发明名称
反向散射装置及结合反向散射装置的网络系统

摘要

本文中描述的实例包含利用反向散射通信来根据无线通信协议直接产生可为经解码的现有装置的传输的装置及系统。实例包含使用反向散射通信产生802.11b传输的装置。本文描述了网络堆栈的实例，所述网络堆栈可促进反向散射装置与其它装置共存（例如，在ISM频带中），而不引起载波侦听及媒体接入控制操作的功耗或降低对所述功耗的需求。
1. 一种反向散射装置，其包括：
天线，其经配置以反向散射具有第一频率的载波信号；
基带电路，其经配置以提供用于传输的数据；
波形产生器，其经配置以提供具有第二频率的波形，其中所述第二频率是所述第一频率与第三频率之间的差；
副载波相位调制器，其耦合到所述基带电路及所述波形产生器，所述副载波相位调制器经配置以根据所述数据来调整所述波形的相位、振幅或其组合以提供输出信号；及
开关，其耦合到所述天线，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号，使得所述第一频率与所述第二频率进行混频以依所述第三频率在反向散射信号中传输所述数据。
2. 根据权利要求1所述的反向散射装置，其中所述反向散射信号是根据实施相移键控、幅移键控或其组合的无线通信协议而布置。
3. 根据权利要求2所述的反向散射装置，其中所述无线通信协议包括Wi-Fi、ZigBee、SigFox或其组合。
4. 根据权利要求1所述的反向散射装置，其中所述波形包括方波、模拟信号、多电平信号或其组合。
5. 根据权利要求1所述的反向散射装置，其中所述数据包括Wi-Fi分组。
6. 根据权利要求1所述的反向散射装置，其中所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号以依所述第三频率及第四频率传输所述数据。
7. 根据权利要求1所述的反向散射装置，其进一步包括多个天线，且其中使用MIMO技术来提供所述载波信号。
8. 一种反向散射装置，其包括：
天线，所述天线经配置以反向散射包含第一频率的跳频信号；
基带电路，其经配置以提供用于传输的数据；
波形产生器，其经配置以提供具有第二频率的波形，且进一步经配置以根据所述跳频信号来跳变所述第二频率；
副载波相位调制器，其耦合到所述基带电路及所述波形产生器，所述副载波相位调制器经配置以根据所述数据来调整所述波形的相位、振幅或其组合以提供输出信号；及
开关，其耦合到所述天线，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号，使得所述第一频率与所述第二频率进行混频以依所述第三频率传输所述数据。
9. 根据权利要求8所述的反向散射装置，其中所述波形包括方波、模拟信号、多电平信号或其组合。
10. 根据权利要求8所述的反向散射装置，其中所述跳频信号包括频率序列，且其中所述频率序列是由所述反向散射装置通过下行链路从经配置以传输所述载波信号的装置接收。
11. 根据权利要求8所述的反向散射装置，其中所述跳频信号包括频率序列，且其中所述反向散射装置进一步包括经配置以存储所述频率序列的存储器。
12. 根据权利要求11所述的反向散射装置，其中所述频率序列包括伪随机序列。
13. 根据权利要求8所述的反向散射装置，其中所述第一频率与所述第二频率进行混频以依所述第三频率在反向散射信号中传输所述数据，且其中所述反向散射信号包括根据无线电通信协议的信号，所述无线电通信协议是选自Wi-Fi、ZigBee、SigFox及其组合组成的协议群组。

14. 根据权利要求8所述的反向散射装置，其进一步包括耦合到所述天线的频率确定电路，所述频率确定电路经配置以至少部分地通过感测所述载波信号的所述第一频率及计算所述第一频率与所述第三频率之间的差来向所述波形产生器提供所述第二频率的指示。

15. 根据权利要求8所述的反向散射装置，其进一步包括多个天线，且其中使用MIMO技术来提供所述载波信号。

16. 一种反向散射装置，其包括：

天线，所述天线经配置以反向散射具有第一频率的载波信号，所述载波信号包括扩频信号；

基带电路，其经配置以根据所述扩频信号提供用于传输的数据；

波形产生器，其经配置以提供具有第二频率的波形；

副载波相位调制器，其耦合到所述基带电路及所述波形产生器，所述副载波相位调制器经配置以根据所述数据来调整所述波形的相位、振幅或其组合以提供输出信号；及

开关，其耦合到所述天线，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号，使得所述第一频率与所述第二频率进行混频以依所述第三频率传输所述数据。

17. 根据权利要求16所述的反向散射装置，其中所述第一频率与所述第二频率进行混频以依所述第三频率在反向散射信号中传输所述数据，且其中所述反向散射信号包括根据无线电通信协议的信号，所述无线电通信协议是选自Wi-Fi、ZigBee、SigFox及其组合组成的协议群组。

18. 根据权利要求16所述的反向散射装置，其中用于传输的所述数据包含扩频序列。

19. 根据权利要求16所述的反向散射装置，其中所述副载波相位调制器每次基于所述载波信号的特征开始反向散射。

20. 根据权利要求16所述的反向散射装置，其中所述副载波相位调制器响应于来自另一装置的同步信号而开始反向散射。

21. 根据权利要求16所述的反向散射装置，其进一步包括多个天线，且其中使用MIMO技术来提供所述载波信号。

22. 一种用于控制对第一无线通信信道的接入的方法，所述方法包括：

在至少所述第一无线通信信道及第二无线通信信道上从第一无线通信装置传输信令分组，其中所述信令分组包含至少一个反向散射装置的标识；及

在所述至少一个反向散射装置处接收所述信令分组，且响应于接收到所述信令分组，将至少部分地提供在所述第二无线通信信道上的载波信号反向散射成所述第一无线通信信道上的传输。

23. 根据权利要求22所述的方法，其进一步包括在接收到所述信令分组之后的短帧间间隔SIFS时间期间的反向散射。

24. 根据权利要求22所述的方法，其进一步包括从所述至少一个反向散射装置向所述
第一无线通信装置传输固定数据速率、最大数据速率或其组合的指示。

25.根据权利要求24所述的方法，其进一步包括根据所述固定数据速率、最大数据速率或其组合来传输所述信令分组。

26.根据权利要求24所述的方法，其中所述固定数据速率、最大数据速率或其组合指示来自与所述至少一个反向散射装置相关联的传感器的数据传送速率。

27.根据权利要求22所述的方法，其进一步包括在传输所述信令分组之前由所述第一无线通信装置在所述第一及第二无线通信信道上执行载波监听。

28.根据权利要求22所述的方法，其进一步包括在接收器处从所述反向散射装置接收所述第一无线通信信道上的所述传输。

29.根据权利要求28所述的方法，其进一步包括响应于接收到所述传输而由所述接收器传输确认消息。

30.根据权利要求29所述的方法，其进一步包括在所述第一无线通信装置处接收所述确认消息且由所述第一无线通信装置传输下一信令分组，所述下一信令分组包含接收到所述确认消息的指示。

31.根据权利要求29所述的方法，其中所述传输包含使用开/关键控来提供所述标识。

32.根据权利要求29所述的方法，其进一步包括在所述第一无线通信装置处计算成功接收的传输的分数，且基于成功接收的传输的所述分数来对所述信令分组中的位速率进行编码。

33.根据权利要求22所述的方法，其进一步包括响应于缺少来自接收器的确认消息而由所述第一无线通信装置传输下一信令分组，所述下一信令分组包含缺少接收到所述确认消息的指示。

34.一种用于将反向散射装置与网络中的其它装置相关联的方法，所述方法包括：

将接收器与两个物理地址相关联；

广播具有所述两个物理地址的发现分组；

在反向散射装置处接收所述发现分组，且由所述反向散射装置传输源地址及目的地地址被设定到所述两个物理地址的反向散射分组，其中所述反向散射分组包含有效负载，所述有效负载包含所述反向散射装置的第三物理地址；

在辅助装置处接收所述反向散射分组；及

由所述辅助装置部分地通过所述辅助装置伪装所述第三物理地址来将所述反向散射装置与所述接收器相关联。

35.根据权利要求34所述的方法，其中所述两个物理地址是MAC地址。

36.根据权利要求34所述的方法，其中所述广播包括使用振幅调制。

37.根据权利要求36所述的方法，其中所述广播包括使用开/关键控。

38.根据权利要求34所述的方法，其中所述发现分组包含所述反向散射装置所特有的广播ID。

39.根据权利要求34所述的方法，其中所述有效负载进一步包含传感器更新速率、分组长度、所支持的位速率或其组合。

40.根据权利要求34所述的方法，其进一步包括由所述辅助装置传输ID，且向所述反向散射装置传输所述ID。
41. 根据权利要求40所述的方法，其进一步包括响应于在所述反向散射装置处接收到所述ID，由所述反向散射装置传输源地址被设定到所述第三物理地址且目的地地址被设定到所述两个物理地址中的至少一者的确认分组。

42. 根据权利要求40所述的方法，其进一步包括使用在所述反向散射装置与所述辅助装置之间共享的秘密密钥安全地发送所述第三物理地址的凭证。

43. 一种反向散射装置，其包括：
天线，其经配置以与反向散射具有第一相移键控协议、第一幅移键控协议或其组合的第一信道频率的载波信号；
基带电路，其经配置以提供用于传输的数据；
波形产生器，其经配置以提供具有第二频率的波形，其中所述第二频率是所述信道频率与第二相移键控协议、第二幅移键控协议或其组合的第三信道频率之间的差；
副载波相位调制器，其耦合到所述基带电路及所述波形产生器，所述副载波相位调制器经配置以根据所述数据来提供或抑制所述波形以提供输出信号；及
开关，其耦合到所述天线，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号，使得所述第一信道频率与所述第二频率进行混频以依所述第三信道频率传输反向散射信号。

44. 根据权利要求43所述的反向散射装置，其中所述第一相移键控协议、所述第一幅移键控协议或所述其组合是与所述第二相移键控协议、所述第二幅移键控协议或所述其组合相同的相移键控协议、幅移键控协议或其组合。

45. 根据权利要求43所述的反向散射装置，其中所述第一相移键控协议、所述第一幅移键控协议或所述其组合是与所述第二相移键控协议、所述第二幅移键控协议或所述其组合不同的相移键控协议、幅移键控协议或其组合。

46. 根据权利要求43所述的反向散射装置，其中所述第一相移键控协议、所述第一幅移键控协议或所述其组合是选自Wi-Fi、ZigBee、SigFox及其组合组成的群组。

47. 根据权利要求43所述的反向散射装置，其中所述第二相移键控协议、所述第二幅移键控协议或所述其组合是选自Wi-Fi、ZigBee、SigFox及其组合组成的群组。

48. 根据权利要求43所述的反向散射装置，其中所述第一信道频率包括第一Wi-Fi信道频率，且所述第三信道频率包括第二Wi-Fi信道频率。

49. 根据权利要求43所述的反向散射装置，其进一步包括多个天线，且其中使用MIMO技术来提供所述载波信号。

50. 一种系统，其包括：
辅助装置，其经配置以传输包含第一频率的载波信号；
反向散射装置，其经配置以使用副载波调制以具有第二频率的波形反向散射所述载波信号，所述反向散射装置经配置以将所述载波信号依第三频率反向散射成反向散射信号，所述第三频率等于所述第一及第二频率的组合；及
接收器，其经配置以依所述第三频率接收所述反向散射信号。

51. 根据权利要求50所述的系统，其中所述反向散射装置进一步经配置以使用相移键控、幅移键控或其组合而在所述反向散射信号中提供数据。

52. 根据权利要求50所述的系统，其进一步包括：多个辅助装置，其包含所述辅助装置；
及多个接收器，其中包含所述接收器，其中至少部分地基于所述辅助装置与所述反向散射装置的接近度而从所述多个辅助装置选择所述辅助装置以提供所述载波信号。

53. 根据权利要求52所述的系统，其中所述多个辅助装置中的每一者经配置以在一种模式下提供所述载波信号且在另一模式下接收所述反向散射信号。

54. 根据权利要求50所述的系统，其中所述辅助装置及所述接收器是单独的电子装置。

55. 根据权利要求50所述的系统，其中所述辅助装置及所述接收器集成在同一装置中，所述同一装置包含抵消电路，所述抵消电路经配置以抵消所述接收器处的所述载波信号。
反向散射装置及结合反向散射装置的网络系统

【0001】相关申请案的交叉参考
【0003】关于联邦资助的研究或开发的声明
【0004】本发明是在国家科学基金会授予CNS-1407583及国家科学基金会授予CNS-1452494授权的政府资助下完成的。政府对本发明有一定的权利。

技术领域
【0005】本文中描述的实例总体上涉及无线通信。本文描述了反向散射装置及结合反向散射装置的网络系统的实例。

背景技术
【0006】根据无线通信协议（例如，Wi-Fi、蓝牙、ZigBee、SigFox）的通信可驱动传感器或其它通信装置的功率预算。此类通信所需的功率可能无法完全实施各种物联网（“IoT”）或其它无所在不在的感测情境。虽然CMOS技术缩放常规上已为数字逻辑系统的尺寸及功耗提供指数优势，但是Wi-Fi通信所必需的模拟RF组件尚未发现类似的功率缩放。结果，传感器及移动装置上的Wi-Fi传输仍然消耗数百毫瓦的功率。
【0007】已经描述了反向散射技术，其创建额外的窄带数据流以跨越在现有的Wi-Fi信号的顶部上。然而，所述装置通常受到距离较近的低数据速率的限制，或需要在接收器处使用定制的全双工硬件，使得通信不能被任何现有的Wi-Fi装置接收。

发明内容
【0008】本文中描述了反向散射装置的实例。在一些实例中，一种反向散射装置包含；天线，其经配置以反向散射具有第一频率的载波信号；基带电路，其经配置以提供用于传输的数据；波形产生器，其经配置以提供具有第二频率的波形，其中所述第二频率是所述第一频率与所述第二频率之间的差；副载波相位调制器，其耦合到所述基带电路及所述波形产生器，所述副载波相位调制器经配置以根据所述数据来调整所述波形的相位、振幅或其组合以提供输出信号；及开关，其耦合到所述天线，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号，使得所述第一频率与所述第二频率进行混频以依所述第三频率在反向散射信号中传输所述数据。
【0009】在一些实例中，所述反向散射信号是根据实施相移键控、幅移键控或其组合的无线通信协议而散布。在一些实例中，所述无线通信协议包括Wi-Fi、ZigBee、SigFox或其组合。
在一些实例中，所述波形包括方波、模拟信号、多电平信号或其组合。

在一些实例中，所述数据包括Wi-Fi分组。

在一些实例中，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号以依所述第三频率及第四频率传输所述数据。

一些实例反向散射装置可包含多个天线，并可使用MIMO技术来提供所述载波信号。

在一些实例中，反向散射装置包含天线，所述天线经配置以反向散射包含第一频率的跳频信号，所述基带电路，其经配置以提供用于传输的数据；波形产生器，其经配置以提供具有第二频率的波形，且进一步经配置以根据所述跳频信号来跳频所述第二频率；副载波相位调制器，其耦合到所述基带电路及所述波形产生器，所述副载波相位调制器经配置以根据所述数据来调整所述波形的相位。振幅或其组合以提供输出信号；及开关，其耦合到所述天线，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号，使得所述第一频率与所述第二频率进行混频以依第三频率传输所述数据。

在一些实例中，所述波形包括方波、模拟信号、多电平信号或其组合。

在一些实例中，所述跳频信号包括频率序列，且其中所述频率序列是由所述反向散射装置通过下行链路从经配置以传输所述载波信号的装置接收。

在一些实例中，所述跳频信号包括频率序列，且其中所述反向散射装置进一步包括经配置以存储所述频率序列的存储器。在一些实例中，所述频率序列包括伪随机序列。

在一些实例中，所述第一频率与所述第二频率进行混频以依所述第三频率在反向散射信号中传输所述数据，且所述反向散射信号包括根据无线通信协议的信号，所述无线通信协议是选自由Wi-Fi、ZigBee、SigFox及其组合组成的协议群组。

在一些实例中，反向散射装置进一步包含耦合到所述天线的频率确定电路，所述频率确定电路将至少部分地通过感测所述载波信号的所述第一频率且计算所述第一频率与所述第三频率之间的差来向所述波形产生器提供所述第二频率的指示。

在一些实例中，反向散射装置进一步包含多个天线，并可使用MIMO技术来提供所述载波信号。

在一些实例中，一种反向散射装置包含天线，所述天线经配置以反向散射具有第一频率的载波信号，所述载波信号包含频移信号；所述基带电路，其经配置以根据所述频移信号提供用于传输的数据；波形产生器，其经配置以提供具有第二频率的波形；副载波相位调制器，其耦合到所述基带电路及所述波形产生器，所述副载波相位调制器经配置以根据所述数据来调整所述波形的相位，振幅或其组合以提供输出信号；及开关，其耦合到所述天线，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号，使得所述第一频率与所述第二频率进行混频以依所述第三频率传输所述数据。

在一些实例中，所述第一频率与所述第二频率进行混频以依所述第三频率在反向散射信号中传输所述数据，且所述反向散射信号包括根据无线通信协议的信号，所述无线通信协议是选自由Wi-Fi、ZigBee、SigFox及其组合组成的协议群组。

在一些实例中，用于传输的数据包含频移序列。

在一些实例中，所述副载波相位调制器每次基于所述载波信号的特征开始反向散射。
[0025] 在一些实例中，所述副载波相位调制器响应于来自另一装置的同步信号而开始反向散射。
[0026] 在一些实例中，反向散射装置进一步包含多个天线，且可使用MIMO技术来提供所述载波信号。
[0027] 本文中揭示了方法的实例。实例方法包含一种用于控制对第一无线通信信道的接入的方法。在一些实例中，所述方法可包含：在至少所述第一无线通信信道及第二无线通信信道上从第一无线通信装置传输信号分组，其中所述信号分组包含至少一个反向散射装置的标识；及在所述至少一个反向散射装置处接收所述信号分组，且响应于接收到所述信号分组，将至少部分地提供在所述第二无线通信信道上的载波信号反向散射成所述第一无线通信信道上的传输。
[0028] 在一些实例中，所述方法包含在接收到所述信号分组之后的短帧间隔(SIFS)时间期间的反向散射。
[0029] 在一些实例中，所述方法包含从所述至少一个反向散射装置向所述第一无线通信装置传输固定数据速率、最大数据速率或其组合的指示。
[0030] 在一些实例中，所述方法包含根据所述固定数据速率、最大数据速率或其组合来传输所述信号分组。
[0031] 在一些实例中，所述固定数据速率、最大数据速率或其组合指示来自与所述至少一个反向散射装置相关联的传感器的数据传递速率。
[0032] 在一些实例中，所述方法包含在传输所述信号分组之前由所述第一无线通信装置在所述第一及第二无线通信信道上执行载波侦听。
[0033] 在一些实例中，所述方法包含在接收器处从所述反向散射装置接收所述第一无线通信信道上的所述传输。
[0034] 在一些实例中，所述方法包含响应于接收所述传输而由所述接收器传输确认消息。在一些实例中，所述方法进一步包含在所述第一无线通信装置处接收所述确认消息且由所述第一无线通信装置传输下一信号分组，所述下信号分组包含接收到所述确认消息的指示。
[0035] 在一些实例中，所述传输包含使用开/关键控来提供所述标识。
[0036] 在一些实例中，所述方法包含在所述第一无线通信装置处计算成功接收的传输的分数，且基于成功接收的传输的所述分数来对所述信号分组中的位速率进行编码。
[0037] 在一些实例中，所述方法包含响应于所述信号分组的确认消息而由所述第一无线通信装置传输下一信号分组，所述下信号分组包含缺少接收到所述确认消息的指示。
[0038] 在一些实例中，可提供用于将反向散射装置与网络中的其它装置相关联的方法。在一些实例中，所述方法包含：将接收器与两个物理地址相关联：广播具有所述两个物理地址的发现分组；在反向散射装置处接收所述发现分组，且由所述反向散射装置传输源地址及目的地地址被设定到所述两个物理地址的反向散射分组，其中所述反向散射分组包含有效负载，所述有效负载包含所述反向散射装置的第二物理地址；在辅助装置处接收所述反向散射分组；及由所述辅助装置部分地通过所述反向散射装置传输所述第三物理地址来将所述反向散射装置与所述接收器相关联。
[0039] 在一些实例中，所述两个物理地址是MAC地址。
在一些实例中，所述广播包括使用振幅调制。在一些实例中，所述广播包括使用开/关键控。

在一些实例中，所述发现分组包含所述反向散射装置所特有的广播ID。

在一些实例中，所述有效负载进一步包含传感器更新速率，分组长度，所支持的位速率或其组合。

在一些实例中，所述方法包含由所述辅助装置传输ID，且向所述反向散射装置传输所述ID。

在一些实例中，所述方法包含响应于在所述反向散射装置处接收到所述ID，由所述反向散射装置传输源地址被设定到所述第三物理地址且目的地地址被设定到所述两个物理地址中的至少一者的确认分组。

在一些实例中，所述方法包含使用在所述反向散射装置与所述辅助装置之间共享的秘密密钥安全地发送所述第三物理地址的凭证。

在一些实例中，一种反向散射装置可包含：天线，其经配置以反向散射具有第一相移键控协议、第一幅移键控协议或其组合的第一信道频率的载波信号；基带电路，其经配置以提供用于传输的数据；波形产生器，其经配置以提供具有第二频率的波形，其中所述第二频率是所述第一信道频率与所述第二相移键控协议、第二幅移键控协议或其组合的第三信道频率之间的差；副载波相位调制器，其耦合到所述基带电路及所述波形产生器，所述副载波相位调制器经配置以根据所述数据来提供或抑制所述波形以提供输出信号；及开关，其耦合到所述天线，所述开关经配置以根据所述输出信号来控制所述天线以反向散射所述载波信号，使得所述第一信道频率与所述第二频率进行混频以依所述第三信道频率传输反向散射信号。

在一些实例中，所述第一相移键控协议、所述第一幅移键控协议或所述其组合是与所述第二相移键控协议、所述第二幅移键控协议或所述其组合相同的相移键控协议、幅移键控协议或其组合。

在一些实例中，所述第一相移键控协议、所述第一幅移键控协议或所述其组合是与所述第二相移键控协议、所述第二幅移键控协议或所述其组合不同的相移键控协议、幅移键控协议或其组合。

在一些实例中，所述第一相移键控协议、所述第一幅移键控协议或所述其组合是选自由Wi-Fi，ZigBee，SigFox及其组合组成的群组。

在一些实例中，所述第二相移键控协议、所述第一幅移键控协议或所述其组合是选自由Wi-Fi，ZigBee，SigFox及其组合组成的群组。

在一些实例中，所述第一信道频率包括第一Wi-Fi信道频率，且所述第三信道频率包括第二Wi-Fi信道频率。

在一些实例中，所述反向散射装置可包含多个天线，且可使用MIMO技术来提供所述载波信号。

本文中描述了系统的实例。在一些实例中，一种系统可包含：辅助装置，其经配置以传输包含第一频率的载波信号；反向散射装置，其经配置以使用副载波调制以具有第二频率的波形反向散射所述载波信号，所述反向散射装置经配置以将所述载波信号依第三频率反向散射成反向散射信号，所述第三频率等于所述第一及第二频率的组合；及接收器，其
经配置以依据所述第三频率接收所述反向散射信号。

【0054】　在一些实例中，所述反向散射装置可进一步经配置以使用相移键盘、幅移键盘或其组合而在所述反向散射信号中提供数据。

【0055】　在一些实例中，所述系统可包含：多个辅助装置，其包含所述辅助装置；及多个接收器，其包含所述接收器，且可至少部分地基于所述辅助装置与所述反向散射装置的接近度而从所述多个辅助装置选择所述辅助装置以提供所述载波信号。

【0056】　在一些实例中，所述多个辅助装置中的每一者经配置以在一种模式下提供所述载波信号且在另一模式下接收所述反向散射信号。

【0057】　在一些实例中，所述辅助装置及所述接收器是单独的电子装置。

【0058】　在一些实例中，所述辅助装置及所述接收器集成在同一装置中，所述同一装置包含抵消电路，所述抵消电路经配置以抵消所述接收器处的所述载波信号。

附图说明

【0059】　图1是根据本说明书中描述的实例而布置的系统的示意图。

【0060】　图2是根据本说明书中描述的实例而布置的反向散射装置的示意图。

【0061】　图3是根据本说明书中描述的实例而布置的系统的示意图。

【0062】　图4是2.4GHz ISM频带中的非重叠Wi-Fi信道的示意图。

【0063】　图5是包含用于几个组件的信令示意图的图4的系统的示意图。

【0064】　图6是根据本说明书中描述的实例而布置的信令分组的示意图。

【0065】　图7是根据本说明书中描述的实例而布置的系统中的网络相关联方法的示意图。

【0066】　图8是根据本说明书中描述的实例而布置的反向散射装置IC设计的示意图。

具体实施方式

【0067】　下文陈述特定细节以提供对本发明的实施例的足够理解。然而，所属领域的技术人员将明白，可在无这些特定细节的情况下实践本发明的实施例。在一些实例中，尚未详细地展示众所周知的电路、控制信号、联网组件、时序协议及软件操作以便避免不必要的混淆本发明的所述实施例。

【0068】　本文中描述的实例可提供反向散射装置及系统，其可合成符合标准的无线传输（例如，Wi-Fi及/或ZigBee）以与例如Wi-Fi接入点及/或ZigBee集线器的符合标准的现成装置通信。利用所描述的反向散射技术的实例的传感器可具有低功率的功耗，这可大幅提高电池寿命及/或降低传感器上的电池的尺寸及成本。

【0069】　本文中描述的实例包含利用反向散射通信来直接产生Wi-Fi传输（例如，而非通过反向散射Wi-Fi信号发送额外数据流）的装置及系统，所述Wi-Fi传输可在具有Wi-Fi芯片集的数十亿个现有装置中的任一者上进行解码。实例包含使用反向散射通信产生802.11b传输同时在一些实例中消耗比现有Wi-Fi芯片集低4到5个数量级的功率的装置。

【0070】　本文描述了网络堆栈的实例，所述网络堆栈可促进反向散射装置与其它装置共存（例如，在ISM频带中），而不会引起载波侦听及媒体接入控制操作的功耗或降低对所述功耗的需求。

【0071】　图1是根据本说明书中描述的实例而布置的系统的示意图。系统102包含辅助装置104、
接收器106，反向散射装置108及反向散射装置110。在操作期间，辅助装置104传输载波信号。反向散射装置108及/或反向散射装置110可将载波信号反向散射成可符合例如Wi-Fi及/或ZigBee的无线通信协议的传输。来自反向散射装置108及/或反向散射装置110的传输可由接收器106接收，以此方式，接收器106可为能够接收以例如Wi-Fi及/或ZigBee的由反向散射装置108及/或反向散射装置110传输的协议而关闭的无线通信装置的任何电子装置（例如，无线通信装置）。因此，反向散射装置可使用无线通信协议向常规电子装置（例如，无线通信装置）进行传输。

[0072] Wi-Fi信号通常是指通常使用2.4GHz及/或5GHz ISM无线电频带的无线电域网通信信号。通信信号可根据电气与电子工程师协会的802.11标准而发送，所述标准是例如但不限于802.11a、802.11b、802.11g及/或802.11n。

[0073] 可使用本文中描述的能够提供载波信号的任何电子装置（例如，无线通信装置）来实施辅助装置104。辅助装置的实例包含但不限于路由器、例如蜂窝电话或平板计算机的移动通信装置、计算机及/或膝上型计算机。辅助装置104通常可具有有线电源，但是在一些实例中辅助装置104可为电池供电的。通常，辅助装置104可具有足够的功率来产生载波信号。如本文中所描述，单个辅助装置可向多个反向散射装置提供载波信号。虽然图1中展示了单个辅助装置104，但是在一些实例中可使用任何数目个辅助装置。在一些实例中，辅助装置104可实施媒体接入控制协议。例如，一旦期望信号（例如，上面将传输载波信号及/或反向散射信号的信道）被确定为空闲，辅助装置104就可传输载波信号。

[0074] 辅助装置104通常包含RF组件，例如频率合成器及/或功率放大器，接着在反向散射装置108及/或反向散射装置110处可能不需要前述RF组件。以此方式，辅助装置104可提供用于例如反向散射装置108及反向散射装置110的任何数目个反向散射装置110的RF功能。

[0075] 由辅助装置104提供的载波信号可为可被反向散射装置108及/或反向散射装置110反向散射以形成根据例如Wi-Fi、ZigBee及/或SigFox的无线通信协议而关闭的无线通信信号的任何无线信号中的任一者。载波信号可为连续波或协议特定载波信号（例如，蓝牙、Wi-Fi、ZigBee及/或SigFox信号）。在一些实例中，载波信号可为扩频信号。在一些实例中，载波信号可为跳频信号。在一些实例中，载波信号可为连续波信号。在一些实例中，可根据接收器106经配置以接收的特定无线协议及/或频率及/或振幅及/或相位来选择连续波信号的一种或多个特性（例如，频率、振幅及/或相位）。在一些实例中，载波信号可为单频语音信号。

[0076] 在一些实例中，载波信号可为无数据信号。例如，接收器可解码的数据可能不会以载波信号进行编码。在一些实例中，载波信号可使用预定数据信号予以实施。例如，载波信号可能无法用在辅助装置104处未预定及/或产生的数据进行编码。在一些实例中，载波信号可能无效载波信号。例如，接收器104可检测的数据有效载波可能不包含在载波信号中。在一些实例中，载波信号可基于由辅助装置104执行的媒体接入控制子层处理的信号。

[0077] 在一些实例中，辅助装置可检测频谱及/或无线通信信道的未使用部分。例如，辅助装置可检测到无线通信信道或其部分未被使用，且可在未被使用的无线通信信道或其部分上选择性地传输载波信号。在一些实例中，载波信号传输仅在辅助装置确定载波信号使用的无线通信信道未被使用之后才进行。在一些实例中，另外或替代地，辅助装置可检测
到意图在上面接收反向散射信号的无线电通信信道其部分分被使用，且可在接收信道未被使用时选择性地传输载波信号。

【0078】 例如，传统的Wi-Fi通信使用载波侦听来共享网络。然而，载波侦听通常需要在每次传输之前均开启的Wi-Fi接收器。因为传统的Wi-Fi接收器需要例如ADC、频率合成器及LNA的耗电RF组件，所以在反向散射装置108及/或反向散射装置110处进行载波侦听的要求可降低使用反向散射技术所实现的总体功率节省。因此，在本文中描述的实例中，载波侦听可由辅助装置104执行，且可能由例如反向散射装置108及/或反向散射装置110的反向散射装置执行。通常，辅助装置104可执行载波侦听且向类似反向散射装置108及/或反向散射装置110的反向散射装置发射何时进行传输的信号。辅助装置104还可仲裁多个反向散射装置之间的信道且解决包含ACK及重传的其它链路层问题。

【0079】 反向散射装置108及反向散射装置110可使用具有反向散射通信能力的任何装置中实施及/或与所述任何装置一起实施，所述任何装置是例如但不限于标签、例如蜂窝电话或平板计算机的移动通信装置、笔记本及/或膝上型计算机。所述任何装置具有反向散射通信能力的其它装置，包含但不限于传感器、例如手表、眼镜、隐形眼镜及/或医疗植入物的可佩戴装置。预期到，反向散射装置可具有足够小的尺寸外型及低功率要求，以便能够结合在任何物体中或附接到任何物体且提供用于所述物体及/或与所述物体相关联的通信功能。以此方式，反向散射装置可无时不在地放置在环境中，且促进物联网（IoT）及/或其它无所在在的传感器功能。虽然图1中展示了两个反向散射装置，但是应理解，可使用任何数目个反向散射装置，包含一个反向散射装置。在其它实例中，系统102中可存在10、20、30、40、50、60、70、80、90、100个或更多个反向散射装置。

【0080】 通常，例如反向散射装置108及反向散射装置110的反向散射装置用于向载波信号呈现不同阻抗，使得例如载波信号在任何给定时间被反向散射装置反射或吸收。以此方式，例如，‘1’可由反向指示且‘0’可由吸收指示，或反之亦然，且载波信号可被反向散射成携带数据的信号。因此，在一些实例中，可使用改变反向散射装置的无线电的阻抗所需的能量通过反向散射来提供携带数据的信号。以此方式，反向散射装置可以比反向散射装置本身已经产生载波信号的情况更低的功率传输携带数据的信号。

【0081】 本文中描述的例如反向散射装置108及反向散射装置110的反向散射装置通常可为超低成本装置。例如，本文中描述的反向散射装置可消除或降低对耗电组件（例如，可能存在于辅助装置104中的RF信号产生器、混频器、模/数转换器）等的需求。以此方式，本文中描述的反向散射装置可消耗数微瓦的功率来传输数据，这可利用反向散射装置的通信能力来提高组件（例如，传感器）的电池寿命。反向散射装置可执行数字基带操作，例如编码及/或调制。

【0082】 由反向散射装置108及/或反向散射装置110反向散射的反向散射信号及可为使用由反向散射装置108及/或反向散射装置110执行的副载波调制而产生的信号。在一些实例中，反向散射信号的频率可从载波信号的频率进行频移。在一些实例中，可使用相移及/或幅频键控将数据编码在反向散射信号中。在一些实例中，反向散射信号基于由反向散射装置108及/或反向散射装置110执行的相移键控（例如，QPSK及/或BPSK）及/或幅频键控副载波调制。因此，本文中描述的包含反向散射装置108及反向散射装置110的反向散射装置可根据利用相移及/或幅频键控的无线通信协议（例如，Wi-Fi、ZigBee、SigFox）来提供反向散射
信号。在一些实例中，反向散射信号可包含由反向散射装置108及/或反向散射装置110添加的DSSS及/或CCK扩频序列。在一些实例中，反向散射信号可包含有效负载，在反向散射装置108及/或反向散射装置110处接收到载波信号之后，所述有效负载被添加到由辅助装置104产生的信号。在一些实例中，反向散射信号可包含在接收器106处基于由接收器106实施的特定协议或标准解码的分组。在一些实例中，反向散射信号可包含在反向散射装置108及/或反向散射装置110处检测到的且被添加到预定的频率特定载波信号的数据。

本文中描述的例如反向散射装置108、反向散射装置110及/或辅助装置104的反向散射装置及/或辅助装置可各自包含多个天线。以此方式，可利用天线分集且可使用多输入多输出(MIMO)技术。例如，辅助装置104可基于无线信道使载波信号跨越多个天线而分布，这可改善从辅助装置104到反向散射装置108及/或110到接收器106的无线信号传播。

接收器106可使用能够接收由反向散射装置108及/或反向散射装置110提供的协议(例如Wi-Fi及/或ZigBee)而方式化的无线通信信号的任何电子装置(例如，无线通信装置)予以实施。通常，可使用任何电子装置(例如，无线通信装置)来实施接收器106，所述任何电子装置包含但不限于Wi-Fi接入点、Wi-Fi路由器、ZigBee集线器、路由器、例如蜂窝电话或平板计算机的移动通信装置、计算机及/或膝上型计算机。在一些实例中，辅助装置104、接收器106及反向散射装置108及/或反向散射装置110可为物理上单独的装置。

虽然被展示为与辅助装置104分离的装置，但是在一些实例中，辅助装置104及接收器106可集成及/或可为同一装置。例如，在一些实例中，电子装置可包含多个天线。在一些实例中，一或多个天线可提供载波信号(例如，提供辅助装置104)。而在一些实例中，与提供载波信号的天线不同的一-或多个天线可接收由一或多个反向散射装置传输的信号(例如，提供接收器106)。在一些实例中，辅助装置及接收器可集成到单个装置中。可在集成装置中提供抵消电路以抑制(例如，抵消)由辅助装置在接收器处传输的载波信号。

在存在来自辅_助装置104传输的载波信号的干扰的情况下，接收器106可从反向散射装置108及/或反向散射装置110接收传输。在一些实例中，接收器106可使用专门硬件(例如，全双工无线电)来抵消此干扰信号，然而，这可能不与现有的Wi-Fi装置兼容。在一些实例中，辅助装置104可提供用于用于反向散射装置108及/或反向散射装置110的传输的期望频率信号中的频率(例如，单频音调或多频信号)组成的载波信号。这可确保及/或帮助接收器106抑制来自辅助装置104的外带干扰。例如，即使在相邻频带中存在干扰(例如35dB更强的干扰)的情况下，Wi-Fi接收器也可能越来越需要工作。因此，如果辅助装置104在相邻频带中传输载波信号，那么可使用传统的Wi-Fi接收器来实施106且在存在干扰信号的情况下维持运作。此外，随着Wi-Fi及蓝牙无线电集成到单芯片集上，Wi-Fi硬件经设计用于存在于存在带外蓝牙干扰的情况下工作。因此，在一些实例中，辅助装置104可提供蓝牙载波信号，且接收器106中的Wi-Fi芯片集可适当地操作以即使在存在干扰蓝牙信号的情况下也从反向散射装置108及/或反向散射装置110接收Wi-Fi传输。

在一些实例中，在辅助装置104与接收器106之间提供一定的物理间距。例如，如果接收器106太靠近辅助装置104，那么可能会出现过多的带外干扰，使得辅助装置104传输载波信号会使接收器106的RF前端饱和及/或压缩所述RF前端，从而使Wi-Fi性能降级。这通常被称为输入1dB压缩点。对于商用Wi-Fi装置来说，其可能在0dBm左右。
在一些实例中，本文中描述的辅助装置104及接收器106可不时地改变功能。例如，虽然辅助装置104可加参考辅助装置所描述的运作，但是辅助装置104有时可在一些实例中用作接收器，而接收器106有时可作为辅助装置。例如，可使用具有多种操作模式的路由器（例如，Wi-Fi路由器）。在一种操作模式下，路由器可用于实施辅助装置104，而在另一模式下，路由器可用于实施接收器106。在一些实例中，同一装置可对其功能进行时间复用，使得辅助装置104可与接收器106集成及/或结合。

在一些实例中，系统中可存在多个辅助装置及/或接收器。在一些实例中，单个装置（例如，路由器）可在某些时间充当辅助装置且在其它时间充当接收器。在一些实例中，系统中可能存在多个（例如，两个）装置，每个装置均能够用作辅助装置或接收器。例如，所述装置可在一种模式下用作辅助装置（例如，经配置以传输载波信号）及在第二模式下用作接收器（例如，经配置以接收反向散射信号）。因此，这二装置可在任何时刻交替用作辅助装置。例如，在一个时间，路由器1可充当辅助装置，而路由器2可充当接收器，且在另一时刻，可颠倒角色。在一些实例中可使用不同的时间分配，且在一些实例中可存在更多数目个路由器。

在具有多个辅助装置及/或接收器的实例中，辅助装置及/或接收器可跨越区域而定位以最大化及/或改善载波信号的空间覆盖及/或用于接收反向散射信号的空间覆盖。在一些实例中，基于候选辅助装置与反向散射装置的接近度，可选择系统中的多个辅助装置中的某个辅助装置来充当辅助装置（在一些实例中，所述选择可为反向散射装置或反向散射装置群组所特有的）。在一些实例中，可基于多个辅助装置中的候选辅助装置进行选择，所述候选辅助装置可比多个辅助装置中的另一者具有更好的反向散射信号接收。

图2是根据本文中描述的实例而设计的反向散射装置的示意图。反向散射装置200可用于实施例如图1的反向散射装置108及/或反向散射装置110。反向散射装置200包含基带202、频率波相位调制器204、有源RF 206、开关208及波形产生器212。

反向散射装置通常通过改变天线阻抗而操作。改变天线阻抗的效应可被理解为引起雷达横截面（例如，由天线反射的信号）也在两个不同状态之间改变。鉴于具有功率P_{incident}的入射信号，反向散射信号中的功率可被表达为

$$P_{backscatter} = P_{incident} \frac{|r_1^* - r_2^*|^2}{4}$$

方程式1

其中r_1^*及r_2^*是与两个阻抗状态对应的反射系数的复共轭。为了最大化反向散射信号中的功率，两个阻抗状态的功率差（通常被最大化）由下式给出

$$|r|^2 = \frac{|r_1^* - r_2^*|^2}{4}$$

方程式2

为了使反向散射信号中的功率等于入射信号的功率，方程式2的左侧可被设定为4，这可通过调制+1与-1之间的反射系数而实现。然而，实际上，反向散射硬件可能偏离此理想行为并导致损耗，这些在实践中是可接受的：一个实例硬件实施方案损耗了1.1dB左右。

通过利用开关（例如，开关208），天线阻抗可在两个阻抗状态之间切换。反向散射装置200的实例可使用此二进制系统来产生传输（例如，Wi-Fi传输）。
通常，反向散射装置200可通过反向散射装置200来将载波信号的频率偏移。例如，频率可从在期望Wi-Fi传输信道之外提供的单频音调偏移到期望Wi-Fi传输信道内的频率（例如，期望Wi-Fi传输信道的中心频率）。频移信号可用于提供无线通信信号（例如，Wi-Fi信号）。通常，为了将载波信号的频率偏移，开关208可以等于期望频移量的频率Δf操作。可使用数学逻辑来执行数字编码，且在一些实例中可通过修改方波的相位（例如，用于近似正弦波）来实施相变。以此方式，数字反向散射装置200可在数字域中以基带操作的同时合成无线通信信号（例如，Wi-Fi信号）。

例如，反向散射装置200可反向散射例如由图1的辅助装置104提供的单频音调信号。单频音调信号可被写为$2\pi (f_{\text{w}, f} - \Delta f) t$，其中$f_{\text{w}, f}$是反向散射装置进行Wi-Fi传输的期望频率，且$\Delta f$是反向散射装置所利用的波形频率。反向散射装置200可利用频率Δf（例如，由波形产生器212提供）的方波来将音调偏移到$f_{\text{w}, f}$。由波形产生器212提供的方波可被近似为$

\frac{4}{\pi} \sin 2\pi \Delta f t$

方程式3

因为调制天线的雷达横截面会有效地将入射信号与调制信号相乘，所以反向散射信号可被近似为$2\pi (f_{\text{w}, f} - \Delta f) t \sin 2\pi \Delta f t$。以此方式，反向散射创建了两个音调，一个在$f_{\text{w}, f}$处且另一个在与初始单音信号相隔$f_{\text{w}, f} - \Delta f$处。

因此，本文中描述的包含图2的反向散射装置200的反向散射装置可提供具有从载波信号的频率偏移差频的频率的反向散射信号。差频可为被提供给副载波调制电路的波形的频率（或包含在所述波形中）。

可以多种方式在反向散射信号中传输数据。在一些实例中，可利用载波信号本身的反射及/或吸收来对数据进行编码。例如，可使用具有分组或其它数据的信号（例如，Wi-Fi信号）来实施载波，反向散射装置可传输及/或反射载波信号的分组以指示‘1’或‘0’（或反之亦然）。在一些实例中，可由反向散射装置执行相移及/或幅移键控以将数据编码在反向散射信号中。例如，在以Wi-Fi信道（$f_{\text{w}, f}$）为中心创建音调之后，可产生使用反向散射的802.11b传输。802.11b使用DSSS及CCK编码，所述编码均是数字操作且因此可在无源Wi-Fi装置处使用数字逻辑（例如，通过基带202）来执行。反向散射装置200可使用以频率Δf创建的方波来根据相移键控协议（例如，QPSK、BPSK、DBPSK及/或QDPSK）产生信号，这可通过注意到DBPSK及QDPSK使用具有四个不同相位的正弦波来理解：$0, \pi / 2, \pi$及$3\pi / 2$。因为由开关208提供的方波可被近似为正弦波，所以可通过改变由波形产生器212提供的方波的时序来提供四个相位。例如，将方波偏移符号时间的一半会有效地产生为π的相变。通过将方波偏移符号时间的四分之一及四分之三，可实现为$\pi / 2$及$3\pi / 2$的相变。以此方式，例如反向散射装置200的反向散射装置可在数字域中完全操作，同时以几十MHz的基带频率运行并使用反向散射来合成802.11b传输。

在操作期间，基带202可将用于通信的数据提供给副载波相位调制器204，所述副载波相位调制器也可被称为副载波波调制器。应理解，即使被称为副载波相位调制器，也可能不会在所有实例中执行相位调制。波形产生器212可向副载波相位调制器204提供波形。可选择波形的频率作为载波信号的频率与反向散射信号的期望频率（例如，接收器可接收反应向散射信号时的频率）之间的差。可以几种方式在反向散射信号中提供数据。在一些实例
中，副载波相位调制器204可控制开关208以根据所述数据反射及/或吸收载波信号的部分（例如，分组）。例如，载波信号的分组可经反射以指示‘0’且经吸收以指示‘1’，或反之亦然。在一些实例中，副载波相位调制器204可改变由波形产生器212提供的波形的相位、振幅或这两者以提供输出信号。输出信号可用于控制开关208以将载波信号反向散射成根据利用相移键控的无线通信协议、使用幅移键控的无线通信协议或其组合而格式化的携带数据的信号。

【0105】一些实例反向散射装置可另外包含有源RF 206组件，使得在一种模式下，反向散射装置200可反向散射信号且具有低功率（例如，反向散射）操作；而在另一模式下，反向散射装置200可利用有源RF 206来常规地传输无线通信信号（例如，产生装置自身的载波信号）。如图2所示，反向散射组件及有源RF 206可利用同一天线，且在一些实例中，天线连接可在有源RF 206与副载波相位调制器204之间由控制电路（图2中未展示）切换。在其它实例中，有源RF 206及副载波相位调制器204可利用不同的天线。

【0106】天线可连接到在有源RF 206无线电与副载波相位调制器204之间进行选择的开关，所述选择可例如基于与辅助装置的接近度来进行。在一些实例中，当反向散射装置处于辅助装置的范围内时，其可将副载波相位调制器204耦合到天线以执行低功率传输（例如，Wi-Fi传输）。然而，当反向散射装置在辅助装置的范围之外时，天线可耦合到有源RF 206。

【0107】基带202可使用用于所关注的无线通信协议的典型基带电路（例如，Wi-Fi基带电路及/或zigBee基带电路）予以实施。通常，基带202包含可能具有较低功率的数字电路组件。基带202可根据所关注的无线通信协议来提供编码（例如，用于802.11b传输的DSSS及CCK编码）。在一些实例中，由基带202提供的数据可源自一或多个传感器，其可耦合到反向散射装置200及/或与反向散射装置200集成。可使用任何数目的传感器，包含但不限于温度传感器、振动传感器、湿度传感器、葡萄糖传感器、pH传感器、血氧传感器、GPS传感器、光学传感器、照相机及/或麦克风。以此方式，可提供可由反向散射装置200传输的传感器数据。

【0108】在一些实例中，反向散射装置200可实施WPA/WPA2并确保其Wi-Fi传输符合Wi-Fi安全规范。因为这些是数字操作，所以基带202可使用基带处理在反向散射装置200上实施它们。

【0109】虽然图2中未展示，但是反向散射装置200可包含电源，例如电池及/或能量收集系统。电池可使用锂离子电池予以实施。另外或代替地，在一些实例中，可提供能量收集组件以对反向散射装置200供电，所述能量收集组件包含但不限于用于收集太阳能、热能、振动能量或其组合的组件。电源可对基带202、副载波相位调制器204及波形产生器212供电。在一些实例中，当比用于对这些反向散射组件供电的电源（例如，有线电源）的电源可用时，可使用有源RF 206。

【0110】副载波相位调制器204可使用可调整波形的相位、振幅或这两者的电路予以实施。在一些实例中，可使用FPGA来实施副载波相位调制器204。副载波相位调制器204连接到基带202且可从基带202接收数据。副载波相位调制器204可进一步连接到波形产生器212，且可接收由波形产生器212提供的波形。副载波相位调制器204可根据来自基带202的数据改变波形的相位、振幅或这两者以提供输出信号。副载波相位调制器204可耦合到开关208且可将输出信号提供给开关208。

【0111】请注意，在物理层上，ZigBee在2.4GHz ISM频带中使用偏移QPSK及直接序列扩频
通常使用具有DSSS/CCK扩频序列的BPSK/QPSK调制来实施Wi-Fi。为了创建用于DBPSK/DQPSK调制的相位，副载波相位调制器204可通过改变波形时序来改变由波形产生器202提供的方波的相位。副载波相位调制器202可在其它实例中利用QPSK调制来合成Wi-Fi及/或ZigBee分组。在一些实例中，分组的有效负载可包含用于载波信号的扩频序列。例如，扩频序列可由基带202提供及/或存储在反向发射装置200上的存储器中。

【0112】 在一些实例中，可使用基于模拟的技术来实施相移键控，代替基于由基带202提供的数据来选择由波形产生器202提供的波形的相位。在一些实例中，可例如通过用多路复用器或开关网络替换开关208且在四个阻抗状态之间切换天线阻抗（例如，所述四个阻抗状态可全部以相位间隔开90°放置在同上）实施相移键控来实施相移键控。幅移键控可以类似方式实施。

【0113】 通常可使用用于改变被呈现给天线的阻抗的任何电路（例如晶体管）来实施开关208。开关208耦合在副载波相位调制器204与反向发射装置200的天线之间。在图2的实例中，使用晶体管来实施开关208。可使用各种天线设计中的任一者。天线可在载波信号的频率及反向散射信号的频率下操作。由副载波相位调制器204提供给开关208的输出信号可因此开启晶体管，从而向天线呈现低阻抗。由副载波相位调制器204提供给开关208的输出信号可因此关闭晶体管，从而向天线呈现高阻抗。开关208通常可以基于频率运行例如，以比被提供给反向散射装置200的载波信号的频率低得多的频率运行。在一些实例中，开关208可以50MHz或更低的频率操作，但在其它实例中也可使用其它频率。

【0114】 波形产生器212可向副载波相位调制器204提供波形。通常可使用任何周期性波形，包含但不限于方波、正弦波、余弦波、三角波、锯齿波、模拟信号、多电平信号或其组合。波形产生器212可使用硬件、软件或其组合予以实施。例如，波形产生器212可使用振荡器予以实施。有振荡器的波形产生器212提供的波形的相位可例如通过改变被提供给振荡器的时钟信号的相位而改变。在一些实例中，可使用FPGA、DSP及/或微处理器及可执行指令来实施波形产生器212，以依期望频率提供期望波形。

【0115】 通常，载波信号可具有特定频率，例如单音、蓝牙、Wi-Fi、ZigBee及/或其它无线通信协议中使用的频率。可能期望反向发射装置200以特定频率（例如，在蓝牙、Wi-Fi、ZigBee或其它无线通信协议中使用的频率）传输反向散射信号。可能期望反向发射信号发生在与载波信号不同的频率处，例如以避免或减少载波信号与反向发射信号之间的干扰。

【0116】 波形产生器212可以某个频率提供波形，所述频率可经选择为等同于载波信号的频率与用于传输反向发射信号的期望频率之间的差的频率。副载波相位调制器204可以由波形产生器212提供的波形的频率控制开关208，这可有效地将载波信号的频率与波形频率进行混频，从而产生载波信号频率-/-波形频率的反向发射信号。因此，可通过向副载波相位调制器204提供具有某个频率的波形来实现期望频率处的反向散射信号，所述频率等于载波信号的频率与反向发射传输的期望频率之间的差。

【0117】 在一些实例中，载波信号可为跳频信号。波形产生器212可提供根据用于实施载波信号的跳频信号的跳跃而跳跃的频率的波形，使得跳频载波信号可被反向散射装置200反向散射。例如，载波信号可为频率序列随时间而变化的跳频信号。接收频率一般可为固定的。因此，波形产生器212可提供具有频率序列的波形，使得尽管载波信号跳频，数据仍然以恒定接收频率随时间而传输。
[0118] 可使用各种技术来选择波形的频率序列。在一些实例中，跳频载波信号的频率序列可由反向散射装置通过下行链路从用于传输载波信号的辅助装置接收。在一些实例中，频率序列可为已知的（例如，伪随机序列）。反向散射装置可包含存储器，其可存储跳频载波信号的频率序列及/或用于波形的频率序列或其指示。

[0119] 在一些实例中，本文中描述的反向散射装置可包含耦合到用于检测载波信号的天线的频率确定电路（例如，可使用用于反向散射的天线）。频率确定电路可检测载波信号的频率且计算载波信号的频率与反向散射信号的期望频率之间的差，且将所述差的指示（例如，用作波形频率）提供给波形产生器，使得波形产生器可以所指示的差频提供波形。

[0120] 在一些实例中，载波信号可为扩频信号，例如直接扩频（DSSS）信号。通常，直接扩频是指如下技术：可通过使用扩频码或编译序列以特定方式对数据进行编码而使能量跨越多个频率（例如，频率分波扩频）。编码序列可为伪随机序列，且实例包含m序列、巴克码（barker code）、黄金码（gold code）及哈达玛沃尔什码（Hadamard Walsh code）。

[0121] 在一些实例中，反向散射开始的时间可能需要与扩频载波信号同步。例如，在一些实例中，通过改变载波信号可在反向散射信号中提供数据。在载波信号包括扩频信号的实例中，当载波信号的特定部分被呈现或发送反向散射装置时，反向散射装置可开始反向散射（例如，反向散射装置可将反向散射信号与反向载波信号中的数据同步）。在一些实例中，反向散射装置的副载波相位调制器可每次基于载波信号的特征开始反向散射。特征可包含在特定时间存在于载波信号中的数据及/或在特定时间在整个扩频序列内的位置。

[0122] 在一些实例中，副载波相位调制器可响应于来自另一装置的同步信号而开始反向散射。例如，可提供主同步，其中装置（例如，辅助装置）可向反向散射装置提供信号以指示相对于扩频载波信号开始反向散射的时间。

[0123] 可以几种方式在反向散射信号中提供数据。在一些实例中，例如在载波信号包含分组或其它数据（例如，Wi-Fi、ZigBee及/或SigFox信号）的一些实例中，可通过根据要传输的数据反射及/或吸收载波信号的部分（例如，分组）在反向散射信号中提供数据。接收器可将反向散射信号中分组的存在解码为’1’（或在一些实例中解码为’0’），即反向散射信号中缺少分组解码为’0’（或在一些实例中解码为’1’）。在一些实例中，反向散射装置可对由辅助装置传输的分组序列号中的数据进行编码。

[0124] 在一些实例中，可通过根据用于执行相移键控及/或幅移键控的数据改变被提供给副载波调制电路的波形的相位、振幅或其组合来在反向散射信号中提供数据。以此方式，反向散射装置200可创建无线通信传输（例如，其可根据例如但不限于Wi-Fi 802.11a、802.11b、802.11g、802.11n、ZigBee及/或蓝牙的标准无线通信协议而布置）。因为反向散射装置200不具有（或具有很少）模拟组件，所以其相比于例如Wi-Fi芯片集的现有的传输装置通常可消耗更少的硅面积且更小且更便宜。此外，其功耗可能会显著较低，这是因为其可能只需要执行数字基带操作。

[0125] 反向散射装置200可进一步包含用于从例如辅助装置104接收信号的接收器。在本文中描述的实例中，辅助装置104可提供指令分组，其例可使用例如开/关控制的振幅调制来创建。反向散射装置200可包含具有模拟组件的无源能量检测器及用于区分能量存在与否的能量检测器。以此方式，可在消耗低功率（在一些实例中为18mW）的同时接收信号分组。
图3是根据本文中描述的示例而布置的系统的示意图。图3的系统包含接入点302及反向散射装置304。例如，接入点302可用于实施图1的辅助装置104及接收器106（及/或可由图1的辅助装置104及接收器106实施）。在一些实例中，反向散射装置304可用于实施图1的反向散射装置108，反向散射装置110及/或图2的反向散射装置200（及/或可由图1的反向散射装置108，反向散射装置110及/或图2的反向散射装置200实施）。接入点302可在信道6上提供载波信号，例如Wi-Fi信号，且反向散射装置304可在Wi-Fi信道1及11上将载波信号反向散射或反向散射信号。

通常，非重叠Wi-Fi信道可具有特定的频率重叠。在一些实例（例如图2的实例）中，可能不需要及/或使用单独的辅助装置及接收器装置。可使用Wi-Fi芯片集来实施的接入点302可在例如信道6的一个Wi-Fi信道中提供载波信号，所述Wi-Fi信道可具有与信道1相关联的Wi-Fi信道频率。载波信号可被本文中描述的反向散射装置反向散射到其它Wi-Fi信道中。反向散射通信可由接入点302在可具有分别与信道1及11相关联的Wi-Fi信道频率的例如信道1及11的那些其它Wi-Fi信道上接收。通常，用于提供载波信号的信道应与上述提供反向散射通信的信道具有有限的频率重叠或没有频率重叠。

图4是2.4GHz ISM频带中的非重叠Wi-Fi信道的示意图。信道1以2.412GHz为中心，信道6以2.437GHz为中心，信道11以2.462GHz为中心。因此，信道1与信道6之间存在25MHz的频差。信道6与信道11之间存在25MHz的频差。

因此，例如图3的反向散射装置304的反向散射装置或本文中描述的任何其它反向散射装置可利用具有25MHz频率的波形以将Wi-Fi信道6上的载波信号转译为信道1及11中的反向散射信号。可能在信道1及11上操作的任何接收器可接收到那些反向散射传输。通常，根据，本文中描述的反向散射装置可利用具有等定于通信信道之间的频差的频率的波形，以将一个信道中的载波信号转译为另一信道中的反向散射信号。

参考图3及4的实例，反向散射装置可通过反向或吸收载波信号的部分以分别指示1或0（或反之亦然）而在反向散射信号中提供数据。例如，载波信号的分组可被反向散射装置反射或吸收以分别指示1或0（或反之亦然）。为了在一些实例中实现这一点，返回参考图2，反向散射装置的副载波相位调制器（其可被称为副载波调制器）可根据所述数据提供或抑制从波形产生器接收的波形以提供输出信号。开关可根据输出信号控制天线以反向散射载波信号，使得载波信号频率与波形频率进行混频以期望接收频率传输反向散射信号。因此，副载波相位调制器可能不会改变波形的相位，而是可控制载波信号的部分（例如，分组）的反射及吸收。

在图3及4的实例中，接收器（例如，图1的接入点302或接收器）可通过在接收到反向散射信号的部分（例如，分组）时对‘I’进行解码且在不存在反向散射信号的部分（例如，分组）时对‘O’进行解码来对数据进行解码。

本文中描述的实例可将用于控制对信道的接人的信令功能（例如Wi-Fi通信中的载波监听功能）与数据传输功能分离。例如，本文中描述的反向散射装置可提供与无线通信协议兼容的数据传输。然而，反向散射装置本身可能不执行用于确保对信道的受控接人的传输，例如载波监听传输。代替地，可由例如图1的辅助装置104的另一装置执行信道接入控制传输，以减轻反向散射装置对进行可能需要较高功率的那些传输的需要。

图5是包含用于几个组件的信令示意图的图1的系统的示意图以说明由所述系统
执行的方法。图5说明辅助装置信令502、反向散射装置信令504及接收器信令506。辅助装置104可执行载波波听（例如，在一或多个信道上接收传输以确定信道是否空闲）。请注意，辅助装置104可对由例如反向散射装置108及/或反向散射装置110的反向散射装置进行期望交通的信道以及由辅助装置104将载波信号传输到的信道两者执行波波波听。

【0135】一旦辅助装置104确定相关信道空闲，其就向可能通信的每一反向散射装置传输信令分组，且其开始传输载波（在图5中标记为‘CW’）。在一部分实例中，载波信号可被传输达到固定的时间。辅助装置104稍后可从接收器106接收指示传输完成的ACK。方式中，载波波听及ACK功能不需要由反向散射装置108及/或反向散射装置110执行。

【0136】转到反向散射装置信令504，反向散射装置108可从辅助装置104接收信令分组，响应于接收到信令分组，反向散射装置108可传输一或多个分组，例如Wi-Fi分组。

【0137】转到接收器信令506，接收器106可接收由反向散射装置108传输的分组，且在接收到分组时可传输确认消息ACK其，可由辅助装置104接收。

【0138】为了确认分组，接收器106准确地接收，由辅助装置104发送的信令分组可包含准确接收的指示（或缺少接收的指示，例如，失败的接收）。例如，在辅助装置104从接收器106接收到确认消息ACK之后，到达反向散射装置108的下一信令分组可包含接收完ACK的指示（例如‘I’）。如果辅助装置104未从接收器106接收到ACK，那么辅助装置104可向反向散射装置108发送包含未接收到ACK的指示（例如‘O’）的信令分组，使得反向散射装置108可尝试重传所述分组。

【0139】例如考虑反向散射装置108意图在信道6上发送Wi-Fi分组且辅助装置104在Wi-Fi信道1及6之间传输音的实例。在这些传输中的传一者发生之前，辅助装置104首先使用载波波听确保在包含信道1及6且在信道1及6之间的频率中的一者上没有正在进行的传输。一旦信道被认为为空闲，辅助装置104就发送特定的反向散射装置（例如反向散射装装置108）要传输的分组信令。此信号可使用超低功率接收器例如通过在辅助装置104处使用例如开/关键控的振幅调制进行发送及解码。

【0140】图6是根据本文中描述的实例而布置的信令分组的示意图。信令分组600以对系统中的每一反向散射装置（例如，图1的反向散射装置108或反向散射装置110）唯一的标识（例如，ID）开始。虽然在开始时展示，但在其它实例中，ID可放置在分组中的其它位置中。信令分组600进一步包含接收到ACK的指示。信令分组600进一步包含速率及校验位以帮助解码。

【0141】辅助装置104接收由例如接收器106的接收器发送的ACK消息，且将ACK接收（或缺少接收）的指示传送回到反向散射装置。例如，如果ACK在辅助装置104处被成功地解码，那么其可将信令分组600中的ACK位设定为1，且例如在传感器经调度进行传输且发送信令分组的下一时段期间将所述ACK位发送到反向散射装置108。如果在预期时间之后在辅助装置104处未接收到ACK，那么其可执行载波波听，且发送ACK位被设定为0的信令分组。虽然此处使用1及0作为实例，但是应理解，在其它实例中，可使用1来传送缺少ACK，且可使用0来传送接收到ACK，或可使用额外位或其它表示。当反向散射装置接收到辅助装置104未接收到ACK消息的指示时，反向散射装置108可重传其分组（例如，传感器数据）。

【0142】在一些实例中，辅助装置104通过检测反向散射装置传输结束时的ACK持续时间的能量来检测ACK。
信令分组600还可提供用于速率适配的速率信息——例如，图6中所指示的两位速率字段。通常，Wi-Fi位速率适配算法可使用分组丢弃作为适配于发射器位速率的代理。在本文中被触发的实例中，当功能可由例如图1的辅助装置104的辅助装置（例如具有足够功率预算的装置）执行。例如，辅助装置104可通过计算成功确认的分组的分数来估计辅助装置104的相关联的反向散射装置（例如，反向散射装置108及/或反向散射装置110）的每一者的分组丢失率。

辅助装置104可估计最佳位速率（例如，802.11b位速率），且将其此信息编码在信令分组600的位速率字段中。因为辅助装置104知道位速率以及分组长度，所以其知道来自其反向散射装置中的每一者的传输在无线媒体上将占用多长时间。因此，其可在反向散射传输结束时停止传输其载波信号，且侦听对应的ACK。

信令分组600可由例如图1的辅助装置104的辅助装置（例如，具有足够的功率预算以供应载波信号的装置）发送。在一些实例中，可使用例如开/关键控的振幅调制来发送信令分组。当例如图1的反向散射装置108的反向散射装置检测到其ID时，其可在信令分组结束时的短周期间隔（SIFS）内传输。在用于载波信号的期望信道的中心处（例如，在此实例中是信道1及6之间）且在用于反向散射传输的期望信道的中心处（例如，在此实例中是信道6）发送信令分组。这可能会防止ISM频带中其它装置在反向散射装置传输之前捕捉信道。信令分组600具有16个位，且在一些实例中为每个反向散射传输添加100ms的固定开销。

辅助装置104可有利地知道何时将信令分组发送到网络中的反向散射装置中的每一者。作为可如何实现这一点的实例，考虑物联网应用。发出信标时的装置可经配置以依固定速率发送所述信标。例如，温度传感器、麦克风及Wi-Fi照相机（例如，Dropcam）可具有它们产生数据时的固定速率。类似地，运动传感器可具有它们可容忍的延迟的上限。因此，本发明中描述的反向散射装置可具有它们进行数据传输时的固定速率及/或最大速率（例如，数据传输速率）。反向散射装置（例如，反向散射装置108及/或反向散射装置110）可在初始相关联程序期间将固定数据速率及/或最大数据速率传送给辅助装置104（且可根据需要在稍后进行更新）。

辅助装置104可使用固定数据速率及/或最大数据速率以根据其固定及/或最大数据速率来向每一反向散射装置发送信号。

图7是根据本发明中描述的实例而布置的系统中的网络相关联方法的示意图。图7说明反向散射装置706可如何与无线网络（例如，WLAN）中的辅助装置702及接收器704相关联的实例。反向散射装置706可经实施以反向散射Wi-Fi信号。反向散射装置706可用于实施本文中描述的任何反向散射装置及/或由所述任何反向散射装置实施，所述任何反向散射装置是例如图1的反向散射装置108或反向散射装置110、图2的反向散射装置200及/或图3的反向散射装置304。接收器704可使用Wi-Fi路由器予以实施。接收器704可用于实施本文中描述的包含图1的接收器106的任何接收器及/或由所述任何接收器实施。辅助装置702可使用插入式装置予以实施。辅助装置702可用于实施本文中描述的包含图1的辅助装置104的任何辅助装置及/或由所述任何辅助装置实施。

因为例如辅助装置702的辅助装置可能不具有全双工无线电（在一些实例中，由于简单起见及出于低成本考虑，缺乏全双工无线电实际上可能是理想的），所以可能不存在从
反向反射装置706装置到辅助装置702的直接通信信道。因此，图7所示的过程可用于使网络中的装置相关联。所述过程包含步骤708、步骤710、步骤712、步骤714、步骤716、步骤720及步骤722。虽然图7中依次展示了步骤，但是应理解，在一些实例中，所述步骤可被重新布置，一些步骤可能存在，及/或一些步骤可能部分地或全部地与其它步骤同时发生。

【0150】在步骤708中，辅助装置702可用两个物理地址（例如，MAC地址）[例如MAC:1及MAC:2]与接收器704相关联。在步骤710中，辅助装置702可例如使用开/关键控制将发现分组。其含有这两个物理地址（例如，MAC地址）且以广播ID开始。在一些实例中，可针对网络中的每一反向反射装置发送具有不同广播ID的发现分组。在步骤712中，反向反射装置706传输包含被设定到所提供的物理地址（例如，MAC:2及MAC:1）的组地址及目的地地的反向反射分组（例如，Wi-Fi分组）。在图7的实例中，反向反射分组有效负载可包含传感器更新速率、分组长度及支持的位速率及反向反射装置706的物理地址（例如，MAC地址MAC:3）。网络中的其它反向反射装置可传输包含被设定到所提供的物理地址（例如，MAC:2及MAC:1）的源地址及目的地地址的类似分组。

【0151】在步骤714中，接收器704可将来自反向反射装置706的分组路由到辅助装置702。在步骤716中，辅助装置702伪装（例如，模仿）反向反射装置的物理地址（例如，MAC:3），并将该与接收器704相关联。在步骤718中，辅助装置702选择唯一ID，并将其与其它网络（例如，WiFi网络）进行确认。所述源地址及目的地地址设定到反向反射装置的物理地址（例如，MAC:3）及所提供的物理地址（例如，MAC:1）。在步骤720中，通过接收器704路确认分组。若此确认分组确认在辅助装置702处的相关联。在相关联之后，反向反射装置706可通过接收器704将分组（例如，Wi-Fi分组）发送到辅助装置702，且改变其参数。所述参数包含更新速率及分组长度。所述在在网络中的反向反射装置与辅助装置间共享的制造商设定的参数密钥来安全地发送所装的物理地址（例如，MAC地址）的凭证。

【0152】实例实施方案

【0153】描述了反向反射装置，其表明FPGA平台上所有四分之一(0.11b)位速率的实施方案。评估显示，Wi-Fi传输可在现成的智能电话及WiFi芯片集上遍及30英尺到100英尺的距离在各种视线及穿墙情境下进行解码。描述了无源Wi-Fi集成电路（IC），其执行1Mbps及11Mbps 802.11b传输，及使用Cadence及Synopsys工具包而估计的功耗。结果显示出1Mbps及11Mbps无源Wi-Fi传输分别消耗14.48mW及19.28mW。

【0154】反向反射装置是使用FPGA平台予以实施。这用于在各种部署情境下特性化无源Wi-Fi（例如，反向反射Wi-Fi）。IC设计用于量化功耗。

【0155】用于反向反射Wi-Fi传输（例如，无源Wi-Fi）的反向反射装置是使用用于数字处理的FPGA予以实施。反向反射装置在2层Rodgers 4350衬底上包含HMC190BMS8SPDT RF开关网络。开关经设计以在开路及闭路阻抗状态之间进行调制，且具有1.1dB损耗。包含数据扰码、报头产生、DSSS/CCK编码、CRC计算及DBPSK/DQPSK调制的所有需要的基带处理均是以Verilog编写，Verilog代码被合成并转译到Altera的DE1Cyclone II FPGA开发板上。在12.375MHz、16.5MHz、22MHz及44MHz的反向反射装置处实施四种不同的频移。FPGA的数字输出连接到反向反射开关，以从由辅助装置发射的音调产生Wi-Fi分组。在反向反射装置上使
用2dBi全向天线，辅助装置使用6dBi天线，且具有30dBm的传输功率。

[0156] 对于集成电路实施方案，请注意，CMOS技术已经实现了集成电路的功率及面积的指数缩放。Wi-Fi芯片集试图利用缩放，但是由于需要功耗较大的模拟组件而具有有限的成长率，所述模拟组件无法利用CMOS技术在功率及尺寸方面进行缩放。然而，基带Wi-Fi操作是在数字区域中实现，且趋向于利用CMOS进行充分缩放。就上下文来说，2009年及2012年发布的Atheros的AR6003及AR9462芯片集分别使用65nm CMOS及55nm CMOS节点实施方案。

[0157] 对于反向散射Wi-Fi装置的集成电路实施方案，使用TSMC的65nm LP CMOS节点，提供了基带处理的功耗节省及与当前行业标准的比较。图8是用于本文中描述的反向散射装置的实例IC架构的示意图。IC具有三个主要组件：基带频率合成器、基带处理器及反向散射调制器。基带频率合成器产生用于基带处理的时钟（例如，11MHz）以及用于DBPSK及DQPSK的12.375MHz偏移的四个相位。11MHz及12.375MHz时钟进行相位同步以避免相位调制期间的毛刺。使用整数N电荷泵及基于环形振荡器的PLL从12.375kHz参考产生49.5MHz时钟。将49.5MHz时钟馈送到正交Johnson计数器，以产生具有时序偏移的四个相位（对应于0、π/2、π及3π/2相位）。将相同的49.5MHz载波除以4.5以产生11MHz基带时钟。

[0158] 基带处理器将有效负载位作为输入，且产生基带802.11b Wi-Fi分组。使用在FPGA上验证的Verilog代码及由Synopsys提供的Design Compiler来产生基带处理器的晶体管级实施方案。

[0159] 反向散射调制器将基带数据混频以产生DBPSK及DQPSK，且驱动开关以反向散射入射音频信号。基带数据是2位多路复用器的选择输入，所述2位多路复用器在12.375MHz时钟的四个相位之间进行切换以产生相位调制数据。多路复用器输出经缓冲并用于驱动RF开关，所述开关在开路及短路阻断状态之间切换天线。

[0160] 1Mbps及11Mbps的IC实施方案分别消耗总共14.5mW及49.3mW的功率。数字频率合成器针对DQPSK被设计，并针对所有数据速率消耗固定功率，产生802.11b分组的基带处理器的功耗随着数据速率而缩放，且针对1Mbps及11Mbps分别消耗30%及77%的总功率。反向散射调制器消耗剩余的功率来执行相位调制并运行开关。

[0161] 根据前文将明白，虽然本文中已经为了说明目的而描述了本发明的特定实施例，但是在不脱离本发明的精神及范围的情况下可做出各种修改。
图1
图2
图3
图5
图6
图7
图8