抗剂抗体；和含缓冲液的第二容器。在一个具体实施方式中，缓冲液是药学上可接受的。在一个具体实施方式中，含拮抗剂抗体的组合物进一步含载体，在一些具体实施方式中它是药学上可接受的。在一个具体实施方式中，试剂盒进一步含将组合物（例如，拮抗剂抗体）向受试者给药的说明书。

上调（Pang等，Arthritis & Rheumatism 41:1456-1463（1998））。在Sjögren氏综合征中，CD8+αβ7+T细胞粘附并通过诱导凋亡来杀死腺泡上皮细胞（Kroend等，Scand J Rheumatol 27:215-218, 1998）。整联蛋白α4β7和αEβ7在皮肤炎症期间的T细胞外皮作用（epidermotropism）中起作用，并导致皮肤同种移植排斥（Sun等，Transplantation 74,1202,2002）。Teraki和Shiohara揭示了αEb7整联蛋白会在鳞状表皮（psoriatic epidermis）的CD8+T细胞上优先表达（Teraki和Shiohara，Br. J. Dermatology 147,1118, 2002）。在哮喘、COPD,和正常个体中，唾液T淋巴细胞是活化的IEL(CD69+CD103+)（Leckie等，Thorax 58,23,2003）。在临床肾移植同种移植排斥中，CD103+(αEb7)+CTL累积于移植体的上皮细胞上（Hadley等，Transplantation 72,1548,2001）。因此，在一个方面，本发明提供了本发明的β7拮抗剂抗体抑制β7整联蛋白-配体相互作用的应用，用以减少或减轻疾病，如一种或多种上述病状。在一个具体实施方式中，本发明的抗体用于制备治疗和/或预防疾病药物，如炎症、包括但不限于炎症性肠病（如克罗恩氏病和溃疡性结肠炎）、肝炎、CNS炎症、慢性胰腺炎、系统性红斑狼疮、Sjögren氏综合征、银屑病（psoriasis）和皮肤炎症、哮喘、慢性阻塞性肺病（COPD）、间质性肺病、过敏、自身免疫性疾病、移植排斥、肾脏移植排斥、移植体抗宿主疾病、糖尿病、和癌症。

[0123] 在一个方面，本发明提供了本发明的核酸在制备治疗和/或预防疾病的药物中的应用，如免疫（如自身免疫或炎性）疾病，包括但不限于，炎症性肠病（如克罗恩氏病或溃疡性结肠炎）和过敏反应（如呼吸道系统、皮肤、关节、过敏性哮喘和其它由含β7的整联蛋白介导的过敏反应所影响的器官的疾病）。

[0124] 在一个方面，本发明提供了本发明的表达载体在制备治疗和/或预防疾病的药物中的应用，如免疫（如自身免疫或炎性）疾病，包括但不限于，炎症性肠病（如克罗恩氏病或溃疡性结肠炎）和过敏反应（如呼吸道系统、皮肤、关节、和其它由含β7的整联蛋白介导的过敏反应所影响的器官的疾病）。

[0125] 在一个方面，本发明提供了本发明的宿主细胞在制备治疗和/或预防疾病的药物中的应用，如免疫（如自身免疫或炎性）疾病，包括但不限于，炎症性肠病（如克罗恩氏病或溃疡性结肠炎）和过敏反应（如呼吸道系统、皮肤、关节、和其它由含β7的整联蛋白介导的过敏反应所影响的器官的疾病）。

[0126] 在一个方面，本发明提供了本发明的抗体在制备治疗和/或预防疾病的药物中的应用，如免疫（如自身免疫或炎性）疾病，包括但不限于，炎症性肠病（如克罗恩氏病或溃疡性结肠炎）和过敏反应（如呼吸道系统、皮肤、关节、和其它由含β7的整联蛋白介导的过敏反应所影响的器官的疾病）。

[0127] 在一个方面，本发明提供了本发明的试剂盒在制备治疗和/或预防疾病的药物中的应用，如免疫（如自身免疫或炎性）疾病，包括但不限于，炎症性肠病（如克罗恩氏病或溃疡性结肠炎）和过敏反应（如呼吸道系统、皮肤、关节、和其它由含β7的整联蛋白介导的过敏反应所影响的器官的疾病）。

[0128] 本发明提供了方法和组合物，其用于调节与β7整联蛋白介导的细胞-细胞相互作用过程失调所相关的病状。β7整联蛋白涉及多种生物学和生理学功能，包括如，炎症疾病和过敏反应。因而，在一个方面，本发明提供了方法，其包括向受试者给药本发明的抗体。

[0129] 在一个方面，本发明提供了抑制β7整联蛋白介导的炎症的方法，所述方法包括
将细胞或组织同有效量的本发明抗体接触，由此抑制淋巴细胞或 B 细胞同表达 β7 整联蛋白的细胞的相互作用和结合。

[0130] 在一个方面，本发明提供了治疗受试者中与 β7 整联蛋白结合失调相关的病理状况的方法，所述方法包括对受试者给药有效量的本发明抗体，由此治疗所述状况。

[0131] 在一个方面，本发明提供了抑制表达 β7 整联蛋白配体的淋巴细胞（如表达MadCAM、VCAM、E-钙粘着蛋白或纤连蛋白的细胞）同表达 β7 整联蛋白（如 α4β7 或 αEβ7 整联蛋白）的细胞结合的方法，所述方法包括将所述细胞同本发明的抗体接触，由此抑制或阻止细胞粘附并减轻炎症反应。

[0132] 在一个方面，本发明提供了治疗或防护与 β7 整联蛋白的增加的表达或活性或与一种细胞上 β7 整联蛋白和另一种细胞上 β7 整联蛋白受体的增加相互作用所相关的炎症疾病的方法，所述方法包括向需要这种治疗的受试者给药有效量的本发明抗体，由此有效治疗或防护所述炎症疾病。在一个具体实施方式中，所述炎症疾病是炎症性肠病 (IBD)。在另一个具体实施方式中，所述炎症疾病是过敏反应。

[0133] 本发明的方法可用于影响任何适宜的病变，例如，与 β7 整联蛋白结合途径失调相关的细胞和 / 或组织。β7 整联蛋白主要在白细胞上表达 (Tidsswell M. 等 (1997) 同上)。在一个具体实施方式中，本发明的方法靶向于白细胞并阻止同表达 β7 整联蛋白配体的细胞结合。例如，根据本发明，通过拮抗剂抗 -β7 抗体能阻止表达 E- 钙粘着蛋白的上皮内淋巴细胞与表达 αEβ7 的细胞结合。通过本发明的拮抗剂抗 -β7 抗体能阻止表达 MadCAM、VCAM-1 或纤连蛋白的细胞与表达 α4β7 的白细胞结合。

[0134] 本发明的方法可进一步包括额外的治疗步骤。例如，在一个具体实施方式中，方法可进一步包括这样的步骤，其中靶细胞和 / 或组织（例如，肠内壁的内皮细胞）暴露于抗-TNF 抗体或小分子治疗剂，其包括但不限于 5-ASA 化合物（包括但不限于）。

[0135] 如本文所述，β7 整联蛋白介导重要的生物过程，其失调将导致许多病理状况。因此，在本发明方法的一个具体实施方式中，靶细胞（例如，内皮细胞）是这样的细胞，即相对于缺少了抗本发明 β7 拮抗抗体的细胞，表达 β7 整联蛋白的 β7 整联蛋白配体的细胞（其中细胞可以是并且不限于淋巴细胞，而配体可以是 MadCAM、VCAM 或 E- 钙粘着蛋白）的粘附被阻断、抑制或阻止了。在一个具体实施方式中，本发明的方法抑制淋巴细胞归巢 (homing)，由此抑制在 β7 整联蛋白表达位点上的炎症。例如，与本发明拮抗剂的接触可以使细胞不能粘附到表达 β7 整联蛋白配体的细胞上。

[0136] 附图简述

[0137] 图 1A 和 1B 描述了下列可变区和重链序列的排列：轻链人亚型 κ I 共有序列（图 1A，SEQ ID NO :23），重链人亚型 III 共有序列（图 1B，SEQ IDNO :24），大鼠抗 - 小鼠 β7 抗体 (Fib504) 可变轻链（图 1A，SEQ ID NO :10），大鼠抗 - 小鼠 β7 抗体 (Fib504) 可变重链（图 1B，SEQ ID NO :11），和人源化的抗体变异：人源化 hu504K 移植体可变轻链（图 1A，SEQ ID NO :25），人源化 hu504K 移植体可变重链（图 1B，SEQ ID NO :26），变体 hu504.5（对于变体 hu504.5，hu504.16，和 hu504.32，源于人源化 hu504K 移植体的氨基酸变化如图 1A（轻链）和图 1B（重链）所示。在产生 β7 结合抗体的 hu504K 移植体的 HVR-I1 和 HVR-H2 中，额外氨基酸替换如图 1C 所示。

[0138] 图 2A 和 2B 描述了人共有亚型 III 序列轻链（图 2A，SEQ ID NO :27）和重链（图
图 3A 和 3B 描述了人源化 504 移植物的全长序列，其含（如本文所述的）植入人
k I 亚型序列轻链（图 3A，SEQ ID NO: 29）和人亚型 III 亚型序列重链（图 3B，SEQ ID NO: 30）的大鼠 Fib504 高变区。本发明是 HVR。

图 4A 和 4B 描述了人源化 504 移植物的全长序列，其中 hu504 移植物轻链的第 49 位是 Y49K 替换。hu504K 移植物轻链如 SEQ ID NO: 31 所述，而 hu504K 移植物重链如 SEQ ID NO: 30 所述。本发明是 HVR。

图 5A 和 5B 描述了 hu504K-RF 移植物的全长序列，其中 hu504 移植物轻链第 71 和 78 位是 hu504K 移植物序列的 A71R 替换和 A78F 替换。hu504K-RF 移植物轻链如 SEQ ID NO: 31 所述和 hu504K-RF 移植物重链如 SEQ ID NO: 32 所述。本发明是 HVR。

图 6A 和 6B 描述了 hu504.32 变体的全长序列，其包含 hu504K-RF 移植物轻链 (SEQ ID NO: 32) 和 hu504K 移植物轻链 (SEQ ID NO: 33) 中的 T31D 和 Y32L 替换。本发明是 HVR。

图 7A-图 7B 和图 8A-图 8B 描述了示例性的受体 (acceptor) 人共有框架序列，其用于实现本发明，用如下序列标识来表示：

[0144] 轻链可变区 (VL) 共有框架（图 7A、B）

[0145] 人 VL κ 亚型 I 共有框架 (SEQ ID NO: 14)

[0146] 人 VL κ 亚型 I 共有框架扣除延伸的 HVR-L2 (SEQ ID NO: 15)

[0147] 人 VL κ 亚型 II 共有框架 (SEQ ID NO: 16)

[0148] 人 VL κ 亚型 III 共有框架 (SEQ ID NO: 17)

[0149] 人 VL κ 亚型 IV 共有框架 (SEQ ID NO: 18)

[0150] 阴影区域代表轻链 HVR（标示为 L1、L2 和 L3）。

[0151] 重链可变区 (VH) 共有框架（图 8A、B）

[0152] 人 VH 亚型 I 共有框架扣除 Kabat CDR (SEQ ID NO: 19)

[0153] 人 VH 亚型 I 共有框架扣除延伸的高变区 (SEQ ID NO: 20-22)

[0154] 人 VH 亚型 II 共有框架扣除 Kabat CDR (SEQ ID NO: 48)

[0155] 人 VH 亚型 II 共有框架扣除延伸的高变区 (SEQ ID NO: 49-51)

[0156] 人 VH 亚型 III 共有框架扣除 Kabat CDR (SEQ ID NO: 52)

[0157] 人 VH 亚型 III 共有框架扣除延伸的高变区 (SEQ ID NO: 53-55)

[0158] 人 VH 受体 (acceptor) 框架扣除 Kabat CDR (SEQ ID NO: 56)

[0159] 人 VH 受体框架扣除延伸的高变区 (SEQ ID NO: 57-58)

[0160] 人 VH 受体 2 框架扣除 Kabat CDR (SEQ ID NO: 59)

[0161] 人 VH 受体 2 框架扣除延伸的高变区 (SEQ ID NO: 60-62)

[0162] 图 9A 和 9B 描述了由交叉脑 ATCC HB-293 大鼠细胞 - 小鼠整合蛋白 β7Fib504 抗体可变链的氨基酸序列。下划线的是 HVR。可变轻链如图 9A (SEQ ID NO: 12) 所述，而可变重链如图 9B (SEQ ID NO: 13) 所述。

[0163] 图 10A 描述了重链各种共有序列 (hu 亚型 I-III) 中的氨基酸位置。本文实施例描述了用于开发赫赛汀 (Herceptin®)-抗-HER2 抗体、大鼠 Fib504、和 hu504-RL 和 hu504-RF 框架的共有序列。图 10B 是柱状图，其显示了如实施例 1 所述的“RL”或“RF”框架修饰而
形成的 αβ7 同 hu504 移植体抗体和 hu504K 移植体抗体的相对结合。

图 11A-11C。图 11A 网注了 HVR 变化，所述 HVR 变化通过提供 hu504.16 变体中的有限范围的氨基酸替换来进行亲合力成熟而得。结果可来自于带有如本文实施例 2 所述的 hu504.16 变体中单个的修饰 HVR 文库。框中的氨基酸缩写是 β7 结合抗体（噬菌体体选择的抗体）中较常见的氨基酸。图 11B 和 11C 是图 11A 中结果的柱状图，显示了通过实施例 2 的突变和选择方法检测到的 hu504.16 变体（轻链，图 11B；重链，图 11C）中氨基酸替换的数量和类型。

图 12 网注了亲合力成熟的结构，所述亲合力成熟通过提供如实施例 2 所述 hu504.32 变体的 HVR 中的广泛可能的氨基酸替换而进行。阴影框显示了在抗体中最常检测到的氨基酸，所述抗体通过实施例 2 的突变和选择方法被检测为 β7- 结合抗体。

图 13A 和 13B 描述了大鼠抗 - 小鼠 Fib504 (ATCC-293) 以及人共有（左栏）的 HVR 序列。通过实施例所述的（通过软氨基酸随机化（soft amino acid randomization）、广泛氨基酸替换扫描，和有限氨基酸替换扫描所观察到的氨基酸替换）测试所观察到的每个 HVR 位置（并不表示限制性）的氨基酸替换实例如右边所示，（应用于本发明变体的，将 HVR 人源化修饰的有用方法可在 2004 年 2 月 19 日提交的美国申请第 60/545,840 号中找到）。

图 14 是示例性的图示，表现了 Fib504 和变体抗体同 MacCAM 的结合作为如实施例 3 所述的抗体浓度的函数。测定了抗体的 IC50 和 IC10 值。

图 15A 和 15B 描述了与位置有关的 504.32R 抗-β7 抗体的轻和重链 HVR 氨基酸序列，所述位置是根据 Kabat 编号系统和对应于抗体 6 个 HVR 的相对编号系统（A-F）而定的。还描述了在重组于 FR3 区域第 71、73、和 78 位上的氨基酸。还针对许多 HVR 或重组 FR3 区域中的位置，列出了有用的氨基酸替换。

图 16 显示了柱状图，表示 504.32M 和 504.32R 抗体阻止放射性标记了的 T 细胞归巢到患炎症性肠病的小鼠结肠上的相对能力。

本发明的实施方式

本发明提供了鉴定和 / 或应用 β7 信号途径的抑制剂的方法、组合物、试剂盒和制品。

本文提供了这些方法、组合物、试剂盒和制品的详情。

常规技术

定义

“β7 亚基”或”β 7 亚基”是指 β 7 整联蛋白亚基 (Erle 等，(1991) J. Biol.

25

“VCAM-1”或“血管细胞粘着分子-1”、“CD106”指α4β7和α4β1的配体，其在活化的内皮上表达，并对内皮-白细胞相互作用（如炎症中的白细胞粘附和渗出）起着重要作用。

“E-钙粘着蛋白”指钙粘着蛋白家族的一个成员，其中E-钙粘着蛋白在上皮细胞上表达。尽管它在淋巴细胞正常中的功能不清楚，但E-钙粘着蛋白是αEβ7整联蛋白的配体，介导表达αEβ7的iEL同肠上皮细胞结合。通过TGF-β1可上调E-钙粘着蛋白的表达。

“纤连蛋白”（Fibronectin）指涉及组织修复、胚形成、血凝固和细胞迁移/粘着的纤连蛋白。它充当ECM（细胞外基质）中的连接物并以二聚体（血浆纤连蛋白）形式出现在血浆中。肝细胞合成血浆型的，而成纤维细胞、软骨细胞、内皮细胞、巨噬细胞，以及某些上皮细胞产生ECM型的。在本本文中，它同α4β7整联蛋白相互作用，从而介导淋巴细胞归巢或粘着。通过将细胞系定到胶原或蛋白聚糖基质上，纤连蛋白的ECM型能用于普通细胞粘着分子。通过同胞外基质的相同成分和同细胞表面上的膜的纤连蛋白受体结合，纤连蛋白也可和ECM一起用于调节细胞的相互作用。最后，在胚形成期间，纤连蛋白对细胞迁移事件起着重要作用。

“肠道炎症疾病”是一组慢性疾病，其造成粘膜炎症和/或溃疡。这些疾病包括如，炎症性肠病（如，克罗恩氏病，溃疡性结肠炎，不明的结肠炎或indeterminate colitis）和感染性结肠炎（infectious colitis），粘膜炎（如，口腔粘膜炎，肠胃粘膜炎，鼻粘膜炎和直肠炎），坏死性小肠结肠炎（necrotizingenterocolitis）和食道炎。

“炎症性肠病”或“IBD”在本文中可替换使用，指造成炎症和/或溃疡的肠疾病，包括但不限于克罗恩氏病和溃疡性结肠炎。
克罗恩氏病（CD）”或”溃疡性结肠炎（UC）”是病因未知的慢性炎症性肠病。克罗恩氏病与溃疡性结肠炎不同，可影响肠的任何部分。克罗恩氏病的特征是粘液、红紫色的增厚的肠壁。随着炎症发展，这些肉芽肿常常失去它们的界限，并与周围组织融合在一起。腹泻和肠梗阻是主要的临床特征。如同溃疡性结肠炎，克罗恩氏病的进程可以是持续的或复发的、轻度的或严重的，但不像溃疡性结肠炎，克罗恩氏病不能通过切除相关肠段来治疗好。大多数患有克罗恩氏病的患者需要在某些情况下进行手术，但将来通常会复发并需要持续进行医学治疗。

克罗恩氏病可涉及任何部位的消化道，从嘴到肛门，然而它典型地出现在回肠结肠、小肠或结肠-直肠肛门区域。从组织病理学来看，疾病表现为间断的肉芽肿、隐窝脓肿、裂隙和凹陷性溃疡。伴有炎症浸润，其由淋巴细胞（T和B细胞）、浆细胞、巨噬细胞、和嗜中性粒细胞形成。在分泌IgM和IgG的血细胞，巨噬细胞和嗜中性粒细胞中有不成比例的增加。

抗炎药物柳氮磺吡啶（sulfasalazine）和5-氨基水杨酸（5-aminosalisylic acid, 5-ASA）用于治疗轻微的结肠克罗恩氏病，是常用的药物处方用以持续解除病症。Metronidazole 和环丙沙星（ciprofloxacin）与柳氮磺吡啶有相似的功效，似乎特别对治疗肛周疾病有效。在更严重的病例中，皮质类固醇能有效治疗活动性的（active）病情恶化并甚至能保持疾病症状的减退。咪唑硫嘌呤和6-巯基嘌呤对需要长期类皮质激类药物的患者也显示了疗效。这些药物也可能在长期预防中起作用。不幸的是，在一些患者效果产生前会有非常长的迟滞（至6个月）。

抗腹泻药物也可能在一些患者中带来症状缓解。营养疗法或基本的饮食能改善患者营养状况并促使急性疾病的症状改善，但它不产生持续的临床疾病症状的减退。抗生素用于治疗继发性小肠细菌的生长过度并用于治疗化脓性并发症。

最早的损伤是炎症浸润，带有隐窝基底形成的脓肿。这些扩大和破裂的隐窝的融合倾向于使上层粘膜失去其血液供给，导致溃疡。疾病症状包括痉挛、下腹痛、直肠出血、和经常性便秘，其中主要包括了血、脓和粘液并缺少排泄物颗粒。对于急性、严重的或慢性、持续的溃疡性结肠炎，需要完全切除结肠。

UC的临床特征可高度变化，发作会是渐进发展且不明显的，或是突然的，并可包括腹泻、里急后重感且有反复发作的直肠出血。当爆发性地遍及整个结肠时，可产生中毒性巨结肠，危及生命。肠外的表现形式包括关节炎、葡萄性表皮（pyoderma gangrenoum）、色素层炎（uveitis）、和结节性红斑。

UC的治疗，针对不严重的病例，包括柳氮磺吡啶和相关的含水杨酸的药物，并在严重的病例中包括皮质类固醇药物。局部给药水杨酸盐或皮质类固醇时有效，尤其是在疾病限于肠末端，相对于全身使用，其能降低副作用。有时需要支持性治疗，如给药铁和抗腹泻剂。有时也可开咪唑硫嘌呤、6-巯基嘌呤和甲氨喋呤的处方用在顽固性皮质类固醇依耐病例中。

本文中所用的氨基酸残基/位置“修饰”，指相对于初始氨基酸序列的一级氨基酸序列变化，其中变化来自于涉及所述氨基酸残基/位置的序列的改变。例如，典型的修饰包括用另一个氨基酸替换成，如，保守或非保守替换（在所述位置上方）残基，在所述残基/
位置相邻位上插入一个或多个（一般少于 5 或 3 个）氨基酸或缺失所需要残基/位置。“氨基酸替换”或其变化，指在预先确定的（初始）氨基酸序列中，用不同的氨基酸残基代替现有的氨基酸残基。相对于原始或（或“野生型”）氨基酸序列的多肽，修饰一般优选会产生变体多肽的至少一种治疗或生物活性的改变。例如，对于抗体，改变的生物活性活性可以是针对靶分子的结合亲和力、结合能力和/或结合效果。

[0193] “分离的”抗体是一个抗体，其本身可从其天然环境的成分中被鉴定以及被分离和/或收集。其天然环境的污染成分是干扰抗体诊断或治疗应用的材料，可以包括酶、激素，和其它蛋白质或非蛋白质溶质。在优选的具体实施方式中，抗体将被纯化（1）达到由 Lowry 法确定的低于 95% 的抗体含量，并优选等于 99% 重量，（2）达到足以通过旋杯序列分析仪测得 N-末端或内部氨基酸序列的至少 15 个残基的程度，或（3）达到用考马斯亮蓝或优选用银染的 SDS-PAGE 在还原或非还原条件下获得的均一程度。由于不会出现抗体天然环境的至少一种成分，分离的抗体可包括重组细胞内部的原位抗体。可通常，分离的抗体由至少一个纯化步骤来制备。

[0195] 本文中所用的短语“基本相似”或“基本相同”，表示两个数值（一般是与本发明抗体相关的或与参照／比较抗体相关的另一个）间足够高的相似性程度，由此所有领域技术人员根据上下文中所述值（如，Kd 值）确定的生物特性，会将两个值之间的差异看作为只有很小或没有生物学或/或统计学意义。作为参照／比较抗体的函数，所述两个值之间的差异优选小于约 50％、优选小于约 40％、优选小于约 30％、优选小于约 20％、优选小于约 10％。
“结合亲和力”一般指分子（如，抗体）与其结合配偶体（例如，抗原）的单结合位点间非共价相互作用的总力量。除非另外说明，本文中所用的“结合亲和力”指内在结合亲和力，其反映了结合对（如，抗体与抗原）成员间 1:1 的相互作用。分子 X 与其配偶体 Y 的亲和力一般用解离常数（association constant, Kd）表示。用现有已知的常规方法可测定亲和力，所述方法包括那些本文中所述的方法。低亲和力抗体一般缓慢结合抗原并倾向于容易解离，而高亲和力抗体一般较快结合抗原并倾向于较长时间内维持结合。测定结合亲和力的各种方法是现有技术已知的，它们都可为本发明目的的使用。以下描述了特定的示例性的具体实施方式：

在一个具体实施方式中，根据本发明的“Kd”或“Kd 值”，通过放射性标记的抗原结合测试 (RIA) 来测定，所述测试用感兴趣的抗体的 Fab 版本 (version) 和其抗原来进行，如以下测试所述，在存在未标记抗原连续滴定的情况下，通过用最低浓度的（^{251}I）标记的抗原平衡 Fab，然后用抗-Fab 抗体包被的平板捕获结合的抗原，由此测定了 Fab 针对抗原的溶液结合亲和力 (Chen, 等, (1991) J. Mol Biol 293: 685–881)。为了确定测试条件，微滴定板 (Dynex) 用溶于 50mM 碳酸钠 (pH 9.6) 的 5g/ml 捕获抗-Fab 抗体 (Cappell Labs) 包被过夜，然后于室温（约 23°C）用溶于 PBS 的 2% (w/v) 牛血清白蛋白封闭 2 至 5 小时。在未吸附的平板 (Nunc#269620) 中，100pM 或 26mP（^{251}I）- 抗原与连续稀释的感兴趣的 Fab 相混合（如，等同于 Presta 等的 (1997) Cancer Res. 57: 1593–1599 所述的抗 -VEGF 抗体，Fab-12 评估）。然后孵育感兴趣的 Fab 过夜，而孵育可持续较长时间（如，65 小时）以保证达到平衡。然后，将混合物转移到捕获平板上，于室温孵育（如，一个小时）。然后去除溶液，并用溶于 PBS 的 0.1% 吐温-20 洗 8 次。平板于后，以 150ul/孔加入闪烁剂 (MicroScint-20: Packard)，并在 Topcount γ 计数器 (Packard) 上对平板计数 10 分钟。选择能带来小于或等于 20% 最大结合度的每种 Fab 的浓度，用于竞争结合测试。根据另一个具体实施方式，通过用 BIAcore™-2000 或 BIAcore™-3000 (BIAcore, Inc., Piscataway, NJ) 与固定抗原 CM5 芯片于 25°C，以 ~10 响应单位 (RU) 用表面等离子共振测试来测定 Kd 或 Kd 值。简而言之：根据供应商的说明，用 N- 乙基-N’-(3-二甲基氨基丙基)- 碳二亚胺盐酸盐 (EDC) 和 N- 羟基琥珀酰亚胺 (NHS) 来活化羧基化合物聚酰胺生物感应芯片 (CM5, BIAcore Inc.)。用 10mM 乙酸钠 (pH 4.8) 将抗原稀释成 5ug/ml (～0.2uM)，然后以 5ul/ 分钟的流速注入以获得约 10 响应单位 (RU) 的偶联蛋白质。注入抗原后，注入 1M 乙醇胺以封闭未反应的基团。对于动力学测量，于 25°C 以约 25ul/min 的流速将 2 倍连续稀释的 Fab (0.78mM 至 500mM) 注入含 0.05% 吐温 20 的 PBS (PBSST) 中。用简单一对一朗缪尔 (Langmuir) 结合模型 (BIAcore 评估程序 3.2 版)，通过同时设置结合和解离感应值 (sensogram) 来计算结合常数 (Kd) 和解离常数 (Koff)。平衡解离常数 (Kd) 算作 koff/kon 比率。如参见，Chen, Y., 等, (1999) J. Mol Biol 293: 685–881。如果用以上表面等离子共振测试得到的结合速率超过 10mFS^{-1}，则可用荧光淬灭技术测定结合速率，所述技术在分光计所测的浓度逐渐增加的抗原存在的情况下，可于 25°C 测量到 PBS (pH 7.2) 中含 20mM 抗 - 抗原抗体 (Fab 形式) 的荧光发射强度的增加或降低 (激发 = 295nm; 发射 = 340nm, 16nm 带通 band-pass)，所述分光计如装有流装置的光谱仪 (Aviv Instruments) 或带有搅拌管的 8000 系列 SLM-Aminco 分光光度计 (ThermoSpectronic)。

根据本发明的“结合速率 (on-rate)”或“结合速率 (rate of association)”或”
结合作用速率（association rate）”或“k_n”也可用同样的上述表面等离子共振技术来确定。其使用了 BIAcore™-2000 或 BIAcore™-3000（BIAcore, Inc., Piscataway, NJ）与固定抗原 CM5 芯片于 25°C 以 10 反应单位 (RU) 来进行。简而言之，根据供应商的说明书，用 N-乙基-N'-(3-二甲基氨基丙基)-碳二亚胺盐酸盐 ((N-ethyl-N'-(3-dimethylaminopropy1)-carboadiimide hydrochloride, EDC) 和 N-羟基琥珀酰亚胺 (NHS) 来活化羧甲基化葡聚糖生物感应芯片 (CM5, BIAcore Inc.)。用 10mM 乙酸钠 (pH4.8) 将抗原稀释成 5μg/ml (10.2mΜ), 然后每 5u1/ 分钟的流速注入以获得约 10 反应单位 (RU) 的偶联蛋白质。然后再注入 1mM 乙醇胺以封闭未反应的基团。对于动力学测量，于 25°C 以约 25ul/min 的流速将 2 倍连续稀释的 Fab (0.78mM 至 500mM) 注入含 0.05% 吐温 20 的 PBS (PBST) 中。用单一对一朗缪尔结合模型 (BIAcore 评估程序 3.2 版)，通过同时设置结合和解离感应值 (sensorgram) 来计算结合率 (k_{on}) 和解离率 (k_{off})。平衡解离常数 (Kd) 算作 k_{off}/k_{on} 比率。如参考，Chen, Y., 等，(1999) J. Mol Biol 293: 865-881。而如果用以上表示等离子共振测试得到的结合速率超过 10m^1 s^-1，则优选用荧光猝灭技术测试结合速率，所述技术在分光计所测的浓度逐渐增加的抗原存在的情况下，于 25°C 测量到 PBS (pH 7.2) 中含 20mM 抗 – 抗原抗体 (Fab 形式) 的荧光发射强度的增加或降低 (激发 = 295nm; 发射 = 340nm, 16nm 带通), 所述分光计如装断流装置的光谱测定仪 (Aviv Instruments) 或带有搅拌管的 8000 系列 SLM-Amino 分光光度计 (ThermoSpectronic)。在一个具体实施方式中，根据文献的 “Kd” 或 “Kd 值”，通过放射性标记的抗原结合测试 (RIA) 来测定，所述测试用感兴趣抗体的 Fab 形式和抗原分子来进行。如以下测试所述，在存在未标记抗原连续滴定的情况下，通过用最低浓度 (125I) -标记的抗原平衡 Fab，然后用抗–Fab 抗体包被的平板捕获结合的抗原，由此测定了 Fab 针对抗原的溶液结合亲和力 (Chen, 等，(1999) J. Mol Biol 293: 865-881)。为了确定测试条件，微滴定法 (Dynex) 用溶于 50mM 碳酸钠 (pH 9.6) 的 5μg/ml 抗 Fab 捕获抗体 (Cappellabs) 包被过夜，然后于室温 (约 23°C) 用溶于 PBS 的 2% (w/v) 牛血清白蛋白封闭 2 至 5 小时。在未吸附的平板 (Nunc #269620) 中，100pM 或 26pM[125I]– 抗原与连续稀释的感兴趣的 Fab 相混合（如，等同于 Presta 等的 (1997) Cancer Res. 57: 4593-4599 所述的抗 –VEGF 抗体，Fab–12 评估）。然后孵育感兴趣的 Fab 过夜，而孵育可持续较长时间（如，65 小时）以保证达到平衡。然后，将混合物转移到捕获平板上，于室温孵育一个半小时。然后去除溶液，用溶于 PBS 的 0.1% 吐温 –20 洗板 8 次。平板干后，以 150ul/ 孔加入闪烁剂 (MicroScint (Thermo包装)，并在 Topcount γ 计数器 (Packard) 上对平板计数 10 分钟。选择能带来小于或等于 20% 最大结合度的每种 Fab 的浓度，用于竞争结合测试。选择能带来小于或等于 20%最大结合度的每种 Fab 的浓度，用于竞争结合测试。根据另一个具体实施方式，通过用 BIAcore™-2000 或 BIAcore™-3000 (BIAcore, Inc., Piscataway, NJ) 与固定抗原 CM5 芯片于 25°C, 以 10 反应单位 (RU) 用表面等离子共振测试来测定 Kd 或 Kd 值。简而言之，根据供应商的说明书，用 N-乙基-N’-(3-二甲基氨基丙基)-碳二亚胺盐酸盐 (EDC) N-羟基琥珀酰亚胺 (NHS) 来活化羧甲基化葡聚糖生物感应芯片 (CM5, BIAcore Inc.)。用 10mM 乙酸钠 (pH4.8) 将抗原稀释成 5μg/ml (10.2mΜ), 然后以 5u1/ 分钟的流速注入以获得约 10 反应单位 (RU) 的偶联蛋白质。注入抗原后，注入 1mM 乙醇胺以封闭未反应的基团。对于动力学测量，于 25°C 以约 25ul/min 的流速将 2 倍连续稀释的 Fab (0.78mM 至 500mM) 注入含 0.05% 吐温 20 的 PBS (PBST) 中。用单一对一朗缪尔
结合模型（BIAnore 评估程序 3.2 版），通过同时设置结合和解离感应值（sensorgram）来计算结合率（k_{on}）和解离率（k_{off}）。平衡解离常数（K_d）算作 k_{off}/k_{on} 比率。如参见，Chen, Y., 等, (1999) J. Mol Biol 293; 865–881。如果用以上表面等离子共振测试得到的结合速率超过 10^{-3} S^{-1}，则可用荧光共振技术测定结合速率，所述技术在分光计所测的浓度逐渐增加的抗原存在的情况下，于 25℃测量到 PBS（pH 7.2）中含 20mM 抗-抗原抗体（Fab 形式）的荧光发射强度的增加或降低（激发 = 295nm；发射 = 340nm, 16nm 带通），所述分光计如装断流装置的光谱测定仪 (Aviv Instruments) 或带有搅拌管的 8000 系列 SLM-Aminco 分光光度计（ThermoSpectronic）。

[0199] 在一个具体的实施方式中，根据本发明的“结合速率”或“结合速率”或“结合作用速率”或“k_{on}”用同样的表面等离子共振技术来确定，其使用了 BIAnore™-2000 或 BIAnore™-3000（BIAnore, Inc., Piscataway, NJ）与固定抗原 CM5 芯片于 25℃以～ 10 响应单位 (RU) 来进行。简而言之，根据供应商的说明书，用 N-乙基-N’-(3-二甲基氨基丙基)-碳二亚胺盐酸盐 (EDC) 和 N-羟基琥珀酰亚胺 (NHS) 来活化羧甲基化葡聚糖生物感应芯片（CM5, BIAnore Inc.）。用 10mM 乙酸钠 (pH4.8) 将抗原稀释成 5μg/ml (≈ 0.2μm) 然后以 5μl/分钟的流速注入以获得约 10 响应单位 (RU) 的偶联蛋白质。然后，注入 1μl乙醇胺以封闭未反应的基团。对于动力学测量，于 25℃以约 25μl/min 的流速将 2 倍连续稀释的 Fab (0.78μM 至 500μM) 注入含 0.05% 吐温 20 的 PBS (PBST) 中。用简单单一朗缪尔结合模型 (BIAnore 评估程序 3.2 版)，通过同时设置结合和解离感应值（sensorgram）来计算结合率（k_{on}）和解离率（k_{off}）。平衡解离常数（K_d）算作 k_{off}/k_{on} 比率。如参见，Chen, Y., 等, (1999) J. Mol Biol 293; 865–881。而如果用以上表面等离子共振测试得到的结合速率超过 10^{-3} S^{-1}，则可用荧光共振技术测定结合速率，所述技术在分光计所测的浓度逐渐增加的抗原存在的情况下，于 25℃测量到 PBS（pH 7.2）中含 20mM 抗-抗原抗体（Fab 形式）的荧光发射强度的增加或降低（激发 = 295nm；发射 = 340nm, 16nm 带通），所述分光计如装断流装置的光谱测定仪（Aviv Instruments）或带有搅拌管的 8000 系列 SLM-Aminco 分光光度计（ThermoSpectronic）。

[0200] 本文中所用的短语“基本减少的”或“基本不同的”，表示两个数值是与本发明抗体相关的一个和与参照/比较抗体相关的另一个间足够高的差异性程度，由此所属领域技术人员根据上下文中所述值（如，K_d 值，HAMA 应答）确定的生物特性，会将两个值之间的差异看作为有统计学意义的。作为参照/比较抗体的值的函数，所述两个值之间的差异优先大于约 10％、优选大于约 20％、优选大于约 30％、优选大于约 40％、优选大于约 50％。

[0201] 与肽或多肽序列相关的“氨基酸序列同一性百分比（%）”定义为候选序列中与特定肽或多肽序列中的氨基酸残基相同的氨基酸残基百分比，其由一下方式获得，即对序列进行序列对比并在需要时引入缺位（gap），以此获得最大百分比的序列同一性，而且不将任何保守替换看作序列同一性的部分。为确定氨基酸序列同一性百分比的排列方式可通过所属领域各种现有技术来获得，例如，利用可公开获得的计算机软件，如 BLAST、BLAST-2、ALIGN 或 Megalign (DNASTAR)。所属领域技术人员可确定进行序列对比的合适参数，包括任何算法，其需要对在比较的全长序列上获得最大程度的排列。而本文为此，可利用序列比较的计算机程序 ALIGN-2 来产生％氨基酸序列同一性值，其中 ALIGN-2 程序的完整源代码由
以下的表 A 提供。ALIGN-2 序列比较的计算机程序由 Genentech, Inc 编写，表 A 所示的源代码已经在美国版权局（华盛顿特区，20559）中被归档为用户文档，其登记为美国版权注册第 TXU510087 号。ALIGN-2 程序可通过 Genentech, Inc., South San Francisco, California 而公开获取，或可由以下图 8 中提供的源代码来编译。ALIGN-2 程序应在 UNIX 操作系统（优选数位 UNIX V.4.0D）上编译使用。所有序列比较参数可由 ALIGN-2 程序设置而不必改变。

[0202] 在用 ALIGN-2 进行氨基酸序列比较的情况下，某些氨基酸序列 A 与 B 以及或相对于特定氨基酸序列 B（其可以可选地被表达为，与 A 相对于特定氨基酸序列 B 有或无同性，具有或含特定氨基酸序列 A）的氨基酸序列同一性如下进行计算：

[0203] 100 乘以分数 X/Y

[0204] 其中在该 A 和 B 的序列对比中，X 是通过序列对比程序 ALIGN-2 算得的完全匹配的氨基酸残基数，而其中 Y 是 B 中的氨基酸残基数。将能看到当氨基酸序列 A 的长度不等于氨基酸序列 B 的长度时，A 与 B 的氨基酸序列同一性将不等于 B 与 A 的氨基酸序列同一性。

[0205] 除非另外特别说明，如前一段所述，本文中所用的所有 % 氨基酸序列同一性值用 ALIGN-2 计算机程序来得到。

[0206] 表 A

[0207] /*
[0208] *
[0209] *C-C increased from 12 to 15
[0210] *Z is average of EQ
[0211] *B is average of ND
[0212] *match with stop is_M;stop-stop = 0;J(joker) = match = 0
[0213] */
[0214] #define M=8 /* value of a match with a stop*/
[0215] int _day[26][26] = {
[0217] /*A*/ [2,0,-2,0,0,-4,1,-1,-1,0,-1,-2,-1,0,-2,-1,0,0,0,-6,0,-3,0],
[0218] /*B*/ [0,3,-4,3,2,-5,0,1,-2,0,0,-3,-2,2, _M,-1,1,0,0,0,0,-2,-5,0,-3,1],
[0219] /*C*/ [-2,-4,1,5,-5,-5,-4,-3,-3,2,0,-5,6,5,-4, _M,-3,-5,4,0,-2,0,-2,-8,0,0,-5],
[0220] /*D*/ [0,3,-5,4,3,-6,1,1,2,0,0,-4,-3,2, _M,-1,2,-1,0,0,0,-2,-7,0,-4,2],
[0221] /*E*/ [0,2,-5,3,4,-5,0,1,-2,0,0,-3,-2,1, _M,-1,2,-1,0,0,0,-2,-7,0,-4,3],
[0222] /*F*/ [-4,5,-4,-6,5,9,-5,-2,1,0,-5,2,0,4, _M,-5,-5,-4,3,-3,0,-1,0,0,7,5],
[0223] /*G*/ [1,0,-3,1,0,-5,5,-2,-3,0,-2,4,-3,0, _M,-1,1,3,1,0,0,-1,7,0,-5,0],
[0224] /*H*/ [-1,1,-3,1,1,-2,-2,6,-2,0,0,-2,2, _M,0,3,2,2,-1,-1,0,-2,-3,0,0,2],
[0225] /*I*/ [-1,-2,-2,-2,2, _M,-3,2,5,0,-2,2,2,-2, _M,-2,-2,-2,-1,0,0,4,-5,0,-1,2],
[0226] /*J*/ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, _M,0,0,0,0,0,0,0,0,0],
[0227] /*K*/ [-1,0,-5,0,0,-5,-2,0,-2,0,5,-3,0,1, _M,-1,1,3,0,0,0,-2,-3,0,-4,0],
[0228] /*L*/ [-2,-3,-6,-4,-3,2,4,-2,2,0,-3,6,4,-3, _M,-3,-2,-3,-3,-1,0,2,-2,0,-1,2],
[0229] /*M*/ [-1,-2,-5,-3,-2,0,-3,-2,2,0,4,6,-2, _M,-2,-1,0,-2,-1,0,2,-4,0,-2,1],
[0230] */
[0231] */
[0232] */
[0233] */
[0234] */
[0235] */
[0236] */
[0237] */
[0238] */
[0239] */
[0240] */
[0241] */
[0242] */
[0243] */
[0244] */
[0245] */
[0246] */
[0247] */
[0248] */
[0249] */
[0250] */
[0251] */
[0252] */
[0253] */
[0254] */
[0255] */
[0256] */
[0257] */
[0258] */
[0259] */
[0260] */
[0261] */
[0262] */
[0263] */
[0264] */
[0265] */
[0266] */
[0267] */
[0268] */
[0269] */
[0270] */
[0271] */
[0272] */
[0273] */
[0274] */
[0275] */
[0276] */
[0277] */
[0278] */
[0279] */
[0280] */
[0281] */
[0282] */
[0283] */
[0284] */
[0285] */
[0286] */
[0287] */
[0288] */
[0289] */
[0290] */
[0291] */
[0292] */
[0293] */
[0294] */
[0295] */
[0296] */
[0297] */
[0298] */
[0299] */
[0300] */
[0301] */
[0302] */
[0303] */
[0304] */
[0305] */
[0306] */
[0307] */
[0308] */
[0309] */
[0310] */
[0311] */
[0312] */
[0313] */
[0314] */
[0315] */
[0316] */
[0317] */
[0318] */
[0319] */
[0320] */
[0321] */
[0322] *
```c
#include <stdio.h>
#include <ctypes.h>
#define MAXJMP 16 /*max jumps in a djag*/
#define MAXGAP 24 /*don't continue to penalize gaps larger than this*/
#define JMPS 1024 /*max jmp's in an path*/
#define MX 4 /*save if there's at least MX-1 bases since last jmp*/
#define DMAT 3 /*value of matching bases*/
#define DMIS 0 /*penalty for mismatched bases*/
#define DINSO 8 /*penalty for a gap*/
#define DINS1 1 /*penalty per base*/
#define PINSO 8 /*penalty for a gap*/
#define PINS1 4 /*penalty per residue*/

struct jmp
{
    short n[MAXJMP]; /*size of jmp (neg for dely)*/
    unsigned short x[MAXJMP]; /*base no. of jmp in seq x*/
};

struct diag
{
    int score; /*score at last jmp*/
    long offset; /*offset of prev block*/
    short ijmp; /*current jmp index*/
    struct jmp jp; /*list of jamps*/
};

struct path
{
```
int spc; /*number of leading spaces*/
short n[NMPS]; /*size of jmp(gap]*)*
int x[NMPS]; /*loc of jmp(last elem before gap]*)*
}

char *ofile; /*output file name*/
char *namex[2]; /*seq names:getseqs()*/
char *prog; /*prog name for err msgs*/
char *seqx[2]; /*seqs:getseqs()*/
int dmax; /*best diag:nw()*/
int dmax0; /*final diag*/
int dna; /*set if dna:main()*/
int endgaps; /*set if penalizing end gaps*/
int gapx, gapy; /*total gaps in seqs*/
int len0, len1; /*seq lens*/
int ngapx, ngapy; /*total size of gaps*/
int smax; /*max score:nw()*/
int *xbm; /*bitmap for matching*/
long offset; /*current offset in jmp file*/
struct diag*dx; /*holds diagonals*/
struct pathpp[2]; /*holds path for seqs*/
char *calloc(), *malloc(), *index(), *strcpy();
char *getseq(), *gcalloc();

/*Needleman-Wunsch alignment program

*usage:progs file1 file2
* where file1 and file2 are two dna or two protein sequences.
* The sequences can be in upper-or lower-case an may contain ambiguity
* Any lines beginning with ' ', ',', ' >' or '<' are ignored
* Max file length is 65535(limitd by unsigned short x in the jmp struct)
* A sequence with 1/3 or more of its elements ACGTU is assumed to be DNA
* Output is in the file “align.out”
*The program may create a tmp file in/tmp to hold info about traceback.
*Original version developed under BSD 4.3 on a vax 8650
*/

#include “nw.h”
#include “day.h”
static _dbval[26] = {
 1,14,2,13,0,0,4,11,0,0,12,0,0,3,15,0,0,0,5,6,8,8,7,
```
9, 0, 10, 0
}
static _pbval[26] = {
1, 2 | (l << (D 'A') | (l << (N 'A'))), 4, 8, 16, 32, 64,
128, 256, 0xFFFFFFF, 1 << 10, 1 << 11, 1 << 12, 1 << 13, 1 << 14,
1 << 15, 1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 21, 1 << 22,
1 << 23, 1 << 24, 1 << 25 | (l << (E 'A')) | (l << (Q 'A'))
};
main(ac, av)
main
int ac;
char *av[];
{
prog = av[0];
if(ac != 3)

fprint(stderr, "usage: %s file1 file2\n", prog);
fprint(stderr, "where file1 and file2 are two dna or two protein sequences.\n");
fprint(stderr, "The sequences can be in upper-or lower-case\n");
fprint(stderr, "Any lines beginning with ' ' or '<' are ignored\n");
fprint(stderr, "Output is in the file\"align.out\"\n");
exit(1);

name[0] = av[1];
name[1] = av[2];
seq[0] = getseq(name[0], &len0);
seq[1] = getseq(name[1], &len1);
xba = (dna) ? _dbval: _pbval;
endgaps = 0; /*1 to penalize endgaps*/
ofile = "align.out": /*output file*/
max(): /*fill in the matrix, get the possible jmxs*/
readjmxs(): /*get the actual jmxs*/
print(): /*print stats, alignment*/
cleanup(0); /*unlink any tmp files*/

/*do the alignment, return best score:main()*/
dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983
pro: PAM 250 values
When scores are equal, we prefer mismatches to any gap, prefer
a new gap to extending an ongoing gap, and prefer a gap in seqx
to a gap in seq y.

nw()

[0351]    {
[0352]        char *px,*py;    /*seqs and ptrs*/
[0353]        int *ndelx,*dely; /*keep track of dely*/
[0354]        int ndelx,dely; /*keep track of delx*/
[0355]        int *tmp;    /*for swapping row0,row1*/
[0356]        int mis;      /*score for each type*/
[0357]        int ins0,ins1; /*insertion penalties*/
[0358]        register id;  /*diagonal index*/
[0359]        register ij;  /*jmp index*/
[0360]        register *col0,*coll; /*score for curr, last row*/
[0361]        register xx,yy; /*index into seqs*/
[0362]        dx = (struct diag*)g_malloc("to get dials",len0+len1+1,sizeof(struct diag));
[0363]        ndely = (int*)g_malloc("to get ndely",len1+1,sizeof(int));
[0364]        dely = (int*)g_malloc("to get dely",len1+1,sizeof(int));
[0365]        col0 = (int*)g_malloc("to get col0",len1+1,sizeof(int));
[0366]        col1 = (int*)g_malloc("to get col1",len1+1,sizeof(int));
[0367]        ins0 = (dna) ? DINS0:PINOS;
[0368]        ins1 = (dna) ? DINS1:PIN1;
[0369]        smax = -10000;
[0370]        if(!endgaps)
[0371]            for(col0[0] = dely[0] = -ins0,yy = 1;yy < len1;yy++)
[0372]                { col0[yy] = dely[yy] = col0[yy-1]-ins1;
[0373]                    ndely[yy] = yy;
[0374]                }
[0375]            col0[0] = 0; /*Waterman Bull Math Biol 84*/
[0376]        }
[0377]    }

else
[0378]        for(yy = 1;yy < len1;yy++)
[0379]            dely[yy] = -ins0;
[0380]    /*fill in match matrix*/
[0381]    */
[0382]    for(px = seqx[0],xx = 1;xx < len0;px++,xx++)
[0383]        /*initialize first entry in col*/
[0384]    */
[0385]    if(endgaps)
if(xx == 1)
    col1[0] = delx = -(ins0+ins1);
else
    col1[0] = delx = col0[0]-ins1;
    ndelx = xx;
}
else
    col1[0] = 0;
    delx = -ins0;
    ndelx = 0;
}

...nw

for(py = seqx[l], yy = 1; yy <= lengl; py++, yy++) {
    mis = col0[yy-1];
    if(dna)
        mis+ = (xbm[*px-'A'] & xbm[*py-'A']) ? DMAT:DMIS;
    else
        mis+ = _day[*px-'A'][*py-'A'];
    /*update penalty for del in x seq:
    *favor new del over ongoing del
    *ignore MAXGAP if weighting endgaps
    */
    if(cndgaps || ndely[yy] < MAXGAP) {
        if(col0[yy]-ins0 >= dely[yy]) {
            dely[yy] = col0[yy]-(ins0+ins1);
            ndely[yy] = 1;
        } else {
            dely[yy] = ins1;
            ndely[yy]++;
        }
    } else {
        if(col0[yy]-(ins0+ins1) >= dely[yy]) {
            dely[yy] = col0[yy]-(ins0+ins1);
            ndely[yy] = 1;
        } else
            ndely[yy]++;
    }
    /*update penalty for del in y seq:
    *favor new del over ongoing del
if (endgaps || ndelx < MAXGAP) {
    if (coll[yy-1]-ins0 >= delx) {
        delx = coll[yy-1]-(ins0+ins1);
        ndelx = 1;
    } else {
        delx = ins1;
        ndelx++;
    }
} else {
    if (coll[yy-1]-(ins0+ins1) >= delx) {
        delx = coll[yy-1]-(ins0+ins1);
        ndelx = 1;
    } else
        ndelx++;
}

/*pick the maximum score; we're favoring *mis over any del and delx over dely */

...nw

id = xx-yy+lenl-1;
if (mis >= delx && mis >= dely[yy])
    col[yy] = mis;
else if (delx >= dely[yy]) {
    col[yy] = delx;
    ij = dx[id].ijmp;
    if (dx[id].jp.n[0] && (!dna || (ndelx >= MAXJMP & & xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)){
        dx[id].ijmp++;
        if (++ij >= MAXJMP) {
            writejmps(id);
            ij = dx[id].ijmp = 0;
            dx[id].offset = offset;
            offset += sizeof(struct jmp)+sizeof(offset);
        }
    }
}

dx[id].jp.n[ij] = ndelx;
ndx[id].jp.x[ij] = xx;
dx[id].score = delx;
else{
    col1[yy] = dely[yy];
    ijl = dx[id].ijmp;
    if(dx[id].jp.n[0]&&!DNA || (ndel[yy] >= MAXJMP && xx > dx[id].jp.x[ijl]+MX) || mis >= dx[id].score+DINS0)) {
        dx[id].ijmp++;
        if(++ij >= MAXJMP) {
            writejumps(id);
            ij = dx[id].ijmp = 0;
            dx[id].offset = offset;
            offset += sizeof(struct jmp)+sizeof(offset);
        }
    }
    dx[id].jp.n[ijl] = -ndel[yy];
    dx[id].jp.x[ijl] = xx;
    dx[id].score = dely[yy];
}
if(xx == len0&&yy < len1) {
    /*last col */
    if(endgaps) {
        col1[yy] = ins0+insl*(len1-yy);
        if(col1[yy] > smax) {
            smax = col1[yy];
            dmax = id;
        }
    }
    if(endgaps&&xx < len0) {
        col1[yy-1] = ins0+insl*(len0-xx);
        if(col1[yy-1] > smax) {
            smax = col1[yy-1];
            dmax = id;
        }
    }
    if(tmp = col1;col0 = col1;col1 = tmp;)
    (void)free((char*)ndel);
    (void)free((char*)delq);
(void)free((char*)col1);

[0504]  
[0505]  /*
[0506]   *
[0507]   *print()--only routine visible outside this module
[0508]   *
[0509]   *static:
[0510]   *getmat()--trace back best path,count matches:print()
[0511]   *pr_align()--print alignment of described in array p[]:print()
[0512]   *dumpblock()--dump a block of lines with numbers.stars:pr_align()
[0513]   *numsl()--put out a number line:dumpblock()
[0514]   *putline()--put out a line(name,[num],seq,[num]):dumpblock()
[0515]   *stars()--put a line of stars:dumpblock()
[0516]   *stripname()--strip any path and prefix from a seqname
[0517]   */
[0518]  
[0519]  #include "nw.h"
[0520]  
[0521]  #define SPC 3
[0522]  
[0523]  #define P_LINE 256/*maximum output line*/
[0524]  
[0525]  #define P_SPC 3 /*space between name or num and seq*/
[0526]  
[0527]  extern _day[26][26];
[0528]  
[0529]  int olen;  /*set output line length*/
[0530]  
[0531]  FILE *fx;  /*output file*/
[0532]  
[0533]  print()
[0534]  {
[0535]    int lx,ly,firstgap,lastgap;  /*overlap*/
[0536]    if((fx = fopen(ofile,"w")) == 0) {
[0537]      fprintf(stderr,"%s:can't write%sn",prog,ofile);
[0538]      cleanup(l);
[0539]    }
[0540]  }
[0541]  fprintf(fx,"< first sequence:%s(length = %d)n",name[0],len0);
[0542]  fprintf(fx,"< second sequence:%s(length = %d)n",name[1],len1);
[0543]  olen = 60;
[0544]  lx = len0;
[0545]  ly = len1;
[0546]  firstgap = lastgap = 0;
[0547]  if(dmax < len1-1)/*leading gap in x*/
[0548]    pp[0].spc = firstgap = len1-dmax-1;
[0549]    ly- = pp[0].spc;
else if (dmax > len1-1) /*leading gap in y*/
    pp[1].spc = firstgap = dmax-(len1-1);
    lx = pp[1].spc;
}

if (dmax0 < len0-1) /*trailing gap in x*/
    lastgap = len0-dmax0-1;
    ly = lastgap;
}
else if (dmax0 > len0-1) /*trailing gap in y*/
    lastgap = dmax0-(len0-1);
    ly = lastgap;
}
getmat(lx, ly, firstgap, lastgap);
pr_align();

/*
*trace back the best path, count matches
*/
static
getmat(lx, ly, firstgap, lastgap)

getmat
    int lx, ly;       /*“core” (minus endgaps)*/
    int firstgap, lastgap;    /*leading trailing overlap*/
[
        int nm, i0, i1, siz0, siz1;
        char  outx[32];
        double  pct;
        register  n0, n1;
        register char  *p0, *p1;
        /*get total matches, score */
        * /
        i0 = i1 = siz0 = siz1 = 0;
        p0 = seqx[0]+pp[1].spc;
        p1 = seqx[1]+pp[0].spc;
        n0 = pp[1].spc+1;
        n1 = pp[0].spc+1;
        nm = 0;
        while(*p0&&*p1){
if(siz0){
    p1++;  
    n1++;  
    siz0--;  
}
else if(siz1){
    p0++;  
    n0++;  
    siz1--;  
}
else{
    if(xbm[*p0-'A']&xbm[*p1-'A'])
        nm++;    
    if(n0== pp[0].x[i0])
        siz0 = pp[0].n[i0++];  
    if(n1 == pp[1].x[i1])
        siz1 = pp[1].n[i1++];  
    p0++;  
    p1++;  
}
/*pct homology:
if penalizing endgaps, base is the shorter seq
else, knock off overhangs and take shorter core*/
if(endgaps)
    lx = (len0 < len1) ? len0:len1;
else
    lx = (lx < ly) ? lx:ly;
    pct = 100.*(double)nm/(double)lx;
fprintf(fx,"\n");
fprintf(fx,"<%d match%\%s in an overlap of%\%d:%.2f percent similarity\n",   
    (nm == 1) ? "": "es", lx, pct);
    fprintf(fx,"< gaps in first sequence:% \d",
    gapx);
    fprintf(fx,"%s",outx);
    (void)sprintf(outx,"(%d%\%s\%s)",   
    ngapx,(dna) ? "base":"residue",(ngapx == 1) ? "": "s");
    fprintf(fx,"%s",outx);
fprintf(fx,"\n< score:\% d(match =\% d, mismatch =\% d, gap penalty =\% d+\% d per base)\n", smax, DMAT, DMIS, DINS0, DINS1);
else
    fprintf(fx,"\n< score:\% d(Dayhoff PAM 250 matrix, gap penalty =\% d+\% d per residue)\n", smax, PINS0, PINS1);
if (endgaps)
    fprintf(fx,"< endgaps penalized.left endgap:\% d s% s.right endgap:\% d% s% s\n", firstgap, (dna) ? "base": "residue", (firstgap == 1) ? "": "s",
               lastgap, (dna) ? "base": "residue", (lastgap == 1) ? "": "s";
else
    fprintf(fx,"< endgaps not penalized\n")
}
static mm;  /*matches in core—for checking*/
static lmax;  /*lengths of stripped file names*/
static ij[2];  /*jmp index for a path*/
static nc[2];  /*number at start of current line*/
static ni[2];  /*current elem number—for gapping*/
static siz[2];
static char*ps[2];  /*ptr to current element*/
static char*po[2];  /*ptr to next output char slot*/
static char out[2][P_LINE];  /*output line*/
static char star[P_LINE];  /*set by stars*/
/*
 *print alignment of described in struct path pp[]
 */
static
pr_align()
pr_align

    int    nn;/*char count*/
    int    more;
    register    i;
    for(i = 0, lmax = 0; i < 2; i++) {
        nn = stripname(name[i]);
        if(nn > lmax)
            lmax = nn;
        nc[i] = 1;
        ni[i] = 1;
        siz[i] = ij[i] = 0;
        ps[i] = seqx[i];
        po[i] = out[i];
    }
    for(nn = nm = 0, more = 1; more;)

    for(i = more = 0; i < 2; i++) {
        /*
        *do we have more of this sequence?
        */
        if(! *ps[i])
            continue;
        more++;
        if(pp[i].spc){    /*leading space*/
            *po[i++] = "" ;
            pp[i].spc--;
        }
        else if(siz[i]){    /*in a gap*/
            *po[i++] = ‘ ’ ;
            siz[i]--;
        }
    }
    else{    /*we’re putting a seq element*/
        *po[i] = *ps[i];
        if(islower(*ps[i]))
            *ps[i] = toupper(*ps[i]);
        po[i]++;
        ps[i]++;
        /*

*/
*are we at next gap for this seq?

/*
if(ni[i] == pp[i].x[ij[i]]) {
  /*
  *we need to merge all gaps
  *at this location
  */
  siz[i] = pp[i].n[ij[i]]++;
  while(ni[i] == pp[i].x[ij[i]])
    siz[i]++ = pp[i].n[ij[i]]++;
}

ni[i]++;
}

if(++nn == olen || ! more&nn) {
  dumpblock();
  for(i = 0; i < 2; i++)
    po[i] = out[i];
  nn = 0;
}

/*
dump a block of lines, including numbers, stars:pr_align()
*/
static
dumpblock()

dumpblock
{
  register i;
  for(i = 0; i < 2; i++)
    *po[i]-- = '0';
    ...dumpblock
  (void)putc(' 
', fx);
  for(i = 0; i < 2; i++)
    if(*out[i]&&(*out[i] != " || *(po[i]) ! = " )){
      if(i == 0)
        nums(i);
      if(i == 0&&*out[1])
stars();
putline(i);
if(i == 0 && out[i])
    fscanf(fx, star);
if(i == 1)
    nums(i);
}
}
}
}/*
*put out a number line: dumpblock()*/
static
nums(ix)
int ix; /* index in out[] holding seq line*/
{
    char nline[P.LINE];
    register i, j;
    register char *pn, *px, *py;
    for(pn = nline, i = 0; i < 1max+P_SPC; i++, pn++)
        *pn = " ";
    for(i = nc[ix], py = out[ix]; *py; py++, pn++){
        if(*py == " " || *py == " ' ")
            *pn = " " ;
    else{
        if(i%10 == 0 || i == 1 && nc[ix] != 1)) {
            j = (i < 0) ? -i : i;
            for(px = pn; j; j /= 10, px--)
                *px = j%10+'0';
            if(i < 0)
                *px = ' - ';
        else
            *pn = " ";
i++;
    }
        }
    *pn = ' \0' ;
nc[ix] = i;
for(pn = nline;*pn;pfn++)
    (void)putc(*pn,fx);
(void)putc(‘\n’,fx);
}
/*
*put out a line(name,[num],seq,[num]):dumpblock()
*/
static
putline(ix)
putline
    int ix;
    ...
putline
int i;
register char *px;
for(px = name[x][ix],i = 0;*px&&*px! = ‘:‘;px++,i++)
    (void)putc(*px,fx);
for(;i < lmax+P_SPC;i++)
    (void)putc(‘\n’,fx);
/*these count from 1:
*ni[]is current clement(from 1)
*nc[]is number at start of current line
*/
for(px = out[i];*px;px++)
    (void)putc(*px&0x7F,fx);
(void)putc(‘\n’,fx);
}
/*
*put a line of stars(seqs always in out[0],out[1]):dumpblock()
*/
static
stars()
stars
    int i;
    register char *p0,*pl,cx,*px;
    if(! *out[0] || (*out[0] == " " && *(po[0]) == " ") ||
        return;
px = star;
for(i = lmax+P_SPC;i--)
        *px++ = " ";
for(p0 = out[0], pl = out[1];*p0&&*pl;p0++, p1++){
    if(isalpha(*p0)&&isalpha(*pl)){
        if(xbm[*p0-' A' ]&&xbm[*p1-' A' ])[
            cx = ' ';
            nm++;
        }
        else if(! dna&&_day[*p0-' A' ][*p1-' A' ] > 0)
            cx = ' .';
        else
            cx = " ";
    }
    else
        cx = " ";
    *px++ = cx;
}
*px++ = \n' ;
*px = \0' ;

/*
*strip path or prefix from pn, return len:pr_align()
*/
static
stripname(pn)
    char  *pn; /* file name (may be path) */
{
    register char  *px, *py;
    py  0;
    for(px = pn;*px;px++)
        if(*px == '/' )
            py = px+1;
    if(py)
        (void) strpz(pn, py);
    return(strlen(pn));
}

/*
*cleanup() -- cleanup any tmp file
*getseq() -- read in seq, set dna, len, maxlen
*g_calloc() -- calloc() with error checkin
*readjms() -- get the good jms, from tmp file if necessary
*writejms() -- write a filled array of jms to a tmp file: nw()

/*
#include “nw.h”
#include<sys/file.h>
char *jname = “/tmp/homgXXXXXX”; /* tmp file for jms*/
FILE *fj;
int cleanup(); /* cleanup tmp file*/
long lseek();
/*
* remove any tmp file if we blow
*/
cleanup()
{
  int i;
  
  if(fj)
    (void)unlink(jname);
  exit(i);
}

/*
* read, return ptr to seq, set dna, len, maxlen
* skip lines starting with ‘’, ‘ ’, ‘<’, or ‘’
* seq in upper or lower case
*/
char *
getseq(file, len)

getseq
{
  char *file;/* file name*/
  int*len;/* seq len*/

  [char line[1024], *pseq;
   register char *px, *py;
   int n; g[e], tlen;
   FILE *fp;
   if((fp = fopen(file,”r”)) == 0){


fprintf(stderr,"%s:can’t read%sn",prog,file);
exit(1);
}

tlen = natgc = 0;
while(fgets(line,1024,fp)) {
    if(*line == ’;’ || *line == ’<’ || *line == ’>’)
    continue;
    for(px=line;px !=’\n’;px++)
        if(isupper(px) || islower(px))
            tlen++;
    }
    if((pseq = malloc((unsigned)(tlen+6))) == 0)
        fprintf(stderr,"%s:malloc() failed to get%d bytes for%s%n",prog,tlen+6,file);
    exit(1);
}
... getseq
py = pseq+4;
*len = tlen;
rewind(fp);
while(fgets(line,1024,fp)) {
    if(*line == ’;’ || *line == ’<’ || *line == ’>’)
    continue;
    for(px = line;px != ’\n’;px++) {
        if(isupper(px))
            *py++ = px;
        else if(islower(px))
            *py++ = toupper(px);
        if(index(“ATGCU”,*py-1))
            natgc++;
    }
    *
    py++ = ’\0’;
    *py = ’\0’;
( void ) fclose(fp);
dna = natgc > (tlen/3);
return(pseq+4);
char *g_calloc(msg, nx, sz)
g_calloc
    char *msg;/*program, calling routine*/
    int nx, sz;/*number and size of elements*/
    {
        char *px, *calloc();
        if((px = calloc((unsigned)nx, (unsigned)sz)) == 0)
            if(*msg)
                fprintf(stderr, "%s: g_calloc() failed %s\n", prog, msg,
                nx, sz);
                exit(1);
        }
        return(px);
    }
    /*
    *get final jmps from dx[] or tmp file, set pp[], reset dmax:main()
    */
    readjumps()
    {
        int fd = -1;
        int siz, i0, i1;
        register i, j, xx;
        if(fj) {
            (void) fclose(fj);
            if((fd = open(jname, O_RDONLY, 0)) < 0) {
                fprintf(stderr, "%s: can't open %s\n", prog, jname);
                cleanup(1);
            }
        }
        for(i = i0 = i1 = 0, dmax0 = dmax, xx = len0; ; i++){
            while(1){
                for(j = dx[dmax].jmp; j >= 0&&dx[dmax].jp.x[j] >= xx; j--)
                    ;
                ...readjumps
                if(j < 0&&dx[dmax].offset&&fj) {
                    (void) lseek(fd, dx[dmax].offset, 0);
(void)read(fd, (char*)&dx[dmax].jp, sizeof(struct jmp));

(void)read(fd, (char*)&dx[dmax].offset, sizeof(dx[dmax].offset));

dx[dmax].ijmp = MAXJMP-1;

}

else

break;

}

if(i >= JMP)

fprintf(stderr,"%s:too many gaps in alignment\n", prog);

cleanup(i);

}

if(j >= 0){

siz = dx[dmax].jp.n[j];

xx = dx[dmax].jp.x[j];

dmax+ = siz;

if(siz < 0) {    /*gap in second seq*/

pp[1].n[i1] = -siz;

xx+ = siz;

/*id = xx-yy+len1-1 */

pp[1].x[i1] = xx-dmax+len1-1;


gapy++;

ngapy- = siz;

} /*ignore MAXGAP when doing endgaps*/

siz = (-siz < MAXGAP || endgaps) ? -siz:MAXGAP;

i1++;

}

else if(siz > 0) {    /*gap in first seq*/

pp[0].n[i0] = siz;

pp[0].x[i0] = xx;


gapx++;

ngapx+ = siz;

} /*ignore MAXGAP when doing endgaps*/

siz = (siz < MAXGAP || endgaps) ? siz:MAXGAP;

i0++;

}

}

else

break;
reverse the order of jmps

for (j = 0, i0--; j < i0; j++, i0--) {
    i = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = i;
    i = pp[0].x[j]; pp[0].x[j] = pp[0].x[i0]; pp[0].x[i0] = i;
}

for (j = 0, i1--; j < i1; j++, i1--) {
    i = pp[1].n[j]; pp[1].n[j] = pp[1].n[i1]; pp[1].n[i1] = i;
    i = pp[1].x[j]; pp[1].x[j] = pp[1].x[i1]; pp[1].x[i1] = i;
}

if (fd >= 0)
    (void) close(fd);
if (fj)
    (void) unlink(jname);
    fj = 0;
    offset = 0;
}

/*
write a filled jmp struct offset of the prev one(if any):nw()
*/
writejmsps(ix)
writejmsps
int ix;

char *mktemp();
if (! fj)
    if (mktemp(jname) < 0){
        fprintf(stderr, "%s:can’t mktemp() %s
", prog, jname);
        cleanup(1);
    }
    if((fj = fopen(jname,”w”)) == 0){
        fprintf(stderr, "%s:can’t write %s
", prog, jname);
        exit(1);
    }
    (void)fwrite((char*) &dx[ix].jp, sizeof(struct jmp), 1, fj);
    (void)fwrite((char*) &dx[ix].offset, sizeof(dx[ix].offset), 1, fj);

本文中所用的术语“载体”要指的是能够转运与其相连的另一个核酸的核酸分子。
一类载体是“质粒”,其指环状双链 DNA 环,其中连结着额外的 DNA 片段。另一类载体是噬菌体载体。另一类载体是病毒载体,其中将额外的 DNA 片段连结到病毒基因组中。某些载体能够在宿主细胞（如,带有细菌复制起始点的细菌载体和附加型哺乳动物载体）中自主复制,所述宿主细胞中导入所述载体。其它载体（如,非附加型哺乳动物载体）可通过导入宿主细胞而整合到宿主细胞的基因组中,由此可随宿主基因组复制。另外,某些载体能够指导与它们可操作相连的基因的表达。这些载体在本文中被称为“重组表达载体”（或简称“重组载体”）。一般而言,重组 DNA 技术中应用的表达载体通常是质粒形式的。在本说明书书中,“质粒”和“载体”可替换使用,而质粒是最常使用的载体形式。

【1049】“多核苷酸”或“核酸”在本文中可互换使用,指任何长度的核苷酸聚合物,包括 DNA 和 RNA。核苷酸可以是脱氧核糖核苷酸、核糖核苷酸、经过修饰的核苷酸或碱基、或其类似物,或也可以是通过 DNA 或 RNA 聚合酶或者通过合成反应掺入聚合物的任何底物。多核苷酸可包含经过修饰的核苷酸,诸如甲基化核苷酸及其类似物。如果有的话,对核苷酸结构的修饰可以在装配聚合物之前或之后进行。核苷酸序列可以由非核苷酸组分中断。多核苷酸还可以在合成后修饰,诸如通过与标记物偶联。其它类型的修饰包括例如“帽”,将一个或多个天然存在核苷酸用类似物替代,核苷酸间修饰诸如例如具有不带电荷连接（例如磷酸甲酯、磷酸三酯、磷酸酰胺酯（phosphoamidate）、氨基甲酸酯等）和具有带电荷连接（例如羧酸磷酸酯、二磷酸磷酸酯等）的修饰,含有附加部分（pendant moiety）,诸如例如蛋白质（例如核酸酶、毒素、抗体、信号肽、聚 L- 赖氮酸等）的修饰,具有嵌入剂（例如叮啶、补骨脂素等）的修饰,含有螯合剂（例如金属、放射性金属、硼、氧化性金属等）的修饰,含有烷化剂的修饰,具有经修饰连接（例如 α 端基异构核酸（anomeric nucleic acid）等）的修饰,以及未修饰形式的多核苷酸。另外,通常存在于糖类中的任何羟基可用例如磷酸（phosphonate）基团、磷酸（phosphate）基团替换,用标准保护基团保护,或活化以制备与另外核苷酸的另外连接,或者可偶联至固相或半固相支持物。5’ 和 3’ 末端 OH 可磷酸化或者用胺或 1-20 个碳原子的有机加帽基团模块取代。其它羟基也可衍生化标准保护基团。多核苷酸还可含有本领域普遍知道的核糖或脱氧核糖糖类的类似物形式,包括例如 2’-氧-甲基、2’-氧-烯丙基、2’-氧-或 2’-叠氮-核糖、环状糖类似物,α-端基异构糖,差向异构糖诸如阿拉伯糖、木糖或木苏糖,吡喃糖,呋喃糖,磺酸糖,无环类似物（acyclic analog）,及脱磷酸基核苷类似物（abasic nucleoside）诸如甲基核苷核苷。可用多选连接基团替换一个或多个磷酸二酯连接。这些多选连接基团包括但不限于如下实施方案,其中磷酸酯用 P(0)S(“硫代亚酸酯”(thioate))、P(S)S(“二硫代亚酸酯”(dithioate))、(0)NR2 (“酰胺酯”(amideate))、P(0)R 、P(0)OR’、CO 或 CH3 (“甲缩醛” (formacetal)) 替代,其中 R 或 R’各自独立为 H 或者取代或未取代的烷基 (1-20 个 C),任选含有醚 (O- ) 连接,芳基、烯基、环烷基、环烷基或芳烷基 (arylated)）。并非多核苷酸中的所有连接都必需是相同的。上述描述适用于本文中提及的所以多核苷酸,包括 RNA 和 DNA。

【1050】“寡核苷酸”在用于本文时一般指短多核苷酸,通常是单链的,通常是合成的,长度通常但不是必需小于约 200 个核苷酸。术语“寡核苷酸”和“多核苷酸”并不互相排斥。上述关于多核苷酸的描述平等及完全适用于寡核苷酸。

【1051】术语“抗体”和“免疫球蛋白”可在最广泛意义上替换使用,包括单克隆抗体（例如,全长或完整的单克隆抗体）、多克隆抗体、多价抗体、多特异性抗体（如,双特异性抗体,只
要它们显示出所需的生物活性，也可以包括某些抗体片段（如本文中较详细描述的）。抗
体可以是人的人源化的和/或亲和力成熟的。

[1052] “抗体片段”仅包含完整抗体的一部分，其中所示部分优选保留至少一个、优选大
多数或所有功能，所述功能通常与完整抗体中存在的该部分相关。在一个具体实施方式中，
抗体片段含完整抗体的抗原结合位点，因此保留了结合抗原的能力。在一个具体实施方式
中，抗体片段，例如含Fc区的抗体片段，保留了至少一种生物功能，所述功能通常与完整
抗体中存在的Fc区相关，如FcRn结合、抗体半衰期调节、ADCC功能以及补体结合性。在一
个具体实施方式中，抗体片段是单价抗体，其具有与完整抗体基本相似的体内半衰期。例
如，这种抗体片段可包含与能够为该片段带来体内稳定性的Fc序列相连的抗原结合臂。

[1053] 本文中所用的术语“单克隆抗体”指得自基本均一的抗体群的抗体，即，除了可能
少量存在的天然产生的突变，所述群中所包含的各抗体是完全相同的。单克隆抗体是高
度特异的，针对单一抗原，更进一步，与典型包含了针对不同决定簇（表位）的不同抗体的
多克隆抗体制品相反，每种单克隆抗体针对抗原上的单一决定簇。

[1054] 本文中的单克隆抗体特别包括了”嵌合”抗体及其片段，其中一部分重合/或轻
链与自基特定物种的序列或一定抗体类型或亚型的抗体的相应序列相同或同源，而轻的剩
余部分与自另一种物种的或于另一种抗体类型或亚型的抗体的相应序列相同或同源，
Acad. Sci. USA 81：6851-6855(1984)）。

[1055] “人源化的”形式的非人（如，鼠）抗体是嵌合抗体，其包含衍生自非人免疫球蛋白
的最少序列。人源化抗体的大部是人免疫球蛋白（受体抗体），其中受体高变区的残基
替换为非人种（供体抗体）的高变区的残基，如具有所需特异性、亲和力、和能力的小鼠、大
鼠、鼠或其他灵长动物的。在一些情况下，人免疫球蛋白框架区（FR）的残基替换为相应的
非人残基。更进一步，人源化抗体可包含在受体抗体或供体抗体中找不到的残基。制备这些
修饰可以进一步改善抗体性能。一般而言，人源化抗体将包含基本完整的一个、典型两
个可变结构域，其中完整或基本完整的高变环对应于非人免疫球蛋白的那些，而且完整或
基本完整的FR是人免疫球蛋白序列的那些。人源化抗体任选也将包含至少一部分免疫球
蛋白的恒定区（Fc），典型地是人免疫球蛋白的。进一步的详情参见Jones等，Nature321：

[1056] “抗原”是预先确定的抗原，抗体能选择性与其结合。靶抗原可以是多肽、碳水化合
物，核酸、脂质、半抗原或其它天然产生的或合成的化合物。优选地，靶抗原是多肽。用于本
文中的“受体人框架”是这样的框架，其含源自人免疫球蛋白框架的或来自人共有框架的VL
或VH框架的氨基酸序列。“源自”人免疫球蛋白框架或人共有框架的受体人框架可包含与其
相同的氨基酸序列，或可包含预先存在的氨基酸序列改变。当存在预先存在的氨基酸
序列改变时，优选存在不超过5个并优选4个或多、或3或更多的预先存在的氨基酸改变。当
预先存在的氨基酸改变存在于VH中时，优选那些改变只在第71H、73H和78H位中的三个、
两个或一个位置上；例如，那些位置上的氨基酸残基可以是71A、73T和/或78A。在一个
具体实施方式中，VL 受体人框架与 VL 人免疫球蛋白框架序列或人共有框架序列在序列上完全相同。

【1057】“人共有框架”是这样的框架，其代表在人免疫球蛋白 VL 或 VH 框架序列筛选中最常存在的氨基酸残基。一般地，从可变结构域序列亚型中选择人免疫球蛋白 VL 或 VH 序列。一般地，序列亚型是如 Kabat 等所述的亚型。在一个具体实施方式中，对于 VL，亚型是如 Kabat 等所述的亚型 k I。在一个具体实施方式中，对于 VH，亚型是如 Kabat 等所述的亚型 III。

【1058】“VL 亚型 I 共有框架”含有自 Kabat 等的可变轻链 k 亚型 I 氨基酸序列中的共有序列。在一个具体实施方式中，VL 亚型 I 共有框架氨基酸序列含每个下列序列的至少一部分或全部。

【1059】DIQMTQSPSSLSASVVSDVQLTVQ(P)PSQTKLILLI(SEQ ID NO: 34)-L1-WYQQKPGKAPKLLI(SEQ ID NO: 35)-L2-GVPSRFSGSGTDTTLISSLQPEDFATYYC(SEQ ID NO: 36)-L3-FGQGTKVEIKR(SEQ ID NO: 37)。

【1060】“VH 亚型 III 共有框架”含有自 Kabat 等的可变重链亚型 III 氨基酸序列中的共有序列。在一个具体实施方式中，VH 亚型 III 共有框架氨基酸序列含每个下列序列的至少一部分或全部。

【1061】EVQLVESGGGLVQPGSSPRLSLSSACASV(Q)PSSPSVQTLIQLMSSRIKGFYTL(SEQ ID NO: 38)-H1-WVRQAPGKVEWV(SEQ ID NO: 39)-H2-RFTISDNLSTLYLQMHIKLSVAVYYC(SEQ ID NO: 40)-H3-WQQGTLTVSS(SEQ ID NO: 41)。

【1062】“未修饰的人框架”是人框架，其具有与受体人框架相同的氨基酸序列。如在受体人框架中缺少人向非人氨基酸的替换。

【1063】本文中所用的“改变的高变区”是这样的高变区，其中包含一个或多个（如一个至约 16 个）氨基酸替换。

【1064】本文中所用的“未修饰的高变区”是这样的高变区，其具有与从其衍生来的非人抗体相同的氨基酸序列，即其中没有一个或多个氨基酸替换的序列。

【1065】术语“高变区”、“HVR”或“HY”，在本文中用时，是指抗体可变结构域区。其在序列中是高的和 / 或形成结构限制性环。一般地说，抗体包含六个高变区：三个在 VH(H1、H2、H3) 中，三个在 VL(L1、L2、L3) 中。有许多高变区的描述被使用，它们都纳入本文中。Kabat 互补决定区 (CDR) 是以序列可变性为基础的，而且也是最常使用的 (Kabat 等，Sequences of Proteins of Immunological Interest, 第 5 版，公共卫生服务部，国家健康研究员，Bethesda, MD, (1991)。Chothia 代之以指的是替换的结构环位置 (Chothia 和 Lesk J, Mol. Biol. 196:901-917 (1987)。AbM 高变区在 Kabat CDR 和 Chothia 结构环之间做了折衷，并由牛津分子 AbM 抗体建模软件所使用。“接触 (contact)” 高变区是以可用的复合晶体结构分析为基础。来自这些高变区中的每一个的残基如下所列：

【1066】表 1

<table>
<thead>
<tr>
<th></th>
<th>Kabat</th>
<th>AbM</th>
<th>Chothia</th>
<th>接触</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L24-L34</td>
<td>L24-L34</td>
<td>L26-L32</td>
<td>L30-L36</td>
</tr>
<tr>
<td>L2</td>
<td>L50-L56</td>
<td>L50-L56</td>
<td>L50-L52</td>
<td>L46-L55</td>
</tr>
<tr>
<td>L3</td>
<td>L89-L97</td>
<td>L89-L97</td>
<td>L91-L96</td>
<td>L89-L96</td>
</tr>
</tbody>
</table>
**说明 书**

<table>
<thead>
<tr>
<th>H1</th>
<th>Kabat 编号</th>
<th>H31-H35B</th>
<th>H26-H35B</th>
<th>H26-H32</th>
<th>H30-H35B</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Chothesis编号</td>
<td>H31-H35</td>
<td>H26-H35</td>
<td>H26-H32</td>
<td>H30-H35</td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td>H50-H58</td>
<td>H53-H55</td>
<td>H47-H58</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td>H95-H102</td>
<td>H95-H102</td>
<td>H96-H101</td>
<td>H93-H101</td>
</tr>
</tbody>
</table>

[1068] 高变区可包含如下“延伸的高变区”：在 VL 中的 24-36 或 24-34 (L1)、46-56 或 49-56 或 50-56 或 52-56 (L2) 和 89-97 (L3) 和在 VH 中的 26-35 (H1)、50-65 或 49-65 (H2) 和 93-102, 94-102 或 95-102 (H3)。根据 Kabat 等（同上），对这些定义中的每一个可进行可变结构域残基编号。

[1069] “框架”或“FR”残基是除了如本文所定义的高变区残基之外的那些可变结构域残基。

[1070] “人抗体”是带有氨基酸序列的抗体，所述氨基酸序列对应于由人所产生抗体的序列，和 / 或制备它可利用用于生产如本文所述的人抗体的任何技术。该人抗体的定义明确规定排除了含非人抗原结合残基的人源化抗体。


[1072] “阻断”抗体或“拮抗剂”抗体是抑制或降低其结合的抗原的生物活性的抗体。优选的阻断抗体或拮抗剂抗体基本或完全抑制抗原的生物活性。

[1073] 本文中所用的“激动剂抗体”是能模拟感兴趣多肽的至少一个功能活性的抗体。

[1074] “病症”是可得益于用本发明的物质 / 分子或方法治疗的任何状况。这包括了慢性和急性病症或疾病，其包括使哺乳动物易患病症的那些可疑病理状态。本文中治疗的病症的非限制性的实例包括恶性和良性肿瘤；非血病和淋巴恶性肿瘤；神经元，神经胶质，星形胶质细胞，下丘脑和其它腺体，巨噬细胞，上皮，间质，囊胚腔的疾病；和炎症，免疫相关的病症和其它与血管发生相关的病症。

[1075] 术语“免疫相关的疾病”指的是这样的疾病，其由哺乳动物免疫系统的成分造成，介导或以其它方式导致哺乳动物的病态。还包括了免疫应答的激发或干涉对疾病进程有缓和作用的疾病。该术语包括了免疫介导的炎症，非免疫介导的炎症，感染性疾病，免疫缺陷病，瘤形成等。

[1076] 免疫相关的炎症和炎症的抑制（其中一些是免疫或 T 细胞介导的）能根据本发明而治疗，其包括系统性红斑狼疮，类风湿性关节炎，青少年慢性关节炎，脊椎关节病，系统性硬化病（硬皮病），特发性炎症性肌病，肌炎，多肌炎，斯耶格伦氏（Sjogren）综合症，系统性血管炎，结节病，自身免疫性溶血性贫血，免疫性血小板减少症，阵发性夜间血红蛋白尿，自身免疫性血小板减少症（特发性血小板减少性紫癜），免疫介导的血小板减少症，甲亢性甲状腺（Graves 病），桥本氏 (Hashimoto) 甲状腺炎，幼年型淋巴细胞性甲状腺炎，萎缩性甲状腺炎，糖尿病，免疫介导的肾病，肾小球肾炎，肾小管间质性肾
炎）、中枢和周围神经系统的脱髓鞘病诸如多发性硬化症、特发性脱髓鞘多神经病或格-巴二氏（Guillain-Barré）综合征、和慢性炎性脱髓鞘多神经病、肝胆病诸如传染性肝炎（甲型、乙型、丙型、丁型和戊型及其它非嗜肝病毒肝炎）、自身免疫性慢性活动性肝炎、原发性胆汁性肝硬化、肉芽肿性肝炎和硬化性胆管炎、炎性和纤维化肺病诸如炎性肠病（溃疡性结肠炎；克罗恩氏（Crohn）病）、真菌敏感性肠病、和惠普氏（Whipple）病、自身免疫性或免疫介导的皮肤病患者大疱性皮肤病、多形红斑和接触性皮炎、银屑病、变应性皮肤病诸如哮喘、变应性鼻炎、脂性皮炎、食物过敏反应和荨麻疹、肺的免疫疾病诸如嗜酸细胞性肺炎、特发性肺纤维化和超敏性肺炎、移植相关疾病包括移植物排斥和移植物抗宿主疾病。传染病包括AIDS（HIV感染）、甲型、乙型、丙型、丁型和戊型肝炎、细菌感染、真菌感染、原生物感染和寄生虫感染。

[1077] “自身免疫性病症”或“自身免疫性疾病”在本文中可替换使用，指源于个体自身组织且针对个体自身组织的非恶性疾病或紊乱。本文中所述自身免疫病明确排除恶性或癌性疾病或状况，特别排除B细胞淋巴瘤、急性淋巴细胞白血病（ALL）、慢性淋巴细胞白血病（CLL）、毛细胞性白血病和慢性髓细胞白血病。自身免疫性病症或紊乱的例子包括但不限于炎性应答，诸如炎性皮肤病，包括银屑病和皮炎（例如特应性皮炎）；系统性硬化症和硬化症；与炎性肠病有关的应答（诸如克罗恩氏（Crohn）病和溃疡性结肠炎）；呼吸道综合征（包括成人呼吸窘迫综合征；ARDS）；皮炎；电光性皮炎；脑炎；葡萄膜炎；结肠炎；肾小球肾炎；过敏性皮炎；炎性皮肤和肺部涉及T细胞浸润和慢性炎性应答的其它状况；动脉粥样硬化；白细胞粘附缺陷；类风湿性关节炎；系统性红斑狼疮（SLE）；糖尿病（例如Ⅰ型糖尿病或胰岛素依赖性糖尿病）；多发性硬化症；雷诺氏（Reynaud）综合征；自身免疫性甲状腺炎；变应性脑脊髓炎；斯耶格伦氏（Sjogren）综合征；免疫性糖尿病；及通常在肺结核、结节病、多肌炎、肉芽肿病和脉管炎中发现的与细胞因子和T-淋巴细胞介导的急性和迟发性超敏反应有关的免疫应答；恶性贫血（阿狄森氏（Addison）病）；涉及白细胞渗出的疾病；中枢神经系统（CNS）炎性紊乱；多器官损伤综合征；溶血性贫血（包括但不限于冷球蛋白血症或库姆氏（Coombs）阳性贫血）；重症肌无力；抗原-抗体复合物介导的疾病；抗肾小球基底膜；抗磷脂综合征；过敏性神经炎；格雷夫氏（Graves）病；郎-伊二氏（Lambert-Eaton）肌无力综合征；大疱性类天疱疮；天疱疮；自身免疫性多种内分泌腺病；莱特氏（Reiter）病；僵人（stiff-man）综合征；贝切特氏（Behcet）病；巨细胞动脉炎；免疫复合物性肾炎；IgA肾病；IgM多神经病；免疫性血小板减少性紫癜（ITP）或自身免疫性血小板减少症等。

[1078] 术语“胃肠炎症疾病”是一组慢性疾病，其造成粘膜中的炎症和/或溃疡。由此，术语包括炎症性肠病（如，克罗恩氏病、溃疡性结肠炎、不全性结肠炎和感染性结肠炎）、粘膜炎（如，口腔粘膜炎、胃肠粘膜炎；鼻粘膜炎和直肠炎）、坏死性小肠结肠炎和食道炎。

[1079] 术语“细胞增殖性疾病”和“增殖性疾病”指与某种程度的异常细胞增殖相关的疾病。在一个具体实施方式中，细胞增殖性疾病是癌。

[1080] 本文中所用的“肿瘤”，指所有癌细胞的生长和增殖（无论是否为恶性或良性）和所有原癌和癌细胞和组织。术语“癌”、“癌的”、“细胞增殖性疾病”、“增殖性疾病”和“肿瘤”在本文中并不互相排斥。

[1081] 术语“癌”和“癌的”是指或描述了哺乳动物的生理状况，其典型的特征是无节制
细胞生长 / 增殖。癌的实例包括但不限于：恶性瘤、淋巴瘤、胚胎细胞瘤、肉瘤、和白血病。这些癌更特定的实例包括鳞状细胞癌、小细胞肺癌、非小细胞肺癌、肺部腺癌、肺部鳞癌、腹膜癌、肝细胞癌（hepatocellular cancer）、胃癌、胰腺癌、成胶质细胞瘤、宫颈癌、卵巢癌、肝癌（liver cancer）、膀胱癌、肝细胞癌（hepatoma）、乳腺癌、结肠癌、直肠癌、子宫内膜癌或子宫癌、前列腺癌、肝癌（liver cancer）、前列腺癌、阴茎癌、甲状腺癌、肝恶性癌（hepatocellular carcinoma）和各类头颈癌。

血管发生调节异常亦可能导致本发明组合物和方法治疗的许多紊乱。这些紊乱包括非肿瘤性的和肿瘤性的两类情况。肿瘤性的包括但不限于上文所描述的。非肿瘤性紊乱包括但不限于不想要的或异常的体大、关节炎、类风湿性关节炎（RA）、银屑病、银屑病斑块、关节病、动脉粥样硬化、动脉粥样硬化斑块、糖尿病性和其它增殖性视网膜疾病包括早产儿视网膜病变、晶状体后纤维组织增生、新生血管性青光眼、年龄相关黄斑变性、糖尿病性黄斑水肿、角膜新血管形成、角膜移植片新血管形成、角膜移植片排斥、视网膜/视网膜新血管形成、眼角的新血管形成（发红）、眼新血管疾病、血管再狭窄、动脉痉挛（AVM）、脑膜瘤、血管瘤、血管纤维瘤、甲状腺增生（包括格雷夫氏（Graves）病）、角膜和其它组织的移植、慢性炎症、急性肺损伤（ARDS）、肺病、原发性肺动脉高压、恶性肺积液（malignant pulmonary effusion）、脑水肿（例如与急性中风 / 闭合性头部损伤 / 外伤有关的）、滑液炎症、RA 中的血管瘤形成、骨质疏松症、肺大泡形成、骨关节炎（OA）、球菌性腹水、多囊性卵巢病、子宫内膜异位、第三空间流体（3rd spacing of fluid diseases）（胰腺炎、间隔综合征、烧伤、肠病）、子宫平滑肌瘤（uterine fibroids）、早产、慢性炎症诸如 IBD（克罗恩病（Crohn）病和溃疡性结肠炎）、肠间质性病、肾病综合征、不想要的或异常的组织块生长（非癌的）、血友病性关节炎、肥厚性瘢痕、毛发生长的抑制、奥 - 韦尔（Osler-Weber）综合征、肺肉芽肿性结缔组织体后纤维组织增生，硬皮病、沙眼、血管粘连、滑膜炎、皮炎、先兆子官、腹水、心包积液（诸如与心包炎有关的）、以及胸腔积液。

在用于本文时，“治疗”指试图改变所治疗个体或细胞的自然进程的临床干预，可以是为了预防或在临床病理学的进程中进行。治疗的期望效果包括预防疾病的发生或复发、缓解症状、削弱疾病的任何直接或间接病理学后果、预防转移、减缓疾病进展的速率、改善或减轻疾病状态及及免疫或改善预后。在有些实施方案中，本发明的抗体用于延迟疾病或紊乱的发展。

“有效性”指在必需的剂量和时间上有效实现期望的治疗或预防效果的量。

本发明物质 / 分子、激活剂或拮抗剂的“治疗有效性”可根据诸如个体的疾病状态、年龄、性别和体重及该物质 / 分子、激活剂或拮抗剂在个体中引发期望应答的能力等因素而变化。治疗有效性还指该物质 / 分子、激活剂或拮抗剂的治疗有益效果胜过任何有毒或有害后果的数量。“预防有效性”指在必需的剂量和时间上有效实现预防的预防效果的数量。通常而言必然，由于预防剂量是在疾病发作之前或在疾病的早期用于受试者的，因此预防有效性将低于治疗有效性。

术语“细胞毒剂”在用于本文时指抑制或防止细胞的功能和 / 或引起细胞破坏的物质。该术语包括：放射性同位素，例如 At_{211}^{211}、I_{131}^{131}、I_{125}^{125}、Y_{90}^{90}、Re_{188}^{188}、Re_{188}^{188}、Sm_{153}^{153}、Bi_{212}^{212}、P_{32}^{32}和Lu的放射性同位素；化疗剂，例如甲氨蝶呤（methotrexate）、阿霉素（adriamycin）、长春
花生物碱（vinca alkaloids）（长春新碱（vincristine）、长春碱（vinblastine）、依托泊苷（etoposide）、柔红霉素（doxorubicin）、美法仑（melphan）、丝裂霉素（mitomycin）C、苯丁酸氮芥（chlorambucil）、柔红霉素（daunorubicin）或其它嵌入剂；酶及其片段，诸如溶核酶、抗毒素，诸如小分子毒素或者细菌、真菌、植物或动物起源的酶活毒素，包括其片段和/或变体；及下文披露的多种抗肿瘤药或抗癌药。下文记载了其它细胞毒性剂。杀肿瘤药引起肿瘤细胞的破坏。

[1087] “化学剂”是对癌症治疗有用的化合物。化学剂的实例包括烷化剂，例如噻替派（thiotepa）和 CYTOXAN®环磷酰胺（cyclophosphamide）；磺酸烷基酯类（alkyl sulfonates），例如白消安（busulfan）、丙烯胺（improsulfan）和哌泊舒凡（piposulfan）；氮丙啶类（aziridine），例如苯佐替派（benzodepa）、卡波醌（carboquone）、美妥替派（meturedepa）和乌瑞替派（uredepa）；乙撑亚胺类（ethylenimines）和甲基亚胺类（methylamelines），包括六甲亚胺（altretamine）、三乙撑亚胺（triethylenemelamine）、三乙撑磷酸胺（triethylenephosphoramide）、三乙撑硫代磷酸酯（thiophosphoramide）和三羟甲胺（trimethylolelamine）；糖脂内酯类（acetogenin）（特别是布拉他辛（bullatacin）和布拉他辛醇（bullatacinone）；\nS-9-四氯大麻酚（tetrachlorcannabinol）；屈大麻酚（dronabinol）、MARINOL®；β-拉帕酮（lapachone）；拉帕醇（lapachol）；秋水仙素类似物（colchicines）；比托酸（betulinicacid）；喜树碱（camptothecin）（包括合成的类似物托泊替康（topotecan）、HYCAMTIN®、CPT-11（依立替康（irinotecan）、CAMPTOSAR®）；乙酰喜树碱（acetylcamptothecin）、东莨菪碱（scopolamine）和9-氮基喜树碱（aminocamptothecin））；

苔藓抑素（bryostatin）callystatin CC-1065（包括它的阿多来新（adozelesin）、卡折来新（carzolesin）和比折来新（bizelesin）合成类似物）；鬼臼毒素（podophyllotoxin）；

鬼臼酸（podophyllinic acid）；替尼泊苷（tenipside）；隐藻素类（cryptophycins）（特别是隐藻素I和隐藻素A）；多拉司他汀（dolastatin）；doucarcin（包含合成的类似物KW-2189和CB1-TM）；艾黎塞洛素（eleutherobin）；pancratistatin；sarcoctylin；海绵抑素（spongistatin）；氨芥类（nitrogen mustards），例如苯丁酸氮芥（chlorambucil）、紫氮芥（chloronaphazine）、胆磷酸胺（cholophosphamide）、雌莫司汀（estramustine）、异环磷酸胺（ifosfamide）、双氯乙基甲胺（mechloethamine）、盐酸氨氮芥（mechlorethamine oxide hydrochloride）、美法仑（melphan）、新氮芥（novembichin）、苯芥胆甾醇（phenesterine）、泼尼莫司汀（prednimustine）、曲磷酸（trofosfamide）、尿嘧啶氮芥（uracil mustard）；亚硝胺类（nitrosoureas），诸如卡莫司汀（carmustine）；氟脲苷素（chlorozotocin）、福莫司汀（fotemustine）、洛莫司汀（lomustine）、尼莫司汀（nimustine）和雷莫司汀（ranimustine）；抗生素，例如烯二炔类（enediyne）抗生素（例如加利霉素（calicheamicin），特别是加利霉素γ II 和加利霉素ω II（例如，参见 Agnew, Chem. Intl. Ed. Engl., 33: 183-186(1994)）；蒽环类抗生素（dynamycin），包括 dynamycin A；埃斯波霉素（esperamicin）；以及新制癌素（neocarzinostatin）发色团（chromophore）和有关的色蛋白烯二炔类抗生素发色团）、阿克拉霉素（aclacinomycin）、放线菌素（actinomycin）、氨芥霉素（anthramycin）、偶氮丝氨酸（azaserine）、博来霉素（bleomycin）、放线菌素 C（cactinomycin）、carabicin、洋
红霉素（carminomycin）、噻嘧霉素（carzinophilin）、色霉素（chromomycin）、放线菌素D（dactinomycin）、柔红霉素（daunorubicin）、地托比星（detorubicin）、6-二氨-5-氧-L正亮氨酸、ADRIAMYCIN®多柔比星（doxorubicin）（包括吗啉代多柔比星、氮基吗啉代多柔比星、2-吡咯代多柔比星和脱氧多柔比星）、表柔比星（epirubicin）、依索比星（esorubicin）、伊达比星（idarubicin）、麻西罗霉素（marcellomycin）、丝裂霉素类（mitomycins）诸如丝裂霉素C、霉酚酸（mycophenolic acid）、诺拉霉素（nogalamycin）、橄榄霉素（olivomycin）、培洛霉素（peplomycin）、potfiromycin、嘌呤霉素（puromycin）、三铁阿霉素（quellamycin）、罗多比星（rodo rubycin）、链霉素（streptograminA）和链霉素（streptozocin）、杀结核菌素（tubercidin）、乌苯美司（ubenimex）和新司他丁（zinostatin）、佐柔比星（zorubicin）；抗生素如，例如甲氨蝶呤和5-氟尿嘧啶（5-FU）；叶酸类似物，例如二甲叶酸（denopterin）、甲氧蝶呤、蝶酰三苯酰酸（pteropterin）、三甲曲沙（trimetrexate）；嘌呤类似物，例如氟达拉滨（fludarabine）、6-氟基嘌呤（mercaptopurine）、硫嘌呤（thioguanine）、硫鸟嘌呤（thioguanine）、噻啶类似物，例如安西他滨（ancitabine）、阿扎胞苷（azacitadine）、6-氟尿苷（6-azauridine）、卡莫氟（carmofur）、阿糖胞苷（cytarabine）、双脱氧尿苷（dideoxuridine）、去氧氟尿苷（dorfluridine）、依诺他滨（enocitabine）、氟尿苷（fluorouridine）、雄激素，例如卡鲁睾酮（calusterone）、丙酸屈他雄酮（dromostanolone propionate）、表雄酮（epitiostanol）、美雄烷（mepitiostane）、睾内酯（testolactone）、抗肾上腺素，例如氟鲁米特（aminogluthethimide）、米托坦（mitotane）、曲洛司坦（trilostane）；叶酸补充剂，例如甲酰四氢叶酸（folinic acid）、醋酸甲氧酰胺（aceglatone）、酰肼基羟基糖苷（aldophosphamide glycicoside）、氨基乙酰丙酸（aminolevulinic acid）、恩达唑啶（eniluracil）；安吖啶（amsacrine）、bestramucil、比生群（bisantrene）、依达曲沙（edatraxate）、地磷酸胺（defosfamide）、地美可辛（demecolcine）、地吖啶（diaziquone）、elfornithine、依利酰胺（elliptinum acetate）、epothilone、依托扶鲁（etogolucid）、硝酸镓、羟脲（hydroxyurea）、香菇多糖（lentinan）、氟尿嘧啶（fludarabine）、美登木素生物碱（maytansinoids）、例如唾液素（maytansine）和安丝素（ansamtocin）、米托蒽醌（mitogluzone）、米托蒽醌（mitoxantrone）、莫哌达醇（mopidamol）、二胺嘧啶（nitracrine）、喷司他丁（pentostatin）、蛋氨酸（phenamet）、吡柔比星（pirarubicin）、洛索蒽醌（losoxantrone）、2-乙基酰胺（ethylhydrazide）、丙卡巴肼（procarbazine）、PSK®多糖复合物（JHS Natural Products, Eugene, OR）；雷佐生（razoxane）、银霉素（rhizoxin）、西索菲兰（sizofiran）、螺旋钝（spirogermanium）、细交链孢菌脂酸（tenuazonic acid）、亚胺脂肪酸（triazone）、2,2',2''-三氯乙胺、单端孢菌素（trichotheccenes）（尤其是T-2毒素、癌孢菌素（verrucarin）A、杆孢菌素（rodininA）和蛇形菌素（anguidin））；乌拉坦（urethan）、长春地辛（vindesine）、ELDISINE®、FILDESIN®、达卡巴嗪（dacarbazine）、甘露醇氯芭（mannomustine）、二溴甘露醇（mitobronitol）、二溴卫矛醇（mitolactol）、哌泊溴烷（pipobroman）、gacytosine、阿糖胞苷（arabinoside）（“ Ara-C”）；塞替派（thiotepa）、类紫杉醇（taxoids），例如，TAXOL®紫杉醇（paclitaxel）（Bristol-Myers Squibb Oncology, Princeton, N.J.），ABRAXANE™Cremophor-free、清蛋白改造的纳米颗粒剂型紫杉醇
(American Pharmaceutical Partners, Schaumberg, Illinois) and TAXOTERE®多西他塞 (doxetaxel)( Rhône-Poulenc Rorer, Antony, France);苯丁酸氮芥 (chlorambucil); 西他滨 (gemcitabine)( GEMZAR®); 硫鸟嘌吟 (thioguanine); 喹酚嘌吟 (mercaptopurine); 甲氨蝶呤; 铝类似物, 例如顺铂 (cisplatin) 和卡铂 (carboplatin); 甲酰四氢叶酸 (leucovorin); 长春碱 (vincristine)( VELBAN®); 铝; 托泊替 (etoposide) (VP-16); 反环磷酰胺 (ifosfamide); 米托蒽醌 (mitoantrone); 长春新碱 (vincristine)( ONCOVIN®); 卡培他滨 (capecitabine)( XELODA®); 顺铂 (cisplatin); 乙酰四氢叶酸 (leucovorin); 长春瑞滨 (vinorelbine)( NAVELBINE®); 能马酯 (novaltrone); 依达曲沙 (edatrexate); 道诺霉素 (daunomycin); 氨基蝶呤 (aminopterin); 伊马替尼 (imatinib); 拓扑异构酶抑制剂 RFS 2000; 二氯甲基鸟氨酸 (DMFO); 类维 A 酸 (retinoids), 诸如维 A 酸 (retinoic acid); 卡培他滨 (capecitabine)( XELODA®); 上述所有物质的药学可接受盐、酸或衍生物; 已经和上述的两个或更多个组合, 例如 CHOP 和 FOLFOX; CHOP 是环磷酰胺、多柔比星、长春新碱和泼尼松龙 (prednisolone) 的联合治疗的缩写, FOLFOX 是奥沙利铂 (oxaliplatin) (ELOXATIN®) 联合 5-FU 和甲酰四氢叶酸进行治疗的缩写。

[1088] 调节、降低、阻断或抑制激素作用的抗激素制剂也包括在该定义内, 其中所述的激素可以促进癌症生长, 所述的抗激素制剂经常以系统或整体治疗形式存在。所述抗激素制剂可以是激素本身。实例包括抗雌激素和选择性雌激素受体调节剂 (SERMs), 包括, 例如: 他莫昔芬 (tamoxifen)( 包括 NOLVADEX®他莫昔芬)、EVISTA®雷洛昔芬 (raloxifene)、屈洛昔芬 (droloxifene)、4-羟基米芬 (4-hydroxytamoxifen)、曲安新酯 (trioxifene)、那洛昔芬 (keoxifene)、LY117018、奥那司酮 (onapristone) 和 FARESTON®托瑞米芬 (toremifene); 抗孕酮; 雌激素受体下调剂 (ERDs); 那些起抑制或阻断卵巢功能的制剂, 例如: 促黄体素释放激素 (LHRH) 激动剂, 例如 LUPRON®和 ELIGARD®雌二醇丙瑞林 (leuprolide acetate)、醋酸戈舍瑞林 (goserelin acetate) 和醋酸布舍瑞林 (buserelin acetate) 和替丙瑞林 (tripotrelin); 其它抗雌激素, 例如氟他米特 (flutamide)、尼鲁米特 (nilutamide) 和比卡米特 (bicalutamide); 和抑制肾上腺中调节雌激素产生的芳香酶的芳香酶抑制剂, 例如, 4-(5)-咪唑、氯米富米特 (aminoglutethimide)、MEGASE®醋酸甲地孕酮 (megestrol acetate)、AROMASIN®依西美坦 ( exemestane)、formestane、法酮唑 (fadrozole)、RIVISOR®伏罗唑 (vorozole)、FEMARA®来曲唑 (letrozole) 和 ARIMIDEX®阿那曲唑 (anastrozole)。另外, 化疗剂的这种定义包括二膦酸盐类 (bisphosphonates), 例如氟磷酸盐 (clodronate)( 例如：BONEFOS®或 OSTAC®)、DIDROCAL®依替膦磷酸 (etidronate)、NE-58095、ZOMETA®唑来膦酸 / 唑来磷酸盐 (zoledronic acid/zoledronate)、FOSAMAX®阿伦膦酸盐 (alendronate)、AREDIA®帕米膦酸盐 (pamidronate)、SKELID®替鲁膦酸盐 (tiludronate) 或 ACTONEL®利塞膦酸盐 (risedronate); 以及曲他滨 (troxacinidine)(1,3- 二氧戊环紧骨苷类类似物)。反义寡核背酸, 特别是那些抑制信号路径中和异常细胞增殖有关联的基因的表达的寡核背酸, 例如 ,PKC-α 、Raf、H-Ras 和表皮生长因子受体 (EGF-R); 癌症, 例如 THERATOPE®疫苗和基因治疗疫苗, 例如: ALLOVECTIN®疫苗、LEUVECTIN®疫苗和 VAXID®疫苗; LURTOTECAN®拓扑异构酶抑制剂: ABARELIX® rmRH; lapatinib
ditosylate (ErbB-2 和 EGFR 双酶氨酸激酶小分子抑制剂，又名 GW572016)；上述所有物质的药学可接受盐、酸或衍生物。

[1089] 用于与本发明的抗酸剂抗 β7 抗体联合治疗的化合物包括抗体（包括但不限于其他抗 β7 拮抗剂抗体 (Fib 21, 22, 27, 30, Tidwell, M. (1997) 同上) 或其人源化衍生物)、抗-a4 抗体（如 ANTEGEN®）、抗-TNF（REMICADE®）或非蛋白化合物（包括但不限于 5-ASA 化合物 ASACOL®，PENTASA®，ROWASA®，COLAZAL®）和其它化合物（如硫氧嘌呤类和类固醇，如强的松 (prednisone)）。在具体实施方式中，本发明包括用本发明的抗酸剂抗 β7 抗体单独治疗或与也可用于治疗炎症的第二化合物联合治疗患者（如患者）的方法。在一个具体实施方式中，第二化合物选自由 Fib21, 22, 27, 30, 或其人源化衍生物、抗-a4 抗体、ANTEGEN®、抗-TNF、REMICADE®、5-ASA 化合物、ASACOL®、PENTASA®，ROWASA®，COLAZAL®，硫氧嘌呤 (Purinethol)，类固醇和强的松组成的组。在本发明的一个具体实施方式中，给药本发明的抗酸剂抗 β7 抗体显著减少第二化合物的用量。在一个具体实施方式中，所述第二化合物用量的减少为减少至少 30%，至少 40%，至少 50%，至少 60%，至少 70%，至少 80%，至少 90%，至少 95%。在本发明的一个具体实施方式中，本发明的抗体和减少用量的第二化合物的联用将患者症状减轻到基本等于或好于单独给药第二化合物的程度。
说明书

[1092] 产生能表现出HAMA应答减少或缺失的变体抗体

[1093] HAMA(人抗-小鼠(也可用于人抗-大鼠或人抗-人))应答的减少或消除是临床
CancerRes.(1990),50:1495。如本文所述,本发明提供了人源化的抗体,由此减少或消除
HAMA应答。这些抗体的变体可进一步利用现有已知的常规方法来获得,其中一些方法在下
文会进一步描述。

[1094] 例如,如本文所述的抗体的氨基酸序列可用作初始(亲本)序列,用以使框架和/
或高变序列多样化。选出的与初始超变序列相连接的框架序列在本文中被称为受体人框
架。受体人框架可来自或源自人免疫球蛋白(其VL和/或VH区),优选地,受体人框架来自
或源自人共有框架序列,目前已经证实了该框架在人患者中具有最小的或没有免疫原性。

[1095] 当受体源自人免疫球蛋白时,可任选根据其与供体框架序列的同源性来选出人框
架序列,其中,将供体框架序列同人框架序列库中的各种人框架序列进行序列对比,选出与
受体同源的框架序列,由此得到所述同源性。

[1096] 在一个具体实施方式中,本文中人共有框架来自或源自VH亚型III和/或VLk
亚型I共有框架序列。

[1097] 因此,VL受体人框架可包含一、二、三个或所有下述框架序列:

[1098] FR1含EVQLVESGGGLVQPSG(SQ ID NO:38),

[1099] FR2含WVRQAPGKGLEW(VQ ID NO:39),

[1100] FR3含FR3含RFTISX1DX2SKNTY3YLQMNSLRAEDTAVYYC(SQ ID NO:42),其中X1为
A或R,X2为T或N,和X3为A,L或F,

[1101] FR4含WQQGLTVVSS(SQ ID NO:41)。

[1102] VH共有框架的实例包括;

[1103] 人VH亚型I共有框架扣除Kabat CDR(SQ ID NO:19);

[1104] 人VH亚型I共有框架扣除延伸的高变区(SQ ID NO:20-22);

[1105] 人VH亚型II共有框架扣除Kabat CDR(SQ ID NO:48);

[1106] 人VH亚型II共有框架扣除延伸的高变区(SQ ID NO:49-51);

[1107] 人VH亚型III共有框架扣除Kabat CDR(SQ ID NO:52);

[1108] 人VH亚型III共有框架扣除延伸的高变区(SQ ID NO:53-55);

[1109] 人VH受体框架扣除Kabat CDR(SQ ID NO:56);

[1110] 人VH受体框架扣除延伸的高变区(SQ ID NO:57-58);

[1111] 人VH受体V2框架扣除Kabat CDR(SQ ID NO:59);或

[1112] 人VH受体V2框架扣除延伸的高变区(SQ ID NO:60-62)。

[1113] 在一个具体实施方式中,VL受体人框架包含一、二、三个或所有下述框架序列;

[1114] FR1含EVQLVESGGGLVQPSG(SQ ID NO:38),

[1115] FR2含WVRQAPGKGLEW(SQ ID NO:39),

[1116] FR3含RFTISADTSKNTAYLQMNSLRAEDTAVYYC(SQ ID NO:43)、RFTISRDTSKNTAYLQM
NSLRAEDTAVYCA (SEQ ID NO: 44), RFT1SRDTSKNTFYLQMSLRAEDTAVYCA (SEQ ID NO: 45), RF
TISADTSKNTFYLQMSLRAEDTAVYCA (SEQ ID NO: 46),
[1117] FR4 含 WQQGLTVVSS (SEQ ID NO: 41),
[1118] VL 受体人框架可包含一、二、三个或所有下列框架序列：
[1119] FR1 含 DLWMTQPSSLASAVGDRVTITC (SEQ ID NO: 34),
[1120] FR2 含 WYQKPGKAPKLI (SEQ ID NO: 35),
[1121] FR3 含 GVPSSRFGSSGTDFTLTISSLQPEDATYYC (SEQ ID NO: 36),
[1122] FR4 含 FGQGTKVEIKR (SEQ ID NO: 37).
[1123] VL 框架的实例包括：
[1124] 人 VLk 亚型 I 共有框架 (SEQ ID NO: 14);
[1125] 人 VLk 亚型 II 共有框架 (延伸的 HVR-L2) (SEQ ID NO: 15);
[1126] 人 VLk 亚型 II 共有框架 (SEQ ID NO: 16);
[1127] 人 VLk 亚型 III 共有框架 (SEQ ID NO: 17)；或
[1128] 人 VLk 亚型 IV 共有框架 (SEQ ID NO: 18)
[1129] 当受体序列与所选的人框架序列完全相同时，无论是否是来自人免疫球蛋白或人
共有框架的，本发明可预期，相对于人免疫球蛋白序列或人共有框架序列，受体序列可包含
预先存在的氨基酸替换。这些预先存在的替换优选是最小化的，通常相对于人免疫球蛋白
序列或共有框架序列仅有四、三、二或一个氨基酸差别。
[1130] 非人抗体的高变量残基被整合入 VL 和 / 或 VH 受体人框架中。例如，可整合的残
基对应于 Kabat CDR 残基、Chothia 高变环残基、Abm 残基、/ 和 / 或接触残基的残基。任选
可整合如下延伸的高变量残基：24-34 (L1)、49-56 (L2) 和 89-97 (L3)、26-35 (H1)、50-65 或
49-65 (H2) 和 93-102、94-102, 或 95-102 (H3)。
[1131] 高变量残基的“整合”如本文所述，因而将能理解该整合可通过各种方式来实现，
例如，编码所需氨基酸序列的核酸可通过突变编码小鼠可变结构域序列的核酸来产生，由
此其框架残基会被受体人框架残基，或通过突变编码人可变结构域序列的核酸来产生，由
此高变结构域残基会变为残基，或通过合成编码所需序列的核酸等来等等。
[1132] 在本文的实例中，利用每个高变区的寡聚核苷酸，通过 Kunkel 突变编码人受体
用常规技术，可将适当的变化导入框架和 / 或高变区中，由此校正并重建适当的高变区 - 抗
原相互作用。
[1133] 嗪菌体展示（在上下文中某些部分中，本文中也称为噬菌体展示）可用作从随机产
生的序列文库中产生并筛选出大量不同的潜在变体抗体的方便快速方法。可是，其它制备
和筛选变化的抗体的方法对普通技术人员来说也是可用的。
[1134] 嗪菌体展示技术提供了产生并筛选出结合配体的新蛋白质（如抗原）的有力工
具。利用噬菌体展示技术能产生蛋白质变体的大文库，其可迅速筛选那些以高亲和力结合
靶分子的序列。编码变体多肽的核酸一般与编码病毒衣壳蛋白的核酸序列融合，如与基因
III 蛋白质或基因 VII 蛋白质融合。已经开发出了单价噬菌体展示系统，其中编码蛋白质
或多肽的核酸序列与编码一部分基因 III 蛋白质的核酸序列融合。 (Bass, S., Proteins, 8:309 (1990); Lowman 和 Wells, Methods: A Companion to Methods in Enzymology, 3:
205 (1991))。在单价噬菌体展示系统中，能低水平表达融合基因，而且也表达野生型基因 III 蛋白质，由此可保持颗粒的感染性。许多专利披露了产生肽库并筛选那些文库的方法（如美国专利 5,23,86,美国专利 5,32,18,美国专利 5,80,17,美国专利 5,27,08 和美国专利 5,98,30)。

[1135] 有许多方法可制备抗体或抗原结合多肽库，包括通过插入随机DNA序列来改变单个基因或通过克隆相关基因家族来制备。利用噬菌体展示来展示抗体或抗原结合片段的方法在美国专利 5,750,373,5,733,743,5,837,242,5,969,108,6,172,197,5,580,717 和 5,658,727 中有记载。然后筛选出文库中表达的具有所需特性的抗体或抗原结合蛋白质。


[1137] 密聚核苷酸序列包括一个或多个针对要改变的高变区残基而设计的密码子集合（codon set），密码子集合是一组不同的核苷酸三联序列，其用于编码所需变体氨基酸。根据 IUB编码法，密码子集合可用如下所示的命名特定核苷酸或核苷酸等摩尔混合物的符号来表示。

1138 [IUB 码]
1139 G 鸟嘌呤
1140 A 腺嘌呤
1141 T 胸腺嘧啶
1142 C 腺嘌呤
1143 R(A或G)
1144 Y(C或T)
1145 M(A或C)
1146 K(G或T)
1147 S(C或G)
1148 W(A或T)
1149 H(A或C或T)
1150 B(C或G或T)
1151 V(A或C或G)
1152 D(A或G或T)
1153 N(A或C或G或T)

1154 例如，在密码子集合 DVK 中，D 可以是核苷酸 A 或 G 或 T ; Y 可以是 A 或 G 或 C ; 和 K 可以是 G 或 T。该密码子集合可表示 18 种不同的密码子并可编码氨基酸 Ala, Trp, Tyr, Lys, Thr, Asn, Lys, Ser, Arg, Asp, Glu, Gly, 和 Cys。

1155 可用标准方法合成寡聚核苷酸或引物集合。例如，可通过固相合成来合成寡聚核苷酸集合，所含序列表示为密码子集合提供的所有可能的核苷酸三联体的组合，而且其将编码所需氨基酸组。在某些位置上利用选出的“简并”核苷酸来合成寡聚核苷酸，这是现有公知的技术。这些具有某些密码子集合的核苷酸集合可利用商用核苷酸合成仪来合成（例如可得自 AppliedBiosystems, Foster City, CA)，或可通过商业渠道获得（例如得自
LifeTechnologies, Rockville, MD)。所以典型地，合成的具有特定密码子的寡聚核苷酸集合将包括序列有差异的多个寡聚核苷酸，差异由每个序列内的密码子集合来产生。本发明所述的寡聚核苷酸具有能与可变结构域核酸模板杂交的序列，而且也可用于克隆目的而包括限制性内切酶位点。

在一个方法中，编码变体氨基酸的核酸序列可通过寡聚核苷酸介导的突变来产生。该技术是现有公知的，如 Zoller 等 Nucleic Acids Res. 10: 6487-6504 (1987) 所述。简而言之，编码变体氨基酸的核酸序列通过将编码所需密码子集合的寡聚核苷酸集合与 DNA 模板杂交而产生，其中模板是单链形式的质粒，其包含了可变区的核酸模板序列。杂交后，用 DNA 聚合酶合成出所述模板的完整的第二互补链，由此所述模板将会插入寡聚核苷酸引物，而且将包含由寡聚核苷酸所含的密码子集合。


为了改变天然的 DNA 序列，寡聚核苷酸在适当的杂交条件下与单链模板杂交。然后使用寡聚核苷酸作为合成引物，加入 DNA 聚合酶（通常为 T7DNA 聚合酶或 DNA 聚合酶 1 的 Klenow 片段），用以合成模板的第二互补链。由此生成异源双链核酸分子，从而使 DNA 的一条链编码基因 1 的突变型，而另一条链（初始模板）编码天然、未改变的基因 1 序列。然后将该异源双链核酸分子转进合适的宿主细胞中，通常转化进诸如大肠杆菌 JM101 的原核生物中。细胞增殖后，将它们置于琼脂糖平板上，并利用以 32-P 磷酸放射性标记了的寡聚核苷酸引物筛选，从而鉴定出含突变 DNA 的细菌克隆。

上面一段所述的方法可修正从而产生同质双链分子，其中质粒的两条链都包含突变。这些修正如下：单链寡聚核苷酸与如上所述的单链模板退火。三种脱氧核糖核苷酸（dTTP）、脱氧核糖鸟苷（dGTP）、脱氧核糖胸腺嘧啶核苷（dTT）的混合物与被称为 dCTP（aS）的修饰的脱氧核糖硫代胞嘧啶（其可得自 Amersham）混合。将该混合物加入到模板—寡聚核苷酸复合物中。向该混合物加入 DNA 聚合酶，由此产生了除了突变碱基之外其余都与模板完全相同的 DNA。另外，该新的 DNA 链将替换 dCTP 而含 dCTP（aS），其用于保护它防止限制性内切酶消化。双链异源双链核酸的模板链用合适的限制性内切酶进行酶切，然后可用 Exonuclease I 核酸酶或其它合适的核酸酶越修变位点的区域消化模板链。然后终止反应，保留仅剩部分单链的分子。然后利用 DNA 聚合酶在所有四种三磷酸脱氧核糖核苷、ATP 和 DNA 连接酶存在的情况下，形成完整的双链 DNA 同源双链（homoduplex）。然后可将该同质双链分子转化为合适的宿主细胞中。

如前所述，寡聚核苷酸集合中的序列有足够的长度能与模板核酸杂交，并且也可以但不是必须包含限制性位点。DNA 模板可由源自噬菌体 M13 载体的那些载体产生，或如
因而，将被突变的 DNA 可插入这些载体之中的一个载体中，从而产生单链模板。单链模板的
制备在同上的 Sambrook 等编的书的第 4.21-4.41 节中有叙述。

[1162] 根据另一种方法，由提供上游和下游的高保真酶酸集合，每个集合有多个带有
不同序列的寡聚核苷酸，不同序列由寡聚核苷酸序列中所提供的密码子集合来确定，由此
生成文库。上游和下游的寡聚核苷酸集合，以及可变结构域的模板核酸序列，可用于聚合酶
快速反应以产生 PCR 产物的“文库”。PCR 产物可被称为“核酸表达盒”，因为利用成熟的分
子生物学技术，它们可与其它相关的或不相关的核酸序列（例如，病毒衣壳蛋白和二聚化结
构域）融合。

[1163] PCR 引物序列包括一个或多个为高变区中溶剂可及的和高变的位点设计的密码子
集合。如上所述，密码子集合是一组用于编码所需变体氨基酸的不同的核酸三联序列。

[1164] 通过合适的筛选/选择步骤所选中的达到所需标准的抗体可利用标准重组技术
分离并克隆。

[1165] 载体、宿主细胞和重组方法

[1166] 为了重组生产本发明的抗体，分离编码它的核酸并将其插入可复制的载体以进一
步克隆（扩增 DNA）或表达。用常规方法（如，通过利用能够与编码抗体重和轻链的基因特
异结合的寡聚核苷酸探针）能迅速分离编码抗体的 DNA 并测序。有许多载体可供利用。载
体的选择部分可根据所用的宿主细胞来进行。一般地，优选的宿主细胞是原核或真核（一
般为哺乳动物）来源的。

[1167] 利用原核宿主细胞产生抗体；

[1168] 载体构建

[1169] 编码本发明抗体多肽成分的多聚核苷酸序列可以用标准重组技术获得。可从产生
抗体的细胞（如杂交瘤细胞）中分离所需多聚核苷酸序列并测序。可选地，利用核苷酸合
成仪或 PCR 技术可合成多聚核苷酸。一旦获得了，则将编码多肽的序列插入能够在原核宿
主中复制并表达的源多聚核苷酸的重组载体。可利用的和现有已知的许多载体可用于本发
明。合适载体的选择主要根据插入载体的核酸的大小和要将载体转化的特定宿主细胞来进
行。根据其功能（异源多聚核苷酸的扩增或表达，如其组合）和与其所处的特定宿主细胞
的相容性，每种载体可含不同成分。载体成分一般包括但不限于：复制起点、选择标记基因、
启动子、核糖体结合位点（RBS）、信号序列、异源核酸插入和转录终止序列。

[1170] 一般而言，包含复制子和调控序列的质粒载体，其源自与宿主细胞相容的物种，可
被用于连接这些宿主。载体通常带有复制位点，以及在转化的细胞中产生能够带来表型选
择的标记序列。例如，典型地可利用 pBR322（源自大肠杆菌菌种的质粒）来进行转化大肠
杆菌。pBR322 包含编码氨苄青霉素（Amp）和四环素（Tet）抗性的基因，由此可提供鉴定转
化的细胞的简单方法。pBR322，其衍生物或其它微生物质粒或噬菌体也可包含，或经修饰后
可包含，可用于让微生物表达内源蛋白质的启动子。用于表达特定抗体的 pBR322 衍生物的
实例在 Carter 等的美国专利 5,648,237 中有详细记载。

[1171] 另外，包含复制子和调控序列的噬菌体载体，其与宿主微生物相容，可被用作转化
载体来连接这些宿主。例如，可利用噬菌体（如 λ GEM TM -11）来制备可用于转化易感宿
主细胞（如大肠杆菌 LE392）的重组载体。
本发明的表达载体可包含两种或更多的启动子—顺反子对，其能编码每一个多肽成分。启动子是非翻译的调节序列，其位于由其调节表达的顺反子的上游（5’）。原核启动子典型分为两类，诱导和组成型。诱导型启动子是这样的启动子，在其控制下能启动水平增加了的顺反子的转录，其控制与培养条件的改变（如营养物的串在或缺失或温度变化）相关。

通过各种潜在宿主细胞识别大量启动子是公知的。通过限制性内切酶消化从源DNA中去除启动子并将分离的启动子序列插入本发明的载体中，所选的启动子就能够可靠操作地与编码轻或重链的顺反子DNA可操作地相连。天然启动子序列和许多异源启动子可用于指导靶基因的扩增和/或表达。在一些具体实施方式中，使用异源启动子，因为它们相对于天然启动子来说，一般能带来所表达的靶基因的更多转录和更高产量。

适于在原核宿主中使用的启动子包括PhoA启动子、β-半乳糖苷酶和乳糖启动子系统、色氨酸（trp）启动子系统和杂合启动子，如lac或tac启动子。可是，在细菌中起作用的其它启动子（如其它已知的细菌或噬菌体启动子）也是合适的。它们的核苷酸序列已经被公开，因此使普通技术人员能利用能带来任何所需限制性位点的接头或接合头来操作地将它们与编码靶轻和重链的顺反子相连（Siebenlist等（1980）细胞20：269）。

在本发明的一个方面，重组载体内的每个顺反子包含分泌信号序列成分，其指导表达的多肽穿膜转移。一般而言，信号序列可以是载体的成分，或它可以是插入载体的靶多肽DNA的一部分。为本发明所选的信号序列应该是能被宿主细胞识别并加工（即由信号肽酶裂解）的序列。对于不能识别并加工异源多肽天然信号序列的原核宿主细胞，信号序列由所选原核信号序列替换，例如，替换为由自由碱性磷酸酶、青霉素酶、Ipp，或热稳定性肠毒素II（STII）前导序列、LamB、PhoE、PelB、OmpA和MBP组成的组合信号序列。在本发明的一个具体实施方式中，用在表达系统的顺反子中的信号序列是STII信号序列或其变体。

在另一方面，根据本发明产生的免疫球蛋白可在宿主细胞的细胞质中产生，因此不需要在每个顺反子中都出现信号序列。由此，表达、折叠并装配免疫球蛋白轻和重链，从而在细胞质中形成功能性免疫球蛋白。某些宿主株（如，大肠杆菌trxB）株提供了有利于二硫键形成的细胞质条件，由此使得表达的蛋白质亚基能正确折叠和装配。Proba和Pluckthun Gene，159：203（1995）。

本发明提供了表达系统，其中可以调节表达的多肽成分的数量比率，用以使本发明分泌和正确装配的抗体的产量最大化。这种调节至少部分可通时调节多肽成分的翻译强度来实现。

调节翻译强度的一种技术在Simmons等的美国专利5,840,523中有披露。它利用了顺反子内的翻译起始区（TIR）的变体。对于特定的TIR，一系列氨基酸或核苷酸序列变体可在翻译强度范围内产生，由此提供了便利的方法，通过它可调节该因子以达到特定链所需表达的水平。TIR变体可通过形成可改变氨基酸序列的密码子变化的常规突变技术来产生，然后优选核苷酸序列中的改变是沉默的。TIR中的变化可包括如，Shine-Dalgarno序列数量或间距的变化、以及信号序列的变化。产生突变的信号序列的方法是在编码序列起点产生“密码子库”，其不改变信号序列的氨基酸序列（即，改变是沉默的）。这可通过改变密码子内核苷酸变化可实现；另外，一些氨基酸，如亮氨酸、丝氨酸、和精氨酸，具有多个可增加制备库复杂度的第一和第二位核苷酸。该突变方法在Yansura等（1992）
METHODS: A Companion to Methods in Enzymol. 4:151-158中有详细描述。

[1179] 优选地，本文中的每个顺反子都构建在TIR强度范围内的载体集合。在各种TIR强度组合下，该有限的集合提供了各种酶活性水平的对比以及所需抗体产物的产量。如Simmons等的美国专利5,840,523所述，TIR强度可通过定量报告基因的表达水平而确定。根据翻译强度的比较，挑选所需的单个TIR以组合在本发明的表达载体构建体中。


[1181] 抗体生成

[1182] 用上述表达载体转化宿主细胞，并在为诱导启动子、选择转化子或扩增编码期望序列的基因而适当改建的常规营养培养基中进行培养。

[1183] 转化即将DNA导入原核宿主，使得DNA能够进行复制，或是作为染色体外元件或只是通过染色体成分。根据所用宿主细胞，使用适于这些细胞的标准技术进行转化。采用氯化钙的钙处理通常用于具有坚固细胞壁屏障的细菌细胞。另一种转化方法采用聚乙二醇/DMSO。使用的还有一种技术是电穿孔。

[1184] 在本领域知道的且适于培养选定宿主细胞的培养基中培养用于生成本发明多肽的原核细胞。合适培养基的实例包括添加了必需营养补充物的LB培养基（Luria broth）。在有些实施方案中，培养基还含有根据表达载体的构建而选择的选择剂，以选择性容许包含表达载体的原核细胞生长。例如，向用于培养表达氨苄青霉素抗性基因的细胞的培养基中添加氨苄青霉素。

[1185] 除了碳、氮、和无机磷酸盐来源以外，还含有些度浓度的任何必需补充物，或是单独加入或是作为与另一种补充物或培养基的混合物，诸如合成氮源。任选的是，培养基可含有且种或多种选自下组的还原剂，如肼、甘肽、半胱氨酸、胱胺、巯基乙酸盐/醋、二硫赤
蔗糖醇和二硫苏糖醇。

[1186] 在合适的温度培养原核宿主细胞。例如，对于培养大肠杆菌，优选的温度范围是约20℃至约39℃，更优选25℃至约37℃，甚至更优选约30℃。主要取决于宿主生物体。培养基的pH可调节为约5至约9的任何pH。对于大肠杆菌，pH优选约6.8至约7.4，更优选约7.0。


[1188] 在一个实施方案中，所表达的本发明多肽分泌到宿主细胞的质膜中并从中回收。蛋白质回收通常涉及破坏微生物，通常通过诸如渗透压造成（osmotic shock）、超声处理或裂解等手段。一旦细胞遭到破坏，可通过离心或过滤清洗细胞碎片或整个细胞。可以通过例如亲和树脂的进一步纯化蛋白质。例如，蛋白质可能转运到培养液中并从中分离。可从培养液清洗细胞，并将培养物上清液过滤和浓缩，用于进一步纯化所生成蛋白质。可使用普遍知道的方法诸如聚丙烯酰胺凝胶电泳（PAGE）和Western印迹分析进一步分离和鉴定所表达蛋白质。

[1189] 在本发明的一个方面，通过发酵过程大量进行抗体生产。多种大规模补料-分批发酵流程可用于生产重组蛋白。大规模发酵具有至少1000升的容量，优选约1,000至100,000升的容量。这些发酵罐使用搅拌器叶片来分配氧和养分，尤其是葡萄糖（优选的碳源/能源）。小规模发酵通常指在体积容量不超过100升的发酵罐中进行的发酵，范围可以是约1升至约100升。

[1190] 在发酵过程中，通常在将细胞在合适条件下培养至期望密度（如0D_{600}约180-220，在此阶段细胞处于早期稳定期）后启动蛋白质表达的诱导。根据所采用的载体构建物，可使用多种诱导物，正如本领域所知的和上文描述的。可在诱导前将细胞培养更短的时间。通常将细胞诱导约12-50小时，但可使用更长或更短的诱导时间。


[1192] 为了将所表达异源蛋白质（尤其是对蛋白水解敏感的异源蛋白质）的蛋白水解降至最低，可将蛋白水解酶缺陷的某些宿主菌株用于本发明。例如，可修饰宿主细胞菌株，在编码已知细菌蛋白酶的基因中进行遗传突变，诸如蛋白酶III、OmpT、DegP、Tsp、蛋白酶1、蛋白酶M、蛋白酶V、蛋白酶VI及其组合。可以获得有些大肠杆菌蛋白酶缺陷菌株，参见例如Joly et al.,(1998)见上文;Georgiou等人，美国专利5,264,365;Georgiou等人，美国

[1193] 在一个实施方案中，在本发明的表达系统中使用蛋白水解酶缺陷且经过过度表达一种或多复制蛋白的质粒转化的大肠杆菌菌株作为宿主细胞。

[1194] 抗体纯化

[1195] 在一个实施方案中，进一步纯化本文中生成的抗体蛋白质以获得基本上同质的制品，用于进一步的测定和使用。可以采用本领域已知的标准蛋白质纯化方法。下面的流程是合适的纯化流程的实例：免疫亲和或离子交换柱上的分馏、乙醇沉淀、反相HPLC、硅上或阴离子交换树脂诸如DEAE上的层析、层析聚焦、SDS-PAGE、硫酸铵沉淀和使用例如Sephadex G-75的凝胶过滤。


[1197] 作为纯化第一步，将衍生自如上所述细胞培养物的制备物施加到蛋白A固定化固相上，使得目的抗体特异结合蛋白A。然后洗脱固相以清除与固相非特异结合的污染物。最后通过洗脱从固相回收目的抗体。

[1198] 使用真核宿主细胞生成抗体；

[1199] 载体构建通常包括但不限于如下一种或多种：信号序列、复制起点、一种或多种标志基因、增强子元件、启动子、和转录终止序列。

[1200] (i) 信号序列构件

[1201] 在真核宿主细胞中使用的载体还可在目的成熟蛋白质或多肽的N端包含信号序列或具有特异切割位点的其它多肽。优选受到宿主细胞识别并加工（即被信号肽酶切除）的异源信号序列。在哺乳动物细胞表达中，可利用哺乳动物信号序列以及病毒分泌前导，例如单纯疱疹病毒gD信号。

[1202] 将这些前体区的DNA连接到编码抗体的DNA的读码框中。

[1203] (ii) 复制起点

[1204] 通常，哺乳动物表达载体不需要复制起点构件。例如，SV40起始通常可能只因包含早期启动子才使用。

[1205] (iii) 选择基因构件

[1206] 表达和克隆载体可包含选择基因，也称为选择标志。典型的选择基因编码如下蛋白质：(a) 负载对抗生素或其它毒素的抗性，如氨苄青霉素、新霉素、甲氨蝶呤或四环素；(b) 补足相应的营养缺陷；或(c) 提供不能从复合培养基获得的关键营养物。

[1207] 选择方案的一个实例利用药物来阻滞宿主细胞的生长。经异源基因成功转化的那些细胞生成赋予药物抗性的蛋白质，因而幸免于选择方案。此类显性选择的实例使用药物新霉素、霉酚酸酯和潮霉素。

[1208] 适于哺乳动物细胞的选择标志的另一个实例是能够鉴定有能力摄取抗体核酸的细胞的选择标志，诸如DIFR、胸腺嘧啶、金属硫蛋白Ⅰ和Ⅱ优选选长类金属硫蛋白基因、腺苷脱氨酶、鸟氨酸脱羧酶等。
例，首先通过将所有转化子在含有甲氨蝶呤（Mtx，DHFR 的一种竞争性拮抗剂）的培养基中进行培养来鉴定经 DHFR 选择基因转化的细胞。在采用野生型 DHFR 时，适宜的宿主细胞是 DHFR 活性缺陷的中国仓鼠卵巢（CHO）细胞系（如 ATCC CRL-9096）。

或者，可通过在含有针对选择标志的选择剂诸如氨基糖苷抗生素如卡那霉素、新霉素或 G418 的培养基中培养细胞来选择经编码抗体、野生型 DHFR 蛋白和另一种选择标志诸如氨基糖苷 3′-磷酸转移酶（APH）的 DNA 序列转化或共转化的宿主细胞（尤其是包含内源 DHFR 的野生型宿主）。参见美国专利 4,965,199。

（iv）启动子构件

表达和克隆载体通常包含受到宿主生物体识别的启动子，且与抗体多肽核酸可操作连接。已知真核细胞的启动子序列。事实上，所有真核细胞的启动子序列。事实上，所有真核细胞的启动子序列。事实上，所有真核细胞的启动子序列。事实上，所有真核细胞的启动子序列。事实上，所有真核细胞的启动子序列。事实上，所有真核细胞的启动子序列。在许多基因的转录起点上游 70 至 80 个碱基对发现的另一种序列是 CNGAAT 区，其中 N 可以是任意核苷酸。在大多数真核基因的 3′端是 AATAAA 序列，它可能是向编码序列的 3′端添加聚腺苷酸（polyA）尾的信号。所有这些序列可结合插入真核表达载体中。

在哺乳动物宿主细胞中由载体转录抗体多肽受到例如从病毒（诸如多瘤病毒、禽痘病毒、腺病毒（诸如 2 型腺病毒）、牛乳头瘤病毒和禽类肉瘤病毒）及细胞病毒、逆转病毒、乙肝病毒和猴类病毒（SV40）基因组获得的，来自异源哺乳动物启动子（如肌动蛋白启动子或免疫球蛋白启动子）的，来自热休克启动子的启动子的控制，倘若这些启动子与宿主细胞系统相容的话。

方便的以 SV40 限制性片段的形式获得 SV40 病毒的早期和晚期启动子，该片段包含 SV40 病毒复制起点。方便的以 HindIII E 限制性片段的形式获得复制病毒的立即早期启动子。美国专利 4,419,446 中公开了使用乳头瘤病毒作为载体在哺乳动物宿主中表达 DNA 的系统。美国专利 4,601,978 中记载了该系统的一种修改。关于在小鼠细胞中在来自单纯疱疹病毒的胸苷激酶启动子的控制下表达 B-干扰素 cDNA 还可参见 Reyes 等人，Nature 297:598-601 (1982)。或者，可使用劳氏肉瘤病毒长末端重复序列作为启动子。

（v）增强子元件构件

常常通过在载体中插入增强子序列来提高高等真核细胞对编码本发明抗体多肽的 DNA 的转录。现在知道来自哺乳动物基因（如蚕白蛋白、弹性蛋白酶、清蛋白、α-胎儿蛋白和胰岛素）的许多增强子序列。然而，通常使用来自真核细胞病毒的增强子。实例包括 SV40 复制起始晚期的增强子（hp100-270）、巨细胞病毒早期启动子增强子、多瘤病毒复制起始晚期的增强子、和腺病毒增强子。关于激活真核启动子的增强元件还可参见 Yaniv，Nature 297:17-18 (1982)。增强子可剪接到载体中，位于抗体多肽编码序列的 5′或 3′位置，但是优选位于启动子的 5′位点。

（vi）转录终止构件

在真核宿主细胞中使用的表达载体通常还包含终止转录和稳定 mRNA 所必需的序列。此类序列通常可从真核或病毒 DNA 或 cDNA 非翻译区的 5′端和偶尔的 3′端获得。这些区域包含在编码抗体的 mRNA 的非翻译区中转录成聚腺苷酸化片段的核苷酸区段。一种有用的转录终止构件是牛生长激素聚腺苷酸化区。参见 W094/11026 及其中公开的表达载
体。

(ii) 宿主细胞的选择和转化


(iii) 为了生成抗体，用上文所述表达或克隆载体转化宿主细胞，并在为了诱导启动子、选择转化子或扩增编码期望序列的基因而适当改动的常规营养培养基中进行培养。

(iv) 宿主细胞的培养

在多种培养基中培养用于生成发人抗体的宿主细胞。商品化培养基诸如 Ham 氏 F10 (Sigma)、极限必需培养基 (MEM, Sigma)、RPMI-1640 (Sigma) 和 Dulbecco 氏改良 Eagle 氏培养基 (DME, Sigma) 适于培养宿主细胞。另外，可使用下列文献中记载的任何培养基作为宿主细胞的培养基：Ham et al., Meth. Enz. 58 : 44(1979)；Barnes et al., Anal. Biochem. 102 : 255(1980)；美国专利 4,767,704 ; 4,657,866 ; 4,927,762 ; 4,560,655 ; 5,122,469 ; WO 90/03430 ; WO 87/00195 ; 或美国专利复审 30,985。任何这些培养基可根据需要补充激素和/或其生长因子（诸如胰岛素、运铁蛋白或表皮生长因子）、盐（诸如氯化钠、钙和磷酸盐）、缓冲剂（诸如 HEPES）、核苷酸（诸如腺苷和胸苷）、抗生素（诸如 GENTAMYCIN® 药物）、痕量元素（定义为通常以微摩尔范围的浓度存在的无机化合物）、和葡萄糖或等效能源。还可以适宜浓度含有本领域技术人员知道的任何其它必需补充物。培养条件诸如温度、pH 等即为表达而选择的宿主细胞先前所用的，这对于普通技术人员是显然的。

(ix) 抗体的纯化

在使用重组技术时，可在细胞内生成抗体，或者直接分泌到培养基中。如果在细胞内生成抗体，那么首先需要通过例如离心或超滤清除微粒碎片，或是宿主细胞或是裂解片段。如果抗体分泌到培养基中，那么通常首先使用商品化蛋白质浓缩滤器（例如 Amicon 或 Millipore Pellecon）浓缩来自这些表达系统的上清液。而在任何上述步骤中包括蛋白酶抑制剂诸如 PMSF 以抑制蛋白水解，而且可包括抗生素以防止外来污染物的生长。

(xi) 可使用例如羟磷灰石层析、凝胶电泳、透析和亲和层析（优选的纯化技术是亲和层析）来纯化从细胞制备的抗体组合物。蛋白 A 作为亲和配体的适宜性取决于抗体中存在的任何免疫球蛋白 Fc 结构域的种类和同种型。蛋白 A 可用于纯化基于 Y1、Y2, 或 Y4 重链的抗体 (Lindmark et al., J. Immunol. Meth. 62 : 1–13(1983))。蛋白 G 推荐用于所有
小鼠同种型和人γ3 (Guss et al., EMBO J. 5 :1567-1575 (1986))。亲和配体所附着的基质最常用的是琼脂糖，但是也可以使用其它基质。物理稳定的基质诸如可控孔径玻璃或聚（苯乙烯二乙烯）能够获得比琼脂糖更快的流速和更短的加工时间。若抗体包含 Cγ3 结构域，则可使用 Bakerbond ABX™树脂 (J.T. Baker, Phillipsburg, NJ) 进行纯化。根据待回收的抗体，也可使用其它蛋白质纯化技术诸如离子交换柱上的分馏、乙醇沉淀、反相 HPLC、硅土上的层析、庚素 SEPHAROSE™上的层析、阴离子或阳离子交换树脂（诸如聚天冬氨酸柱）上的层析、层析聚焦、SDS-PAGE 和硫酸铵沉淀。

[1227] 在任何初步纯化步骤之后，可将含有目的抗体和污染物的混合物进行低 pH 琥珀相互作用层析；使用 pH 约 2.5-4.5 的洗脱缓冲液，优选在低盐浓度（如约 0-0.25M 盐）进行。

[1228] 活性测定法
[1229] 可通过本领域知道的多种测定法对本发明的抗体鉴定它们的物理/化学特性和生物学功能。

[1230] 可通过一系列测定法进一步鉴定纯化的免疫球蛋白，包括但不限于 N 端测序、氨基酸分析、非变性大小排阻高压液相层析 (HPLC)、质谱、离子交换层析和木瓜蛋白酶消化。

[1231] 在该发明的某些实施例中，对本文在生成的免疫球蛋白分析它们的生物学活性。在某些实施例中，对本发明的免疫球蛋白测试它们的抗原结合活性。本领域知道的且可用于本文的抗原结合测定法包括但不限于使用诸如 Western 印迹、放射免疫测定法、ELISA（酶联免疫吸附测定法）、“三明治”免疫测定法、免疫沉淀测定法、荧光免疫测定法和蛋白 A 免疫测定法等技术的任何直接或竞争性结合测定法。下文在实施例部分中提供了显示性的抗原结合测定法。


[1233] 人源化抗体
[1234] 本发明涵盖人源化抗体。本领域知道用于人源化非人抗体的多种方法。例如，人源化抗体可具有一个或多个从非人来源引入的氨基酸残基。这些非人氨基酸残基常常称


更为重要的是，抗体在人源化后保留对抗原的高亲和力和其它有利的生物学特性。为了达到此目的，一种方法是，通过使用亲本序列和人源化序列的三维模型分析亲本序列和各种概念性人源化产物的过程来制备人源化抗体。通常可获得免疫球蛋白重链模型，这是本领域技术人员所熟悉的。还可获得图解和显示所选候选免疫球蛋白序列的可能三维构象结构的计算机程序。通过检查这些显示图像能分析残基在候选免疫球蛋白序列发挥功能中的可能作用，即分析影响候选免疫球蛋白结合其抗原的能力的残基。这样，可以从受体序列和输入序列中选出FR残基并组合，从而得到期望的抗体特征，诸如对靶抗原的亲和力升高。一般而言，高变区残基直接且最实质的牵涉对抗原结合的影响。

抗体变体

一方面，本发明提供了在构成Fc区的Fc多肽界面中包含修饰的抗体，其中该修饰推动和/或促进异二聚化。这些修饰包括将突起导入第一Fc多肽和将胞导入第二Fc多肽，其中突起可位于舱中，从而促进第一和第二Fc多肽的复合。本领域知道生成具有这些修饰的抗体的方法，例如美国专利5,731,168中所述。

在有些实施方案中，设想了本文所述抗体的氨基酸序列修饰。例如，可能希望改进抗体的结合亲和力和/或其他生物学特性。抗体的氨基酸序列变体是通过将适宜的核苷酸变化引入抗体编码序列或通过肽合成制备的。此类修饰包括例如抗体氨基酸序列内的残基删除和/或插入和/或替代。进行任何删除、插入和替代组合以获得最终的构建物，倘若最终的构建物具有期望的特征。可在制备序列时将氨基酸改变引入受试抗体氨基酸序列。

可用于鉴定抗体中作为优选诱变位置的某些残基或区域的方法有“丙氨酸扫描诱变”，如Cunningham and Wells, Science 244:1081-1085(1989)中所述。这里，鉴定一个残基或一组靶残基（如带电荷的残基，诸如精氨酸、天冬氨酸、组氨酸和赖氨酸) 并用中性或带负电荷的氨基酸（最优选丙氨酸或甲酸) 替代，以影响氨基酸与抗原的相互作用。然后通过在或对替代位点引入更多或其它变体，推敲对替代展示功能敏感性的氨基酸位置。由此，尽管用于引入氨基酸序列变异的位点是预先决定的，然而突变本身的本质不必预先决定。例如，为了分析指定位点处突变的后果，在靶密码子区域进行丙氨酸扫描或随机诱变，并对所表达免疫球蛋白筛选期望的活性。
氨基酸序列插入包括氨基和/或羧基末端的融合，长度范围由一个残基至包含上百或更多残基的多肽，以及单个或多个氨基酸残基的序列内插入。末端插入的例子包括具有N端甲硫氨酸残基的抗体或与细胞毒性多肽融合的抗体。抗体分子的其他插入变体包括将抗体的N或C端与酶（如用于ADEPT）或延长抗体血清半衰期的多肽融合。

另一类变体是氨基酸替代变体。这些变体在抗体分子中有至少一个氨基酸残基用不同残基替代。最有趣进行替代诱变的位点包括高变区，但是也设想了FR改变。表1中“优选替代”栏显示了保守替代。如果此类替代导致生物学活性改变，那么可导入表中称为“示例替代”的更实质变化，或者文献中氨基酸分类进一步所述，并筛选产物。

<table>
<thead>
<tr>
<th>原始残基</th>
<th>例示替代</th>
<th>优选替代</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala(A)</td>
<td>Val,Leu,Ille</td>
<td>Val</td>
</tr>
<tr>
<td>Arg(R)</td>
<td>Lys,Gln,Asn</td>
<td>Lys</td>
</tr>
<tr>
<td>Asn(N)</td>
<td>Gln,His,Asp,Lys,Arg</td>
<td>Gln</td>
</tr>
<tr>
<td>Asp(D)</td>
<td>Glu,Asn</td>
<td>Glu</td>
</tr>
<tr>
<td>Cys(C)</td>
<td>Ser,Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Gln(Q)</td>
<td>Asn,Glu</td>
<td>Asn</td>
</tr>
<tr>
<td>Gly(G)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>His(H)</td>
<td>Asn,Gln,Lys,Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Ile(I)</td>
<td>Leu,Val,Met,Ala,Phe,正亮氨酸</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu(L)</td>
<td>正亮氨酸,Ile,Val,Met,Ala,Phe</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys(K)</td>
<td>Arg,Gln,Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>Met(M)</td>
<td>Leu,Phe,Ille</td>
<td>Leu</td>
</tr>
<tr>
<td>Phe(F)</td>
<td>Trp,Leu,Val,Ille,Ala,Tyr</td>
<td>Tyr</td>
</tr>
<tr>
<td>Pro(P)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser(S)</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr(T)</td>
<td>Val,Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Trp(W)</td>
<td>Tyr,Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>Tyr(Y)</td>
<td>Trp,Phe,Thr,Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Val(V)</td>
<td>Ile,Leu,Met,Phe,Ala,正亮氨酸</td>
<td>Leu</td>
</tr>
</tbody>
</table>

抗体生物学特性的实质性修饰可通过选择对维持以下方面的效果差：显著的替代来实现：(a) 替代区域中多肽主链的结构，例如（折叠）片或螺旋结构，(b) 需位点处分子的电荷或疏水性，或 (c) 侧链的体积。根据其侧链特性的相似性，氨基酸可如下分组（A.L. Lehninger，《Biochemistry》，第2版，第73-75页，Worth Publishers，New York，1975）：

(1) 非极性的：Ala(A)、Val(V)、Leu(L)、Ile(I)、Pro(P)、Phe(F)、Trp(W)、Met(M)
(2) 不带电荷、极性的：Gly(G)、Ser(S)、Thr(T)、Cys(C)、Tyr(Y)、Asn(N)、Gln(Q)
(3) 酸性的：Asp(D)、Glu(E)
(4) 碱性的：Lys(K)、Arg(R)、His(H)
或者，根据共同的侧链特性，天然发生残基可如下分组：
(1) 疏水性的：正亮氨酸、Met、Ala、Val、Leu、Ile；
(2) 中性、亲水性的：cys、Ser、Thr、Asn、Gln；
(3) 酸性的：Asp、Glu；
[1254] (4) 碱性的:His, Lys, Arg;
[1255] (5) 影响链取向的残基:Gly, Pro;
[1256] (6) 芳香族的:Trp, Tyr, Phe。
[1257] 非保守替代需要用这些类别之一的成员替换另一个类别的。还可将此类替代残基引入保守替代位点，或者更优选的是引入剩余（非保守）位点。
[1258] 一类替代变体牵涉替代亲本抗体（例如人源化或人抗体）的一个或多个高变区残基。通常，选择用于进一步开发的所得变体相对于产生它的亲本抗体将具有改进的生物学特性。用于生成此类替代变体的一种便利方法牵涉使用噬菌体展示的亲和力成熟。简而言之，将数个高变区位点（例如 6-7 个位点）突变，在各个位点产生所有可能的氨基酸替代。如此生成的抗体展示在丝状噬菌体的颗粒上，作为与各个颗粒内包装的 M13 基因 11 产物的融合物。然后如本文所公开的对噬菌体展示的变体筛选其生物学活性（例如结合亲和力）。为了鉴定用于修饰的候选高变区位点，可进行丙氨酸扫描诱变以鉴定对抗原结合具有重要贡献的高变区残基。或者/另外，分析抗原-抗体复合物的晶体结构以鉴定抗体和抗原之间的接触点可能是有益的。所述接触残基及邻近残基是依照本文详述的技术进行替代的候选位点。一旦产生这样的变体，如本文所述对该组变体进行筛选，可选择在一种或多种相关测定法中具有优良特性的抗体用于进一步的开发。
[1259] 编码抗体氨基酸序列变体的核酸分子可通过本领域知道的多种方法来制备。这些方法包括但不限于从天然来源分离（在天然发生氨基酸序列变体的情况中），或者通过对较早制备的变体或非变异型的抗体进行寡核苷酸介导的（或定点）诱变、PCR 诱变和盒式诱变来制备。
[1260] 可能希望在本发明免疫球蛋白多肽的 Fc 区中引入一处或多处氨基酸修饰，由此生成 Fc 变体。Fc 区变体可包括在一个或多个氨基酸位置（包括铰链半胱氨酸）包含氨基酸修饰（如替代）的人 Fc 区序列（如人 IgG1、IgG2、IgG3 或 IgG4Fc 区）。
[1261] 依照此描述和本领域的教导，设想了在某些实施方案中，本发明方法中所使用的抗体与野生型对应抗体相比在可再如 Fc 区中包含一处或多处改变。与它们的野生型对应物相比，这些抗体仍将基本上保留治疗功效所需要的相同特性。例如，认为可在 Fc 区中进行将会导致 Clq 结合和/或补体依赖性细胞毒性 (CDC) 改变（即或是增强或是削弱）的某些改变，例如 W099/51642 中所述。还可参见关注 Fc 区变体其它实例的 Duncan and Winter, Nature 322: 738-40 (1988); 美国专利 5,648,260; 美国专利 5,624,821; 及 W094/29351。
[1262] 免疫偶联
[1263] 本发明还关于包含偶联有细胞毒剂的抗体的免疫偶联物或抗体-药物偶联物 (ADC)，所述细胞毒剂诸如化疗剂、药物、生长抑制剂、毒素（如细菌、真菌、植物或动物起源的酶活性毒素或其片段）或放射性同位素（如放射性偶联物）。


[1266] 上文已经描述了可用于生成此类免疫偶联物的化学剂。可使用的酶活性毒素及其片段包括白喉毒素（A链）、白喉毒素的非结合活性片段、外毒素A链（来自铜绿假单胞菌Pseudomonas aeruginosa）、枯草毒素（ricin)A链、相思豆毒蛋白（abrin)A链、蓖麻毒素（modeccin)A链、α-三曲霉素（sarcin）、油桐（Aleutites fordii）毒蛋白、香石竹（dianthin）毒蛋白、美洲商陆（Phytolaca americana）毒蛋白（PAPI, PAPII和PAP-S）、苦瓜（Momordicacharantia）抑制物、麻风树毒素蛋白（curcin）、巴豆毒素蛋白（crotin）、肥皂草（sapaonaria officinalis）抑制物、白树毒蛋白（gelonin）、丝林毒素（mitogeline）、局限曲菌素（restrictocin）、酚霉素（phenomycin）、依诺霉素（enomycin）和单端孢菌素（trichotheccenes）。多种放射性核素可用于生成放射偶联抗体。实例包括^{211}Bi、^{213}Bi、^{131}In、^{90}Y 和^{186}Re。抗体和细胞毒剂的偶联物可使用多种多功能蛋白质偶联剂来制备。诸如N-琥珀酰亚氨基-3-（2-吡啶基硫代）丙酸酯（SPDP）、亚氨基硫烷（IT）、亚氨酸酯（诸如盐酸己二酰亚氨酸二甲酯）、活性酯类（诸如辛二酸二琥珀酰亚氨基酯）、醛类（诸如戊二醛）、双叠氮化合物（诸如N-叠氮苯甲酰基-乙胺）、双叠氮衍生物（诸如N-叠氮苯甲酰基-乙胺）、二异氰酸酯（诸如苯甲酯-2,6-二异氰酸酯）、和双活性氯化合物（诸如1,5-二氯-2,4-二硝基苯）的双功能衍生物。例如，可如Vitettaet al., Science 233: 1098 (1987) 中所述制造蓖麻毒蛋白免疫毒素。碳-14 标记的1-异硫氰酸苯甲基-3-甲基二亚乙基五胺五乙酸 (MX-DTPA) 是用于将放射性核苷酸与抗体偶联的示例性螯合剂。参见WO 94/11026。

[1267] 本文还设想了抗体与一种或多种小分子毒素诸如芥巴霉素（calicheamicin）、美登木素生物碱类（maytansinoids）、单端孢毒素（trichotheccenes）和CC1065 及这些毒素具有毒素活性的片段的偶联物。

[1268] 美登素和美登木素生物碱类

[1269] 在一个实施方案中，本发明的抗体（全抗或片段）与一个或多个美登木素生物碱分子偶联。

[1270] 美登木素生物碱类是通过抑制微管蛋白多聚化来发挥作用的有丝分裂抑制剂。美登素最初从非灌木叶和美登木（Maytenus serrata）分离得到（美国专利3,896,111）。

【1271】美登木素生物碱－抗体偶联物


【1273】抗体－美登木素生物碱偶联物（免疫偶联物）

【1274】抗体－美登木素生物碱偶联物可通过将抗体与美登木素生物碱分子化学连接且不显著削弱抗体或美登木素生物碱分子的生物学活性来制备。每个抗体分子偶联平均3-4个美登木素生物碱分子在增强针对靶细胞的细胞毒性中显示功效，且抗体的功能或溶解度没有负面影响，尽管预计甚至一个分子的毒素／抗体也将较之裸抗体的使用增强细胞毒性。美登木素生物碱类在本领域是众所周知的，而且可通过已知技术合成或从天然来源分离。例如美国专利5,208,020和未提及的其它专利及非专利发表物中公开了合适的美登木素生物碱类。优选的美登木素生物碱类是美登醇和美登醇分子的芳香环或其它位置经过修饰的美登醇类似物，诸如各种美登醇酯。

【1275】本领域知道许多连接基团可用于制备抗体－美登木素生物碱偶联物，包括例如美国专利5,208,020或欧洲专利0 425 235 B1及Chari et al., Cancer Research 52 ;127-131(1992)中所公开的。连接基团包括二硫化物基团、硫醚基团、酸不稳定基团、光不稳定基团、肽酶不稳定基团、或酯酶不稳定基团，正如上述所述专利中所公开的，优选二硫化物和硫醚基团。

【1276】可使用多种双功能蛋白质偶联剂来制备抗体和美登木素生物碱的偶联物，诸如N-琥珀酰亚氨基-3-（2-吡啶基二硫代）丙酸酯（SPDP）、琥珀酰亚氨基-4-（N-马来酰亚氨基甲基）环己烷-1-羧酸酯、亚氨基硫烷（IT）、亚氨酸酯（诸如甘氨酸二氧亚氮酸二甲酯）、活性酶类（诸如三苯二硫琥珀酰亚氨基酯）、酶类（诸如戊二醛）、双叠氮化合物（诸如双（对-叠氮苯甲酰基）己二胺）、双重氯衍生物（诸如双（对-重氮苯甲酰基）-乙二
氨基酸（如苯甲酸、二乙基酸、二乙基丙酮）和二磺酸化合物（如1,5-二氧-2,4-二硝基苯）的双功能衍生物。特别优选的偶联剂包括N-硫醚键氨基-3-(2-吡啶基二硫代)丙酸酯（SPDP）（Carlsson et al., Biochem. J. 173:723-737 (1978)) 和N-硫醚酸氨基-4-(2-吡啶基二硫代)戊酸酯（SPP），由此提供二硫键连接。

根据连接的类型，可接头附着于美登木素生物碱分子的多个位置。例如，可使用常规偶联技术通过与羟基的反应来形成酯键。反应可发生在具有羟基的C-3位置、经羟基修饰的C-14位置、经羟基修饰的C-15位置、和具有羟基的C-20位置。在一个优选的实施方案中，在美登醇或美登醇类似物的C-3位置形成键连接。

**加利特霉素**

另一种感兴趣的免疫偶联物包含与一个或多个加利特霉素分子偶联的抗体。加利特霉素抗生素家族能够在亚皮摩尔浓度生成双键DNA断裂。关于加利特霉素家族偶联物的制备参见美国专利5,712,374;5,714,586;5,739,116;5,767,285;5,770,701;5,770,710;5,773,001;5,877,296（都授予美国Cyanamid公司）。可用的加利特霉素结构类似物包括但不限于\(\gamma_1, a_2, a_3, N-\beta\)酰基辅-\(\gamma_1,\)PSAG和\(\theta_1\)（Hinman et al., Cancer Research 53:3336-3342 (1993)）；Lode et al., Cancer Research 58:2925-2928 (1998)；及上述授予美国Cyanamid公司美国专利。可与抗体偶联的另一种抗癌细胞药物是QFA，它是一种抗肿瘤药物。加利特霉素和QFA都具有胞内作用位点，且不易穿过质膜。因此，这些药物经由抗体介导的内在化的细胞摄取大大增强了它们的细胞毒性。

**其它细胞毒剂**

与本发明抗体偶联的其它抗癌细胞药物包括BCNU、链佐星（streptozotocin）、长春新碱（vincristine）、5-氟尿嘧啶、美国专利5,053,394,5,770,710中记载的统称为LL-E33288复合物的抗体家族、及埃斯波霉素类（esperamicins）（美国专利5,877,296）。

可用的酶活性毒素及其片段包括白喉毒素A链、白喉毒素的非结合活性片段、外毒素A链（来自铜绿假单胞菌Pseudomonas aeruginosa）、蓖麻毒素蛋白（ricin）A链、相思豆毒蛋白（abrin）A链、蓖麻根毒蛋白（modeccin）A链、α-巨球毒素（sarcin）、油桐（Aleutites fordii）毒蛋白、香石竹（dianthus）毒蛋白、美洲商陆（Phytolaca americana）毒蛋白（PAPI、PAPII和PAP-S）、苦瓜（Momordica charantia）抑制物、麻疯树毒蛋白（curcin）、巴豆毒蛋白（crotin）、肥皂草（sapaonaria officinalis）抑制物、白树毒蛋白（gelonin）、丝林霉素（mitogellin）、局限曲菌素（restrictocin）、酚霉素（phenomycin）、依诺霉素（enomycin）和单端孢盘菌（trichotheccenes）。参见例如1991年10月28日公布的WO 93/21232。

本发明还设想了抗体和具有核酸降解活性的化合物（如核糖核酸酶或DNA内切核酸酶，等诸多脱氧核糖核酸酶、DNA酶）之间形成的免疫偶联物。

为了选择性破坏肿瘤，抗体可包含高度放射性原子。多种放射性同位素可用于生成放射偶联抗体。实例包括\(^{211}\)At、\(^{131}\)I、\(^{125}\)I、\(^{90}\)Y、\(^{186}\)Re、\(^{188}\)Re、\(^{153}\)Sm、\(^{212}\)Bi、\(^{32}\)P和\(^{212}\)Pb 和\(^{68}\)Tc 或\(^{125}\)I 的放射性同位素。在将偶联物用于检测时，可包含放射性原子用于闪烁照相研究，例如\(^{211}\)At、\(^{125}\)I 或\(^{125}\)I，或是包含自旋标记物用于核磁共振（NMR）成像（也称为磁共振成像，MRI），诸如碘-123、碘-131、锕-111、氧-19、硫-35、氯-15、氧-17、钆-153和铁。

可以已知方式将放射性或其它标记物掺入偶联物。例如，可生物合成肽，或是通过

[1286] 可使用多种双功能蛋白质偶联剂来制备抗体和细胞毒剂的偶联物，诸如 N- 环己酰亚氨基-3-（2-吡啶基二硫代）丙酸酯 (SDPP)、琥珀酰亚氨基-4-(N- 马来酰亚氨基丙烷) 环己烷-1- 羧酸酯、亚氨基硫烷 (IT)、亚氨酯尾（诸如盐酸已二酰亚氨基二甲酯），活性酯类（诸如辛二酸二琥珀酰亚氨基酯），醛类（诸如戊二醛），双叠氮化合物（诸如双对-叠氮苯甲酯基）乙二胺）、双重氮衍生物（诸如双对-重氮苯甲酰基乙二胺）、二异硫氰酸酯（诸如甲苯-2,6-二异硫氰酸酯），和双活性氟化合物（诸如 1,5-二氟-2,4-二硝基苯）的双功能衍生物。例如，如可 Vitetta et al., Science 238:1098（1987）中所述制备蓖麻毒蛋白免疫毒素。碳-14 标记的 1- 异硫氰酸苯甲酯-3-甲基二亚乙基三胺五乙酸 (MIX-DTPA) 是用于将放射性核苷酸与抗体偶联的指示性螯合剂。参见 WO94/11026。接头可以是便于在细胞中释放细胞毒药物的“可切割接头”。例如，可使用酸不稳定性接头、肽酶敏感接头、光不稳定接头、二甲基接头，或含二硫化物接头 (Chari et al., Cancer Research 52:127-131 (1992) ; 美国专利 5,208,020)。

[1287] 本发明的化合物明确涵盖但不限于用于下列交联剂制备的 ADC：商品化（如购自 Pierce Biotechnology Inc., Rockford, IL, U.S.A.）的 BMPS、EMCS、GMB、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、sulfo-EMCS、sulfo-GMB S、sulfo-KMUS、sulfo-MBS、sulfo-SIAB、sulfo-SMCC 和 sulfo-SMPB，和 SVSB（琥珀酰亚胺基-4-乙烯基砜）苯甲酸酯。见 2003-2004 年度应用手册和产品目录 (Applications Handbook and Catalog) 第 467-498 页。

【1288】抗体 - 药物偶联物的制备

【1289】在本发明的抗体 - 药物偶联物 (ADC) 中，将抗体 (Ab) 经接头 (L) 与一个或多个药物部分 (D) 缔合，例如每个抗体偶联约 1 至 20 个药物部分。可采用本领域技术人员知道的有机化学反应、条件和试剂通过数种路径来制备通式 I 的 ADC，包括：① 抗体的亲核基团经共价键与二价接头试剂反应，形成 Ab-L，随后与药物部分 D 反应；和 (2) 药物部分的亲核基团经共价键与二价接头试剂反应，形成 D-L，随后与抗体的亲核基团反应。

【1290】Ab-[(L-D)]

【1291】抗体的亲核基团包括但不限于：① N 末端氨基；② 侧链氨基，如赖氨酸；③ 侧链巯基，如半胱氨酸；和 (iv) 糖基化抗体中糖的羟基或氨基。氨基、巯基和羟基是亲核的，能够与接头部分上的亲电子基团反应而形成共价键，而接头试剂包括：(i) 活性酯类，诸如 NHS 酯、HOBt 酯、卤代甲酸酯、和酸性卤化物；(ii) 烷基和苯甲基化物，诸如卤代乙酰胺；(iii) 醛类、酮类、羧基和马来酰亚胺基团。某些抗体具有可还原的链间二硫键，即半胱氨酸桥。可通过还原剂诸如 DTT（二硫苏糖醇）处理使抗体具有与接头试剂缔合的反应活性。每个半胱氨酸桥理论上将形成两个反应性硫醇 - 亲核体。可经由赖氨酸与 2- 亚氨基硫烷 (Traut 氏试剂) 的反应，导致胺转变为硫醇，从而将额外亲核基团引入抗体。

【1292】还可通过修饰抗体来生成本发明的抗体 - 药物偶联物，即引入可与接头试剂或药
物上的亲核取代基反应的亲电子部分。可用例如高碘酸盐氧化剂氧化糖基化抗体的糖，从而形成可与接头剂或药物部分的胺基团反应的醛或酯基团。所得亚胺 Schiff 碱基可形成稳定的键，或者可用例如硼氢化物试剂还原而形成稳定的胺连接。在一个实施方案中，糖基化抗体的碳水化合物部分与半乳糖氧化酶或偏磷酸钠的反应可在蛋白质中生成糠（醛和酮）基团，它可与药物上的适宜基团反应（Hermanson, Bioconjugate Techniques）。在另一个实施方案中，包含 N 末端丝氨酸或苏氨酸残基的蛋白质可与偏磷酸钠反应，导致在第一个氨基酸处生成醛（Geoghegan & Stroth, Bioconjugate Chem. 3:138-146(1992); US 5362582）。此类醛可与药物部分或接头亲核体反应。

[1293] 同样，药物部分上的亲核基团包括但不限于：胺、硫醇、羟基、酰胺、肟、肟、缩氨基硫脲、肽酰胺酶、和芳基酰胺基团，它们能够与接头部分上的亲电子基团反应而形成共价键。而接头剂包括：(i) 活性酯类，诸如 NHS 酯、HOBT 酯、卤代甲酸酯、和酸性卤化物；(ii) 芳基和苯甲基卤化物，诸如卤代乙酰胺；(iii) 醇类、醚类、羧基，和马来酰亚胺基团。

[1294] 或者，可通过例如重组技术或肽合成来制备包含抗体和细胞毒剂的融合蛋白。DNA 的长度可包含各自编码偶联物两个部分的区域，或是彼此毗邻或是由编码接头体的区域分开，该接头体不破坏偶联物的期望特性。

[1295] 在又一个实施方案中，将抗体与“受体”（诸如链霉亲和素）偶联从而用于肿瘤预先靶向，其中对患者施用抗体－受体偶联物，接着使用清除剂由循环中清除未结合的偶联物，然后施用与细胞毒剂（如放射性核苷酸）偶联的“配体”（如亲合素）。

[1296] **抗体衍生物**

[1297] 可进一步修饰本发明的抗体以包含本领域知道的且易于获得的额外非蛋白质性质部分。优选的是，适合抗体衍生化的一部分是水溶性聚合物。水溶性聚合物的非限制性实例包括但不限于聚乙二醇 (PEG)、乙二醇／丙二醇共聚物、羧甲基纤维素、右旋糖苷、聚乙醇醇、聚乙烯吡咯烷酮、聚-1,3-二氧 戊环、聚-1,3,6-三噁烷、乙烯／马来酸酐共聚物、聚氨基酸（均聚物或随机共聚物）、和右旋糖苷或聚（n-乙烯吡咯烷酮）聚乙二醇、丙二醇均聚物、环氧丙烷／环氧乙烷共聚物、聚氧乙烯化多元醇（如甘油）、聚乙醇醇及其混合物。由于其在水中的稳定性，聚乙二醇丙醛在生产中可能具有优势。聚合物可以是任何分子量，而且可以是分支的或不分支的。附着到抗体上的聚合物数目可以变化，而且如果附着了超过一个聚合物，那么它们可以是相同或不同的分子。一般而言，可根据下列考虑来确定用于衍生化的聚合物的数目和／或类型，包括但不限于待改进抗体的具体特性或功能。抗体衍生物是否将用于指定条件下的治疗等。

[1298] **药用制剂**

[1299] 可通过将具有期望纯度的抗体与选定的生理学接受载体、赋形剂或稳定剂混合来制备包含本发明抗体的治疗用制剂，以水溶液、冻干或其它干燥剂型的形式贮存（Remington’s Pharmaceutical Sciences, 第15版, Osol A, 编, 1980）。可接受的载体、赋形剂或稳定剂在所采用的剂量和浓度对患者是无毒的，而且包括缓冲剂，诸如磷酸盐、柠檬酸盐和其它有机酸；抗坏血酸，包括抗坏血酸和甲硫氨酸；防腐剂（诸如氯化十八烷基二甲基苄基铵；氯化己烷双胺；苯扎氯铵，苯索氯铵，酚，丁醇或苯甲醇；对羟苯甲酸烷基酯，诸如对羟苯甲酸甲酯或丙酯；邻苯二酚；间苯二酚；环己醇；3-戊醇和间甲酚）；低分子量（小于约 10 个残基）多肽；蛋白质，诸如血清清蛋白、明胶或免疫球蛋白；亲水性聚
合物，诸如聚乙烯吡咯烷酮、氨基酸，诸如甘氨酸、谷氨酸、组氨酸、精氨酸或赖氨酸；单糖、二糖和其它碳水化合物，包括葡萄糖、果糖或甘露糖；衍生物，诸如 EDTA；糖类，诸如蔗糖、甘露醇，或海藻糖或山梨醇；或是相反离子，诸如钠；金属复合物（如 Zn-蛋白质复合物）；和/或非离子表面活性剂，诸如 TWEEN®、PLURONICS®或聚乙二醇（PEG）。

本文中的配制剂还可含有超过一种所治疗具体适应症所需的活性化合物，优选活性互补且彼此没有不利影响的。合适的是，此类分子对于预定目的有效的量组合。

活性成分还可包含诸如通过凝聚技术或通过界面凝聚制备的微胶囊中（例如分别为羟基甲基纤维素或明胶微胶囊和聚（甲基丙烯酸甲酯）微胶囊）、在胶状药物传递系统中（例如脂质体、微脂质球、微乳剂和纳米颗粒）；或在粒子乳状液中。此类技术公开于例如《Remington’s Pharmaceutical Sciences》，第 16 版，Oosol，A，1980。

用于体内施用的配制剂必须是无菌的。这可容易地通过使用无菌滤膜过滤来实现。

可制备持续释放的配制剂。持续释放配制剂的合适例子包括含有本发明免疫球蛋白的固体疏散性聚合物半透性基质，该基质以定型产品形式存在，如薄膜或微胶囊。持续基质的实例包括聚酯、水凝胶（例如聚（2-羟基乙酯-甲基丙烯酸酯）或聚（乙烯醇）、聚交酯（美国专利 3,773,919）、L-谷氨酸和 Y-乙基-L-谷氨酸酯的共聚物，不可降解的乙烯-乙酸乙烯，可降解的乳酸-乙醇酸共聚物以及诸如 LUPRON DEPOT®（由乳酸-乙醇酸聚合物和酯酸亮丙瑞林构成的可注射微球体）及聚-D-(-)-3-羟基丁酸。虽然诸如乙烯-乙酸乙烯和乳酸-乙醇酸等聚合物能够持续释放分子 100 天以上，但是某些水凝胶释放蛋白质的时间较短。当胶囊化抗体在体内长时间维持时，它们可能由于暴露于 37°C 的潮湿环境而变性或聚集，导致生物化学活性丧失和免疫原性可能改变。可根据相关机制来设计合理的稳定化策略。例如，如果发现聚乙醇酯是经由硫醇-乙硫化物互换而形成分子间 S-S 键，那么可通过修饰氨基单基，由酸性溶液冻干、控制湿度、采用适宜添加剂和开发特定的聚合物基质组合物来实现稳定。

应用

本发明的抗体可例如用于体外、离体和体内的治疗方法中。本发明的抗体可用作为抗抗剂在体外、离体和/或体内来部分或完全阻断特异抗原的活性。另外，至少一些本发明抗体能中和其它物种的抗原活性。因此，如在含抗原的细胞培养物中，在带有与本发明的抗体交叉反应的抗原的人受试者或其它受试哺乳动物（如黑猩猩、狒狒、猕猴和恒河猴）中，本发明的抗体可用于抑制特定抗原活性。在一个具体实施方式中，本发明的抗体可用于抑制抗原活性，其通过将抗体同抗原接触而抑制抗原活性。优选抗原是人蛋白质分子。

在一个具体实施方式中，本发明的抗体可用于在患病的受试者中抑制抗原的方法中，在所述疾病中所述抗原活性是有害的。所述方法包括向受试者给药本发明的抗体，从而抑制受试者中的抗原活性。优选抗原是人蛋白质分子，而且受试者是人受试者。可选地，受试者可以是表达与本发明抗体结合的抗原的哺乳动物。更进一步，受试者可以是被导入了抗原的哺乳动物（如，通过给药抗原或通过表达抗原转基因）。为了治疗目的，本发明的抗体可给予人受试者。另外，为了兽医目的或作为人疾病的动物模型，本发明的抗体可给予与表达与免疫球蛋白交叉反应的抗原的非人哺乳动物（如，灵长动物、猪或小鼠）。

85
对于后者，这些动物模型可用于评估本发明的抗体的治疗功效。例如，测试给药剂量和给药时程。例如，本发明的有治疗用途的阻断抗体包括但不限于，例如抗-HER2、抗-VEGF、抗-IgG、抗-CD11、抗-干扰素和抗-组织因子的抗体。本发明的抗体可用于治疗、抑制、延缓进程、阻止/延缓复发、改善、或防止与一个或多个抗原分子的异常表达和/或活性相关的疾病、病症或状态，其包括但不限于恶性和良性肿瘤；及白血病和淋巴性恶性肿瘤；和神经胶质、星形胶质细胞、下丘脑和其它腺体、巨噬细胞、上皮、间质和囊胚腔疾病；和炎症、血管发生性和免疫性疾病。

在一个方面，本发明的阻断抗体特异于配体抗原，并通过阻断或干扰涉及配体抗原的配体-受体相互作用来抑制抗原活性。由此抑制相应信号途径和其它分子或细胞事件。本发明也特别公开了受体特异性抗体，其不必阻止配体结合但干扰受体活化，由此抑制任何或由其引起的应答。本发明还涵盖抗体，其优选地或专门地结合于配体-受体复合物。本发明的抗体也可用作治疗抗原受体的激动剂，由此加强/增强或活化配体介导的受体活化作用的全部或部分活性。

在某些实施方案中，将包含与细胞毒素偶联的抗体的免疫偶联物施用于患者。在有些实施方案中，免疫偶联物和/或它所结合的抗原由细胞内化，导致免疫偶联物杀伤它所结合的靶细胞的治疗功效提高。在一个实施方案中，细胞毒素靶向或干扰靶细胞中的核酸。此类细胞毒素的实例包括本文所述任何化疗剂（如美登木素生物碱或加利木霉素）、放射性同位素、或核糖核酸酶或DNA内切核酸酶。

在治疗中，本发明的抗体可单独使用，或是联合其它组合物。例如，本发明的抗体可与另一种抗体，化疗剂（包括化疗剂混合物），其它细胞毒素，血管发生剂，细胞因子、和/或生长抑制剂联合施用。当本发明的抗体抑制肿瘤生长时，可能特别希望将其联合一种或多种同样抑制肿瘤生长的其它治疗剂。例如，在治疗方案中，如治疗本文所述的任何疾病，包括结肠直肠癌、转移性乳腺癌和胃癌，本发明的抗体可与抗-VEGF抗体（如AVASTIN）和/或抗-ErbB抗体（如HERCEPTIN®抗-HER2抗体）一起联用。或者，另外，患者可接受联合放射疗法（如外部射束照射或使用放射性标记药物如抗体的疗法）。上文所述此类联合疗法包括联合施药（当相同或分开配制中包含两种或多种药剂时）和分开施药。在后一种情况中，本发明抗体的施用可发生在附属疗法的施用之前和/或之后。

可通过任何合适手段来施用本发明的抗体（和附属治疗剂），包括肠胃外、皮下、腹膜内、肺内和鼻内，以及损伤内（如希望局部治疗的话）施用。肠胃外输注包括肌肉内、静脉内、动脉内、腹膜内或皮下施用。另外，脉冲输注抗体也是合适的，特别是抗体剂量衰减时。可通过任何合适路径服药，例如通过注射，诸如静脉内或皮下注射，这取决于施药是短期的还是长期的。

可以与以任何医学实践一致的方式配制，剂量给药和施用本发明的抗体组合物。在此内容中考虑的因素包括所治疗的具体原因、所治疗的具体哺乳动物、患者个体的临床状况、骤然的起因、投递药剂的部位、施药的方法、施药的日程安排，和医学从业人员知道的其它因素。不是必需而是任选可将抗体与目前用于预防或治疗所讨论骤然的一种或多种药剂一起配制。此类其它药剂的有效量取决于配制剂中存在的本发明抗体的量，骤然或治疗的类型，和上文讨论的其它因素。这些通常是以与上文所用相同剂量和施用路径使用，或是由其它所用剂量的大约1-99%。
[1312] 对于疾病的预防或治疗，本发明抗体的适宜剂量（在单独使用或联合其它药剂如化疗剂时）取决于待治疗疾病的类型、抗体的类型、疾病的严重程度和进展、施用抗体是出于预防还是治疗目的、先前的疗法、患者的临床病史和抗体的响应、及主治医师的判断。符合的是，一次性或通过一系列治疗将抗体施用于患者。根据疾病的类型和严重程度，施用于患者的初始候选剂量是约1 μg/kg 至15 mg/kg（如0.1mg/kg=10 mg/kg）抗体，或者通过一次或多次分隔施药或是通过连续输入。根据上述所示因素，典型日剂量的范围可以是约1 μg/kg 至100 mg/kg 或更多。对于持续数天或更长的重复施药，根据状况，持续治疗直至疾病症状发生期望的遏制。抗体 的示例剂量的范围可以是约0.05 mg/kg 至约10 mg/kg。由此，可对患者施用约0.5 mg/kg、2.0 mg/kg、4.0 mg/kg 或10 mg/kg（或其任意组合）的一剂或多剂。这些剂量可间歇施用，例如每周或每两周（例如使患者接受约2剂至约20剂，例如约6剂抗体）。可施用一剂较高初始加载剂量，后续一剂或多剂较低剂量。示例性剂量给药方案包括施用一剂约4 mg/kg 抗体的初始加载剂量，后续每周一剂约2 mg/kg 的维持剂量。然而，其他剂量方案也是可能有用的。这种疗法的进程易于通过常规技术和测定法来监测。

[1313] 制品

[1314] 在本发明的另一方面，提供了包含可用于治疗、预防和/或诊断上文所述紊乱的物质的制品。制品包括容器和附在所述容器上或与其相关的标签或包装插页。合适的容器包括例如瓶子、小管、注射器等。容器可用各种材料制成，诸如玻璃或塑料。容器中装有其自身或在联合其它组合物时有效治疗、预防和/或诊断疾患的组合物，而且具有无菌存取口（例如容器可以是具有皮下注射针头可刺穿的塞子的静脉内溶液袋或小管）。组合物中的至少一种活性剂是本发明的抗体。标签或包装插页指示该组合物用于治疗选择的疾患，诸如癌症。此外，制品包括(a)其中装有组合物的容器，其中所述组合物包含本发明的抗体，和 (b) 其中装有组合物的第二容器，其中所述组合物包含其它细胞毒剂。本发明此实施方案中的制品还包含指示第一和第二抗体组合物可用于治疗特定疾患如癌症的包装插页。或者/另外，制品还可包括第二（或第三）容器，其中装有制药学可接受的缓冲剂，诸如注射用抑菌剂（BWF1）、磷酸盐缓冲盐水、林格氏（Ringer）溶液和右旋糖溶液。它还可包括商业和用户立场上所需的其它物质，包括其它缓冲剂，稀释剂，滤器，针头和注射器。

[1315] 以下是本发明方法和组合物的实施例。根据以上提供的概括说明，可理解可以实施各种其它的具体实施方式。

实施例

[1316] 本文的实施例描述了从与α4β7 整联蛋白β7亚基结合的大鼠抗 - 小鼠抗体中产生的人源化抗 - β7抗体。

[1317] 实施例 1：β7拮抗剂抗体的人源化

[1318] 材料和方法

[1319] 残基编号是根据 Kabat (Kabat 等, Sequences of Proteins of immunological interest, 第 5 版,公共卫生部,国家卫生研究院, Bethesda, MD (1991)) 确定的。使用单字母的氨基酸缩写。利用 IUB 编码 (N = A/C/G/T, D = A/G/T, V = A/C/G, B =
C/G/T, H = A/C/T, K = G/T, M = A/C, R = A/G, S = G/C, W = A/T, Y = C/T) 来表示 DNA 兼
并性。

[1320] 受体人共有档案上的直接的高变区移植物—该工作所用的噬菌体 (pV0350–2b)
是单价 Fab-g3 展示载体, 其具有在 phoA 启动子控制下的 2 个开放阅读框, 其基本如 Lee
和 CH1 结构域融合的 stII 信号序列组成, 而第二个由与受体重链的 VH 和 CH1 结构域融合
的 stII 信号序列组成, 然后接着截短型的小噬菌体衣壳蛋白 P3 (Lowman, H. 等 (1990)
Biochemistry 30 :10832)。

[1321] 来自大鼠 F1504（抗体 FIB504.64 通过杂交瘤 ATCC HB–293（美国典型培养物保
藏中心 (ATCC), P.O. Box 1549, Manassas, VA 20108, 美国）产生的）的 VL 和 VH 结构域能与
人共有 κ I (huKI) 和人亚型 III 共有 VH (huIII) 结构域配对排列。为了制备高变区 (HVR)
移植物, 用以下框架: 用于轻链可变结构域框架, 使用 HuKI(参见图 1A 和 7)。对于重链可
变结构域框架, 可用受体 VH 框架, 一种经修饰的人亚型 III (humIII) 共有 VH 结构域, 其在
Sci. USA: 4285(1992)(参见图 1B)。在本发明抗体的产生过程中, 通过制备以下氨基酸替
换也可从修饰的人亚型 III 共有 VH 结构域来制备 504K–RF 移植物 :A71R 和 A78F。

[1322] 通过基因工程将来自大鼠 F1504 (由杂交瘤 ATCC HB–293 产生) 抗体的高变区插入
受体人亚型 III 共有 VH 框架中, 来产生直接的 HVR 移植 (Fib504 移植) (参见图 1B)。在
VL 结构域中, 来自大鼠 Fib504 的以下区域移植到人共有受体 (huKI) 上: 第 24–34 位 (L1)
、第 50–56 位 (L2) 和第 89–97 位 (L3) (图 1A)。在 VH 结构域中, 移植第 26–35 位 (H1) 、第
49–65 位 (H2) 和第 94–122 位 (H3) (图 1B)。另外, 构建第二个 HVR 移植者 (graft) (Fib504K 移
植者), 其中包括 HVR 内, 根据 L2 的扩大定义, 其为 VL 第 49 位 (参见 MacCallum 等
J. Mol. Biol. 262 ;732–745(1996))。MacCallum 等分析了抗体和抗原复合物的晶体结构并
发现了轻链的第 49 位和重链的第 49 和 94 位是抗原接触区域部分, 因此对于本文公开的
人源化抗 –β 7 抗体, 这些位置包括在 HVR-L2、HVR-H2 和 HVR-H3 的定义之中。

[1323] 直接移植物体变 (direct-graft variant) 通过 Kunkel 突变 (Kunkel 等, 1987)
突变利用针对每个高变区的各自寡聚核苷酸来产生。通过 DNA 测序来确定正确的克隆。

[1324] 高变区的软随机化:

[1325] “软随机化 (soft randomization)” 过程 (参见 US 申请第 60/545, 840 号) 指
对选择的蛋白质序列 (如抗体高变区) 进行偏向性突变 (biased mutagenesis) 的过
程。在整个所选位置上导入约百分之 10–50 的突变时, 该方法保持了对鼠、大鼠、或其它
初始高变区序列的偏好。该技术增加了篩选所用的文库的容量, 并避免了在由抗体所识
别的抗原表位方面出现改变。根据该软随机化技术, 利用对小鼠高变区序列保持偏好的
策略, 可将序列多样性导入每个高变区中。这可利用毒化寡聚核苷酸合成策略 (poisoned
oligonucleotidesynthesis strategy) 来实现, 这最初由 Gallop 等, J. Med. Chem. 37 :
1233–1251(1994) 所述。可是, 也可用对非人高变区残基保持偏好的其它方法, 如易错 PCR、
DNA 改组等。

[1326] 根据本文所用的方法, 对于要突变的高变区内的给定区域, 编码野生型氨基酸的
密码子用核苷酸混合物 (例如 70–10–10 混合物) 毒化, 导致在每个选择的高变区位

88
置上有约百分之 50 的突变率。为了实现此，用其它三种核苷酸低水平污染的混合物，如 70-10-10 的核苷酸混合物，来合成编码要突变的野生型高变区氨基酸的密码子。因而，举例来说，为了用随机化 PRO（CCG），合成的第一个位置是含 70% 的 C、G 和 T 和 A 各 10% 的混合物；第二个位置是含 70% 的 C、A、G 和 T 各 10% 的混合物；而第三个位置是含 70% 的 G、A 和 C 和 T 各 10% 的混合物。根据在配位位置上合成的密码子、编码特定氨基酸的密码子数目、和由合成混合物的核苷酸组赋值化寡聚核苷酸合成的程度，能够使上或下调偏好，这是可以理解的。

[1327] 软随机化的寡聚核苷酸可仿照鼠、大鼠或其他相似高变区序列来进行，而且其涵盖的直接高变区所受限的相同区域。可选地，两个位置（在 VH 结构域的 H2 和 H3 中的起始氨基酸）的多样性是可以受限制的：对于第 49 位，可用密码子 RGC 编码 A、G、S 或 T，而在第 94 位，用密码子 AKG 编码 M 或 R。

[1328] 噬菌体文库的产生：在 6 个 20 μl 的反应中分别磷酸化为每高变区设计的随机寡聚核苷酸库，所述反应包含 660ng 寡聚核苷酸、pH 7.5 的 50mM Tris, 10mM MgCl₂, 1mM ATP, 20mM DTT, 和 5μ 多聚核苷酸激酶，于 37°C 进行 1 小时。然后，这 6 个磷酸化的寡聚核苷酸库与 ph 7.5 的 50mM Tris, 10mM MgCl₂ 的 20 μg Kunkel 模板混合，混合后的最终体积为 500 μl，而且使得寡聚核苷酸与模板之比为 3。在 90°C 退火混合物 4 分钟，置于 50°C 5 分钟，然后在冰上冷却。根据修改的规程，用 QIAQUICK™ PCR 纯化试剂盒 (Qiagen 试剂盒 28106, Qiagen, Valencia, CA) 去除过量的未退火的寡聚核苷酸，从而防止退火的 DNA 过量变性。向 500 μl 退火了的混合物中加入 150 μl 的 Qiagen 缓冲液 PB，并用 2 个硅珠将混合物分离。用 750 μl 的 Qiagen 缓冲液 PE 洗涤每个柱，再离心甩干柱，然后用 110 μl pH 8 的 10mM Tris, 1mM EDTA 洗脱每个柱。然后于室温在 3 小时内加入 1 μl 1100mM ATP, 10 μl 25mM dNTP (dATP, dCTP, dGTP 和 dTTP 各 25mM), 15 μl 100mM DTT, 25 μl 10X TM 缓冲液 (0.5M Tris pH 7.5, 0.1M MgCl₂, 2400U T4 连接酶, 和 30U T7 聚合酶，由此来扩增退火后清洗过的模板 (220 μl)。


[1331] 噬菌体选择－全长人整联蛋白 α 4 β 7 在 293 细胞中表达 (Graham 等，J. Gen Virol. 36:59 (1977))，并通过 Fib504 亲合层析纯化，用作噬菌体选择的靶位。为了固定在 MaxiSorp™微量滴定板 (Nalge Nunc, Rochester, NY)，于 4 分子叠度用 150mM NaCl, 50mM pH 7.5 的 Tris, 2mM CaCl₂, 2mM MgCl₂ 和 2mM MnCl₂ (TBSM) 来包被 100 μl 的 5 μg/ml 人整联
蛋白 α 4 β 7 过夜。用含 1% BSA 的 TBS 洗封闭孔 1 小时。对于第一轮选择，应用应经靶包被过的 8 个孔；对于接下来的选择轮次，应用单个靶包被的孔。从培养物上清液中收获噬菌体，并悬浮于含 1% BSA 和 0.05% TWEEN™ 20 的 TBSM（TBSMT）中。与孔结合 2 小时后，用含 0.05% TWEEN 20 的 TBS（TBST）全面清洗以去除未结合的噬菌体。通过用 100mM HCl 温热孔 30 分钟，来洗脱结合的噬菌体。用 Top10 细胞和 M13/K07 辅助噬菌体来扩增噬菌体，并于 37°C 在含 50 μg/ml 疏基青霉素的 2YT 中生长。靶包被的孔中洗脱下的噬菌体的滴度与用靶包被的孔中收获的噬菌体的滴度作比较，由此评估丰度。进行 4 轮选择后，随机选择克隆进行序列分析。

【1332】Fab 的产生和亲和力的确立—为了表达 Fab 蛋白来测定亲和力，将终止密码子导入噬菌体展示载体的重建的 g3 之间。将克隆转化入大肠杆菌 34B8 细胞中并于 30°C 在 AP5 培养基中生长（Presta, L. 等, Cancer Research 57: 4593-4599 (1997)）。离心收获细胞，悬浮于 pH 8 的 10mM Tris、1mM EDTA 的溶液中，并用强酸微流变剂裂解。用 G 蛋白亲合层析来纯化 Fab。

【1333】通过表面等离子共振利用 BIAcore™-3000（Biacore，Piscataway, NJ）来进行亲和力的测定。用 10mM pH 4.5 的乙酸盐将人源化 Fab504 Fab 变体（250 至 1500 响应单位（RU）固定于 CM5 传感器芯片上，并注入有 2 倍稀释的人整联蛋白 α 4 β 7（1.5 至 770mM）并含 2% n- 辛基葡糖苷的 TBSM 中。以 5 分钟结合和 5 至 60 分钟解离的时间来分析每个样品。每次注射后，用 1 分钟注入 8mL 尿素，进行三次，由此再生芯片。通过扣除空白流出细胞的 RU 来修正结合响应值。用 kₚ 和 kₚ⁻¹ 同时拟合的 1：1 Languiir 模型来进行动力学分析。

【1334】结果和讨论

【1335】大鼠 Fab504 的人源化；用于人源化的人受体框架是基于 HERCEPTIN® 所用的框架，其是由有人与 α I (huKL) VL 结构域和人亚型 III (humIII) 共有 VH 结构域的变体组成。该变体 VH 结构域与人共有序列相比有 3 个变化：R71A、N73T 和 L78A。大鼠 Fab504 的 VL 和 VH 结构域分别与人 α I 和 亚型 III 结构域配对。鉴定每个高变区 (HVR) 并移植入人受体框架中，用以产生 HVR 移植物 (504 移植物)，其可作为 Fab 展示在噬菌体上（图 1A 和 1B）。

【1336】基于可用的抗体和抗原复合物晶体结构的分析，MacCallum 等 (MacCallum 等 J. Mol. Biol. 262: 732-745 (1996)) 提出了基于频繁接触抗原的可变结构域残基的 HVR 定义。因而，重链的第 49K 和 94M 位置在 Fab504 的 HVR 移植物中（图 1B）。另外，也产生了第 2 个 HVR 移植物 (Fab504K 移植物), 其包括轻链的第 49K 位, 因为该位置也在 HVR-L2 的接触定义范围内, 并能用作抗原接触（图 1A）。当 Fab504 或 Fab504K 移植物展示于噬菌体上并与固定的 α 4 β 7 进行结合测试时, 没有观察到结合。

【1337】利用 Fab504 和 Fab504-K HVR 移植物, 其中每个 HVR 区域都同时被软随机化了, 由此来产生文库。每个 HVR 移植物文库针对固定的 α 4 β 7 进行 4 轮选择。没有观察丰度, 而选出用于 DNA 序列分析的克隆显示出仅仅有靶向于 6 个 HVR 区的随机序列变化。

【1338】研究两个额外的 VH 框架序列（“RL”和“RF”）用作受体框架的情况，其在第 71 和 78 位上包含改变。如在人亚型 III 共有序列中，第 71 位变为精氨酸，而如在人亚型 III 共有序列（受体框架“RL”）中则第 78 位变为亮氨酸，或如在人亚型 II 共有序列和大鼠 Fab504VH
框架（受体框架“RF”）中则变为苯丙氨酸（图 10A）。当“RL”（Fib504-RL 和 Fib504K-RL）
或“RF”（Fib504-RF 和 Fib504K-RF）受体框架中的 Fib504 或 Fib504K 移植物展示于噬菌体
上并与固定的 α β 7 进行结合测试时，对于利用“RF”框架的 Fib504K 移植物，仅仅观察到
了特异性噬菌体结合（图 10B）。相对于其它缺少 Y49K（轻链）和 L78F（重链）的移植物，
噬菌体展示的 Fib504-RF 移植物的适中（modest）结合性显示出了这些位置对于选择有用的
受体框架的重要性。

[1339] 可产生文库，其首先在 Fib504K-RL 和 Fib504K-RF 移植物的 6 个 HVR 的每一个
上同时利用软随机化策略，并在固定的 α β 7 上进行如上所述的 4 轮筛选。仅仅对基于
Fib504K-RF 移植物的文库观察丰富度。选择来自每轮的 Fib504K-RF 文库的克隆，用来进行
序列分析，并揭示出靶向于 HVR-L1 的氨基酸变化。大多数克隆包含 Y32L 替换，另外，第 31
位通常变为 D、S、P 或 N（图 1C）。除了初始移植物 (Fib504K-RF)，表达 3 个克隆并纯化为 Fab
蛋白，如上所述，通过 Biacore 进一步分析。克隆 hu504-5、hu504-16 和 hu504-32（含 T31S
和 Y32L（变体 hu504.5）、Y32L（变体 hu504.16），或 T31D 和 Y32L（变体 hu504.32）替换的
SEQ ID NO:1 的变体；参见图 1C），相对于 Fib504K-RF 移植物，显示出极好的与 α β 7 的结
合性，其达到或超过了嵌合 Fib504Fab 与 α β 7 结合的亲和力。Biacore 分析结果如表 3
所示，其显示出了在 HVR 和 / 或框架区中选择性的变化，如本文所述，产生了针对 α β 7 的
d 拮抗剂抗体，其相对于初始抗体具有改善的亲和力。表 3 中的结果显示，人源化变体 504.32
相对于初始的大鼠抗体，显示出了最大的亲和力增加，其与 α β 7 的结合牢固 3 倍以上。

[1340] 表 3

<table>
<thead>
<tr>
<th>Fab (BIAcore®分析)</th>
<th>对 α β 7 的亲和力 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fib504</td>
<td>11</td>
</tr>
<tr>
<td>变体 504.5</td>
<td>9</td>
</tr>
<tr>
<td>变体 504.16</td>
<td>23</td>
</tr>
<tr>
<td>变体 504.32</td>
<td>3</td>
</tr>
</tbody>
</table>

[1342] 表 3 中的结果也显示了重新设计 HVR-L1 对恢复高抗原结合亲和力来说是重要的。
尤其，Y32L 突变在各个克隆中是常见的。第 31 位上的其它替换和 HVR-H1 中的许多其它
替换似乎可以被很好地耐受，并可提供额外的改进。由这些结果，清楚表明了有多个序列变
化可改善移植到人框架上的 Fib504 的亲和力，由此产生达到或大于初始大鼠抗体的亲和力。

[1343] 因此，从 6 个大鼠 Fib504HVR 移植物进入人受体骨架中开始，扩展 HVR-L2 以包括
第 49 位（赖氨酸）、扩展 HVR-H2 以包括第 49 位（甘氨酸），和扩展 HVR-94 以包括第 94
位（甲硫氨酸），以及 VHRL 的第 32 位的氨基酸变化（其中，L 或 T 替换 Y）以及，可选
地，VHRL 的第 31 位的氨基酸变化（例如其中，T 替换为 D，或 S）。在 V H 结构域中的第
71（A71R）和 78（L78F）位上制备出有用的框架氨基酸变化。例如，这些氨基酸变化导致形成
了对 α β 7 整联蛋白结合亲和力有 3 倍改善的全长人抗体（变体 hu504.32）。更进一步确
定了本文所述的选择出人源化抗体具有至少与亲本大鼠 Fib504 抗体相似的生物活性（参
见本文的实施例 3)。

[1344] 实施例 2 ;额外的人源化 Fib504HVR 变体

[1345] 人源化变体 Fib504.32 的 HVR 氨基酸序列经进一步修饰，产生出额外的变体，其能
够拮抗 β7 整联蛋白亚基和 / 或含 β7 亚基的整联蛋白的活性。

【1346】产生广泛氨基酸扫描文库 - 利用 3 种寡聚核苷酸产生文库，针对能够产生变体 hu504.32 的 β7 结合变体的其它氨基酸残基，所述文库用来扫描选定的 HVR 位置 : hu504-L1，其如上所述，被设计以 hu504.32HVR-L1 序列（即序列 ASFVDLH11，SEQ ID NO : 47，对应于第 A2-A11 位）偏好来软随机化一部分 HVR-L1）和 HVR-L504-N96 和 HVR-I504-M94，其在轻链 HVR-L3 的第 96 位和重链 HVR-I 的第 94 位的位置上导入 NNS，因而对这些位置在允许出现所有 20 种氨基酸。如上所述，用这 3 种寡聚核苷酸，利用轻链中含 3 种终止密码子 (HVR-L1 的第 31 和 32 位和 HVR-L3 的第 96 位) 和重链中的 1 种终止密码子 (HVR-I3 的第 94 位) 的模板，来产生广泛氨基酸扫描文库 (broad amino acid scan library)。

【1347】hu504-32 广泛氨基酸扫描；为了更充分地探索 HVR-L1 中容许的优选序列并为了增强 504-32 的稳定性，我们设计了噬菌体文库，其 a）在人源化期间在观察到变的区域中软随机化了 504-32 的 HVR-L1（即 ASEFVDDLLH11，SEQ ID NO : 47，对应于第 A2-A11 位）（图 1C），和 b）在 HVR-L3 的 N96 位和 HVR-I3 的 M94 位上容许所有可能的氨基酸。如上所述，经过针对固定的全长人整联蛋白 a 4 b7 的 4 轮选择后，挑选出了 96 个随机克隆用于序列分析。在广泛氨基酸扫描文库中的每个位置上发现氨基酸的频率提示，存在于 hu504-32 中的 HVR-L1 序列和重链第 94 位上的甲硫氨酸是最适合高亲和力结合的 ( 图 12)。通过起始自变体 504.32（图 12）的选择和得到的最优选的氨基酸以黄色显示。相反，尽管冬冬酰胺出现在 hu504-32 轻链的第 96 位上，但是在广泛氨基酸扫描文库中该位置上观察到的高频率的亮氨酸提示了，N96L 突变可进一步改善人源化 Fbi504 变体对 a 4 b7 的亲和力并也消除了在该位上的任何潜在的脱酰胺基问题。图 12 中的信息也提示了，许多替代氨基酸在大多数位置上可能是容许的而且实质上并不丧失亲和力。例如，为了消除在在 HVR-I3 中 M94 的氧化，可能可以替换谷氨酰胺或精氨酸。

【1348】产生有限氨基酸扫描文库 - 用于有限氨基酸扫描的 6 个文库利用了 6 个不同的 Kunkel 模板，每个包含一个位于 6 个 HVR 之一内的终止密码子。利用编码单个 HVR 的单个寡聚核苷酸并利用列于图 11A（“密码子”栏）中 的密码子来产生每个文库，来改变氨基酸残基任以接着测试与 b7 或 a 4 b7 的结合性。相同的途径被用于改变抗体 - b7 抗体的氨基酸残基并测试它们与 a 4 b7 整联蛋白的结合性。

【1349】hu504-32 的有限氨基酸扫描, hu504-16 的有限氨基酸扫描被设计用于制备像人的轻和重链共有序列的 hu504-16, 而且在该过程中鉴定大鼠 Fbi504 结合所需的最少序列元件。产生 6 个文库，其针对每一个 HVR 中的 hu504-16 和人有 κ 1 轻或亚型 111 重链之间有差别的位置 ( 图 1A 和 1B)；文库中的这些位置上容许大鼠或人的氨基酸（图 11A）。为了在寡聚核苷酸合成和突变时适应编码两个氨基酸，在一些情况下也导入氨基酸（参见图 11A 的编码的氨基酸）。如上所述，针对固相的全长人整联蛋白 a 4 b7 选择有限氨基酸扫描文库，在第 3 轮后从每个文库中挑出 32 个随机克隆进行测序。每个位置上发现的每种氨基酸的频率如图 11B 和 11C 所示。

【1350】如同广泛氨基酸扫描, 有限氨基酸扫描也提供了关于在人源化 Fbi504 的许多位置上容许什么变化的信息。可是与广泛氨基酸扫描不同的是，有限氨基酸扫描中随机化的每个位置上容许的多样性被限制为一对氨基酸。因此在给定位置上任何缺少观察的替换不能表明特定残基不能改变，或在给定位置上任何特定氨基酸的高频度也不能表明它对于高

92
亲和力是最佳解决方案。

【1351】在一些位置（轻链的27,29,30,53,54位和重链的50,54,58,60,61,和65位）上，相当频繁地选择到的人共有氨基酸提示了针对人有序列的回复突变，其不会显著改变与人α4β7的结合性。实际上，在轻链的第54位上（在HVR-L2中），较之大鼠Fib504的氨基酸能更频繁地选择到的人共有氨基酸，表明该504-32上所产生的改变提供了有用的β7结合抗体。

【1352】进一步，作为文库设计的结果，在一些位置上更频繁地选择到的不是源自人共有或大鼠Fib504的氨基酸，其提供了潜在的替换以改善人化Fib504变体的亲和力。这些包括但不限于，在轻链中的D30A和155V以及重链中的Y50F。这2个文库的结果显示，许多HVR容许其它氨基酸替换而仍保持相应的生物活性。

【1353】观察到的氨基酸变化的概念如图13和15所示。图15概述了本发明抗体变体CDR中每个位置上的有用的各氨基酸，其编号是根据Kabat编号及相关编号系统而定的。图13和15所述的变体所涵盖的每个额外的抗体都是本发明的具体实施方案。

【1354】实施例3，细胞粘着测试

【1355】一些本发明人源化Fib504变体结合表达于细胞表面上的配体的能力可由细胞粘着试验来测定。通过人源化变体阻断整联蛋白与其天然受体的结合能力来测试与α4β7和其它β7整联蛋白（αEB7）的结合。通过相似方式测试人源化Fib504变体同在细胞表面上表达单纯的β7亚基的结合。过程和结果如下所述。

【1356】1gG生产：利用分别对应于轻和重链的各个载体在293细胞（Graham等，1977年同上）中瞬时表达人源化Fib504IgG变体。对于每个轻和重链，通过将轻或重链可变结构域亚克隆进合适的表达载体中，由此构建载体。人源化Fib504变体的1L CHO细胞培养物的上清液过0.45um滤膜过滤，并上样于新的用缓冲液A（10mm，pH 7.5的tris,150mm NaCl）平衡的1mLHiTrap蛋白A HP柱（Amersham/Pharmacia）。于4摄氏度以0.8mL/分钟上样过夜，然后洗涤每个柱并用30mL缓冲液A平衡。于室温，通过FPLC(Amersham/Pharmacia)以0至100%缓冲液B（100mm甘氨酸，pH 3.0）的线性梯度以1mL/分钟流速14分钟，来实现抗体的洗脱。得到的1mL级分通过立即加入75mL pH 8的1mLtris来中和。洗脱的蛋白质通过检测280nm处的光吸收来检测，合并峰级分并在以多次使用的PD10G-25sephadex凝胶柱(Amersham/Pharmacia)上加入PBS脱盐。以OD280来检测蛋白质并合并峰级分。PBS中的抗体用0.22um滤膜过滤并储存于4摄氏度。用氨基酸分析来测定这些纯化的抗体的浓度，通过两次独立测定的平均值来得出浓度值。

【1357】BCECF标记：

【1358】本实施例3中出现的每个测试中，细胞根据以下过程来标记。在RPMI1640培养基（对于RPMI8866细胞和转染了β7亚基的38C13细胞，38C13β7细胞，其含10%FBS）和F-12:DMEM混合物（50:50）（对于αEB7亚基的293细胞，αEB7293细胞，其含10%FBS）中，所有用于粘着测试的细胞用10μM的2',7'--二-(2--羧乙基)--5--(并-6)--羧基荧光素，乙酸基甲基酯（BCECF）标记。标记细胞30分钟并用试验用培养基洗涤两次。对于RPMI8866和38C13β7细胞，将细胞密度调节至每ml 3x10^6个细胞，而对于αEB7293细胞，至每ml 2.2x10^6个细胞。

【1359】人源化Fib504变体阻断α4β7同MAECAM的结合
[1360] RPMI8866/MAcAM-1-Ig的细胞粘着：RPMI8866细胞在其表面上表达α4β7(Roswell Park Memorial Institute, Buffalo, NY)。人源化Fib504变体（hu504变体）同RMP18866细胞和与包被在固相基质上的IgG融合的MAcAM的混合物接触。通过用2μg/ml PBS、100μl/孔MAcAM-1-Ig (Genentech, Inc., 其中Ig指MAcAM-1与Fc区的融合蛋白) 包被NuncMaxisorp® 96孔板于4℃过夜，来测定会对RPMI8866细胞与MAcAM-1结合产生50%抑制的人源化Fib504变体浓度 (IC50)。于室温用200μl/孔的5mg/ml BSA封闭平板一小时，然后向每个孔加入50μl含人源化Fib504变体的试验培养基（RPMI 1640培养基，Hyclone®, Logan Utah, 美国，其添加有5mg/mL BSA），并向每个孔加入含150,000个CECF标记的细胞（BCECF, Molecular Probes, Eugene, OR）的50μl试验培养基，于37℃孵育15分钟。用150μl试验培养基洗孔两次以去除未结合的细胞。用100μl含0.1% SDS的pH7.5的50mM Tris/HCl溶解结合的细胞。用SPECTRAmax GEMINI™ (Molecular Devices, Sunnyvale, CA) 以485nm激发波长和530nm发射波长来测量裂解细胞中释放的荧光量。分析荧光值，作为每个试验中加入的人源化Fib504变体的浓度的函数，利用四参数非线性最小面积拟合法（four-parameter least squares fit），来获得试验中每个人源化Fib504变体的IC50值。从四参数匹配法中推算出IC50和IC90值。图14是示例性的结果图。每个变体测试的IC50和IC90值如下表4所示。

[1361] 表4

[1362] 抗体与人MAcAM-1的结合

<table>
<thead>
<tr>
<th>测试的抗体：Fib504和hu504变体</th>
<th>ICn(Mm) Exp 1/Exp 2*</th>
<th>ICn(Mm) Exp 1/Exp 2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>大鼠Fib504</td>
<td>0.098/0.197</td>
<td>0.483/0.703</td>
</tr>
<tr>
<td>变体hu504.5</td>
<td>0.067/0.248</td>
<td>0.361/0.880</td>
</tr>
<tr>
<td>变体hu504.16</td>
<td>0.0768/0.206</td>
<td>0.244/0.551</td>
</tr>
<tr>
<td>变体hu504.32</td>
<td>0.038/0.119</td>
<td>0.150/0.396</td>
</tr>
<tr>
<td>6B11(未阻断的对照)</td>
<td>＞100</td>
<td>＞100</td>
</tr>
</tbody>
</table>
[1364]  1 Exp 1/Exp 2 指重复试验的结果。
[1365]  人源化 Fib504 变体阻断 α 4 β 7 同 VCAM 的结合
[1366]  RPMI8866/7dVCAM-1 的细胞粘着: RPMI8866/7dVCAM-1 测试与测试 RPMI8866/
MAAdCAM-1-Ig 的方法相似，不同点在于，用 2ug/ml 的 7dVCAM-1(ADP5, R&D Systems, 
Minneapolis, MN) 包被平板。如上所述来分析 MAAdCAM 结合实验的结果。每个测试变体 
的 IC₅₀ 值如下表 5 所示。
[1367]  表 5
[1368]  抗体与人 VCAM 的结合
[1369]  
<table>
<thead>
<tr>
<th>测试的抗体：Fib504 和 hu504 变体</th>
<th>IC₅₀(nM)</th>
<th>Exp 1/Exp 2</th>
<th>IC₅₀(nM)</th>
<th>Exp 1/Exp 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>大鼠 Fib504</td>
<td>0.107/0.193</td>
<td></td>
<td>0.396/0.580</td>
<td></td>
</tr>
<tr>
<td>变体 hu504.5</td>
<td>0.088/0.270</td>
<td></td>
<td>0.396/0.726</td>
<td></td>
</tr>
<tr>
<td>变体 hu504.16</td>
<td>0.098/0.223</td>
<td></td>
<td>0.261/0.774</td>
<td></td>
</tr>
<tr>
<td>变体 hu504.32</td>
<td>0.059/0.110</td>
<td></td>
<td>0.183/0.337</td>
<td></td>
</tr>
<tr>
<td>6B11（无阻断的对照）</td>
<td>&gt;100</td>
<td></td>
<td>&gt;100</td>
<td></td>
</tr>
</tbody>
</table>
[1370]  1 Exp 1/Exp 2 指重复试验的结果。
[1371]  人源化 Fib504 变体阻断 α 4 β 7 同人 E-钙粘着蛋白的结合
[1372]  α 4 β 7 293/huE-钙粘着蛋白的细胞粘着：用 α E 和 β 7( Genentech, Inc.) 转染 
293 细胞 (Graham 等 ( 1977 ) 同上)。实验方法与 RPMI8866/MAAdCAM-1-Ig 的测试相似，不同 
点在于，用 2ug/ml 的 huE-钙粘着蛋白 (648-EC, R&D Systems, Minneapolis, MN) 包被平板。 
用上述 5mg/ml BSA 封闭平板一小时，向每个孔加入 50 μ l 含 FIB504 变体的试验培养 
基 (F-12 :DMEM (50 : 50),其添加有 5mg/ml BSA), 并向每个孔加入含 110,000 个 BCECF- 
标记的细胞 (BCECF, Molecular Probes, Eugene, OR) 的 50 μ l 载体培养基，于 37 °C 肋育 15 
分钟。如上所述，用 150 μ l 载体培养基洗涤 2 次，并测量和分析裂解细胞释放的荧光量。 
三次实验的测试结果如表 6 所示。
[1373]  表 6
[1374]  抗体与人 E-钙粘着蛋白的结合
[1375]  
<table>
<thead>
<tr>
<th>测试的抗体：Fib504 和 hu504 变体</th>
<th>IC₅₀(nM)</th>
<th>IC₅₀(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>大鼠 Fib504</td>
<td>2.047/7.89/4.19</td>
<td>8.80/24.5/9.95</td>
</tr>
<tr>
<td>变体 hu504.5</td>
<td>2.132/10.18/4.77</td>
<td>7.99/28.7/10.19</td>
</tr>
<tr>
<td>变体 hu504.16</td>
<td>1.957/10.05/4.58</td>
<td>7.03/33.7/13.51</td>
</tr>
<tr>
<td>变体 hu504.32</td>
<td>1.814/6.99/3.47</td>
<td>8.8/24.5/11.73</td>
</tr>
<tr>
<td>HP2/1（抗-α 4, 对照）</td>
<td>&gt;100/ &gt;100/ &gt;100</td>
<td>&gt;100/ &gt;100/ &gt;100</td>
</tr>
</tbody>
</table>
[1376]  人源化 Fib504 变体阻断 β 7 同 MAAdCAM 的结合
[1377]  38C13 β 7/μ MAAdCAM-1-Ig 的细胞粘着测试。
[1378]  38C13 β 7/μ MAAdCAM-1-Ig 测试与 RPMI8866/MAAdCAM-1-Ig 的测试方法相似， 
不同点在于，用 2 μ g/ml 的 μ MAAdCAM-1-Ig(Genentech, Inc.) 包被平板。用编码整联 
蛋白 β 7 的 DNA 转染 38C13 α 4+ 小鼠淋巴细胞 (Crowe, D. T. 等, J. Biol. Chem. 269 : 
14411-14418 (1994)), 由此使得 α 4 β 7 在细胞表面表达。如上进行测定抗体变体阻断细胞 
膜结合的 α 4 β 7 和 MAAdCAM 之间的相互作用的能量。测试结果如表 7 所示。测试结果如表
7 所示。（显示的是 2 次实验的 IC50 和 IC90 值）。

[1379] 表 7
[1380] 变体抗体在 38C13-β7 表达细胞同小鼠 MadCAM 结合中的活性

<table>
<thead>
<tr>
<th>测试的抗体：Fib504 和 hu504 变体</th>
<th>IC50(nM)</th>
<th>IC90(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>大鼠 Fib504</td>
<td>0.682/0.306</td>
<td>2.869/1.51</td>
</tr>
<tr>
<td>大鼠 hu504.5</td>
<td>0.858/0.466</td>
<td>2.322/2.61</td>
</tr>
<tr>
<td>大鼠 hu504.16</td>
<td>0.998/0.610</td>
<td>3.717/4.08</td>
</tr>
<tr>
<td>大鼠 hu504.32</td>
<td>0.718/0.458</td>
<td>4.08/1.51</td>
</tr>
</tbody>
</table>

[1382] 人源化 Fib504 变体阻断 β7 同小鼠 VCAM 的结合

38C13-β7/muVCAM-1-Ig 的细胞粘着测试：根据以上小鼠 MadCAM-1-Ig/RPMI8866 细胞结合试验来进行 38C13-β7/muVCAM-1-Ig 测试，不同点在于用 2 μg/ml 的 muVCAM-1-Ig(Genentech, Inc.) 包被于平板。试验结果如表 8 所示。（显示的是 2 次实验的 IC50 和 IC90 值）。

[1384] 表 8
[1385] hu504 变体抗体在 38C13-β7 表达细胞同小鼠 VCAM-1-Ig 结合中的活性

<table>
<thead>
<tr>
<th>测试的抗体：Fib504 和 hu504 变体</th>
<th>IC50(nM)</th>
<th>IC90(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>大鼠 Fib504</td>
<td>0.845/0.447</td>
<td>2.903/2.30</td>
</tr>
<tr>
<td>大鼠 hu504.5</td>
<td>0.763/0.407</td>
<td>3.074/2.30</td>
</tr>
<tr>
<td>大鼠 hu504.16</td>
<td>0.835/0.584</td>
<td>2.857/1.84</td>
</tr>
<tr>
<td>大鼠 hu504.32</td>
<td>0.562/0.330</td>
<td>2.004/1.84</td>
</tr>
</tbody>
</table>

[1387] 人源化 Fib504 变体的结合研究的结果证明了，本发明的人源化抗体结合其 β7 整联蛋白亚基以及 α 4 β7 和 α E β7 整联蛋白的靶位，其亲和力约为初始大鼠抗体的亲和力，而在一些具体实施方式中，其亲和力更大。因而，根据本发明的人源化抗 β7 抗体可用于抗 β7 整联蛋白的疗法中，尤其是人用的疗法中。

[1388] 本发明 hu504.32 变体的相对活性

[1389] 根据本文所述的细胞粘着测试方法，对应于大鼠细胞粘着试验中，测试 hu504.32 抗体的不同氨基酸变化，测试它们抑制含 β7 的受体与其配体结合的能力。如本文所述来进行 RPMI8866/MadCAM-1-Fc 测试。通过将人 E-钙粘着蛋白 -Fc 用作配体（人 E-钙粘着蛋白 -Fc, 648-EC,R&DSystems,Minneapolis,MN）, 来修正 α E β7-293/hu E-钙粘着蛋白测试。还检测了 hu504.32 变体抑制人纤连蛋白 (huFN40) 同 RPMI8866 细胞上的人 α 4 β7 受体相互作用的相对能力。用于这些研究的 RPMI8866/hu 纤连蛋白 (huFN40) 试验与本文中公开的 RPMI8866/MadCAM-1-Ig 测试方法相似，不同点在于用 2 μg/ml 的人纤连蛋白 40kDa 的 α - 胶原蛋白酶解片段 (F1903, Chemicon International,Temecula, CA) 来包被于平板。

[1390] 检测了 hu504.32 变体抑制含 β7 的小鼠受体同小鼠 MadCAM-1 或小鼠 VCAM-1 的相互作用的能力。通过 hu504.32 变体抑制小鼠 MadCAM-1-Fc 和小鼠 VCAM-1-Fc 同表达小鼠 β7 的小鼠淋巴瘤 α 4 + 细胞 (38C13 β7 细胞) 的相互作用。小鼠 MadCAM-1-Fc 和 VCAM-1-Fc 细胞粘着测试的实施与本文所述的用于人 MadCAM 和 VCAM 的那些试验相似。当配体与 Fc 区融合时，于室温用每 1 百万个细胞所含的 0.5 μg 抗 -CD16/32 抗体（抗 -Fc γ 111/I11 受体抗体，目录编号 553142，BD Biosciences, San Jose, CA）封闭细胞上的 Fc 受体 5 分钟。
向每个孔加入含 150,000 个标记的细胞的 50 μl 试验培养基并于 37°C 孵育 13 分钟。如本文以上所述，洗涤孔并测量从裂解的细胞中释放的荧光量。人细胞粘着测试中的对照抗体是针对人血清白蛋白的小鼠单克隆抗体 -6B11( 目录编号 ab10244, Novus Biologicals, Littleton, CO, 美国)。小鼠细胞粘着测试中的对照抗体是大鼠抗-小鼠整联蛋白 β7 抗体 - M293 (BD Biosciences, San Jose, CA), 其不与配体或不与 Fib504 竞争结合整联蛋白 β7。

表 9 和 10 分别提供了人和小鼠细胞粘着测试中的三次测试结果。

<table>
<thead>
<tr>
<th>抗体变体</th>
<th>RPMI8866/ huMadCAM-1-Fc</th>
<th>RPMI8866/ hu7dVCAM-1</th>
<th>αβ7-293/ huE-钙粘着蛋白-Fc</th>
<th>RPMI8866/ huFN40</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu504.32</td>
<td>0.088 ± 0.035</td>
<td>0.101 ± 0.021</td>
<td>3.970 ± 1.664</td>
<td>0.100 ± 0.046</td>
</tr>
<tr>
<td>hu504.32M94Q</td>
<td>0.090 ± 0.045</td>
<td>0.111 ± 0.035</td>
<td>4.130 ± 1.212</td>
<td>0.124 ± 0.056</td>
</tr>
<tr>
<td>hu504.32M94R</td>
<td>0.075 ± 0.034</td>
<td>0.089 ± 0.009</td>
<td>3.963 ± 1.776</td>
<td>0.119 ± 0.056</td>
</tr>
<tr>
<td>对照 (6B11)</td>
<td>&gt;100</td>
<td>&gt;100</td>
<td>&gt;100</td>
<td>&gt;100</td>
</tr>
</tbody>
</table>

表 10

hu504.32 变体抗体在人细胞粘着试验中的活性

| 抗体变体 | IC50
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>平均值 ± SD</td>
</tr>
<tr>
<td>hu504.32</td>
<td>0.270 ± 0.041</td>
</tr>
<tr>
<td>hu504.32M94Q</td>
<td>0.370 ± 0.102</td>
</tr>
<tr>
<td>hu504.32M94R</td>
<td>0.391 ± 0.112</td>
</tr>
<tr>
<td>对照 (M293)</td>
<td>&gt;100</td>
</tr>
</tbody>
</table>

hu504.32 抗体在重链 CDR3 的第 94 位上具有甲硫氨酸。变体 M94Q (或 hu504.32Q) 和 M94R (或 hu504.32R) 分别在 hu504.32 抗体变体的第 94 位上具有谷氨酸或精氨酸。在每个试验中，hu504.32M、Q、和 R 抗体充分降低了整联蛋白 β7 受体 - 配体相互作用, 因而, 它们是 β7 介导的细胞粘着的有效抑制剂。

抗体 hu504.32R 体内活性

在体内小鼠炎症性肠病模型中体内测试 hu504.32R 抗体变体, 测试其减少整联蛋白 β7 受体 - 配体相互作用并减轻淋巴细胞向炎症结肠的募集的能力。BALB/c 鼠和 CB17
SCID鼠得自Charles River Laboratories International, Inc. (Wilmington, MA, 美国)。通过从供体BALB/c鼠中分离CD4+CD45Rb高T细胞并静脉输注含3x10^6个细胞的100 μl PBS，来制备CD4+CD45Rb高T细胞重构的SCID结肠炎小鼠。对照SCID小鼠不接受CD4+CD45Rb高
T细胞。重构的CD4+鼠达到入选治疗组的标准，所述标准为相对于基线体重减轻10%，或在第4周相对于最高体重减轻15%，就被认为已经引发了炎症性肠病并被挑选用来治疗。

[1401] 在用测试抗体治疗的那天，收获供体BALB/c鼠肠系膜的淋巴结（MLN）细胞并用Cr^41放射性标记。治疗包括，先静脉给药抗-GP 120抗体、hu504.32抗-β 7抗体、hu504.32R抗-β 7抗体、或不给药抗体（对照），给药剂量为200 μg/100 μl PBS。抗体给药30分钟后，注射Cr^41标记的MLN细胞，剂量是4x10^6细胞/100 μl。注射标记细胞一小时后，无痛处死鼠并收集脾、肠、和派伊尔氏，称重，并测定每个器官的总Cr^41放射性。图16是这些测试结果的柱状图，显示了抗体阻断放射性标记的T细胞归巢到炎症性肠病的鼠结肠的相对能力。相对于阴性对照——抗-GP120抗体，用hu504.32和hu504.32R抗-β 7抗体抑制了T细胞归巢到炎症的结肠。对所有抗体来说，脾脏中的分布都是类似的。因而，hu504.32和hu504.32R抗-β 7抗体能在体内有效抑制T细胞归巢到炎症的结肠。

[1402] 抗体糖化不影响hu504.32R变体阻断MadCAM-1同α4β7受体结合的能力。

[1404] 在本发明可选的具体实施方式中，当第49位含赖氨酸以外的氨基酸时，会减少或消除第49位上的糖化。本发明的多肽或抗体所涵盖的在第49位（HVR-L2对应的第B1位）上的氨基酸是任何氨基酸A、C、D、E、F、G、H、I、L、M、N、P、Q、R、S、T、V、W、或Y，其中一个字母指根据标准单字母氨基酸而命名的氨基酸。可选地，504.32R变体（或其它504变体）轻链第49位上的氨基酸选自由R、N、V、A、F、Q、H、P、I、或L组成的组。例如，通过hu504.32R Fab在噬菌体（变体）上展示（制备噬菌体文库）并用20种天然产生的氨基酸中的每一种的密码子分别替代第49位的密码子，由此可选择出可在第49位上的氨基酸。测试噬菌体表达的第49位改变的hu504.32R变体，测试其同整联蛋白β 7和/或同含整联蛋白β 7的受体（如α4β7或αEβ7受体）的结合力。如本文所述，可进一步筛选那些与β 7整联蛋白或α4β7或αEβ7受体结合的变体，筛选其抑制整联蛋白β 7受体-配体结合和体内功效的能力。可选地，通过标准突变技术可在第49位上替换天然或非天然产生的氨基酸并用本文所述的细胞粘着和体内试验测试。可选地，轻链第49位上的氨基酸是除赖氨酸（K）之外的氨基酸，在轻链和/或重链中HVR或框架的任何其它位置或多个位置上的氨基酸被改变以选择抗-β 7结合多肽或抗体变体，其通过降低整联蛋白β 7的生物活性来显示出可用于减轻炎症的结合亲和力、体外和体内生物活性、药物动力学、药物清除性
和免疫原性。如本文所述和根据其它标准技术，来进行突变和选择这些多肽或抗体变体。这些抗-β7 结合多肽或抗体变体显示出整联蛋白 β7 结合亲和力为本文所公开的任何人源化 Fib504 变体所显示的结合亲和力的 10,000 倍以内、1000 倍以内，可选地 100 倍以内，可选地 10 倍以内，可选地 5 倍以内，可选地 2 倍以内。

[1405] 前述的说明书被认为能充分使所属领域技术人员实施本发明。由于保藏的具体实施方案是指本发明某些方面的单个例子，而功能等价的任何构建体在本发明的范围内，因此本发明并不限于保藏的构建体的范围内。本文中的保藏材料并不等于承认本文所包括的说明书不能够足以实施本发明的任何方面，包括其最佳模式，也不能解释为将权利要求的范围限制到它代表的特定例子上。事实上，除了本文所显示和描述的那些，本发明的各种修正对于读过前述说明书的所属领域技术人员来说是显而易见的，而且它们也落入所附的权利要求的范围内。
[0001] 序列表

[0002] ＜110＞ 健泰科生物技术公司 (GENENTECH, INC.)

[0003] ＜120＞ 人源化的抗 β 7 抗体及其应用

[0004] ＜130＞ P2159RI PCT

[0005] ＜140＞ PCT/US2005/031401

[0006] ＜141＞ 2005-09-02

[0007] ＜150＞ US 60/607, 377

[0008] ＜151＞ 2004-09-03

[0009] ＜160＞ 68

[0010] ＜210＞ 1

[0011] ＜211＞ 11

[0012] ＜212＞ PRT

[0013] ＜213＞ 人工序列

[0014] ＜220＞

[0015] ＜223＞ 序列是合成的

[0016] ＜400＞ 1

[0017] Arg Ala Ser Glu Ser Val Asp Thr Tyr Leu His

[0018] 5 10

[0019] ＜210＞ 2

[0020] ＜211＞ 8

[0021] ＜212＞ PRT

[0022] ＜213＞ 人工序列

[0023] ＜220＞

[0024] ＜223＞ 序列是合成的

[0025] ＜400＞ 2

[0026] Lys Tyr Ala Ser Gln Ser Ile Ser

[0027] 5

[0028] ＜210＞ 3

[0029] ＜211＞ 9

[0030] ＜212＞ PRT

[0031] ＜213＞ 人工序列

[0032] ＜220＞

[0033] ＜223＞ 序列是合成的

[0034] ＜400＞ 3

[0035] Gln Gln Gly Asn Ser Leu Pro Asn Thr

[0036] 5

[0037] ＜210＞ 4

[0038] ＜211＞ 10
<table>
<thead>
<tr>
<th>序列表</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[0039]</td>
<td>&lt;212&gt;PRT</td>
</tr>
<tr>
<td>[0040]</td>
<td>&lt;213&gt;人工序列</td>
</tr>
<tr>
<td>[0041]</td>
<td>&lt;220&gt;</td>
</tr>
<tr>
<td>[0042]</td>
<td>&lt;223&gt;序列是合成的</td>
</tr>
<tr>
<td>[0043]</td>
<td>&lt;400&gt;4</td>
</tr>
<tr>
<td>[0044]</td>
<td>Gly Phe Phe Ile Thr Asn Asn Tyr Trp Gly</td>
</tr>
<tr>
<td>[0045]</td>
<td>5 10</td>
</tr>
<tr>
<td>[0046]</td>
<td>&lt;210&gt;5</td>
</tr>
<tr>
<td>[0047]</td>
<td>&lt;211&gt;17</td>
</tr>
<tr>
<td>[0048]</td>
<td>&lt;212&gt;PRT</td>
</tr>
<tr>
<td>[0049]</td>
<td>&lt;213&gt;人工序列</td>
</tr>
<tr>
<td>[0050]</td>
<td>&lt;220&gt;</td>
</tr>
<tr>
<td>[0051]</td>
<td>&lt;223&gt;序列是合成的</td>
</tr>
<tr>
<td>[0052]</td>
<td>&lt;400&gt;5</td>
</tr>
<tr>
<td>[0053]</td>
<td>Gly Tyr Ile Ser Tyr Ser Gly Ser Thr Ser Tyr Asn Pro Ser Leu</td>
</tr>
<tr>
<td>[0054]</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>[0055]</td>
<td>Lys Ser</td>
</tr>
<tr>
<td>[0056]</td>
<td>&lt;210&gt;6</td>
</tr>
<tr>
<td>[0057]</td>
<td>&lt;211&gt;10</td>
</tr>
<tr>
<td>[0058]</td>
<td>&lt;212&gt;PRT</td>
</tr>
<tr>
<td>[0059]</td>
<td>&lt;213&gt;人工序列</td>
</tr>
<tr>
<td>[0060]</td>
<td>&lt;220&gt;</td>
</tr>
<tr>
<td>[0061]</td>
<td>&lt;223&gt;序列是合成的</td>
</tr>
<tr>
<td>[0062]</td>
<td>&lt;400&gt;6</td>
</tr>
<tr>
<td>[0063]</td>
<td>Met Thr Gly Ser Ser Gly Tyr Phe Asp Phe</td>
</tr>
<tr>
<td>[0064]</td>
<td>5 10</td>
</tr>
<tr>
<td>[0065]</td>
<td>&lt;210&gt;7</td>
</tr>
<tr>
<td>[0066]</td>
<td>&lt;211&gt;11</td>
</tr>
<tr>
<td>[0067]</td>
<td>&lt;212&gt;PRT</td>
</tr>
<tr>
<td>[0068]</td>
<td>&lt;213&gt;人工序列</td>
</tr>
<tr>
<td>[0069]</td>
<td>&lt;220&gt;</td>
</tr>
<tr>
<td>[0070]</td>
<td>&lt;223&gt;序列是合成的</td>
</tr>
<tr>
<td>[0071]</td>
<td>&lt;400&gt;7</td>
</tr>
<tr>
<td>[0072]</td>
<td>Arg Ala Ser Glu Ser Val Asp Ser Leu Leu His</td>
</tr>
<tr>
<td>[0073]</td>
<td>5 10</td>
</tr>
<tr>
<td>[0074]</td>
<td>&lt;210&gt;8</td>
</tr>
<tr>
<td>[0075]</td>
<td>&lt;211&gt;11</td>
</tr>
<tr>
<td>[0076]</td>
<td>&lt;212&gt;PRT</td>
</tr>
<tr>
<td>[0077]</td>
<td>&lt;213&gt;人工序列</td>
</tr>
<tr>
<td>序列号</td>
<td>序列描述</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>[0078]</td>
<td>《220》 序列是合成的</td>
</tr>
<tr>
<td>[0079]</td>
<td>《223》 序列是合成的</td>
</tr>
<tr>
<td>[0081]</td>
<td>Arg Ala Ser Glu Ser Val Asp Thr Leu Leu His</td>
</tr>
<tr>
<td>[0082]</td>
<td>5 10</td>
</tr>
<tr>
<td>[0083]</td>
<td>《210》9</td>
</tr>
<tr>
<td>[0084]</td>
<td>《211》11</td>
</tr>
<tr>
<td>[0085]</td>
<td>《212》PRT</td>
</tr>
<tr>
<td>[0086]</td>
<td>《213》人工序列</td>
</tr>
<tr>
<td>[0087]</td>
<td>《220》 序列是合成的</td>
</tr>
<tr>
<td>[0089]</td>
<td>《400》9</td>
</tr>
<tr>
<td>[0090]</td>
<td>Arg Ala Ser Glu Ser Val Asp Leu Leu His</td>
</tr>
<tr>
<td>[0091]</td>
<td>5 10</td>
</tr>
<tr>
<td>[0092]</td>
<td>《210》10</td>
</tr>
<tr>
<td>[0093]</td>
<td>《211》108</td>
</tr>
<tr>
<td>[0094]</td>
<td>《212》PRT</td>
</tr>
<tr>
<td>[0095]</td>
<td>《213》人工序列</td>
</tr>
<tr>
<td>[0096]</td>
<td>《220》 序列是合成的</td>
</tr>
<tr>
<td>[0098]</td>
<td>《400》10</td>
</tr>
<tr>
<td>[0099]</td>
<td>Asp Val Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Thr Pro</td>
</tr>
<tr>
<td>[0100]</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>[0101]</td>
<td>Gly Glu Arg Ile Ser Leu Ser Cys Arg Ala Ser Glu Ser Val Asp</td>
</tr>
<tr>
<td>[0102]</td>
<td>20 25 30</td>
</tr>
<tr>
<td>[0103]</td>
<td>Thr Tyr Leu His Trp Tyr Gln Gln Lys Pro Asn Glu Ser Pro Arg</td>
</tr>
<tr>
<td>[0104]</td>
<td>35 40 45</td>
</tr>
<tr>
<td>[0105]</td>
<td>Leu Leu Ile Lys Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser</td>
</tr>
<tr>
<td>[0106]</td>
<td>50 55 60</td>
</tr>
<tr>
<td>[0107]</td>
<td>Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile</td>
</tr>
<tr>
<td>[0108]</td>
<td>65 70 75</td>
</tr>
<tr>
<td>[0109]</td>
<td>Asn Gly Val Glu Leu Glu Asp Leu Ser Ile Tyr Tyr Cys Gln Gln</td>
</tr>
<tr>
<td>[0110]</td>
<td>80 85 90</td>
</tr>
<tr>
<td>[0111]</td>
<td>Gly Asn Ser Leu Pro Asn Thr Phe Gly Ala Gly Thr Lys Leu Glu</td>
</tr>
<tr>
<td>[0112]</td>
<td>95 100 105</td>
</tr>
<tr>
<td>[0113]</td>
<td>Leu Lys Arg</td>
</tr>
<tr>
<td>[0114]</td>
<td>《210》11</td>
</tr>
<tr>
<td>[0115]</td>
<td>《211》117</td>
</tr>
<tr>
<td>[0116]</td>
<td>《212》PRT</td>
</tr>
<tr>
<td>序列表</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>[0117]  〈213〉人工序列</td>
<td></td>
</tr>
<tr>
<td>[0118]  〈220〉</td>
<td></td>
</tr>
<tr>
<td>[0119]  〈223〉序列是合成的</td>
<td></td>
</tr>
<tr>
<td>[0120]  〈400〉11</td>
<td></td>
</tr>
<tr>
<td>[0121]  Glu Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser</td>
<td></td>
</tr>
<tr>
<td>[0122]  1 5 10 15</td>
<td></td>
</tr>
<tr>
<td>[0123]  Gln Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Phe Phe Ile Thr</td>
<td></td>
</tr>
<tr>
<td>[0124]  20 25 30</td>
<td></td>
</tr>
<tr>
<td>[0125]  Asn Asn Tyr Trp Gly Trp Ile Arg Lys Phe Pro Gly Asn Lys Met</td>
<td></td>
</tr>
<tr>
<td>[0126]  35 40 45</td>
<td></td>
</tr>
<tr>
<td>[0127]  Glu Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ser Thr Ser Tyr Asn</td>
<td></td>
</tr>
<tr>
<td>[0128]  50 55 60</td>
<td></td>
</tr>
<tr>
<td>[0129]  Pro Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys</td>
<td></td>
</tr>
<tr>
<td>[0130]  65 70 75</td>
<td></td>
</tr>
<tr>
<td>[0131]  Asn Gln Phe Phe Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr</td>
<td></td>
</tr>
<tr>
<td>[0132]  80 85 90</td>
<td></td>
</tr>
<tr>
<td>[0133]  Ala Thr Tyr Cys Ala Met Thr Gly Ser Ser Gly Tyr Phe Asp</td>
<td></td>
</tr>
<tr>
<td>[0134]  95 100 105</td>
<td></td>
</tr>
<tr>
<td>[0135]  Phe Trp Gly Pro Gly Thr Met Val Thr Val Ser Ser</td>
<td></td>
</tr>
<tr>
<td>[0136]  110 115</td>
<td></td>
</tr>
<tr>
<td>[0137]  〈210〉12</td>
<td></td>
</tr>
<tr>
<td>[0138]  〈211〉174</td>
<td></td>
</tr>
<tr>
<td>[0139]  〈212〉PRT</td>
<td></td>
</tr>
<tr>
<td>[0140]  〈213〉人工序列</td>
<td></td>
</tr>
<tr>
<td>[0141]  〈220〉</td>
<td></td>
</tr>
<tr>
<td>[0142]  〈223〉序列是合成的</td>
<td></td>
</tr>
<tr>
<td>[0143]  〈400〉12</td>
<td></td>
</tr>
<tr>
<td>[0144]  Asp Val Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val THR Pro</td>
<td></td>
</tr>
<tr>
<td>[0145]  1 5 10 15</td>
<td></td>
</tr>
<tr>
<td>[0146]  Gly Glu Arg Ile Ser Leu Ser Cys Arg Ala Ser Glu Ser Val Asp</td>
<td></td>
</tr>
<tr>
<td>[0147]  20 25 30</td>
<td></td>
</tr>
<tr>
<td>[0148]  Thr Tyr Leu His Trp Tyr Gln Gln Lys Pro Asn Glu Ser Pro Arg</td>
<td></td>
</tr>
<tr>
<td>[0149]  35 40 45</td>
<td></td>
</tr>
<tr>
<td>[0150]  Leu Leu Ile Lys Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser</td>
<td></td>
</tr>
<tr>
<td>[0151]  50 55 60</td>
<td></td>
</tr>
<tr>
<td>[0152]  Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile</td>
<td></td>
</tr>
<tr>
<td>[0153]  65 70 75</td>
<td></td>
</tr>
<tr>
<td>[0154]  Asn Gly Val Glu Leu Glu Asp Leu Ser Ile Tyr Tyr Cys Gln Gln</td>
<td></td>
</tr>
<tr>
<td>[0155]  80 85 90</td>
<td></td>
</tr>
<tr>
<td>序列表</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>[0156] Gly Asn Ser Leu Pro Asn Thr Phe Gly Ala Gly Thr Lys Leu Glu</td>
<td></td>
</tr>
<tr>
<td>0157</td>
<td>95</td>
</tr>
<tr>
<td>[0158] Leu Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro</td>
<td></td>
</tr>
<tr>
<td>0159</td>
<td>110</td>
</tr>
<tr>
<td>[0160] Ser Met Glu Gln Leu Thr Ser Gly Gly Ala Thr Val Val Cys Phe</td>
<td></td>
</tr>
<tr>
<td>0161</td>
<td>125</td>
</tr>
<tr>
<td>[0162] Val Asn Asp Phe Tyr Pro Arg Asp Ile Ser Val Lys Trp Lys Ile</td>
<td></td>
</tr>
<tr>
<td>0163</td>
<td>140</td>
</tr>
<tr>
<td>[0164] Asp Gly Ser Glu Gln Arg Asp Gly Val Leu Asp Ser Val Thr Asp</td>
<td></td>
</tr>
<tr>
<td>0165</td>
<td>155</td>
</tr>
<tr>
<td>[0166] Gln Asp Ser Lys Asp Ser Thr Tyr Ser</td>
<td></td>
</tr>
<tr>
<td>0167</td>
<td>170</td>
</tr>
<tr>
<td>[0168] &lt;210&gt;13</td>
<td></td>
</tr>
<tr>
<td>[0169] &lt;211&gt;146</td>
<td></td>
</tr>
<tr>
<td>[0170] &lt;212&gt;PRT</td>
<td></td>
</tr>
<tr>
<td>[0171] &lt;213&gt;人工序列</td>
<td></td>
</tr>
<tr>
<td>[0172] &lt;220&gt;</td>
<td></td>
</tr>
<tr>
<td>[0173] &lt;223&gt;序列是合成的</td>
<td></td>
</tr>
<tr>
<td>[0174] &lt;400&gt;13</td>
<td></td>
</tr>
<tr>
<td>[0175] Glu Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser</td>
<td></td>
</tr>
<tr>
<td>0176</td>
<td>1</td>
</tr>
<tr>
<td>[0177] Gln Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Phe Phe Ile Thr</td>
<td></td>
</tr>
<tr>
<td>0178</td>
<td>20</td>
</tr>
<tr>
<td>[0179] Asn Asn Tyr Trp Gly Trp Ile Arg Lys Phe Pro Gly Asn Lys Met</td>
<td></td>
</tr>
<tr>
<td>0180</td>
<td>35</td>
</tr>
<tr>
<td>[0181] Glu Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ser Thr Ser Tyr Asn</td>
<td></td>
</tr>
<tr>
<td>0182</td>
<td>50</td>
</tr>
<tr>
<td>[0183] Pro Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys</td>
<td></td>
</tr>
<tr>
<td>0184</td>
<td>65</td>
</tr>
<tr>
<td>[0185] Asn Gln Phe Phe Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr</td>
<td></td>
</tr>
<tr>
<td>0186</td>
<td>80</td>
</tr>
<tr>
<td>[0187] Ala Thr Tyr Tyr Cys Ala Met Thr Gly Ser Ser Gly Tyr Phe Asp</td>
<td></td>
</tr>
<tr>
<td>0188</td>
<td>95</td>
</tr>
<tr>
<td>[0189] Phe Trp Gly Pro Gly Thr Met Val Thr Val Ser Ser Ala Glu Thr</td>
<td></td>
</tr>
<tr>
<td>0190</td>
<td>110</td>
</tr>
<tr>
<td>[0191] Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Gly Thr Ala Leu Lys</td>
<td></td>
</tr>
<tr>
<td>0192</td>
<td>125</td>
</tr>
<tr>
<td>[0193] Ser Asn Ser Met Val Thr Leu Gly Cys Leu Val</td>
<td></td>
</tr>
<tr>
<td>0194</td>
<td>140</td>
</tr>
</tbody>
</table>
序列表

[0195] ＜210＞14
[0196] ＜211＞80
[0197] ＜212＞PRT
[0198] ＜213＞人工序列
[0199] ＜220＞
[0200] ＜223＞序列是合成的
[0201] ＜400＞14
[0202] Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val
[0203] 1 5 10 15
[0204] Gly Asp Arg Val Thr Ile Thr Cys Trp Tyr Gln Gln Lys Pro Gly
[0205] 20 25 30
[0206] Lys Ala Pro Lys Leu Leu Ile Tyr Gly Val Pro Ser Arg Phe Ser
[0207] 35 40 45
[0208] Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu
[0209] 50 55 60
[0210] Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Phe Gly Gln Gly Thr
[0211] 65 70 75
[0212] Lys Val Glu Ile Lys
[0213] 80
[0214] ＜210＞15
[0215] ＜211＞79
[0216] ＜212＞PRT
[0217] ＜213＞人工序列
[0218] ＜220＞
[0219] ＜223＞序列是合成的
[0220] ＜400＞15
[0221] Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val
[0222] 1 5 10 15
[0223] Gly Asp Arg Val Thr Ile Thr Cys Trp Tyr Gln Gln Lys Pro Gly
[0224] 20 25 30
[0225] Lys Ala Pro Lys Leu Leu Ile Gly Val Pro Ser Arg Phe Ser Gly
[0226] 35 40 45
[0227] Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln
[0228] 50 55 60
[0229] Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Phe Gly Gln Gly Thr Lys
[0230] 65 70 75
[0231] Val Glu Ile Lys
[0232] ＜210＞16
[0233] ＜211＞80
### 序列表

<table>
<thead>
<tr>
<th>序列号</th>
<th>序列</th>
</tr>
</thead>
<tbody>
<tr>
<td>0234</td>
<td>212&gt;PRT</td>
</tr>
<tr>
<td>0235</td>
<td>213 人工序列</td>
</tr>
<tr>
<td>0236</td>
<td>220</td>
</tr>
<tr>
<td>0237</td>
<td>223 序列是合成的</td>
</tr>
<tr>
<td>0238</td>
<td>400&gt;16</td>
</tr>
<tr>
<td>0239</td>
<td>Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro</td>
</tr>
<tr>
<td>0240</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>0241</td>
<td>Gly Glu Pro Ala Ser Ile Ser Cys Trp Tyr Leu Gln Lys Pro Gly</td>
</tr>
<tr>
<td>0242</td>
<td>20 25 30</td>
</tr>
<tr>
<td>0243</td>
<td>Gln Ser Pro Gln Leu Leu Ile Tyr Gly Val Pro Asp Arg Phe Ser</td>
</tr>
<tr>
<td>0244</td>
<td>35 40 45</td>
</tr>
<tr>
<td>0245</td>
<td>Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val</td>
</tr>
<tr>
<td>0246</td>
<td>50 55 60</td>
</tr>
<tr>
<td>0247</td>
<td>Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gly Gln Gly Thr</td>
</tr>
<tr>
<td>0248</td>
<td>65 70 75</td>
</tr>
<tr>
<td>0249</td>
<td>Lys Val Glu Ile Lys</td>
</tr>
<tr>
<td>0250</td>
<td>80</td>
</tr>
<tr>
<td>0251</td>
<td>210&gt;17</td>
</tr>
<tr>
<td>0252</td>
<td>211&gt;80</td>
</tr>
<tr>
<td>0253</td>
<td>212&gt;PRT</td>
</tr>
<tr>
<td>0254</td>
<td>213 人工序列</td>
</tr>
<tr>
<td>0255</td>
<td>220</td>
</tr>
<tr>
<td>0256</td>
<td>223 序列是合成的</td>
</tr>
<tr>
<td>0257</td>
<td>400&gt;17</td>
</tr>
<tr>
<td>0258</td>
<td>Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro</td>
</tr>
<tr>
<td>0259</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>0260</td>
<td>Gly Glu Arg Ala Thr Leu Ser Cys Trp Tyr Gln Gln Lys Pro Gly</td>
</tr>
<tr>
<td>0261</td>
<td>20 25 30</td>
</tr>
<tr>
<td>0262</td>
<td>Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ile Pro Asp Arg Phe Ser</td>
</tr>
<tr>
<td>0263</td>
<td>35 40 45</td>
</tr>
<tr>
<td>0264</td>
<td>Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu</td>
</tr>
<tr>
<td>0265</td>
<td>50 55 60</td>
</tr>
<tr>
<td>0266</td>
<td>Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Phe Gly Gln Gly Thr</td>
</tr>
<tr>
<td>0267</td>
<td>65 70 75</td>
</tr>
<tr>
<td>0268</td>
<td>Lys Val Glu Ile Lys</td>
</tr>
<tr>
<td>0269</td>
<td>80</td>
</tr>
<tr>
<td>0270</td>
<td>210&gt;18</td>
</tr>
<tr>
<td>0271</td>
<td>211&gt;80</td>
</tr>
<tr>
<td>0272</td>
<td>212&gt;PRT</td>
</tr>
<tr>
<td>序列表</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>[0273]</td>
<td>〈213〉人工序列</td>
</tr>
<tr>
<td>[0274]</td>
<td>〈220〉</td>
</tr>
<tr>
<td>[0275]</td>
<td>〈223〉序列是合成的</td>
</tr>
<tr>
<td>[0276]</td>
<td>〈400〉18</td>
</tr>
<tr>
<td>[0277]</td>
<td>Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu</td>
</tr>
<tr>
<td>[0278]</td>
<td>1   5  10          15</td>
</tr>
<tr>
<td>[0279]</td>
<td>Gly Glu Arg Ala Thr Ile Asn Cys Trp Tyr Gln Gln Lys Pro Gly</td>
</tr>
<tr>
<td>[0280]</td>
<td>20  25  30</td>
</tr>
<tr>
<td>[0281]</td>
<td>Gln Pro Pro Lys Leu Leu Ile Tyr Gly Val Pro Asp Arg Phe Ser</td>
</tr>
<tr>
<td>[0282]</td>
<td>35  40  45</td>
</tr>
<tr>
<td>[0283]</td>
<td>Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu</td>
</tr>
<tr>
<td>[0284]</td>
<td>50  55  60</td>
</tr>
<tr>
<td>[0285]</td>
<td>Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Phe Gly Gln Gly Thr</td>
</tr>
<tr>
<td>[0286]</td>
<td>65  70  75</td>
</tr>
<tr>
<td>[0287]</td>
<td>Lys Val Glu Ile Lys</td>
</tr>
<tr>
<td>[0288]</td>
<td>80</td>
</tr>
<tr>
<td>[0289]</td>
<td>〈210〉19</td>
</tr>
<tr>
<td>[0290]</td>
<td>〈211〉87</td>
</tr>
<tr>
<td>[0291]</td>
<td>〈212〉PRT</td>
</tr>
<tr>
<td>[0292]</td>
<td>〈213〉人工序列</td>
</tr>
<tr>
<td>[0293]</td>
<td>〈220〉</td>
</tr>
<tr>
<td>[0294]</td>
<td>〈223〉序列是合成的</td>
</tr>
<tr>
<td>[0295]</td>
<td>〈400〉19</td>
</tr>
<tr>
<td>[0296]</td>
<td>Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly</td>
</tr>
<tr>
<td>[0297]</td>
<td>1   5  10          15</td>
</tr>
<tr>
<td>[0298]</td>
<td>Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr</td>
</tr>
<tr>
<td>[0299]</td>
<td>20  25  30</td>
</tr>
<tr>
<td>[0301]</td>
<td>35  40  45</td>
</tr>
<tr>
<td>[0302]</td>
<td>Val Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr Met Glu</td>
</tr>
<tr>
<td>[0303]</td>
<td>50  55  60</td>
</tr>
<tr>
<td>[0304]</td>
<td>Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala</td>
</tr>
<tr>
<td>[0305]</td>
<td>65  70  75</td>
</tr>
<tr>
<td>[0306]</td>
<td>Arg Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser</td>
</tr>
<tr>
<td>[0307]</td>
<td>80  85</td>
</tr>
<tr>
<td>[0308]</td>
<td>〈210〉20</td>
</tr>
<tr>
<td>[0309]</td>
<td>〈211〉81</td>
</tr>
<tr>
<td>[0310]</td>
<td>〈212〉PRT</td>
</tr>
<tr>
<td>[0311]</td>
<td>〈213〉人工序列</td>
</tr>
<tr>
<td>序列号</td>
<td>序列</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>0312</td>
<td>Q220</td>
</tr>
<tr>
<td>0313</td>
<td>Q223</td>
</tr>
<tr>
<td>0314</td>
<td>Q400</td>
</tr>
<tr>
<td>0315</td>
<td>Glu Val Glu Leu Val Glu Ser Gly Ala Glu Val Lys Lys Pro Gly</td>
</tr>
<tr>
<td>0316</td>
<td>1</td>
</tr>
<tr>
<td>0317</td>
<td>Ala Ser Val Lys Val Ser Cys Lys Ala Ser Trp Val Arg Glu Ala</td>
</tr>
<tr>
<td>0318</td>
<td>20</td>
</tr>
<tr>
<td>0319</td>
<td>Pro Gly Glu Gly Leu Glu Trp Met Arg Val Thr Ile Thr Ala Asp</td>
</tr>
<tr>
<td>0320</td>
<td>35</td>
</tr>
<tr>
<td>0321</td>
<td>Thr Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser</td>
</tr>
<tr>
<td>0322</td>
<td>50</td>
</tr>
<tr>
<td>0323</td>
<td>Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Glu Gly Thr</td>
</tr>
<tr>
<td>0324</td>
<td>65</td>
</tr>
<tr>
<td>0325</td>
<td>Leu Val Thr Val Ser Ser</td>
</tr>
<tr>
<td>0326</td>
<td></td>
</tr>
<tr>
<td>0327</td>
<td>Q210</td>
</tr>
<tr>
<td>0328</td>
<td>Q211</td>
</tr>
<tr>
<td>0329</td>
<td>Q212</td>
</tr>
<tr>
<td>0330</td>
<td>Q213</td>
</tr>
<tr>
<td>0331</td>
<td>Q220</td>
</tr>
<tr>
<td>0332</td>
<td>Q400</td>
</tr>
<tr>
<td>0333</td>
<td>Glu Val Glu Leu Val Glu Ser Gly Ala Glu Val Lys Lys Pro Gly</td>
</tr>
<tr>
<td>0334</td>
<td>1</td>
</tr>
<tr>
<td>0335</td>
<td>Ala Ser Val Lys Val Ser Cys Lys Ala Ser Trp Val Arg Glu Ala</td>
</tr>
<tr>
<td>0336</td>
<td>20</td>
</tr>
<tr>
<td>0337</td>
<td>Pro Gly Glu Gly Leu Glu Trp Met Arg Val Thr Ile Thr Ala Asp</td>
</tr>
<tr>
<td>0338</td>
<td>35</td>
</tr>
<tr>
<td>0339</td>
<td>Thr Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser</td>
</tr>
<tr>
<td>0340</td>
<td>50</td>
</tr>
<tr>
<td>0341</td>
<td>Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Glu Gly Thr</td>
</tr>
<tr>
<td>0342</td>
<td>65</td>
</tr>
<tr>
<td>0343</td>
<td>Val Thr Val Ser Ser</td>
</tr>
<tr>
<td>0344</td>
<td></td>
</tr>
<tr>
<td>0345</td>
<td>Q210</td>
</tr>
<tr>
<td>0346</td>
<td>Q211</td>
</tr>
<tr>
<td>0347</td>
<td>Q212</td>
</tr>
<tr>
<td>0348</td>
<td>Q213</td>
</tr>
<tr>
<td>0349</td>
<td>Q220</td>
</tr>
<tr>
<td>序列列表</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[0351]</td>
<td>〈223〉序列是合成的</td>
</tr>
<tr>
<td>[0352]</td>
<td>〈400〉22</td>
</tr>
<tr>
<td>[0353]</td>
<td>Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly</td>
</tr>
<tr>
<td>[0354]</td>
<td></td>
</tr>
<tr>
<td>[0355]</td>
<td>Ala Ser Val Lys Val Ser Cys Lys Ala Ser Trp Val Arg Gln Ala</td>
</tr>
<tr>
<td>[0356]</td>
<td></td>
</tr>
<tr>
<td>[0357]</td>
<td>Pro Gly Gln Gly Leu Glu Trp Met Arg Val Thr Ile Thr Ala Asp</td>
</tr>
<tr>
<td>[0358]</td>
<td></td>
</tr>
<tr>
<td>[0359]</td>
<td>Thr Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser</td>
</tr>
<tr>
<td>[0360]</td>
<td></td>
</tr>
<tr>
<td>[0361]</td>
<td>Glu Asp Thr Ala Val Tyr Tyr Cys Trp Gly Gln Gly Thr Leu Val</td>
</tr>
<tr>
<td>[0362]</td>
<td></td>
</tr>
<tr>
<td>[0363]</td>
<td>Thr Val Ser Ser</td>
</tr>
<tr>
<td>[0364]</td>
<td>〈210〉23</td>
</tr>
<tr>
<td>[0365]</td>
<td>〈211〉108</td>
</tr>
<tr>
<td>[0366]</td>
<td>〈212〉PRT</td>
</tr>
<tr>
<td>[0367]</td>
<td>〈213〉人工序列</td>
</tr>
<tr>
<td>[0368]</td>
<td>〈220〉</td>
</tr>
<tr>
<td>[0369]</td>
<td>〈223〉序列是合成的</td>
</tr>
<tr>
<td>[0370]</td>
<td>〈400〉23</td>
</tr>
<tr>
<td>[0371]</td>
<td>Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val</td>
</tr>
<tr>
<td>[0372]</td>
<td>Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser</td>
</tr>
<tr>
<td>[0373]</td>
<td></td>
</tr>
<tr>
<td>[0374]</td>
<td>Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys</td>
</tr>
<tr>
<td>[0375]</td>
<td></td>
</tr>
<tr>
<td>[0376]</td>
<td>Leu Leu Ile Tyr Ala Ala Ser Ser Leu Glu Ser Gly Val Pro Ser</td>
</tr>
<tr>
<td>[0377]</td>
<td></td>
</tr>
<tr>
<td>[0378]</td>
<td>Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile</td>
</tr>
<tr>
<td>[0379]</td>
<td></td>
</tr>
<tr>
<td>[0380]</td>
<td>Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln</td>
</tr>
<tr>
<td>[0381]</td>
<td></td>
</tr>
<tr>
<td>[0382]</td>
<td>Tyr Asn Ser Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu</td>
</tr>
<tr>
<td>[0383]</td>
<td></td>
</tr>
<tr>
<td>[0384]</td>
<td>Ile Lys Arg</td>
</tr>
<tr>
<td>[0385]</td>
<td>〈210〉24</td>
</tr>
<tr>
<td>[0386]</td>
<td>〈211〉113</td>
</tr>
<tr>
<td>[0387]</td>
<td>〈212〉PRT</td>
</tr>
<tr>
<td>[0388]</td>
<td>〈213〉人工序列</td>
</tr>
</tbody>
</table>
序列表

[0390] 〈220〉
[0391] 〈223〉序列是合成的
[0392] 〈400〉24
[0393] Glu Val Glu Val Glu Ser Gly Gly Leu Val Glu Pro Gly
[0394]  1    5   10    15
[0395] Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser
[0396]  20   25    30
[0397] Ser Tyr Ala Met Ser Trp Val Arg Glu Ala Pro Gly Lys Gly Leu
[0398]  35   40    45
[0399] Glu Trp Val Ser Val Ile Ser Gly Asp Gly Gly Ser Thr Tyr Tyr
[0400]  50   55    60
[0401] Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser
[0402]  65   70    75
[0403] Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
[0404]  80   85    90
[0405] Thr Ala Val Tyr Cys Ala Arg Gly Phe Asp Tyr Thr Gln Gln
[0406]  95  100   105
[0407] Gly Thr Leu Val Thr Val Ser Ser
[0408]  110
[0409] 〈210〉25
[0410] 〈211〉108
[0411] 〈212〉PRT
[0412] 〈213〉人工序列
[0413] 〈220〉
[0414] 〈223〉序列是合成的
[0415] 〈400〉25
[0416] Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val
[0417]  1    5   10    15
[0418] Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Ser Val Asp
[0419]  20   25    30
[0420] Thr Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys
[0421]  35   40    45
[0422] Leu Leu Ile Lys Tyr Ala Ser Gln Ser Ile Ser Gly Val Pro Ser
[0423]  50   55    60
[0424] Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
[0425]  65   70    75
[0426] Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
[0427]  80   85    90
[0428] Gly Asn Ser Leu Pro Asn Thr Phe Gly Gln Gly Thr Lys Val Glu

110
<table>
<thead>
<tr>
<th>序列</th>
<th>95</th>
<th>100</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>0429</td>
<td>Ile Lys Arg</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>0430</td>
<td>&lt;210&gt;26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0431</td>
<td>&lt;211&gt;117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0432</td>
<td>&lt;212&gt;PRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0433</td>
<td>&lt;213&gt;人工序列</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0434</td>
<td>&lt;220&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0435</td>
<td>&lt;223&gt;序列是合成的</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0436</td>
<td>&lt;400&gt;26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0437</td>
<td>Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>0438</td>
<td>1</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>0439</td>
<td>Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Phe Ile Thr</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>0440</td>
<td>20</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>0441</td>
<td>Asn Asn Tyr Trp Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>0442</td>
<td>35</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>0443</td>
<td>Glu Trp Val Gly Tyr Ile Ser Tyr Ser Gly Ser Thr Ser Tyr Asn</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>0444</td>
<td>50</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>0445</td>
<td>Pro Ser Leu Lys Ser Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>0446</td>
<td>65</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>0447</td>
<td>Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>0448</td>
<td>80</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>0449</td>
<td>Ala Val Tyr Tyr Cys Ala Met Thr Gly Ser Ser Gly Tyr Phe Asp</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>0450</td>
<td>95</td>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>0451</td>
<td>Phe Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0452</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0453</td>
<td>&lt;210&gt;27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0454</td>
<td>&lt;211&gt;214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0455</td>
<td>&lt;212&gt;PRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0456</td>
<td>&lt;213&gt;人工序列</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0457</td>
<td>&lt;220&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0458</td>
<td>&lt;223&gt;序列是合成的</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0459</td>
<td>&lt;400&gt;27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0460</td>
<td>Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>0461</td>
<td>1</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>0462</td>
<td>Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>0463</td>
<td>20</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>0464</td>
<td>Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>0465</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0466</td>
<td>Leu Leu Ile Tyr Ala Ala Ser Ser Leu Glu Ser Gly Val Pro Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0467</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
序列表

<table>
<thead>
<tr>
<th>序列</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Ser Ser Leu Gln Pro Glu Asp Ala Thr Tyr Tyr Cys Gln Gln</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Tyr Asn Ser Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val</td>
<td>125</td>
<td>130</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr</td>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu</td>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn</td>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Arg Gly Glu Cys</td>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>

(210) 28
(211) 448
(212) PRT
(213) 人工序列
(220)
(223) 序列是合成的
(400) 28
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
1  5  10  15
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser
20  25  30
Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
35  40  45
Glu Trp Val Ser Val Ile Ser Gly Asp Gly Gly Ser Thr Tyr Tyr
50  55  60
Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser
65  70  75
<table>
<thead>
<tr>
<th></th>
<th>Lys</th>
<th>Asn</th>
<th>Thr</th>
<th>Leu</th>
<th>Tyr</th>
<th>Leu</th>
<th>Gln</th>
<th>Met</th>
<th>Asn</th>
<th>Ser</th>
<th>Leu</th>
<th>Arg</th>
<th>Ala</th>
<th>Glu</th>
<th>Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0507</td>
<td></td>
</tr>
<tr>
<td>0508</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>0509</td>
<td></td>
</tr>
<tr>
<td>0510</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>0511</td>
<td></td>
</tr>
<tr>
<td>0512</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>0513</td>
<td></td>
</tr>
<tr>
<td>0514</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>0515</td>
<td></td>
</tr>
<tr>
<td>0516</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>0517</td>
<td></td>
</tr>
<tr>
<td>0518</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>0519</td>
<td></td>
</tr>
<tr>
<td>0520</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>0521</td>
<td></td>
</tr>
<tr>
<td>0522</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>0523</td>
<td></td>
</tr>
<tr>
<td>0524</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>0525</td>
<td></td>
</tr>
<tr>
<td>0526</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>0527</td>
<td></td>
</tr>
<tr>
<td>0528</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>0529</td>
<td></td>
</tr>
<tr>
<td>0530</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>0531</td>
<td></td>
</tr>
<tr>
<td>0532</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>0533</td>
<td></td>
</tr>
<tr>
<td>0534</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>0535</td>
<td></td>
</tr>
<tr>
<td>0536</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>0537</td>
<td></td>
</tr>
<tr>
<td>0538</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>0539</td>
<td></td>
</tr>
<tr>
<td>0540</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>0541</td>
<td></td>
</tr>
<tr>
<td>0542</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>0543</td>
<td></td>
</tr>
<tr>
<td>0544</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>0545</td>
<td></td>
</tr>
<tr>
<td></td>
<td>365</td>
<td>370</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>0546</td>
<td>Ser</td>
<td>Asp</td>
<td>Ile</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td>Trp</td>
<td>Glu</td>
<td>Ser</td>
<td>Asn</td>
<td>Gly</td>
<td>Gln</td>
<td>Pro</td>
<td>Glu</td>
<td>Asn</td>
</tr>
<tr>
<td>0547</td>
<td></td>
</tr>
<tr>
<td>0548</td>
<td>380</td>
<td>385</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>0549</td>
<td>Asn</td>
<td>Tyr</td>
<td>Lys</td>
<td>Thr</td>
<td>Thr</td>
<td>Pro</td>
<td>Pro</td>
<td>Val</td>
<td>Leu</td>
<td>Asp</td>
<td>Ser</td>
<td>Asp</td>
<td>Gly</td>
<td>Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>0550</td>
<td>395</td>
<td>400</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>0551</td>
<td>Phe</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Thr</td>
<td>Val</td>
<td>Asp</td>
<td>Lys</td>
<td>Ser</td>
<td>Arg</td>
<td>Trp</td>
<td>Gln</td>
<td>Gln</td>
</tr>
<tr>
<td>0552</td>
<td>410</td>
<td>415</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>0553</td>
<td>Gly</td>
<td>Asn</td>
<td>Val</td>
<td>Phe</td>
<td>Ser</td>
<td>Cys</td>
<td>Ser</td>
<td>Val</td>
<td>Met</td>
<td>His</td>
<td>Glu</td>
<td>Ala</td>
<td>Leu</td>
<td>His</td>
<td>Asn</td>
</tr>
<tr>
<td>0554</td>
<td>425</td>
<td>430</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>0555</td>
<td>His</td>
<td>Tyr</td>
<td>Thr</td>
<td>Gln</td>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Pro</td>
<td>Gly</td>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0556</td>
<td>440</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>0557</td>
<td>〈210〉29</td>
<td></td>
</tr>
<tr>
<td>0558</td>
<td>〈211〉214</td>
<td></td>
</tr>
<tr>
<td>0559</td>
<td>〈212〉PRT</td>
<td></td>
</tr>
<tr>
<td>0560</td>
<td>〈213〉人工序列</td>
<td></td>
</tr>
<tr>
<td>0561</td>
<td>〈220〉</td>
<td></td>
</tr>
<tr>
<td>0562</td>
<td>〈223〉序列是合成的</td>
<td></td>
</tr>
<tr>
<td>0563</td>
<td>〈400〉29</td>
<td></td>
</tr>
<tr>
<td>0564</td>
<td>Asp</td>
<td>Ile</td>
<td>Gln</td>
<td>Met</td>
<td>Thr</td>
<td>Gln</td>
<td>Ser</td>
<td>Pro</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>0565</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>0566</td>
<td>Gly</td>
<td>Asp</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
<td>Ile</td>
<td>Thr</td>
<td>Cys</td>
<td>Arg</td>
<td>Ala</td>
<td>Ser</td>
<td>Glu</td>
<td>Ser</td>
<td>Val</td>
<td>Asp</td>
</tr>
<tr>
<td>0567</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>0568</td>
<td>Thr</td>
<td>Tyr</td>
<td>Leu</td>
<td>His</td>
<td>Ty</td>
<td>Trp</td>
<td>Gln</td>
<td>Gln</td>
<td>Lys</td>
<td>Pro</td>
<td>Gly</td>
<td>Lys</td>
<td>Ala</td>
<td>Pro</td>
<td>Lys</td>
</tr>
<tr>
<td>0569</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>0570</td>
<td>Leu</td>
<td>Leu</td>
<td>Ile</td>
<td>Tyr</td>
<td>Ty</td>
<td>Ala</td>
<td>Ser</td>
<td>Gln</td>
<td>Ser</td>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Val</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>0571</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>0572</td>
<td>Arg</td>
<td>Phe</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Thr</td>
<td>Asp</td>
<td>Phe</td>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td>0573</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>0574</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Gln</td>
<td>Pro</td>
<td>Glu</td>
<td>Asp</td>
<td>Phe</td>
<td>Ala</td>
<td>Thr</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Cys</td>
<td>Gln</td>
<td>Gln</td>
</tr>
<tr>
<td>0575</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>0576</td>
<td>Gly</td>
<td>Asn</td>
<td>Ser</td>
<td>Leu</td>
<td>Pro</td>
<td>Asn</td>
<td>Thr</td>
<td>Phe</td>
<td>Gly</td>
<td>Gln</td>
<td>Gly</td>
<td>Thr</td>
<td>Lys</td>
<td>Val</td>
<td>Glu</td>
</tr>
<tr>
<td>0577</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>0578</td>
<td>Ile</td>
<td>Lys</td>
<td>Arg</td>
<td>Thr</td>
<td>Val</td>
<td>Ala</td>
<td>Ala</td>
<td>Pro</td>
<td>Ser</td>
<td>Val</td>
<td>Phe</td>
<td>Ile</td>
<td>Phe</td>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td>0579</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>0580</td>
<td>Ser</td>
<td>Asp</td>
<td>Glu</td>
<td>Gln</td>
<td>Leu</td>
<td>Lys</td>
<td>Ser</td>
<td>Gly</td>
<td>Thr</td>
<td>Ala</td>
<td>Ser</td>
<td>Val</td>
<td>Cys</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>0581</td>
<td>125</td>
<td>130</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>0582</td>
<td>Leu</td>
<td>Asn</td>
<td>Phe</td>
<td>Tyr</td>
<td>Pro</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td>Lys</td>
<td>Val</td>
<td>Gln</td>
<td>Trp</td>
<td>Lys</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>0583</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>0584</td>
<td>Asp</td>
<td>Asn</td>
<td>Ala</td>
<td>Leu</td>
<td>Gln</td>
<td>Ser</td>
<td>Gly</td>
<td>Asn</td>
<td>Ser</td>
<td>Gln</td>
<td>Glu</td>
<td>Ser</td>
<td>Val</td>
<td>Thr</td>
<td>Glu</td>
</tr>
<tr>
<td>序 列 表</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>[0585]</td>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>[0586]</td>
<td>Glu Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr</td>
<td></td>
</tr>
<tr>
<td>[0587]</td>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>[0588]</td>
<td>Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu</td>
<td></td>
</tr>
<tr>
<td>[0589]</td>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>[0590]</td>
<td>Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn</td>
<td></td>
</tr>
<tr>
<td>[0591]</td>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>[0592]</td>
<td>Arg Gly Glu Cys</td>
<td></td>
</tr>
<tr>
<td>[0593]</td>
<td>〈210〉30</td>
<td></td>
</tr>
<tr>
<td>[0594]</td>
<td>〈211〉447</td>
<td></td>
</tr>
<tr>
<td>[0595]</td>
<td>〈212〉PRT</td>
<td></td>
</tr>
<tr>
<td>[0596]</td>
<td>〈213〉人工序列</td>
<td></td>
</tr>
<tr>
<td>[0597]</td>
<td>〈220〉</td>
<td></td>
</tr>
<tr>
<td>[0598]</td>
<td>〈223〉序列是合成的</td>
<td></td>
</tr>
<tr>
<td>[0599]</td>
<td>〈400〉30</td>
<td></td>
</tr>
<tr>
<td>[0601]</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>[0602]</td>
<td>Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Phe Ile Thr</td>
<td></td>
</tr>
<tr>
<td>[0603]</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>[0604]</td>
<td>Asn Asn Tyr Trp Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu</td>
<td></td>
</tr>
<tr>
<td>[0605]</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>[0606]</td>
<td>Glu Trp Val Gly Tyr Ile Ser Tyr Ser Gly Ser Thr Ser Tyr Asn</td>
<td></td>
</tr>
<tr>
<td>[0607]</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>[0608]</td>
<td>Pro Ser Leu Lys Ser Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys</td>
<td></td>
</tr>
<tr>
<td>[0609]</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>[0610]</td>
<td>Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr</td>
<td></td>
</tr>
<tr>
<td>[0611]</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>[0612]</td>
<td>Ala Val Tyr Tyr Cys Ala Met Thr Gly Ser Ser Gly Tyr Phe Asp</td>
<td></td>
</tr>
<tr>
<td>[0613]</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>[0614]</td>
<td>Phe Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr</td>
<td></td>
</tr>
<tr>
<td>[0615]</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>[0616]</td>
<td>Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr</td>
<td></td>
</tr>
<tr>
<td>[0617]</td>
<td>125</td>
<td>130</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>[0618]</td>
<td>Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe</td>
<td></td>
</tr>
<tr>
<td>[0619]</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>[0620]</td>
<td>Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser</td>
<td></td>
</tr>
<tr>
<td>[0621]</td>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>[0622]</td>
<td>Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr</td>
<td></td>
</tr>
<tr>
<td>[0623]</td>
<td>170</td>
<td>175</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
<td>Val</td>
<td>Thr</td>
<td>Val</td>
<td>Pro</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td>Thr</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>185</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td>[0626]</td>
<td>Gln</td>
<td>Thr</td>
<td>Tyr</td>
<td>Ile</td>
<td>Cys</td>
<td>Asn</td>
<td>Val</td>
<td>Asn</td>
<td>His</td>
<td>Lys</td>
<td>Pro</td>
<td>Ser</td>
<td>Asn</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
</tr>
<tr>
<td>[0628]</td>
<td>Val</td>
<td>Asp</td>
<td>Lys</td>
<td>Val</td>
<td>Glu</td>
<td>Pro</td>
<td>Lys</td>
<td>Ser</td>
<td>Cys</td>
<td>Asp</td>
<td>Lys</td>
<td>Thr</td>
<td>His</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
</tr>
<tr>
<td>[0630]</td>
<td>Cys</td>
<td>Pro</td>
<td>Pro</td>
<td>Cys</td>
<td>Pro</td>
<td>Ala</td>
<td>Pro</td>
<td>Glu</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Gly</td>
<td>Pro</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>230</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
</tr>
<tr>
<td>[0632]</td>
<td>Phe</td>
<td>Leu</td>
<td>Phe</td>
<td>Pro</td>
<td>Pro</td>
<td>Lys</td>
<td>Pro</td>
<td>Lys</td>
<td>Asp</td>
<td>Thr</td>
<td>Leu</td>
<td>Met</td>
<td>Ile</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>245</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td></td>
</tr>
<tr>
<td>[0634]</td>
<td>Thr</td>
<td>Pro</td>
<td>Glu</td>
<td>Val</td>
<td>Thr</td>
<td>Cys</td>
<td>Val</td>
<td>Val</td>
<td>Asp</td>
<td>Val</td>
<td>Ser</td>
<td>His</td>
<td>Glu</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
</tr>
<tr>
<td>[0636]</td>
<td>Pro</td>
<td>Glu</td>
<td>Val</td>
<td>Lys</td>
<td>Phe</td>
<td>Asn</td>
<td>Trp</td>
<td>Tyr</td>
<td>Val</td>
<td>Asp</td>
<td>Gly</td>
<td>Val</td>
<td>Glu</td>
<td>Val</td>
<td>His</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td></td>
</tr>
<tr>
<td>[0638]</td>
<td>Asn</td>
<td>Ala</td>
<td>Lys</td>
<td>Thr</td>
<td>Lys</td>
<td>Pro</td>
<td>Arg</td>
<td>Glu</td>
<td>Glu</td>
<td>Gln</td>
<td>Tyr</td>
<td>Asn</td>
<td>Ser</td>
<td>Thr</td>
<td>Tyr</td>
</tr>
<tr>
<td>290</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>[0640]</td>
<td>Arg</td>
<td>Val</td>
<td>Val</td>
<td>Ser</td>
<td>Val</td>
<td>Leu</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>His</td>
<td>Gln</td>
<td>Asp</td>
<td>Trp</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td>305</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td></td>
</tr>
<tr>
<td>[0642]</td>
<td>Gly</td>
<td>Lys</td>
<td>Glu</td>
<td>Tyr</td>
<td>Lys</td>
<td>Cys</td>
<td>Lys</td>
<td>Val</td>
<td>Ser</td>
<td>Asn</td>
<td>Lys</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Ala</td>
</tr>
<tr>
<td>320</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
</tr>
<tr>
<td>[0644]</td>
<td>Pro</td>
<td>Ile</td>
<td>Glu</td>
<td>Lys</td>
<td>Thr</td>
<td>Ile</td>
<td>Ser</td>
<td>Lys</td>
<td>Ala</td>
<td>Lys</td>
<td>Gly</td>
<td>Gln</td>
<td>Pro</td>
<td>Arg</td>
<td>Glu</td>
</tr>
<tr>
<td>335</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td></td>
</tr>
<tr>
<td>[0646]</td>
<td>Pro</td>
<td>Gln</td>
<td>Val</td>
<td>Tyr</td>
<td>Thr</td>
<td>Leu</td>
<td>Pro</td>
<td>Pro</td>
<td>Ser</td>
<td>Arg</td>
<td>Glu</td>
<td>Glu</td>
<td>Met</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>350</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td></td>
</tr>
<tr>
<td>[0648]</td>
<td>Asn</td>
<td>Gln</td>
<td>Val</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Cys</td>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
<td>Gly</td>
<td>Phe</td>
<td>Tyr</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>365</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td></td>
</tr>
<tr>
<td>[0650]</td>
<td>Asp</td>
<td>Ile</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td>Trp</td>
<td>Glu</td>
<td>Ser</td>
<td>Asn</td>
<td>Gly</td>
<td>Gln</td>
<td>Pro</td>
<td>Glu</td>
<td>Asn</td>
<td>Asn</td>
</tr>
<tr>
<td>380</td>
<td></td>
</tr>
<tr>
<td>385</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td></td>
</tr>
<tr>
<td>[0652]</td>
<td>Tyr</td>
<td>Lys</td>
<td>Thr</td>
<td>Thr</td>
<td>Pro</td>
<td>Pro</td>
<td>Val</td>
<td>Leu</td>
<td>Asp</td>
<td>Ser</td>
<td>Asp</td>
<td>Gly</td>
<td>Ser</td>
<td>Phe</td>
<td>Phe</td>
</tr>
<tr>
<td>395</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td></td>
</tr>
<tr>
<td>[0654]</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Thr</td>
<td>Val</td>
<td>Asp</td>
<td>Lys</td>
<td>Ser</td>
<td>Arg</td>
<td>Trp</td>
<td>Gln</td>
<td>Gln</td>
<td>Gly</td>
</tr>
<tr>
<td>410</td>
<td></td>
</tr>
<tr>
<td>415</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td></td>
</tr>
<tr>
<td>[0656]</td>
<td>Asn</td>
<td>Val</td>
<td>Phe</td>
<td>Ser</td>
<td>Cys</td>
<td>Ser</td>
<td>Val</td>
<td>Met</td>
<td>His</td>
<td>Glu</td>
<td>Ala</td>
<td>Leu</td>
<td>His</td>
<td>Asn</td>
<td>His</td>
</tr>
<tr>
<td>425</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td></td>
</tr>
<tr>
<td>435</td>
<td></td>
</tr>
<tr>
<td>[0658]</td>
<td>Tyr</td>
<td>Thr</td>
<td>Glu</td>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Pro</td>
<td>Gly</td>
<td>Lys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td></td>
</tr>
</tbody>
</table>

**<210>31**

**<211>214**

**<212>PRT**
<table>
<thead>
<tr>
<th>序列号</th>
<th>序列内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>0663</td>
<td>人工序列</td>
</tr>
<tr>
<td>0664</td>
<td>220</td>
</tr>
<tr>
<td>0665</td>
<td>序列是合成的</td>
</tr>
<tr>
<td>0666</td>
<td>400&gt;31</td>
</tr>
<tr>
<td>0667</td>
<td>Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val</td>
</tr>
<tr>
<td>0668</td>
<td>1  5  10  15</td>
</tr>
<tr>
<td>0669</td>
<td>Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Ser Val Asp</td>
</tr>
<tr>
<td>0670</td>
<td>20  25  30</td>
</tr>
<tr>
<td>0671</td>
<td>Thr Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys</td>
</tr>
<tr>
<td>0672</td>
<td>35  40  45</td>
</tr>
<tr>
<td>0673</td>
<td>Leu Leu Ile Lys Tyr Ala Ser Gln Ser Ile Ser Gly Val Pro Ser</td>
</tr>
<tr>
<td>0674</td>
<td>50  55  60</td>
</tr>
<tr>
<td>0675</td>
<td>Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile</td>
</tr>
<tr>
<td>0676</td>
<td>65  70  75</td>
</tr>
<tr>
<td>0677</td>
<td>Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln</td>
</tr>
<tr>
<td>0678</td>
<td>80  85  90</td>
</tr>
<tr>
<td>0679</td>
<td>Gly Asn Ser Leu Pro Asn Thr Phe Gly Gln Gly Thr Lys Val Glu</td>
</tr>
<tr>
<td>0680</td>
<td>95  100 105</td>
</tr>
<tr>
<td>0681</td>
<td>Ile Lys Arg Thr Val Ala Ala Ala Pro Ser Val Phe Ile Phe Pro Pro</td>
</tr>
<tr>
<td>0682</td>
<td>110 115 120</td>
</tr>
<tr>
<td>0683</td>
<td>Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu</td>
</tr>
<tr>
<td>0684</td>
<td>125 130 135</td>
</tr>
<tr>
<td>0685</td>
<td>Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val</td>
</tr>
<tr>
<td>0686</td>
<td>140 145 150</td>
</tr>
<tr>
<td>0687</td>
<td>Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu</td>
</tr>
<tr>
<td>0688</td>
<td>155 160 165</td>
</tr>
<tr>
<td>0689</td>
<td>Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr</td>
</tr>
<tr>
<td>0690</td>
<td>170 175 180</td>
</tr>
<tr>
<td>0691</td>
<td>Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu</td>
</tr>
<tr>
<td>0692</td>
<td>185 190 195</td>
</tr>
<tr>
<td>0693</td>
<td>Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn</td>
</tr>
<tr>
<td>0694</td>
<td>200 205 210</td>
</tr>
<tr>
<td>0695</td>
<td>Arg Gly Glu Cys</td>
</tr>
<tr>
<td>0696</td>
<td>210&gt;32</td>
</tr>
<tr>
<td>0697</td>
<td>211&gt;447</td>
</tr>
<tr>
<td>0698</td>
<td>212&gt;PRT</td>
</tr>
<tr>
<td>0699</td>
<td>213&gt;人工序列</td>
</tr>
<tr>
<td>0700</td>
<td>220</td>
</tr>
<tr>
<td>0701</td>
<td>序列是合成的</td>
</tr>
<tr>
<td>氨基酸序列</td>
<td>序列</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>[0702] &lt;400&gt;32</td>
<td></td>
</tr>
<tr>
<td>Glu Val Glu Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly</td>
<td></td>
</tr>
<tr>
<td>[0704] 1 5 10 15</td>
<td></td>
</tr>
<tr>
<td>Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Phe Ile Thr</td>
<td></td>
</tr>
<tr>
<td>[0706] 20 25 30</td>
<td></td>
</tr>
<tr>
<td>Asn Asn Tyr Trp Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu</td>
<td></td>
</tr>
<tr>
<td>[0708] 35 40 45</td>
<td></td>
</tr>
<tr>
<td>Glu Trp Val Gly Tyr Ile Ser Tyr Ser Gly Ser Thr Ser Tyr Asn</td>
<td></td>
</tr>
<tr>
<td>[0710] 50 55 60</td>
<td></td>
</tr>
<tr>
<td>Pro Ser Leu Lys Ser Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys</td>
<td></td>
</tr>
<tr>
<td>[0712] 65 70 75</td>
<td></td>
</tr>
<tr>
<td>Asn Thr Phe Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr</td>
<td></td>
</tr>
<tr>
<td>[0714] 80 85 90</td>
<td></td>
</tr>
<tr>
<td>Ala Val Tyr Tyr Cys Ala Met Thr Gly Ser Ser Gly Tyr Phe Asp</td>
<td></td>
</tr>
<tr>
<td>[0716] 95 100 105</td>
<td></td>
</tr>
<tr>
<td>Phe Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr</td>
<td></td>
</tr>
<tr>
<td>[0718] 110 115 120</td>
<td></td>
</tr>
<tr>
<td>Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr</td>
<td></td>
</tr>
<tr>
<td>[0720] 125 130 135</td>
<td></td>
</tr>
<tr>
<td>Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe</td>
<td></td>
</tr>
<tr>
<td>[0721] 140 145 150</td>
<td></td>
</tr>
<tr>
<td>Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser</td>
<td></td>
</tr>
<tr>
<td>[0723] 155 160 165</td>
<td></td>
</tr>
<tr>
<td>Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr</td>
<td></td>
</tr>
<tr>
<td>[0725] 170 175 180</td>
<td></td>
</tr>
<tr>
<td>Ser Leu Ser Val Ser Val Thr Val Pro Ser Ser Ser Leu Gly Thr</td>
<td></td>
</tr>
<tr>
<td>[0727] 185 190 195</td>
<td></td>
</tr>
<tr>
<td>Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys</td>
<td></td>
</tr>
<tr>
<td>[0729] 200 205 210</td>
<td></td>
</tr>
<tr>
<td>Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr</td>
<td></td>
</tr>
<tr>
<td>[0731] 215 220 225</td>
<td></td>
</tr>
<tr>
<td>Cys Pro Pro Cys Pro Ala Pro Glu Leu Gly Gly Pro Ser Val</td>
<td></td>
</tr>
<tr>
<td>[0733] 230 235 240</td>
<td></td>
</tr>
<tr>
<td>Phe Leu Phe Pro Pro Lys Pro Thr Leu Met Ile Ser Arg</td>
<td></td>
</tr>
<tr>
<td>[0735] 245 250 255</td>
<td></td>
</tr>
<tr>
<td>Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp</td>
<td></td>
</tr>
<tr>
<td>[0737] 260 265 270</td>
<td></td>
</tr>
<tr>
<td>Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His</td>
<td></td>
</tr>
<tr>
<td>[0740] 275 280 285</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[0741]</td>
<td>Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr</td>
</tr>
<tr>
<td>[0742]</td>
<td>Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn</td>
</tr>
<tr>
<td>[0743]</td>
<td>Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala</td>
</tr>
<tr>
<td>[0744]</td>
<td>Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu</td>
</tr>
<tr>
<td>[0745]</td>
<td>Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys</td>
</tr>
<tr>
<td>[0746]</td>
<td>Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser</td>
</tr>
<tr>
<td>[0747]</td>
<td>Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn</td>
</tr>
<tr>
<td>[0748]</td>
<td>Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe</td>
</tr>
<tr>
<td>[0749]</td>
<td>Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly</td>
</tr>
<tr>
<td>[0750]</td>
<td>Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His</td>
</tr>
<tr>
<td>[0751]</td>
<td>Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys</td>
</tr>
</tbody>
</table>

[<210>33]

[<211>214]

[<212>PRT]

[<213>人工序列]

[<220>]

[<223>序列是合成的]

[<400>33]
<table>
<thead>
<tr>
<th>序 列 表</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0780] Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln</td>
</tr>
<tr>
<td>[0781] 80 85</td>
</tr>
<tr>
<td>[0782] Gly Asn Ser Leu Pro Asn Thr Phe Gly Gln Gly Thr Lys Val Glu</td>
</tr>
<tr>
<td>[0783] 95 100</td>
</tr>
<tr>
<td>[0784] Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro</td>
</tr>
<tr>
<td>[0785] 110 115 120</td>
</tr>
<tr>
<td>[0786] Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu</td>
</tr>
<tr>
<td>[0787] 125 130 135</td>
</tr>
<tr>
<td>[0788] Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val</td>
</tr>
<tr>
<td>[0789] 140 145 150</td>
</tr>
<tr>
<td>[0790] Asp Asn Ala Leu Glu Ser Gly Asn Ser Gln Glu Ser Val Thr Glu</td>
</tr>
<tr>
<td>[0791] 155 160 165</td>
</tr>
<tr>
<td>[0792] Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr</td>
</tr>
<tr>
<td>[0793] 170 175 180</td>
</tr>
<tr>
<td>[0794] Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu</td>
</tr>
<tr>
<td>[0795] 185 190 195</td>
</tr>
<tr>
<td>[0796] Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn</td>
</tr>
<tr>
<td>[0797] 200 205 210</td>
</tr>
<tr>
<td>[0798] Arg Gly Glu Cys</td>
</tr>
<tr>
<td>[0799] &lt;210&gt;34</td>
</tr>
<tr>
<td>[0800] &lt;211&gt;23</td>
</tr>
<tr>
<td>[0801] &lt;212&gt;PRT</td>
</tr>
<tr>
<td>[0802] &lt;213&gt;人工序列</td>
</tr>
<tr>
<td>[0803] &lt;220&gt;</td>
</tr>
<tr>
<td>[0804] &lt;223&gt;序列是合成的</td>
</tr>
<tr>
<td>[0805] &lt;400&gt;34</td>
</tr>
<tr>
<td>[0806] Asp Ile Glu Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val</td>
</tr>
<tr>
<td>[0807] 1 5 10 15</td>
</tr>
<tr>
<td>[0808] Gly Asp Arg Val Thr Ile Thr Cys</td>
</tr>
<tr>
<td>[0809] 20</td>
</tr>
<tr>
<td>[0810] &lt;210&gt;35</td>
</tr>
<tr>
<td>[0811] &lt;211&gt;14</td>
</tr>
<tr>
<td>[0812] &lt;212&gt;PRT</td>
</tr>
<tr>
<td>[0813] &lt;213&gt;人工序列</td>
</tr>
<tr>
<td>[0814] &lt;220&gt;</td>
</tr>
<tr>
<td>[0815] &lt;223&gt;序列是合成的</td>
</tr>
<tr>
<td>[0816] &lt;400&gt;35</td>
</tr>
<tr>
<td>[0817] Trp Tyr Glu Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile</td>
</tr>
<tr>
<td>[0818] 5 10</td>
</tr>
<tr>
<td>序列号</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0820</td>
</tr>
<tr>
<td>0819</td>
</tr>
<tr>
<td>0821</td>
</tr>
<tr>
<td>序列号</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val</td>
</tr>
<tr>
<td>0858</td>
</tr>
<tr>
<td>0860</td>
</tr>
<tr>
<td>0861</td>
</tr>
<tr>
<td>0862</td>
</tr>
<tr>
<td>0863</td>
</tr>
<tr>
<td>0864</td>
</tr>
<tr>
<td>0865</td>
</tr>
<tr>
<td>0866</td>
</tr>
<tr>
<td>Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu</td>
</tr>
<tr>
<td>0867</td>
</tr>
<tr>
<td>Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys</td>
</tr>
<tr>
<td>0869</td>
</tr>
<tr>
<td>Ala</td>
</tr>
<tr>
<td>0871</td>
</tr>
<tr>
<td>0872</td>
</tr>
<tr>
<td>0873</td>
</tr>
<tr>
<td>0875</td>
</tr>
<tr>
<td>0876</td>
</tr>
<tr>
<td>0877</td>
</tr>
<tr>
<td>0878</td>
</tr>
<tr>
<td>Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser</td>
</tr>
<tr>
<td>0879</td>
</tr>
<tr>
<td>0880</td>
</tr>
<tr>
<td>0881</td>
</tr>
<tr>
<td>0882</td>
</tr>
<tr>
<td>0884</td>
</tr>
<tr>
<td>0885</td>
</tr>
<tr>
<td>0886</td>
</tr>
<tr>
<td>0887</td>
</tr>
<tr>
<td>Arg Phe Thr Ile Ser Xaa Asp Xaa Ser Lys Asn Thr Xaa Tyr Leu</td>
</tr>
<tr>
<td>0888</td>
</tr>
<tr>
<td>Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys</td>
</tr>
<tr>
<td>0890</td>
</tr>
<tr>
<td>Ala</td>
</tr>
<tr>
<td>0892</td>
</tr>
<tr>
<td>0893</td>
</tr>
<tr>
<td>0894</td>
</tr>
<tr>
<td>0895</td>
</tr>
<tr>
<td>0896</td>
</tr>
<tr>
<td>序列号</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0897</td>
</tr>
<tr>
<td>0898</td>
</tr>
<tr>
<td>0904</td>
</tr>
<tr>
<td>0905</td>
</tr>
<tr>
<td>0906</td>
</tr>
<tr>
<td>0907</td>
</tr>
<tr>
<td>0908</td>
</tr>
<tr>
<td>0909</td>
</tr>
<tr>
<td>0910</td>
</tr>
<tr>
<td>0911</td>
</tr>
<tr>
<td>0912</td>
</tr>
<tr>
<td>0913</td>
</tr>
<tr>
<td>0916</td>
</tr>
<tr>
<td>0917</td>
</tr>
<tr>
<td>0918</td>
</tr>
<tr>
<td>0919</td>
</tr>
<tr>
<td>0920</td>
</tr>
<tr>
<td>0921</td>
</tr>
<tr>
<td>0922</td>
</tr>
<tr>
<td>0923</td>
</tr>
<tr>
<td>0924</td>
</tr>
<tr>
<td>0926</td>
</tr>
<tr>
<td>0928</td>
</tr>
<tr>
<td>0929</td>
</tr>
<tr>
<td>0930</td>
</tr>
<tr>
<td>0931</td>
</tr>
<tr>
<td>0932</td>
</tr>
<tr>
<td>0933</td>
</tr>
<tr>
<td>0934</td>
</tr>
<tr>
<td>0935</td>
</tr>
<tr>
<td>序列编码</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0936</td>
</tr>
<tr>
<td>0937</td>
</tr>
<tr>
<td>0938</td>
</tr>
<tr>
<td>0939</td>
</tr>
<tr>
<td>0940</td>
</tr>
<tr>
<td>0941</td>
</tr>
<tr>
<td>0942</td>
</tr>
<tr>
<td>0943</td>
</tr>
<tr>
<td>0944</td>
</tr>
<tr>
<td>0945</td>
</tr>
<tr>
<td>0946</td>
</tr>
<tr>
<td>0947</td>
</tr>
<tr>
<td>0948</td>
</tr>
<tr>
<td>0949</td>
</tr>
<tr>
<td>0950</td>
</tr>
<tr>
<td>0951</td>
</tr>
<tr>
<td>0952</td>
</tr>
<tr>
<td>0953</td>
</tr>
<tr>
<td>0954</td>
</tr>
<tr>
<td>0955</td>
</tr>
<tr>
<td>0956</td>
</tr>
<tr>
<td>0957</td>
</tr>
<tr>
<td>0958</td>
</tr>
<tr>
<td>0959</td>
</tr>
<tr>
<td>0960</td>
</tr>
<tr>
<td>0961</td>
</tr>
<tr>
<td>0962</td>
</tr>
<tr>
<td>0963</td>
</tr>
<tr>
<td>0964</td>
</tr>
<tr>
<td>0965</td>
</tr>
<tr>
<td>0966</td>
</tr>
<tr>
<td>0967</td>
</tr>
<tr>
<td>0968</td>
</tr>
<tr>
<td>0969</td>
</tr>
<tr>
<td>0970</td>
</tr>
<tr>
<td>0971</td>
</tr>
<tr>
<td>0972</td>
</tr>
<tr>
<td>0973</td>
</tr>
<tr>
<td>0974</td>
</tr>
<tr>
<td>序列</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>序列</td>
</tr>
<tr>
<td>1 5 10 15</td>
</tr>
<tr>
<td>序列</td>
</tr>
<tr>
<td>1005</td>
</tr>
<tr>
<td>序列</td>
</tr>
<tr>
<td>序 列 表</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>[1014] Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser</td>
</tr>
<tr>
<td>[1015]  1      5      10     15</td>
</tr>
<tr>
<td>[1016] Gln Thr Leu Ser Leu Thr Cys Thr Val Ser Trp Ile Arg Gln Pro</td>
</tr>
<tr>
<td>[1017]  20     25     30</td>
</tr>
<tr>
<td>[1018] Pro Gly Lys Gly Leu Glu Trp Ile Arg Val Thr Ile Ser Val Asp</td>
</tr>
<tr>
<td>[1019]  35     40     45</td>
</tr>
<tr>
<td>[1020] Thr Ser Lys Asn Gln Phe Ser Leu Lys Leu Ser Ser Val Thr Ala</td>
</tr>
<tr>
<td>[1021]  50     55     60</td>
</tr>
<tr>
<td>[1022] Ala Asp Thr Ala Val Tyr Tyr Cys Trp Gly Gln Gly Thr Leu Val</td>
</tr>
<tr>
<td>[1023]  65     70     75</td>
</tr>
<tr>
<td>[1024] Thr Val Ser Ser</td>
</tr>
<tr>
<td>[1025]  〈210〉52</td>
</tr>
<tr>
<td>[1026]  〈211〉87</td>
</tr>
<tr>
<td>[1027]  〈212〉PRT</td>
</tr>
<tr>
<td>[1028]  〈213〉人工序列</td>
</tr>
<tr>
<td>[1029]  〈220〉</td>
</tr>
<tr>
<td>[1030]  〈223〉序列为合成的</td>
</tr>
<tr>
<td>[1031]  〈400〉52</td>
</tr>
<tr>
<td>[1033]  1      5      10     15</td>
</tr>
<tr>
<td>[1034] Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser</td>
</tr>
<tr>
<td>[1035]  20     25     30</td>
</tr>
<tr>
<td>[1037]  35     40     45</td>
</tr>
<tr>
<td>[1038] Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln</td>
</tr>
<tr>
<td>[1039]  50     55     60</td>
</tr>
<tr>
<td>[1040] Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala</td>
</tr>
<tr>
<td>[1041]  65     70     75</td>
</tr>
<tr>
<td>[1042] Arg Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser</td>
</tr>
<tr>
<td>[1043]  80     85</td>
</tr>
<tr>
<td>[1044]  〈210〉53</td>
</tr>
<tr>
<td>[1045]  〈211〉81</td>
</tr>
<tr>
<td>[1046]  〈212〉PRT</td>
</tr>
<tr>
<td>[1047]  〈213〉人工序列</td>
</tr>
<tr>
<td>[1048]  〈220〉</td>
</tr>
<tr>
<td>[1049]  〈223〉序列为合成的</td>
</tr>
<tr>
<td>[1050]  〈400〉53</td>
</tr>
<tr>
<td>[1052]  1      5      10     15</td>
</tr>
<tr>
<td>序列号</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1053</td>
</tr>
<tr>
<td>1054</td>
</tr>
<tr>
<td>1055</td>
</tr>
<tr>
<td>1056</td>
</tr>
<tr>
<td>1057</td>
</tr>
<tr>
<td>1058</td>
</tr>
<tr>
<td>1059</td>
</tr>
<tr>
<td>1060</td>
</tr>
<tr>
<td>1061</td>
</tr>
<tr>
<td>1062</td>
</tr>
<tr>
<td>1063</td>
</tr>
<tr>
<td>1064</td>
</tr>
<tr>
<td>1065</td>
</tr>
<tr>
<td>1066</td>
</tr>
<tr>
<td>1067</td>
</tr>
<tr>
<td>1068</td>
</tr>
<tr>
<td>1069</td>
</tr>
<tr>
<td>1070</td>
</tr>
<tr>
<td>1071</td>
</tr>
<tr>
<td>1072</td>
</tr>
<tr>
<td>1073</td>
</tr>
<tr>
<td>1074</td>
</tr>
<tr>
<td>1075</td>
</tr>
<tr>
<td>1076</td>
</tr>
<tr>
<td>1077</td>
</tr>
<tr>
<td>1078</td>
</tr>
<tr>
<td>1079</td>
</tr>
<tr>
<td>1080</td>
</tr>
<tr>
<td>1081</td>
</tr>
<tr>
<td>1082</td>
</tr>
<tr>
<td>1083</td>
</tr>
<tr>
<td>1084</td>
</tr>
<tr>
<td>1085</td>
</tr>
<tr>
<td>1086</td>
</tr>
<tr>
<td>1087</td>
</tr>
<tr>
<td>1088</td>
</tr>
<tr>
<td>1089</td>
</tr>
<tr>
<td>1090</td>
</tr>
<tr>
<td>1091</td>
</tr>
<tr>
<td>序列表</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>[1092]</td>
</tr>
<tr>
<td>[1093]</td>
</tr>
<tr>
<td>[1094]</td>
</tr>
<tr>
<td>[1095]</td>
</tr>
<tr>
<td>[1096]</td>
</tr>
<tr>
<td>[1097]</td>
</tr>
<tr>
<td>[1098]</td>
</tr>
<tr>
<td>[1099]</td>
</tr>
<tr>
<td>[1100]</td>
</tr>
<tr>
<td>[1101]</td>
</tr>
<tr>
<td>[1102]</td>
</tr>
<tr>
<td>[1103]</td>
</tr>
<tr>
<td>[1104]</td>
</tr>
<tr>
<td>[1105]</td>
</tr>
<tr>
<td>[1106]</td>
</tr>
<tr>
<td>[1107]</td>
</tr>
<tr>
<td>[1108]</td>
</tr>
<tr>
<td>[1109]</td>
</tr>
<tr>
<td>[1110]</td>
</tr>
<tr>
<td>[1112]</td>
</tr>
<tr>
<td>[1113]</td>
</tr>
<tr>
<td>[1114]</td>
</tr>
<tr>
<td>[1115]</td>
</tr>
<tr>
<td>[1116]</td>
</tr>
<tr>
<td>[1117]</td>
</tr>
<tr>
<td>[1118]</td>
</tr>
<tr>
<td>[1119]</td>
</tr>
<tr>
<td>[1120]</td>
</tr>
<tr>
<td>[1121]</td>
</tr>
<tr>
<td>[1122]</td>
</tr>
<tr>
<td>[1123]</td>
</tr>
<tr>
<td>[1124]</td>
</tr>
<tr>
<td>[1125]</td>
</tr>
<tr>
<td>[1126]</td>
</tr>
<tr>
<td>[1127]</td>
</tr>
<tr>
<td>[1128]</td>
</tr>
<tr>
<td>[1129]</td>
</tr>
<tr>
<td>[1130]</td>
</tr>
</tbody>
</table>

128
<table>
<thead>
<tr>
<th>序列号</th>
<th>[1131]</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>序列号</td>
<td>[1132]</td>
<td>Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1133]</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>序列号</td>
<td>[1134]</td>
<td>Glu Asp Thr Ala Val Tyr Tyr Cys Ser Arg Trp Gly Gln Gly Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1135]</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>序列号</td>
<td>[1136]</td>
<td>Leu Val Thr Val Ser Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1137]</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1138]</td>
<td>&lt;210&gt;58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1139]</td>
<td>&lt;211&gt;80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1140]</td>
<td>&lt;212&gt;PRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1141]</td>
<td>&lt;213&gt;人工序列</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1142]</td>
<td>&lt;220&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1143]</td>
<td>&lt;223&gt;序列是合成的</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1144]</td>
<td>&lt;400&gt;58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1146]</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>序列号</td>
<td>[1147]</td>
<td>Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Trp Val Arg Gln Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1148]</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>序列号</td>
<td>[1149]</td>
<td>Pro Gly Lys Gly Leu Glu Trp Val Arg Phe Thr Ile Ser Ala Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1150]</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>序列号</td>
<td>[1151]</td>
<td>Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1152]</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>序列号</td>
<td>[1153]</td>
<td>Glu Asp Thr Ala Val Tyr Tyr Cys Ser Trp Gly Gln Gly Thr Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1154]</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>序列号</td>
<td>[1155]</td>
<td>Val Thr Val Ser Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1156]</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1157]</td>
<td>&lt;210&gt;59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1158]</td>
<td>&lt;211&gt;87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1159]</td>
<td>&lt;212&gt;PRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1160]</td>
<td>&lt;213&gt;人工序列</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1161]</td>
<td>&lt;220&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1162]</td>
<td>&lt;223&gt;序列是合成的</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1163]</td>
<td>&lt;400&gt;59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1165]</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>序列号</td>
<td>[1166]</td>
<td>Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列号</td>
<td>[1167]</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>序列号</td>
<td>[1169]</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>序列表</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1170] Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1171] 50 55 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1172] Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1173] 65 70 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1174] Arg Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1175] 80 85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1176] \langle210\rangle 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1177] \langle211\rangle 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1178] \langle212\rangle PRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1179] \langle213\rangle 人工序列</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1180] \langle220\rangle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1181] \langle223\rangle 序列是合成的</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1182] \langle400\rangle 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1183] Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1184] 1 5 10 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1185] Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Trp Val Arg Gln Ala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1186] 20 25 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1187] Pro Gly Lys Gly Leu Glu Trp Val Arg Phe Thr Ile Ser Ala Asp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1188] 35 40 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1189] Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1190] 50 55 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1191] Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Gly Gln Gly Thr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1192] 65 70 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1193] Leu Val Thr Val Ser Ser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1194] 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1195] \langle210\rangle 61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1196] \langle211\rangle 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1197] \langle212\rangle PRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1198] \langle213\rangle 人工序列</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1199] \langle220\rangle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1200] \langle223\rangle 序列是合成的</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1201] \langle400\rangle 61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1202] Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1203] 1 5 10 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1204] Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Trp Val Arg Gln Ala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1205] 20 25 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1206] Pro Gly Lys Gly Leu Glu Trp Val Arg Phe Thr Ile Ser Ala Asp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1207] 35 40 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1208] Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>序 列 表</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>[1209] Glu Asp Thr Ala Val Tyr Tyr Cys Ala Trp Gly Gln Gly Thr Leu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1210]</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>[1211] Val Thr Val Ser Ser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1212]</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1213]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1214]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1215]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1216]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1217]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1218]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1219]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1220]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1221]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1222]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1223]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1224]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1225]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1226]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1227]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1228]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1229]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1230]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1231]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1232]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1233]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1234]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1235]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1236]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1237]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1238]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1239]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1240]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1241]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1242]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1243]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1244]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1245]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1246]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1247]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>序列表</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1248] Ala Arg Thr Gly Ser Ser Gly Tyr Phe Asp Phe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1249]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1250]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1251]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1252]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1253]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1254]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1255]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1256]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1257] Ala Gln Thr Gly Ser Ser Gly Tyr Phe Asp Phe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1258]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1259]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1260]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1261]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1262]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1263]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1264]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1265]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1266] Arg Thr Gly Ser Ser Gly Tyr Phe Asp Phe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1267]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1268]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1269]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1270]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1271]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1272]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1273]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1274]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1275] Arg Tyr Ala Ser Gln Ser Ile Ser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1276]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1277]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1278]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1279]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1280]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1281]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1282]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1283]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1284] Xaa Tyr Ala Ser Gln Ser Ile Ser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1285]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
人共有序列
轻链(K I)
DIQMTQSPSSLSASVGDRVVTITCRASQSTSNLYALWYQQKPGKAPKLLIYASAASLESSGVPSRFSGSGSGTDFTLTISSLQPEDPDFFATYCYCQYNLPSLFTFGQGKTVEIKRTVAAPSVFIFPPSDEQLKSGTASVCLLNNFYPREAKVQWKDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEHKVYACEVTHQGLSSPVTKSPNRGECE (SEQ ID NO: 27)

图 2A

人共有序列
重链(亚型 III)
EVQLVESGGGLVQPGGLRLSCAASGFATSSYAMESWMVRQAPGKGLWESVSVISGDDGSTDYADSKRFTISRDNSKNTLYLQMNSLRAEDTAAYCAMTGSQGSYFDWNGQTLLVTVSSASTKGSQVFLAPKSKTSQGTAALGCLVKDYFPEPVTVSWNSGALTSGYHTFPAVLSSGLSSVTPLPSSSLGTQNYICNLYHKPSNTKVEKVEPKSCDKITHTCPPCPAPELLGGPSVFQYPFPKPSKDLTMLISERTPEVTVVQDDVEDEPEVKFNWYVGGEIVDVKPRQNYSTYRVSVLTIWLHMQWLDGLNKEYKCKVSNKALPAPIEKTISAKGQPREPQVTLPSREMEMTNQYSLTCLVKSGFYPDSIAVEWESNGQPENNYKTTPVLDSGFFHLKLTVKSRQGWQNVFSCSVMMHEALHNHYTQKSLLSLSPGK (SEQ ID NO: 28)

图 2B

Fib504 移植体
轻链
DIQMTQSPSSLSASVGDRVVTITCRASESVTLHWYYQQKPGKAPKLLIYYASQISGVPSRFSGSGSGTDFTLTISSLQPEDPDFFATYCYCQYNLPSLFTFGQGKTVEIKRTVAAPSVFIFPPSDEQLKSGTASVCLLNNFYPREAKVQWKDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEHKVYACEVTHQGLSSPVTKSPNRGECE (SEQ ID NO: 29)

图 3A
Fib504 移植体

重链
EVQLVESGGGLVQPGSLRLSCAASSGFITNNYWGWRQAPCGLEWGYISYSG
TSYNPSSLKRFTISADTSTKNTAYLQMNSLRAEDTAAYCMTGSGGYDFWQGTL
VTIVSASTQPSGSSGTDTFTLTISSLQPEDFATYFCQQNSLPNFTGQKVEIKRTVAA
PSVFIFPPSDEQLKSGNSVTCVVCLNFTQSEALGTKVQWKVDNALQGNSQESVTEQDS
KDPYSLSSTLTLSKADYEKHKVACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 30)

图 3B

Fib504K 移植体

轻链
DIQMTQSPSSLSASVGRVTITCRASESVLYWQYYKPGKAPKLLIKYASOSIS
GVPSRFSGSGSSGTDTFTLTISSLQPEDFATYFCQQNSLPNFTGQKVEIKRTVAA
PSVFIFPPSDEQLKSGNSVTCVVCLNFTQSEALGTKVQKVQKVDNALQGNSQESVTEQDS
KDPYSLSSTLTLSKADYEKHKVACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 31)

图 4A

Fib504K 移植体

重链
EVQLVESGGGLVQPGSLRLSCAASSGFITNNYWGWRQAPCGLEWGYISYSG
TSYNPSSLKRFTISADTSTKNTAYLQMNSLRAEDTAAYCMTGSGGYDFWQGTL
VTIVSASTQPSGSSGTDTFTLTISSLQPEDFATYFCQQNSLPNFTGQKVEIKRTVAA
PSVFIFPPSDEQLKSGNSVTCVVCLNFTQSEALGTKVQWKVDNALQGNSQESVTEQDS
KDPYSLSSTLTLSKADYEKHKVACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 30)

图 4B

Fib504K-RF 移植体

轻链
DIQMTQSPSSLSASVGRVTITCRASESVLYWQYYKPGKAPKLLIKYASOSIS
GVPSRFSGSGSSGTDTFTLTISSLQPEDFATYFCQQNSLPNFTGQKVEIKRTVAA
PSVFIFPPSDEQLKSGNSVTCVVCLNFTQSEALGTKVQKVQKVDNALQGNSQESVTEQDS
KDPYSLSSTLTLSKADYEKHKVACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 31)

图 5A
Fib504K-RF 移植体

重链
EVQLVESGGGLVQPGGLRLSCRASASSLYFTATNNYYWGWVRQAPGKGLEWVGVYTSYSGS
TSYNPSLKSRFTISRDTSKNTFYLQMNLSRAEDTAVYYCAAMTGSGSGDFWQQTL
VTSSASTKGPVPFLAPSSKSTSGTAAALGCLVKDYFEPVPVTSVSNLSALTSGVH
TFFAPAVLGSSLYSLSSVTVPSSSLGTQYICNVNKHPSNTKVDDKKEPKSDFKTH
TCPPCPAPELGGGSVFLFPPKPDKTLMISRTPEVTQDVVDVHEDPEVVPNFWYVD
GVEVHNKTKRPEEQQYNSTFRVSVLTVLQDNLNGKEYCKVSNKALPAPIEKTI
SKAGQPREPVYTLPPSREPMTKTNQVSLTCLVKGFPYPSIAVEWE5NSQPENNYK
TTPPVLDSDGSFFLYSKLVDKSRWQQGVNFSCVMHEALHNHYTQKSLLSLPKG
(SEQ ID NO: 32)

图 5B

人源化变体 504.32

轻链
DIQMTQSPGPLASVGRVTITCRASESVDLLHYQQQPKPGKAPKLLKYSOSIS
GVPSRFSGSGSTDFTLTSLQPEFDATYYQQGSLPQNTFQGTQTKVEIKRTVAA
PSVIFPPPDEQLKSSGTAISVVCNLNYPREAKQVQKVDNALSQSNQSVQTEQDS
KDSVLSSTLTLSKADYETHKVKAVCFQVQKDELSSPVTKSNRGC (SEQ ID NO: 33)

图 6A

人源化变体 504.32

重链
EVQLVESGGGLVQPGGLRLSCRASASSLYFTATNNYYWGWVRQAPGKGLEWVGVYTSYSGS
TSYNPSLKSRFTISRDTSKNTFYLQMNLSRAEDTAVYYCAAMTGSGSGDFWQQTL
VTSSASTKGPVPFLAPSSKSTSGTAAALGCLVKDYFEPVPVTSVSNLSALTSGVH
TFFAPAVLGSSLYSLSSVTVPSSSLGTQYICNVNKHPSNTKVDDKKEPKSDFKTH
TCPPCPAPELGGGSVFLFPPKPDKTLMISRTPEVTQDVVDVHEDPEVVPNFWYVD
GVEVHNKTKRPEEQQYNSTFRVSVLTVLQDNLNGKEYCKVSNKALPAPIEKTI
SKAGQPREPVYTLPPSREPMTKTNQVSLTCLVKGFPYPSIAVEWE5NSQPENNYK
TTPPVLDSDGSFFLYSKLVDKSRWQQGVNFSCVMHEALHNHYTQKSLLSLPKG
(SEQ ID NO: 32)

图 5B

138
大鼠抗小鼠的 Fib504 可变结构域

可变轻链
DVVMQTSPATLSVTGERISLSCRASESVDTYLHNYQQKPNESPRLLIKYASOSIS
GIPSRSFGSGSGTDFLTSINGVELEDLSIYYCQGGNSLPNTFGAGTKLELRADAA
PTVSIFPPSEQQLTSGGATVVCNFVNNFYPYRDIHIVKIDGSEQRQVLDSSVTDQDS
KDISTYS (SEQ ID NO: 12)

图 9A

大鼠抗小鼠的 Fib504 可变结构域

可变重链
EVQILQESGPGLVKSPOQLSLTCSVTGFFITNNWGYWIRKFPGNKMWEMGYSYSGS
TSSYNPSLKSRIISITRDTSDKQFFQQLNSVTTEDTATYYCMTGSSGYFDFWPGTM
VTVSSAETTAPSQYPLAPGETALKSNMVTGCLV (SEQ ID NO: 13)

图 9B
图 7A

图 7B
VH 框架序列的比较

框架区 H3

<table>
<thead>
<tr>
<th>序列</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu 亚型 I</td>
<td>A</td>
<td>D</td>
<td>T</td>
<td>S</td>
<td>T</td>
<td>S</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>hu 亚型 II</td>
<td>V</td>
<td>D</td>
<td>T</td>
<td>S</td>
<td>K</td>
<td>N</td>
<td>Q</td>
<td>P</td>
</tr>
<tr>
<td>hu 亚型 III</td>
<td>R</td>
<td>D</td>
<td>N</td>
<td>S</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>赫赛汀</td>
<td>A</td>
<td>D</td>
<td>T</td>
<td>S</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>Fib504</td>
<td>R</td>
<td>D</td>
<td>T</td>
<td>S</td>
<td>K</td>
<td>N</td>
<td>Q</td>
<td>P</td>
</tr>
<tr>
<td>Fib504-RL</td>
<td>R</td>
<td>D</td>
<td>T</td>
<td>S</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>Fib404-RF</td>
<td>R</td>
<td>D</td>
<td>T</td>
<td>S</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>P</td>
</tr>
</tbody>
</table>

图 10A

结合于:

- □ 白蛋白
- □ α4β7

噬菌体结合 (OD)

图 10B
<table>
<thead>
<tr>
<th>504.16</th>
<th>蛋白</th>
<th>密码子</th>
<th>氨基酸</th>
<th>氨基酸</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>人共有</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>E</td>
<td>Q</td>
<td>SAA</td>
<td>EQ</td>
</tr>
<tr>
<td>29</td>
<td>V</td>
<td>I</td>
<td>RTT</td>
<td>VI</td>
</tr>
<tr>
<td>31</td>
<td>T</td>
<td>N</td>
<td>RAC</td>
<td>DN</td>
</tr>
<tr>
<td>33</td>
<td>L</td>
<td>L</td>
<td>YWC</td>
<td>LYPH</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>A</td>
<td>SMC</td>
<td>HADP</td>
</tr>
<tr>
<td>49</td>
<td>K</td>
<td>Y</td>
<td>WAW</td>
<td>KYNZ</td>
</tr>
<tr>
<td>51</td>
<td>Y</td>
<td>A</td>
<td>KMC</td>
<td>YADS</td>
</tr>
<tr>
<td>53</td>
<td>Q</td>
<td>S</td>
<td>YMG</td>
<td>QSPZ</td>
</tr>
<tr>
<td>55</td>
<td>S</td>
<td>L</td>
<td>SL</td>
<td>TLYG</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>RWA</td>
<td>IEKV</td>
<td>IEK</td>
</tr>
<tr>
<td>89</td>
<td>Q</td>
<td>Q</td>
<td>RWA</td>
<td>IEK</td>
</tr>
<tr>
<td>91</td>
<td>G</td>
<td>N</td>
<td>KRT</td>
<td>GYDC</td>
</tr>
<tr>
<td>93</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>NWYRSZ</td>
</tr>
<tr>
<td>95</td>
<td>P</td>
<td>P</td>
<td>WRS</td>
<td>NWYRSZ</td>
</tr>
</tbody>
</table>

注：Z是终止密码子。最常见到的氨基酸加框。

图11A-1
<table>
<thead>
<tr>
<th></th>
<th>共有</th>
<th>密码子</th>
<th>氨基酸编码</th>
<th>氨基酸保守</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>F</td>
<td>T</td>
<td>WYC</td>
<td>FITS</td>
</tr>
<tr>
<td>30</td>
<td>T</td>
<td>S</td>
<td>ASC</td>
<td>TS</td>
</tr>
<tr>
<td>32</td>
<td>N</td>
<td>Y</td>
<td>WAC</td>
<td>NY</td>
</tr>
<tr>
<td>34</td>
<td>W</td>
<td>M</td>
<td>WKG</td>
<td>WMRL</td>
</tr>
<tr>
<td>49</td>
<td>G</td>
<td>S</td>
<td>RGC</td>
<td>GS</td>
</tr>
<tr>
<td>51</td>
<td>I</td>
<td>I</td>
<td>KWT</td>
<td>YVDF</td>
</tr>
<tr>
<td>53</td>
<td>Y</td>
<td>G</td>
<td>KRT</td>
<td>YGCD</td>
</tr>
<tr>
<td>55</td>
<td>S</td>
<td>G</td>
<td>RGC</td>
<td>SG</td>
</tr>
<tr>
<td>57</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>N</td>
<td>A</td>
<td>RMC</td>
<td>NADT</td>
</tr>
<tr>
<td>63</td>
<td>L</td>
<td>V</td>
<td>STG</td>
<td>LV</td>
</tr>
<tr>
<td>65</td>
<td>S</td>
<td>G</td>
<td>RGC</td>
<td>SG</td>
</tr>
<tr>
<td>93</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>T</td>
<td>G</td>
<td>AKG</td>
<td>MR</td>
</tr>
<tr>
<td>97</td>
<td>G</td>
<td>S</td>
<td>RSC</td>
<td>TGAS</td>
</tr>
<tr>
<td>99</td>
<td>Y</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 11A-2
有限氨基酸扫描-轻链 HVRs
<table>
<thead>
<tr>
<th>氨基酸位置</th>
<th>氨基酸</th>
<th>观测到的次数</th>
</tr>
</thead>
<tbody>
<tr>
<td>A25</td>
<td>G S T Y</td>
<td>64 2 11 7</td>
</tr>
<tr>
<td>S26</td>
<td>G I K N P Q R S T</td>
<td>6 4 2 3 8 1 1 7 61 6</td>
</tr>
<tr>
<td>E27</td>
<td>A D E G H I K L N Q R V</td>
<td>6 60 2 1 1 4 1 2 5 1 2</td>
</tr>
<tr>
<td>S28</td>
<td>A D G H I K N P R S T V V</td>
<td>1 1 1 9 3 7 56 4 1 1</td>
</tr>
<tr>
<td>V29</td>
<td>A G I K L M Q R V</td>
<td>11 6 3 1 9 6 1 1 55</td>
</tr>
<tr>
<td>D30</td>
<td>A D E G H I K L N P S T V</td>
<td>3 59 9 3 3 1 1 1 6 1 1 2 3</td>
</tr>
<tr>
<td>D31</td>
<td>D E G N</td>
<td>77 13 2 1</td>
</tr>
<tr>
<td>L32</td>
<td>I L M</td>
<td>1 88 4</td>
</tr>
<tr>
<td>L33</td>
<td>A I L M V</td>
<td>1 5 64 1 22</td>
</tr>
<tr>
<td>H34</td>
<td>F H Y S</td>
<td>1 87 4 1</td>
</tr>
<tr>
<td>HVR-L3</td>
<td>N96 A F H I L M N R S T V W Y</td>
<td>2 6 1 3 47 3 2 2 2 4 2 16 3</td>
</tr>
<tr>
<td>HVR-H3</td>
<td>M94 A E G M O R S</td>
<td>1 3 1 48 10 24 8</td>
</tr>
</tbody>
</table>

注：最常观测到的氨基酸加上了框。
<table>
<thead>
<tr>
<th>CDR-L3</th>
<th>CDR-L2</th>
<th>CDR-L1</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>SLS</td>
<td>AGSTV</td>
</tr>
<tr>
<td>FYR</td>
<td>ER</td>
<td>KGPNSTV</td>
</tr>
<tr>
<td>WYRS</td>
<td>SH</td>
<td>ADGMN</td>
</tr>
<tr>
<td>APHLM</td>
<td>K</td>
<td>KIM</td>
</tr>
</tbody>
</table>

所有观测到的改变
大鼠 Fib 504
人共有

所有观测到的氨基酸

有限扫描

广泛扫描观测到的氨基酸

软随机
(改变为 504)
Fib 504 变体在 RPMI8866 细胞中同人 MAdCAM-1-Ig 结合的活性

图 14
### 位置 504.32R 氨基酸替换

<table>
<thead>
<tr>
<th>Kabat #</th>
<th>相应#</th>
<th>氨基酸</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>A1</td>
<td>R</td>
</tr>
<tr>
<td>25</td>
<td>A2</td>
<td>A GSTV</td>
</tr>
<tr>
<td>26</td>
<td>A3</td>
<td>S GIKNPQRT</td>
</tr>
<tr>
<td>27</td>
<td>A4</td>
<td>E VQADGHIKLN R</td>
</tr>
<tr>
<td>28</td>
<td>A5</td>
<td>S YADGHIKNPR TV</td>
</tr>
<tr>
<td>29</td>
<td>A6</td>
<td>V RIA GKLQ</td>
</tr>
<tr>
<td>30</td>
<td>A7</td>
<td>D VSAE GHIKLN P ST</td>
</tr>
<tr>
<td>31</td>
<td>A8</td>
<td>D GNETPS</td>
</tr>
<tr>
<td>32</td>
<td>A9</td>
<td>L YIM</td>
</tr>
<tr>
<td>33</td>
<td>A10</td>
<td>L AIMV</td>
</tr>
<tr>
<td>34</td>
<td>A11</td>
<td>H YFS</td>
</tr>
</tbody>
</table>

### HVR-L1

| 49      | B1    | K YN |
| 50      | B2    | Y |
| 51      | B3    | A |
| 52      | B4    | S D |
| 53      | B5    | Q S |
| 54      | B6    | S DLR |
| 55      | B7    | I VEKT |
| 56      | B8    | S |

### HVR-L2

| 89      | C1    | O |
| 90      | C2    | Q |
| 91      | C3    | G |
| 92      | C4    | N |
| 93      | C5    | S |
| 94      | C6    | L |
| 95      | C7    | P |
| 96      | C8    | N VWYRSTAFHILM |
| 97      | C9    | T |

图15A
位置 Kabat # 相应# 氨基酸

<table>
<thead>
<tr>
<th>HVR-H1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>D1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>D2</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>D3</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>D4</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>D5</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>D6</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>D7</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>D8</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>D9</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>D10</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HVR-H2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>E1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>E2</td>
<td>Y</td>
<td>F V D</td>
</tr>
<tr>
<td>51</td>
<td>E3</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>E4</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>E5</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>E6</td>
<td>S</td>
<td>G</td>
</tr>
<tr>
<td>55</td>
<td>E7</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>E8</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>E9</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>E10</td>
<td>S</td>
<td>Y</td>
</tr>
<tr>
<td>59</td>
<td>E11</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>E12</td>
<td>N</td>
<td>T A D</td>
</tr>
<tr>
<td>61</td>
<td>E13</td>
<td>P</td>
<td>H D A</td>
</tr>
<tr>
<td>62</td>
<td>E14</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>E15</td>
<td>L</td>
<td>V</td>
</tr>
<tr>
<td>64</td>
<td>E16</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>E17</td>
<td>S</td>
<td>G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HVR-H3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>F1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>F2</td>
<td>R</td>
<td>M A E G Q S</td>
</tr>
<tr>
<td>95</td>
<td>F3</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>F4</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>F5</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>F6</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>F7</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>F8</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>F9</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>F10</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F11</td>
<td>F</td>
<td>Y</td>
</tr>
</tbody>
</table>

重链 FR3

| 71     | R | A T |
| 73     | T | N |
| 78     | F | A F L |

图 15B
图16