

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁴ :	A1	(11) International Publication Number: WO 86/00476
H03C 1/06, G01S 7/28		(43) International Publication Date: 16 January 1986 (16.01.86)

(21) International Application Number: PCT/US85/01153	(81) Designated States: DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, SE (European patent).
(22) International Filing Date: 18 June 1985 (18.06.85)	
(31) Priority Application Number: 626,098	Published
(32) Priority Date: 28 June 1984 (28.06.84)	With international search report.
(33) Priority Country: US	
(71) Applicant: HUGHES AIRCRAFT COMPANY [US/US]; 200 North Sepulveda Boulevard, El Segundo, CA 90245 (US).	
(72) Inventors: WAGNER, Gene, A. ; 2544 West 225th Place, Torrance, CA 90505 (US). NEWBERG, Irwin, L. ; 18401 Blackhawk Street, Northridge, CA 91326 (US).	
(74) Agents: ALKOV, Leonard, A. et al.; Hughes Aircraft Company, P.O. Box 1042, Bldg. C2, M/S A126, El Segundo, CA 90245 (US).	

(54) Title: RF AMPLIFIER WITH FREQUENCY SPECTRUM CONTROL

(57) Abstract

An RF amplifier arrangement for providing output signals having a controlled frequency distribution and wherein the amplitude and phase of the input signals to an RF amplifier (18) are controlled as a function of the amplitude and phase, respectively, of the output signals from the RF amplifier (18) and also the amplitude of the input signals are adjusted so as to cause the power of the output signal to vary in accordance with a predetermined sequence, whereby such amplitude control of the input signals results in a modified frequency distribution in the energy of the output signals.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Austria	GA Gabon	MR Mauritania
AU Australia	GB United Kingdom	MW Malawi
BB Barbados	HU Hungary	NL Netherlands
BE Belgium	IT Italy	NO Norway
BG Bulgaria	JP Japan	RO Romania
BR Brazil	KP Democratic People's Republic of Korea	SD Sudan
CF Central African Republic	KR Republic of Korea	SE Sweden
CG Congo	LI Liechtenstein	SN Senegal
CH Switzerland	LK Sri Lanka	SU Soviet Union
CM Cameroon	LU Luxembourg	TD Chad
DE Germany, Federal Republic of	MC Monaco	TG Togo
DK Denmark	MG Madagascar	US United States of America
FI Finland	ML Mali	
FR France		

RF AMPLIFIER WITH FREQUENCY SPECTRUM CONTROL

1

BACKGROUND OF THE INVENTION

This invention relates generally to RF amplifiers and, more particularly, to an RF amplifier arrangement for providing output signals having a controlled or 5 modified frequency distribution.

In many applications, such as radar systems, for example, it is desirable to control the output signal spectrum of a transmitter in order to concentrate the output power in the frequency bands needed to implement 10 a desired function. For the radar example this might be to match the output signals spectrum to a required task, such as providing unique waveforms for special signal processing and/or minimizing interference with nearby radars (friendly interference).

15 One approach to obtaining such frequency spectrum control is by directly attenuating the high power output of a transmitter that is being operated in saturation. This requires using large components to handle the high power and such components are generally more expensive, 20 larger, heavier, hotter operating, slower operating, and less reliable than components that operate at the lower power of the input signal drive to the transmitter. Spectrum control at the output of the high power RF amplifier is consequently not generally tried because 25 of problems with handling the power at the device's output.

1

SUMMARY OF THE INVENTION

It is, therefore, a primary object of the invention to provide an improved arrangement for frequency spectrum control of the output signals from an RF amplifier.

5

Another object is to provide an improved arrangement for frequency spectrum control of the output signals from an RF amplifier which arrangement will not cause a significant increase in equipment cost, weight and volume while maintaining good performance and reliability.

10

A further object is to provide an improved arrangement for frequency spectrum control for the output signal of an RF amplifier while providing acceptable noise performance even though the RF amplifier is operated out of its saturation region.

15

Yet another object of the invention is to provide for frequency spectrum control of the output signals from an RF amplifier in an arrangement which is compatible with special signal processing, such as pulse compression.

20

The subject invention provides for amplitude control of the input signals to an RF amplifier so as to provide a predetermined variation in the output power of the amplifier, which variation causes a desired modification in the output frequency spectrum of the amplifier's output signal. In accordance with one embodiment of the invention a computer controlled feedback loop is employed to provide the amplitude control of the amplifier's output signals and phase control is also implemented by means of a feedback loop. One such embodiment comprises an RF amplifier and circuit means for adjusting the amplitude and phase of the input signals to the amplifier as a function of the amplitude and phase, respectively, of the output signals from the amplifier and for also adjusting the amplitude of the input signals so as to cause the power of the output signals to vary in accordance with

1 the predetermined sequence whereby such amplitude
control of the input signals results in a modified
frequency distribution in the energy of the output
signals. The circuit means may include a source of RF
5 signals, a controllable power adjustment device coupled
to receive a portion of the output power from the RF
amplifier, computer means programmed to control the
relative response of the power adjustment device in
accordance with the predetermined sequence and modulators
10 coupled between the output of the RF signal source and
the input of the amplifier for adjusting the phase and
amplitude of the input signal as a function of the phase
and amplitude, respectively, of the output signal from
the power adjustment device.

15 One embodiment of the invention further comprises
means for measuring the output power of the RF amplifier
and the computer means includes an arrangement for
scanning the controllable power adjustment device
over a range of values and for storing the resultant
20 parameters that produce the RF output power levels of
the predetermined sequence.

BRIEF DESCRIPTION OF THE DRAWINGS

25 The novel features of this invention as well as
the invention itself will be better understood from the
accompanying description taken in connection with the
accompanying drawings in which like reference characters
refer to like parts and in which:

30 FIG. 1 is a block diagram of an RF amplifier
arrangement in accordance with the subject invention
wherein the frequency spectrum of the output signal
from the RF amplifier is controlled by means of
amplitude control of the amplifier's input signal;

35 FIG. 2 illustrates an amplitude weighted
pulse having Dolph-Chebychev weighting which is
associated with 45 dB sidelobe levels;

1 FIG. 3 illustrates the expected frequency
spectrum of the output signal for the RF amplifier
arrangement of FIG. 1;

5 FIG. 4 is a typical spectrum of the output
signals from a pulsed transmitter without waveform
amplitude control;

10 FIG. 5 is an arrangement similar to that of
FIG. 1 with the addition of means for measuring and
storing the control signal values associated with
preselected output power levels;

15 FIG. 6 is an RF amplifier arrangement similar
to that of FIG. 1 except that amplitude control of the
input signal is provided by open loop computer control
of the input signal to the RF amplifier;

20 FIG. 7 is an arrangement similar to that of
FIG. 6 except that feedback phase control of the input
signal to the RF amplifier has not been implemented;
and

25 FIG. 8 is a block diagram of an RF amplifier
arrangement which implements amplitude control of the
amplifier's input signals for the situation in which
two carrier frequencies are simultaneously processed.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

30 Referring first primarily to FIG. 1, the frequency
spectrum controlled RF amplifier arrangement there shown
includes an RF source 10, a directional coupler 12,
phase and amplitude modulators 14, and 16, respectively,
and an RF power amplifier 18. The output signal from
35 amplifier 18 is applied to a utilization device such as
a radar antenna (not shown) and a sample thereof is
applied through a directional coupler 20 to a voltage
controlled attenuator 22. The amount of attenuation
applied by voltage controlled attenuator 22 is determined
35 by signals applied from a computer 24 to the control

1 input of attenuator 22. The computer is programmed so
as to provide a predetermined sequence of weighting
function parameters. An amplitude detector 28 and
amplitude modulator 16 are part of a feedback loop
5 which operates to maintain the input signal to amplitude
detector 26 at a constant power level. Therefore, the
output power from amplifier 18 can be controlled and
shaped by controlling the attenuation provided by the
voltage controlled attenuator 22. Hence, the shape of
10 the output signal from the RF amplifier 18 is determined
by the control signals applied to attenuator 22 from
the computer 24. As noted hereinabove, and as shown in
FIGS. 3 and 4, amplitude control of the RF outputs
pulses translates into modification of the frequency
15 spectrum of these pulses. An example of a set of
weighting function parameters is illustrated in
FIG. 2 for Dolph-Chebychev weights for 45 dB sidelobes.
FIG. 3 shows the resulting spectrum for such a weighted
waveform which has a 300 Hz pulse repetition frequency,
20 a center frequency of 9.8 GHz, step width of 26 micro-
seconds and a duty factor of 0.125. In FIG. 3 the
vertical scale is 10 dB per division and the horizontal
scale is 5.0 kHz per division.

For comparison purposes, FIG. 4 shows the spectrum
25 of a similar pulsed waveform without amplitude weighting.
It is noted that there is substantial improvement in
sidelobe levels for a spectrum (FIG. 3) associated with
the embodiment of FIG. 1. However, it is also noted
30 that the improved spectrum is at the expense of a loss
of some average output power and some widening of the
spectrum in the region of the carrier.

Table I shows Dolph-Chebychev amplitude weights
for 35 dB, 40 dB, 45 dB and 50 dB sidelobes. Since the
RF amplifiers are generally not linear devices the
35 values of attenuation command signals are derived from

1 a set of prior measurements made on the amplifier
 arrangement. For example, the maximum output power
 level is selected and assigned the value "1.000" and
 then the input signal to attenuator 22 is adjusted
 5 until the power represented by the respective steps
 shown in FIG. 2 and Table I are obtained and then
 computer 24 is programmed accordingly.

TABLE I

10

15

20

25

30

35

STEP	SIDELOBE LEVEL			
	35 dB	40 dB	45 dB	50 dB
1	0.179	0.114	0.074	0.050
2	0.250	0.196	0.155	0.123
3	0.389	0.332	0.284	0.244
4	0.544	0.493	0.447	0.406
5	0.701	0.661	0.625	0.591
6	0.840	0.816	0.794	0.773
7	0.944	0.935	0.927	0.919
8	1.000	1.000	1.000	1.000
9	1.000	1.000	1.000	1.000
10	0.944	0.935	0.927	0.919
11	0.840	0.816	0.794	0.773
12	0.701	0.661	0.625	0.591
13	0.544	0.493	0.447	0.406
14	0.389	0.332	0.284	0.244
15	0.025	0.196	0.155	0.123
16	0.179	0.114	0.074	0.050

1 In certain applications, such as radar transmission
the RF output amplifier is sometimes operated in saturation
to minimize AM noise from both the input drive
source and the amplifier itself. In the embodiment of
5 FIG. 1, since output signal amplitude signal control
is effected by controlling the input signal, the amplifier
18 must be operated below saturation; however, acceptable
AM noise levels are obtained by means of the amplitude
feedback loop which includes the detector 28 and modulator
10 16. Similarly, phase variations can be expected, for
example, with variations in output power and from the
operation of attenuator 22. The phase feedback loop
which includes a phase detector 30 and phase modulator
15 14 reduces such phase variations. One input to phase
detector 30 is applied from RF source 10 through direc-
tional coupler 12 and the other input is applied from
voltage controller attenuator 22 through a directional
coupler 26. As examples of component types which may
be used in the the feedback loops, Microwave Associates
20 Part No. MPM 371 includes a stripline phase modulator
(0 to 60°) and an amplitude modulator (0 to 50 dB);
Part No. MPM 372 includes a 4-bit phase shifter, a
phase detector and an amplitide detector; and Part
No. MPM 373 is a voltage controlled attenuator.
25 Phase modulator 14 may comprise the combination of the
4-bit digital phase shifter and the stripline continuous
phase shifter with suitable control electronics to step
the 4-bit phase shifter so as to maintain the loop
within the control range of the stripline continuous
30 phase shifter. An example of a system which uses
feedback loops to reduce undesirable modulation components
in a microwave power amplifier is presented in U.S.
Patent No. 4,134,114 to Riggs et al and is entitled
"Radar System Having Amplitude and Phase Modulation
35 and Demodulation".

1 Still referring primarily to FIG. 1, computer 24 provides gate control signals to RF amplifier 18, which may be a gated TWT, for example, so as to turn the amplifier off between output signal pulses.

5 Alternatively, the computer may control a diode switch (not shown) disposed between modulators 14 and 16, for example, to accomplish the gating function, or both methods may be used to implement improved gating.

10 The configuration of FIG. 5 is similar to that of FIG. 1 with the addition of a power monitor 32 coupled through directional coupler 34 so as to receive a sample of the RF output power from RF power amplifier 18. Computer 24 is programmed so that during a calibration mode of operation voltage controlled attenuator 22 is 15 scanned over a predetermined range of attenuation values and the control parameter (control signals to 22) values and resultant power levels values are stored and tabulated. Then during operation the parameter values for the preselected desired power level sequence 20 (weighting factors) are used. Such a calibration update mode may be run on a programmed schedule or by operator command.

25 The embodiment of FIG. 6 is similar to that of FIG. 1 except that the amplitude control is performed "open loop" by attenuator 22 under control of computer 24. The computer uses a table of attenuation values from a computer memory to set attenuator 22 so as to obtain the desired output power. Phase control is maintained by a feedback loop which includes phase 30 modulator 14 and phase detector 30. It is noted that phase control can reduce frequency modulation (FM) noise which may be the higher noise source in a transmitter's output, i.e., higher than AM noise.

1 The arrangement of FIG. 7 illustrates the basic
concept of frequency spectrum control by control of the
input signal to the power amplifier 18. Computer 24
uses a table of attenuation values from a computer
5 memory to control attenuator 22.

In accordance with the subject invention, an
arrangement which uses pulsed input signals having
different carrier frequencies (simultaneous multiple
frequencies) can also be implemented. If the pulses
10 are overlapped in the time domain (pulses are partially
time coincident) then separate feedback loops would be
used to control each input signal channel; this is
shown in FIG. 8 for two frequencies. As there shown,
signals which have a carrier frequency F1 are provided
15 for a first signal channel by RF source 10 and signals
which have a carrier frequency F2 are provided for a
second signal channel by a RF source 10'. The two
feedback loops shown in FIG. 8 each operate in a manner
similar to that described herein above relative to
20 FIG. 1. The loops respond to the appropriate respective
frequencies due to filter 38 and 38' which applies
feedback signals for control of the F1 and F2 signal
channels respectively. The output signal sample from
25 directional coupler 20 is applied to a coupler 36 and
two output signals therefrom are applied as respective
inputs to filters 38 and 38'. The amplitude and phase
controlled signals from amplitude modulator 16 and 16'
are combined by coupler 40 and applied as a combined
30 input signal to RF amplifier 18. Computer 24 controls
the attenuation of voltage controlled attenuators 22
and 22' in the manner described herein above relative
to FIG. 1. The amplitude weighting functions need not
be the same for both signal channels; for example,
computer 24 may be programmed to apply the 35 db sidelobe
35 level weights (see Table I) to the signals, for the F1

10

1 channel and 45 db sidelobe level weights to the signals for the F2 channel. It is noted that the multiple carrier frequency implementation reduces loss of average power capability associated with the input signal
5 amplitude control technique since the variation in peak power output during the overlap time is less than the peak power variation for weighted waveforms having no overlap.

Thus having described a new and useful RF
10 amplifier arrangement for providing output signals having a controlled or modified frequency distribution,

15

20

25

30

35

CLAIMSWhat is Claimed is:

1. An RF amplifier arrangement for providing output signals having a controlled frequency distribution comprising:
 - an RF amplifier (18); and
 - 5 input means for applying input signals to said RF amplifier (18) including means (16/28, 14/30) for adjusting the amplitude and phase of the input signals as a function of the amplitude and phase respectively of the output signals from said RF amplifier (18) and
 - 10 for also adjusting the amplitude of the input signals so as to cause the power of the output signals to vary in accordance with a predetermined sequence whereby such amplitude control of the input signals results in a modified frequency distribution in the energy of the
 - 15 output signals.
1. The RF amplifier arrangement in Claim 1 wherein said input means includes:
 - a source (10) of RF signals;
 - 5 a controllable power adjustment device (22) coupled to receive a portion of the output power from said RF amplifier (18);
 - 10 computer means (24) programmed to control the relative response of said power adjustment device (22) in accordance with said predetermined sequence; and
 - 15 means (14,16) coupled between the output of said RF signal source (10) and the input of said RF amplifier (18) for adjusting the phase and amplitude of the input signal to said RF amplifier as a function of the phase and amplitude, respectively, of the output signal from said power adjustment device (22).

1 3. The RF amplifier arrangement of Claim 2 further
comprising means (32) for measuring the output power of
said RF amplifier (18) and said computer means (24)
including means for scanning said controllable power
5 adjustment device (22) over a range of values and for
storing the resultant parameters that produce the RF
output power levels of said predetermined sequence.

1 4. The RF amplifier arrangement of Claim 1 wherein
said input means includes means for applying to said RF
amplifier (18) a series of input RF signal pulses which
vary in amplitude in accordance with a Dolph-Chebyshev
5 weighted pulse amplitude distribution.

1 5. The RF amplifier arrangement of Claim 2
wherein said computer (24) is programmed to store a series
of parameters which control the relative responses of
said adjustment device in accordance with said
5 predetermined sequence.

1 6. An RF amplifier arrangement for providing
output signals having a controlled frequency distribution
comprising:

5 an RF amplifier (18); and
5 input means for applying input signals to
said RF amplifier (18) including means (14/30, 16/28) for
adjusting the phase of the input signals as a function
of the phase of the output signals from said RF amplifier
(18) and for adjusting the amplitude of the input
10 signals so as to cause the power of the output signals
to vary in accordance with a predetermined sequence
whereby such amplitude control of the input signals
results in a modified frequency distribution in the
energy of the output signals.

1/4

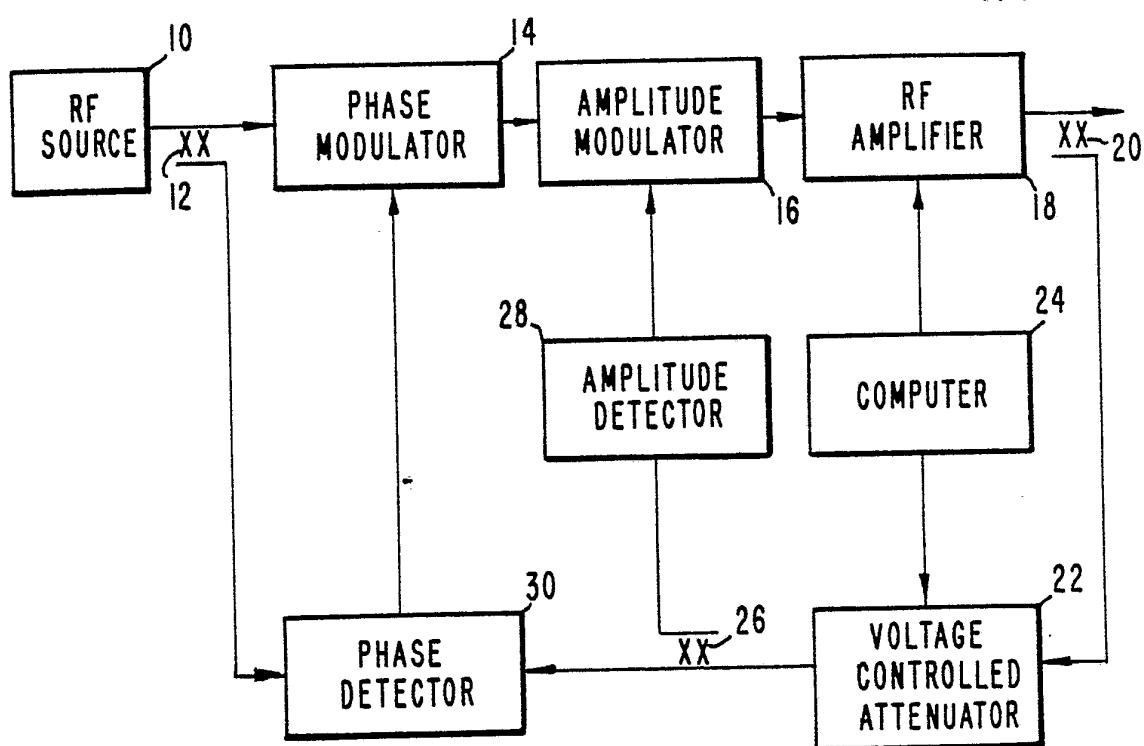


Fig. 1.

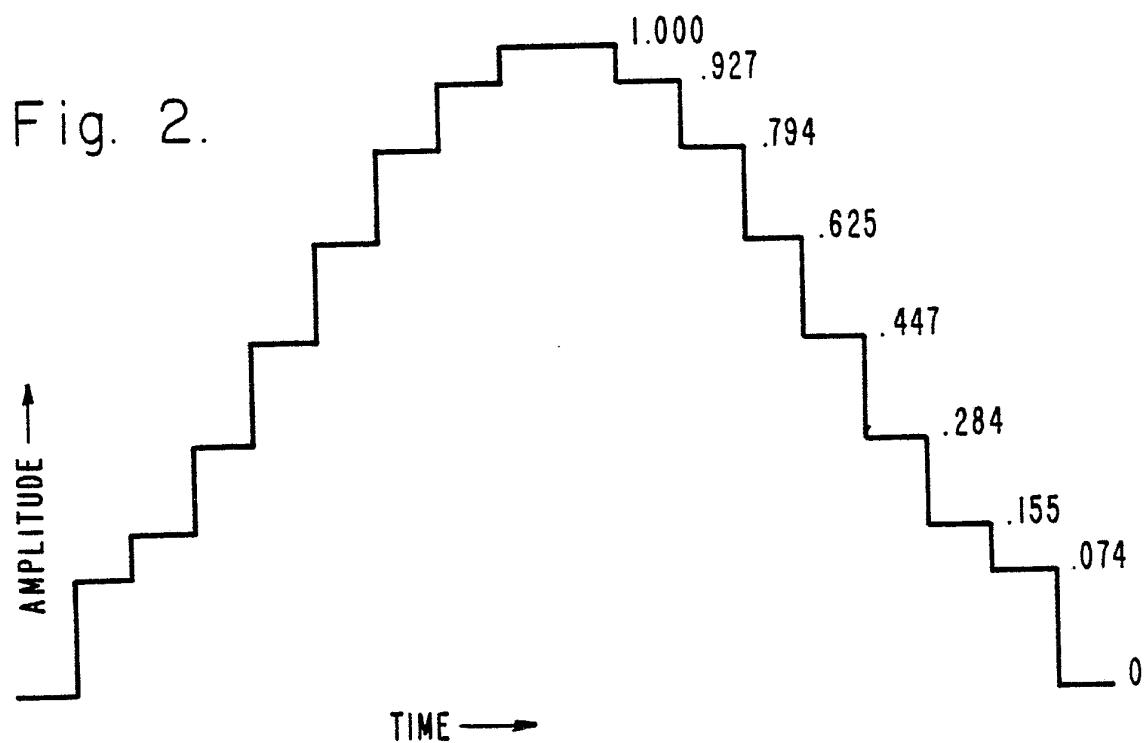


Fig. 2.

2 / 4

Fig. 3.

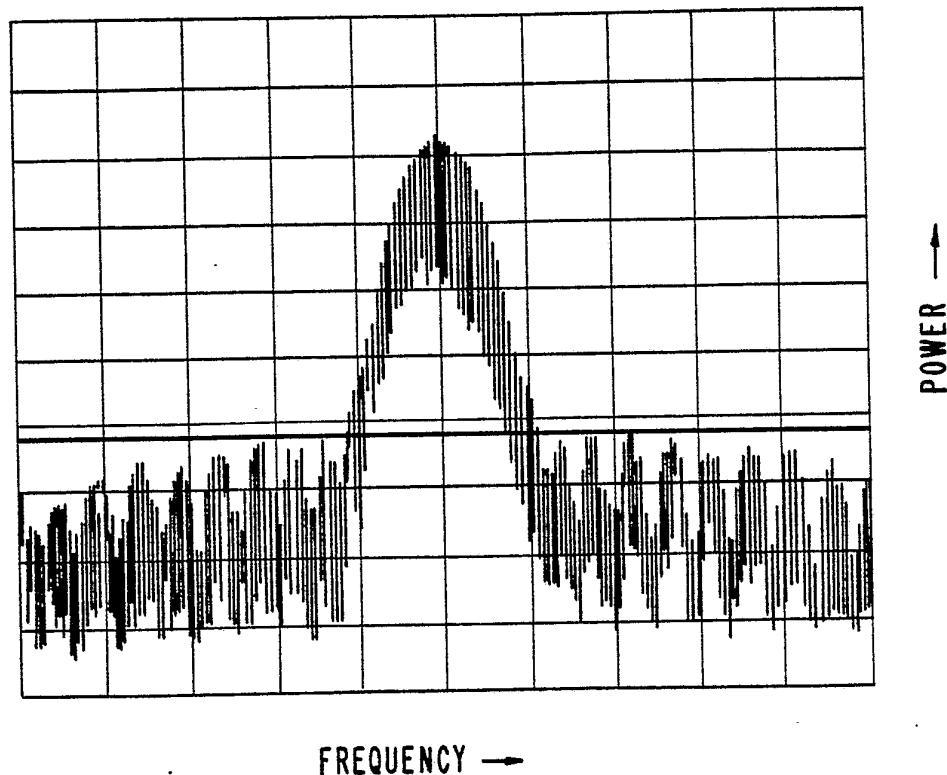
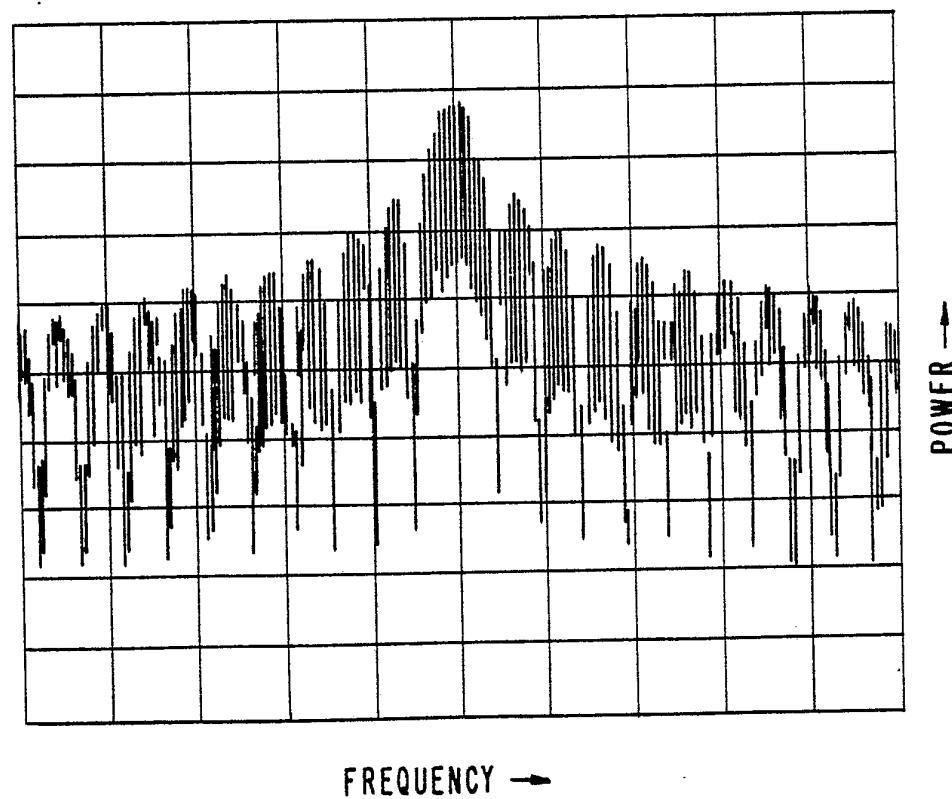



Fig. 4.

3 / 4

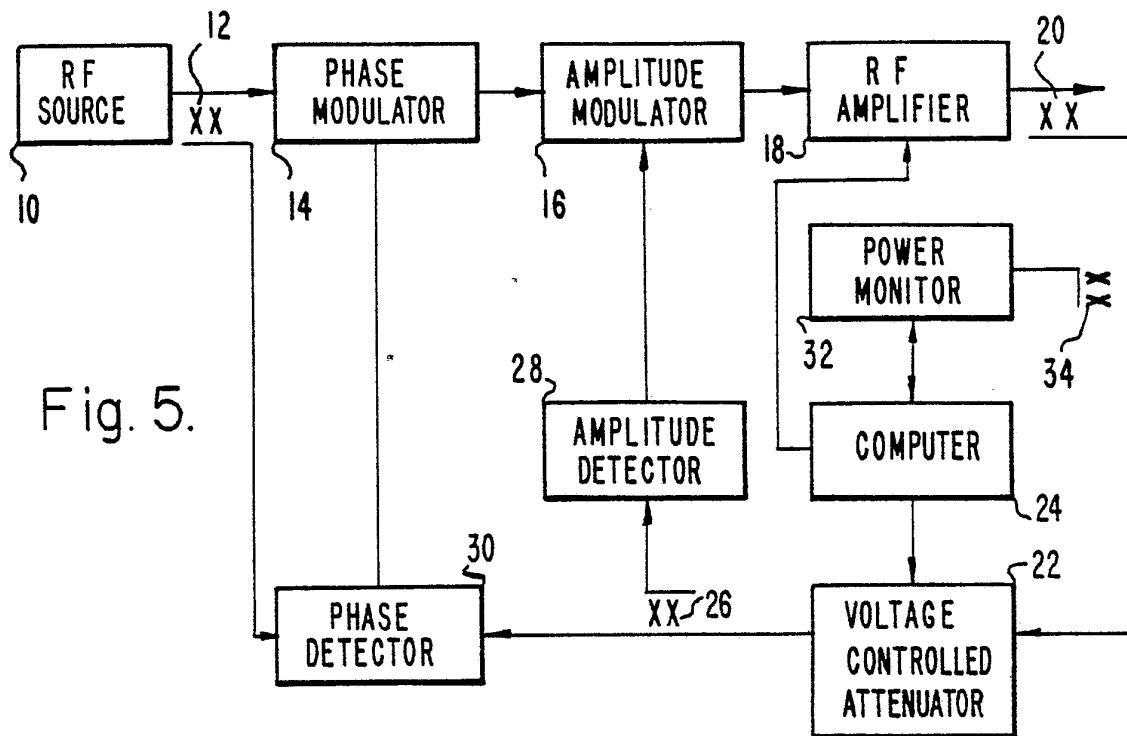


Fig. 5.

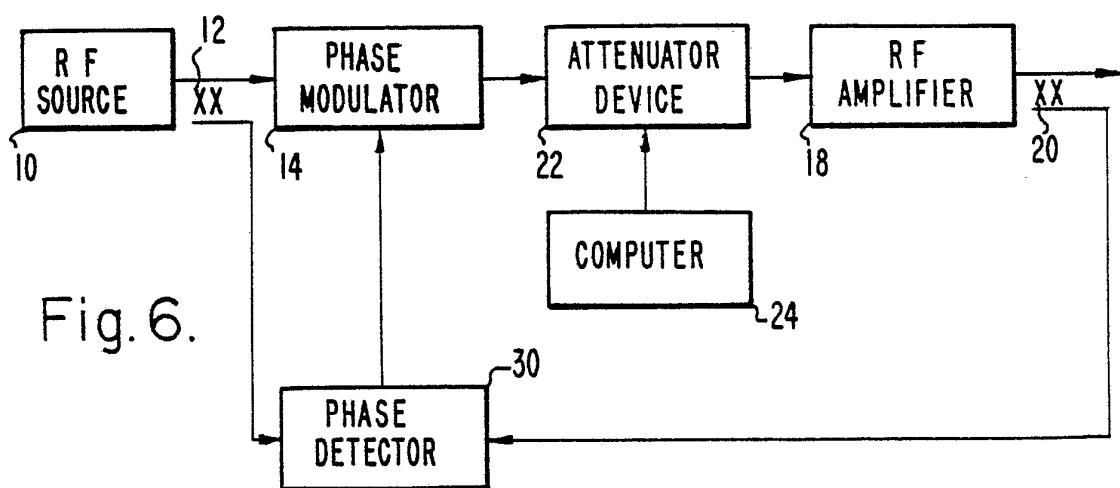
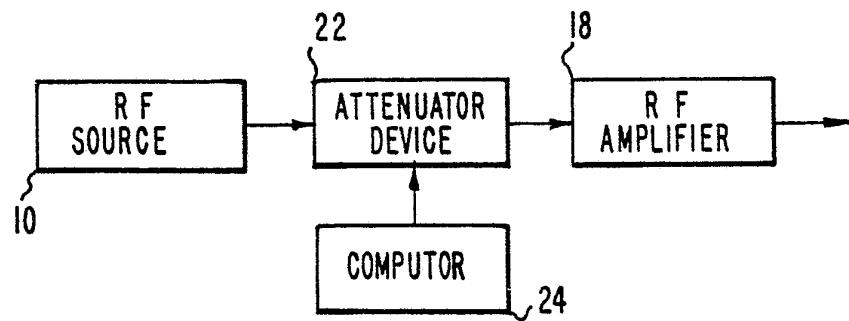



Fig. 6.

Fig. 7.

4 / 4

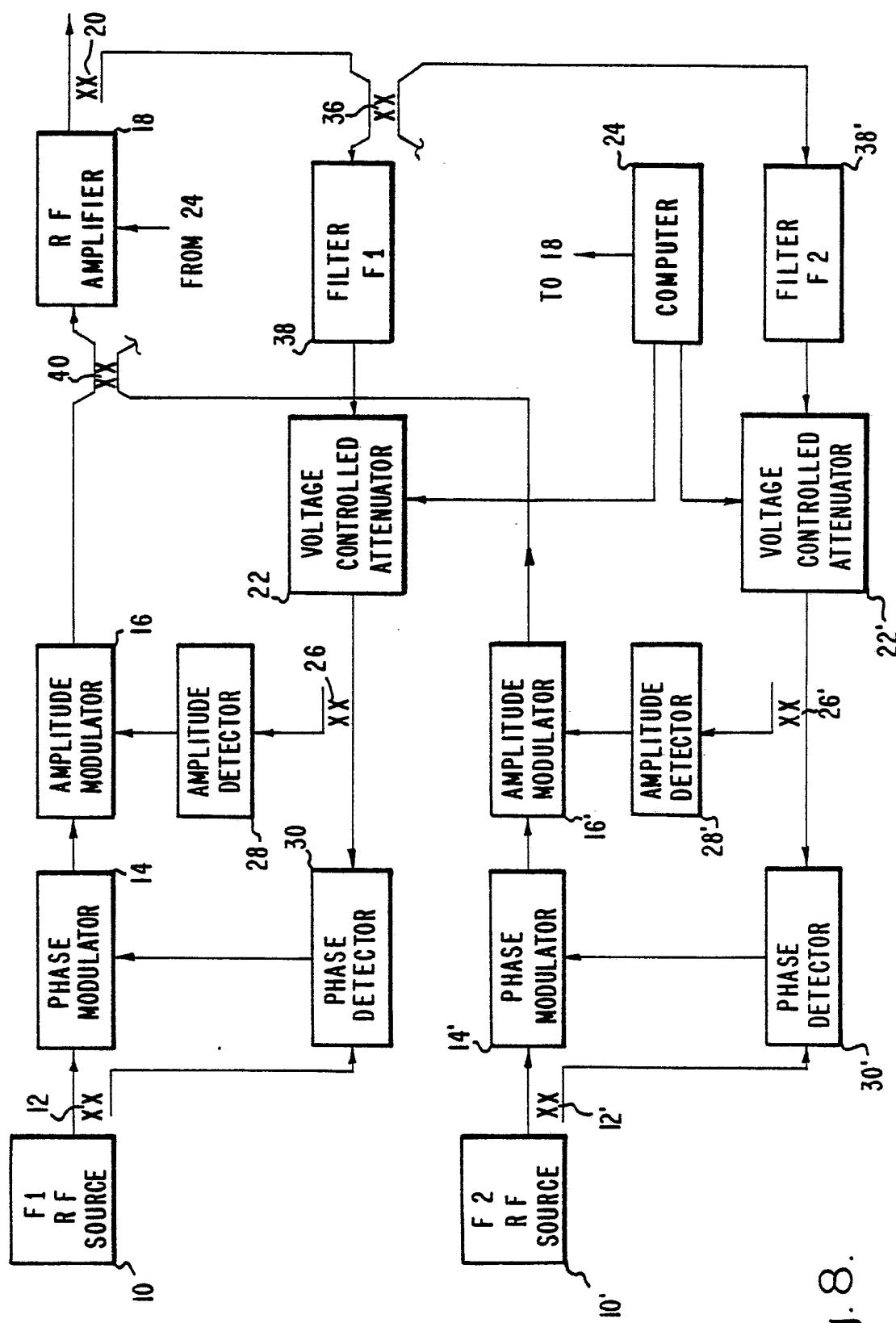


Fig. 8.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 85/01153

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC ⁴: H 03 C 1/06; G 01 S 7/28

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
IPC ⁴	H 03 C G 01 S H 03 L

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT ⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
A	FR, A, 2387547 (HUGHES AIRCRAFT) 10 November 1978, see page 3, line 1 - page 6, line 32; figure & US, A, 4134114 (cited in the application) --	1,6
A	DE, B, 2835751 (STANDARD ELEKTRIK LORENZ) 25 Oktober 1979, see column 2, line 64 - column 3, line 24; figure 1 --	1-6
A	GB, A, 2059217 (INTERNATIONAL STANDARD ELECTRIC) 15 April 1981, see abstract; figure 1 --	1,6
A	GB, A, 2011741 (PLESSEY) 11 July 1979, see page 1, lines 63-116; figure -----	1,6

* Special categories of cited documents: ¹⁰

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"g" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

4th September 1985

Date of Mailing of this International Search Report

27 SEP 1985

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

G.L.M. Lundberg

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO. PCT/US 85/01153 (SA 9978)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 17/09/85

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
FR-A- 2387547	10/11/78	NL-A- 7803818 DE-A, C 2811883 US-A- 4134114 JP-A- 53128995 GB-A- 1570676 SE-A- 7804135 SE-B- 439841	17/10/78 19/10/78 09/01/79 10/11/78 02/07/80 15/10/78 01/07/85
DE-B- 2835751	25/10/79	GB-A, B 2028039 FR-A, B 2433855 AU-A- 4977979 JP-A- 55039492 US-A- 4286236 CA-A- 1126824 AU-B- 529804	27/02/80 14/03/80 21/02/80 19/03/80 25/08/81 29/06/82 23/06/83
GB-A- 2059217	15/04/81	FR-A, B 2465228 DE-A- 3033983 JP-A- 56047109 US-A- 4298841	20/03/81 02/04/81 28/04/81 03/11/81
GB-A- 2011741	11/07/79	None	
