PROCESS FOR TANNING WITH A MULTIVALENT METAL AND AN ORGANIC COMPOUND

Inventor: Philip Stanley Briggs, Leeds, England

Notice: The portion of the term of this patent subsequent to May 21, 1991, has been disclaimed.

Filed: July 23, 1971

Appl. No.: 165,725

Foreign Application Priority Data
July 24, 1970 Great Britain 35994/70

U.S. Cl................................. 8/94.26, 8/94.29
Int. Cl................................. C14c 3/04
Field of Search....................... 8/94.26, 94.29, 94.22, 8/94.23

References Cited
UNITED STATES PATENTS
2,178,874 11/1939 Hervey....................... 8/94.26
2,693,996 11/1954 Von Fuchs....................... 8/94.22
2,950,950 8/1960 Plapper et al................. 8/94.23
3,010,780 11/1961 Plapper et al................. 8/94.26
3,811,832 5/1974 Briggs......................... 8/94.26

FOREIGN PATENTS OR APPLICATIONS
788,539 1/1958 Great Britain 8/94.22
836,808 6/1960 Great Britain 8/94.26

OTHER PUBLICATIONS

Primary Examiner—Thomas J. Herbert, Jr.
Attorney, Agent, or Firm—Finnegan, Henderson, Farabow and Garrett

ABSTRACT
A process for tanning hides or skins comprises firstly treating the hide or skin with a basic salt of a multivalent metal, secondly treating the hide or skin under alkaline conditions with an organic compound having a long chain aliphatic group and at least one reactive group capable of entering into a complex with a basic salt of a multivalent metal, and thirdly treating the hide or skin with a salt of a multivalent metal.

31 Claims, No Drawings
PROCESS FOR TANNING WITH A MULTIVALENT METAL AND AN ORGANIC COMPOUND

This invention relates to the production of leather. In U.S. application Ser. No. 132,580, filed Apr. 8, 1971, and now U.S. Pat. No. 3,811,832 there is described and claimed a process for the tanning of a hide or skin by treatment with a basic salt of a multivalent metal, and then with a reaction medium containing a water-soluble salt of a dibasic organic acid, said water-soluble salt being one that forms an alkaline solution in water, in an amount sufficient to maintain an alkaline pH in the reaction medium.

Leather which has been treated with a basic salt of a multivalent metal, that is "mineral tanned", has a pH in water in the range 3 to 5. The effect of adding a salt of a dibasic organic acid is to raise the pH to within the range 7.5 to 8.5. Such conditions are well outside the normal practice in the tanning industry. It has now been found that, provided the alkaline conditions are maintained, certain other organic compounds can also usefully be employed in the above-mentioned process. The resulting leathers on retanning are found to have improved hydrophobic properties.

According to the present invention a process for the tanning of a hide or skin comprises firstly treating the hide or skin with a basic salt of a multivalent metal, secondly treating the hide or skin under alkaline conditions with an organic compound having a long chain aliphatic group and at least one reactive group capable of entering into a complex with a basic salt of a multivalent metal, and thirdly treating the hide or skin with a salt of a multivalent metal.

Treatment with the organic compound is preferably carried out at a pH from 7.5 to 9. An aqueous solution of the organic compound is prepared and adjusted to the required pH by addition of suitable organic bases or inorganic alkalies. The alkali or base need not react with the organic compound, and weak alkalies such as sodium carbonate or ammonia have been found to be particularly suitable. It is usually found that the optimum value of pH is around 8.2 to 8.5. Preferably the leather is washed and neutralised throughout its whole thickness after tanning with the basic salt of a multivalent metal and prior to treatment with the organic compound, for example, with a weak alkali such as sodium bicarbonate, ammonium bicarbonate, ammonia or mixtures thereof. This neutralisation may be preceded by treatment with a salt of phthalic, formic or other weak acid.

The process of tanning with a basic salt of a multivalent metal can be carried out on stock with the hair or wool intact, or on hides and skins that have been suitably prepared for tanning by conventional pre-tanning processes, or that have previously been tanned, for example, by a vegetable tanning process (vegetable tanned crust stock). Suitable hides and skins that can be treated include, for example, bovine stock and sheep-skins.

Suitable basic salts of multivalent metals which can be used in the tanning process include particularly basic salts of metals having a valency of three or more, e.g. chromium, aluminium, zirconium and cerium. Salts of mineral acids are usually preferred, especially sulphuric acid. Particularly good results have been obtained using basic chromium sulphate, which can, for example, be prepared by adding sodium carbonate to a solution of chromium sulphate or chrome alum. The basic salt of a multivalent metal may be "masked" with certain organic acid salts i.e. treated to form a mixed salt of modified reactivity but still capable of reacting with the organic compound.

The quantity of basic salt used is usually sufficient to give up to about 3.5% by weight (calculated as metal oxide) based on the dry weight of the hide or skin. Particularly good results have been obtained using a quantity of basic salt sufficient to give from 1.5 to 5.0% by weight of metal oxide based on the dry weight of the hide or skin.

The organic compound contains at least one and preferably two or more long chain aliphatic groups which preferably contain a chain of from six to thirty-six carbon atoms. Increasing the length of the aliphatic carbon chain or the number of aliphatic carbon chains in the compound is often found to give improved flexibility, perspiration resistance and water-shedding properties. The compound may contain one or more reactive groups which can, for example, be chloro, nitro, sulphonate, phosphate, carbonate, borate, citrate, thiocyanate, sulphate, amino or carboxyl groups.

Preferably the organic compound contains two or more reactive groups which for best results should be separated by a chain of at least six carbon atoms. Mixtures of different organic compounds may be used provided that they do not react together and are stable under the reaction conditions.

Amongst many suitable organic compounds there may be mentioned alkalai metal, ammonium or organic base salts of long chain aliphatic carboxylic acids for example, oleic, palmitic and stearic acids; half esters of long chain dicarboxylic acids; salts of sulphonated or sulphonate long chain mono carboxylic acids, for example the ammonium, sodium and potassium salts of sulphonated or sulphonated oleic and palmitic acids; sulphonated or sulphonated triglycerides, for example medium sulphated cod oil, and lightly sulphated cold test neatsfoot oil; and long chain aliphatic amino acids.

The quantity of organic compound used is usually not less than 3% based on the shaded weight of the leather and is preferably from 3 to 8%. In many instances, it has been found useful in promoting penetration to carry out the reaction of the leather with the organic compound in the presence of a water-soluble or water miscible alcohol or a liquid hydrocarbon. Suitable alcohols include benzyl alcohol and cyclohexanol, and suitable hydrocarbons include white spirit. After reaction with the organic compound, the leather is either further treated with a salt of a multivalent metal or dried to produce a crust stock.

The crust stock is easily wettable, and may similarly be converted to the waterproof state by treatment with a salt of a multivalent metal. This can be a basic salt, for example, the basic salt of chromium, aluminium, zirconium or cerium initially used for tanning or any other suitable basic salt, or a normal salt, for example, a copper, zinc, zirconium, aluminium or nickel salt, particularly a sulphate. This after-treatment confers the hydrophobic properties to the final product. The quantity of basic or normal salt used is usually such as to give from 1.0 to 3.0% by weight (calculated as metal oxide) based on the shaded weight of the leather. Prior to treatment with the salt of a multivalent metal the leather may be rinsed and lightly acidified on the outer surface to pH 4.6 to 5.0. The metal salt used may be
The organic compounds used in the present invention do not usually form basic salts with multivalent metals which are soluble in water, and thus the tanning of the hide or skin with the basic salt of the multivalent metal and the treatment with the organic compound is preferably carried out by immersing the hide or skin in an aqueous solution of the basic salt of the multivalent metal, bringing the pH of the hide or skin in the reaction liquor up to the desired value and then adding the organic compound.

The process is preferably carried out in a tanning drum, since a low water/load ratio is desirable to accelerate the reactions. Suitable drum speeds have been found to be from 6 to 12 r.p.m., and an optimum speed can easily be found by experiment. The process may be completed in acceptable tannery time schedules and for each stage of the process the time for completion of the reaction is usually from 2 to 24 hours.

The reactions usually proceed at an acceptable rate at room temperature but if necessary elevated temperatures, for example up to about 50°C, can be used.

Dyeing may be carried out prior to the further treatment with a salt of a multivalent metal or subsequently. With some dyestuffs it is advisable to use a cold float. After treatment by the process of the invention, the leather may be neutralised if necessary and subjected to any of the normal finishing operations provided that the formulations used do not contain excessive amounts of surfactants or hydrophilic materials. The conventional fat-liquoring step can often be substantially reduced in amount and sometimes omitted altogether. Softer leathers are made by treating with a small amount of hydrocarbon solvent, e.g. white spirit, or a small amount of a straight oil e.g. neat'sfoot or sperm oil emulsified in the organic reactants prior to application.

The invention is illustrated by the following Examples:

EXAMPLE 1

This Example describes a tanning process according to the invention leading to the production of a leather having improved water-proofing properties.

<table>
<thead>
<tr>
<th>Compound</th>
<th>% age</th>
<th>pH</th>
<th>Dynamic water uptake (DWU)</th>
<th>% H₂O absorbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ammonium oleate</td>
<td>3</td>
<td>8.2</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.2</td>
<td>270</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.2</td>
<td>240</td>
<td>34</td>
</tr>
<tr>
<td>2. Ammonium salt of sulphated oleic acid (as above but degreased)</td>
<td>4</td>
<td>8.5</td>
<td>90</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.5</td>
<td>270</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.5</td>
<td>180</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.5</td>
<td>240</td>
<td>26</td>
</tr>
<tr>
<td>3. Ammonium salt of sulphated oleic acid (different source)</td>
<td>6</td>
<td>7.5</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.5</td>
<td>210</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.5</td>
<td>240</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.5</td>
<td>240</td>
<td>24</td>
</tr>
<tr>
<td>4. Potassium salt of sulphated oleic acid</td>
<td>6</td>
<td>7.5</td>
<td>140</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.5</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.5</td>
<td>150</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.5</td>
<td>240</td>
<td>21</td>
</tr>
</tbody>
</table>
TABLE I - Continued

<table>
<thead>
<tr>
<th>Compound</th>
<th>% age</th>
<th>pH</th>
<th>Dynamic water uptake (DWU)</th>
<th>% H₂O absorbed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>time (minutes)</td>
<td></td>
</tr>
<tr>
<td>5. Sulphated oleic acid sodium finish 50% approx.</td>
<td>6</td>
<td>8.2 - 8.4</td>
<td>240</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.2 - 8.4</td>
<td>240</td>
<td>19</td>
</tr>
<tr>
<td>as above but with 5% benzy alcohol</td>
<td>6</td>
<td>8.2 - 8.4</td>
<td>240</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.2 - 8.4</td>
<td>240</td>
<td>12</td>
</tr>
<tr>
<td>6. Medium sulphated cod oil 50%</td>
<td>2</td>
<td>8.2 - 8.4</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8.2 - 8.4</td>
<td>165</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.2 - 8.4</td>
<td>240</td>
<td>22</td>
</tr>
<tr>
<td>7. Lightly sulphated cold test neatsfoot oil 85%</td>
<td>4</td>
<td>8.2 - 8.4</td>
<td>120</td>
<td>20</td>
</tr>
</tbody>
</table>

Example 5 is on chrome side (bovine stock). All other experiments are on chromed sheep skins. Controls processed by normal chrome tanning techniques give dynamic water penetration periods in the order of ten minutes. This Example shows that tanning according to the process of the invention leads to the production of a highly waterproof leather. In addition it is found that samples treated at pH 8.5 also have excellent perspiration resistance.

EXAMPLE 2

This Example describes further processes according to the invention for the production of a leather having improved water-proofing properties.

The procedure of Example 1 is repeated except the leather is neutralised to a pH of 8.2 to 8.4 prior to the application of the organic compound. Re-tannage is carried out using a mixture of 5% sulphate and 6% basic 33% chromium sulphate powder (25% Cr₂O₃) based on the shaved weight of the leather or 6% basic aluminium chloride (66% basic) 25% Al₂O₃. In each case, half of the samples were degreased with petroleum ether. The results are given in Table II. Percentages of organic compounds used are based on the shaved weight of the leather containing 60 - 65% water.

TABLE II

<table>
<thead>
<tr>
<th>Compound</th>
<th>DWU</th>
<th>Chrome</th>
<th>Re-tannage</th>
<th>Aluminium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time (minutes)</td>
<td>% H₂O absorbed</td>
<td>time (minutes)</td>
<td>% H₂O absorbed</td>
</tr>
<tr>
<td>Ammonium oleate</td>
<td>4%</td>
<td>300+</td>
<td>19</td>
<td>240+</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>240+</td>
<td>17</td>
<td>240+</td>
</tr>
<tr>
<td>Sulphated cod oil</td>
<td>6%</td>
<td>210</td>
<td>24</td>
<td>180+</td>
</tr>
<tr>
<td>Sulphated neatsfoot oil</td>
<td>6%</td>
<td>60</td>
<td>110</td>
<td>180</td>
</tr>
</tbody>
</table>

These results show that both chromium and aluminium re-tannages led to waterproof leathers, and the hydrophobic properties of the chrome leather are unaffected by degreasing.

I claim:

1. A process for the tanning of a hide or skin which comprises firstly treating the hide or skin with a basic tanning salt of a multivalent metal, secondly treating the hide or skin with an organic compound having a long chain aliphatic group while maintaining alkaline pH conditions during such treatment said compound having at least one reactive group capable of entering into a metal complex with the basic tanning salt of a multivalent metal, and thirdly treating the hide or skin with a salt of a multivalent metal at an acid pH.

2. A process according to claim 1, in which the treatment with the organic compound is carried out at a pH of from 7.5 to 9.

3. A process according to claim 2, in which the required pH is maintained by addition of a weak alkali.

4. A process according to claim 1, in which the leather is washed and neutralised throughout its whole thickness after tanning with the basic tanning salt of a multivalent metal and prior to treatment with the organic compound.

5. A process according to claim 1, in which the basic tanning salt of a multivalent metal is a basic salt of chromium, aluminium, zirconium or cerium.

6. A process according to claim 1, in which the basic tanning salt is a mineral acid salt.

7. A process according to claim 1, in which the quantity of the basic tanning salt of a multivalent metal used is sufficient to give from 1.5 to 5.0% by weight of metal oxide based on the dry weight of the hide or skin.

8. A process according to claim 1, in which the long chain aliphatic group contains a chain of from six to 36 carbon atoms.

9. A process according to claim 8, in which the or-
organic base salt of a long chain aliphatic carboxylic acid, a half ester of a long chain aliphatic dicarboxylic acid, a salt of a sulphonated or sulphated long chain mono carboxylic acid, a sulphonated or sulphated triglyceride, or a long chain aliphatic amino acid.

13. A process according to claim 1, in which the quantity of organic compound used is from 3 to 8% based on the shaved weight of the leather.

14. A process according to claim 1, in which the treatment with the organic compound is carried out in the presence of a water-soluble or water miscible alcohol or a liquid hydrocarbon.

15. A process according to claim 1, in which the hide or skin is immersed in an aqueous solution of the basic tanning salt of the multivalent metal, the pH of the hide or skin in the aqueous solution is brought up to the desired value, and the organic compound is then added.

16. A process according to claim 1, in which after treatment with the organic compound, the hide or skin is further treated with a basic salt of a multivalent metal.

17. A process according to claim 16, in which the basic salt of a multivalent metal that is used to further treat the hide or skin is a basic salt of chromium, aluminium, zirconium or cerium.

18. A process according to claim 16, in which the quantity of basic salt used for the further treatment is from 1.0 to 3.0% by weight, calculated as metal oxide, based on the shaved weight of the leather.

19. A process according to claim 1, in which, after treatment with the organic compound, the hide or skin is further treated with a normal salt of a multivalent metal.

20. A process according to claim 19, in which the normal salt is a salt of copper, zinc, zirconium, aluminium or nickel.

21. A process according to claim 19, in which the quantity of normal salt used for the further treatment is from 1.0 to 3.0% by weight, calculated as metal oxide, based on the shaved weight of the leather.

22. A leather tanned with a basic tanning salt of a multivalent metal and containing an adsorbed complex of an organic compound, having a long chain aliphatic group and a single reactive group, and a salt of a multivalent metal, said leather being produced by the process of claim 1.

23. A leather according to claim 22, in which the basic tanning salt of a multivalent metal is a basic salt of chromium, aluminium, zirconium or cerium.

24. A leather according to claim 22, in which the organic compound is an alkali metal, ammonium or organic base salt of a long chain aliphatic carboxylic acid, a half ester of a long chain dicarboxylic acid, or a long chain aliphatic amino acid.

25. A leather according to claim 22, in which the salt of a multivalent metal that is used to further treat the leather is a basic salt of chromium, aluminium, zirconium or cerium.

26. A leather according to claim 22, in which the salt of a multivalent metal that is used to further treat the leather is a normal salt of copper, zinc, zirconium, aluminium or nickel.

27. A leather tanned with a basic tanning salt of a multivalent metal and containing chemically bonded residues of a complex of an organic compound, having a long chain aliphatic group and two or more reactive groups, and a salt of a multivalent metal, said leather being produced by the process of claim 1.

28. A leather according to claim 27, in which the basic tanning salt of a multivalent metal is a basic salt of chromium, aluminium, zirconium or cerium.

29. A leather according to claim 27, in which the organic compound is a salt of a sulphonated or sulphated long chain mono carboxylic acid, or a sulphonated or sulphated triglyceride.

30. A leather according to claim 27, in which the salt of a multivalent metal that is used to further treat the leather is a basic salt of chromium, aluminium, zirconium or cerium.

31. A leather according to claim 27, in which the salt of a multivalent metal that is used to further treat the leather is a normal salt of copper, zinc, zirconium, aluminium or nickel.

* * * * *