MAGNESIUM BATTERY HAVING A CATHODE CONTAINING MANGANESE DIOXIDE NANOPIRTELES AS ACTIVE MATERIAL

Applicant: Toyota Motor Engineering & Manufacturing North America, Inc., Erlanger, KY (US)

Inventors: Ruigang Zhang, Ann Arbor, MI (US); Fuminori Mizuno, Ann Arbor, MI (US)

Assignee: Toyota Motor Engineering & Manufacturing North America, Inc., Erlanger, KY (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 207 days.

Appl. No.: 13/850,695

Filed: Mar. 26, 2013

Prior Publication Data

References Cited

U.S. PATENT DOCUMENTS

5,180,642 A Weiss et al. 1/1993 429/90
5,604,057 A Nazri 2/1997
5,685,881 B2 Davis et al. 7/2003
2005/0135993 A1 Xu et al. 6/2005
2010/0196762 A1 Yamamoto et al. 8/2010
2011/0307487 A1 Padhi et al. 3/2011
2013/0004830 A1 Song et al. 1/2013
2013/0004850 A1 Shon et al. 1/2013

OTHER PUBLICATIONS

Pang et al. (J. Nanomater. vol. 2012, Article ID 607870 published on Jan. 1, 2012).*
Ni et al. (J. Phys. Chem. C 2009, 113, 54-60).*
Zhang et al. (Internat. J. Hydrogen Energy, 36 (2011) 11760-11766).*

* cited by examiner

Primary Examiner — Carlos Barcena
Assistant Examiner — Wojciech Haske

Attorney, Agent, or Firm — Oblon, McClelland, Maier & Neustadt, L.L.P.

ABSTRACT

A MnO2 electrode active material of high capacity is provided. The high capacity MnO2 has a surface area which is greater than 60 m2/g and the MnO2 is obtained by a process comprising a redox reaction of a Mn (II) salt and permanganate at a reaction temperature less than 30° C. and a pH of 2 to 4. Also provided are a magnesium electrochemical cell having a cathode containing the MnO2 and a rechargeable magnesium battery having a cathode containing the MnO2.

16 Claims, 6 Drawing Sheets
Fig. 1
Fig. 2a

Fig. 2b

Fig. 2c
Fig. 2d

Fig. 2e
Fig. 3

- A: No calcination (Example 1 γ-MnO$_2$)
- B: 200 °C calcination (Example 2 γ-MnO$_2$)
- C: 300 °C calcination (Example 3 γ-MnO$_2$)
- D: 400 °C calcination (Example 4 β-MnO$_2$)
- E: Comparative example 1 (β-MnO$_2$)
- F: Comparative example 2 (γ-MnO$_2$)
- G: Comparative example 3 (α-MnO$_2$, high surface area)

Fig. 4

- A: No calcination (Example 1 γ-MnO$_2$)
- B: 200 °C calcination (Example 2 γ-MnO$_2$)
- C: 300 °C calcination (Example 3 γ-MnO$_2$)
- D: 400 °C calcination (Example 4 β-MnO$_2$)
- E: Comparative example 1 (β-MnO$_2$)
- F: Comparative example 2 (γ-MnO$_2$)
- G$_1$: Comparative example 3 (α-MnO$_2$, high surface area I)
- G$_2$: Comparative example 3 (α-MnO$_2$, high surface area II)
- H: Comparative example 3 (α-MnO$_2$, low surface area)
A: No calcination (Example 1 γ-MnO$_2$)
B: 200 °C calcination (Example 2 γ-MnO$_2$)
C: 300 °C calcination (Example 3 γ-MnO$_2$)
D: 400 °C calcination (Example 4 β-MnO$_2$)
X: 500 °C calcination

Fig. 5
Fig. 6
MAGNESIUM BATTERY HAVING A CATHODE CONTAINING MANGANESE DIOXIDE NANOPIRNCLES AS ACTIVE MATERIAL

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention is directed to a magnesium electrochemical cell containing as an active cathode material of MnO₂ nanoparticles which have a surface area greater than 60 m²/g and which provides high cell capacity and increased cycle lifetime. The invention is further directed to a magnesium battery containing a cathode having the MnO₂ according to the invention as an active ingredient.

2. Discussion of the Background
Lithium ion batteries have been in commercial use since 1991 and have been conventionally used as power sources for portable electronic devices. The technology associated with the construction and composition of the lithium ion battery (LIB) has been the subject of investigation and improvement and has matured to an extent where a state of art LIB battery is reported to have up to 700 Wh/L of energy density. However, even the most advanced LIB technology is not considered to be viable as a power source capable to meet the demands for a commercial electric vehicle (EV) in the future. For example, for a 300 mile range EV to have a power train equivalent to current conventional internal combustion engine vehicles, an EV battery pack having an energy density of approximately 2000 Wh/L is required. As this energy density is close to the theoretical limit of a lithium ion active material, technologies which can offer battery systems of higher energy density are under investigation.

Magnetism as a multivalent ion is an attractive alternate electrode material to lithium, which can potentially provide very high volumetric energy density. It has a highly negative standard potential of ~2.375V vs. RHE, a low equivalent weight of 121.5 g/mol of electrons and a high melting point of 649°C. Compared to lithium, it is easy to handle, machine and dispose. Because of its greater relative abundance, it is lower in cost as a raw material than lithium and manganese compounds are generally of lower toxicity than lithium compounds. All of these properties coupled with magnetism's reduced sensitivity to air and moisture compared to lithium, combine to make magnetism an attractive alternative to lithium as an anode material.

Magnesium (Mg) batteries are being researched as a candidate for post lithium-ion systems. They are expected to be high energy battery systems, due to the high volumetric capacity made available via the two electron transfer per Mg. However, a cathode active material compatible with magnesium and providing high capacity and durability is a subject of much ongoing investigation.

Examples of cathode active materials for magnesium electrochemical cells which are conventionally known include sulfur, MnO₂ and a Chevrel compound having a formula Mg₃Mo₆Te₅, wherein x is a number from 0 to 4, T is sulfur, selenium or tellurium, and n is 8.

The inventors have previously identified a K ion stabilized α-MnO₂ as showing very high reversible capacity (U.S. 2013/0004830 A1).

It is conventionally known that MnO₂ can assume various polymorphic phases depending on factors which include, for example, method of synthesis, thermal history and age. The polymorphic phases may be described in terms of the structural relationship of MnO₆ octahedra which may be linked at corners and edges. Three main groups of structures of the octahedral framework are known and are designated as 3D tunnels, 2D layers and 1D channel.

Of these groups MnO₂ with 3D tunnels is described as the spinel phase which can be synthesized via solid state reaction at elevated temperatures, typically temperatures of about 750°C. The 2D layered MnO₂ may be prepared by “low temperature” methods, such as by oxidation reaction in an alkaline solution or by a reduction of permanganates in an acid medium. Normally, this type of MnO₂ is of poor crystallinity and contains a significant amount of water as well as stabilizing cations such as K⁺ between the sheets of MnO₂ octahedra.

The 1D channel framework MnO₂ includes a broad range of polymorphic structures classified as α-, β-, δ- and γ-phases. Under certain circumstances these phases may be interchangeable depending on temperature and solution form.

However, the physical and chemical factors related to the various phases of MnO₂ which affect the capacity of the material as a cathode active agent and how to optimize these physical factors to improve cathodic performance has not been described.

Yamamoto et al. (U.S. 2010/0196762) describes a manganese oxide obtained by reduction of potassium permanganate in hydrochloric acid, filtration and washing of the formed precipitate, then drying and heat treating at 300 to 400°C. There is no description of surface area of the particles or relationship of surface area to performance. Mg electrochemical cells are recited in Claims 14 to 16.

Shon et al. (U.S. 2013/0004850) describe an ordered porous manganese oxide of formula:

\[\text{MnO}_x \text{O}_y \]

wherein a ratio y/x is less than 2. Example compounds include MnO, Mn₂O₃, and Mn₃O₄. The porous manganese oxide is prepared by impregnating a template material such as SiO₂ with a solution or melt of a Mn salt, sintering the impregnated material to obtain a composite and then chemically removing the template from the resulting porous manganese oxide. Sintering temperatures of 300 to 700°C are suitable for the preparation. The specific surface area of the porous manganese oxide is from about 50 up to 250 m²/g. Use of the porous manganese oxide as an active component of an electrode is described. Specifically, utility as a positive active material in lithium batteries or electrochemical cells and capacitors is disclosed.

Padhi et al. (U.S. 2011/0070487) describe manganese oxides having octahedral molecular sieve structure as active catalyst materials for a metal-air cell. Mn₂O₃ is disclosed as a component of the manganese oxide. The octahedral manganese oxide is obtained by redox reaction of a manganese salt such as manganese sulfate (MnSO₄) or manganese nitrate (Mn(NO₃)₄) with a permanganate in aqueous acid, at a pH less than about 4.5 at a temperature of 50°C to 70°C. The material obtained is described as cryptomelane and this synthesis product is dried and calcined to a temperature of from 95 to about 650°C. In preferred embodiments, calcination is conducted at temperatures of from 450 to 650°C. Construction of an electrochemical cell, i.e., a metal-air cell employing the calcined cryptomelane as cathode active ingredient is disclosed. The metal of the anode is zinc, lithium or aluminum.

Yamamoto et al. (U.S. 2009/0068568) describe a magnesium ion containing non-aqueous electrolyte for an electrochemical device such as a magnesium battery. The electrolyte is prepared by addition of magnesium metal to an ether solu-
tion mixture of a halogenated hydrocarbon, an aluminum halide and a quaternary ammonium salt. The mixture is heat treated to obtain the electrolyte. A magnesium battery containing the electrolyte is disclosed wherein a positive electrode containing an oxide or halide of a metal such as scandium, copper, chromium and manganese among others is described.

Xu et al. (U.S. Patent No. 6,339,932) describes a thin-film nanocomposite cation-doped manganese oxide which is prepared by reduction of a mixture of Mgo and a quaternary ammonium salt to form a hydrogel of manganese oxide containing a dopant cation. The hydrogel is cryogenically frozen and vacuum dried to obtain a product having a BET surface area of greater than 50 m²/g. High performance is attributed to the high surface area nano-architecture of the manganese oxide. Electrochemical cycling performance with n-alanisole as a solvent is described as well as utility as a reversible intercalation host for lithium in a cathode of a rechargeable battery.

Nazi (U.S. Patent No. 5,750,923) describes a sub-micron size amorphous, microporous magnesium oxide which has an internal surface area greater than about 100 m²/g. The process to make this material includes reduction of peroxide with a manganous salt at low pH and at concentrations less than 0.5 molar. Addition and reaction is conducted with rapid stirring to form a single phase gel containing quaternary amphoteric magnesium oxide. The gel is dehydrated and dried under vacuum at temperatures of 180°C or less. Electrodes are prepared by mixing the dried particles with a binder, coating a conductive support with the mixture and drying. The formed electrode is described as lithium-intercalatable and the claims recite secondary lithium cell.

Davis et al. (U.S. Patent No. 6,358,981) describe an electrolysis method for preparing manganese dioxide having a specific surface area from 18 to 45 m²/g. A doping agent such as a soluble titanium dopant is included to obtain a surface area in the stated range. Utility as a cathode material for a primary alkaline cell is described. This reference actually teaches away from a specific surface area above 45 m²/g.

Fedrizzi et al. (U.S. Patent No. 7,501,208) describes a doped manganese dioxide electrode material made electrolytically (EMD) or by a wet chemical method (CMD). The manganese dioxide described is preferably a γ-MnO₂.

None of these references discloses or suggests a relationship of surface area of a phase of MnO₂ to a cathodic performance in a magnesium cell.

The inventors are directing effort and resources to the study of cathode materials useful for producing a magnesium battery of sufficient capacity and cycle lifetime to be useful as a power source for utilities requiring a high capacity and high cycle lifetime. Particularly, the inventors are investigating the chemical and physical properties of MnO₂ and the relationship of those properties to performance as an active cathode material in a magnesium cell or battery, preferably a rechargeable magnesium battery.

Therefore, an object of the present invention is to provide a magnesium cell containing an active cathode material which is suitable for utility as a battery having high capacity and high cycle lifetime.

A second object of the invention is to provide a rechargeable magnesium battery having high capacity and high cycle lifetime.

SUMMARY OF THE INVENTION

These and other objects have been achieved according to the present invention, the first embodiment of which includes an electrode active material, comprising: MnO₂ nanoparticles having a surface area which is greater than 60 m²/g; wherein the MnO₂ nanoparticles are obtained by a process comprising a redox reaction of a Mn (II) salt and permanganate at a reaction temperature less than 30°C and a pH of 2 to 4. The MnO₂ nanoparticles are heat treated at a temperature less than 400°C for drying and calcination.

In a preferred embodiment, the maximum temperature to which the MnO₂ nanoparticles are exposed is the temperature for drying and calcination, and in a further embodiment the MnO₂ nanoparticles comprise at least one phase selected from the group consisting of α-MnO₂, β-MnO₂, δ-MnO₂ and γ-MnO₂.

In another preferred embodiment, the present invention includes a magnesium cell comprising: an anode comprising magnesium; an electrolyte; and a cathode comprising MnO₂ nanoparticles, wherein a surface area of the MnO₂ nanoparticles is greater than 60 m²/g, and the MnO₂ nanoparticles are obtained by a process comprising a redox reaction of a Mn (II) salt and permanganate at a reaction temperature less than 30°C and a pH of 2 to 4. The MnO₂ nanoparticles are heat treated at a temperature less than 400°C for drying and calcination.

In a highly preferred embodiment, the maximum temperature to which the MnO₂ nanoparticles are exposed is the temperature for drying and calcination.

In another preferred embodiment, the present invention includes a rechargeable magnesium battery, comprising the magnesium cell of the embodiments described.

The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The presently preferred embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the XRD patterns of the room temperature synthesized MnO₂ nanoparticles and the heat treated samples according to various embodiments of the invention.

FIG. 2a shows a SEM image of dried MnO₂ nanoparticles (not calcined).

FIG. 2b shows a SEM image of dried and calcined MnO₂ nanoparticles (200°C).

FIG. 2c shows a SEM image of dried and calcined MnO₂ nanoparticles (300°C).

FIG. 2d shows a SEM image of dried and calcined MnO₂ nanoparticles (400°C).

FIG. 2e shows a SEM image of dried and calcined MnO₂ nanoparticles (500°C).

FIG. 3 shows the discharge curves of the MnO₂ obtained in various embodiments of the invention and the MnO₂ of comparative examples.

FIG. 4 shows the relation between the surface area of the MnO₂ obtained in various embodiments of the invention and the MnO₂ of comparative examples with their discharge capacities.

FIG. 5 shows the relation between the calcination temperature and the discharge capacity of the MnO₂ samples of various embodiments of the invention.

FIG. 6 shows a diagram of a magnesium battery according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

In a first embodiment, the present invention provides an electrode active material, comprising: MnO₂ nanoparticles having a surface area which is greater than 60 m²/g; wherein
the MnO₂ nanoparticles are obtained by a process comprising a redox reaction of a Mn (II) salt and permanganate at a reaction temperature less than 30° C. and a pH of 2 to 4. The MnO₂ nanoparticles are heat treated at a temperature less than 400° C. for drying and calcination.

In a preferred embodiment, the maximum temperature to which the MnO₂ is exposed is the temperature for drying and calcination and in a further embodiment the MnO₂ nanoparticles comprise at least one phase selected from the group consisting of α-MnO₂, β-MnO₂, δ-MnO₂ and γ-MnO₂.

The inventors have surprisingly discovered that one factor that relates to the electrochemical capacity of a magnesium cell is the surface area of the MnO₂ nanoparticles contained as the cathode active material. The inventors have determined that MnO₂ having the a surface area of 60 m²/g may be prepared by a precipitation method wherein an aqueous solution of a water soluble Mn(II) salt is added to an acidic solution of a permanganate salt. The addition is conducted under conditions of vigorous stirring and at a temperature less than 40° C, preferably less than 30° C and most preferably at a temperature of 25° C. or less.

Any water soluble Mn(II) salt may be employed in the reaction and suitable examples may include halides, acetate, citrate, sulphate and nitrate. In one preferred embodiment the water soluble Mn(II) salt may be manganese nitrate and the permanganate is potassium permanganate.

A stoichiometric ratio of Mn (II) to MnO₂ may be from to 1.2/1 to 1.8/1, preferably the ratio is 1.5/1.

The addition rate and the rate of agitation may be adjusted to vary the particle size of the precipitated MnO₂ nanoparticles.

When the reaction is complete, the MnO₂ nanoparticle product mixture may be aged by allowing the mixture to stand without stirring for a period of at least 4 hours, preferably 8 hours of more. The resulting black particles may be separated from the reaction mixture by filtration and washed to free the solid of reaction residues.

The separated solids may then be dried and optionally calcined.

The inventors have determined that the initially obtained MnO₂ nanoparticles are a γ-phase material which upon calcination at temperatures of 400° C. converts to β-phase. FIG. 1 shows the X-ray diffraction (XRD) patterns of the synthesized MnO₂ nanoparticles and the heat treated samples. The diffraction peaks of the sample simply dried at 70° C. could be assigned to γ-MnO₂. During the heat treatment (200 and 300° C.), the main peaks could still be assigned to γ-MnO₂. As the temperature increased to 400° C., an extra broad peak at 2 theta 28°, the sample transferred to β phase. At 500° C., β-MnO₂ decomposed. The main phase of the final product should be MnO₂. This effect is shown in FIGS: 2a through 2e.

The inventors have discovered that although the phase of the MnO₂ nanoparticles may change based on calcination temperature, performance as a cathode active material may not be related to MnO₂ phase as may have been expected. Thus FIG. 3 shows discharge curves of the various MnO₂ samples obtained and the MnO₂ of the comparative examples. Example samples A, B, C and D (β and γ-MnO₂) exhibited much higher discharge capacity as compared with comparative samples E and F and γ-MnO₂. In addition, the capacities of the example samples was very close to another comparative sample G, which is reported in U.S. Patent No. 6,913,004 B2.

FIG. 4 shows the relation between the surface area of the MnO₂ nanoparticle samples synthesized and comparative MnO₂ samples and their discharge capacities. High discharge capacity was obtained when the surface area of the MnO₂ was higher than 60 m²/g. Thus, as indicated in FIG. 4 the discharge capacity of MnO₂ is related to active area but surprisingly, no relationship with phase structure is indicated.

This lack of apparent relationship between phase structure of MnO₂ and cathode performance as indicated by discharge capacity is further shown in FIG. 5, where as long as MnO₂ is not degraded in calcination capacity is nearly stable.

The present invention also provides a rechargeable magnesium cell having a cathode containing MnO₂ nanoparticles having a surface area which is greater than 60 m²/g; wherein the MnO₂ nanoparticles are obtained by a process comprising a redox reaction of a Mn (II) salt and permanganate at a reaction temperature less than 30° C. and a pH of 2 to 4, according to the invention.

Thus, a rechargeable magnesium cell of the invention includes an anode of magnesium metal or a composition containing magnesium metal and a cathode containing the MnO₂ nanoparticles having a surface area which is greater than 60 m²/g; wherein the MnO₂ nanoparticles are obtained by a process comprising a redox reaction of a Mn (II) salt and permanganate at a reaction temperature less than 30° C. and a pH of 2 to 4, according to the invention.

The cathode active material may further include another metal oxide material, such as V₂O₅ or hollandites of titanium or vanadium. The active material may further include an electrically conductive material and a binder. Examples of electrically conducting materials include carbon particles, such as carbon black. Example binders include various polymers, such as PVDF, PTFE, SBR, and polyamide.

The anode active material may further include an electrically conductive material and a binder. Examples of electrically conducting materials include carbon particles, such as carbon black. Example binders include various polymers, such as PVDF, PTFE, SBR, and polyamide.

An electrolyte layer is disposed between the anode and cathode and may include a separator which helps maintain electrical isolation between the positive and negative electrodes. A separator may include fibers, particles, web, porous sheet, or other form of material configured to reduce the risk of physical contact and/or short circuit between the electrodes. The separator may be a unitary element, or may include a plurality of discrete spacer elements such as particles or fibers. The electrolyte layer may include a separator infused with an electrolyte solution. In some examples, for example using a polymer electrolyte, the separator may be omitted.

The electrolyte layer may include a non-aqueous solvent, such as an organic solvent, and a salt of the active ion, for example a magnesium salt. Magnesium ions provided by the magnesium salt interact electrolytically with the active material(s). An electrolyte may be an electrolyte including or otherwise providing magnesium ions, such as a non-aqueous or aprotic electrolyte including a magnesium salt. The electrolyte may include an organic solvent. Magnesium ions may be present as a salt or complex of magnesium, or as any appropriate form.

An electrolyte may include other compounds, for example additives to enhance ionic conductivity, and may in some examples include acidic or basic compounds as additives. An electrolyte may be a liquid, gel, or solid. An electrolyte may be a polymer electrolyte, for example including a plasticized polymer, and may have a polymer infused with or otherwise including magnesium ions. In some examples, an electrolyte may include a molten salt. In one aspect, the electrolyte may include HMBSMgCl—AlCl₃ in THF, PhMgCl—AlCl₃ in THF. Examples of electrolyte systems which may be suitable are described in U.S. Patent No. 8,354,193 and U.S. Patent No.
The cathode active material and may be present as a sheet, ribbon, particles, or other physical form. An electrode containing the cathode active material may be supported by a current collector.

A current collector may include a metal or other electrically conducting sheet on which the electrode is supported. The current collector may be formed of carbon, carbon paper, carbon cloth or a metal or noble metal mesh or foil.

FIG. 6 shows an example of one configuration of a rechargeable magnesium cell 5. The cell 5 includes a positive electrode 10 comprising as a cathode active material, MnO₂ nanoparticles according to the invention, having a surface area greater than 60 m²/g, wherein the MnO₂ nanoparticles are obtained by a process comprising a redox reaction of a Mn (II) salt and permanganate at a reaction temperature less than 30°C and a pH of 2 to 4, an electrolyte layer 12, a negative electrode 14, a cathode current collector 16, a negative electrode housing 18, a positive electrode housing 20 including an inert layer 21, and a sealing gasket 22. The electrolyte layer 16 may include a separator soaked in electrolyte solution, and the positive electrode 10 may be supported by the cathode current collector 16. In this example, the negative electrode 14 includes an active material of magnesium metal.

The other solvent may be one or more of tetrahydrofuran, ethylene glycol dimethyl ether and bis-2-methoxy ethyl ether in consideration of utility in a battery, safety and ease of handling. Tetrahydrofuran may be most preferred, although battery construction and requirements may dictate the necessity for an ether with different physical properties.

The invention further provides a rechargeable magnesium battery containing the magnesium electrochemical cell according to the embodiments described above.

Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.

EXAMPLES

The MnO₂ synthesis was performed by a precipitation method. Stoichiometric amount of Mn(NO₃)₂ aqueous solution (0.07874 M, 40 ml) was slowly added to 42 ml acidic KMH₄ aqueous solution (where the concentrations of KMnO₄ and HNO₃ were 0.0525 M and 0.777 M, respectively) under vigorous stirring at room temperature. After the precipitation reaction completed, the mixture was aged overnight without stirring. The black product was filtered and rinsed with distilled water and ethanol to remove any chemical impurity. The resultant sample was dried in an oven at 70°C overnight. The dried samples were calcinated at 200, 300, 400 and 500°C for 3 h, respectively.

The comparative examples (α-, β- and γ-MnO₂) were readily accessible manganese oxides.

FIG. 1 shows the XRD patterns of the R.T. synthesized MnO₂ nanoparticles and the heat treated samples. The diffraction peaks of no calculated sample could be assigned to γ-MnO₂. During the heat treatment (200 and 300°C), the main peaks could still be ascribed to γ-MnO₂. As the temperature increased to 400°C, an extra broad peak at 2 theta 28°, the sample transferred to β phase. At 500°C, β-MnO₂ decomposed. The main phase of the final product should be MnO₂.

FIGS. 2a-e show the SEM images for the samples calcined at the different temperatures.

FIG. 3 shows discharge curves of the MnO₂ obtained in this study and the MnO₂ of the comparative examples. Example samples A, B, C and D (β- and γ-MnO₂) exhibited much higher discharge capacity as compared with comparative samples E and F (β- and γ-MnO₂). In addition, the capacities of the example samples were very close to another comparative sample G, which is reported in U.S. 2013/0004830 A1.

FIG. 4 shows the relation between the surface area of the MnO₂ samples (synthesized examples and comparative examples) and their discharge capacities. High discharge capacity was obtained when the surface area of the MnO₂ was higher than 60 m²/g. This result also indicates that the discharge capacity of MnO₂ is mainly determined by surface area but has no relationship with phase structure.

FIG. 5 shows the relation between the calcination temperature and the discharge capacity of the MnO₂ samples obtained in this invention. Stable discharge capacity was kept through pristine sample (no calcination) to 400°C. Heat treated one. However, as the calcination temperature increased to 500°C, significant capacity fading occurred, which was because MnO₂ was decomposed to MnO₃.

The invention claimed is:

1. A magnesium cell, comprising:
 an anode comprising magnesium;
 a non-aqueous electrolyte; and
 a cathode comprising MnO₂ nanoparticles;

 wherein
 a surface area of the MnO₂ nanoparticles is greater than 60 m²/g.

2. The magnesium cell of claim 1, wherein the MnO₂ nanoparticles are heat treated at a temperature less than 400°C for drying and calcination.

3. The magnesium cell of claim 2, wherein a maximum temperature to which the MnO₂ nanoparticles are exposed is the temperature for drying and calcination.

4. The magnesium cell of claim 1, wherein the non-aqueous electrolyte comprises an organic solvent, an aprotic liquid or a polymer infused with magnesium ions.

5. The magnesium cell of claim 4, comprising an organic solvent wherein the organic solvent is an ether selected from the group consisting of tetrahydrofuran, ethylene glycol dimethyl ether and bis-2-methoxy ethyl ether.

6. The magnesium cell of claim 5, wherein the cathode further comprises an additive selected from the group consisting of V₂O₅, a hollandite of vanadium and a hollandite of titanium.

7. The magnesium cell of claim 1, further comprising a separator between the anode and cathode.

8. The magnesium cell of claim 1, wherein the anode further comprises carbon particles.

9. A rechargeable magnesium battery, comprising the magnesium cell of claim 1.

10. The rechargeable magnesium battery of claim 9, wherein the MnO₂ nanoparticles are heat treated at a temperature less than 400°C for drying and calcination.

11. The rechargeable magnesium battery of claim 9, wherein a maximum temperature to which the MnO₂ nanoparticles are exposed is the temperature for drying and calcination.
12. The rechargeable magnesium battery of claim 9, wherein the non-aqueous electrolyte comprises an organic solvent, an aprotic liquid or a polymer infused with magnesium ions.

13. The rechargeable magnesium battery of claim 12, comprising an organic solvent wherein the organic solvent is an ether selected from the group consisting of tetrahydrofuran, ethylene glycol dimethyl ether and bis-2-methoxy ethyl ether.

14. The rechargeable magnesium battery of claim 9, wherein the cathode further comprises an additive selected from the group consisting of V₂O₅, a hollandiate of vanadium and a hollandiate of titanium.

15. The rechargeable magnesium battery of claim 9, further comprising a separator between the anode and cathode.

16. The rechargeable magnesium battery of claim 9, wherein the anode further comprises carbon particles.