EUROPEAN PATENT APPLICATION

(43) Date of publication: 14.05.1997 Bulletin 1997/20

(21) Application number: 96308039.5

(22) Date of filing: 06.11.1996

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

(30) Priority: 06.11.1995 US 7275
19.01.1996 US 10232

(71) Applicant: PFIZER INC.
New York, N.Y. 10017 (US)

(72) Inventor: Howard, Harry R.
Bristol, Connecticut 06010 (US)

(74) Representative: Ruddock, Keith Stephen et al
Pfizer Limited,
European Patent Department,
Ramsgate Road
Sandwich, Kent CT13 9NJ (GB)

(54) NK-1 receptor antagonists for the treatment of cancer

(57) The present invention relates to the use of certain NK-1 receptor antagonists (e.g. Substance P receptor antagonists) for the manufacture of a medicament for the treatment of cancer in a mammal, particularly for the treatment of small cell lung carcinoma, APUDoma, astrocytoma, neuroendocrine tumour or extrapulmonary small cell carcinoma.
Description

The present invention relates to the use of certain NK-1 receptor antagonists, (including certain substance P receptor antagonists) to treat cancer patients afflicted with a small cell lung carcinoma, APUDoma, astrocytoma, neuroendocrine tumor or extrapulmonary small cell carcinoma.

Antal Orosz, et al., International Journal of Cancer, 1995, 60, 82-87, describe the use of a variety of peptidic substance P antagonists to inhibit the proliferation of small cell lung carcinoma, (e.g., in the cell line designated NCI-H69). Paul Bunn et al., Cancer Research, 1994, 54, 3602-3610, describe another series of substance P antagonists which are also peptidic and which are capable of inhibiting in vitro growth of a number of small cell lung carcinoma cell lines (e.g., those designated NCI-H510, NCI-H345 and SHP-77).

SUMMARY OF THE INVENTION

The present invention relates to a method of treating cancer in a mammal, including a human, comprising administering to such mammal a therapeutically effective amount of an NK-1 receptor antagonist selected from the compounds described below.

"Treating cancer", as used herein, means inhibiting or controlling the proliferation of a small cell lung carcinoma, APUDoma, neuroendocrine tumor, extrapulmonary small cell carcinoma or astrocytoma.

A "therapeutically effective amount", as used herein, means an amount effective in treating cancer, as defined immediately above.

An "astrocytoma" is a tumor composed of astrocytes. Astrocytes are neuroglial cells of ectodermal origin, characterized by fibrinous, protoplasmic or plasmofibrous processes.

APUDomas are tumors composed of APUD (amine precursor uptake and decarboxylation) cells. APUD cells are found scattered throughout the body (e.g., in the chromaffin system, hypothalamus, hypophysis, thyroid, parathyroids, lungs, gastrointestinal tract and pancreas) and are apparently unrelated but for sharing certain cytochemical and ultrastructural characteristics. They synthesize structurally related peptides (usually biogenic amines) that function as hormones or neurotransmitters (e.g., epinephrine, norepinephrine, dopamine, serotonin, enkalphalin, somatostatin, neurotensin and substance P). ADUP cells concentrate the amino acid precursors of these amines and decarboxylate them to their respective amines.

More specifically, this invention relates to a method of treating cancer in a mammal, including a human, comprising administering to such mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound of the formula

![Chemical structure Ia](image)

and

![Chemical structure Ib](image)
wherein

A is a ring system selected from phenyl, naphthyl, thiienyl, dihydroquinolyl, quinolyl and indolyl, and wherein the sidechain containing NR2R3 is attached to a carbon atom of ring system A;

AA is an aryl group selected from phenyl, naphthyl, thiienyl, quinolyl, dihydroquinolyl and indolyl, and wherein the sidechain containing NR2R3 is attached to a carbon atom of AA;

AAA is an aryl group selected from phenyl, naphthyl, thiienyl, dihydroquinolyl, quinolyl and indolyl, and wherein the sidechain containing NR2R3 is attached to a carbon atom of ring AAA;

P is NR2, O, S, SO or SO2;

Q is SO2, NH, -N(C1-C8)alkyl or (C1-C8)alkyl-N-SO2-

wherein the point of attachment of said

\[(C1-C8)\text{alkyl-N-SO}_2^{-}\]

to ring AAA is the nitrogen atom and the point of attachment to X6 is the sulfur atom.

W1 and W2 are selected, independently, from hydrogen, halo, (C1-C6) alkyl, S-(C1-C8)DS, and (C1-C6) alkoxy optionally substituted with from one to three fluorine atoms;

W is hydrogen, (C1-C8)alkyl optionally substituted with from one to three fluorine atoms, -S(O)v-(C1-C8) alkyl wherein v is zero, one or two, halo or (C1-C8)alkoxy optionally substituted with from one to three fluorine atoms;

X1 is hydrogen, (C1-C10) alkoxy optionally substituted with from one to three fluorine atoms or (C1-C10) alkyl optionally substituted with from one to three fluorine atoms;

X2 and X3 are independently selected from hydrogen, halo, nitro, (C1-C10) alkyl optionally substituted with from
one to three fluorine atoms, \((C_1-C_{10})\) alkoxy optionally substituted with from one to three fluorine atoms, hydroxy, phenyl, cyano, amino, \((C_1-C_{6})\)-alkylamino, di-\((C_1-C_{6})\)alkylamino,

\[
\begin{align*}
\text{-C-NH-(C_1-C_{2})alkyl,} & \quad (C_1-C_{2})- \\
\text{alkyl-C-NH-(C_1-C_{2}) alkyl,} & \\
\end{align*}
\]

hydroxy\((C_1-C_{4})\)alkyl, \((C_1-C_{4})\)alkoxy\((C_1-C_{4})\)alkyl,

\[
\begin{align*}
\text{-NHCH} & \\
\end{align*}
\]

and

\[
\begin{align*}
\text{-NHC-(C_1-C_{2}) alkyl;} & \\
\end{align*}
\]

\(X^5\) is a four to six membered heterocyclic ring containing from one to four heteroatoms selected from sulfur, nitrogen and oxygen (e.g., thiazolyl, pyrrolyl, thiophenyl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thiazoizolyl or imidazolyl), wherein said heterocyclic ring may optionally be substituted with from one to three substituents, preferably with from zero to two substituents, independently selected from phenyl, \((C_1-C_{6})\)alkyl optionally substituted with from one to three fluorine atoms, \((C_1-C_{6})\)alkoxy optionally substituted with from one to three fluorine atoms and halo,

\(R\) is a 4, 5 or 6 membered heterocyclic ring containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur (e.g., thiazolyl, azetidinyl, pyrrolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, isothiazolyl, imidazolyl, isoxazolyl, or oxazolyl) wherein said heterocyclic ring may contain from zero to three double bonds and may optionally be substituted with one or more substituents, preferably one or two substituents, independently selected from \((C_1-C_{6})\)alkyl optionally substituted with from one to three fluorine atoms and \((C_1-C_{6})\)alkoxy optionally substituted with from one to three fluorine atoms,

\(R^1\) is selected from amino, \((C_1-C_{6})\)alkylamino, di-\((C_1-C_{6})\)alkylamino, \(-S(O)_v-(C_1-C_{10})-alkyl\) wherein \(v\) is zero, one or two, \(-S(O)_v\)-phenyl wherein \(v\) is zero, one or two, \(-S(O)_v\)-benzyl wherein \(v\) is zero, one or two, \(-O\)-phenyl, \(-O\)-benzyl, \(-SO_2NR^4R^5\) wherein each of \(R^4\) and \(R^5\) is, independently, \((C_1-C_{6})\)alkyl, or \(R^4\) and \(R^5\), together with the nitrogen to which they are attached, form a saturated ring containing one nitrogen and from 3 to 6 carbons,

\[
\begin{align*}
\text{-NHC\((C_1-C_{6})\)alkyl,} & \quad \text{-NHCCF}_3, \quad \text{\((C_1-C_{10})\)alkyl-N-SO_2-} \\
\end{align*}
\]

\((C_1-C_{10})\)alkyl wherein one or both of the alkyl moieties may optionally be substituted with from one to three fluorine atoms, \(-N(SO_2-\text{(C_1-C_{10})alkyl})_2\),

\[
\begin{align*}
\text{(C_1-C_{10})alkyl-N-} & \\
\end{align*}
\]
and wherein any of the phenyl moieties in the foregoing R1 groups may optionally be substituted with from one to three substituents independently selected from (C1-C4)alkyl, (C1-C4)alkoxy and halo; or R1 is phenyl substituted with a group having the formula
wherein
R⁶ and R¹⁰ are independently selected from furyl, thienyl, pyridyl, indolyl, biphenyl and phenyl, wherein said phenyl
may optionally be substituted with one or two substituents independently selected from halo, (C₁ - C₁₀) alkyl op-
tionally substituted with from one to three fluorine atoms, (C₁ - C₁₀) alkoxy optionally substituted with from one to
three fluorine atoms, carboxy, benzoxycarbonyl and (C₁ - C₃) alkoxy-carbonyl;
R⁷ is selected from (C₃ - C₄) branched alkyl, (C₅ - C₆) branched alkenyl, (C₆ - C₇) cycloalkyl, and the radicals named
in the definition of R⁶;
R⁸ is hydrogen or (C₁ - C₆) alkyl;
R⁹ and R¹⁹ are independently selected from phenyl, biphenyl, naphthyl, pyridyl, benzhydryl, thienyl and furyl, and
R^6 and R^19 may optionally be substituted with from one to three substituents independently selected from halo, (C_1-C_10) alkyl optionally substituted with from one to three fluorine atoms and (C_1-C_10) alkoxy optionally substituted with from one to three fluorine atoms;

Y^1 is \((\text{CH}_2)_I\) wherein I is an integer from one to three, or Y^1 is a group of the formula J.

Z^1 is oxygen, sulfur, amino, (C_1-C_3)alkylyamino or (CH_2)_k wherein k is zero, one or two;

x is an integer from zero to four;

y is an integer from zero to four;

z is an integer from one to six, wherein the ring containing \((\text{CH}_2)_Z\) may contain from zero to three double bonds, and one of the carbons of \((\text{CH}_2)_Z\) may optionally be replaced by oxygen, sulfur or nitrogen;

o is two or three;

p is zero or one;

r is one, two or three;

R^11 is thienyl, biphenyl or phenyl optionally substituted with one or two substituents independently selected from halo, (C_1-C_10) alkyl optionally substituted with from one to three fluorine atoms and (C_1-C_10) alkoxy optionally substituted with from one to three fluorine atoms;

X^4 is \((\text{CH}_2)_q\) wherein q is an integer from 1 to 6, and wherein any one of the carbon-carbon single bonds in said \((\text{CH}_2)_q\) may optionally be replaced by a carbon-carbon double bond, and wherein any one of the carbon atoms of said \((\text{CH}_2)_q\) may optionally be substituted with R^14, and wherein any one of the carbon atoms of said \((\text{CH}_2)_m\) having the requisite available bonding sites may optionally be substituted with R^15;

m is an integer from 0 to 8, and any one of the carbon carbon single bonds of \((\text{CH}_2)_m\), wherein both carbon atoms of such bond are bonded to each other and to another carbon atom in the \((\text{CH}_2)_m\) chain, may optionally be replaced by a carbon-carbon double bond or a carbon-carbon triple bond, and any one of the carbon atoms of said \((\text{CH}_2)_m\) having the requisite available bonding sites may optionally be substituted with R^17;

R^12 is a radical selected from hydrogen, (C_1-C_6) straight or branched alkyl, (C_3-C_7)cycloalkyl wherein one of the carbon atoms may optionally be replaced by nitrogen, oxygen or sulfur; aryl selected from biphenyl, phenyl, indanyl and naphthyl; heteroaryl selected from thienyl, furyl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl and quinolyl; phenyl-(C_2-C_6)alkyl, benzhydryl and benzyl, wherein the point of attachment on R^12 is a carbon atom unless R^12 is hydrogen, and wherein each of said aryl and heteroaryl groups and the phenyl moieties of said benzyl, phenyl-(C_2-C_6)alkyl and benzhydryl may optionally be substituted with one or more substituents independently selected from halo, nitro, (C_1-C_10)alkyl optionally substituted with from one to three fluorine atoms, (C_1-C_10)alkoxy optionally substituted with from one to three fluorine atoms, amino, hydroxy-(C_1-C_6)alkyl,(C_1-C_6) alkoxy-(C_1-C_6)alkyl, (C_1-C_6)-alkylamino.
alkyl; and wherein one of the phenyl moieties of said benzhydryl may optionally be replaced by naphthyl, thi enyl, furyl or pyridyl;

R13 is hydrogen, phenyl or (C1-C6)alkyl;

or R12 and R13, together with the carbon to which they are attached, form a saturated carboxyclic ring having from 3 to 7 carbon atoms wherein one of said carbon atoms that is neither the point of attachment of the spiro ring nor adjacent to it may optionally be replaced by oxygen, nitrogen or sulfur;

R14 and R15 are each independently selected from hydrogen, hydroxy, halo, amino, o xo (=O), cyano, hydroxy-(C1-C6)alkyl, (C1-C6)alkoxy-(C1-C6)alkyl, (C1-C6)alkylamino, di-(C1-C6)alkylamino, (C1-C6)alkoxy,

and the radicals set forth in the definition of R12;

R16 is

NHCHR18, NHCH2R18, SO2R18, GR20, CO2H or one of the radicals set forth in any of the definitions of R12, R14 and R15;

R17 is oximino (=NOH) or one of the radicals set forth in any of the definitions of R12, R14 and R15; and

R18 is (C1-C6)alkyl, hydrogen, phenyl or phenyl (C1-C6)alkyl;

G is selected from the group consisting of CH2, nitrogen, oxygen, sulfur and carbonyl;

R20 is a monocyclic or bicyclic heterocycle selected from the group consisting of pyrimidinyl, benzoxazolyl, 2,3-dihydro-3-oxobenzisulfonazol-2-yl, morpholin-1-yl, thiomorpholin-1-yl, benzofuranyl, benzothienyl, indolyl, isoin dolyl, isoquinolinyl, furyl, pyridyl, isothiazolyl, oxazolyl, triazolyl, tetrazolyl, quinolyl, thiazolyl, thiienyl, and groups of the formulae

wherein B and D are selected from carbon, oxygen, and nitrogen, and at least one of B and D is other than carbon; E is carbon or nitrogen; n is an integer from 1 to 5; and any one of the carbons of the (CH2)n or (CH2)n+1 may be optionally substituted with (C1-C6)alkyl or (C2-C6)spiroalkyl, and either any two of the carbon atoms of said (CH2)n and (CH2)n+1 may be bridged by a one or two carbon atom linkage, or any one pair of adjacent carbons of said (CH2)n and (CH2)n+1 may form, together with from one to three carbon atoms that are not members of the carbonyl containing ring, a (C3-C5) fused carbocyclic ring;

with the proviso that (a) when m is 0, one of R16 and R17 is absent and the other is hydrogen, (b) when R2 is a group of the formula VIII, R14 and R15 cannot be attached to the same carbon atom, (c) when R14 and R15 are
attached to the same carbon atom, then either each of R14 and R15 is independently selected from hydrogen, fluoro, (C1-C6)alkyl, hydroxy-(C1-C6)alkyl and (C1-C6)alkoxy-(C1-C6)alkyl, or R14 and R15, together with the carbon to which they are attached, form a (C2-C8) saturated carbocyclic ring that forms a spiro compound with the nitrogen-containing ring to which they are attached; (d) R12 and R13 cannot both be hydrogen; (e) when R14 or R15 is attached to a carbon atom of X4 of group VII or to a carbon atom of (CH3), of group VIII that is adjacent to the ring nitrogen, then R14 or R15, respectively, must be a substituent wherein the point of attachment is a carbon atom; (f) when said compound is a group of the formula Id or a group of the formula Ic or le wherein AA or AAA, respectively, is phenyl optionally substituted with 1, 2 or 3 groups selected from (C1-C6)alkyl, trifluoromethyl, halo, cyano, nitro, (C1-C6)alkoxy, trifluoromethoxy, and -SO2(C1-C6)alkyl wherein v is zero, one or two, and R9 is a group of the formula VII wherein R13 is hydrogen and R12 is phenyl, naphthyl, thienyl, furyl, pyridyl, thiazolyl, tetrazolyl, quinolyl, benzhydryl or benzyl, and R15 is optionally substituted with (C1-C6)alkyl trifluoromethyl, (C7-C8)alkoxy or halo, then at least one of R14 and R15 must be other than hydrogen, (C1-C6)alkyl, oxo, halo, -COOH, -COO(C1-C6)alkyl or phenyl optionally substituted with (C1-C6)alkyl, halo or trifluoromethyl, and (g) neither R14, R15, R16 nor R17 can form a ring with R19, or a pharmaceutically acceptable salt of such compound.

The fused bicyclic nucleus of compounds of the formula Ib to which W and the -CN2NR2R3 sidechain are attached may be, but is not limited to one of the following groups: benzoazolyl, benzothiazolyl, benzimidazolyl, benzisoxazolyl, benzisothiazolyl, indazolyl, indolyl, isoquinolinyl, benzoazolinyl, benzotriazolyl, benzoxadiazolyl, and quinazolinyl.

The term "halo", as used herein, unless otherwise indicated, includes chloro, fluoro, bromo and iodo.

The term "alkyl", as used herein, unless otherwise indicated, includes saturated monovalent hydrocarbon radicals having straight, branched or cyclic moieties or combinations thereof.

The term "alkoxy", as used herein, includes 0-alkyl groups wherein "alkyl" is defined as above.

The term "one or more substituents," as used herein, includes from one to the maximum number of substituents possible based on the number of available bonding sites.

More specific embodiments of the invention relate to the above method of treating cancer, wherein the NK-1 receptor antagonist is a compound as defined in any of paragraphs (1) through (42) below, or a pharmaceutically acceptable salt of such compound.

(1) A compound of the formula la or lb wherein the substituents at positions "2" and "3" of the nitrogen containing ring of R3 are in a cis configuration. (When R3 is a group of the formula VII or VIII, "a cis configuration", as used herein, means that the non-hydrogen substituent at position "3" is cis to R13).

(2) A compound of the formula la wherein R6 is a group of the formula III, VII or IX; R5 is hydrogen; A is phenyl or indolyl; W is (C1-C6)alkoxy optionally substituted with from one to five fluorine atoms; and R is thiazolyl, imidazolyl, thiadiazolyl, pyrrolyl or oxazolyl, and R may optionally be substituted with one or two (C1-C6)alkyl moieties.

(3) A compound of the formula Ib wherein R1 is a group of the formula III, VII or IX; R2 is hydrogen; the fused bicyclic ring system to which W and the -CH2NR2R3 sidechain are attached is benzoazolyl, benzothiazolyl, benzimidazolyl, benzisoxazolyl, benzisothiazolyl, indazolyl, indolyl, isoquinolinyl, benzoazolinyl, benzotriazolyl, benzoxadiazolyl, and quinazolinyl.

The term "alkoxy", as used herein, includes 0-alkyl groups wherein "alkyl" is defined as above.

The term "one or more substituents," as used herein, includes from one to the maximum number of substituents possible based on the number of available bonding sites.

(4) A compound as defined in paragraph 1, 2 or 3 above wherein: (a) R7 is a group of the formula III and R9 is benzhydryl; (b) R8 is a group of the formula VII, R12 is phenyl, each of R13, R14, R15 and R16 is hydrogen, m is zero and X4 is -(CH2)3-; or (c) R7 is a group of the formula IX, r is two and R19 is benzhydryl.

(5) A compound of the formula la wherein: (a) R6 is a group of the formula III wherein the substituents at positions "2" and "3" of the nitrogen containing ring of R3 are in a cis configuration. (When R3 is a group of the formula VII or VIII, "a cis configuration", as used herein, means that the non-hydrogen substituent at position "3" is cis to R13).

(6) A compound of the formula Ib wherein R1 is a group of the formula IX wherein the substituents at positions "2" and "3" of the nitrogen containing ring are in the cis configuration, R16 is benzhydryl and A is phenyl; or (b) R8 is a group of the formula VII wherein R12 and the substituent at position "3" of the nitrogen containing ring are in the cis configuration, A is phenyl, R12 is hydrogen, each of R9, R13, R14, R15 and R16 is hydrogen, m is zero, W is methoxy or isopropoxy, X4 is -(CH2)3- and R is thiazolyl, imidazolyl, pyrrolyl, oxazolyl or thiadiazolyl.

(7) A compound of the formula lb wherein R7 is a group of the formula IX, R13 is benzhydryl, the fused bicyclic ring system to which W and the -CH2NR2R3 sidechain are attached is benzimidazolyl, and W is methoxy.

(8) A compound of the formula lb wherein R7 is a group of the formula IX wherein R12 is phenyl, each of R13, R14, R15 and R16 is hydrogen, m is zero, X4 is -(CH2)3- and the fused bicyclic ring system to which W and the -CH2NR2R3 sidechain are attached is benzothiazolyl, benzoxazolyl or benzimidazolyl.

(9) A compound of the formula lb wherein R7 is a group of the formula VII, each of R13, R14, R15 and R16 is hydrogen, m is zero, X4 is -(CH2)3- and the fused bicyclic ring system to which W and the -CH2NR2R3 sidechain are attached is benzothiazolyl, benzoxazolyl or benzimidazolyl.
A compound of the formula Ic, wherein R³ is a group of the formula II, III, VII or IX; R² is hydrogen; ring AA is phenyl or indolinyl; W¹ is (C₁-C₆)alkoxy optionally substituted with from one to three fluorine atoms; and R¹ is S(O)v-(C₁-C₆)alkyl wherein v is zero, one or two, S(O)v-(aryl) wherein v is zero, one or two, -O-aryl.

SO₂-(C₁-C₆)alkyl wherein one or both of the alkyl moieties may optionally be substituted with from one to three fluorine atoms, -N(SO₂-(C₁-C₆)alkyl)₂ or (C₁-C₆)alkyl-N-SO₂-aryl wherein said aryl is phenyl or benzyl and may optionally be substituted with from one to three substituents independently selected from (C₁-C₄)alkyl, (C₁-C₄)alkoxy and halo.

A compound as defined in paragraph 10 above, wherein R³ is a group of the formula II, o is two, and each R₆ and R⁷ is phenyl.

A compound as defined in paragraph 10 above, wherein R³ is a group of the formula VII, each of R¹³, R¹⁴, R¹⁵ and R¹⁶ is hydrogen, R¹² is phenyl, m is zero and X⁴ is -(CH₂)₃⁻.

A compound as defined in paragraph 10 above, wherein R³ is a group of the formula IX, R¹⁹ is benzhydryl and r is two.

A compound as defined in paragraph 10 above, wherein R³ is a group of the formula III, R⁸ is other than hydrogen and R⁹ is benzhydryl.

A compound of the formula Ic wherein the substituents at positions "2" and "3" of the nitrogen containing ring of R³ are in the cis configuration.

A compound of the formula Ic wherein the substituents at positions "2" and "3" of the nitrogen containing ring are in the cis configuration, o is two, each of R⁶ and R⁷ is phenyl and ring AA is phenyl or indolinyl.

A compound of the formula Ic wherein the substituents at positions "2" and "3" of the nitrogen containing ring are in the cis configuration, o is two, each of R⁶, R¹³, R¹⁴, R¹⁵ and R¹⁶ is hydrogen, m is zero, X⁴ is -(CH₂)₂⁻ or -(CH₂)₃⁻ and R¹ is selected from S(O)v-(C₁-C₆)alkyl wherein v is zero, one or two.

and di-(C₁-C₆)alkylamino.

A compound as defined in paragraph 18 above, wherein X⁴ is -(CH₂)₂⁻ and W¹ is (C₁-C₆)alkoxy optionally substituted with from one to three fluorine atoms.

A compound as defined in paragraph 18 above, wherein X⁴ is -(CH₂)₃⁻ and W¹ is (C₁-C₆)alkoxy optionally substituted with from one to three fluorine atoms.

A compound of the formula Ic, wherein R³ is a group of the formula IX wherein the substituents at positions "2" and "3" of the nitrogen containing ring are in the cis configuration, r is two and R¹⁹ is benzhydryl.

A compound of the formula Ic wherein R³ is a group of the formula VII wherein R¹² and the substituent at position "3" of the nitrogen containing ring are in the cis configuration, ring AA is phenyl, R¹² is phenyl, each of R², R¹³, R¹⁴, R¹⁵ and R¹⁶ is hydrogen, m is zero, X⁴ is -(CH₂)₂⁻ or -(CH₂)₃⁻ and R¹ is selected from S(O)v-(C₁-C₁₀)alkyl wherein v is zero, one or two, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino and (C₁-C₁₀)alkyl-N-SO₂-(C₁-C₁₀)alkyl.

A compound as defined in paragraph 15 above, wherein ring AA is phenyl, W¹ is (C₁-C₆)alkoxy optionally substituted with from one to three fluorine atoms, and R¹ is selected from S(O)v-(C₁-C₁₀)alkyl wherein v is zero.
(24) A compound as defined in paragraph 15 above, wherein ring AA is phenyl, W^1 is (C_1-C_6)alkoxy optionally substituted with from one to three fluorine atoms, and R^1 is selected from amino, (C_1-C_6)alkylamino and di-(C_1-C_6)alkylamino.

(25) A compound as defined in paragraph 12 above, wherein ring AA is phenyl and R^1 is selected from -S(O)_(v-)-(C_1-C_10)alkyl wherein v is zero, one or two, and

\[
(C_1-C_{10})\text{alkyl-}N\text{-SO}_2\text{-}(C_1-C_{10})\text{alkyl.}
\]

(26) A compound of the formula Ic wherein R^3 is a group of the formula III, ring AA is phenyl, W^1 is (C_1-C_6)alkoxy optionally substituted with from one to three fluorine atoms, and R^1 is selected from amino, (C_1-C_6)alkylamino or di-(C_1-C_6)alkylamino.

(27) A compound as defined in paragraph 24 above, wherein W^1 is attached at the "2" position of ring AA and R^1 is attached at the "5" position of ring AA, relative to the point of attachment of the NFrFr^3 containing side chain.

(28) A compound as defined in paragraph 25 above, wherein W^1 is attached at the "2" position of ring AA and R^1 is attached at the "5" position of ring AA, relative to the point of attachment of the NFrFr^3 containing side chain.

(29) A compound as defined in paragraph 26 above, wherein W^1 is attached at the "2" position of ring AA and R^1 is attached at the "5" position of ring AA, relative to the point of attachment of the NFrFr^3 containing side chain.

(30) A compound as defined in paragraph 23 above, wherein W^1 is attached at the "2" position of ring AA and R^1 is attached at the "5" position of ring AA, relative to the point of attachment of the NFrFr^3 containing side chain.

(31) A compound as defined in paragraph 13 above, wherein ring AA is phenyl, W^1 is selected from isopropoxy, OCF_3, OCH_2, OCHF_2 and OCHF_2CF_2, and R^1 is selected from -S(O)_(v-)-(C_1-C_10)alkyl wherein v is zero, one or two, and (C_1-C_{10})alkyl-N\text{-SO}_2\text{-}(C_1-C_{10})alkyl.

(32) A compound of the formula Ic, wherein R^3 is a group of the formula VII, m is zero, each of R^13, R^15, R^16 and R^17 is hydrogen, R^12 is phenyl, R^14 is -C-OH,

\[
O\parallel R^{14}\text{is} -C-OH,
\]

ring AA is phenyl, W^1 is (C_1-C_3)alkoxy and R^1 is selected from (C_1-C_6)alkyl, -SCH_3, SO_2CH_3, SOCH_3, (C_1-C_6)alkylamino and di-(C_1-C_6)alkylamino.

(33) A compound of the formula Ic, having the formula
(34) A compound of the formula Ia wherein \(R^6, R^7, R^{10}, R^{11} \) and \(R^{13} \) are phenyl, \(R^8 \) is hydrogen, \(R^9 \) is phenyl optionally substituted with chlorine, fluorine, \((C_1-C_6) \) alkyl optionally substituted with from one to three fluorine atoms or \((C_1-C_6) \) alkoxy optionally substituted with from one to three fluorine atoms, \(m \) is 0 and \(k \) is 3 or 4.
(35) A compound of the formula Ia wherein \(R^3 \) is a group of the formula II wherein \(o \) is two or three and each of \(R^6 \) and \(R^7 \) is phenyl or substituted phenyl.
(36) A compound of the formula Ia wherein \(R^3 \) is a group of the formula III, \(R^8 \) is hydrogen and \(R^9 \) is phenyl or substituted phenyl.
(37) A compound of the formula Ia wherein \(R^3 \) is a group of the formula IV wherein \(I \) is one or two and each of \(R^{10} \) and \(R^{11} \) is phenyl or substituted phenyl.
(38) A compound of the formula Ia wherein \(R^3 \) is a group of the formula V wherein \(k \) is zero or one and each of \(R^{10} \) and \(R^{11} \) is phenyl or substituted phenyl.
(39) A compound of the formula Ia wherein \(R^3 \) is a group of the formula VI wherein \(p \) is one and each of \(R^{10} \) and \(R^{11} \) are phenyl or substituted phenyl.
(40) A compound of the formula Ia wherein \(R^3 \) is a group of the formula VII wherein \(q \) is two, three or four, \(m \) is zero and \(R^{12} \) is phenyl or substituted phenyl.
(41) A compound of the formula Ia wherein \(R^3 \) is a group of the formula VIII wherein \(y \) is zero, \(x \) is zero or one, \(z \) is three or four, \(m \) is zero and \(R^{12} \) is phenyl or substituted phenyl.
(42) A compound of the formula Ia wherein \(R^3 \) is a group of the formula VII, \(R^{14}, R^{15} \) and \(R^{16} \) are hydrogens, \(R^{12} \) is phenyl, \(X^1 \) is 2-methoxy, \(X^2 \) and \(X^3 \) are independently selected from hydrogen, chlorine, fluorine, methyl, \((C_1-C_6) \) alkoxy and trifluoromethyl, \(m \) is 0 and \(q \) is 3 or 4.

This invention also relates to a method of treating cancer in a mammal, including a human, comprising administering to said mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound having the formula

\[
W \text{ is } Y \text{ or } X(\text{CH}_2)_n; \]

\(Y \) is optionally substituted \((C_1-C_6) \) alkyl, optionally substituted \((C_2-C_6) \) alkenyl or optionally substituted \((C_2-C_6) \) cycloalkyl;

\(X \) is optionally substituted \((C_1-C_6) \) alkoxy, hydroxy, \(\text{CONR}^1\text{R}^2, \text{CO}_2\text{R}^1, \text{CHR}^1\text{OR}^2, \text{CH}_2\text{NR}^1\text{R}^2\text{R}^3, \text{COR}^1, \text{CONR}^1\text{OR}^2 \) or optionally substituted aryl, wherein said aryl is selected from phenyl, naphthyl, pyridyl, quinonil, thienyl, furyl, phenoxypyrenyl, oxazolyl, thiazolyl, imidazolyl and pyrazolyl, and \(n \) is an integer from zero to six;

\(\text{Ar}^1, \text{Ar}^2 \) and \(\text{Ar}^3 \) are each, independently, optionally substituted aryl, wherein said aryl is selected from phenyl, naphthyl, pyridyl, quinolyl, thienyl, furyl, phenoxypyrenyl, oxazolyl, thiazolyl, imidazolyl and pyrazolyl; and \(\text{R}^1, \text{R}^2 \) and \(\text{R}^3 \) are independently selected from hydrogen, optionally substituted \((C_1-C_6) \) alkyl, optionally substituted \((C_1-C_6) \) alkoxy, optionally substituted \((C_2-C_6) \) cycloalkyl, optionally substituted aryl, wherein said aryl is selected from phenyl, naphthyl, pyridyl, quinolyl, thienyl, furyl, phenoxypyrenyl, oxazolyl, thiazolyl, imidazolyl and pyrazolyl; and \(\text{R}^1, \text{R}^2 \) and \(\text{R}^3 \) are independently selected from hydrogen, optionally substituted \((C_1-C_6) \) alkyl, optionally substituted \((C_1-C_6) \) alkoxy, optionally substituted \((C_2-C_6) \) cycloalkyl, optionally substituted aryl, wherein said aryl is selected from phenyl, naphthyl, pyridyl, quinolyl, thienyl, furyl, phenoxypyrenyl, oxazolyl, thiazolyl, imidazolyl and pyrazolyl; and optionally substituted \((C_2-C_6) \) heterocyclic groups, wherein said heterocyclic groups are selected from pyrroldido, piperidino, morpholino, piperazinyl and thiamorpholino;

and wherein the substituents on the foregoing substituted alkyl, alkenyl, cycloalkyl and alkoxy groups are independently selected from halo, nitro, amino, \((C_1-C_6) \) alkyl, \((C_1-C_6) \) alkoxy, trifluoromethyl and trifluoroethoxy; and wherein the substituents on the foregoing substituted \((C_2-C_6) \) heterocyclic groups are attached to a sulfur or nitrogen atom on the ring and are independently selected from oxygen, \(\text{di-oxygen} \) and \((C_1-C_6) \) alkyl when attached to a ring sulfur atom, and are independently selected from oxygen and \((C_1-C_6) \) alkyl when attached to a ring nitrogen atom;

and wherein the substituents on said substituted \(\text{Ar}^1 \) groups are independently selected from \((C_1-C_6) \) alkyl, optionally substituted with from one to three halo groups, \((C_1-C_6) \) alkoxy optionally substituted with from one to three halo groups, \((C_1-C_6) \) alkylsulfinyl, \((C_2-C_6) \) alkenyl, \((C_1-C_6) \) alkythio, \((C_1-C_6) \) alkylsulfonyl, \((C_1-C_6) \) alkylsulfonylamino, and...
di-(C1-C6)alkylamino wherein one or both of the alkyl groups may be optionally substituted with a (C1-C6)alkylsulfonyl, or (C1-C6)alkylsulfinyl group;
and wherein the substituents on said substituted Ar2 and Ar3 groups are independently selected from (C1-C4)alkyl, (C1-C4)alkoxy, (C1-C4)alkylthio, (C1-C4)alkylsulfinyl, di-(C1-C4)alkylamino, trifluoromethyl and trifluoromethoxy;
with the proviso that when Y is unsubstituted or is substituted with (C1-C4)alkyl, it is attached to the 4- or 6-position of the quinuclidine ring;
or a pharmaceutically acceptable salt of such compound.

Other more specific embodiments of this invention relate to the method of treating cancer described immediately above, wherein the NK-1 receptor antagonist is a compound as defined in any of paragraphs (43) through (48) below, or a pharmaceutically acceptable salt of such compound.

(43) A compound of the formula X, wherein W is X(CH2)n.
(44) A compound of the formula X, wherein W is Y.
(45) A compound of the formula X, wherein Ar1 is substituted aryl and W is Y.
(46) A compound of the formula X, wherein Ar1 is mono-, di- or tri-substituted phenyl and W is Y.
(47) A compound of the formula X, wherein Ar1 is phenyl disubstituted at the 2- and 5-positions and W is Y.
(48) A compound of the formula X, wherein Ar1 is para-methoxyphenyl, each of Ar2 and Ar3 is phenyl and W is Y.

This invention also relates to a method of treating cancer in a mammal, including a human, comprising administering to said mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound of the formula

wherein

X1 is C1-C5 alkoxy or halosubstituted (C1-C5) alkoxy;
X2 is hydrogen, halogen, (C1-C2)alkyl, (C2-C5)alkenyl, (C2-C5)alkynyl, (C1-C6)alkynyl, (C1-C6)alkylthio, (C1-C6)alkylsulfinyl, (C1-C6)alkylsulfonyl, halosubstituted (C1-C6)alkyl, halosubstituted (C1-C6)alkoxy, (C1-C6)alkylamino, dialkylamino having from 1 to 5 carbon atoms in each alkyl moiety, (C1-C5)alkylsulfonylamino (which may be substituted by halogen),

(C1-C6)alkyl-N-(C1-C6)alkylsulfonyl

(which may be substituted by halogen in the alkylsulfonyl moiety), (C1-C6)alkanoylamino (which may be substituted by halogen) or
The term "alkynyl" is used above for formula XV to mean straight or branched hydrocarbon chain radicals having one triple bond including, but not limited to, ethynyl, propynyl, butynyl and the like.

The term "alkenyl" is used above for formula XV to mean straight or branched hydrocarbon chain radicals having one double bond including, but not limited to, ethenyl, 1- and 2-propenyl, 2-methyl-1-propenyl, 1- and 2-butenyl and the like.

The term "alkynyl" is used above for formula XV to mean straight or branched hydrocarbon chain radicals having one triple bond including, but not limited to, ethynyl, propynyl, butynyl and the like.

The term "alkenyl" is used above for formula XV to mean straight or branched hydrocarbon chain radicals having one double bond including, but not limited to, ethenyl, 1- and 2-propenyl, 2-methyl-1-propenyl, 1- and 2-butenyl and the like.

The term "halogen" or "halo" is used above for formula XV to mean fluoro, chloro, bromo or iodo.

The term "alkyl" is used above for formula XV to mean straight or branched hydrocarbon chain radicals including, but not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, and the like.

The term "alkenyl" is used above for formula XV to mean straight or branched hydrocarbon chain radicals having one double bond including, but not limited to, ethenyl, 1- and 2-propenyl, 2-methyl-1-propenyl, 1- and 2-butenyl and the like.

The term "alkynyl" is used above for formula XV to mean straight or branched hydrocarbon chain radicals having one triple bond including, but not limited to, ethynyl, propynyl, butynyl and the like.

The term "alkoxy" is used above for formula XV to mean -OR (R is alkyl) including, but not limited to, methoxy, ethoxy, propoxy, isopropanoxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy and the like.

The term "alkylsulfonyl" is used above for formula XV to mean -SO2R (R is alkyl) including, but limited to, methylsulfonyl, ethylsulfonyl, propylsulfonyl, n-butyisulfonyl, isobutylsulfonyl, s-butyisulfonyl, t-butyisulfonyl and the like.

The term "alkylsulfinyl" is used above for formula XV to mean -SO-R (R is alkyl) including, but limited to, methylsulfinyl, ethylsulfinyl, propylsulfinyl, n-butyisulfinyl, isobutylsulfinyl, s-butyisulfinyl, t-butyisulfinyl and the like.

The term "halosubstituted alkoxy" is used above for formula XV to mean an alkoxy radical as described above substituted with one or more halogens including, but not limited to, chloroalkoxy, fluoroalkoxy, 2,2,2-trichloroalkoxy and the like.

The term "halosubstituted alkyl" is used above for formula XV to mean an alkyl radical as described above substituted with one or more halogens including, but not limited to, chloroalkyl, fluoroalkyl, 2,2,2-trichloroalkyl and the like.

The term "halosubstituted alkoxy" is used above for formula XV to mean an alkoxy radical as described above substituted with one or more halogens including, but not limited to, chloroalkoxy, fluoroalkoxy, 2,2,2-trichloroalkoxy and the like.

The term "halosubstituted alkyl" is used above for formula XV to mean an alkyl radical as described above substituted with one or more halogens including, but not limited to, chloroalkyl, fluoroalkyl, 2,2,2-trichloroalkyl and the like.

The term "halosubstituted alkoxy" is used above for formula XV to mean an alkoxy radical as described above substituted with one or more halogens including, but not limited to, chloroalkoxy, fluoroalkoxy, 2,2,2-trichloroalkoxy and the like.

The term "halosubstituted alkyl" is used above for formula XV to mean an alkyl radical as described above substituted with one or more halogens including, but not limited to, chloroalkyl, fluoroalkyl, 2,2,2-trichloroalkyl and the like.
This invention also relates to a method of treating cancer in a mammal, including a human, comprising administering to said mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound of the formula

wherein R1 is phenyl optionally substituted with one or more substituents, preferably with from one to three substituents, independently selected from hydrogen, halo, nitro, (C\textsubscript{1}-C\textsubscript{10}) alkyl optionally substituted with from one to three fluorine atoms, (C\textsubscript{1}-C\textsubscript{10}) alkoxy optionally substituted with from one to three fluorine atoms, hydroxy, phenyl, cyano, amino, (C\textsubscript{1}-C\textsubscript{6})-alkylamino, di-(C\textsubscript{1}-C\textsubscript{6}) alkylamino, -C-NH-(C\textsubscript{1}-C\textsubscript{6})

alkyl, (C\textsubscript{1}-C\textsubscript{6}) alkyl-C-NH-(C\textsubscript{1}-C\textsubscript{6}) alkyl, hydroxy(C\textsubscript{1}-C\textsubscript{6})alkyl, -NHCH, -NHC-(C\textsubscript{1}-C\textsubscript{6}) alkyl,

(C\textsubscript{1}-C\textsubscript{6})alkoxy(C\textsubscript{1}-C\textsubscript{6})alkyl, -S(O)\textsubscript{v}-(C\textsubscript{1}-C\textsubscript{10})-alkyl wherein v is zero, one or two, -S(O)\textsubscript{v} phenyl wherein v is zero, one or two, -S(O)\textsubscript{v} benzyl wherein v is zero, one or two, -O-phenyl, -O-benzyl, -SO\textsubscript{2}NR\textsubscript{4}R\textsubscript{5} wherein each of R\textsubscript{4} and R\textsubscript{5} is, independently, (C\textsubscript{1}-C\textsubscript{6})alkyl, or R\textsubscript{4} and R\textsubscript{5}, together with the nitrogen to which they are attached, form a saturated ring containing one nitrogen and from 3 to 6 carbons,

(C\textsubscript{1}-C\textsubscript{10})alkyl-N-SO\textsubscript{2}-(C\textsubscript{1}-C\textsubscript{10})alkyl

wherein one or both of the alkyl moieties may optionally be substituted with from one to three fluorine atoms, -N(SO\textsubscript{2})

(C\textsubscript{1}-C\textsubscript{10})alkyl,

(C\textsubscript{1}-C\textsubscript{10})alkyl-N-SO\textsubscript{2}-phenyl

and
and wherein any of the phenyl moieties in the foregoing \(R^1 \) groups may optionally be substituted with from one to three substituents independently selected from \((C_1-C_4)alkyl, (C_1-C_4)alkoxy\) and halo; or \(R^1 \) is phenyl substituted with a group having the formula

\[
\begin{align*}
&(\text{C}_1-\text{C}_6)\text{alkyl-}\text{N-SO}_2\text{-benzyl}; \\
\text{or } \quad & \text{a is 0, 1 or 2 and the asterisk represents a bond to a position meta to the point of attachment of } R^1 \text{ to structure XVI;} \\
\end{align*}
\]

\(R^2 \) is selected from \((C_1-C_6)\) straight or branched alkyl, \((C_2-C_7)\) cycloalkyl wherein one of the carbon atoms may optionally be replaced by nitrogen, oxygen or sulfur; aryl selected from biphenyl, phenyl, indanyl and naphthyl; heteroaryl selected from thiophenyl, furyl, thiazolyl, oxazolyl, isothiazolyl, isoxazolyl, triazolyl, tetrazolyl and quinolyl; phenyl \((C_2-C_6)\) alkyl, benzhydryl and benzyl, wherein each of said aryl and heteroaryl groups and the phenyl moieties of said benzyl, phenyl \((C_2-C_6)\) alkyl and benzhydryl may optionally be substituted with one or more substituents, preferably with from one to three substituents, independently selected from halo, nitro, \((C_1-C_{10})\) alkyl optionally substituted with from one to three fluorine atoms, \((C_1-C_{10})\) alkoxy optionally substituted with from one to three fluorine atoms, amino, hydroxy-\((C_1-C_6)alkyl, (C_1-C_6)alkoxy-(C_1-C_6)alkyl, (C_1-C_6)-alkylamino, (C_1-C_6)alkyl-O-C-(C_1-C_6)alkyl, (C_1-C_6)alkyl-O-C-(C_1-C_6)alkyl, (C_1-C_6)-alkylamino, -CH\text{NHC}\text{-(C}_1\text{-C}_6\text{) alkyl};
\]

and wherein one of the phenyl moieties of said benzhydryl may optionally be replaced by naphthyl, thiophenyl, furyl or pyridyl;

\(m \) is an integer from 0 to 8, and any one of the carbon-carbon single bonds of \((\text{CH}_2)_m\), wherein both carbon atoms
of such bond are bonded to each other and to another carbon atom in the \((\text{CH}_2)_m\) chain, may optionally be replaced by a carbon-carbon double bond or a carbon-carbon triple bond, and any one of the carbon atoms of said \((\text{CH}_2)_m\) may optionally be substituted with \(R^4\);

\(R^3\) is selected from \(\text{NHCHR}^6\), \(\text{SO}_2R^6\), \(\text{AR}^6\), \(\text{CO}_2\text{H}\) and the radicals set forth in the definitions of \(R^2\), \(R^6\) and \(R^7\);

\(R^1\) is selected from oximino (=NOH) and the radicals set forth in the definitions of \(R^2\), \(R^6\) and \(R^7\);

\(R^8\) is \((\text{C}_1-\text{C}_5)\text{alkyl, hydrogen, phenyl or phenyl (C}_1-\text{C}_6)\text{alkyl;}

\(R^9\) is a monocyclic or bicyclic heterocycle selected from the group consisting of pyrimidinyl, benzoazolyl, 2,3-di-hydro-3-oxobenzisosulfonazol-2-yl, morpholin-1-yl, thiomorpholin-1-yl, benzofuranyl, benzothienyl, indolyl, isoindolyl, isocinolinyl, furyl, pyridyl, isoazolyl, oxazolyl, triazolyl, tetrazolyl, quinolinyl, thienyl, and groups of the formulae

\[
\begin{align*}
\text{(CH}_2\text{)}_n & \quad \text{and} \quad \text{(CH}_2\text{)}_{n+1}
\end{align*}
\]

wherein \(B\) and \(D\) are selected from carbon, oxygen and nitrogen, and at least one of \(B\) and \(D\) is other than carbon;

\(E\) is carbon or nitrogen; \(n\) is an integer from 1 to 5; any one of the carbon atoms of said \((\text{CH}_2)_n\) and \((\text{CH}_2)_{n+1}\) may be optionally substituted with \((\text{C}_1-\text{C}_6)\text{alkyl or (C}_2-\text{C}_6)\text{ spiroalkyl; and either any one pair of the carbon atoms of said (CH}_2)_n\) and \((\text{CH}_2)_{n+1}\) may be bridged by a one or two carbon atom linkage, or any one pair of adjacent carbon atoms of said \((\text{CH}_2)_n\) and \((\text{CH}_2)_{n+1}\) may form, together with from one to three carbon atoms that are not members of the carbonyl containing ring, a \((\text{C}_5-\text{C}_6)\) fused carboheterocyclic ring;

\(X\) is \((\text{CH}_2)_{q}\) wherein \(q\) is two or three and wherein one of the carbon-carbon single bonds in said \((\text{CH}_2)_{q}\) may optionally be replaced by a carbon-carbon double bond, and wherein any one of the carbon atoms of said \((\text{CH}_2)_{q}\) may optionally be substituted with \(R^6\), and wherein any one of the carbon atoms of said \((\text{CH}_2)_{q}\) may optionally be substituted with \(R^7\);

\(R^6\) and \(R^7\) are independently selected from hydrogen, hydroxy, halo, amino, oxo (=O), cyano, hydroxy-(\(\text{C}_1-\text{C}_6)\text{alkyl, (C}_1-\text{C}_6)\text{alkoxy-(C}_1-\text{C}_6)\text{alkyl, (C}_1-\text{C}_6)\text{alkylamino, di-}

\[
\begin{align*}
\text{(C}_1-\text{C}_6)\text{alkylamino, (C}_1-\text{C}_6)\text{alkoxy, -C-OH, (C}_1-\text{C}_6)\text{alkyl-O-C-, (C}_1-\text{C}_6)\text{alkyl-O-C-(C}_1-\text{C}_6)\text{alkyl,}
\end{align*}
\]

\[
\begin{align*}
\text{(C}_1-\text{C}_6)\text{alkyl-C-O-, (C}_1-\text{C}_6)\text{alkyl-C-(C}_1-\text{C}_6)\text{alkyl-O-, (C}_1-\text{C}_6)\text{alkyl-C-, (C}_1-\text{C}_6)\text{alkyl-C- (C}_1-\text{C}_6)\text{ alkyl-}
\end{align*}
\]

and the radicals set forth in the definition of \(R^5\); and

\(Y\) is \((\text{CH}_2)_{z}\) wherein \(z\) is zero or one;

with the proviso that: (a) when \(A\) is \((\text{CH}_2)_m\) or carbonyl, \(R^6\) cannot be furyl, pyridyl, isoazolyl, oxazolyl, triazolyl, tetrazolyl, quinolyl, thiazolyl or thiényl; (b) when \(m\) is zero, one of \(R^5\) and \(R^4\) is absent and the other is hydrogen;
(c) when R₆ or R₇ is attached to a carbon atom of X that is adjacent to the ring nitrogen, then R₆ or R₇, respectively, must be a substituent wherein the point of attachment is a carbon atom; and (d) when A is N, O or S, R₉ is not morpholin-1-yl or thiomorpholin-1-yl; or a pharmaceutically acceptable salt of such compound.

This invention also relates to a method of treating cancer in a mammal, including a human, comprising administering to said mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound of the formula

wherein

- Ar¹ and Ar² are each independently aryl or substituted aryl;
- R¹ is alkyl having from 1 to 6 carbon atoms;
- R² is hydrogen or alkyl having from 1 to 6 carbon atoms;
- and either X and Y are taken separately and they are each, independently, hydrogen, dialkylphosphoryl having from 2 to 12 carbon atoms, alkyl having from 1 to 6 carbon atoms, alkenyl having from 2 to 6 carbon atoms or alkynyl having from 2 to 6 carbon atoms; or X and Y are taken together and they represent a hydrocarbon chain having 3, 4, or 5 carbon atoms, optionally containing up to 2 double bonds and optionally having 1 or 2 substituents selected from oxo, hydroxy and alkyl having from 1 to 6 carbon atoms;
- provided that when X and Y are taken together they are attached to adjacent carbon atoms; and
- provided that if either X or Y is hydrogen, then the other one must be alkenyl or alkynyl;
- or a pharmaceutically acceptable salt of such compound.

The term "alkyl" is used above for formula XVII to mean straight or branched hydrocarbon chain radicals including, but not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, and the like.

The term "alkenyl" is used above for formula XVII to mean straight or branched hydrocarbon chain radicals having one double bond including, but not limited to, ethenyl, 1- and 2- propenyl, 2-methyl-1-propenyl, 1- and 2-butenyl and the like.

The term "alkynyl" is used above for formula XVII to mean straight or branched hydrocarbon chain radicals having one triple bond including, but not limited to, ethynyl, propynyl, butynyl and the like.

The term "aryl" is used above for formulae XVII to mean aromatic radicals including, but not limited to, phenyl, naphthyl, pyridyl, quinolyl, thiophenyl, furyl, oxazolyl, tetrazolyl, thiazolyl, imidazolyl, pyrazolyl and the like. There may be mentioned alkyl, alkoxy, alkylthio, halogen, cyan, nitro, phenoxy, mono- or dialkylamino and the like as the substituents on the aryl.

The term "alkoxy" is used above for formula XVII to mean -OR³ (R³ is alkyl) including, but not limited to, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, t-butoxy and the like.

The term "halogen" is used above for formula XVII to mean radicals derived from the elements fluorine, chlorine, bromine and iodine.
The term "alkylthio" is used in formula XVII to mean -SR\(\text{R}^4\) (\(\text{R}^4\) is alkyl) including, but not limited to, methylthio, ethylthio, n-propythio, isopropythio, n-butylthio, isobutylthio, t-butylthio and the like.

The term "dialkylphosphoryl" is used in formula XVII to mean -P(O)(OR\(\text{R}^5\))(OR\(\text{R}^6\)) (\(\text{R}^5\) and \(\text{R}^6\) are alkyl) including, but not limited to, diethylphosphoryl, ethylmethylphosphoryl and the like.

Other more specific embodiments of this invention relate to the method of treating cancer described immediately above, wherein the NK-1 receptor antagonist that is administered is a compound as defined in any of paragraphs (49) - (51) below, or a pharmaceutically acceptable salt of such compound.

(49) Compounds of formula XVII wherein \(\text{Ar}^1\) and \(\text{Ar}^2\) are each phenyl, \(\text{R}^1\) is methyl, \(\text{R}^2\) is hydrogen, \(X\) is alkenyl or alkynyl and \(Y\) is hydrogen.

(50) Compounds of the formula XVII wherein \(\text{Ar}^1\) and \(\text{Ar}^2\) are each phenyl, \(\text{R}^1\) is methyl, \(\text{R}^2\) is hydrogen and \(X\) and \(Y\) are each alkyl.

(51) Compounds of the formula XVII wherein \(\text{Ar}^1\) and \(\text{Ar}^2\) are each phenyl, \(\text{R}^1\) is methyl, \(\text{R}^2\) is hydrogen and \(X\) and \(Y\) represent \(\text{CH}_2\text{CH}_2\text{CH}_2\) or \(\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\).

This invention also relates to a method of treating cancer in a mammal, including a human, comprising administering to said mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound of the formula

\[
\begin{align*}
\text{Ar}^1 & \quad \text{Ar}^2 \\
\text{X} & \quad \text{Y} \\
\text{R}^1 & \quad \text{R}^2 \\
\text{R}^3 & \quad \text{R}^4
\end{align*}
\]

wherein

\begin{align*}
\text{Ar}^1 \text{ and } \text{Ar}^2 \text{ are each, independently, thienyl, phenyl, fluorophenyl, chlorophenyl or bromophenyl}; \\
X \text{ is } -\text{CONR}^2\text{R}^3, -\text{CO}_2\text{R}^3, -\text{CH}_2\text{OR}^3, -\text{CH}_2\text{NR}^2\text{R}^3 \text{ or } -\text{CONR}^2\text{OR}^3; \\
\text{R}^1, \text{R}^2 \text{ and } \text{R}^4 \text{ are each, independently, hydrogen or alkyl having 1 to 4 carbon atoms}; \\
\text{R}^3 \text{ is alkyl having 1 to 4 carbon atoms}; \\
Y \text{ is alkylsulfonyl having 1 to 4 carbon atoms, N-alkyl-N-alkanoylamino (which may be substituted by halogen in the alkanoyl moiety) having 1 to 4 carbon atoms in the alkyl and the alkanoyl moieties, N-alkyl-N-alkylsulfonylamino (which may be substituted by halogen in the alkanoylamino moiety) having 1 to 4 carbon atoms in the alkyl and the alkylsulfonyl moieties, alkylamino having 1 to 4 carbon atoms, alkyny having 1 to 4 carbon atoms, halosubstituted alkyl having 1 to 4 carbon atoms, alkenylamino having 1 to 4 carbon atoms, alkenylamino (which may be substituted by halogen) having 1 to 4 carbon atoms or alkylsulfonylamino (which may be substituted by halogen) having 1 to 4 carbon atoms}; \\
or a pharmaceutically acceptable salt of such compound.
\end{align*}

The term "alkyl" is used above for formula XVIII to mean straight or branched hydrocarbon chain radicals including, but not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, and the like.

The term "alkenyl" is used above for formula XVIII to mean straight or branched hydrocarbon chain radicals having one double bond including, but not limited to, ethenyl, 1- and 2-propenyl, 2-methyl-1-propenyl, 1- and 2-butene and
The term "alkynyl" is used above for formula XVIII to mean straight or branched hydrocarbon chain radicals having one triple bond including, but not limited to, ethynyl, propynyl, butynyl and the like.

The term "alkylsulfonyl" is used above for formula XVIII to mean \(-\text{SO}_2\text{R}^6\) (\(\text{R}^6\) is alkyl) including, but not limited to, methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, n-butyl sulfonyl, isobutylsulfonyl, t-butylsulfonyl and the like.

The term "alkylamino" is used above for formula XVIII to mean \(-\text{NHR}_6\) (\(\text{R}_6\) is alkyl) including, but not limited to, methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, t-butylamino and the like.

The term "alkanoylamino" is used above for formula XVIII to mean \(-\text{NHCOR}_7\) (\(\text{R}_7\) is alkyl or halo-substituted alkyl) including, but not limited to, formylamino, acetylamino, propionylamino, butyrylamino, isobutyrylamino, trifluoroacetylamino and the like.

The term "alkylsulfonylamino" is used above for formula XVIII to mean \(-\text{NHSO}_2\text{R}_8\) (\(\text{R}_8\) is alkyl or halosubstituted alkyl) including, but not limited to, methylsulfonylamino, ethylsulfonyl amino, trifluoromethylsulfonylamino and the like.

The term "N-alkyl-N-alkysulfonylamino" is used above for formula XVIII to mean \(-\text{N(R}_9\text{)SO}_2\text{R}_{10}\) (\(\text{R}_9\) is alkyl and is \(\text{R}_{10}\) is alkyl or halosubstituted alkyl) including, but not limited to, N-methyl-N-methylsulfonylamino, N-ethyl-N-methylsulfonylamino, N-n-propyl-N-methylsulfonylamino, N-isopropyl-N-methylsulfonylamino, N-methyl-N-trifluoromethyl sulfonylamino, N-ethyl-N-trifluoromethylsulfonylamino, N-n-propyl-N-trifluoromethylsulfonylamino and N-isopropyl-N-trifluoromethyl sulfonylamino.

The term "N-alkyl-N-alkanoylamino" is used above for formula XVIII to mean \(-\text{N(R}_11\text{)COR}_{12}\) (\(\text{R}_11\) is alkyl and \(\text{R}_{12}\) is alkyl or halosubstituted alkyl) including, but not limited to, N-acetyl-N-methylamino, N-acetyl-N-ethylamino, N-acetyl-N-n-propylamino, N-acetyl-N-isopropylamino, N-trifluoroacetyl-N-ethylamino, N-trifluoroacetyl-N-n-propylamino and N-trifluoroacetyl-N-isopropylamino.

Other more specific embodiments of this invention relate to the method of treating cancer described immediately above, wherein the NK-1 receptor antagonist that is administered is a compound as defined in any of paragraphs (52) - (57) below, or a pharmaceutically acceptable salt of such compound.

(52) A compound of the formula XVIII wherein Ar1 and Ar2 are each phenyl.
(53) A compound as described in paragraph (52) wherein \(\text{R}^2\) is methyl and \(\text{R}^1\) is hydrogen.
(54) A compound as described in paragraph (53) wherein X is at the 3-position of the quinuclidine ring and X is carboxy or aminocarbonyl.
(55) A compound as described in paragraph (54) wherein Y is said alkenyl.
(56) A compound as described in paragraph (55) wherein Y is isopropenyl.
(57) A compound as described in paragraph (56) wherein Y is methylsulfonyl, N-acetyl-N-methylamino or N-methyl-N-methylsulfonylamino.

This invention also relates to a method of treating cancer in a mammal, including a human, comprising administering to said mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound of the formula
wherein

R is (C₁₋₃) alkyl;
X is (C₁₋₃) alkyl having one or more substituents bonded through a heteroatom;

Ar¹ and Ar² are each, independently, aryl optionally substituted by one (C₁₋₃) alkyl, (C₁₋₃) alkoxy, (C₁₋₃) alkylthio, halogen, cyano, nitro, phenoxy, mono (C₁₋₃) alkylamino, di (C₁₋₃) alkylamino, halosubstituted (C₁₋₃) alkyl, or halosubstituted (C₁₋₃) alkoxy;
Y is hydrogen, (C₁₋₃) alkyl, (C₂₋₆) alkenyl, (C₃₋₈) cycloalkyl, Z-(CH₂)p-, or W-(CH₂)m-CHR₂-(CH₂)n-NR₁CO- wherein Y is at the 4-, 5- or 6-position on the quinuclidine ring;

R¹ is hydrogen, (C₁₋₃) alkyl, benzyl or -(CH₂)m-W;
R² is hydrogen or (C₁₋₃) alkyl which may be substituted by one hydroxy, amino, methylthio, mercapto, benzyl, 4-hydroxybenzyl, 3-indolylmethyl or -(CH₂)ₜ-W;
Z is (C₁₋₃) alkoxy, -CONR₄R₅, -CO₂R₄, -CHR₄OR₅, -CHR₄NR₅R₆, -COR₄, -CONR₄OR₅ or optionally substituted aryl;
each W is, independently, cyano, hydroxymethyl, (C₂₋₆)alkoxymethyl, aminomethyl, mono-(C₁₋₃)alkylaminomethyl, dialkylaminomethyl, carboxyl, carbamoyl or (C₁₋₃) alkoxy carbonyl;
R₄, R₅ and R₆ are independently hydrogen, (C₁₋₃) alkyl, (C₁₋₃) alkoxy, (C₃₋₆) cycloalkyl or an optionally substituted aryl or heterocyclic group;
p is 0 to 6; and
m, n and r are each, independently, 0 to 3;
or a pharmaceutically acceptable salt of such compound.

Other more specific embodiments of this invention relate to the method of treating cancer described immediately above, wherein the NK-1 receptor antagonist that is administered is a compound as defined in any of paragraphs (58) - (60) below or a pharmaceutically acceptable salt of such compound.

(58) A compound of the formula XIX wherein X is (C₁₋₃) alkyl having one or two substituents selected from hydroxy, halogen, (C₁₋₃) alkoxy, (C₂₋₆) alkanoyl, (C₂₋₆) alkanoyloxy, (C₁₋₃) alkylthio, mono (C₁₋₃) alkylamino, di (C₁₋₃) alkylamino, amino, cyano and azido.

(59) A compound of the formula XIX as described in paragraph (58) wherein R is methyl and the OR group is at the 2-position; Ar¹ and Ar² are each phenyl, monochlorophenyl or monofluorophenyl. Y is hydrogen or Z-(CH₂)p-, wherein Z is (C₁₋₃) alkoxy, -CONR₄R₅, -CO₂R₄, -CHR₄OR₅, -CHR₄NR₅R₆, -COR₄, -CONR₄OR₅ or -CONR₄OR₅ and Y is at the 5- or 6-position.

(60) A compound as described in paragraph (59) wherein X is (C₁₋₃) alkyl having one or two substituents selected from hydroxy, (C₁₋₃) alkoxy and (C₁₋₃) alkylthio; Ar¹ and Ar² are each phenyl; and Y is hydrogen or carboxy.

This invention also relates to a method of treating cancer in a mammal, including a human, comprising administering to said mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound of the formula
wherein

X and Y are each, independently, hydrogen, halo, (C₁-C₆) alkyl, halosubstituted (C₁-C₆) alkyl, (C₁-C₆) alkoxy, (C₁-
-C₆) alkylthio, (C₁-C₆) alkylsulfinyl, (C₁-C₆) alkylsulfonyl or tri-(C₁-C₆) alkyilsilyl;

Ar¹ and Ar² are each aryl optionally substituted by halo;

Z-A- is at the 5 or 6 position on the quinuclidine ring;

Z is hydroxy, (C₁-C₆) alkoxy, NR₁R₂ or W₁-(CH₂)m-CHR₄-(CH₂)nNR₃ wherein

R¹ and R₂, when taken separately, are each hydrogen or (C₁-C₆) alkyl;

R¹ and R₂, when taken together with the nitrogen atom to which they are attached, represent piperidino, pyrrolidino,

As used above for formula XX, the term "alkylthio" means -S-alkyl, including but not limited to methylthio, ethylthio

As used above for formula XX, the term "alkylsulfinyl" means -SO-alkyl, including but not limited to methylsulfinyl, ethylsulfinyl, isopropylsulfinyl and the like.

As used above for formula XX, the term "alkylsulfonyl" means -SO₂-alkyl, including but not limited to methylsulfonyl, ethylsulfonyl, isopropylsulfonyl and the like.

R² is hydrogen, (C₁-C₆) alkyl, benzyl or -(CH₂)₂-W²;

R₄ is hydrogen or (C₁-C₆) alkyl which may be substituted by hydroxy, amino, methylthio, mercapto, benzyl, 4-hy-

W¹, W² and W³ are each, independently, cyano, hydroxymethyl, (C₂-C₆) alkoxy, aminomethyl, (C₁-C₆) alkylaminomethyl, [di(C₁-C₆) alkylationen]amino)methyl, carboxyl, (C₁-C₆) alkylcarbamoyl, [di(C₁-C₆)alkyl]carbamoyl, car-

m, n, r and s are each 0, 1, 2 or 3;

or a pharmaceutically acceptable salt of such compound.

As used above for formula XX, the term "aryl" means aromatic radicals including but not limited to phenyl, naphthyl,

As used above for formula XX, the term "aryl" means aromatic radicals including but not limited to phenyl, naphthyl, pyridyl, quinolyl, thiophenyl. furyl, oxazolyl, tetrazolyl, thiazolyl, imidazolyl, pyrazolyl and the like. These aryl groups can be substituted by (C₁-C₆) alkyl, (C₁-C₆) alkoxy, (C₁-C₆) alkylthio, halogen, cyano, nitro, phenoxy, mono- or di-(C₁-C₆) alkylimino and the like.

This invention also relates to a method of treating cancer in a mammal, including a human, comprising administering to said mammal a therapeutically effective amount of an NK-1 receptor antagonist that is a compound of the formula
wherein

\[
\begin{align*}
Y & \text{ is } (C_2-C_4) \text{ alkylene;} \\
Z & \text{ is a valence bond or } (C_1-C_6) \text{ alkylene;} \\
R^1 & \text{ is phenyl, biphenyl, indanyl, naphthyl, thienyl, furyl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, tetrazolyl, quinolyl, phenyl } (C_1-C_6) \text{ alkyl or benzhydryl, wherein each of the ring moieties may optionally be substituted by one or more substituents independently selected from halogen, } (C_1-C_6) \text{ alkyl, halosubstituted } (C_1-C_6) \text{ alkyl, } (C_1-C_6) \text{ alkoxy and halosubstituted } (C_1-C_6) \text{ alkoxy;} \\
R^2 & \text{ is hydrogen or } (C_1-C_6) \text{ alkyl;} \\
R^3 & \text{ is hydrogen, hydroxy, cyano, amino or carboxy, provided that when } Z \text{ is a valence bond, } R^3 \text{ must be hydrogen;} \\
R^4 & \text{ represents a group of the formula (XXII) or (XXIII)}
\end{align*}
\]

wherein

\[
\begin{align*}
X^1, X^2 \text{ and } X^3 & \text{ are each halo, hydrogen, nitro, } (C_1-C_6) \text{ alkyl halosubstituted } (C_1-C_6) \text{ alkyl, } (C_1-C_6) \text{ alkoxy, halosubstituted } (C_1-C_6) \text{ alkoxy, hydroxy, amino, } (C_1-C_6) \text{ alkylthio, } (C_1-C_6) \text{ alkylsulfinyl or } (C_1-C_6) \text{ alkylsulfonyl;} \\
Q^1 \text{ and } Q^2 & \text{ are each } H_2, \text{ oxygen or sulfur;} \\
A & \text{ is valence bond, methylene, oxygen, sulfur or NH;} \\
R^5 \text{ and } R^6 & \text{ are each hydrogen or } (C_1-C_6) \text{ alkyl;} \text{ and} \\
R^7 & \text{ is hydrogen, halogen, } C_1-C_6 \text{ alkyl, halosubstituted } C_1-C_6 \text{ alkyl or } C_1-C_6 \text{ alkoxy;} \\
& \text{ or a pharmaceutically acceptable salt of such compound.}
\end{align*}
\]

The term "halo", as used above for formula XXI, includes chloro, fluoro, bromo and iodo.

The term "alkyl", as used above for formula XXI, includes saturated monovalent hydrocarbon radicals having straight, branched or cyclic moieties or combinations thereof.

The term "alkenyl", as used above for formula XXI, refers to straight or branched hydrocarbon chain radicals having one double bond including, but not limited to, ethenyl, 1- and 2-propenyl, 2-methyl-1-propenyl, 1- and 2-butenyl.
The term "alkoxy", as used above for formula XXI, refers to -O-alkyl, wherein alkyl is defined as above, and includes, but is not limited to methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy and t-butoxy.

The term "alkylthio", as used above for formula XXI, refers to -S-alkyl, wherein alkyl is defined as above, and includes, but is not limited to methylthio, ethylthio, n-propylthio, isopropylthio, n-butythio, isobutythio, and t-butythio.

The term "cycloalkyl", as used above for formula XXI, unless otherwise indicated, refers to cyclic hydrocarbon radicals including, but not limited to cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "one or more substituents," as used above for formula XXI, includes from one to the maximum number of substituents possible based on the number of available bonding sites.

Compounds of the formulae I, X, XV, XVI, XVII, XVIII, XIX, XX and XXI contain chiral centers and therefore exist in different enantiomeric forms. The above definitions of these compounds include all optical isomers and all stereoisomers of such compounds, and mixtures thereof.

Other more specific embodiments of this invention relate to any of the above methods of treating cancer, wherein the NK-1 receptor antagonist that is administered is selected from the group consisting of:

(2S,3S)-3-(5-tert-butyl-2-methoxybenzyl)amino-2-(3-trifluoromethoxyphenyl)piperidine;
(2S,3S)-3-(2-isopropoxy-5-trifluoromethoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(2-ethoxy-5-trifluoromethoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(2-methoxy-5-trifluoromethoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(5-tert-butyl-2-trifluoromethoxybenzyl)amino-2-phenylpiperidine;
2-(diphenylmethyl)-N-(2-methoxy-5-trifluoromethoxyphenyl)methyl-1-azabicyclo[2.2.2]octan-3-amine;
(2S,3S)-3-[5-chloro-2-(2,2,2-trifluoroethoxy)benzyl]amino-2-phenylpiperidine;
(2S,3S)-3-(5-tert-butyl-2-trifluoromethoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(2-isopropoxy-5-bifluoromethoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(2-trifluoromethoxy-5-trifluoromethoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-2-phenyl-3-[2-(2,2,2-trifluoroethoxybenzyl)aminopiperidine;
(2S,3S)-2-phenyl-3-(2-trifluoromethoxybenzyl)aminopiperidine;
cis-3-(2-chlorobenzylamino)-2-phenylpiperidine;
cis-3-(2-trifluoromethylbenzylamino)-2-phenylpiperidine;
cis-3-(2-methoxybenzylamino)-2-(2-fluorophenyl)piperidine;
cis-3-(2-methoxybenzylamino)-2-(2-chlorophenyl)piperidine;
cis-3-(2-methoxybenzylamino)-2-(2-methylphenyl)piperidine;
cis-3-(2-methoxybenzylamino)-2-(3-methoxyphenyl)piperidine;
cis-3-(2-methoxybenzylamino)-2-(3-fluorophenyl)piperidine;
cis-3-(2-methoxybenzylamino)-2-phenylazacycloheptane;
3-(2-methoxybenzylamino)-4-methyl-2-phenylpiperidine;
3-(2-methoxybenzylamino)-5-methyl-2-phenylpiperidine;
(2S,3S)-1-(5-carboethoxypent-1-yl)-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-(6-hydroxyhex-1-yl)-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-(4-hydroxy-4-phenylbut-1-yl)-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-(4-oxo-4-phenylbut-1-yl)-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-(5,6-dihydroxhex-1-yl)-3-(2-methoxybenzylamino)-2-phenylpiperidine;
cis-3-(5-fluoro-2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-{4-(4-fluorophenyl)-4-oxobut-1-yl]-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-{4-(4-fluorophenyl)-4-hydroxybut-1-yl]-3-(2-methoxybenzylamino)-2-phenylpiperidine;
cis-3-(2-methoxo-5-methylbenzylamino)-2-phenylpiperidine;
(2S,3S)-1-{4-benzamidobut-1-yl]-3-(2-methoxybenzylamino)-2-phenylpiperidine;
cis-3-(2-methoxyxanthoph-1-ylmethylamino)-2-phenylpiperidine;
(2S,3S)-3-(2-methoxybenzylamino)-1-(5-N-methyl-carboxamidopent-1-yl)-2-phenylpiperidine;
(2S,3S)-1-(4-cyanobut-1-yl)-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-(4-[2-naphthamido]but-1-yl]-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-(5-benzamidopent-1-yl)-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-1-(5-aminopent-1-yl)-3-(2-methoxybenzylamino)-2-phenylpiperidine;
(2S,3S)-3-(2-chloro-2-methoxybenzylamino)-2-phenylpiperidine;
cis-3-(3,5-difluoro-2-methoxybenzylamino)-2-phenylpiperidine;
cis-3-(4,5-difluoro-2-methoxybenzylamino)-2-phenylpiperidine;
cis-3-(2,5-dimethoxybenzylamino)-1-[4-(4-fluorophenyl)-4-oxobut-1-yl]-2-phenylpiperidine;
cis-3-(5-chloro-2-methoxybenzylamino)-1-(5,6-dihydroxyhex-1-yl)-2-phenylpiperidine;
cis-1-(5,6-dihydroxyhex-1-yl)-3-(2,5-dimethoxybenzylamino)-2-phenylpiperidine;
cis-2-phenyl-3-[2-(prop-2-yloxy)benzylamino]piperidine;
cis-3-(2,5-dimethoxybenzylamino)-2-(3-methoxyphenyl)piperidine;
cis-3-(5-chloro-2-methoxybenzylamino)-2-(3-methoxyphenyl)piperidine;
cis-3-(5-chloro-2-methoxybenzylamino)-2-(3-chlorophenyl)piperidine;
3-(2-methoxybenzylamino)-2,4-diphenylpiperidine;
cis-3-(2-methoxybenzylamino)-2-phenylpyrrolidine;
(2S,3S)-3-(5-ethyl-2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-2-diphenylmethyl-3-(5-tert-buty1-2-methoxybenzyl)amino-1-azabicyclo[2.2.2]octane;
(2S,3S)-2-diphenylmethyl-N-[5-(1-cyano-1-methylethyl)-2-methoxybenzyl]-1-azabicyclo[2.2.2]octane;
(2S,3S)-3-(6-methoxy-1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-7-yl)methyl-2-phenylpiperidine-3-amine;
(2S,3S)-2-phenyl-N-[5,2,2,2-trifluoro-1-(trifluoromethyl)ethyl]-2-methoxybenzyl)piperidine-3-amine;
(2S,3S)-2-diphenylmethyl-N-[2-methoxy-5-(methylsulfonyl)benzyl]-1-azabicyclo[2.2.2]octane-3-amine;
(2S,3S)-2-diphenylmethyl-N-[5-isopropenyl-2-methoxybenzyl]-1-azabicyclo[2.2.2]octane-3-amine;
(3R,4S,5S,6S)-N,N-diethyl-5-(5-isopropyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxamide;
(3R,4S,5S,6S)-N,N-diethyl-5-(2,5-dimethoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octan-3-carboxylic acid;
(3R,4S,5S,6S)-5-(5-isopropyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octan-3-carboxylic acid;
(3R,4S,5S,6S)-5-(2,5-dimethoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-methylbenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(5-ethyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxyl-5-n-propylbenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(5-sec-butyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(5-N-methyl-methanesulfonylamino-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-methylsulfinylbenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-trifluoromethoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-methylsulfonylbenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(5-dimethylamino-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(5-isopropyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-methylthiobenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(2,5-dimethoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-methylbenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(5-ethyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxyl-5-n-propylbenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(5-sec-butyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(5-N-methyl-methanesulfonylamino-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-methylsulfinylbenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-trifluoromethoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-5-methylsulfonylbenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid; and (3R,4S,5S,6S)-5-(5-dimethylamino-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-2-carboxylic acid;
and the pharmaceutically acceptable salts of the foregoing compounds.

DETAILED DESCRIPTION OF THE INVENTION

The compounds of the formulae Ia, Ib, Ic, Id, Ie, X, XV, XVI, XVII, XVIII, XIX, XX and XXI may be prepared as described below. Unless otherwise indicated, in the discussion that follows, structural formulae Ia, Ib, Ic, Id, Ie, X, XV, XVI, XVII, XVIII, XIX, XX and XXI and groups II, III, IV, V, VI, VII, VIII, IX, XXII and XXIII are defined as above.

Compounds of the formula Ia and Ib may be prepared as described in United States Patent Application 988,653, which was filed on December 10, 1992. This application is incorporated herein by reference in its entirety.

Compounds of the formula Ic may be prepared as described in United States Patent Application 932,392, which was filed on August 19, 1992, and PCT Patent Application PCT/US 93/09407, which designates the United States and which was filed in the United States Receiving Office on October 7, 1993 and published as WO 94/13663 on June 23, 1994. These applications are incorporated herein by reference in their entirety.

Compounds of the formula Id may be prepared as described in PCT Patent Application PCT/US 92/03571, which designates the United States and which was filed in the International Bureau on July 18, 1994. This application is incorporated herein by reference in its entirety.

Compounds of the formula Ie may be prepared as described in United States Patent Application 123,306, which was filed on September 17, 1993 and in PCT Patent Application PCT/IB 94/00221, which designates the United States and which was filed in the International Bureau on July 18, 1994. This application is incorporated herein by reference in its entirety.
in its entirety.

When \(R^3 \) is a group of the formula II, the starting materials of the formula \(\text{NH}_2\text{R}^3 \) that are used in the preparation of compounds of the formulae Ia, Ib, Ic, Id and le may be prepared as described in United States Patent 5,162,339, which issued on November 11, 1992. This patent is incorporated herein by reference in its entirety.

When \(R^3 \) is a group of the formula III, the starting materials of the formula \(\text{NH}_2\text{R}^3 \) that are used in the preparation of compounds of the formulae Ia, Ib, Ic, Id and le may be prepared as described in PCT Patent Application PCT/US 91/02553, which designates the United States, was filed in the United States Receiving Office on April 25, 1991 and was published as WO 91/18899 on December 12, 1991. This application is incorporated herein by reference in its entirety.

When \(R^3 \) is a group of the formula IV, V or VI, the starting materials of the formula \(\text{NH}_2\text{R}^3 \) that are used in the preparation of compounds of the formulae Ia, Ib, Ic, Id and le may be prepared as described in PCT Patent Application PCT/US 91/03369, which designates the United States, was filed in the United States Receiving Office on May 14, 1991 and was published as WO 92/01688 on February 6, 1992. This application is incorporated herein by reference in its entirety.

When \(R^3 \) is a group of the formula VII, the starting materials of the formula \(\text{NH}_2\text{R}^3 \) that are used in the preparation of compounds of the formulae Ia, Ib, Ic, Id and le may be prepared as described in United States Patent 5,232,929, which issued on August 3, 1993, United States Patent Application 800,667, filed November 27, 1991, PCT Patent Application PCT/US 91/02541, which designates the United States, was filed in the United States Receiving Office on April 12, 1991 and was published as WO 91/18878 on December 12, 1991, and PCT Patent Application PCT/US 92/00065, which designates the United States, was filed in the United States Receiving Office on January 14, 1992 and was published as WO 92/17449 on October 15, 1992. These applications are incorporated herein by reference in their entirety.

When \(R^3 \) is a group of the formula VIII, the starting materials of the formula \(\text{NH}_2\text{R}^3 \) that are used in the preparation of compounds of the formulae Ia, Ib, Ic, Id and le may be prepared as described in United States Patent Application Serial No. 719,884, filed June 21, 1991 and PCT Patent Application PCT/US 92/04697, which designates the United States and which was filed in the United States Receiving Office on June 11, 1992 and published as WO 93/00330 on January 7, 1993. These applications are incorporated herein by reference in their entirety.

Compounds of the formula X may be prepared as described in PCT Patent Application PCT/US 92/04002, which designates the United States, was filed in the United States Receiving Office on May 19, 1992 and was published as WO 92/15585 on September 17, 1992. This application is incorporated herein by reference in its entirety.

Compounds of the formula XV may be prepared by the procedure described in PCT Patent Application PCT/US 92/04002, which designates the United States, was filed on May 19, 1992 and published as WO 92/20676 on November 26, 1992. This application is incorporated herein by reference in its entirety.

Compounds of the formula XVI may be prepared as described in United States Patent Application 026,382, which was filed on April 7, 1993, and PCT Patent Application PCT/US 93/11793, which designates the United States, and which was filed on December 10, 1993 in the U.S. Receiving Office and published as WO 94/20500 on September 15, 1994. These applications are incorporated herein by reference in their entirety.

Compounds of the formula XVII may be prepared as described in PCT Patent Application PCT/US 93/09169, which designates the United States and which was filed in the U.S. Receiving Office on September 30, 1993 and published as WO 94/10170 on May 11, 1994. This application is incorporated herein by reference in its entirety.

Compounds of the formula XVIII may be prepared as described in PCT Patent Application PCT/US 93/09168, which designates the United States and which was filed in the U.S. Receiving Office on September 30, 1993 and published as WO 94/08997 on April 28, 1994. This application is incorporated herein by reference in its entirety.

Compounds of the formula XIX may be prepared as described in PCT Patent Application PCT/JP 94/00781, which designates the United States and which was filed in the Japanese Receiving Office on May 13, 1994. This application is incorporated herein by reference in its entirety.

Compounds of the formula XX may be prepared as described in PCT Patent Application PCT/JP 94/01092, which designates the United States and was filed in the Japanese Receiving Office on July 5, 1994. This application is incorporated herein by reference in its entirety.

Compounds of the formula XXI may be prepared as described in PCT Patent Application PCT/JP 94/01514, which designates the United States and was filed in the Japanese Receiving Office on September 13, 1994. This application
is incorporated herein by reference in its entirety.

The therapeutic agents that are basic in nature are capable of forming a wide variety of different salts with various inorganic and organic acids. Examples of acids that form suitable pharmaceutically acceptable salts for use in this invention are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, acetate, lactate, citrate, acid citrate, tartrate, bitartrate, succinate, maleate, fumarate, gluconate, saccharate, benzoate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluene sulfonate and pamoate [i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)] salts.

Although such salts must be pharmaceutically acceptable for administration to animals, it is often desirable in practice to initially isolate a therapeutic agent from the reaction mixture as a pharmaceutically unacceptable salt and then simply convert the latter back to the free base compound by treatment with an alkaline reagent and subsequently convert the latter free base to a pharmaceutically acceptable acid addition salt. The acid addition salts of the base therapeutic agents of this invention are readily prepared by treating the base compound with a substantially equivalent amount of the chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic solvent, such as methanol or ethanol. Upon careful evaporation of the solvent, the desired solid salt is readily obtained.

Those therapeutic agents of this invention that are also acidic in nature are capable of forming base salts with various pharmacologically acceptable cations. The chemical bases that are used as reagents to prepare the pharmaceutically acceptable base salts of the therapeutic agents are those that form non-toxic base salts with the acidic therapeutic agents. Such non-toxic base salts include those derived from such pharmacologically acceptable cations as sodium, potassium, calcium and magnesium, etc. These salts can easily be prepared by treating the corresponding acidic compounds with an aqueous solution containing the desired pharmacologically acceptable cations, and then evaporating the resulting solution to dryness, preferably under reduced pressure. Alternatively, they may also be prepared by mixing lower alkanolic solutions of the acidic compounds and the desired alkali metal alkoxide together, and then evaporating the resulting solution to dryness in the same manner as before. In either case, stoichiometric quantities of reagents are preferably employed in order to ensure completeness of reaction and maximum yields of the desired final product.

The specific NK-1 receptor antagonists listed in the Summary of the Invention can be prepared by methods described in the published patents and patent applications listed above, as well as in the scientific literature.

Generally, in carrying out the methods of this invention, the NK-1 receptor antagonist will be administered to an adult human in an amount ranging from about 0.07 to about 21 mg per kg body weight of the subject being treated per day, in single or divided doses, preferably from about 0.36 to about 4.3 mg/kg. Variations may nevertheless occur depending upon the species of the subject being treated and its individual response to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval at which such administration is carried out. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several small doses for administration throughout the day.

The NK-1 receptor antagonists and their pharmaceutically acceptable salts that are employed in the methods of this invention are hereinafter also referred to as the "therapeutic agents". The therapeutic agents can be administered via either the oral or parenteral route.

The therapeutic agents may be administered alone or in combination with pharmaceutically acceptable carriers or diluents by either of the routes previously indicated, and such administration may be carried out in single or multiple doses. More particularly, the novel therapeutic agents of this invention can be administered in a wide variety of different dosage forms, i.e., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hard candies, suppositories, aqueous suspensions, injectable solutions, elixirs, syrups, and the like. Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc. Moreover, oral pharmaceutical compositions can be suitably sweetened and/or flavored. In general, the therapeutic compounds of this invention are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight.

For oral administration, tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration, the active ingredient may be combined with various sweetening or flavoring agents, coloring matter or dyes, and, if so desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof.

For parenteral administration, solutions of a therapeutic agent in either sesame or peanut oil or in aqueous propylene glycol may be employed. The aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic. These aqueous solutions are suitable for intravenous injection purposes. The oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.

The activity of certain therapeutic agents as substance P receptor antagonists may be determined by their ability to inhibit the binding of substance P at its receptor sites in bovine caudate tissue, employing radioactive ligands to visualize the tachykinin receptors by means of autoradiography. The substance P antagonizing activity of the herein described compounds may be evaluated by using the standard assay procedure described by M. A. Cascieri et al., as reported in the Journal of Biological Chemistry, Vol. 258, p. 5158 (1983). This method essentially involves determining the concentration of the individual compound required to reduce by 50% the amount of radiolabelled substance P ligands at their receptor sites in said isolated cow tissues, thereby affording characteristic IC_{50} values for each compound tested.

In this procedure, bovine caudate tissue is removed from a -70°C freezer and homogenized in 50 volumes (w/v) of an ice-cold 50 mM Tris (i.e., trimethamine which is 2-amino-2-hydroxymethyl-1,3-propanediol) hydrochloride buffer having a pH of 7.7. The homogenate is centrifuged at 30,000 x G for a period of 20 minutes. The pellet is resuspended in 50 volumes of Tris buffer rehomogenized and then recentrifuged at 30,000 x G for another twenty-minute period. The pellet is then resuspended in 40 volumes of ice-cold 50 mM Tris buffer (pH 7.7) containing 2 mM of calcium chloride, 2 mM of magnesium chloride, 4 μg/ml of bacitracin, 4μg/ml of leupeptin, 2μg of chymostatin and 200 μg/ml of bovine serum albumin. This step completes the production of the tissue preparation.

The radioligand binding procedure is then carried out in the following manner, viz., by initiating the reaction via the addition of 100 μl of the test compound made up to a concentration of 1 μM, followed by the addition of 100 μl of radioactive ligand made up to a final concentration 0.5 mM and then finally by the addition of 800 μl of the tissue preparation produced as described above. The final volume is thus 1.0 ml, and the reaction mixture is next vortexed and incubated at room temperature (ca. 20°C) for a period of 20 minutes. The tubes are then filtered using a cell harvester, and the glass fiber filters (Whatman GF/B) are washed four times with 50 mM of Tris buffer (pH 7.7), with...
the filters having previously been presoaked for a period of two hours prior to the filtering procedure. Radioactivity is then determined in a Beta counter at 53% counting efficiency, and the IC\textsubscript{50} values are calculated by using standard statistical methods.

The ability of the NK-1 receptor antagonists used in the methods of this invention to inhibit the proliferation of small cell lung carcinoma cells can be determined using the in vivo and in vitro cell proliferation assays described by Orosz et al., International Journal of Cancer, 1995, 60, 82-87, and by Bunn et al., Cancer Research, 1994, 54, 3602-3610.

Claims

1. The use of a NK-1 receptor antagonist that is:

 (a) a compound of the formula

 ![Diagram A](formula_a.png)

 ![Diagram B](formula_b.png)

 ![Diagram C](formula_c.png)

 ![Diagram D](formula_d.png)
wherein

A is a ring system selected from phenyl, naphthyl, thiophenyl, dihydroquinolinyl, quinolinyl and indolyl, and wherein the sidechain containing NR2R3 is attached to a carbon atom of ring system A;

AA is an aryl group selected from phenyl, naphthyl, thiophenyl, dihydroquinolinyl and indolyl, and wherein the sidechain containing NR2R3 is attached to a carbon atom of AA;

AAA is an aryl group selected from phenyl, naphthyl, thiophenyl, dihydroquinolinyl and indolyl, and wherein the -CH2PR3 sidechain is attached to a carbon atom of ring AAA;

P is NR2, O, S, SO or SO2;
Q is SO2-NH;

\[-N(C_1-C_9)alkyl \text{ or } (C_1-C_6)alkyl-N-SO_2^-\]

wherein the point of attachment of said

\[(C_1-C_6)alkyl-N-SO_2^-\]

to ring AAA is the nitrogen atom and the point of attachment to X5 is the sulfur atom;

W1 and W2 are selected, independently, from hydrogen, halo, (C1-C6) alkyl, S-(C1-C6)alkyl, and (C1-C6) alkoxy optionally substituted with from one to three fluorine atoms;

W is hydrogen, (C1-C6)alkyl optionally substituted with from one to three fluorine atoms, -S(O)v-(C1-C6) alkyl wherein v is zero, one or two, halo or (C1-C6)alkoxy optionally substituted with from one to three fluorine atoms;

X1 is hydrogen, (C1-C10) alkoxy optionally substituted with from one to three fluorine atoms or (C1-C10) alkyl optionally substituted with from one to three fluorine atoms;

X2 and X3 are independently selected from hydrogen, halo, nitro, (C1-C10) alkyl optionally substituted with from one to three fluorine atoms, hydroxy, phenyl,
cyano, amino, (C₁-C₈)-alkylamino, di-(C₁-C₈)alkylamino, -C-NH-(C₁-C₈)alkyl, (C₁-C₈)-
alkyl-C-NH-(C₁-C₈) alkyl, hydroxy(C₁-C₈)alkyl, (C₁-C₈)alkoxy(C₁-C₈)alkyl, -NHCH and
-NHC-(C₁-C₈) alkyl;

X₅ is a four to six membered heterocyclic ring containing from one to four heteroatoms selected from
sulfur, nitrogen and oxygen (e.g., thiazolyl, pyrrolyl, thieryl, triazolyl, tetrazolyl, oxazolyl, oxadiazolyl, thi-
adiazolyl or imidazolyl), wherein said heterocyclic ring may optionally be substituted with from one to three
substituents, preferably with from zero to two substituents, independently selected from phenyl, (C₁-C₈)
alkyl optionally substituted with from one to three fluorine atoms, (C₁-C₈)alkoxy optionally substituted with
from one to three fluorine atoms and halo;

R is a 4, 5 or 6 membered heterocyclic ring containing from one to four heteroatoms selected from oxygen,
nitrogen and sulfur (e.g., thiazolyl, azetidinyl, pyrrolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, isothiazolyl,
imidazolyl, isoxazolyl, or oxazolyl) wherein said heterocyclic ring may contain from zero to three double
bonds and may optionally be substituted with one or more substituents, preferably one or two substituents,
individually selected from (C₁-C₈)alkyl optionally substituted with from one to three fluorine atoms and
(C₁-C₈)alkoxy optionally substituted with from one to three fluorine atoms;

R¹ is selected from amino, (C₁-C₈)alkylamino, di-(C₁-C₈)alkylamino, -S(O)v-(C₁-C₁₀)-alkyl wherein v is
zero, one or two, -S(O)v-phenyl wherein v is zero, one or two, -S(O)v-benzyl wherein v is zero, one or two,
-O-phenyl, -O-benzyl, -SO₂NR₄R₅ wherein each of R₄ and R₅ is, independently, (C₁-C₆)alkyl, or R₄ and
R₅, together with the nitrogen to which they are attached, form a saturated ring containing one nitrogen
and from 3 to 6 carbons,

(C₁-C₁₀)alkyl wherein one or both of the alkyl moieties may optionally be substituted with from one to three
fluorine atoms, -N(SO₂)-(C₁-C₁₀)alkyl)₂;

SO₂-phenyl and

(C₁-C₁₀)alkyl-N-SO₂-benzyl;

and wherein any of the phenyl moieties in the foregoing R¹ groups may optionally be substituted with from
one to three substituents independently selected from (C₁-C₄)alkyl, (C₁-C₈)alkoxy and halo;
or R¹ is phenyl substituted with a group having the formula
wherein

a is 0, 1 or 2 and the asterisk represents a bond to a position meta to the R²R³NCH₂ side chain;
the dotted lines in formula b represent that one of the X-Y and Y-Z bonds may optionally be a double bond;
X is selected from =CH-, -CH₂-, -O-, -S-, -SO-, -SO₂-, -N(R⁴)-, -NH-, =N-, =CH[(C₁-C₆)alkyl]-, =C[(C₁-C₆)alkyl]-,
-CH(C₆H₅)- and =C(C₆H₅)-;
Y is selected from C=O, C=NR⁴, C=S, =CH-, -CH₂=, =CH[(C₁-C₆)alkyl]-, =CH[(C₁-C₆)alkyl]-, =C(C₆H₅)-, -CH(C₆H₅)-, =N-, -NH-, -N(R⁴)-, =C(halo)-, =C(OR⁴)-, =C(SR⁴)-, =NC₆H₅, =C([-O-], -S- and SO₂ wherein the
phenyl moieties of said =C(C₆H₅)- and -CH(C₆H₅)- may optionally be substituted with from one to three
substituents independently selected from trifluoromethyl and halo, and wherein the alkyl moieties of said
= [(C₁-C₆)alkyl]- and -CH[(C₁-C₆)alkyl]- may optionally be substituted with from one to three fluorine atoms;
Z is selected from =CH-, -CH₂-, =N-, -NH-, -S-, -N(R⁴)-, =C(C₆H₅)-, =CH(C₆H₅)-, =C[(C₁-C₆)alkyl]- and
-CH[(C₁-C₆)alkyl]-;
or X, Y and Z, together with the two carbon atoms shared between the benzo ring and the XYZ ring, form
a fused pyridine or pyrimidine ring;
R⁴ is (C₁-C₆) alkyl or phenyl, and each occurrence of R⁴ is independent of other occurrences of R⁴ in the
same molecule;
R² is hydrogen or -CO₂(C₁-C₁₀)alkyl;
R³ is selected from
wherein

R² and R¹⁰ are independently selected from furyl, thiophyl, pyridyl, indolyl, biphenyl and phenyl, wherein
said phenyl may optionally be substituted with one or two substituents independently selected from halo,
(C₁₋C₁₀)alkyl optionally substituted with from one to three fluorine atoms, (C₁₋C₁₀)alkoxy optionally sub-
stituted with from one to three fluorine atoms, carboxy, benzoxycarbonyl and (C₁₋C₉)alkoxy-carbonyl;
R⁷ is selected from (C₃₋C₄) branched alkyl, (C₅₋C₆) branched alkenyl, (C₅₋C₇) cycloalkyl, and the radicals
named in the definition of R⁶;
R⁸ is hydrogen or (C₁₋C₆) alkyl;
R⁹ and R¹⁹ are independently selected from phenyl, biphenyl, naphthyl, pyridyl, benzhydryl, thieryl and
furyl, and R⁹ and R¹⁹ may optionally be substituted with from one to three substituents independently
selected from halo, \((C_1-C_{10})\) alkyl optionally substituted with from one to three fluorine atoms and \((C_1-C_{10})\) alkoxy optionally substituted with from one to three fluorine atoms;

\(Y^1\) is \((CH_2)_n\) wherein \(n\) is an integer from one to three, or \(Y^1\) is a group of the formula \(J\)

\[\begin{align*}
Z^1 & \text{ is oxygen, sulfur, amino, \((C_1-C_3)\)alkylamino or \((CH_2)_n\) wherein \(k\) is zero, one or two; } \\
X & \text{ is an integer from zero to four; } \\
z & \text{ is an integer from one to six, wherein the ring containing \((CH_2)_z\) may contain from zero to three double bonds, and one of the carbons of \((CH_2)_z\) may optionally be replaced by oxygen, sulfur or nitrogen; } \\
o & \text{ is two or three; } \\
p & \text{ is zero or one; } \\
r & \text{ is one, two or three; } \\
R_{11} & \text{ is thiényl, biphenyl or phenyl optionally substituted with one or two substituents independently selected from halo, \((C_1-C_{10})\) alkyl optionally substituted with from one to three fluorine atoms and \((C_1-C_{10})\) alkoxy optionally substituted with from one to three fluorine atoms; } \\
X^4 & \text{ is \((CH_2)_q\) wherein \(q\) is an integer from 1 to 6, and wherein any one of the carbon-carbon single bonds in said \((CH_2)_q\) may optionally be replaced by a carbon-carbon double bond, and wherein any one of the carbon atoms of said \((CH_2)_q\) may optionally be substituted with } R^{14}, \text{ and wherein any one of the carbon atoms of said } \((CH_2)_q\ \text{ may optionally be substituted with } R^{15}; \\
m & \text{ is an integer from 0 to 6, and any one of the carbon-carbon single bonds of \((CH_2)_m\) wherein both carbon atoms of such bond are bonded to each other and to another carbon atom in the } \((CH_2)_m\ \text{ chain, may optionally be replaced by a carbon-carbon double bond or a carbon-carbon triple bond, and any one of the carbon atoms of said } \((CH_2)_m\ \text{ having the requisite available bonding sites may optionally be substituted with } R^{17}; \\
R_{12} & \text{ is a radical selected from hydrogen, \((C_1-C_6)\) straight or branched alkyl, \((C_5-C_7)\) cycloalkyl wherein one of the carbon atoms may optionally be substituted by nitrogen, oxygen or sulfur, ary1 selected from biphenyl, phenyl, indanyl and naphthyl; heteroaryl selected from thiényl, furyl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl and quinolyl; phenyl-\(-(C_2-C_6)\)alkyl, benzhydryl and benzyl, wherein the point of attachment on } R^{12} \text{ is a carbon atom unless } R^{12} \text{ is hydrogen, and wherein each of said aryl and heteroaryl groups and the phenyl moieties of said benzyl, phenyl-\(-(C_2-C_6)\)alkyl and benzhydryl may optionally be substituted with one or more substituents independently selected from halo, nitro, \((C_1-C_{10})\) alkyl optionally substituted with from one to three fluorine atoms, amino,hydroxy-\((C_1-C_6)\)alkyl, \((C_1-C_6)\) alkoxy-\((C_1-C_6)\)alkyl, \((C_1-C_6)\)alkylamino, \\
\((C_1-C_6)\)alkyl-\(O-C\), \((C_1-C_6)\)alkyl-\(O-C-(C_1-C_6)\)alkyl, \((C_1-C_6)\)alkyl-\(C-O\), \\
\((C_1-C_6)\)alkyl-\(C-(C_1-C_6)\)alkyl, \((C_1-C_6)\)alkyl-\(C-(C_1-C_6)\)alkyl, \((C_1-C_6)\)alkyl-\(C-(C_1-C_6)\)alkyl, di-(\(C_1-C_6)\)alkyl, \\
alkylamino, -CNH-(\(C_1-C_6)\)alkyl, (\(C_1-C_6)\)alkyl-NH-(\(C_1-C_6)\)alkyl, -NHCHand -NHC-(\(C_1-C_6)\)alkyl;
and wherein one of the phenyl moieties of said benzhydryl may optionally be replaced by naphthyl, thiophenyl, furyl or pyridyl;

R\text{13} is hydrogen, phenyl or (C\text{1}-C\text{6})\text{alkyl};

or R\text{12} and R\text{13}, together with the carbon to which they are attached, form a saturated carbocyclic ring having from 3 to 7 carbon atoms wherein one of said carbon atoms that is neither the point of attachment of the spiro ring nor adjacent to it may optionally be replaced by oxygen, nitrogen or sulfur;

R\text{14} and R\text{15} are each independently selected from hydrogen, hydroxy, halo, amino, oxo (\text{=O}), cyano, hydroxy-(C\text{1}-C\text{6})\text{alkyl}, (C\text{1}-C\text{6})\text{alkoxy-(C\text{1}-C\text{6})alkyl},

\begin{align*}
(C\text{1}-C\text{8})\text{alkylamino}, & \quad \text{di-(C\text{1}-C\text{8})alkylamino, (C\text{1}-C\text{8})alkoxy, -C\text{-OH}, (C\text{1}-C\text{8})alkyl-O-C-}, \\
(C\text{1}-C\text{8})\text{alkyl-O-C-(C\text{1}-C\text{8})alkyl}, & \quad (C\text{1}-C\text{8})\text{alkyl-C-alkyl-C-(C\text{1}-C\text{8})alkyl},
\end{align*}

and the radicals set forth in the definition of R\text{12}; of R\text{16} is

\[\text{NHCHR}_{18}, \]

NHCH\text{2}R_{18}, SC\text{2}R_{18}, GR\text{20}, CO\text{2}H or one of the radicals set forth in any of the definitions of R\text{12}, R\text{14} and R\text{15};

R\text{17} is oximino (\text{=NOH}) or one of the radicals set forth in any of the definitions of R\text{12}, R\text{14} and R\text{15}; and

R\text{18} is (C\text{1}-C\text{8})\text{alkyl hydrogen, phenyl or phenyl (C\text{1}-C\text{8})alkyl};

G is selected from the group consisting of CH\text{2}, nitrogen, oxygen, sulfur and carbonyl;

R\text{20} is a monocyclic or bicyclic heterocycle selected from the group consisting of pyrimidinyl, benzoxazolyl, 2,3-dihydro-3-oxobenzisothiazol-2-yl, morpholin-1-yl, thiomorpholin-1-yl, benzofuranyl, benzothienyl, indolyl, isoindolyl, isoquinolinyl, furyl, pyridyl, isothiazolyl, oxazolyl, triazolyl, tetrazolyl, quinolyl, thiazolyl, thienyl, and groups of the formulae

\[\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*} \]

wherein

B and D are selected from carbon, oxygen, and nitrogen, and at least one of B and D is other than carbon;

E is carbon or nitrogen; n is an integer from 1 to 5; and any one of the carbons of the (CH\text{2})\text{n} or (CH\text{2})\text{n+1} may be optionally substituted with (C\text{1}-C\text{8})\text{alkyl} or (C\text{2}-C\text{8})\text{spiroalkyl}, and either any two of the carbon atoms of said (CH\text{2})\text{n} and (CH\text{2})\text{n+1} may be bridged by a one or two carbon atom linkage, or any one pair
of adjacent carbons of said \((\text{CH}_2)_n\) and \((\text{CH}_2)_{n+1}\) may form, together with from one to three carbon atoms that are not members of the carbonyl containing ring, a \((\text{C}_2-\text{C}_5)\) fused carbocyclic ring;

with the proviso that (a) when \(m = 0\), one of \(R_{16}\) and \(R_{17}\) is absent and the other is hydrogen, (b) when \(R^3\) is a group of the formula VIII, \(R^{14}\) and \(R^{15}\) cannot be attached to the same carbon atom, (c) when \(R^{14}\) and \(R^{15}\) are attached to the same carbon atom, then either each of \(R^{14}\) and \(R^{15}\) is independently selected from hydrogen, fluoro, \((\text{C}_1-\text{C}_6)\)alkyl, hydroxy-(\(\text{C}_1-\text{C}_6)\)alkyl and \((\text{C}_1-\text{C}_6)\)alkoxy-(\(\text{C}_1-\text{C}_6)\)alkyl, or \(R^{14}\) and \(R^{15}\), together with the carbon to which they are attached, form a \((\text{C}_3-\text{C}_5)\) saturated carbocyclic ring that forms a spiro compound with the nitrogen-containing ring to which they are attached; (d) \(R^{12}\) and \(R^{13}\) cannot both be hydrogen; (e) when \(R^{14}\) or \(R^{15}\) is attached to a carbon atom of \(X^4\) of group VII or to a carbon atom of \((\text{CH}_2)_y\) of group VIII that is adjacent to the ring nitrogen, then \(R^{14}\) or \(R^{15}\), respectively, must be a substituent wherein the point of attachment is a carbon atom; (f) when said compound is a group of the formula IX or a group of the formula Ic or le wherein AA or AAA, respectively, is phenyl optionally substituted with 1, 2 or 3 groups selected from \((\text{C}-\text{C}_6)\)alkyl, trifluoromethyl, halo, cyano, nitro, \((\text{C}_1-\text{C}_6)\)alkoxy, trifluoromethoxy, and \(-\text{S}(\text{O})_v-(\text{C}_1-\text{C}_{10})\)alkyl wherein \(v\) is zero, one or two, and \(R^3\) is a group of the formula VII wherein \(R^{13}\) is hydrogen and \(R^{12}\) is phenyl, naphthyl, thieryl, furyl, pyridyl, thiazoly, tetrazoly, quinoly, benzhydryl or benzyl, and \(R^{12}\) is optionally substituted with \((\text{C}_1-\text{C}_6)\)alkyl, trifluoromethyl, \((\text{C}_1-\text{C}_6)\)alkoxy or halo, then at least one of \(R^{14}\) and \(R^{15}\) must be other than hydrogen, \((\text{C}_1-\text{C}_6)\)alkyl, oxo, halo, \(-\text{COOH}\), \(-\text{COO}(\text{C}_1-\text{C}_6)\)alkyl or phenyl optionally substituted with \((\text{C}_1-\text{C}_6)\)alkyl, halo or trifluoromethyl; and (g) neither \(R^{14}\), \(R^{15}\), \(R^{16}\) nor \(R^{17}\) can form a ring with \(R^{13}\);

or a pharmaceutically acceptable salt of such compound; or

(b) a compound of the formula

\[
\begin{align*}
\text{W} &\text{ is } Y \text{ or } X(\text{CH}_2)_n; \\
Y &\text{ is optionally substituted } (\text{C}_1-\text{C}_6)\text{alkyl, optionally substituted } (\text{C}_2-\text{C}_6)\text{alkenyl or optionally substituted } (\text{C}_3-\text{C}_5)\text{cycloalkyl;}
\end{align*}
\]

\[
\begin{align*}
X &\text{ is optionally substituted } (\text{C}_1-\text{C}_6)\text{alkoxy, hydroxy, } \text{CONR}_1^1\text{R}_2^1, \text{CO}_2^1\text{R}_1^1, \text{CHR}_1^1\text{OR}_2^1, \text{CHR}_1^1\text{NR}_2^1\text{R}_3^1, \text{CON}_1^1, \\
&\text{CONR}_1^1\text{OR}_2^1 \text{ or optionally substituted aryl, wherein said aryl is selected from phenyl, naphthyl, pyridyl, quinolyl, thieryl, furyl, phenoxyphenyl, oxazolyl, tetrazolyl, thiazolyl, imidazolyl and pyrazolyl; and } n \text{ is an integer from zero to six;}
\end{align*}
\]

\[
\begin{align*}
\text{Ar}_1, \text{Ar}_2 \text{ and } \text{Ar}_3 &\text{ are each, independently, optionally substituted aryl, wherein said aryl is selected from phenyl, naphthyl, pyridyl, quinolyl, thieryl, furyl, phenoxyphenyl, oxazolyl, tetrazolyl, thiazolyl, imidazolyl and pyrazolyl;}
\end{align*}
\]

\[
\begin{align*}
\text{and } R^1, R^2 \text{ and } R^3 &\text{ are independently selected from hydrogen, optionally substituted } (\text{C}_1-\text{C}_6)\text{alkyl, optionally substituted } (\text{C}_1-\text{C}_6)\text{alkoxy, optionally substituted } (\text{C}_3-\text{C}_5)\text{cycloalkyl, optionally substituted aryl, wherein said aryl is selected from phenyl, naphthyl, pyridyl, quinolyl, thieryl, furyl, phenoxyphenyl, oxazolyl, tetrazolyl, thiazolyl, imidazolyl and pyrazolyl; and optionally substituted } (\text{C}_3-\text{C}_6)\text{heterocyclic groups, wherein said heterocyclic groups are selected from pyrrolidino, piperidino, morpholino, piperazinyl and thiamorpholino;}
\end{align*}
\]

\[
\begin{align*}
\text{and wherein the substituents on the foregoing substituted alkyl, alkenyl, cycloalkyl and alkoxy groups are independently selected from halo, nitro, amino, } (\text{C}_1-\text{C}_4)\text{alkyl, } (\text{C}_1-\text{C}_4)\text{alkoxy, trifluoromethyl and trifluoromethoxy;}
\end{align*}
\]

\[
\begin{align*}
\text{and wherein the substituents on the foregoing substituted } (\text{C}_3-\text{C}_6)\text{heterocyclic groups are attached to a sulfur or nitrogen atom on the ring and are independently selected from oxygen, di-oxygen and } (\text{C}_1-\text{C}_4)\text{alkyl when attached to a ring sulfur atom, and are independently selected from oxygen and } (\text{C}_1-\text{C}_4)\text{alkyl}
\end{align*}
\]
when attached to a ring nitrogen atom;
and wherein the substituents on said substituted Ar\(^1\) groups are independently selected from (C\(_1\)-C\(_6\))alkyl optionally substituted with from one to three halo groups, (C\(_1\)-C\(_6\))alkoxy optionally substituted with from one to three halo groups, (C\(_1\)-C\(_8\))alkylsulfinyl, (C\(_1\)-C\(_8\))alkenyl, (C\(_1\)-C\(_8\))alkylsulfanyl, (C\(_2\)-C\(_6\))alkylsulfonylaminono, and di-(C\(_1\)-C\(_6\))alkylamino wherein one or both of the alkyl groups may be optionally substituted with a (C\(_1\)-C\(_6\))alkylsulfonyl, or (C\(_1\)-C\(_6\))alkylsulfinyl group;
and wherein the substituents on said substituted Ar\(^2\) and Ar\(^3\) groups are independently selected from (C\(_1\)-C\(_4\))alkyl, (C\(_1\)-C\(_4\))alkoxy, (C\(_1\)-C\(_4\))alkylthio, (C\(_1\)-C\(_4\))alkylsulfinyl, di-(C\(_1\)-C\(_4\))alkylamino, trifluoromethyl and trifluoromethoxy; with the proviso that when Y is unsubstituted or is substituted with (C\(_1\)-C\(_4\))alkyl, it is attached to the 4- or 6-position of the quinuclidine ring;
or a pharmaceutically acceptable salt of such compound; or
(c) a compound of the formula

\[
\text{XVIII}
\]

wherein

Ar\(^1\) and Ar\(^2\) are each, independently, thiophenyl, phenyl, fluorophenyl, chlorophenyl or bromophenyl;
X is \(-\text{CONR}^3\text{R}^4\), \(-\text{CO}_2\text{R}^3\), \(-\text{CH}_2\text{OR}^3\), \(-\text{CH}_2\text{NR}^3\text{R}^4\) or \(-\text{CONR}^3\text{OR}^4\);
R\(^1\), R\(^3\) and R\(^4\) are each, independently, hydrogen or alkyl having 1 to 4 carbon atoms;
R\(^2\) is alkyl having 1 to 4 carbon atoms;
Y is alkylsulfonyl having 1 to 4 carbon atoms, N-alkyl-N-alkanoylamino (which may be substituted by halogen in the alkanoyl moiety) having 1 to 4 carbon atoms in the alkyl and the alkanoyl moieties, N-alkyl-N-alkylsulfonylamino (which may be substituted by halogen in the alky sulfonamide moiety) having 1 to 4 carbon atoms in the alkyl and the alkyl sulfonamide moieties, alkenyl having 2 to 4 carbon atoms, alkynyl having 2 to 4 carbon atoms, halosubstituted alkyl having 1 to 4 carbon atoms, alkylamino having 1 to 4 carbon atoms, alkanoxyamino (which may be substituted by halogen) having 1 to 4 carbon atoms or alkylsulfonamino (which may be substituted by halogen) having 1 to 4 carbon atoms; or
or a pharmaceutically acceptable salt of such compound; or
(d) a compound of the formula
wherein

\(\text{Ar}^1 \) and \(\text{Ar}^2 \) are each independently aryl or substituted aryl;
\(\text{R}^1 \) is alkyl having from 1 to 6 carbon atoms;
\(\text{R}^2 \) is hydrogen or alkyl having from 1 to 6 carbon atoms;
and either \(X \) and \(Y \) are taken separately and they are each, independently, hydrogen, dialkylphosphoryl having from 2 to 12 carbon atoms, alkyl having from 1 to 6 carbon atoms, alkenyl having from 2 to 6 carbon atoms or alkynyl having from 2 to 6 carbon atoms; or \(X \) and \(Y \) are taken together and they represent a hydrocarbon chain having 3, 4, or 5 carbon atoms, optionally containing up to 2 double bonds and optionally having 1 or 2 substituents selected from oxo, hydroxy and alkyl having from 1 to 6 carbon atoms;
provided that when \(X \) and \(Y \) are taken together they are attached to adjacent carbon atoms; and
provided that if either \(X \) or \(Y \) is hydrogen, then the other one must be alkenyl or alkynyl;
or a pharmaceutically acceptable salt of such compound; or

(e) a compound of the formula

wherein

\(\text{R} \) is \(\text{C}_1-\text{C}_6 \) alkyl;
\(\text{X} \) is \(\text{C}_1-\text{C}_6 \) alkyl having one or more substituents bonded through a heteroatom;
A¹ and Ar² are each, independently, aryl optionally substituted by one (C₁₋₆) alkyl, (C₁₋₆) alkoxy, (C₁₋₆) alkythio, halogen, cyano, nitro, phenoxy, mono (C₁₋₆) alkylamino, di (C₁₋₆) alkylamino, halosubstituted (C₁₋₆) alkyl, or halosubstituted (C₁₋₆) alkoxy;

Y is hydrogen, (C₁₋₆) alkyl, (C₂₋₆) alkenyl, (C₃₋₈) cycloalkyl, Z-(CH₂)p-, or W-(CH₂)m-CHR²-(CH₂)nNR¹CO- wherein Y is at the 4-, 5-, or 6-position on the quinuclidine ring;

R¹ is hydrogen, (C₁₋₆) alkyl, benzyl or -(CH₂)₂-W;

R² is hydrogen or (C₁₋₆) alkyl which may be substituted by one hydroxy, amino, methylthio, mercapto, benzyl, 4-hydroxybenzyl, 3-indolylmethyl or -(CH₂)r-W;

Z is (C₁₋₆) alkoxy, -CONR⁴R⁵, -CO₂R⁴, -CHR⁴OR⁵, -CHR⁴NR⁵R⁶, -COR⁴, -CONR⁴OR⁵ or optionally substituted aryi;

each W is independently cyano, hydroxymethyl, (C₂₋₆) alkoxyalkyl, aminomethyl, mono-(C₁₋₆) alkyaminomethyl, di-(C₁₋₆) alkyaminomethyl, carboxyl, carbamoyl or (C₁₋₆) alkoxy carbonyl;

R⁴, R⁵ and R⁶ are independently hydrogen, (C₁₋₆)alkyl, (C₁₋₆) alkoxy, (C₃₋₈) cycloalkyl or an optionally substituted alkyl or heterocyclic group;

p is 0 to 6; and

m, n and r are each, independently, 0 to 3;

or a pharmaceutically acceptable salt of such compound; or

(I) a compound of the formula

wherein

X and Y are each, independently, hydrogen, halo, (C₁₋₆) alkyl, halosubstituted (C₁₋₆) alkyl, (C₁₋₆) alkoxy, (C₁₋₆) alkythio, (C₁₋₆) alkylsulfinyl, (C₁₋₆) alkylsulfonyl or tri C₁₋₆ alkylsilyl;

Ar¹ and Ar² are each aryl optionally substituted by halo;

A is -CO₂- or -(CH₂)₂-;

Z-A- is at the 5 or 6 position on the quinuclidine ring;

Z is hydroxy, C₁₋₆ alkoxy, NR¹R² or W¹-(CH₂)ₘ-CR²(CHR²)ₙ-NR³ wherein

R¹ and R², when taken separately, are each hydrogen or (C₁₋₆) alkyl;

R¹ and R², when taken together with the nitrogen atom to which they are attached, represent piperidino, pyrrolidino1 morpholino, thiomorpholino or piperazino;

R³ is hydrogen, (C₁₋₆) alkyl, benzyl or -(CH₂)₂-W²;

R⁴ is hydrogen or (C₁₋₆) alkyl which may be substituted by hydroxy, amino, methylthio, mercapto, benzyl, 4-hydroxybenzyl, 3-indolylmethyl or -(CH₂)ₙ-W³;

R³ and R⁴, when taken together, represent CH₂ or CH₂CH₂;

W¹, W² and W³ are each cyano, hydroxymethyl, (C₂₋₆) alkoxyalkyl, aminomethyl, (C₁₋₆) alkyaminomethyl, di-C₁₋₆ alkylaminomethyl, carboxyl, carbamoyl or (C₁₋₆) alkoxy carbonyl;

m, n, r and s are each 0, 1, 2 or 3;
or a pharmaceutically acceptable salt of such compound; or

(g) a compound of the formula

![Chemical structure](image)

wherein

- Y is (C_2-C_4) alkylene;
- Z is a valence bond or (C_1-C_6) alkyne;
- R^1 is phenyl, biphenyl, indanyl, naphthyl, thienyl, furyl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, tetrazolyl, quinolyl, phenyl (C_1-C_6) alkyl or benzhydryl, wherein each of the ring moieties may optionally be substituted by one or more substituents independently selected from halogen, (C_1-C_6) alkyl, halosubstituted (C_1-C_6) alkyl, (C_1-C_6) alkoxy and halosubstituted (C_1-C_6) alkoxy;
- R^2 is hydrogen or (C_1-C_6) alkyl;
- R^3 is hydrogen, hydroxy, cyano, amino or carboxy; and
- R^4 represents a group of the formula XXII or XXIII

![Chemical structure](image)

wherein

- X^1, X^2 and X^3 are each, independently, halo, hydrogen, nitro, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halosubstituted (C_1-C_6) alkyl, halosubstituted (C_1-C_6) alkoxy, hydroxy, amino, (C_1-C_6) alkylthio, (C_1-C_6) alkylsulfinyl or (C_1-C_6) alkylsulfonyl;
- Q^1 and Q^2 are each H, oxygen or sulfur;
- A is valence bond, methylene, oxygen, sulfur or NH;
- R^5 and R^6 are each hydrogen or (C_1-C_6) alkyl; and
- R^7 is hydrogen, halogen, (C_1-C_6) alkyl, halosubstituted (C_1-C_6) alkyl or (C_1-C_6) alkoxy; provided that when Z is a valence bond, R^3 must be hydrogen; or a pharmaceutically acceptable salt of such compound,

for the manufacture of a medicament for the treatment of cancer in a mammal.
2. A use according to claim 1 wherein the cancer being treated is a small cell lung carcinoma.

3. A use according to claim 1 wherein the cancer being treated is an extrapulmonary small cell carcinoma.

4. A use according to claim 1 wherein the cancer being treated is a neuroendocrine tumor.

5. A use according to claim 1 wherein the cancer being treated is astrocytoma.

6. A use according to claim 1 wherein the cancer being treated is an APUDoma.

7. A use according to claim 1 wherein the NK-1 receptor antagonist employed is selected from the group consisting of:

 (2S,3S)-3-(5-tert-butyl-2-methoxybenzylamino)-2-(3-trifluoromethoxyphenyl)piperidine;
 (2S,3S)-3-(2-isoproxy-5-trifluoromethoxybenzylamino)-2-phenylpiperidine;
 (2S,3S)-3-(2-ethoxy-5-trifluoromethoxybenzylamino)-2-phenylpiperidine;
 (2S,3S)-3-(5-tert-butyl-2-trifluoromethoxybenzylamino)-2-phenylpiperidine;
 2-(diphenylmethyl)-N-[2-methoxy-5-trifluoromethoxyphenyl]methyl-1-azabicyclo[2.2.2]octan-3-amine;
 (2S,3S)-3-(2-isoproxy-5-trifluoromethoxybenzylamino)-2-phenylpiperidine;
 (2S,3S)-3-(2-difluoromethoxy-5-trifluoromethoxybenzylamino)-2-phenylpiperidine;
 (2S,3S)-3-(2-methoxy-5-trifluoromethoxybenzylamino)-2-phenylpiperidine;
 (2S,3S)-2-phenyl-3-[2,2,2-trifluoroethoxybenzyl]aminopiperidine;
 (2S,3S)-2-phenyl-3-[2-(2-fluorophenyl)piperoxidine;
 (2S,3S)-3-(2-difluoromethoxy-5-trifluoromethoxybenzylamino)-2-phenylpiperidine;
 cis-3-(2-chlorobenzylamino)-2-phenylpiperidine;
 cis-3-(2-fluorobenzylamino)-2-fluorophenyl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-ethoxy-5-trifluoromethoxybenzylamino)-2-phenylpiperidine;
 cis-3-(2-methoxybenzylamino)-2-(2-fluorophenyl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-(2-chlorophenyl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-(2-methylphenyl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-(3-methoxyphenyl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-(4-fluorophenyl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-(3-thienyl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-phenylazacycloheptane;
 cis-3-(2-methoxybenzylamino)-2-(4-fluoro-4-phenylbutoxy)-benzene-1-yl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-(4-fluoro-4-phenylbutoxy)-benzene-1-yl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-(4-fluoro-4-phenylbutoxy)-benzene-1-yl)piperidine;
 cis-3-(2-methoxybenzylamino)-2-(4-fluoro-4-phenylbutoxy)-benzene-1-yl)piperidine;
cis-3-(3,5-difluoro-2-methoxybenzylamino)-2-phenylpiperidine;
cis-4-(4,5-difluoro-2-methoxybenzylamino)-2-phenylpiperidine;
cis-3-(2,5-dimethoxybenzylamino)-1-[4-(4-fluorophenyl)-4-oxobut-1-yl]-2-phenylpiperidine;
cis-3-(5-chloro-2-methoxybenzylamino)-1-(5,6-dihydroxyhex-1-yl)-2-phenylpiperidine;
cis-1-(5,6-dihydroxyhex-1-yl)-3-(2,5-dimethoxybenzylamino)-2-phenylpiperidine;
cis-2-phenyl-3-[2-(prop-2-yloxy)benzylamino]piperidine;
cis-3-(2,5-dimethoxybenzylamino)2-(3-methoxyphenyl)piperidine;
cis-3-(5-chloro-2-methoxybenzylamino)-2-(3-methoxyphenyl)piperidine;
cis-3-(5-chloro-2-methoxybenzylamino)-2-(3-chlorophenyl)piperidine;
3-(2-methoxybenzylamino)-2,4-diphenylpiperidine;
cis-3-(2-methoxybenzylamino)-2-phenylpyrrolidinone;
(2S,3S)-3-(5-ethyl-2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(5-n-butyl-2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(2-methoxy-5-n-propylbenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(5-isopropyl-2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(5-s-butyl-2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(5-t-butyl-2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(2-methoxy-5-phenylbenzyl)amino-2-phenylpiperidine;
2,4-dimethylthiazole-5-sulfonic acid [4-methoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]methylamide;
N-(4,5-dimethylthiazol-2-yl)-N-[4-methoxy-3-((2S,3S)-2-phenylpiperidin-3-yl-aminomethyl)phenyl]methanesulfonylamine;
(2S,3S)-3-(5-iso-propyl-2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(5-n-butyl-2-methoxybenzyl)amino-2-phenylpiperidine;
4,5-dimethylthiazole-2-sulfonic acid methyl-[3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)-4-trifluoromethoxyphenyl]amide;
N-(4,5-dimethylthiazol-2-yl)-N-[4-methoxy-3-((2S,3S)-2-phenylpiperidin-3-yl-aminomethyl)phenyl]methanesulfonylamine;
(2S,3S)-3-(5-iso-propyl-2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-3-(5-n-butyl-2-methoxybenzyl)amino-2-phenylpiperidine;
2,4-dimethylthiazole-5-sulfonic acid [4-isopropoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]methylamide;
2,4-dimethylthiazole-5-sulfonic acid [4-isopropoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]isopropylamide;
2,4-dimethylthiazole-5-sulfonic acid [4-isopropoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]isobutylamide;
2,4-dimethylthiazole-5-sulfonic acid [4-isopropoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]isobutylamide;
(2S,3S)-N-(5-isopropyl-2-methoxyphenyl)methyl-2-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-amine;
(2S,3S)-N-(5-t-butyl-2-methoxyphenyl)methyl-2-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-amine;
(2S,3S)-N-(5-propyl-2-methoxyphenyl)methyl-2-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-amine;
(2S,3S)-N-(5-[1-cyano-1-methylethyl]-2-methoxybenzyl)-methyl-2-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-amine;
(2S,3S)-N-(5-[6-methoxy-1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-7-yl]-methyl)-2-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-amine;
(2S,3S)-N-(5-[4,5-dimethylthiazol-2-yl]-methylamino)-2-methoxybenzyl]-((2S,3S)-2-phenylpiperidin-3-yl)amine;
4,5-dimethylthiazole-2-sulfonic acid methyl-[3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)-4-trifluoromethoxyphenyl]amide;
2,4-dimethylthiazole-5-sulfonic acid [4-isopropoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]methylamide;
2,4-dimethylthiazole-5-sulfonic acid [4-isopropoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]isopropylamide;
2,4-dimethylthiazole-5-sulfonic acid [4-isopropoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]isobutylamide;
2,4-dimethylthiazole-5-sulfonic acid [4-isopropoxy-3-((2S,3S)-2-phenylpiperidin-3-ylaminomethyl)phenyl]isobutylamide;
(2S,3S)-N-(5-isopropyl-2-methoxybenzyl)methyl-2-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-amine;
(2S,3S)-N-(5-isopropyl-2-methoxybenzyl)methyl-2-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-amine;
(3R,4S,5S,6S)-N-diethyl-5-(5-isopropyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxamide;
(3R,4S,5S,6S)-N-diethyl-5-(5-isopropyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxamide;
(3R,4S,5S,6S)-5-(5-isopropyl-2-methoxybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;
(3R,4S,5S,6S)-5-(2-methoxy-2-methylthiocenzybenzylamino)-6-diphenylmethyl-1-azabicyclo[2.2.2]octane-3-carboxylic acid;