(19) World Intellectual Property Organization International Bureau PC (43) International Publication Date 27 September 2007 (27.09.2007) (51) International Patent Classification: *C08L 33/00* (2006.01) (21) International Application Number: PCT/US2007/006286 (22) International Filing Date: 13 March 2007 (13.03.2007) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 11/384,183 17 March 2006 (17.03.2006) US (71) Applicant (for all designated States except US): BEN-JAMIN MOORE & CO. [US/US]; 51 Chestnut Ridge Road, Montvale, NJ 07645 (US). (72) Inventors; and - (75) Inventors/Applicants (for US only): YANG, Yong [US/US]; 32-43 Bloomingdale Dr., Hillsborough, NJ 08844 (US). FRIEDZON, Yakov [US/US]; 11 Clark Court, Bridgewater, NJ 08807 (US). SHEERIN, Robert [US/US]; 2 Hamilton Drive South, North Caldwell, NJ 07006 (US). SHAVEL, Luz [US/US]; 7 Orchard St., Budd Lake, NJ 07828 (US). - (74) Agent: THAN, H.T.; The H.T. Than Law Group, 1010 Wisconsin Avenue, N.W., Suite 560, Washington, DC 20007 (US). (10) International Publication Number WO 2007/109012 A2 - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. - (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). #### Published: without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette. 109012 (54) Title: EMULSION POLYMER BLEND COATING COMPOSITIONS AND METHODS FOR INCREASING CHALKY SUBSTRATE ADHESION (57) Abstract: The present invention relates to a coating composition containing a polymer blend dispersion including: a first polymer having a relatively low molecular weight and a relatively low glass transition temperature and comprising a self-crosslinking monomer; and a second polymer having a relatively high molecular weight and a relatively high glass transition temperature. Latex paint compositions and architectural coatings containing the coating composition according to the invention are also described herein, as well as substrates coated therewith. # EMULSION POLYMER BLEND COATING COMPOSITIONS AND METHODS FOR INCREASING CHALKY SUBSTRATE ADHESION ### FIELD OF THE INVENTION [0001] The present invention relates to a coating composition containing a polymer blend dispersion including a first polymer having a relatively low molecular weight and a relatively low glass transition temperature, and a second polymer having a relatively high molecular weight and a relatively high glass transition temperature. The emulsion coating composition according to the invention can advantageously be used in paint compositions and architectural coating applications. ### BACKGROUND OF THE INVENTION [0002] Good adhesion properties, particularly to chalky substrates, are important to coatings such as paints and architectural coatings. One conventional method for improving the chalk adhesion properties of a coating composition is to add an alkyd resin to the conventional coating composition. However, alkyd resins produce premature yellowing, rendering the coatings undesirable in certain circumstances. [0003] Another method for improving the chalk adhesion properties is to synthesize a polymer blend in a sequential polymerization. Examples of acrylic-based polymer blends made by sequential polymerization processes can be found in U.S. Patent Nos. 5,990,228 and 6,710,112 B1. [0004] The '228 patent discloses aqueous coating compositions containing at least two polymer components which supposedly provide adhesion and improved durability, as measured in dried coatings made from the aqueous compositions by improved gloss retention or dirt pickup resistance. Specifically, in Comparative Example 1 of the '228 patent, this patent discloses the use of a pre-polymerized latex core of 60 nm particulate poly(butyl acrylate-co-methyl methacrylate-co-methacrylic acid), upon which was further polymerized two layers of poly(butyl acrylate-co-methyl methacrylate-co-acrylic acid) of the same composition. The at least two polymer components are synthesized as core-shell polymers by a sequential polymerization process. [0005] The '112 patent discloses aqueous polymer dispersions having two polymer phases that have different glass transition temperatures but that are formed by a sequential polymerization process. In addition, the molecular weights of the two polymer phases are different, due to the addition at some point during the sequential polymerization of a chain transfer reagent. [0006] Other publications disclose alternatives to alkyd resin modification in coating compositions. [0007] For example, U.S. Patent Application Publication No. 2004/0161542 A1 and U.S. Patent No. 6,630,533 both disclose compositions containing at least one fatty acid ester. In the '542 publication, the fatty acid ester is unsaturated. In the '533 patent, the fatty acid ester comprises a C_{12} to C_{40} alkyl (meth)acrylate. [0008] U.S. Patent No. 5,376,704 discloses aqueous coating compositions containing a neutralized half-ester product of an acrylic polymer containing at least two reactive anhydride groups that is crosslinked with an epoxy crosslinker. The molecular weights of both these components are less than 100,000 Daltons. [0009] U.S. Patent Application Publication No. 2004/0010091 A1 discloses two component coating compositions that cure under ambient conditions. The coating composition of the '091 publication contains crosslinkable and crosslinking components, with both components having molecular weights under 100,000 Daltons. [0010] U.S. Patent Application Publication No. 2004/0010071 A1 discloses an aqueous polymer blend composition containing soft and hard polymer particles. The hard polymer particles have a glass transition temperature greater than 25°C, while the soft polymer particles have a glass transition temperature less than or equal to 25°C. In addition, the hard polymer particles constitute from 2-30 wt% of the composition, while the soft polymer particles constitute from 70-98 wt% of the composition. [0011] U.S. Patent Application Publication No. 2005/0009954 A1 discloses aqueous polymer compositions containing hard polymers and soft polymers, with at least the hard polymers include phosphorus-containing and/or polyacid-containing pendant groups. The hard polymers have a glass transition temperature of at least 20°C, while the soft polymers have a glass transition temperature of from -20°C to 5°C. In addition, the hard polymers constitute from 2-40 wt% of the composition, while the soft polymer particles constitute from 60-98 wt% of the composition. [0012] There remains a need for other varied alternatives to alkyd resins and sequentially polymerized polymer blends for improving adhesion. ### BRIEF SUMMARY OF THE INVENTION [0013] The present invention involves a latex composition comprising a polymer blend of a first polymer and a second polymer, wherein: (a) the first polymer is made from first constituent monomers, has a number average molecular weight less than about 100,000 Daltons, has a glass transition temperature from about -20°C to about 60°C, and comprises an amount of a self-crosslinking monomer; (b) the second polymer is made from second constituent monomers, has a number average molecular weight greater than about 150,000 Daltons, and has a glass transition temperature from about -20°C to about 60°C; (c) the glass transition temperature of the second polymer is at least 10°C higher than the glass transition temperature of the first polymer; and (d) the relative proportion of the first polymer to the second polymer is from about 1:4 to 4:3 by weight. [0014] The present invention also describes coating compositions containing the latex composition according to the invention, as well as coatings made therefrom and coated substrates on which the coating compositions containing the latex composition according to the invention are disposed. ### DETAILED DESCRIPTION OF THE INVENTION [0015] One aspect of the present invention relates to a latex emulsion composition containing a polymer blend of: (i) a first polymer having a relatively low molecular weight and a relatively low glass transition temperature; and (ii) a second polymer having a relatively high molecular weight and a relatively high glass transition temperature. Advantageously, the first polymer is polymerized from constituent monomers that include a self-crosslinking monomer. [0016] As used herein, the phrase "relatively low molecular weight" means a number average molecular weight of less than about 100,000 Daltons. Also as used herein, the phrase "relatively high molecular weight" means a number average molecular weight of greater than about 100,000 Daltons, preferably greater than about 200,000 Daltons. [0017] One of the benefits of relatively low molecular weight chains in coating compositions containing the latex polymer blends according to the invention can be improved substrate adhesion, whereas one of the benefits of relatively high molecular weight chains in the
latex polymer blends according to the invention can be increased physical/mechanical strength. Combining these benefits by creating a coating composition containing a polymer blend having both relatively high molecular weight and relatively low molecular weight polymer chains is therefore desirable. [0018] When conventional paint compositions containing relatively high molecular weight acrylic-based latexes are applied to chalky substrates, for example, they can tend to exhibit poor adhesion to the chalky surface. In some cases, alkyd resins are combined with these poorly-adhering acrylic-based latex-containing paint compositions to improve the wet and/or dry adhesion properties. Alkyd resins, however, may negatively affect certain qualities of the paint compositions, including, but not limited to, causing loss of gloss, causing yellowing, causing color fading, causing chalkiness, causing brittleness, hindering clean-up, decreasing emulsion stability (thus increasing the need for added surfactant), increasing sensitivity to water, and the like, and combinations thereof. [0019] Another method for improving adhesion of paint compositions applied on chalky substrates and for reducing or eliminating the need for incorporating alkyd resins with relatively high molecular weight acrylic-based latexes includes the formation of polymers containing multimodal molecular weight distributions. Multimodal molecular weight distributions in polymer blends are typically attained by sequentially polymerizing monomers and by using a molecular weight control agent, such as a chain transfer agent, at some point during the polymerization process. See, e.g., commonly-owned, co-pending U.S. Patent Application No. 11/323,621, filed December 30, 2005, and entitled "Emulsion Polymers Having Multimodal Molecular Weight Distributions". Such sequential polymerization processes have been described as forming core-shell type polymers, such as those disclosed in U.S. Patent Nos. 5,990,228 and 6,710,112 B1, for example. However, because of the nature of the sequential polymerization process, the different molecular weights are typically attained for identical polymers (i.e., containing the same constituent monomer feeds), or for polymers that have relatively similar constituent monomer feeds. [0020] It is believed that the use of polymer blend compositions according to the invention containing both low molecular weight and high molecular weight chains in paint compositions applied on chalky substrates can advantageously reduce or eliminate the need for incorporating alkyd resins with high molecular weight latex polymers, and can be an alternative to sequentially polymerized and/or core-shell type polymers with multimodal molecular weight distributions. Without being bound by theory, it is believed that the presence of the first polymer in the blend having the lower molecular weight can sufficiently improve the adhesion of paint compositions containing them to chalky substrates. Nevertheless, because uniformly lower molecular weight polymer particles can tend to compromise the physical and mechanical properties of the paint compositions and/or the surfaces of the chalky substrates coated therewith, it is also believed that a combination of low and high molecular weight polymers can simultaneously result in acceptable adhesion and acceptable physical/mechanical properties. [0021] In one embodiment, the number average molecular weight of the first polymer is less than about 100,000 Daltons and the number average molecular weight of the second polymer is greater than about 100,000 Daltons. For example, for the first polymer the number average molecular weight can be from about 7,000 Daltons to about 80,000 Daltons, preferably from about 15,000 Daltons to about 60,000 Daltons. The number average molecular weight of the second polymer can be from about 100,000 Daltons to about 1,500,000 Daltons, preferably from about 200,000 Daltons to about 1,000,000 Daltons. [0022] The glass transition temperatures of both polymers in the blend are typically above about -30°C. In a preferred embodiment, the T_g values of both polymers in the blend can fall within the range from about -20°C to about 60°C, preferably from about -15°C to about 50°C. In one embodiment, the T_g of the first polymer can be less than about 25°C. In a preferred embodiment, the T_g of the first polymer can be from about -15°C to about 40°C, preferably from about -10°C to about 30°C, for example from about -5°C to about 20°C or from about 0°C to about 10°C. In another embodiment, the T_g of the second polymer can be less than about 25°C. In another preferred embodiment, the T_g of the second polymer can be from about -10°C to about 45°C, preferably from about -5°C to about 35°C, for example from about 0°C to about 25°C or from about 5°C to about 25°C. In another preferred embodiment, the T_g of the second polymer can be at least about 0°C or at least about 80°C, preferably from 10°C to 60°C and more preferably from 20°C to 40°C. Alternatively, the T_g of the second polymer is about 10°C to about 15°C greater than the T_g of the first polymer. [0023] In one embodiment, the T_g values for each of the polymers of the blend can preferably be measured using conventional tools and techniques known to those of skill in the art, e.g., differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), or the like, or a combination thereof. In another embodiment, the T_g values for each of the polymers of the blend can be completely calculated by applying Fox's law to known T_g values, e.g., from any edition of the Polymer Handbook such as the 3rd ed. (1989), of the homopolymers corresponding to each of the monomers used and their respective weight ratios. For descriptions of this latter method, see, e.g., U.S. Patent No. 6,723,779 and/or International Publication No. WO 94/04581, the disclosures of both of which are incorporated herein by reference in their entireties. [0024] In a preferred embodiment, the relative proportion of the first polymer to the second polymer in the polymer blend according to the invention can be from about 1:4 to 2:1 by weight, for example from about 1:4 to 4:3 by weight, preferably from about 1:3 to about 5:4 by weight, more preferably from about 1:3 to about 6:5 by weight, most preferably from about 3:7 to about 1:1 by weight. [0025] In the polymer blend of the present invention, both polymers can be made from a mixture of constituent monomers containing (a) diluent monomers having either no functional groups or functional groups that are relatively unreactive and (b) functional (also called crosslinkable) monomers having functional groups that are relatively reactive and that are capable of crosslinking the polymer with a crosslinking agent. The functional monomers can be useful for later coalescence, and optionally crosslinking, if desired, of one or both of the polymers in the blend. As a common functional group is a carboxylic acid group, the content of the functional monomers that are not also self-crosslinking herein can be described as acid monomer content. [0026] In one embodiment, the first polymer in the polymer blend can have a self-crosslinking monomer content from about 0.1% to about 5% by weight, preferably from about 0.2% to about 4% by weight, for example from about 0.4% to about 3% by weight, from about 0.2% to about 1.5% by weight, from about 0.5% to about 4% by weight, or from about 0.5% to about 2% by weight. [0027] In one embodiment, both of the polymers in the polymer blend can have an average acid monomer content of less than about 10% by weight, preferably less than about 7%, more preferably from about 0.1% to about 5%, for example from about 0.5% to about 3%. Although the acid content is described herein in terms of weight percent of acid monomer, acid content can be quantified in many ways, e.g., acid number. [0028] Another group of monomers also contain reactive functional groups, but those groups are capable of crosslinking the polymer without the presence of a crosslinking agent in the composition; such monomers are collectively termed "crosslinking monomers" herein and include, but are not limited to, "self-crosslinking" monomers, which require no external crosslinking agent to form crosslinks, "oxidatively crosslinking" monomers, which utilize atmospheric oxygen but need no crosslinking agent in their composition to form oxidative crosslinks, and the like. [0029] Many different functional groups may be suitable as pendant groups on the constituent monomers forming the polymers in the blend according to the invention. Although the polymers in the blend according to the invention can be described in terms of their acid content, it should be understood that the term "acid content" should include not merely the content of carboxylic acid-containing monomers, but the combined content of any functional/crosslinkable (but not crosslinking) monomers. Further, as used herein, the terms "polymer" and "polymers" are used to refer to oligomers, homopolymers, random copolymers, statistical copolymers, alternating copolymers, periodic copolymer, bipolymers, terpolymers, quaterpolymers, other forms of copolymers, adducts thereof, substituted derivatives thereof, and combinations or blends thereof. Such polymers can be linear, branched, hyperbranched, crosslinked, block, di-block, multi-block, graft, isotactic, syndiotactic, stereoregular, atactic, gradient, multi-arm star, comb, dendritic, and/or any combination thereof. [0030] Examples of polymer repeat units having functional groups can include, but are not limited to, acrylic acid, ionic acrylate salts, alkacrylic acids, ionic alkacrylate salts, haloacrylic acids, ionic haloacrylate salts, acetoacetoxyalkyl acrylates, acetoacetoxyalkyl alkacrylates, polymerizable anhydrides such as maleic anhydride, acrylamide, alkacrylamides, monoalkyl acrylamides, monoalkyl
alkacrylamides, alkacrylamidoalkyl ethyleneureas such as those sold under the tradename Sipomer™ WAM, alkenyloxyamidoalkyl ethyleneureas such as those sold under the tradename Sipomer™ WAM, vinyl dicarboxylic organic acids (e.g., itaconic acid, glutaconic acid, maleic acid, angelic acid, fumaric acid, tiglic acid, and the like), monoalkyl esters of vinyl dicarboxylic organic acids (e.g., methyl maleate, ethyl fumarate, and the like), monoisopropenyl esters of saturated, vinyl dicarboxylic organic acids, monoalkoxydialkyl vinyl silanes, dialkoxyalkyl vinyl silanes, trialkoxy vinyl silanes, and the like, and copolymers and combinations thereof. [0031] As used herein, the prefix "alk" before an ethylenically unsaturated monomer should be understood to indicate a C₁-C₆ hydrocarbon side group attached to either carbon of the olefinic pendant group, though it usually refers to a group attached to the same carbon as the olefinic pendant group. For example, the most basic alkacrylic acid is methacrylic acid. However, if the "alk" group is on the vinyl carbon not containing the pendant carboxylic acid, then a methacrylic acid becomes crotonic acid, which is contemplated as an alkacrylic acid, as defined herein. Another example includes tiglic acid (i.e., 2-butene-2-carboxylic acid), which is an alkacrylic acid containing two "alk" groups, with one methyl group attached to each vinyl carbon. As used herein, the term "alkyl" should be understood to mean an aliphatic C₁-C₁₈ hydrocarbon moiety. For instance, the monomer ethyl methacrylate has a methyl group attached as an ester to the pendant carboxylate group and an ethyl group attached to the same carbon of the vinyl moiety as the pendant carboxylate (i.e., CH₂=C(CH₂CH₃)-C(=O)O(CH₃)). As used herein, the term "alkenyl" should be understood to mean a C₂-C₁₈ hydrocarbon moiety having a single double bond, preferably a terminal double bond. As used herein, the term "alkoxy" group should be understood to mean a group having a C₁-C₁₂ hydrocarbon or oxyhydrocarbon (i.e., containing hydrogen, carbon, and oxygen atoms) moiety attached to a terminal oxygen atom. [0032] In the embodiments where the polymer repeat units include ionic salts, their counterions can include, but are not limited to, sodium, potassium, lithium, copper, silver, ammonium, tetraalkyl ammonium, alkyl pyridinium ions such as N-methyl pyridinium, tetraalkyl phosphonium ions, tetraaryl phosphonium ions, aralkyl phosphonium ions such as methyltriphenylphosphonium and methyltriphenoxyphosphonium, trialkylsulfonium ions such as trimethylsulfonium, aralkyl sulfonium ions, trialkylsulfoxonium ions such as trimethylsulfoxonium, aralkyl sulfoxonium ions, and the like, and combinations thereof. As used herein, the term "aryl" should be understood to mean an aromatic C₆-C₁₈ moiety, and the term "aralkyl" should be understood to mean a moiety that is partially aryl and partially alkyl. [0033] In one embodiment, the constituent monomers of the first polymer, the constituent monomers of the second polymer, or both, can be substantially free from hydroxy-functional pendant groups such as, but not limited to, those in hydroxyalkyl acrylates, hydroxyalkyl alkacrylates, vinyl phenols, hydroxyalkyl vinyl benzenes, only partially esterified acrylate esters of alkylene glycols, only partially esterified acrylate esters of non-polymeric polyhydroxy compounds like glycerol, only partially esterified acrylate esters of polymeric polyhydroxy compounds, and the like. In another embodiment, the constituent monomers of the first polymer, the constituent monomers of the second polymer, or both, can be substantially free from conjugated diene monomers such as, but not limited to, butadienes, hexadienes, hexatrienes, octadienes, octatrienes, octatetrenes, as well as hydrocarbon analogs thereof, substituted halo- and/or cyano- derivatives thereof, and the like, and a combination thereof. In another embodiment, the constituent monomers of the first polymer, the constituent monomers of the second polymer, or both, can be substantially free from phosphorus-containing pendant groups, from polyacid-containing pendant groups, or both. As used herein, the terms "substantially no" and "substantially free from", referring to a component in a composition, mean that the composition comprises not more than about 1 wt%, preferably not more than about 0.5 wt%, more preferably not more than about 0.1 wt%, most preferably not more than about 0.02 wt%, or in some cases completely none (about 0%), of the component. [0034] In addition to the monomers containing functional groups, both the polymers in the blend according to the invention can also comprise diluent monomers or repeat units that contain pendant groups that do not typically react with crosslinking agents. Examples of such diluent monomers can include, but are not limited to, alkyl acrylates, alkyl alkacrylates, alkyl esters of vinyl monocarboxylic organic acids other than acrylates and alkacrylates (e.g., ethyl tiglate, methyl crotonate, and the like), dialkyl esters of vinyl dicarboxylic acids, styrene, alkylstyrenes (e.g., α-ethylstyrene, α-methylstyrene, vinyl toluene, 2,4-dimethylstyrene, 4-t-butylstyrene, and the like), halostyrenes (e.g., α-bromostyrene, 2,6-dichlorostyrene, and the like), isopropenyl esters of saturated, monocarboxylic organic acids (e.g., isopropenyl acetate, isopropenyl isobutyrate, and the like), monoisopropenyl monoalkyl esters of saturated, dicarboxylic organic acids (e.g., isopropenyl alkyl oxalate, isopropenyl alkyl succinate, and the like), vinyl carboxylate alkyl ethers (e.g., vinyl acetate, vinyl propionate, vinyl butyrates, vinyl benzoates, halo-substituted versions thereof such as vinyl chloroacetate, and the like), vinyl alkyl ethers, acrylonitrile, alkacrylonitriles, dialkyl acrylamides, dialkyl alkacrylamides, allyl compounds (e.g., allyl chloride, allyl esters of saturated, monocarboxylic acids, allyl alkyl esters of saturated, dicarboxylic organic acids, and the like), and the like, and combinations thereof. Preferred diluent monomers include, but are not limited to, C₁-C₈ alkyl acrylates, $C_1\text{-}C_8$ alkyl $C_1\text{-}C_2$ alkacrylates, styrene, $C_1\text{-}C_4$ alkylstyrenes, vinyl acetate, and combinations thereof. [0035] In one preferred embodiment, both the polymers in the blend according to the invention can be substantially acrylic. As used herein, the term "acrylic" refers to (co)polymer compositions made from monomers selected from the group consisting of alkyl acrylates, alkyl alkacrylates, acrylic acid, ionic acrylate salts, alkacrylic acids, ionic alkacrylate salts, acrylamide, alkacrylamides, monoalkyl acrylamides, monoalkyl alkacrylamides, acrylonitrile, alkacrylonitriles, substituted versions thereof (e.g., hydroxyalkyl acrylates, hydroxyalkyl alkacrylates, alkacrylamidoalkyl ethyleneureas, alkenyloxyamidoalkyl ethyleneureas, and the like), and the like, and combinations thereof. As used herein, the term "substantially," at least with regard to a component in a composition, means that the composition contains at least about 90% by weight of that component, preferably at least about 95% by weight of that component, most preferably at least about 99% by weight of that component, in some cases at least about 99.9% by weight of that component, or completely comprises (about 100% by weight of) that component. [0036] Acrylic latex copolymers containing acrylonitriles are known in the art to improve certain physical properties as compared to non-acrylonitrile-containing acrylics, but can significantly increase cost and can introduce undesirable environmental issues. Thus, in one embodiment, the diluent monomers specifically exclude acrylonitrile and alkacrylonitriles. [0037] In a preferred embodiment, at least the second polymer (i.e., having a relatively high molecular weight and a relatively high T_g) of the polymer blend is substantially free from crosslinking monomers. In another preferred embodiment, the first polymer of the polymer blend can contain an amount of a self-crosslinking monomer but can be substantially free from oxidatively crosslinking monomers. In one embodiment, the polymer blend according to the invention can be used in architectural coatings and in paint formulations. In another embodiment, the polymer blend according to the invention can be combined with one or more pigments/colorants in hydrophobic latex applications. [0038] Each of the polymers in the polymer blends according to the invention are typically polymerized in a latex system comprising water, surfactant, the desired monomer(s), an initiator, a polymer molecular weight control agent (in the case of the low molecular weight polymer), optionally an organic solvent, optionally a pH adjustor, optionally a chaser agent, optionally a coalescing agent, and optionally a preservative, which can be added at various times. The polymer blend according to the invention, in a preferred embodiment, specifically excludes two polymers that are sequentially polymerized; for instance, the polymer blend according to the invention may advantageously contain substantially no sequentially polymerized polymers. [0039] Examples of surfactants useful in the compositions according to the invention can include, but are not limited to, nonionic and/or anionic surfactants such as ammonium nonoxynol-4 sulfate, nonylphenol (10) ethoxylate, nonylphenol (~10mol%) ethoxylate, nonylphenol (~40mol%) ethoxylate, octylphenol (~40mol%) ethoxylate, octylphenol (9-10) ethoxylate, sodium dodecyl sulfonate, sodium tetradecyl sulfonate, sodium hexadecyl sulfonate, polyether phosphate esters, alcohol ethoxylate phosphate esters, those compounds sold under the tradename TritonTM (e.g., QS series, CF series, X series, and the like), those compounds sold under the tradename RhodaponTM, those sold under the tradename RhodapexTM, those compounds sold under the tradename RhodacalTM, those compounds sold
under the tradename RhodafacTM, and the like, and combinations thereof. [0040] Examples of initiators and chaser solutions useful in the compositions according to the invention can include, but are not limited to, ammonium persulfate, sodium persulfate, redox systems such as sodium hydroxymethanesulfinate (sodium formaldehyde sulfoxylate; reducer) and t-butyl-hydroperoxide (oxidizer), and the like, and combinations thereof, typically in an aqueous solution. Either or both of these components can optionally contain an additional surfactant and/or a pH adjustor, if desired to stabilize the emulsion. [0041] Examples of pH adjustors useful in the compositions according to the invention can include, but are not limited to, ammonium hydroxide, sodium hydroxide, sodium carbonate, sodium bicarbonate, potassium hydroxide, potassium carbonate, potassium bicarbonate, ammonia, and the like, and combinations thereof. In certain cases, compounds that qualify as pH adjustors can be added for purposes other than adjusting pH, e.g., emulsion stabilization, and yet are still characterized herein as pH adjustors. [0042] Polymer molecular weight control agents are designed to control (usually to limit) the molecular weight of a propagating polymer. While polymer molecular weight control agents can include things like radiation, they are typically molecules added to the polymerization mixture. Examples of polymer molecular weight control agents include, but are not limited to, chain transfer agents (CTAs), e.g., alkyl mercapto-esters such as isooctyl mercaptopropionate, alkyl mercaptans, and the like, and combinations thereof. Chain transfer agents typically operate as polymer molecular weight control agent molecules, for example, by catalytically or consumptively terminating a propagating polymer chain in a way that also initiates a newly propagating polymer chain. In this way, the amount of chain transfer agent(s) can be tailored to reduce the target polymer molecular weight in a set polymerization system, or alternately, in combination with calculation of the amount of initiator, can be calculated to target a particular average polymer molecular weight (e.g., within a given range) of a polymerization system. [0043] Examples of biocides/preservatives useful in the compositions according to the invention can include, but are not limited to, hydroxy-functional aza-dioxabicyclo compounds such as those commercially available from ISP under the tradename NuoseptTM 95, those compounds sold under the tradename SKANETM, isothiazolones such as those sold under the tradename KathonTM, PolyphaseTM additives from Troy Corp. and the like, and combinations thereof. [0044] In another aspect of the invention, the latex polymer blend compositions can be included in a paint or other coating composition, which can advantageously be an emulsion further containing water, a coalescence solvent, a pH adjustor, a surfactant, a defoamer, a pigment, optionally but preferably a dispersant, optionally but preferably a rheology modifier, and optionally but preferably a biocide or preservative. [0045] Examples of coalescence solvents and organic solvents useful in the compositions according to the invention can include, but are not limited to, 2-ethylhexyl ether of ethylene glycol (e.g., commercially available as EastmanTM EEH solvent), methyl carbitol, propylene glycol, ethylene glycol, those compounds sold under the tradename TEXANOLTM, plasticizers such as dibutyl phthalate, and the like, and combinations thereof. [0046] Examples of defoamers useful in the compositions according to the invention can include, but are not limited to, polysiloxane-polyether copolymers such as those sold by Tego under the tradename FoamexTM, those sold under the tradename BYKTM, those sold under the tradename DrewplusTM, those sold under the tradename SurfynolTM, and the like, and combinations thereof. [0047] Examples of anticorrosive agents useful in the compositions according to the invention can include, but are not limited to, sodium nitrite and the like. [0048] Examples of dispersants useful in the compositions according to the invention can include, but are not limited to, 2-amino-2-methyl-1-propanol, hydrophobic copolymers such as Tamol[™] 165A, carboxylated polyelectrolyte salts such as Tamol[™] 173A, and the like, and combinations thereof. [0049] Examples of rheology modifiers useful in the compositions according to the invention can include, but are not limited to, those commercially available from Rohm & Haas under the tradename AcrysolTM, such as RM-8W, RM-825, RM-5000, RM-2020 NPR and RM-825, NatrasolTM and AquaflowTM from Aqualon Division of Hercules Inc. and UCAR PolyphobeTM from Dow. [0050] While typically multiple pigments/colorants are present in end-use latexes that are to be used in paint or architectural coating applications, sometimes only a white pigment, such as a zinc oxide and/or a titanium oxide, is added in the early stages of the formation of the paint composition (e.g., in the base composition). In such a case, any other desired pigments/colorants of various colors (including more white pigment) can optionally be added at the later stages of, or after, formation of the paint composition. Examples of pigments/colorants useful according to the invention can include, but are not limited to, carbon black, iron oxide black, iron oxide yellow, iron oxide red, iron oxide brown, organic red pigments, including quinacridone red and metallized and non-metallized azo reds (e.g., lithols, lithol rubine, toluidine red, naphthol red), phthalocyanine blue, phthalocyanine green, mono- or di- arylide yellow, benzimidazolone yellow, heterocyclic yellow, DAN orange, quinacridone magenta, quinacridone violet, and the like, and any combination thereof. These exemplary color pigments can be added as powders, but can more conveniently be added as aqueous dispersions to paint compositions according to the invention. [0051] Additionally or alternately, extender pigments/colorants can be added, e.g., to the grind composition portion of the paint composition. Examples of extender pigments/colorants useful in the paint compositions according to the invention can include, but are not limited to, silica, silicates, carbonates such as calcium carbonates, and the like, and combinations thereof. [0052] The coating compositions containing the blend of first and second polymers according to the invention can exhibit a wide range of viscosities, depending upon the application. In one embodiment, the viscosity of the polymer blend latex composition can be from about 65 to about 130 Krebunits (KU), preferably from about 70 to about 110 KU, more preferably from about 75 to about 105 KU. While coalescence, degradation, and other factors can cause the viscosity to increase over time, it is preferable that the viscosity not increase beyond about 130 KU, preferably not beyond about 120 KU, more preferably not beyond about 115 KU, and in some cases not beyond about 110 KU. [0053] The polymer blends and/or latex coating compositions according to the invention can advantageously exhibit a pH from about 6 to about 10, although the pH needs only to be sufficient to maintain the stability of the particular blend and/or latex composition in combination with the surfactant(s) and other stabilizing components. [0054] In most applications, the polymer blends and/or latex coating compositions according to the invention are typically applied as a coating on a substrate. The substrate may or may not depend upon the product in which acrylic latex according to the invention is used. For example, when the acrylic latex is used in a stain composition, the substrate can typically be wood or the like. Examples of substrates can include, but are not limited to: wood, including natural wood, compressed particulate wood, faux or artificial wood, wood composites, and the like, and combinations thereof; metals, including metal alloys, metal composites, coated metals, metallic surfaces, and the like, and combinations thereof; ceramics, including metal oxides, metal nitrides, metal oxynitrides, metal sulfides, metal carbides, and the like, and combinations thereof; transparent and/or translucent substrates such as glasses, polycarbonates, acrylics, styrenics, and the like, and combinations thereof; polymers; woven and/or non-woven fabrics; building materials such as dry wall, sheet rock, and the like, and combinations thereof; chalky substrates; and the like; and combinations thereof. [0055] In one embodiment, a paint composition containing the polymer blend composition according to the invention can be formulated according to the following method. First, a pigment dispersion composition, or grind, is formed by: combining an organic solvent, water, a dispersant, a pH adjustor, a surfactant, a defoamer, a colorant/pigment, and a biocide/preservative; stirring and optionally grinding for a period of time to sufficiently mix the ingredients; and, while continuing to stir and/or grind, adding more water. To this pigment dispersion composition can be added the first polymer and the second polymer of the polymer blend according to the invention, followed by a pH adjustor, if desired, and a performance additive composition comprising an organic solvent, a surfactant, and a defoamer. Optionally but preferably, an anticorrosive solution can then be added. Then, a rheology modifier can be added, optionally including more water, if desired, and also a pH adjustor, thus forming a paint composition. Furthermore, if desired, more colorant(s) and/or pigment(s) can be added to the paint composition either to compliment the (white) pigment(s)/colorant(s) already in the pigment dispersion composition or to add another desired color to the paint composition. A coalescing agent may optionally be added later. ### **EXAMPLES** [0056] The following Examples are merely illustrative of certain embodiments of the invention and contain
comparisons of compositions and methods according to the invention with the prior art and/or embodiments not according to the invention. The following Examples are not meant to limit the scope and breadth of the present invention, as recited in the appended claims. # Example 1: Low Molecular Weight, Low T_g Polymer w/o Self-Crosslinking Monomer. [0057] Example 1 describes a low molecular weight, low glass transition temperature polymer formed without a self-crosslinking monomer present in the constituent monomers. The number average molecular weight of the polymer of Example 1 was found to be about 29,000 Daltons, and the glass transition temperature of the polymer of Example 1 was found to be about -5°C. The latex polymer formulation, in order of addition, is described below in Table 1. Table 1. | Ingredients | Amount (grams) | Monomer content | | | |--|----------------|-----------------|--|--| | | | | | | | Aqueous Surfactant Solution | 845 | | | | | deionized water | | | | | | RHODACAL DS-4 surfactant | 1 | | | | | Total Monomer Emulsion* | | | | | | deionized water | 190 | | | | | RHODACAL DS-4 surfactant | . 40 | | | | | RHODAPEX CO-436 surfactant | 10 | | | | | SIPOMER WAM-IV monomer | . 25 | 3.8 wt% | | | | methacrylic acid monomer | 12 | 1.8 wt% | | | | methyl methacrylate monomer | 460 | 0.6 wt% | | | | 2-ethylhexyl acrylate monomer | 610 | 93.7 wt% | | | | isooctyl 2-mercaptopropionate CTA | 5 | | | | | deionized water
ammonium persulfate | 20 2.5 | | | | | Second Initiator Solution | | | | | | deionized water | 40 | | | | | ammonium persulfate | 2.5 | | | | | deionized water (rinse) | 10 | · | | | | Chaser Solutions | | | | | | t-butyl hydroperoxide | 1.4 | | | | | deionized water | 10 | | | | | | 1 | | | | | sodium formaldehyde sulfoxylate | 1 | | | | | deionized water | . 15 | | | | | pH Adjustor | | | | | | ammonium hydroxide (26% in H ₂ O) | 5 | | | | | deionized water | 10 | | | | [0058] The glass transition temperature value for the polymer of Example 1 was calculated according to Fox's law. The molecular weight value for the polymer of Example 1 was obtained by analyzing the acrylic latex polymer particles using a GPC method using WATERS 410 with differential Refractomer and tetrahydrofuran as mobile pahse at 40°C. Example 2: Low Molecular Weight, Low T_g Polymer With Self-Crosslinking Monomer. [0059] Example 2 describes a first polymer of the polymer blend according to the invention, *i.e.*, a low molecular weight, low glass transition temperature polymer formed with about 0.9 wt% of a self-crosslinking monomer present in the constituent monomers. The molecular weight of the polymer of Example 2 was found to be about 34,000 Daltons (number average; weight average, about 95,000 Daltons; and polydispersity, about 2.8), and the glass transition temperature of the polymer of Example 2 was calculated to be about -5°C. The latex polymer formulation, in order of addition, is described below in Table 2. Table 2. | Ingredients | Amount (grams) | Monomer content | | |--|----------------|-----------------|--| | | | | | | Aqueous Surfactant Solution | 345 | | | | deionized water | 845 | | | | RHODACAL DS-4 surfactant | 1 | | | | Total Monomer Emulsion* | | | | | deionized water | 190 | | | | RHODACAL DS-4 surfactant | 40 | | | | RHODAPEX CO-436 surfactant | 10 | | | | SIPOMER WAM QM1458 monomer | 25 | 2.2 wt% | | | methacrylic acid monomer | 12 | 1.1 wt% | | | methyl methacrylate monomer | 460 | 41.2 wt% | | | 2-ethylhexyl acrylate monomer | 610 . | 54.6 wt% | | | isooctyl 2-mercaptopropionate CTA | 5 | | | | vinyltriethoxysilane monomer | 10 | 0.9 wt% | | | First Initiator Solution | | | | | deionized water | 20 | | | | ammonium persulfate | 2.5 · | | | | Second Initiator Solution | | | | | deionized water | 40 | | | | ammonium persulfate | 2.5 | | | | deionized water (rinse) | 10 | | | | Chaser Solutions | | | | | t-butyl hydroperoxide | 1.4 | | | | deionized water | 10 | | | | | | • | | | sodium formaldehyde sulfoxylate | 1 | | | | deionized water | 15 | | | | pH Adjustor | | | | | ammonium hydroxide (26% in H ₂ O) | '5 | | | | deionized water | 10 | | | [0060] The glass transition temperature value for the polymer of Example 2 was calculated according to Fox's law. The molecular weight value for the polymer of Example 2 was obtained by analyzing the acrylic latex polymer particles using the same GPC method as in Example 1. Example 3: Low Molecular Weight, Low T_g Polymer With Self-Crosslinking Monomer. [0061] Example 3 describes a first polymer of the polymer blend according to the invention, *i.e.*, a low molecular weight, low glass transition temperature polymer formed with about 1.8 wt% of a self-crosslinking monomer present in the constituent monomers. The number average molecular weight of the polymer of Example 3 was found to be about 19,000 Daltons, and the glass transition temperature of the polymer of Example 3 was calculated to be about -5°C. The latex polymer formulation, in order of addition, is described below in Table 3. Table 3. | Ingredients | Amount (grams) | Monomer content | | |--|----------------|-----------------|--| | | | | | | Aqueous Surfactant Solution | | | | | deionized water | 845 | | | | RHODACAL DS-4 surfactant | 1. | | | | Total Monomer Emulsion* | | | | | deionized water | 190 | | | | .RHODACAL DS-4 surfactant | 40 | | | | RHODAPEX CO-436 surfactant | 10 | | | | SIPOMER WAM QM1458 monomer | 25 | 2.2 wt% | | | methacrylic acid monomer | 12 | 1.1 wt% | | | methyl methacrylate monomer | 460 | 40.8 wt% | | | 2-ethylhexyl acrylate monomer | 610 | 54.1 wt% | | | isooctyl 2-mercaptopropionate CTA | 10 | | | | vinyltriethoxysilane monomer | 20 | 1.8 wt% | | | First Initiator Solution | | | | | deionized water | 20 | | | | ammonium persulfate | 2.5 | | | | Second Initiator Solution | | | | | deionized water | 40 | | | | ammonium persulfate | 2.5 | | | | deionized water (rinse) | 10 | | | | Chaser Solutions | | | | | t-butyl hydroperoxide | 1.4 | | | | deionized water | 10 | | | | defonized water | 10 | | | | sodium formaldehyde sulfoxylate | 1 | | | | deionized water | 15 | | | | pH Adjustor | | | | | ammonium hydroxide (26% in H ₂ O) | 5 | | | | deionized water | 10 . | | | [0062] The glass transition temperature value for the polymer of Example 3 was calculated according to Fox's law. The molecular weight value for the polymer of Example 3 was obtained by analyzing the acrylic latex polymer particles using the GPC method described in Example 1. # Examples 4-6: Paint Compositions Containing High Molecular Weight, High T_g Polymers. [0063] Examples 4-6 describe paint compositions each comprising a single, relatively high molecular weight, relatively high glass transition temperature polymer. The paint composition formulations, in order of addition, are described below in Table 4. Table 4. | | Example 4 | Example 5 | Example 6 | | |--|----------------|----------------|----------------|--| | ngredients | Amount (grams) | Amount (grams) | Amount (grams) | | | | | | | | | Grind Composition | | | | | | water | 133 | 133 | 90 | | | TAMOL 731A dispersant | .15 | 15 | 15 | | | Zinc oxide pigment | 23 | 23 | 23 | | | TRONOX CR-826 pigment | 292 | 292 | 292 | | | Kaolin pigment | 50 | 50 | - | | | Pigment(s)/colorant(s), if desired | • | | | | | DREWPLUS L475 defoamer | 0.7 | 0.7 | 0.7 | | | TRITON X-100 surfactant | 20 | 20 | 10 | | | SKANE M-8 microbiocide | 1.9 | 1.9 . | 1.9 | | | NUOSEPT 95 microbiocide | 0.9 | 0.9 | 11 | | | DREWPLUS L475 defoamer | 0.5 | 0.5 | 0.5 | | | | | | | | | RHOPLEX SG-10M* polymer | 550 | - | - | | | RHOPLEX MV-23# polymer | - | 550 | - | | | RHOPLEX VSR-50* polymer | *** | - | 550 | | | | | | | | | pH Adjuster, if desired | | <u>.</u> | | | | | • | | | | | Performance Additive Composition | | | | | | TEXANOL coalescent | 20.8 | 14.8 | | | | OPTIFILM Enhancer400 coalescent | - | - | 15 | | | | 0.5 | 1 75 | 1 . 25 | | | propylene glycol solvent | 35 | 35 | . 35 | | | propylene glycol solvent | 35 | 35 | 33 | | | | 35 | 33 | | | | Anticorrosive Solution, if desired | 35 | 33 | | | | | 35 | 33 | | | | Anticorrosive Solution, if desired pH Adjuster, if desired Rheology Modifier | 35 | | | | | Anticorrosive Solution, if desired pH Adjuster, if desired Rheology Modifier | 20 | 20 | 20 | | | Anticorrosive Solution, if desired pH Adjuster, if desired | 20 7.2 | 20 14.6 | 20 | | | Anticorrosive Solution, if desired pH Adjuster, if desired Rheology Modifier ACRYSOL RM-2020 NPR | 20 | 20 | 20 | | | Anticorrosive Solution, if desired pH Adjuster, if desired Rheology Modifier ACRYSOL RM-2020 NPR ACRYSOL RM-825 | 20 7.2 | 20 14.6 | 20 | | | Anticorrosive Solution, if desired pH Adjuster, if desired Rheology Modifier ACRYSOL RM-2020 NPR ACRYSOL RM-825 | 20 7.2 | 20 14.6 | 20 | | ^{*} RHOPLEXTM SG-10M is an acrylic emulsion polymer commercially available from Rohm & Haas. [0064] The polymers used in the paint compositions of Examples 4-6 were analyzed similarly to the polymers of Examples 1-3 and were found to have number average molecular weights of greater than 100,000 Daltons and glass transition temperatures of 25°C, 6°C and 12°C based on commercial samples and technical specifications. In addition, the paint compositions of Examples 4-6 exhibited as-formulated viscosities of about 85 KU, about 88 KU, and about 95 KU, respectively. Furthermore, the paint composition of Example 6 has a VOC content of less than about 100 g/L. [#] RHOPLEXTM MV-23 is an acrylic emulsion polymer commercially available from Rohm & Haas. ^{*} RHOPLEXTM VSR-50 is an acrylic emulsion polymer commercially available from Rohm & Haas. Examples 7-9: Paint Compositions According to the Invention Containing a Polymer Blend of a First, Low
Molecular Weight, Low T_g Polymer and a Second, High Molecular Weight, High T_g Polymer. [0065] Examples 7-9 describe paint compositions according to the invention, each comprising a polymer blend of a first, relatively low molecular weight, relatively low glass transition temperature polymer and a second, relatively high molecular weight, relatively high glass transition temperature polymer. The paint composition formulations of all three Examples, in order of addition, are described below in Table 5. Table 5. | 154 | Example 7 | Example 8 | Example 9 | | |------------------------------------|----------------|----------------|----------------|--| | Ingredients | Amount (grams) | Amount (grams) | Amount (grams) | | | | | | | | | Grind Composition | | | r | | | water | 133 | 133 | 133 | | | TAMOL 731A dispersant | 15 | 15 | 15 | | | Zinc oxide pigment | 23 | 23 | 23 | | | TRONOX CR-826 pigment | 292 | 292 | 292 | | | Hydrous aluminum silicate pigment | 50 | 50 | - | | | Pigment(s)/colorant(s), if desired | | | | | | DREWPLUS L475 defoamer | · 0.7 | 0.7 | 0.7 | | | TRITON X-100 surfactant | 20 | 20 | 20 | | | SKANE M-8 microbiocide | 1.9 | 1.9 | 1.9 | | | NUOSEPT 95 microbiocide | . 0.9 | 0.9 | 0.9 | | | DREWPLUS L475 defoamer | 0.5 | 0.5 | 0.5 | | | | | | | | | RHOPLEX SG-10M* polymer | 275 | 275 | | | | Polymer from Example 1 | 275 | - | - | | | Polymer from Example 2 | - | 275 | 275 | | | RHOPLEX MV-23# polymer | - | | 275 | | | | | | | | | pH Adjuster, if desired | | | | | | | | | | | | Performance Additive Composition | | | | | | TEXANOL coalescent | 18.8 | 20.8 | 20.8 | | | propylene glycol solvent | 35 | 35 | 35 | | | | | | | | | Anticorrosive Solution, if desired | | | • | | | pH Adjuster, if desired | | | | | | | | • | | | | Rheology Modifier | | | | | | ACRYSOL RM-2020 NPR | 20 | 20 | 20 | | | ACRYSOL RM-825 | 10.1 | 9.0 | 10.2 | | | water | 34 | 34 | 34 | | | | | | | | | Stability Additive | | | | | | W 1000 | 4 · | 4 | 4 | | ^{*} RHOPLEXTM SG-10M is an acrylic emulsion polymer commercially available from Rohm & Haas. # RHOPLEX™ MV-23 is an acrylic emulsion polymer commercially available from Rohm & Haas. [0066] The paint compositions of Examples 7-9 exhibited as-formulated viscosities of about 85 KU, about 88 KU, and about 85 KU, respectively. Examples 10-12: Paint Compositions According to the Invention Containing a Polymer Blend of a First, Low Molecular Weight, Low T_g Polymer and a Second, High Molecular Weight, High T_g Polymer. [0067] Examples 10-12 describe paint compositions according to the invention, each comprising a polymer blend of a first, relatively low molecular weight, relatively low glass transition temperature polymer containing a self-crosslinking monomer and a second, relatively high molecular weight, relatively high glass transition temperature polymer. The paint composition formulations of all three Examples, in order of addition, are described below in Table 6. Table 6. | - 1 | Example 10 | Example 11 | Example 12 | |---|----------------|----------------|----------------| | Ingredients | Amount (grams) | Amount (grams) | Amount (grams) | | | | | | | Grind Composition | | | 110 | | water | 133 | 118 . | 118 | | TAMOL 731A dispersant | 15 | 15 | 15 | | Zinc oxide pigment | 23 | 23 | 23 | | TRONOX CR-826 pigment | 292 | 292 | 292 | | Hydrous aluminum silicate pigment | 50 | . 50 | - | | Pigment(s)/colorant(s), if desired | | | | | DREWPLUS L475 defoamer | 0.7 | 0.7 | 0.7 | | TRITON X-100 surfactant | 20 | 20 | 20 | | SKANE M-8 microbiocide | 1.9 | 1.9 | 1.9 | | NUOSEPT 95 microbiocide | 0.9 | - | - | | Kathon LX (1.5%) surfactant | | 11 | 1 | | DREWPLUS L475 defoamer | 0.5 | 0.5 | 0.5 | | | | | | | RHOPLEX TM VSR-50 ^x polymer | 275 | - | - | | Polymer from Example 2 | 275 | 385 | - | | RHOPLEX SG-10M* polymer | - | 165 | 225 | | Polymer from Example 3 | - | - | 225 | | pH Adjuster, if desired Performance Additive Composition | | | | | OPTIFILM Enhancer400 coalescent | 14 | • - | - | | ARCHER RC coalescent | | 12 | 8 | | propylene glycol solvent | 35 | 20 | 12 | | TEXANOL coalescent | - | - | 3 | | butyl carbitol solvent | - | • | 3 | | Anticorrosive Solution, if desired | | | · | | pH Adjuster, if desired | | | | | Rheology Modifier | | | | | ACRYSOL RM-2020 NPR | 20 | 25 | 25 | | ACRYSOL RM-825 | 9.2 | 7 | 9.7 | | water | 34 | 49 | 49 | | f . | | | | | Stability Additive | | • | | ^{*} RHOPLEXTM VSR-50 is an acrylic emulsion polymer commercially available from Rohm & Haas. * RHOPLEXTM SG-10M is an acrylic emulsion polymer commercially available from Rohm & Haas. [0068] The paint compositions of Examples 10-12 exhibited as-formulated viscosities of about 86 KU, about 86 KU, and about 88 KU, respectively. In addition, the paint composition of Example 10 was a low-VOC composition (*i.e.*, it exhibited a volatile organic compound content of less than 50 g/L, or about 5% w/v), and the paint compositions of Examples 11-12 both exhibited VOC content of about 55 g/L (or about 5.5% w/v) to about 65 g/L (or about 6% w/v). The VOC content was estimated from the formulation, based on EPA Method 24 and the following formula: VOC content (g/L) = [weight of VOCs (g)] / ([total volume in liters] - [water volume in liters]) ## Viscosity, Gloss, and VOC Content Values [0069] Table 7 below shows the results of these characteristic tests for the paint compositions of Examples 4-12. | | Ex. 4 | Ex. 5 | Ex. 6 | Ex. 7 | Ex. 8 | Ex. 9 | Ex. 10 | Ex. 11 | Ex. 12 | |-----------------------|-------|-------|-------|-------|-------|-------|--------|--------|--------| | viscosity
(KU) | 85 | 88 | 95 | 85 | 88 | 85 | 86 | 86 | 88 | | ICI viscosity (poise) | 1.2 | 1.4 | 1.4 | 1.2 | 1.2 | 1.2 | 1.1 | 1.2 | 1.3 | | Gloss (60°) | 36 | 39 | 60 | 35 | 36 | 42 | 38 | 44 | 36 | | VOC (g/L) | 140 | 138 | 94 | 137 | 140 | 128 | 46 | 58 | 64 | Table 7. ### Chalk Adhesion Testing [0070] Chalk binding tests are typically performed on chalky substrates. Chalky substrates are commercial alkyd paints that have been naturally weathered to achieve an ASTM chalk ratings of about 5. A suitable test method is described in U.S. patent no. 6,268,420. [0071] In these cases, chalky substrates are western red cedar panels painted with commercially available alkyd paints and weathered to have ASTM ratings from 5 to 6 using the method described in the '420 patent. Various 3-mil thick draw down coatings of paint compositions were applied to these panels and let dry for about 7 days at ambient conditions. After drying, wet and dry adhesion of the paint coatings were evaluated using Scotch™ 600 tape and a 6x6 cross-hatch adhesion standard test, as detailed in ASTM D3359 Method B. For wet adhesion, the coated panels were placed in a fog box, simulating rain conditions at 100% humidity, for about 4 hours and were dried in air at ambient conditions for about 1 hour prior to the Crosshatch Adhesion test. The percentage peeling (area) and an ASTM rating were tabulated for coatings made from each of the paint compositions of Examples 4-12, as well as Comparative Example A (a paint composition containing a blend of an alkyd resin and a high molecular weight, high glass transition temperature polymer, as described herein, which composition is commercially available from Benjamin Moore, Inc., as Benjamin Moore 0961B). Table 8 below shows those results. Table 8. | Sample | Chalk Adhesion (% peeling) | Chalky Substrate ASTM
Rating | | | |-------------------|----------------------------|---------------------------------|--|--| | Example 4 | 100% | 6 . | | | | Example 5 | 50% | 6 | | | | Example 6 | 40% | . 6 | | | | Example 7 | 10% | . 6 | | | | Example 8 | 15% | . 6 | | | | Example 9 | 10% | 6 | | | | Example 10 | 10% | 6 | | | | Example 11 | 5% | 5 | | | | Example 12 | 0% | 5 | | | | Comparative Ex. A | 10% | 5 | | | [0072] The results in Table 8 show that the polymer blends according to the invention (Examples 7-12) have at least comparable chalk adhesion properties to an alkyd resincontaining polymer blend (Comparative Example A) and that all the blends exhibited superior chalk adhesion properties to the single polymer coating compositions (Examples 4-6). Further, because the polymer blends of Examples 7-12 contain substantially no alkyd resin, it is believed that they all exhibit yellowing characteristics superior to those of the alkyd resin-containing polymer blend of Comparative Example A. ## Resistance to Surfactant Leaching and Water Softening [0073] Surfactant leaching is a test for probing the extent of exterior water spotting on a coating. The test method for surfactant leaching involved forming 3-mil draw down panels of each coating composition. These panels were then allowed to dry in air at ambient conditions for about 24 hours. Each panel was then held so that the coating on the substrate was oriented vertically, at which point 3-5 drops of water were applied over the coated area. Without changing the orientation of the panels, the coatings were allowed to dry. The presence or absence of visible staining on each panel was noted and rated from 1 to 5, with 1 representing the most visible stain, and with 5 representing no visible stain. [0074] The exterior water sensitivity, or water softening, testing method involved forming 3-mil draw down panels of each coating composition. These panels were then allowed to dry in air at ambient conditions for about 24 hours. Each panel was then held so that the coating on the substrate was oriented horizontally, at which point approximately 3 drops of water were applied over the coated area and allowed to "soak" for about 2 minutes. The panels were then carefully blotted dry and scratched with a fingernail to test for any softening of the coatings, which were noted as ratings from 1 to 5, with 1 representing the worst softening of the coatings upon exposure to the water, and with 5 representing no observable softening upon exposure to
the water. [0075] Table 9 below shows the results of both tests on coatings made from the paint compositions of Examples 4-5 and 7-9. The results indicate that the paint compositions containing polymer blends according to the invention in which the first polymer contains an amount of self-crosslinking monomer (Examples 8-9) exhibited improved resistance to both surface leaching and water softening. Example 9 Example 5 Example 7 Example 8 Example 4 Surfact, Leach. 5 3 4 3 3. Rating Water Resist. 4 4 3 3 3 Rating Table 9. ### Low Temperature Coalescence [0076] Low temperature coalescence testing is designed to probe the ability of a coating composition to form a uniform and smooth coating on a substrate. The test method for low temperature coalescence involved first cooling a number of 6"x6" upson panels to about 35°F for about 1 hour. Each panel is then coated with draw downs of each composition having a thickness starting at 8 mils and going to 28 mils. These panels were then kept about 35°F in a refrigerator for about 24 hours, and were allowed to recover for about 1 hour at room temperature. The presence or absence of visible cracks on each panel was noted and rated from 8 to 28+, based on the thinnest panel on which cracks were first evident, with each number represent its milthickness, and with 28+ representing that none of the panels showed cracks. [0077] Table 10 below shows the results of the low temperature coalescence testing for coatings made from the paint compositions of Examples 4, 6-8, 10, and 12. Table 10. | | Example 4 | Example 6 | Example 7 | Example
8 | Example 10 | Example 12 | |-------------|-----------|-----------|-----------|--------------|------------|------------| | LTC Rating. | 10 | 8 | 28+ | 28+ | 28+ | 28+ | [0078] While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of illustration and example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents. It will also be understood that each feature of each embodiment discussed herein, and of each reference cited herein, can be used in combination with the features of any other embodiment. All patents and publications discussed herein are incorporated by reference herein in their entirety. ### **CLAIMS** 1. A latex composition comprising a polymer blend of a first polymer and a second polymer, wherein: the first polymer is made from first constituent monomers, has a number average molecular weight less than about 100,000 Daltons, has a glass transition temperature from about -20°C to about 60°C, and comprises a self-crosslinking monomer; the second polymer is made from second constituent monomers, has a number average molecular weight greater than about 100,000 Daltons, and has a glass transition temperature from about -20°C to about 60°C; the glass transition temperature of the second polymer is at least 10°C higher than the glass transition temperature of the first polymer; and the relative proportion of the first polymer to the second polymer is from about 1:4 to 4:3 by weight. - 2. The latex composition of claim 1, wherein the self-crosslinking monomer comprises an acetoacetoxyalkyl acrylate, an acetoacetoxyalkyl alkacrylate, a dialkoxyalkyl vinyl silane, a trialkoxy vinyl silane, or a combination thereof. - 3. The latex composition of claim 2, wherein the amount of the self-crosslinking monomer is from about 0.1% to about 5% by weight of the constituent monomers of the first polymer, and wherein the self-crosslinking monomer is a trialkoxy vinyl silane. - 4. The latex composition of claim 1, wherein the relative proportion of first polymer to second polymer is from about 1:3 to about 5:4 by weight. - 5. The latex composition of claim 4, wherein the relative proportion of first polymer to second polymer is from about 3:7 to about 1:1 by weight - 6. The latex composition of claim 1, wherein the glass transition temperature of the first polymer is from about -5°C to about 20°C, and wherein the glass transition temperature of the second polymer is from about 5°C to about 25°C. 7. The latex composition of claim 1, wherein the number average molecular weight of the first polymer is from about 7,000 Daltons to about 80,000 Daltons - 8. The latex composition of claim 1, wherein the number average molecular weight of the first polymer is from about 15,000 Daltons to about 60,000 Daltons. - 9. The latex composition of claim 1, wherein the number average molecular weight of the second polymer is from about 100,000 Daltons to about 1,500,000 Daltons. - 10. The latex composition of claim 1, wherein the number average molecular weight of the second polymer is from about 200,000 to about 1,000,000. - 11. The latex composition of claim 1, wherein the constituent monomers of the first polymer are substantially acrylic or the constituent monomers of the second polymer are substantially acrylic. - 12. The latex composition of claim 1, wherein the constituent monomers of both the first polymer and the second polymer are substantially acrylic. - 13. The latex composition of claim 1, wherein the polymer blend is substantially free from sequentially polymerized polymers. - 14. A coating composition comprising the latex composition of claim 1. - 15. A paint composition comprising the latex composition of claim 13. - 16. The paint composition of claim 15, having a volatile organic compound content less than about 100 g/L. 17. A coated substrate comprising a substrate having at least one surface on which a coating of the paint composition of claim 15 is disposed. - 18. The coated substrate of claim 17, wherein the coating exhibits less than about 25% peeling from the crosshatch adhesion test under ASTM D3359 Method B. - 19. The coated substrate of claim 17, wherein the substrate comprises wood, a metal, a ceramic, a transparent substrate, a translucent substrate, a polymer, a woven fabric, a non-woven fabric, a building material, a chalky substrate, or a combination thereof. - 20. The coated substrate of claim 17, wherein the constituent monomers of the first polymer of the polymer blend in the paint composition are substantially acrylic, the constituent monomers of the second polymer of the polymer blend in the paint composition are substantially acrylic, or both. - 21. A latex composition comprising a polymer blend of a first polymer and a second polymer, wherein: the first polymer is made from first constituent monomers, has a number average molecular weight less than about 100,000 Daltons, has a glass transition temperature from about -20°C to about 60°C, and comprises a self-crosslinking monomer; the second polymer is made from second constituent monomers, has a number average molecular weight greater than about 100,000 Daltons, and has a glass transition temperature from about -20°C to about 60°C; the glass transition temperature of the second polymer is at least 10°C higher than the glass transition temperature of the first polymer; the polymer blend is substantially free from sequentially polymerized polymers; and the first constituent monomers, the second constituent monomers, or both, are substantially free from phosphorus-containing pendant groups, from polyacid-containing pendant groups, or from both.