

US 20090149192A1

(19) United States

(12) Patent Application Publication

Vargas et al.

(10) **Pub. No.: US 2009/0149192 A1**(43) **Pub. Date: Jun. 11, 2009**

(54) DEVICE LOCATE SERVICE

(76) Inventors: Sandra Vargas, Sammamish, WA (US); Andrew Royal, Seattle, WA

(US)

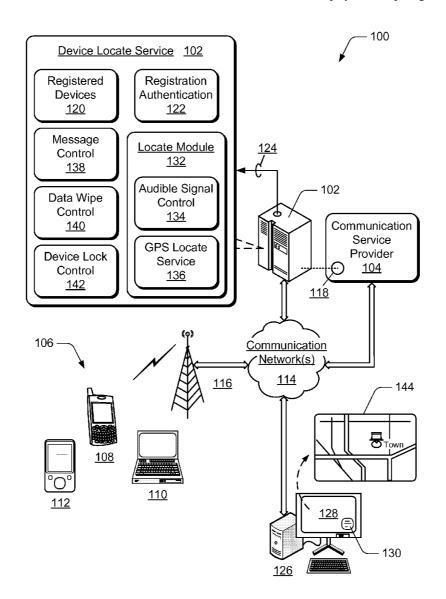
Correspondence Address: Microsoft Corporation Patent Group Docketing Dept. One Microsoft Way Redmond, WA 98052 (US)

(21) Appl. No.: 12/118,412

(22) Filed: May 9, 2008

Related U.S. Application Data

(60) Provisional application No. 60/992,608, filed on Dec. 5, 2007


Publication Classification

(51) **Int. Cl. H04W 64/00** (2009.01)

(52) U.S. Cl. 455/456.1

(57) ABSTRACT

A device locate service is described. In embodiment(s), a device locate request can be received to locate a device that is configured for mobile communication. A control command can then be communicated via a mobile communication network that activates the device to override configuration settings of the device and initiate one or more locate service functions, such as emit an audible tone, display a message, lock the device to disable device features, wipe data from a memory of the device, and/or transmit a GPS location signal. The device locate service can also receive the GPS location signal from the device, determine a location of the device from the GPS location signal, and communicate the location of the device for display at a computing device.

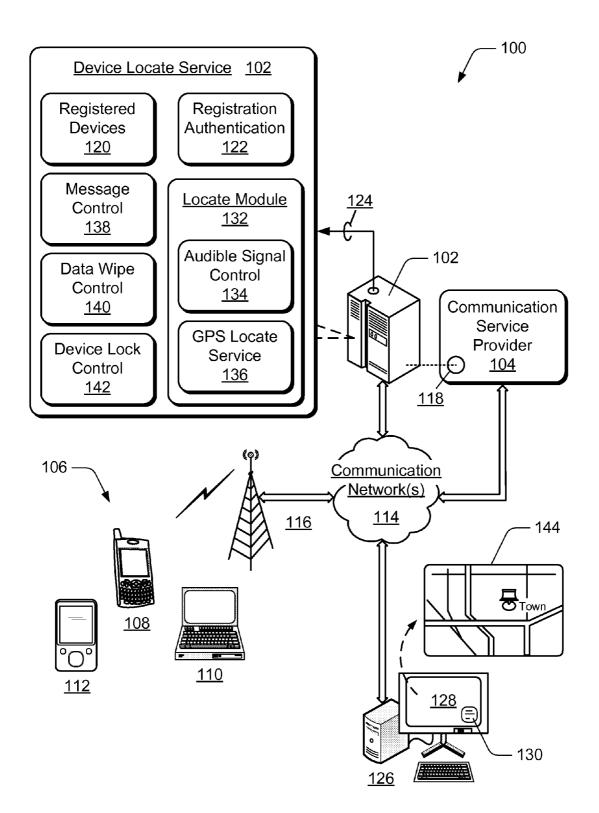


Fig. 1

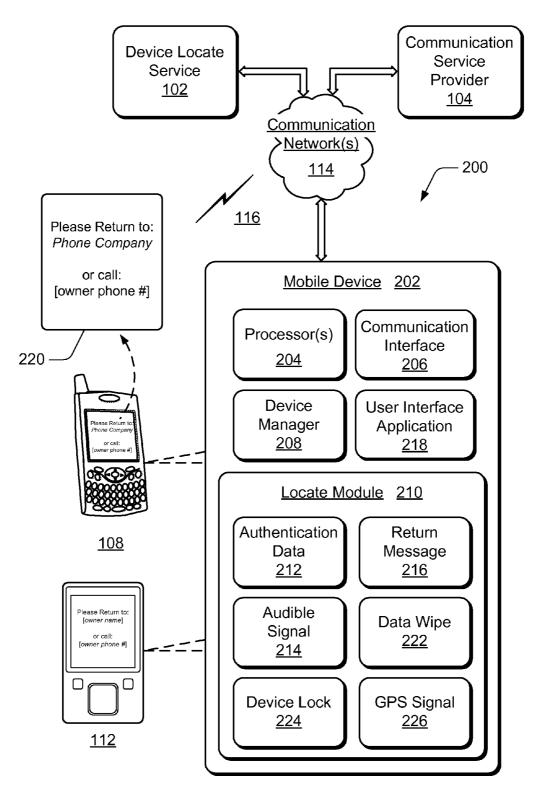


Fig. 2

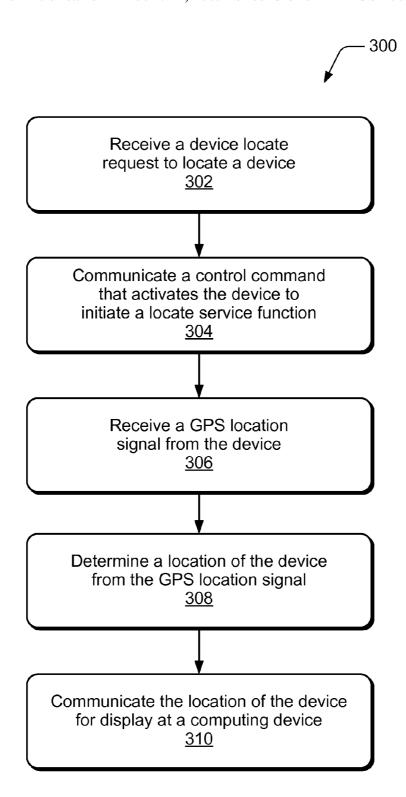


Fig. 3

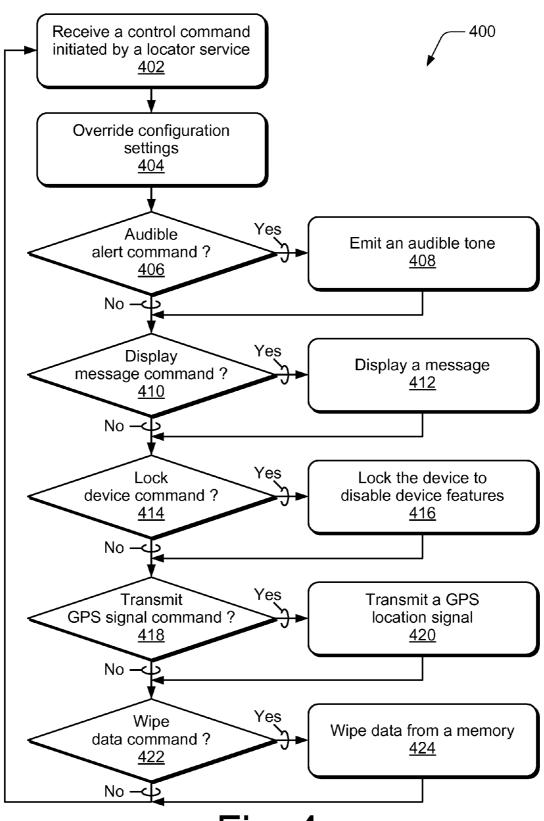


Fig. 4

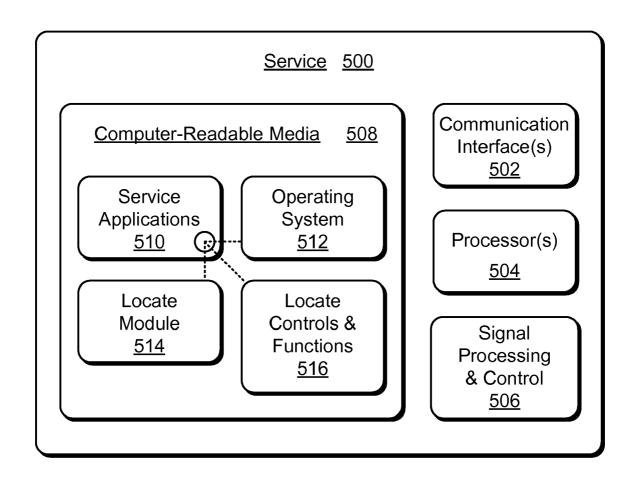


Fig. 5

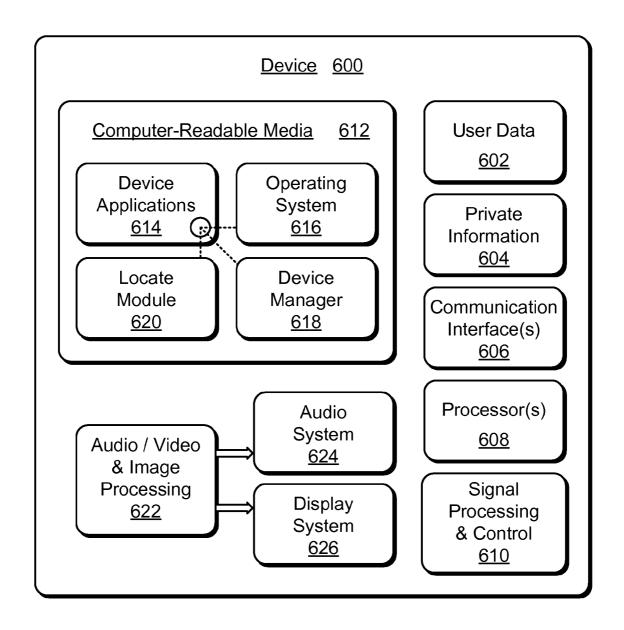


Fig. 6

DEVICE LOCATE SERVICE

RELATED APPLICATION

[0001] This application claims the benefit of a related U.S. Provisional Application Ser. No. 60/992,608 filed Dec. 5, 2007 entitled "Devices, Features, and Systems for Mobile Communications", to Vargas et al., which is incorporated by reference herein.

BACKGROUND

[0002] Portable cellular phones are nearly as common in our society as our car keys and wallets—we take these items with us everywhere we go. Unfortunately, cell phones can be just as easily misplaced or lost as a set of car keys, either at home or out in public when inadvertently left behind in a restaurant, hotel room, or taxi cab. While losing one's car keys is an inconvenience, lost or misplaced car keys typically do not pose the risk of someone being able to obtain the phone numbers, personal information, documents, and the other types of data that some cell phone devices and/or portable business communication devices can include. Other types of portable devices, such as media players, music devices, and laptop computers are also more commonplace, likely to contain personal and/or business information, and just as likely to be lost or misplaced.

SUMMARY

[0003] This summary is provided to introduce simplified concepts of a device locate service. The simplified concepts are further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.

[0004] A device locate service is described. In embodiment (s), a device locate request can be received to locate a device that is configured for mobile communication, such as a portable phone, media player, or laptop computer. A device locate request can be received as a telephone service call to the device locate service, or the device locate request can be received when initiated from a computing device. The device locate service can then communicate a control command that activates the device to override configuration settings of the device and initiate one or more locate service functions, such as emit an audible tone, display a message, lock the device to disable device features, wipe data from a memory of the device, and/or transmit a GPS location signal. The device locate service can also receive the GPS location signal from the device, determine a location of the device from the GPS location signal, and communicate the location of the device for display at a computing device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Embodiments of a device locate service are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:

[0006] FIG. 1 illustrates an example system in which embodiments of a device locate service can be implemented. [0007] FIG. 2 illustrates another example system in which embodiments of a device locate service can be implemented. [0008] FIG. 3 illustrates example method(s) for a device locate service in accordance with one or more embodiments.

[0009] FIG. 4 illustrates example method(s) for a device locate service in accordance with one or more embodiments.
[0010] FIG. 5 illustrates various components of an example service that can implement embodiments of a device locate service.

[0011] FIG. 6 illustrates various components of an example device that can implement embodiments of a device locate service.

DETAILED DESCRIPTION

[0012] Embodiments of a device locate service provide that users can locate and/or remotely manage mobile devices, such as a cell phone, media player, laptop computer, or other mobile device that may be lost or misplaced. For example, a user or owner of a device that has been misplaced or lost can initiate a device locate request to a device locate service, such as a telephone service call or a locate request initiated from a computer, to initiate any number of various device locate features.

[0013] In various embodiments, the device locate service can communicate an audible signal command to a lost or misplaced device that activates the device to override configuration settings (e.g., a silent mode) and emit an audible tone so that the user can find the phone which may be lost in a room in the house, under a seat in the car, or misplaced elsewhere. The device locate service can also communicate a display message command to a lost device that activates the device to display a "please return" message. The device locate service can also communicate a data wipe command to a lost device that activates the device that activates the device to wipe data from a memory of the device, such as any personal information associated with the owner, phone numbers, documents, and/or any other personal or business related information that may be stored on the device.

[0014] The device locate service can also communicate a device lock command to a lost device that activates the device to lock and disable device features, such as the keypad and display so that someone else who finds the device is restricted from using it, and prevented from accessing the personal and/or business information stored on the device. The device locate service can also communicate a location command to a lost device that activates the device to transmit a GPS location signal. The device locate service can then receive the GPS location signal and communicate the location for display at a computing device, such as on a map that indicates the location of the lost device.

[0015] While features and concepts of the described systems and methods for a device locate service can be implemented in any number of different environments, systems, and/or various configurations, embodiments of a device locate service are described in the context of the following example systems and environments.

[0016] FIG. 1 illustrates an example system 100 in which various embodiments of a device locate service can be implemented. In this example, system 100 includes a device locate service 102 and a communication service provider 104 that provides for mobile data and/or voice communications. For example, the communication service provider 104 may be a cell-phone provider, an Internet service provider, and/or a combination thereof. The communication service provider 104 enables data and/or voice communications for any type of mobile device 106, such as any one or combination of a mobile phone device 108 (e.g., cellular, VoIP, WiFi, etc.), a portable computer device 110, a media device 112 (e.g., a

personal media player, portable media player, etc.), and/or any other wireless media or communication device that can receive data, voice, or media content in any form of audio, video, and/or image data.

[0017] Any of the mobile devices 106 can be implemented with one or more processors, communication components, memory components, and signal processing and control circuits. Further, any of the mobile devices 106 can be implemented with any number and combination of differing components as further described with reference to the example device shown in FIG. 6. A mobile device may also be associated with a user or owner (i.e., a person) and/or an entity that operates the device such that a mobile device describes logical devices that include users, software, and/or a combination of devices.

[0018] Communication network(s) 114 can be implemented to include any type of a data network, voice network, broadcast network, an IP-based network, and/or a wireless network 116 that facilitates data and/or voice communication between the device locate service 102, communication service provider 104, and any number of the various mobile devices 106. The communication network(s) 114 can be implemented using any type of network topology and/or communication protocol, and can be represented or otherwise implemented as a combination of two or more networks. Any one or more of the arrowed communication links facilitate two-way data communication, such as from the device locate service 102 to the communication service provider 104 and vice-versa

[0019] The device locate service 102 can be implemented as a subscription-based service to facilitate users locating and/or remotely managing mobile devices, such as a cell phone, media player, laptop computer, or other mobile device that may be lost or misplaced. The device locate service 102 can also be implemented as an independent or third-party service to implement the various embodiments of a device locate service as described herein. Alternatively, the device locate service 102 can be implemented as a component or service of the communication service provider at 118, and optionally, made available as a service or feature of a cell phone connection plan.

[0020] The device locate service 102 can also be implemented as several components or modules distributed to implement the various embodiments of a device locate service as described herein. The device locate service 102 can also be implemented as computer-executable instructions and executed by processor(s) to implement the various embodiments and/or features described herein. In addition, the device locate service 102 can be implemented with any number and combination of differing components as further described with reference to the example service shown in FIG. 5.

[0021] In the example system 100, the device locate service 102 includes a database of registered devices 120, such as an identifier of a mobile device 106 that is registered with the device locate service 102 or registered via the communication service provider 104. The device locate service 102 can also include a feature for registration authentication 122 to verify that a locate service function can be applied to a particular mobile device 106 when a request to initiate a locate service function is received.

[0022] The device locate service 102 can receive a device locate request 124 to locate a mobile device 106 that is configured for mobile communication. For example, the device

locate service 102 can receive a device locate request 124 when initiated by user or owner that has misplaced or lost the device. In an embodiment, the device locate service 102 can receive a device locate request 124 via a telephone communication network (e.g., via the communication network(s) 114) when initiated as a telephone service call to the device locate service. Alternatively, the device locate service 102 can receive the telephone service call from the communication service provider 104, such as when the owner of a misplaced cell phone initiates the device locate request through the cell phone service provider. In an implementation, a user can dial into the device locate service 102 with any combination of an access number, phone number of the lost device, a password or PIN code, and/or selection codes to initiate one or more of the locate service functions.

[0023] The device locate service 102 can also receive a device locate request 124 to locate a mobile device 106 when initiated by a user or owner of the device from a computing system 126 via a data communication network (e.g., via the communication network(s) 114). For example, the owner of a misplaced cell phone can initiate the device locate request 124 from a computer by logging into the device locate service directly, or via the communication service provider 104. The computing system 126 includes a display device 128 (e.g., LCD or similar display device) that can display a PC gadget 130 or other desktop application that is associated with the device locate service 102 and/or mobile devices associated with a particular user. In an embodiment, the user can initiate a device locate request 124 from a user interface on display device 128, such as from menu selections to select the lost device, enter a password or PIN code, and/or menu selections to initiate one or more of the locate service functions.

[0024] The device locate service 102 includes a locate module 132 and various locate service controls and functions that can be initiated to locate or remotely manage mobile devices that may be lost or misplaced. When the device locate service 102 receives a device locate request 124 for a particular device, the locate module 132 can initiate a control command that activates the device to initiate a locate service function. In this example, the locate module 132 includes an audible signal control 134 and a GPS locate service 136. In addition, the device locate service 102 includes a message control 138, a data wipe control 140, and a device lock control 142.

[0025] In an embodiment, the locate module 132 can initiate a control command from the audible signal control 134 that, when communicated to a mobile device 106, activates the device to override configuration settings and emit an audible tone. For example, the control command can override configuration settings such as when the device has been set to a silent, vibrate, or meeting mode. The control command can then initiate the device to emit an audible tone, such as any of the ringers or alarm options that are available with the device, or alternatively, a designated high-volume tone. The mobile device 106 can be activated to emit the tone for a designated time duration, and/or until the user locates the device and cancels the activated tone.

[0026] In another embodiment, the locate module 132 can initiate a control command from the message control 138 that, when communicated to a mobile device 106, activates the device to override configuration settings and display a message on the display screen of the device. For example, the control command can override a configuration setting such as having to enter a device lock code to activate the display of the device. The mobile device 106 can be activated to display a

"please return" message that is optionally configurable to include an alternate phone number of the owner, or the name of the cell-phone service provider if the lost mobile device is a cell-phone.

[0027] In another embodiment, the locate module 132 can initiate a control command from the data wipe control 140 that, when communicated to a mobile device 106, activates the device to wipe data from a memory of the device. For example, any personal information associated with the owner of the device, as well as phone numbers, documents, and/or any other personal or business related information that may be stored on the device can be deleted from memory. In addition, the control command can activate a lost device to override permissions or security levels to wipe the data from the memory of the device. Alternatively, the user or owner can provide the permissions to access the memory of the device, such as with registration authentication 122 before the device locate request 124 is initiated.

[0028] In another embodiment, the locate module 132 can initiate a control command from the GPS locate service 136 that, when communicated to a mobile device 106, activates the device to transmit a GPS location signal. The GPS locate service 136 can then receive the GPS location signal from the device, determine a location of the device, and communicate the location for display at a computing device, such as in a map 144 on display device 128 at computing system 126. For example, a user or owner of a lost mobile device 106 can initiate a device locate request 124 from the computing system 126, and receive an indication of its location on the map 144.

[0029] In another embodiment, the locate module 132 can initiate a control command from the device lock control 142 that, when communicated to a mobile device 106, activates the device to lock and disable device features, such as the keypad and display. In one or more embodiments, the locate module 132 may initiate a series of control commands for a lost or misplaced device, such as a combination of control commands to override configuration settings, emit an audible tone, display a message, wipe data from a memory of the device, lock to disable device features, and/or transmit a GPS location signal.

[0030] FIG. 2 illustrates an example system 200 in which various embodiments of a device locate service can be implemented. In this example, system 200 includes the device locate service 102, communication service provider 104, and mobile devices (e.g., a phone device 108 and a media device 112) described with reference to FIG. 1. The example system 200 also includes a mobile device 202 which is an example of any of the mobile devices described with reference to FIG. 1. The device locate service 102, communication service provider 104, and the mobile devices (e.g., mobile device 202) can all be implemented for communication with each other via the communication network(s) 114 and/or the wireless network 116.

[0031] In this example, the mobile device 202 includes one or more processors 204 (e.g., any of microprocessors, controllers, and the like), a communication interface 206 to receive and/or communicate data and voice communications, and a device manager 208 (e.g., a control application, software application, signal processing and control module, etc.). The mobile device 202 also includes a locate module 210 that can be implemented as computer-executable instructions and executed by the processors 204 to implement various embodiments and/or features of a device locate service. The device

manager 208 can receive control commands from the device locate service 102 (e.g., via the communication interface 206) to activate the mobile device 202 to implement a device locate function or control of the locate module 210.

[0032] The locate module 210 includes various device locate functions and/or controls, and can include authentication data 212 that authenticates the mobile device 202 with the device locate service 102 when a user or owner initiates a device locate request to locate the mobile device 202. In this example, the locate module 210 includes a control for an audible signal 214 that can activate the device to emit an audible tone so that a user can locate the device when it is misplaced. The locate module 210 also includes a control for a return message 216 that can activate a user interface application 218 to render a "please return" message 220 on a display screen of the device.

[0033] The locate module 210 also includes a control for a data wipe 222 that can activate the device to wipe data from a memory of the device, such as personal information associated with the owner of the device, phone numbers, documents, and/or any other personal or business related information that may be stored on the device. The locate module 210 also includes a control for a device lock 224 that can activate the device to lock and disable device features, such as the keypad and display. The locate module 210 also includes a control for a GPS signal 226 that can activate the device to transmit a GPS location signal that the device locate service 102 receives to determine a location of the mobile device 202. [0034] Example methods 300 and 400 are described with reference to respective FIGS. 3 and 4 in accordance with one or more embodiments of a device locate service. Generally, any of the functions, methods, procedures, components, and modules described herein can be implemented using hardware, software, firmware, fixed logic circuitry, manual processing, or any combination thereof. A software implementation of a function, method, procedure, component, or module represents program code that performs specified tasks when executed on a computing-based processor.

[0035] The method(s) may also be practiced in a distributed computing environment where functions are performed by remote processing devices that are linked through a communication network. In a distributed computing environment, computer-executable instructions may be located in both local and remote computer storage media, including memory storage devices. Further, the features described herein are platform-independent such that the techniques may be implemented on a variety of computing platforms having a variety of processors.

Example methods 300 and 400 may be described in the gen-

eral context of computer-executable instructions. Generally, computer-executable instructions can include software,

applications, routines, programs, objects, components, data

structures, procedures, modules, functions, and the like.

[0036] FIG. 3 illustrates example method(s) 300 of a device locate service, and is described with reference to the device locate service shown in FIG. 1. The order in which the method is described is not intended to be construed as a limitation, and any number of the described method blocks can be combined in any order to implement the method, or an alternate method.

[0037] At block 302, a device locate request is received to locate a device. For example, the device locate service 102 (FIG. 1) receives a device locate request 124 when initiated by an owner or user of a mobile device 106 that has been lost

or misplaced. In an embodiment, the device locate service 102 receives the device locate request 124 via a telephone communication network when initiated as a telephone service call to the device locate service 102. Alternatively, the device locate service 102 receives the telephone service call from the communication service provider 104, such as when the owner of a misplaced cell phone initiates the device locate request through a cell phone service provider. In an alternate embodiment, the device locate service 102 receives the device locate request 124 via a data communication network when initiated from a computing system 126.

[0038] At block 304, a control command is communicated that activates the device to initiate a locate service function. For example, the device locate service 102 communicates a control command to the mobile device that is lost or misplaced via a mobile communication network (e.g., wireless network 116). The control command activates the mobile device to override configuration settings, emit an audible tone, display a message, wipe data from a memory of the device, lock to disable device features, and/or transmit a GPS location signal.

[0039] At block 306, a GPS location signal is received from the device, and at block 308, a location of the device is determined from the GPS location signal. For example, the device locate service 102 receives a GPS location signal from a mobile device 106 and determines a location of the device. At block 310, the location of the device is communicated for display at a computing device. For example, the device locate service 102 communicates the location of the device for display at a computing device, such as in map 144 on display device 128 at computing system 126. A user or owner of a lost mobile device 106 can initiate a device locate request 124 from the computing system 126, and receive an indication of its location on the map 144.

[0040] FIG. 4 illustrates example method(s) 400 of a device locate service, and is described with reference to a device implemented for mobile voice and/or data communication. The order in which the method is described is not intended to be construed as a limitation, and any number of the described method blocks can be combined in any order to implement the method, or an alternate method.

[0041] At block 402, a control command is received from a device locate service. For example, mobile device 202 (FIG. 2) receives a control command from the device locate service 102 to activate a device locate function or control of the locate module 210. At block 404, configuration settings are overridden. For example, the configuration settings of mobile device 202 can be overridden when a control command is received from the device locate service 102 to activate a device locate function or control.

[0042] At block 406, a determination is made as to whether the received control command is an audible alert command. If an audible alert command is received from a device locate service (i.e., "yes" from block 406), then at block 408, an audible tone is emitted. For example, the control for an audible signal 214 activates the mobile device 202 to emit an audible tone so that a user can locate the device when it is misplaced.

[0043] If the control command is not an audible alert command (i.e., "no" from block 406) or continuing from block 408, then at block 410, a determination is made as to whether the received control command is a display message command. If a display message command is received from the device locate service (i.e., "yes" from block 410), then at

block **412**, a message is displayed. For example, the control for a return message **216** activates a user interface application **218** of the mobile device **202** to render a "please return" message **220** on a display screen of the device.

[0044] If the control command is not a display message command (i.e., "no" from block 410) or continuing from block 412, then at block 414, a determination is made as to whether the received control command is a lock device command. If a lock device command is received from a device locate service (i.e., "yes" from block 414), then at block 416, the device is locked to disable device features. For example, the control for a device lock 224 activates the mobile device 202 to lock and disable device features, such as the keypad and display.

[0045] If the control command is not a lock device command (i.e., "no" from block 414) or continuing from block 416, then at block 418, a determination is made as to whether the received control command is a transmit GPS signal command. If a transmit GPS signal command is received (i.e., "yes" from block 418), then at block 420, a GPS location signal is transmitted. For example, the control for a GPS signal 226 activates the device to transmit a GPS location signal that the device locate service 102 receives to determine a location of the mobile device 202.

[0046] If the control command is not a transmit GPS signal command (i.e., "no" from block 418) or continuing from block 420, then at block 422, a determination is made as to whether the received control command is a wipe data command. If a wipe data command is received from the device locate service (i.e., "yes" from block 422), then at block 424, the data is wiped from a memory of the device. For example, the control for a data wipe 222 activates the mobile device 202 to wipe data from a memory of the device, such as personal information associated with the owner of the device, phone numbers, documents, and/or any other personal or business related information that may be stored on the device.

[0047] If the control command is not a wipe data command (i.e., "no" from block 422) or continuing from block 424, the method continues at block 402 to receive an additional control command initiated by a device locate service. For example, the device locate service 102 may initiate a series of control commands for a lost or misplaced mobile device 202, such as a combination of control commands to override configuration settings, emit an audible tone, display a message, wipe data from a memory of the device, lock to disable device features, and/or transmit a GPS location signal.

[0048] FIG. 5 illustrates various components of an example service 500 that can implement various embodiments of a device locate service, such as shown in FIG. 1. Service 500 can include one or more communication interfaces 502 that can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface for data and/or voice communication. The communication interfaces 502 provide a connection and/or communication links between service 500 and communication network(s) by which other communication, electronic, and computing devices can communicate with service 500.

[0049] Service 500 can include one or more processors 504 (e.g., any of microprocessors, controllers, and the like) which process various computer-executable instructions to control the operation of service 500 and to implement embodiments of a device locate service. Alternatively or in addition, service 500 can be implemented with any one or combination of

hardware, firmware, or fixed logic circuitry that is implemented in connection with signal processing and control circuits generally identified at 506.

[0050] Service 500 can also include computer-readable media 508, such as one or more memory components, examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device can include any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. [0051] Computer-readable media 508 provides data storage mechanisms to store various service applications 510 and any other types of information and/or data related to operational aspects of service 500. For example, an operating system 512 can be maintained as a computer application with the computer-readable media 508 and executed on the processors 504. The service applications 510 can also include a locate module 514 as well as locate controls and functions 516. In this example, the service applications 510 are shown as software modules and/or computer applications that can implement various embodiments of a device locate service.

[0052] Although not shown, service 500 can include a system bus or data transfer system that couples the various components within the service. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.

[0053] FIG. 6 illustrates various components of an example device 600 that can be implemented as any form of a mobile communication, computing, electronic, and/or media device to implement various embodiments of device locate service. For example, device 600 can be implemented as any of the mobile devices shown in FIG. 1 and/or FIG. 2. In various embodiments, device 600 can be implemented as any one or combination of a wireless or mobile phone, a portable computer device, and/or as any other type of mobile device that may be implemented for data and/or voice communication.

[0054] Device 600 can include user data 602, such as personal information associated with an owner of the device, and can include private information 604, such as phone numbers, documents, and/or any other personal or business related information that may be stored on the device. Device 600 further includes one or more communication interfaces 606 that can be implemented for any type of data and/or voice communication.

[0055] Device 600 can include one or more processors 608 (e.g., any of microprocessors, controllers, and the like) which process various computer-executable instructions to control the operation of device 600 and to implement embodiments of device locate service. Alternatively or in addition, device 600 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with signal processing and control circuits which are generally identified at 610.

[0056] Device 600 can also include computer-readable media 612, such as one or more memory components, examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device can include any type of magnetic or optical storage device, such as a hard

disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. [0057] Computer-readable media 612 provides data storage mechanisms to store the user data 602 and the private information 604, as well as various device applications 614 and any other types of information and/or data related to operational aspects of device 600. For example, an operating system 616 can be maintained as a computer application with the computer-readable media 612 and executed on the processors 608. The device applications 614 can also include a device manager 618 and a locate module 620. In this example, the device applications 614 are shown as software modules and/or computer applications that can implement various embodiments of device locate service.

[0058] Device 600 can also include an audio, video, and/or image processing system 622 that provides audio data to an audio rendering system 624 and/or provides video or image data to a display system 626. The audio rendering system 624 and/or the display system 626 can include any devices or components that process, display, and/or otherwise render audio, video, and image data. The audio rendering system 624 and/or the display system 626 can be implemented as integrated components of the example device 600.

[0059] Although not shown, device 600 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.

[0060] Although embodiments of a device locate service have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example implementations of a device locate service.

1. A method, comprising:

signal; and

receiving a device locate request to locate a device that is configured for mobile communication; and

communicating a control command that activates the device to initiate a locate service function, the control command being communicated to the device via a mobile communication network.

- 2. A method as recited in claim 1, wherein the device locate request is received via a telephone communication network when initiated as a telephone service call.
- 3. A method as recited in claim 1, wherein the device locate request is received via a data communication network when initiated from a computing device.
 - **4**. A method as recited in claim **3**, further comprising: receiving a GPS location signal from the device; determining a location of the device from the GPS location
 - communicating the location of the device for display at the computing device.
- **5**. A method as recited in claim **1**, wherein the control command activates the device to override configuration settings and emit an audible tone.
- **6**. A method as recited in claim **1**, wherein the control command activates the device to override configuration settings and display a message.

- A method as recited in claim 1, wherein the control command activates the device to wipe data from a memory of the device.
- **8**. A method as recited in claim **1**, wherein the control command activates the device to lock and disable device features.
- **9.** A method as recited in claim **1**, wherein the device is a mobile phone, and wherein the control command activates the device to override configuration settings, emit an audible tone, display a message, and transmit a GPS location signal.
 - 10. A device locate service, comprising:
 - a communication interface configured to receive a device locate request to locate a device that is configured for mobile communication; and
 - a locate module configured to initiate communication of a control command that activates the device to initiate a locate service function, the control command configured for communication to the device via a mobile communication network.
- 11. A device locate service as recited in claim 10, wherein the communication interface is configured to receive the device locate request via a telephone communication network when initiated as a telephone service call to the device locate service.
- 12. A device locate service as recited in claim 10, wherein the communication interface is configured to receive the device locate request via a data communication network when initiated from a computing device.
- 13. A device locate service as recited in claim 12, wherein the locate module includes a GPS locate service configured to receive a GPS location signal from the device, determine a location of the device from the GPS location signal, and initiate communication of the location of the device for display at the computing device.

- 14. A device locate service as recited in claim 10, wherein the locate module includes an audible signal control configured to initiate the control command that activates the device to override configuration settings and emit an audible tone.
- 15. A device locate service as recited in claim 10, further comprising a message control configured to initiate the control command that activates the device to override configuration settings and display a message.
- 16. A device locate service as recited in claim 10, further comprising a data wipe control configured to initiate the control command that activates the device to wipe data from a memory of the device.
- 17. A device locate service as recited in claim 10, further comprising a device lock control configured to initiate the control command that activates the device to lock and disable device features.
 - 18. A mobile device, comprising:
 - a communication interface configured to receive a control command initiated by a device locate service that receives a device locate request for the mobile device; and
 - a locate module configured to override configuration settings of the mobile device in response to the control command, initiate that the mobile device emit an audible tone, display a message, and lock to disable device features
- 19. A mobile device as recited in claim 18, wherein the locate module is further configured to initiate transmission of a GPS location signal from the mobile device.
- 20. A mobile device as recited in claim 18, wherein the locate module is further configured to initiate wiping data from a memory of the mobile device.

* * * * *