
USOO8341469B2

(12) United States Patent (10) Patent No.: US 8,341,469 B2
Miyama et al. (45) Date of Patent: Dec. 25, 2012

(54) CONFIGURATION DEVICE FOR (56) References Cited
CONFIGURING FPGA

U.S. PATENT DOCUMENTS

(75) Inventors: Kenichi Miyama, Kawasaki (JP); 5,705,938 A * 1/1998 Kean 326/39
Noboru Shimizu, Kawasaki (JP); 5,844.422 A * 12/1998 Trimberger et al. 326/38

fly. 6,069,489 A * 5/2000 Iwanczuk et al. 326,40
Hiromitsu Yanaka, Kawasaki (JP); 6,102.963 A ck 8, 2000 Agrawal T16.1 17

Toshihisa Kyouno, Kawasaki (JP);
Nobuyuki Kobayashi, Kawasaki (JP)

(73) Assignee: Fujitsu Limited, Kawasaki (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 948 days.

(21) Appl. No.: 12/318,586

(22) Filed: Dec. 31, 2008

(65) Prior Publication Data

US 2009/O292978 A1 Nov. 26, 2009

(30) Foreign Application Priority Data

May 26, 2008 (JP) 2008-1371.23

(51) Int. Cl.
GOIR 3L/393 (2006.01)

(52) U.S. Cl. .. 714/719, 714/807
(58) Field of Classification Search 714/719,

71.4/807
See application file for complete search history.

UNIT

CONFIGURATION STATE
CONTROL UNIT

FIRST DATA
CONVERSION
UNIT

READ OPERATION UNIT
CONTROL UNIT

READ-DATA
DETECTION UNIT
END-OF-READ

MEMORY

... 32641
714,763

6, 191,614 B1*
6,237,124 B1*

2/2001 Schultz et al.
5/2001 Plants

6,665,766 B1* 12/2003 Guccione et al. T10,305
7,036,059 B1 * 4/2006 Carmichael et al. 714/725
7,310,759 B1* 12/2007 Carmichael et al. 714/725
7.350,134 B2 * 3/2008 Goel et al. T14f764

2008.0024163 A1 1/2008 Marui

FOREIGN PATENT DOCUMENTS

JP 8-76974 3, 1996
JP 2003-44303 2, 2003
JP 2007-251329 9, 2007

OTHER PUBLICATIONS

Japanese Office Action issued Sep. 11, 2012 in corresponding Japa
nese Patent Application No. 2008-137123.

* cited by examiner

Primary Examiner — Stephen M Baker
(74) Attorney, Agent, or Firm — Staas & Halsey LLP
(57) ABSTRACT
An FPGA configuration device comprises: a read operation
control unit which performs control to read configuration data
from a configured FPGA.; and a configuration data transfer
unit which transfers the configuration data read out of the
FPGA to a memory.

12 Claims, 26 Drawing Sheets

3:1
SELECTOR

SECOND
DATA
CONVERSION

BEGINNING-OF

DATA DETECTION

Hat UNIT INTEGRITY
CHECKING UNIT

U.S. Patent Dec. 25, 2012 Sheet 1 of 26 US 8,341,469 B2

- r

ELECTRONIC DEVICE /

DATA WRITER

- -4--
ELECTRONIC DEVICE

DATA WRITER

MEMORY
CONTROLLER

U.S. Patent Dec. 25, 2012 Sheet 3 of 26 US 8,341,469 B2

FIG. 4

2-incar Y BEGINNING-OF-DATA DETECTED
p

*N conFIGURATION EXECUTION ROUTINE I
S3

Y END-OF-DATA DEECTED
p

S4 OPERATE 3:1 SELECTOR

S5 GENERATE READ CONTROL SIGNAL

N sTART READING OF CONFIGURATION DATA

a...a Y BEGINNING-OF-DAA DETECTED
p

SN MEMORY write ROUTINET
S9

Y END-OF-DATA DETECTED
p

END

U.S. Patent Dec. 25, 2012 Sheet 4 of 26 US 8,341,469 B2

FIG.5

CONFIGURATION EXECUTION ROUTINE

S10 OPERATE 3:1 SELECTOR

EXECUTE CONFIGURATION OF FPGA S11

FIG.6

WRITE CONFIGURATION DATA
TO MEMORY

S21

S22

S23

S24

U.S. Patent Dec. 25, 2012 Sheet 5 of 26 US 8,341,469 B2

FIG.7

to (a) READ OPERATION CONTROL UNIT - 21 READ 13
e READ ENABLE
S- INSTRUCTION REPEALE | SN
5S RECEIVER GENERATOR (d)

g Stictor till P
3. FREQUENCY (18)
ce N E ByIDER READ CLOCK
as - 3Oe
S 41cLK

FROM
BEGINNING
OF-READ

(g) Bection 2 FIRST DATA CONVERSION UNIT UNIT (14)

(h)
FROM END
OF-READ
DATA
DETECTION

FIFO UNIT (15)
TO REGISTER FROM
yer OUTPUT INPUT Enable FPGA(2)

S
a.

Satisfied c
CA

FREQUENCY a
DIVIDER c

FROM es
MEMORY
CONTROLLER 2
(5) FLOW CONTROL Cls

SIGNAL

SYSTEM
CLOCK

U.S. Patent Dec. 25, 2012 Sheet 6 of 26 US 8,341,469 B2

1-1-2-3-4-sh-sh-71-812-12-2S
1-1-2-3-4-5-sh-7th-82-1S

U.S. Patent Dec. 25, 2012 Sheet 8 of 26 US 8,341,469 B2

FIG.1O

-2-3-4-5-6-7-8m1m2 m-3 mansms
i-l-al-al-les-sl-l-alinal na handhs,

(r) B - J -

(t) S m S

U.S. Patent Dec. 25, 2012 Sheet 9 of 26 US 8,341,469 B2

FIG.11

S30 READ CONFIGURATION DATA

CONVERT CONFIGURATION DATA

S32

S3

OPERATE 3: 1 SELECTOR

S33 EXECUTE CONFIGURATION

S34

LOADING OF DATA COMPLETED
?

U.S. Patent Dec. 25, 2012 Sheet 11 of 26 US 8,341,469 B2

FIG.13

Cas Y BEGINNING-OF
DATA DETECTED

END-OF-DATA
DETECTED

p
S4

OPERATE 3: 1 SELECTOR
S5

GENERATE READ CONTROL S40
SIGNAL MEMORY WRITE ROUTINE

S9
START READING OF
CONFIGURATION DATA Y END-OF-DATA

DETESTED S6
S7

BEGINNING-OF- S41
CHECK INTEGRITY DATA DETECTED

y STORE CHECK RESULT

U.S. Patent Dec. 25, 2012 Sheet 12 of 26 US 8,341,469 B2

FIG.14

S40

S2'n WRITE CONFIGURATION DATA TO MEMORY

END

U.S. Patent Dec. 25, 2012 Sheet 14 of 26 US 8,341,469 B2

FIG.16

Pass. Y BEGINNING-OF
DATA DETECTED

S40
CONFIGURATION EXECUTION
ROUTINE MEMORY WRITE ROUTINE

S3 S9

END-OF-DATA END-OF-DATA
DETECTED DETECTED

p 2
S4

S41
OPERATE 3: SELECTOR CHECK INTEGRITY

S5

GENERATE READ CONTROL STORE CHECK RESULT
SIGNAL S42

S44

START READING OF
CONFIGURATION DATA

S6 S45
S7

INTEGRITY VERIFED

BEGINNING-OF
DATA DETECTED

2

U.S. Patent Dec. 25, 2012 Sheet 15 of 26 US 8,341,469 B2

FIG.17

START

DOES CHECK
RESULT HELD IN CHECK

RESULT HOLDING UNIT SHOW
'INTEGRITY VERIFIED"

U.S. Patent Dec. 25, 2012 Sheet 17 of 26 US 8,341,469 B2

FIG.19

Cas Y BEGINNING-OF
DATA DETECTED

S50

CONFIGURATION EXECUTION S40
ROUTINE MEMORY WRITE ROUTINE
S3

END-OF-DATA
DETECTED

2

END-OF-DATA
DETECTED

p

S52 S41

STORE ERROR DETECTION CODE CHECK INTEGRITY
S4 S42

OPERATE 3: 1 SELECTOR STORE CHECK RESULT

S5 S44
GENERATE READ CONTROL
SIGNAL INTEGRITY VERIFIED

p
S6\ START READING OF S45

CONFIGURATION DATA DELETE CONFIGURATION
DATA STORED IN MEMORY

S7 s BEGINNING-OF- END
DATA DETECTED

U.S. Patent Dec. 25, 2012 Sheet 18 of 26 US 8,341,469 B2

FIG.2O
S50

CONFIGURATION EXECUTION ROUTINE

S1 O OPERATE 3: 1 SELECTOR

EXECUTE CONFIGURATION OF FPGA

CALCULATE ERROR DETECTION CODE

S11

S51

U.S. Patent Dec. 25, 2012 Sheet 20 of 26 US 8,341,469 B2

FIG.22

S1 s Y BEGINNING-OF
DATA DETECED

S60
S63

CONFIGURATION EXECUTION
ROUTINE MEMORY WRITE ROUTINE

Y END-OF-DATA Y END-OF-DATA
DETECTED DETECTED

?? ?

S4 S66

OPERATE 3: SELECTOR INTEGRITY CHECKING UNIT
S5 OUTPUTS CHECK RESULT

GENERATE READ CONTROL
SIGNAL STORE CHECK RESULT

S44 S42
START READING OF
CONFIGURATION DATA 1NTEGRITY VERIFIED)Y
S6 ?

DELETE CONFIGURATION
BEGINNING-OF- DATA STORED IN MEMORY

S7

DATA DETECTED
p

U.S. Patent Dec. 25, 2012 Sheet 21 of 26 US 8,341,469 B2

FIG.23

S60

CONFIGURATION EXECUTION ROUTINE

OPERATE 3:1 SELECTOR

EXECUTE CONFIGURATION OF FPGA S11

DOES DATA PORTION
BEING WRITTEN CORRESPOND TO
SAMPLE PORTION TO BE USED

FOR INTEGRITY CHECK

S62
HOLD SAMPLE OF CONFIGURATION DATA

U.S. Patent Dec. 25, 2012 Sheet 22 of 26 US 8,341,469 B2

FIG.24
S63

S64
DOES DATA

PORTION CURRENTLY
READ OUT CORRESPOND TO SAMPLE

PORTION TO BE USED FOR
INTEGRITY CHECK

S65 CHECK INTEGRITY

END

US 8,341,469 B2 Sheet 23 of 26 Dec. 25, 2012 U.S. Patent

LINÍ) NOI103130 WIW0 -BII}|\-40 –9NINNI938

\{010ETES
- - - - - - - - - a-

IIN?I 0NISSHO0}}d BI IHM

GZ (9 I -}|________ \RIIHM VI?0;

U.S. Patent Dec. 25, 2012 Sheet 24 of 26 US 8,341,469 B2

FIG.26

as Y BEGINNING-OF
DATA DETECTED

S2

CONFIGURATION EXECUTION S70
ROUTINE

S3 IDENTIFIER DETECTED

END-OF-DATA
DETECTED

p

DETECTED IDENTIFIER
=STORED IDENTIFIER

UPDATE STORED
IDENTIFIER

MEMORY WRITE ROUTINE

END-OF-DATA
DETECTED

p

S4

OPERATE 3:1 SELECTOR
5 S

GENERATE READ CONTROL
SIGNAL

START READING OF
CONFIGURATION DATA

S6
7

BEGINNING-OF- s
2

S

DATA DETECTED

END

U.S. Patent Dec. 25, 2012 Sheet 26 of 26 US 8,341,469 B2

FIG.28

Cas Y BEGINNING-OF
DATA DETECTED

S2

CONFIGURATION EXECUTION
ROUTINE

S3
S70 END-OF-DATA

DETECTED
p IDENTIFIER DETECTED

S4

OPERATE 3:1 SELECTOR

GENERATE READ CONTROL
SIGNAL

START READING OF
CONFIGURATION DATA

6

Pass BEGINNING-OF
DATA DETECTED

?

DETECTED IDENTIFIER
S5

=READOUT IDENTIFIER

S MEMORY WRITE ROUTINE

END-OF-DATA
DETECTED

S74 y
READ IDENTIFIER OF
CONFIGURATION DATA
CURRENTLY STORED IN MEMORY END

US 8,341,469 B2
1.

CONFIGURATION DEVICE FOR
CONFIGURING FPGA

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2008
137123, filed on May 26, 2008, the entire contents of which
are incorporated herein by reference.

FIELD

The present invention relates to an FPGA (Field Program
mable Gate Array) configuration device for configuring an
FPGA, a circuit board on which such an FPGA configuration
device is mounted, an electronic device which configures a
built-in FPGA by using an FPGA configuration device, and
an FPGA configuration method.

BACKGROUND

In recent years, FPGAs whose internal logic circuits are
freely programmable have come into wide use. A device
equipped with an FPGA incorporates an FPGA configuration
circuit which is used to configure the FPGA by loading con
figuration data stored in a designated memory into the FPGA
during power-up, etc. Some of such FPGA-equipped devices
are designed to be able to configure the FPGA not only by
using the configuration data stored in memory, but also by
using an externally connected configuration data writer (here
inafter referred to as the “data writer).

FIG. 1 is a block diagram schematically showing the con
figuration of an electronic device that can configure a built-in
FPGA by using an externally connected data writer. The
electronic device 1 includes an FPGA 2, an FPGA configu
ration device 3, and a memory 4. The FPGA configuration
device 3 can configure the FPGA 2 by loading the configu
ration data stored in the memory 4 into the FPGA 2 during
power-up of the electronic device 1, etc. Further, the elec
tronic device 1 is configured so that the FPGA2 can also be
configured using the externally connected data writer 100.
When configuring the FPGA2 from the data writer 100, the

FPGA configuration device 3 stores the configuration data,
which the data writer 100 writes to the FPGA 2, as new
configuration data into the memory 4 in parallel with the
configuration of the FPGA 2. For example, when power is
turned on the next time, the FPGA configuration device 3
configures the FPGA 2 by using the newly stored configura
tion data.

Japanese Laid-open Patent Publication No. 2007-251329
discloses a circuit having a configurable core, a configuration
data storage memory, a configuration controller, and a
memory controller. Japanese Laid-open Patent Publication
No. 8-76974 discloses a technique that stores configuration
data in an internal configuration RAM and that downloads the
configuration data from the RAM into an FPGA. Japanese
Laid-open Patent Publication No. 2003-44303 discloses a
technique that stores configuration data in a nonvolatile
memory and that loads the configuration data from the non
volatile memory into an FPGA.
When configuring the FPGA 2 by the data writer 100

externally connected to the electronic device 1, it is required
that the data writing speed at which the FPGA configuration
device 3 transfers the data to the memory 4 be faster than the
data transfer speed at which the data writer 100 transfers the
data to the FPGA 2. Accordingly, the configuration of the
FPGA configuration device 3 and the device to be used as the

5

10

15

25

30

35

40

45

50

55

60

65

2
memory 4 are chosen so as to satisfy the above requirement,
which imposes constraints on the circuit design of the elec
tronic device 1.

SUMMARY

An object of the device and method disclosed herein is to
design an electronic device equipped with an FPGA so that
the FPGA can be configured using an externally connected
data writer, and to resolve the above-described problem that
arises when storing the configuration data written from the
data writer to the FPGA into a memory.

According to an aspect of the embodiment, an FPGA con
figuration device comprises: a read operation control unit
which performs control to read configuration data from a
configured FPGA.; and a configuration data transfer unit
which transfers the configuration data read out of the FPGA to
a memory.

Additional objects and advantages of the embodiment will
be set forth in part in the description which follows, and in
part will be obvious from the description, or may be learned
by practice of the invention. The object and advantages of the
invention can be realized and attained by means of the ele
ments and combinations particularly pointed out in the
appended claims. It is to be understood that the foregoing
general description and the following detailed description are
exemplary and explanatory only and are not restrictive of the
invention, as claimed.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be more clearly understood
from the description as set below with reference to the accom
panying drawings, wherein:

FIG. 1 is a block diagram schematically showing the con
figuration of an electronic device that can configure a built-in
FPGA by using an externally connected data writer;

FIG. 2 is a block diagram Schematically showing an
embodiment of an electronic device disclosed herein;

FIG. 3 is a block diagram schematically showing a first
configuration example of the FPGA configuration device dis
closed herein;

FIG. 4 is a flowchart (part 1) illustrating a configuration
method to be used by the FPGA configuration device of FIG.
3:

FIG. 5 is a flowchart of a configuration execution routine
shown in FIG. 4;

FIG. 6 is a flowchart of a memory write routine shown in
FIG. 4;

FIG. 7 is a block diagram Schematically showing a con
figuration example of a read operation control unit and a first
data conversion unit shown in FIG. 3;

FIG. 8 is a time chart (part 1) of signals at various parts of
the circuit of FIG. 7:

FIG. 9 is a time chart (part 2) of signals at various parts of
the circuit of FIG. 7:

FIG. 10 is a time chart (part 3) of signals at various parts of
the circuit of FIG. 7:

FIG. 11 is a flowchart (part 2) illustrating a configuration
method to be used by the FPGA configuration device of FIG.
3:

FIG. 12 is a block diagram schematically showing a second
configuration example of the FPGA configuration device dis
closed herein;

FIG.13 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device of FIG. 12;

US 8,341,469 B2
3

FIG. 14 is a flowchart of a memory write routine shown in
FIG. 13;

FIG. 15 is a block diagram schematically showing a third
configuration example of the FPGA configuration device dis
closed herein;

FIG. 16 is a flowchart (part 1) illustrating a configuration
method to be used by the FPGA configuration device of FIG.
15;

FIG. 17 is a flowchart (part 2) illustrating a configuration
method to be used by the FPGA configuration device of FIG.
15;

FIG. 18 is a block diagram schematically showing a fourth
configuration example of the FPGA configuration device dis
closed herein;

FIG. 19 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device of FIG. 18;

FIG. 20 is a flowchart of a configuration execution routine
shown in FIG. 19:

FIG. 21 is a block diagram schematically showing a fifth
configuration example of the FPGA configuration device dis
closed herein;

FIG.22 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device of FIG.22;

FIG. 23 is a flowchart of a configuration execution routine
shown in FIG. 22.

FIG. 24 is a flowchart of a memory write routine shown in
FIG.22;

FIG. 25 is a block diagram schematically showing a sixth
configuration example of the FPGA configuration device dis
closed herein;

FIG. 26 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device of FIG. 25:

FIG. 27 is a block diagram schematically showing a sev
enth configuration example of the FPGA configuration
device disclosed herein; and

FIG.28 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device of FIG. 27.

DESCRIPTION OF THE EMBODIMENT(S)

The embodiments will be described below with reference
to the accompanying drawings. FIG. 2 is a block diagram
schematically showing an embodiment of an electronic
device disclosed herein. The electronic device 1 includes an
FPGA2 which implements the processing to be performed in
the electronic device 1, an FPGA configuration device 3
which configures the FPGA2 when power is turned on to the
electronic device 1 or when an externally issued instruction is
received, a memory 4 for storing configuration data for the
FPGA 2, a memory controller 5 which controls data read/
write operations to the memory 4, and a CPU 6 which controls
the operation of the FPGA configuration device 3. The
memory 4 may be constructed, for example, from a nonvola
tile memory such as a flash memory. The electronic device 1
is configured so that the FPGA2 can also be configured from
an externally connected data writer 100. The FPGA configu
ration device 3 may be mounted on the same circuit board as
the FPGA2 and the memory 4, or on a different circuit board.

FIG. 3 is a block diagram schematically showing a first
configuration example of the FPGA configuration device 3
disclosed herein. For example, when configuring the FPGA2
by the external data writer 100 at the time of manufacture of
the electronic device 1, the data writer 100 is connected to the
FPGA configuration device 3, and the configuration data
output from the data writer 100 is received by the FPGA
configuration device 3.

10

15

25

30

35

40

45

50

55

60

65

4
As shown, the FPGA configuration device 3 includes a

beginning-of-write-data detection unit 10, an end-of-write
data detection unit 11, a configuration state control unit 12, a
read operation control unit 13, a beginning-of-read-data
detection unit 14, an end-of-read-data detection unit 15, a first
data conversion unit 16, a second data conversion unit 17, and
a 3:1 selector 18.
When configuring the FPGA 2 by the external data writer

100, the beginning-of-write-data detection unit 10 detects the
beginning of the configuration data being loaded from the
data writer 100, and generates a trigger signal indicating the
beginning of the configuration data. The end-of-write-data
detection unit 11 detects the end of the configuration data
being loaded from the data writer 100, and generates a trigger
signal indicating the end of the configuration data.
The configuration state control unit 12 selects the Supply

Source of the configuration data and its write control signal to
be output to the FPGA 2, by switching the 3:1 selector 18
according to whether the FPGA2 is to be configured by the
external data writer 100 connected to the FPGA configuration
device 3 or by using the configuration data stored in the
memory 4. Further, when the end of the configuration data
being loaded from the data writer 100 is detected by the
end-of-write-data detection unit 11, the configuration state
control unit 12 causes the read operation control unit 13 to
initiate control to read the configuration data from the FPGA
2, and switches the 3:1 selector 18 so that the control signal
from the read operation control unit 13 is supplied to the
FPGA 2. Memory controller 5 is then made to initiate pro
cessing for writing the thus readout configuration data to the
memory 4.

After the configuration of the FPGA 2 by the data writer
100 is completed, the read operation control unit 13 performs
control to read the configuration data from the FPGA 2 by
generating a read clock signal for reading the configuration
data from the FPGA 2. The first data conversion unit 16
converts the configuration data received from the FPGA 2
into a data format Suitable for writing to the memory 4, and
transfers the thus converted data to the memory 4. The opera
tion for reading the configuration data from the FPGA2 and
the operation for transferring the data to the memory 4, which
the read operation control unit 13 and the first data conversion
unit 16 respectively perform, are controlled by a flow control
signal that the memory controller 5 generates for the data to
be written to the memory 4; that is, when the data can be
written to the memory 4, the configuration data is transferred
to the memory 4, but when the data cannot be written to the
memory 4, the transfer operation is aborted. The read control
of the configuration data performed based on the flow control
signal will be described in detail later.
The beginning-of-read-data detection unit 14 detects the

beginning of the configuration data being read out of the
FPGA 2 by the read clock signal, and generates a trigger
signal indicating the beginning of the configuration data. The
end-of-read-data detection unit 15 detects the end of the con
figuration data being read out of the FPGA2, and generates a
trigger signal indicating the end of the configuration data.
When configuring the FPGA 2 by using the configuration
data stored in the memory 4, the second data conversion unit
17 converts the configuration data read out of the memory 4
into a data format suitable for writing to the FPGA2. Under
the control of the select signal from the configuration state
control unit 12, the 3:1 selector 18 selects the supply source of
the configuration data and/or its write control signal to be
output to the FPGA 2.

FIG. 4 is a flowchart (part 1) illustrating a configuration
method to be used by the FPGA configuration device 3, FIG.

US 8,341,469 B2
5

5 is a flowchart of a configuration execution routine S2 shown
in FIG.4, and FIG. 6 is a flowchart of a memory write routine
S8 shown in FIG. 4. According to the configuration method
shown in FIG.4, the data writer 100 is connected to the FPGA
configuration device 3, and the FPGA2 is configured using
the data writer 100.

In step S1, when the configuration data and its write control
signal transmitted from a write processing unit 101 in the data
writer 100 are received by the FPGA configuration device 3.
the beginning-of-write-data detection unit 10 detects the
beginning of the received configuration data. Based on the
timing with which the beginning-of-write-data detection unit
10 detected the configuration data, the configuration state
control unit 12 determines the phase of the received configu
ration data.

In step S2, the configuration of the FPGA2 is performed
using the data writer 100. In step S10 shown in FIG. 5, the
configuration state control unit 12, based on the thus deter
mined phase of the configuration data, operates the 3:1 selec
tor 18 so as to select the data writer 100 as the supply source
of the configuration data to be output to the FPGA2. In step
S11, the write processing unit 101 in the data writer 100
executes the configuration of the FPGA2. Step S2 is repeated
until the end of the configuration data is detected by the
end-of-write-data detection unit 11.

In step S3 in FIG. 4, when the end-of-write-data detection
unit 11 detects the end of the configuration data being loaded
from the data writer 100, the configuration state control unit
12 determines that the configuration of the FPGA 2 by the
data writer 100 is completed, and the process proceeds to step
S4. In step S4, the configuration state control unit 12 operates
the 3:1 selector 18 so as to select the read operation control
unit 13 as the Supply source of the control signal to be output
to the FPGA 2.

In step S5, the configuration state control unit 12 causes the
read operation control unit 13 to generate a read control signal
for reading the configuration data from the FPGA2. The read
control signal is supplied via the 3:1 selector 18 to the FPGA
2, thus starting the operation to read the configuration data
from the FPGA2 (S6). In step S7, the beginning-of-read-data
detection unit 14 detects the beginning of the configuration
data being read out of the FPGA 2.

Based on the timing with which the beginning-of-read-data
detection unit 14 detected the configuration data, the configu
ration state control unit 12 determines the phase of the
received configuration data. The configuration state control
unit 12 that has determined the phase of the configuration data
instructs the first data conversion unit 16 to convert the con
figuration data read out of the FPGA2 into a format suitable
for writing to the memory 4. Further, the configuration state
control unit 12 instructs the memory controller 5 to write the
configuration data output from the first data conversion unit
16 into the memory 4.

In step S8, the configuration data read out of the FPGA2 is
stored in the memory 4. In step S20 of FIG. 6, the configura
tion state control unit 12, based on the thus determined phase
of the configuration data, operates the 3:1 selector 18 so as to
select the read operation control unit 13 as the Supply source
of the control signal to be output to the FPGA2.

In step S21, the configuration State control unit 12 causes
the read operation control unit 13 to generate the read control
signal for reading the configuration data from the FPGA 2.
The read control signal is supplied via the 3:1 selector 18 to
the FPGA2, and in step S22, the configuration data is read out
of the FPGA2. In step S23, the first data conversion unit 16
converts the configuration data read out of the FPGA2 into a
format suitable for writing. In step S24, the first data conver

10

15

25

30

35

40

45

50

55

60

65

6
sion unit 16 transfers the converted configuration data to the
memory 4, and the configuration data is thus stored in the
memory 4.

FIG. 7 is a block diagram Schematically showing a con
figuration example of the read operation control unit 13 and
the first data conversion unit 16. To enable devices having
various data transfer speeds to be made available for use as the
memory 4, the read operation control unit 13 and the first data
conversion unit 16 read the configuration data from the FPGA
2 and transfer it to the memory 4 in accordance with the flow
control that the memory controller 5 performs for the data to
be written to the memory 4. As shown, the read operation
control unit 13 includes a read instruction receiver 20, a read
enable generator 21, and a frequency divider 22. On the other
hand, the first data conversion unit 16 includes a configuration
data detector 23, a shift register 24, a frequency divider 25,
and a FIFO (first-in, first-out) memory 26 (hereinafter abbre
viated as FIFO).
The read instruction receiver 20 in the read operation con

trol unit 13 receives from the configuration state control unit
12 a read instruction signal for reading the configuration data
from the FPGA2. The read enable generator 21 supplies the
read instruction signal received via the read instruction
receiver 20 to the 3:1 selector 18 as a read enable signal to be
output to the FPGA2. A signal produced by logically negat
ing a “Satisfied signal output from the FIFO 26 in the first
data conversion unit 16 is ANDed with the read instruction
signal received via the read instruction receiver 20, and the
resulting AND signal is applied to the frequency divider 22.
The frequency divider 22 generates a clock signal that alter
nates during the period when the value of the AND signal is
“true’ and that does not produce edges during the period
when the value of the AND signal is “false.” and supplies the
clock signal to the 3:1 selector 18 as the read clock signal to
be output to the FPGA2. The “Satisfied” signal that the FIFO
26 outputs will be described later.

Based on the detection results from the beginning-of-read
data detection unit 14 and the end-of-read-data detection unit
15, the configuration data detector 23 in the first data conver
sion unit 16 detects the configuration data being output from
the FPGA 2. The shift register 24 latches the configuration
data read out of the FPGA 2 and shifts the latched data in
accordance with the read clock signal from the frequency
divider 22, and thus converts the configuration data from
serial to parallel for output to the FIFO 26.
The frequency divider 25 generates a capture timing signal

TP for capturing the output data of the shift register 24 into the
FIFO 26 by frequency-dividing the read clock signal from the
frequency divider 22, and applies it to a write enable terminal
WE of the FIFO 26. At this time, the frequency divider 25
determines a boundary between each byte of the configura
tion databased on the detection timing of the beginning-of
read-data detection unit 14 applied to its load terminal, and
outputs the timing signal TP in Synchronism with the timing
with which signals of bits 1 to 8 contained in each byte of the
configuration data are output from the data output buses of the
shift register 24.

During the period that the read enable RE is asserted, the
FIFO 26 outputs the configuration data at its output terminal
in the order in which the data was input at its input terminal.
When the read enable RE is asserted by logically negating the
flow control signal from the memory controller 5 that inhibits
writing to the memory 4, that is, when the data can be written
to the memory 4, the configuration data is output from the
FIFO 26, but when the data cannot be written to the memory
4, the output of the configuration data is stopped. When all the
storage area is used up for reasons such as the data input speed

US 8,341,469 B2
7

being faster than the data output speed, the FIFO 26 asserts
the "Satisfied” signal so that its logic value is “true.” As a
result, when the storage area of the FIFO 26 becomes full, no
edges occur in the read clock signal from the frequency
divider 22, thus preventing the FIFO 26 from overflowing.

FIGS. 8 to 10 are time charts of the signals indicated at (a)
to (t) in the circuit of FIG. 7. In FIGS. 8 to 10, the signal (a) is
the read instruction signal received at the read instruction
receiver 20, the signal (b) is the “Satisfied signal output from
the FIFO 26, the signal (c) is the AND signal applied to the
frequency divider 22, the signal (d) is the read enable signal,
and the signal (e) is the read clock signal.

Further, the signal (f) is the configuration data in serial
form that is read out of the FPGA2, the signal (g) is the trigger
signal output from the beginning-of-read-data detection unit
14, the signal (h) is the trigger signal output from the end-of
read-data detection unit 15, the signal (i) is the output signal
of the configuration data detector 23, and the signals () to (q)
are the signals of 8 bits output from the shift register 24.
The signal (r) is the timing signal TP output from the

frequency divider 25, the signal (s) is the flow control signal
from the memory controller 5, and the signal (t) is the con
figuration data in parallel form that is output from the FIFO 26
to the memory 4.

FIG. 8 is a time chart of the signals at the time that the
reading of the configuration data is started. As shown, the
signals (b) and (h) remain “false'. When the configuration of
the FPGA2 by the data writer 100 is completed, and the read
instruction signal (a) from the configuration state control unit
12 is asserted, the read enable signal (d) is asserted, where
upon the read clock signal (e) is Supplied, thus starting the
reading of the configuration data (f) in serial form from the
FPGA2.
When a synchronization byte ("0-1 to “0-8) contained in

the configuration data (f) is received, the beginning-of-read
data detection unit 14 outputs the pulse signal (g). The con
figuration data detector 23 asserts its output logic value (i) to
indicate that the reading of the configuration data is in
progress.

The shift register 24 is enabled by the output logic value (i)
of the configuration data detector 23, and outputs the bit
signals () to (d) by converting the configuration data (f) from
serial to parallel. Based on the pulse timing of the trigger
signal (g) applied from the beginning-of-read-data detection
unit 14 to the load terminal, the frequency divider 25 outputs
the timing signal TP (r) in Synchronism with the timing with
which the signals of bits 1 to 8 (“1-1 to “1-8) contained in the
first byte of the configuration data are output from the data
output buses (j) to (d) of the shift register 24. When the
configuration data converted to the parallel data (t) is output
from the FIFO 26, the flow control signal (s) is asserted until
the data becomes ready to be written to the memory 4, and
during that period, the data read from the FIFO 26 is prohib
ited.

FIG. 9 is a time chart of the signals at the time that the
reading of the configuration data is completed. As shown, the
signals (b) and (g) remain “false'. When the last byte (“Z-1
to Z-8) in the configuration data (f) is detected, the end-of
read-data detection unit 15 outputs the pulse signal (h). The
configuration data detector 23 deasserts its output logic value
(i), thus indicating that the reading of the configuration data is
completed. The read instruction signal (a) from the configu
ration state control unit 12 is also deasserted by the pulse
signal (h) output from the end-of-read-data detection unit 15,
whereupon the read enable signal (d) is deasserted, and the
Supply of the read clock signal (e) is stopped, thus stopping
the reading of the configuration data (f).

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 10 is a time chart of the signals at the time that the

“Satisfied” signal of the FIFO 26 is asserted during the read
ing of the configuration data. As shown, the signals (a), (d),
and (i) remain “true,” while on the other hand, the signals (g)
and (h) remain “false.” When the “Satisfied” signal (b) of the
FIFO 26 is asserted, since the logic value of the input (c) to the
frequency divider 22 becomes “false, the read clock signal
(e) stops alternating, whereupon the reading of the configu
ration data (f) being read in Synchronism with an edge of the
read clock signal (e) stops. Further, the shift register 24 stops
the latching and shifting of the configuration data upon ceas
ing of the read clock signal (e), and as a result, the bit signals
() to (d) are held in the register 24.

In step S9 of FIG. 4, the end-of-read-data detection unit 15
detects the end of the configuration data being read out of the
FPGA2. The configuration state control unit 12 determines
that the reading of the configuration data from the FPGA2 is
completed, and thus terminates the process.

In the configuration shown in FIG. 3, the first data conver
sion unit 16 takes as inputs the detection signals from the
beginning-of-read-data detection unit 14 and the end-of-read
data detection unit 15, but instead of the detection signals
from the beginning-of-read-data detection unit 14 and the
end-of-read-data detection unit 15, other signals may be input
to the first data conversion unit 16, as long as Such other
signals can be used to identify the phase and end of the
configuration data being read out of the FPGA 2. For
example, signals that can be used to identify the phase and end
of the configuration data may be supplied from the configu
ration state control unit 12. This also applies to other embodi
ments described herein. Further, the detection signal from the
end-of-read-data detection unit 15 is input to the first data
conversion unit 16, but if the data end position can be deter
mined without having to detect the end of the configuration
data, Such as when the length of the configuration data is
known inadvance, the end-of-read-data detection unit 15 may
be omitted. This also applies to other embodiments described
herein.

Similarly, the detection signals from the end-of-write-data
detection unit 11 and the end-of-read-data detection unit 15
are input to the configuration state control unit 12, but if the
data end position can be determined without having to detect
the end of the configuration data, Such as when the length of
the configuration data is known in advance, the end-of-write
data detection unit 11 and the end-of-read-data detection unit
15 may be omitted. This also applies to other embodiments
described herein.

Further, the “Satisfied” signal of the FIFO 26 in the first
data conversion unit 16 is Supplied to the read operation
control unit 13 to control the generation of the read clock
signal and the stopping of the generation, but instead of the
“Satisfied” signal, the flow control signal generated by the
memory controller 5 may be used to control the generation of
the read clock signal and the stopping of the generation, or a
signal similar to the “Satisfied” signal or the flow control
signal generated by the memory controller 5 may be gener
ated by the configuration state control unit 12 and Supplied
accordingly. This also applies to other embodiments
described herein.

In the configuration shown in FIG. 3, the beginning-of
write-data detection unit 10 and the beginning-of-read-data
detection unit 14 are provided separately, and the end-of
write-data detection unit 11 and the end-of-read-data detec
tion unit 15 are also provided separately, but since these
detection units are provided to detect the beginning and end of
the same configuration data, the beginning-of-write-data
detection unit 10 and the beginning-of-read-data detection

US 8,341,469 B2
9

unit 14 may be combined and implemented on the same
circuit, and the end-of-write-data detection unit 11 and the
end-of-read-data detection unit 15 may also be combined and
implemented on the same circuit. This also applies to other
embodiments described herein

FIG. 11 is a flowchart (part 2) illustrating a configuration
method to be used by the FPGA configuration device 3 of
FIG. 3. In the configuration method shown in FIG. 11, the
data writer 100 is not connected to the FPGA configuration
device 3, and the FPGA configuration device 3 performs the
configuration of the FPGA 2 by using the configuration data
stored in the memory 4.
When power is turned on to the electronic device 1, or

when an externally issued instruction is received, the configu
ration state control unit 12 in step S30 causes the memory
controller 5 to perform control to read the configuration data
from the memory 4. In step S31, the second data conversion
unit 17 converts the configuration data read out of the memory
4 into a data format that can be written to the FPGA 2, and
generates a write control signal for writing the thus converted
configuration data to the FPGA 2.

In step S32, the configuration state control unit 12 operates
the 3:1 selector 18 so as to select the second data conversion
unit 17 as the Supply source of the configuration data and its
write control signal to be output to the FPGA2. In step S33,
the configuration data and the write control signal are output
to the FPGA2 to execute the configuration. The above steps
S30 to S33 are repeated until the loading of the configuration
data stored in the memory 4 is completed.

FIG. 12 is a block diagram schematically showing a second
configuration example of the FPGA configuration device 3
disclosed herein. The FPGA configuration device 3 shown in
FIG. 12 is similar in configuration to the FPGA configuration
device 3 described with reference to FIG. 3, and the same
component elements are designated by the same reference
numerals and will not be described further herein. In this
configuration example, the FPGA configuration device 3
includes an integrity checking unit 31 which checks the integ
rity of the configuration data read out of the FPGA2, and a
check result holding unit 32 which holds the result of the
check performed by the integrity checking unit 31.
The integrity checking unit 31 identifies, based on the

detection results from the beginning-of-read-data detection
unit 14 and the end-of-read-data detection unit 15, the begin
ning and end of the configuration data read out of the FPGA
2, calculates an error detection code for the configuration
data, and compares it with the error detection code contained
in the configuration data read out of the FPGA 2, thereby
checking the integrity of the configuration data read out of the
FPGA 2. The error detection code may be, for example, a
parity code or a cyclic redundancy checking (CRC) code.
This also applies to other embodiments described herein. In
the data writer 100, a detection code calculation unit 102
calculates an error detection code for the configuration data
that the write processing unit 101 outputs, and a combining
unit 103 combines the error detection code with the configu
ration data for output to the FPGA configuration device 3.
When the integrity of the configuration data read out of the

FPGA2 and held in the memory 4 is verified by the integrity
check result held in the check result holding unit 32, the CPU
6 in FIG. 2, which controls the operation of the FPGA con
figuration device 3, allows the FPGA configuration device 3
to perform the configuration using that configuration data; on
the other hand, if the configuration data has failed the integrity
check, the CPU 6 may disallow the FPGA configuration
device 3 to perform the configuration using that configuration

10

15

25

30

35

40

45

50

55

60

65

10
data. This also applies to other embodiments having the check
result holding unit 32 described herein.

FIG.13 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device 3 of FIG. 12, and
FIG. 14 is a flowchart of a memory write routine S40 shown
in FIG. 13.

In steps S1 to S3, the configuration of the FPGA 2 is
performed in the same manner as in steps S1 to S3 shown in
FIG. 4. In steps S4 to S7, the reading of the configuration data
from the FPGA2 is started, and the beginning of the configu
ration data is detected, as in steps S4 to S7 shown in FIG. 4.
Thereafter, the process proceeds to the memory write routine
S40 shown in FIG. 14.

In steps S20 to S23, the configuration data is read out of the
FPGA2 and converted into a formatsuitable for writing to the
memory 4, as in steps S20 to S23 shown in FIG. 6. In the
Subsequent step S43, the integrity checking unit 31 calculates
the error detection code for the configuration data read out of
the FPGA 2. In step S24, the first data conversion unit 16
transfers the converted configuration data to the memory 4,
and the configuration data is thus stored in the memory 4.

In step S9 shown in FIG. 13, the end-of-read-data detection
unit 15 detects the end of the configuration data being read out
of the FPGA 2. When the end of the configuration data is
detected, the process proceeds to step S41; otherwise, the
process returns to step S40 to repeat the above processing. In
step S41, the integrity checking unit 31 checks the integrity of
the configuration data read out of the FPGA 2 by comparing
the calculated error detection code with the error detection
code contained in the configuration data read out of the FPGA
2. In step S42, the integrity checking unit 31 stores the result
of the check in the check result holding unit 32.

In the configuration shown in FIG. 12, the integrity check
ing unit 31 takes as inputs the detection signals from the
beginning-of-read-data detection unit 14 and the end-of-read
data detection unit 15, but instead of the detection signals
from the beginning-of-read-data detection unit 14 and the
end-of-read-data detection unit 15, other signals may be input
to the integrity checking unit 31, as long as such other signals
can be used to identify the phase and end of the configuration
data being read out of the FPGA2. For example, signals that
can be used to identify the phase and end of the configuration
data may be Supplied from the configuration state control unit
12. This also applies to other embodiments described herein.
Further, the detection signal from the end-of-read-data detec
tion unit 15 is input to the integrity checking unit 31, but if the
data end position can be determined without having to detect
the end of the configuration data, Such as when the length of
the configuration data is known in advance, the end-of-read
data detection unit 15 may be omitted. This also applies to
other embodiments described herein.

FIG. 15 is a block diagram schematically showing a third
configuration example of the FPGA configuration device 3
disclosed herein. The FPGA configuration device 3 shown in
FIG. 15 is similar in configuration to the FPGA configuration
device 3 described with reference to FIG. 12, and the same
component elements are designated by the same reference
numerals and will not be described further herein. In this
configuration example, if the check result Supplied from the
integrity checking unit 31 and held in the check result holding
unit 32 shows that the configuration data stored in the
memory 4 has failed the integrity check, the configuration
state control unit 12 performs processing for invalidating that
configuration data.
The processing for invalidating the configuration data

stored in the memory 4 includes processing for deleting the
configuration data stored in the memory 4. FIG. 16 is a flow

US 8,341,469 B2
11

chart illustrating a configuration method to be used by the
FPGA configuration device 3 of FIG. 15. The process from
step S1 to step S42 is the same as the process from step S1 to
step S42 described with reference to FIG. 13, and therefore,
will not be described further herein. In step S44, the configu
ration state control unit 12 determines whether the integrity of
the configuration data stored in the memory 4 has been veri
fied or not, by referring to the result of the check performed by
the integrity checking unit 31 and held in the check result
holding unit 32. If the integrity is verified, the process is
terminated, but if not, the configuration data stored in the
memory 4 is deleted in step S45.
The processing for invalidating the configuration data

stored in the memory 4 includes processing in which the
configuration state control unit 12 refers to the check result
holding unit 32, or stores the contents of the check result held
in the check result holding unit 32 into a flip-flop provided in
the configuration state control unit 12, and prohibits the con
figuration of the FPGA 2 from being performed using the
configuration data stored in the memory 4. This also applies
to the fourth and fifth configuration examples of the FPGA
configuration device 3 to be described later.

FIG. 17 is a flowchart illustrating the configuration method
that prohibits the configuration depending on the result of the
integrity check. In the configuration method shown in FIG.
17, the data writer 100 is not connected to the FPGA configu
ration device 3, and the FPGA configuration device 3 per
forms the configuration of the FPGA2 by using the configu
ration data stored in the memory 4.
When power is turned on to the electronic device 1, or

when an externally issued instruction is received, the configu
ration state control unit 12 in step S46 refers to the check
result holding unit 32, or to the result of the check performed
by the integrity checking unit 31 and held in the flip-flop
provided in the configuration state control unit 12, and deter
mines whether the integrity of the configuration data stored in
the memory 4 has been verified or not. If the integrity is
verified, the configuration of the FPGA2 is performed in the
same manner as in steps S30 to S34 described with reference
to FIG. 11, but if not, the process is terminated by aborting the
configuration of the FPGA 2.

FIG. 18 is a block diagram schematically showing the
fourth configuration example of the FPGA configuration
device 3 disclosed herein. The FPGA configuration device 3
shown in FIG. 18 is similar in configuration to the FPGA
configuration device 3 described with reference to FIG.3, and
the same component elements are designated by the same
reference numerals and will not be described further herein.

In this configuration example, the FPGA configuration
device 3 includes a first error detection code calculation unit
33 which calculates an error detection code for the configu
ration data loaded from the data writer 100 when configuring
the FPGA 2 by using the external data writer 100, an error
detection code holding unit 34 which holds the error detection
code calculated by the first error detection code calculation
unit 33, a second error detection code calculation unit 35
which calculates an error detection code for the configuration
data read out of the FPGA 2, an integrity checking unit 31
which checks the integrity of the configuration data read out
of the FPGA2 by comparing the error detection code held in
the error detection code holding unit 34 with the error detec
tion code calculated by the second error detection code cal
culation unit 35, and a check result holding unit 32 which
holds the result of the check performed by the integrity check
ing unit 31.
The first error detection code calculation unit 33 identifies,

based on the detection results supplied from the beginning

5

10

15

25

30

35

40

45

50

55

60

65

12
of-write-data detection unit 10 and the end-of-write-data
detection unit 11, the beginning and end of the configuration
data being loaded from the data writer 100, and calculates the
error detection code for the configuration data. The second
error detection code calculation unit 35 identifies, based on
the detection results Supplied from the beginning-of-read
data detection unit 14 and the end-of-read-data detection unit
15, the beginning and end of the configuration data being read
out of the FPGA2, and calculates the error detection code for
the configuration data. If the error detection code held in the
error detection codeholding unit 34, for example, matches the
error detection code calculated by the second error detection
code calculation unit 35, the integrity checking unit 31 deter
mines that the integrity of the configuration data read out of
the FPGA 2 has been verified, but if these error detection
codes do not match, the integrity checking unit 31 determines
that the configuration data has failed the integrity check.

FIG. 19 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device 3 of FIG. 18, and
FIG. 20 is a flowchart of a configuration execution routine
S50 shown in FIG. 19. In step S1, as in step S1 shown in FIG.
4, the beginning of the configuration data being loaded from
the data writer 100 is detected, and the phase of the configu
ration data is determined. After that, in steps S10 and S11 of
FIG. 20, the 3:1 selector 18 is operated, and the configuration
of the FPGA2 is executed, as in steps S10 and S11 shown in
FIG. 5. In step S51, the first error detection code calculation
unit 33 calculates the error detection code for the configura
tion data.
When, in step S3 shown in FIG. 19, the end-of-write-data

detection unit 11 detects the end of the configuration data
being loaded from the data writer 100, the error detection
code calculated by the first error detection code calculation
unit 33 is stored into the error detection code holding unit 34
(step S52). In steps S4 to S9, the configuration data is stored
in the memory 4 in the same manner as in steps S4 to S9
shown in FIG. 16. However, in the configuration method
illustrated here, the error detection code calculation in step
S43 shown in FIG. 14 is performed by the second error
detection code calculation unit 35.

In steps S41 to S45, as in steps S41 to S45 shown in FIG.
16, the integrity of the configuration data stored in the
memory 4 is checked, and if the configuration data fails the
integrity check, processing is performed to invalidate the
configuration data. However, in step S41 shown here, if the
error detection code held in the error detection code holding
unit 34 matches the error detection code calculated by the
second error detection code calculation unit 35, the integrity
checking unit 31 determines that the integrity of the configu
ration data read out of the FPGA 2 has been verified, but if
these error detection codes do not match, the integrity check
ing unit 31 determines that the configuration data has failed
the integrity check.

In the configuration shown in FIG. 18, the first error detec
tion code calculation unit 33 takes as inputs the detection
signals from the beginning-of-write-data detection unit 10
and the end-of-write-data detection unit 11, but instead of the
detection signals from the beginning-of-write-data detection
unit 10 and the end-of-write-data detection unit 11, other
signals may be input to the first error detection code calcula
tion unit 33, as long as Such other signals can be used to
identify the phase and end of the configuration data being
loaded from the data writer 100. For example, signals that can
be used to identify the phase and end of the configuration data
may be supplied from the configuration state control unit 12.

US 8,341,469 B2
13

This also applies to other embodiments described herein.
Further, the detection signal from the end-of-write-data
detection unit 11 is input to the first error detection code
calculation unit 33, but if the data end position can be deter
mined without having to detect the end of the configuration
data, Such as when the length of the configuration data is
known in advance, the end-of-write-data detection unit 11
may be omitted. This also applies to other embodiments
described herein.
The second error detection code calculation unit 35takes as

inputs the detection signals from the beginning-of-read-data
detection unit 14 and the end-of-read-data detection unit 15,
but instead of the detection signals from the beginning-of
read-data detection unit 14 and the end-of-read-data detection
unit 15, other signals may be input to the second error detec
tion code calculation unit 35, as long as Such other signals can
be used to identify the phase and end of the configuration data
being read out of the FPGA2. For example, signals that can be
used to identify the phase and end of the configuration data
may be supplied from the configuration state control unit 12.
This also applies to other embodiments described herein.
Further, the detection signal from the end-of-read-data detec
tion unit 15 is input to the second error detection code calcu
lation unit 35, but if the data end position can be determined
without having to detect the end of the configuration data,
Such as when the length of the configuration data is known in
advance, the end-of-read-data detection unit 15 may be omit
ted. This also applies to other embodiments described herein.

FIG. 21 is a block diagram schematically showing the fifth
configuration example of the FPGA configuration device 3
disclosed herein. The FPGA configuration device 3 shown in
FIG. 21 is similar in configuration to the FPGA configuration
device 3 described with reference to FIG. 3, and the same
component elements are designated by the same reference
numerals and will not be described further herein.

In this configuration example, the FPGA configuration
device 3 includes a first sample extraction unit 36 which
extracts as a sample a portion of the configuration data being
loaded from the data writer 100 when configuring the FPGA
2 by using the external data writer 100, a first sample holding
unit 37 which holds the sample extracted by the first sample
extraction unit 36, a second sample extraction unit 38 which
extracts as a sample a portion of the configuration data being
read out of the FPGA2, an integrity checking unit 31 which
checks the integrity of the configuration data read out of the
FPGA 2 by comparing the sample held in the first sample
holding unit 37 with the sample extracted by the second
sample extraction unit 38, and a check result holding unit 32
which holds the result of the check performed by the integrity
checking unit 31.
The first sample extraction unit 36 identifies, based on the

detection results Supplied from the beginning-of-write-data
detection unit 10 and the end-of-write-data detection unit 11,
the beginning and end of the configuration data being loaded
from the data writer 100, and extracts as a sample the data
located at a designated position in the configuration data. The
second sample extraction unit 38 identifies, based on the
detection results Supplied from the beginning-of-read-data
detection unit 14 and the end-of-read-data detection unit 15,
the beginning and end of the configuration data being read out
of the FPGA2, and extracts as a sample the data located at a
designated position in the configuration data. If the sample
held in the first sample holding unit 37, for example, matches
the sample extracted by the second sample extraction unit 38.
the integrity checking unit 31 determines that the integrity of
the configuration data read out of the FPGA 2 has been

10

15

25

30

35

40

45

50

55

60

65

14
verified, but if these samples do not match, the integrity
checking unit 31 determines that the configuration data has
failed the integrity check.

FIG.22 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device 3 of FIG. 21, FIG.
23 is a flowchart of a configuration execution routine S60
shown in FIG. 22, and FIG. 24 is a flowchart of a memory
write routine S63 shown in FIG. 22. In step S1, as in step S1
shown in FIG.4, the beginning of the configuration data being
loaded from the data writer 100 is detected, and the phase of
the configuration data is determined.

After that, in steps S10 and S11 of FIG. 23, the 3:1 selector
18 is operated, and the configuration of the FPGA 2 is
executed, as in steps S10 and S11 shown in FIG. 5. In step
S61, based on the beginning of the configuration data
detected by the beginning-of-write-data detection unit 10, the
first sample extraction unit 36 determines whether the
received portion of the configuration data is the portion to be
extracted as a sample; if it is the portion to be extracted as a
sample, the sample is extracted and held in the first sample
holding unit 37 (step S62).
When, in step S3 shown in FIG. 22, the end-of-write-data

detection unit 11 detects the end of the configuration data
being loaded from the data writer 100, the process proceeds to
step S4. In steps S4 to S7, the reading of the configuration data
from the FPGA2 is started, and the beginning of the configu
ration data is detected, as in steps S4 to S7 shown in FIG. 4.
Thereafter, the process proceeds to the memory write routine
S63 shown in FIG. 24.

In steps S20 to S24, as in steps S20 to S24 shown in FIG. 6,
the configuration data is read out of the FPGA2 and converted
into a format suitable for writing to the memory 4, and the
configuration data is stored in the memory 4. In step S64.
based on the beginning of the configuration data detected by
the beginning-of-read-data detection unit 14, the second
sample extraction unit 38 determines whether the portion of
the configuration data read out of the FPGA2 is the portion to
be extracted as a sample. If it is the portion to be extracted as
a sample, the sample is extracted and sent to the integrity
checking unit 31. In step S65, if the sample held in the first
sample holding unit 37 matches the sample extracted by the
second sample extraction unit 38, the integrity checking unit
31 determines that the integrity of the configuration data read
out of the FPGA2 has been verified, but if these samples do
not match, the integrity checking unit 31 determines that the
configuration data has failed the integrity check.

In step S66 of FIG. 22, the integrity checking unit 31
outputs the check result to the check result holding unit 32,
and in step S42, the check result is held in the check result
holding unit 32. In steps S44 and S45, if the configuration data
fails the integrity check, processing is performed to invalidate
the configuration data, as in steps S44 and S45 shown in FIG.
16.

In the configuration shown in FIG. 21, the first sample
extraction unit 36 takes as inputs the detection signals from
the beginning-of-write-data detection unit 10 and the end-of
write-data detection unit 11, but instead of the detection sig
nals from the beginning-of-write-data detection unit 10 and
the end-of-write-data detection unit 11, other signals may be
input to the first sample extraction unit 36, as long as Such
other signals can be used to identify the phase and end of the
configuration data being loaded from the data writer 100. For
example, signals that can be used to identify the phase and end
of the configuration data may be supplied from the configu
ration state control unit 12. This also applies to other embodi
ments described herein. Further, the detection signal from the
end-of-write-data detection unit 11 is input to the first sample

US 8,341,469 B2
15

extraction unit 36, but if the data end position can be deter
mined without having to detect the end of the configuration
data, Such as when the length of the configuration data is
known in advance, the end-of-write-data detection unit 11
may be omitted. This also applies to other embodiments
described herein.
The second sample extraction unit 38 takes as inputs the

detection signals from the beginning-of-read-data detection
unit 14 and the end-of-read-data detection unit 15, but instead
of the detection signals from the beginning-of-read-data
detection unit 14 and the end-of-read-data detection unit 15,
other signals may be input to the second sample extraction
unit 38, as long as such other signals can be used to identify
the phase and end of the configuration data being read out of
the FPGA2. For example, signals that can be used to identify
the phase and end of the configuration data may be supplied
from the configuration state control unit 12. This also applies
to other embodiments described herein. Further, the detection
signal from the end-of-read-data detection unit 15 is input to
the second sample extraction unit 38, but if the data end
position can be determined without having to detect the end of
the configuration data, Such as when the length of the con
figuration data is known in advance, the end-of-read-data
detection unit 15 may be omitted. This also applies to other
embodiments described herein.

FIG. 25 is a block diagram schematically showing a sixth
configuration example of the FPGA configuration device 3
disclosed herein. The FPGA configuration device 3 shown in
FIG. 25 is similar in configuration to the FPGA configuration
device 3 described with reference to FIG. 3, and the same
component elements are designated by the same reference
numerals and will not be described further herein. This con
figuration example includes an identifier extraction unit 41
which extracts, from the configuration data read out of the
FPGA2, identifier information for identifying the configura
tion data, Such as version information contained in the con
figuration data, an identifier holding unit 42 which holds the
identifier extracted by the identifier extraction unit 41, and an
identity checking unit 43 which checks whether the currently
readout configuration data and the configuration data stored
in the memory 4 are identical with each other by comparing
the identifier extracted by the identifier extraction unit 41 with
the identifier previously held in the identifier holding unit 42.
If the currently readout configuration data is identical with the
configuration data stored in the memory 4, the configuration
state control unit 12 aborts the operation for reading the
configuration data from the FPGA2. The identifier extraction
unit 41 identifies, based on the detection results supplied from
the beginning-of-read-data detection unit 14 and the end-of
read-data detection unit 15, the beginning and end of the
configuration data being read out of the FPGA2, and extracts
the identifier information located at a designated position in
the configuration data.

FIG. 26 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device 3 of FIG. 25. The
process from step S1 to step S7 is the same as the process from
step S1 to step S7 shown in FIG. 4, and therefore, will not be
described further herein. In step S70, the identifier extraction
unit 41 extracts the configuration data identifier information
contained in the readout configuration data. If no identifier
information is detected, the process jumps to step S8.

In step S72, the identity checking unit 43 compares the
identifier extracted by the identifier extraction unit 41 from
the configuration data currently read out of the FPGA2 with
the identifier extracted from the previously readout configu
ration data and currently held in the identifier holding unit 42,
and outputs the result of the check to the configuration state

10

15

25

30

35

40

45

50

55

60

65

16
control unit 12. If these identifiers match each other, it means
that the currently readout configuration data is identical with
the configuration data stored in the memory 4. Accordingly,
the configuration state control unit 12 instructs the read
operation control unit 13 to abort the generation of the con
figuration data read control signal. For example, the configu
ration state control unit 12 deasserts the read instruction sig
nal being output to the read instruction receiver 20 shown in
FIG. 7. Further, the configuration state control unit 12
instructs the memory controller 5 to abort the data writing.
On the other hand, if the identifiers do not match, the

identity checking unit 43 in step S73 transfers the identifier
currently extracted by the identifier extraction unit 41 into the
identifier holding unit 42, and thus updates the identifier
information stored in the identifier holding unit 42. The pro
cess from step S8 to step S9 is the same as the process from
step S8 to step S9 described with reference to FIG. 4, and
therefore, will not be described further herein.

Here, the identifier extraction unit 41 takes as inputs the
detection signals from the beginning-of-read-data detection
unit 14 and the end-of-read-data detection unit 15, but instead
of the detection signals from the beginning-of-read-data
detection unit 14 and the end-of-read-data detection unit 15,
other signals may be input to the identifier extraction unit 41,
as long as Such other signals can be used to identify the phase
and end of the configuration data being read out of the FPGA
2. For example, signals that can be used to identify the phase
and end of the configuration data may be Supplied from the
configuration state control unit 12. This also applies to other
embodiments described herein. Further, the detection signal
from the end-of-read-data detection unit 15 is input to the
identifier extraction unit 41, but if the data end position can be
determined without having to detect the end of the configu
ration data, such as when the length of the configuration data
is known in advance, the end-of-read-data detection unit 15
may be omitted. This also applies to other embodiments
described herein.

FIG. 27 is a block diagram schematically showing a sev
enth configuration example of the FPGA configuration
device 3 disclosed herein. The FPGA configuration device 3
shown here is similar in configuration to the FPGA configu
ration device 3 described with reference to FIG. 25, and the
same component elements are designated by the same refer
ence numerals and will not be described further herein. In this
configuration example, the identity checking unit 43 com
pares the identifier extracted by the identifier extraction unit
41 from the configuration data read out of the FPGA 2 with
the identifier retrieved from the configuration data stored in
the memory 4, and checks whether the configuration data read
out of the FPGA 2 matches the identifier retrieved from the
configuration data stored in the memory 4.

FIG.28 is a flowchart illustrating a configuration method to
be used by the FPGA configuration device 3 of FIG. 27. The
process from step S1 to step S7 is the same as the process from
step S1 to step S7 shown in FIG. 4, and therefore, will not be
described further herein. In step S74, the identity checking
unit 43 instructs the configuration state control unit 12 to read
the identifier retrieved from the configuration data stored in
the memory 4. The configuration state control unit 12
instructs the memory controller 5 to read the identifier from
the configuration data stored in the memory 4.

In step S70, the identifier extraction unit 41 extracts the
configuration data identifier information contained in the
readout configuration data. If no identifier information is
detected, the process jumps to step S8. In step S75, the iden
tity checking unit 43 compares the identifier currently
extracted by the identifier extraction unit 41 with the identifier

US 8,341,469 B2
17

retrieved from the memory 4, and outputs the result of the
check to the configuration State control unit 12.

If these identifiers match each other, the configuration state
control unit 12 instructs the read operation control unit 13 to
abort the generation of the configuration data read control
signal. Further, the configuration state control unit 12
instructs the memory controller 5 to abort the data writing.
The process from step S8 to step S9 is the same as the process
from step S8 to step S9 described with reference to FIG. 4,
and therefore, will not be described further herein.

According to the device and method disclosed herein, since
the data transfer speed at which the data is transferred to the
memory need not necessarily be made faster than the data
transfer speed at which the external data writer transfers the
data for configuration of the FPGA, the earlier described
constraints on the data transfer speed between the FPGA
configuration device and the memory can be eliminated.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in under
standing the principles of the invention and the concepts
contributed by the inventor to furthering the art, and are to be
construed as being without limitation to Such specifically
recited examples and conditions, nor does the organization of
Such examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although the
embodiment(s) of the present invention(s) has(have) been
described in detail, it should be understood that various
changes, Substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What is claimed is:
1. An FPGA configuration device, connected to an FPGA

and a memory, for configuring said FPGA by using configu
ration data stored in said memory, comprising:

a read operation control unit which performs control to
read configuration data from said FPGA:

a configuration data transfer unit which transfers said con
figuration data read out of said FPGA to said memory;
and

a write completion detection unit which detects completion
of writing said configuration data to said FPGA,

wherein reading out of said configuration data written to
said FPGA and writing of said configuration data to said
memory is initiated when the writing of said configura
tion data to said FPGA is completed.

2. A circuit board having an FPGA configuration device as
claimed in claim 1.

3. An electronic device having an FPGA configuration
device as claimed in claim 1, wherein an FPGA that controls
operation of said electronic device is configured by said
FPGA configuration device.

4. An FPGA configuration device as claimed in claim 1,
wherein said configuration device is adapted to be con

nected to a data writer which writes configuration data to
said FPGA and a memory controller which performs
control for writing to said memory, and

wherein said write completion detection unit detects
completion of the writing of said configuration data
from said data writer to said FPGA, and

wherein said configuration device further comprises a con
figuration state control unit which, when the writing of
said configuration data is completed, causes said read
operation control unit to initiate control to read out the
configuration data written to said FPGA and causes said
memory controller to initiate processing for writing to

18
said memory said configuration data transferred from
said configuration data transfer unit.

5. An FPGA configuration device as claimed in claim 4,
further comprising an identity checking unit which checks

s whether the configuration data read out of said FPGA and the
configuration data stored in said memory are identical with
each other.

6. An FPGA configuration device as claimed in claim 5,
wherein said identity checking unit reads an identifier from
the configuration data held in said memory, and thereby
checks whether said configuration data is identical with the
configuration data read out of said FPGA.

7. An FPGA configuration device as claimed in claim 4,
further comprising an integrity checking unit which checks
integrity of said configuration data read out of said FPGA.

8. An FPGA configuration device as claimed in claim 7.
wherein said configuration state control unit invalidates the
configuration data stored in said memory, depending on a
result from the integrity check performed by said integrity
checking unit.

9. An FPGA configuration device as claimed in claim 7.
further comprising an error checking code calculation unit
which calculates an error checking code for said configura
tion data read out of said FPGA, and wherein

said integrity checking unit checks said integrity by com
paring said calculated error checking code with an error
checking code included in advance in said configuration
data.

10. An FPGA configuration device as claimed in claim 7.
further comprising:

a first error checking code calculation unit which calculates
an error checking code for the configuration data that
said data writer writes to said FPGA; and

a second error checking code calculation unit which cal
culates an error checking code for the configuration data
read out of said FPGA, and wherein

said integrity checking unit checks said integrity by a com
parison between the error checking codes calculated by
said first and second error checking code calculation
units.

11. An FPGA configuration device as claimed in claim 7.
further comprising:

a first sample extraction unit which extracts a portion of the
configuration data that said data writer is writing to said
FPGA; and

a second sample extraction unit which extracts a portion of
the configuration data being read out of said FPGA, and
wherein

said integrity checking unit checks said integrity by a com
parison between the data extracted by said first and
second sample extraction units.

12. An FPGA configuration method for configuring an
FPGA by loading configuration data from a designated
memory into said FPGA, comprising:

detecting completion of writing the configuration data to

10

15

25

30

35

40

45

50

said FPGA:
initiating reading of the configuration data from said FPGA

and storing said configuration data in said designated
memory, when the writing of the configuration data to

60 said FPGA is completed; and
loading the configuration data stored in said designated
memory into said FPGA and thereby configuring said
FPGA in the same configuration state as said prescribed
configuration state.

k k k k k

