发明名称
ESP 用三相中频直流高压电源

摘要
本发明公开了一种 ESP 用三相中频直流高压电源，包括变流主电路、接口电路和电源智能控制电路，所述的变流主电路由三相电源输入控制电路、三相全波整流电路、滤波电路、逆变电路、三相高频滤波电路和三相中频整流变压器依次连接构成，三相电源输入控制电路引入三相工频交流电源，经三相全波整流电路和滤波电路整流滤波得到直流电压，送至逆变电路，经高频逆变、滤波后得到中频交流电压，再经三相中频整流变压器升压、整流得到直流电压，接入负载两端。本发明采用交流→直流→交流→直流的变流工作方式，电源转换效率高、三相供电平衡且功率因数高、对电网的谐波干扰小，操作方便，可实现无人、少人值守。
1. 一种ESP用三相中频直流高压电源，包括变流主电路、接口电路（11）和电源智能控制电路（12），其特征在于：所述的变流主电路采用交流→直流→交流→直流的变流工作方式，由三相电源输入控制电路（1）、三相全波整流电路（2）、滤波电路（3）、逆变电路（5）、三相高次谐波滤波电路（6）、三相中频整流变压器（8）依次连接构成，三相电源输入控制电路（1）引入三相工频交流电源，经三相全波整流电路（2）和滤波电路（2）整流滤波得到直流电压，送至逆变电路（5），经高频逆变、滤波后得到三相中频交流电压，再经三相中频整流变压器（8）升压、整流得到直流电压，接入负载（9）两端。

2. 如权利要求1所述的ESP用三相中频直流高压电源，其特征在于：所述的三相电源输入控制电路（1）由若干个空气开关或断路器、若干个接触器和控制电路组成。

3. 如权利要求1所述的ESP用三相中频直流高压电源，其特征在于：所述的三相全波整流电路（2）由一只三相全波整流模块或三只双桥臂整流模块或六只整流二极管组成。

4. 如权利要求1所述的ESP用三相中频直流高压电源，其特征在于：所述的滤波电路（3）由直流电抗器和滤波电容组成，对三相全波整流电路（2）输出的脉动直流电压滤波。

5. 如权利要求1所述的ESP用三相中频直流高压电源，其特征在于：所述的逆变电路（5）由若干个可关断元件构成，各可关断元件的控制端与相应的模块驱动电路（10）的输出端相连，模块驱动电路（10）输入端接入电源智能控制电路（12）。

6. 如权利要求5所述的ESP用三相中频直流高压电源，其特征在于：所述的可关断元件采用绝缘栅晶体管、静电感应晶体管、可关断晶闸管或巨型晶体管。

7. 如权利要求1所述的ESP用三相中频直流高压电源，其特征在于：所述的三相高次谐波滤波电路（6）由三个分别与逆变电路（5）输出端相连的电感及三个Δ连接的电容组成，其输出端接入三相中频整流变压器（8）。
8. 如权利要求1所述的ESP用三相中频直流高压电源，其特征在于：
所述的三相中频整流变压器（8）由三相中频电抗器、三相中频升压变压器、三相中频整流器和二次电压电流取样电路组成，二次电压电流取样电路的输出端接入接口电路（11）。

9. 如权利要求1所述的ESP用三相中频直流高压电源，其特征在于：
所述的逆变电路（5）上接有直流母线取样电路（4），包含电压取样电路和电流取样电路，其输入端与逆变电路（5）的直流母线连接，输出端接入接口电路（11）。

10. 如权利要求1所述的ESP用三相中频直流高压电源，其特征在于：
所述的三相高次谐波滤波电路（6）与三相中频整流变压器（8）之间接入有一次电压电流取样电路（7），包含至少一只电流互感器和一只电压互感器，其输出端接入接口电路（11）。

ESP 用三相中频直流高压电源

技术领域

本发明涉及一种电源，尤其是指一种 ESP 用三相中频直流高压电源。

背景技术

静电除尘器（简称 ESP）是环保领域中的重要设备，主要应用于等离子体放电、除尘、除雾、脱水、空气净化，高效除尘脱硫、杂质分离和多种原料回收等。

ESP 的高压电场等效为 R、C 并联负载，其中 C 为高压电场的等效电容，一般为几万~几十万 PF，R 为可变电阻，随 ESP 工况随时变化。可见，ESP 为变动负载，在发生闪络或短路时对其直流高压电源的冲击很大，为此必须采取相应措施保证电源可靠、稳定运行。

现有的 ESP 用电源主要有以下几种：

1、单相 SCR 电源：

（1）工作于工频 50Hz，使得变压器体积大、重量大、消耗大量铜、铁及变压器油，随着材料价格的上涨，低成本的优势在消失；

（2）交流移相控制，使得电网侧谐波严重，采用两相供电，对电网来说是不均衡负载；

（3）采用交流变频调压，使得输出高压纹波较大，输出给 ESP 的平均电压较低。

2、高频电源：

由于高频电源的固有特点，可以明显提高对 ESP 的供电性能，进而改善 ESP 的收尘效率，高频电源的开发成为一个技术热点。

但在目前，随着 ESP 面积的不断增大，高频电源的容量不能满足用户的需要，特别是在电力系统需要 80KV/1A 以上的容量，大功率高频电源开发受限于高频损耗，难以有大的突破，目前商用最大容量高频电源为 70KV/1A，另外，由于控制柜与变压器不可分离，控制柜在室外运行，使用寿命较短。

3、中频电源：
中频电源兼有 SCR 电源低损耗、大功率，高频电源小体积、高供电性能的特点，且技术条件成熟，能在短期内形成大容量产产品，替代大容量 SCR 电源，可以尽快大容量化，规模生产，占领市场先机，而且具有成本优势。

相对上述类型电源，中频电源的变压器较 SCR 电源变压器体积小（约为 SCR 电源变压器的 1/(2~3)）；供电性能与高频电源相当，易于大容量；采用较低的逆变频率，IGBT 损耗较小，变压器采用 400Hz 中频，损耗较高频电源小；控制柜可与变压器分离，控制柜可放置室内，运行条件较好，可靠性较高，寿命较长，便于维护与维修；中频电源较高频电源技术延续性好，80KV/2A 与 80KV/1A 技术方案可以不变，便于缩短开发周期，迅速形成规模。

缺点是同等容量中频变压器体积较高频电源大，但铁芯材料及线包要求比高频电源低。

发明内容

本发明提供了一种供电平衡，体积和重量小，高供电性能的 ESP 用三相中频直流高压电源。

一种 ESP 用三相中频直流高压电源，包括变流主电路、接口电路和电源智能控制电路，所述的变流主电路采用交流（AC）→直流（DC）→交流（AC）→直流（DC）变流工作方式，由三相电源输入控制电路、三相全波整流电路、滤波电路、逆变电路、三相高次谐波滤波电路、三相中频整流变压器依次连接构成。三相电源输入控制电路输入三相工频交流电源，经三相全波整流电路和滤波电路整流滤波得到直流电压，送至逆变电路，经高频逆变、滤波后得到三相中频交流电压，再经三相中频整流变压器升压，整流得到直流电压，接入负载两端。

所述的三相电源输入控制电路由若干个空气开关或断路器、若干个接触器和控制电路组成。

所述的三相电源输入控制电路带有软启动功能。

所述的三相全波整流电路由一只三相全波整流模块或三只双桥整流模块或六只整流二极管组成，用于将三相工频交流电源全波整流成脉动直流电。
所述的滤波电路由直流电抗器和滤波电容组成，将三相全波整流电路输出的脉动直流电滤波成较平稳的直流电压。

所述的逆变电路由若干个可关断元件构成，用于将输入的直流电压逆变成载波频率为 4.8kHz 或 7.2kHz，调制波频率为 400Hz 的三相 PWM 脉冲，各可关断元件的控制端与相应的模块驱动电路的输出端相连，模块驱动电路输入端接入电源智能控制电路。

所述的可关断元件采用绝缘栅晶体管、静电感应晶体管、可关断晶闸管或巨型晶体管。

所述的三相高次谐波滤波电路由三个分别于逆变电路输出端相连的电感及三个△连接的电容组成，其输出端接入三相中频整流变压器，用于将逆变电路输出的载波频率为 4.8kHz 或 7.2kHz，调制波频率为 400Hz 的三相 PWM 脉冲滤波成频率为 400Hz 的三相中频交流电。

所述的三相中频整流变压器由三相中频电抗器、中频升压变压器、中频整流器和二次电压电流取样电路组成，二次电压电流取样电路的输出端接入接口电路，用于将三相中频交流电经升压整流成直流高压电。

所述的逆变电路和连接有直流母线电流取样电路，包含电压取样电路和电流取样电路，其输入端与逆变电路的直流母线连接，输出端接入接口电路，用于检测逆变电路直流母线的电压和电流信号。

所述的三相高次谐波滤波电路与三相中频整流变压器之间接入有一次电压电流取样电路，包含至少一只电压互感器和一只电流互感器，其输出端接入接口电路。

所述的接口电路由开关量信号输出驱动电路、开关量输入信号调理电路、一次和二次电压电流取样信号调理电路等组成，其一端与主电路相连，另一端与电源智能控制电路相连。

所述的电源智能控制电路包括由控制电路、显示电路和键盘组成的硬件结构和控制、显示软件。

本发明提供的电源采用交流 (AC) → 直流 (DC) → 交流 (AC) → 直流 (DC) 的变流工作方式；三相高频逆变，中频 400Hz 升压整流可有效提高电源工作效率、减小电源的体积、重量，减小输出纹波；可产生适用于 ESP 不同工况的各种波形，使 ESP 除尘效果有较大的改善；电源转换效率
高 (> 92%)、三相供电平衡且功率因数高 (> 0.9)、对电网的谐波干扰小；
有专门设计的监控软件界面，操作方便，用户界面友好，可实现无人、少
人值守；采用独立运行，集中监控的先进控制模式；具有完善的保护功能，
工作安全可靠；是集现代电力电子技术、计算机控制技术 (DSP 技术)、
网络控制技术于一体的电源。

附图说明

图 1 是本发明的电路结构示意图。

具体实施方式

如图 1 所示，一种 ESP 用三相中频直流高压电源，包括变流主电路、
接口电路和电源智能控制电路。
变流主电路由三相电源输入控制电路 1、三相全波整流电路 2、滤波
电路 3、直流母线取样电路 4、逆变电路 5、三相高次谐波滤波电路 6、一
次电压电流取样电路 7、三相中频整流变压器 8 及负载电路 9 依次连接构
成。
三相电源输入控制电路 1 由若干个空气开关 (或断路器)、接触器 (含
真空接触器) 和控制电路组成，其输入端接三相工频交流电源，向变流主
电路供电，将三相工频交流电 A、B、C 控制送到三相全波整流电路 2，
并含有软启动功能。
三相全波整流电路 2 由一只三相全波整流模块或三只双桥臂整流模块
或六只整流二极管组成，用于将三相工频交流电源全波整流成脉动直流
电。
滤波电路 3 由直流电抗器和滤波电容组成，将三相全波整流电路输出
的脉动直流电滤波成较平稳的直流电压。
逆变电路 5 由若干个可关断元件构成，用于将输入的直流电压逆变成
载波 fs 为 4.8kHz 或 7.2kHz，调制波 fr 为 400Hz 的三相 PWM 脉冲，各可
关断元件的控制端与相应的模块驱动电路 10 的输出端相连，模块驱动电
路 10 输入端接入电源智能控制电路 12。可关断元件采用绝缘栅晶体管、
静电感应晶体管、可关断晶闸管或巨型晶体管。
逆变电路 5 上接有直流母线取样电路 4，包含电压取样电路和电流取
样电路，其输入端与逆变电路 5 的直流母线连接，输出端接入接口电路 11，用于检测逆变电路 5 直流母线的电压和电流信号。

三相高次谐波滤波电路 6 由三个分别于逆变电路 5 输出端相连的电感及三个Δ连接的电容组成，其输出端接入三相中频整流变压器 8，用于将逆变电路 5 输出的载波 fs 为 4.8kHz 或 7.2kHz，调制波 fτ 为 400Hz 的三相 PWM 脉冲滤波成频率为 400Hz 的三相中频交流电。

一次电压电流取样电路 7，包含至少一只电流互感器和一只电压互感器，其输出端接入接口电路 11。

三相中频整流变压器 8 由三相中频电抗器、三相中频升压变压器、三相中频带整流器和二次电压电流取样电路组成，二次电压电流取样电路的输出端接入接口电路 11，用于将三相中频交流电经升压整流成直流高压电。

三相中频整流变压器 8 的铁芯材料可采用 0.21mm 的硅钢或微晶；线包材料采用普通漆线；变压器三相线包绕组采用Δ/Y 结构；三相整流整流桥采用普通或中频硅堆；变压器散热可采用油冷却散热片。

本发明的变流控制采用 SVPWM（空间矢量 PWM）逆变技术，可减小开关损耗，提高直流利用率。其变流控制原理是通过空间矢量 PWM（SVPWM）实现输出电压的调节，具体为：通过调节开关周期 Ts（fs = 12*400Hz = 4.8kHz）中，插入电压矢量作用时间 T1、T2 的大小来调节 400Hz 正弦波的幅值，进而调节输出电压；由调制频率 fτ，决定正弦波相位 $\theta = 2\pi f\tau t$。

三相工频交流电源 AC380V 经三相电路输入控制电路 1、三相全波整流电路 2 和滤波电路 3 整流滤波得到 510V 左右直流电压，送至 IGBT 逆变电路 5，经 IGBT 逆变电路 5 产生载波 fs 为 4.8kHz 或 7.2kHz，调制波 $f\tau$ 为 400Hz 的三相 PWM 脉冲，经三相高次谐波滤波电路 6 产生 400Hz 正弦交流电压，送到三相中频整流变压器 8，经三相中频整流变压器 8 升压、整流得到 80kV 直流电压。80KV 直流电压给负载 ESP 电路 9 供电。

变流主电路采用 AC→DC→AC→DC 的变流工作方式即三相整流、三相 IGBT 高频逆变及高频 LC 滤波，中频 400Hz 升压、整流，具有三相供电平衡且功率因数高（> 0.9），对电网的谐波干扰小；可有效提高电源工作效率，减小电源的体积、重量，减小输出纹波的优点，兼有 SCR 电源
低损耗、大功率和高频电源小体积、高性能的优点，且技术条件成熟，易于大批量生产，而且具有成本优势，能在较短时间内替代大容量 SCR 电源。

接口电路 11 由开关量信号输出驱动电路、开关量输入信号调理电路，一次和二次电流电压取样信号调理电路等组成，其一端与主电路相连，另一端与电源智能控制电路相连。

电源智能控制电路 12 包括由控制电路、显示电路和键盘组成的硬件结构和控制、显示软件。

控制电路采用三相中频（400Hz）调幅调压，实现输出电压的调节，且闪络处理响应速度快，实现对 ESP 的最佳供电。

稳压/恒流控制采用 PI（比例积分）控制算法，实现无静差稳压/恒流控制。

运行控制采用 TI 公司的数字信号处理器 DSPs（TMS320F2812），可实现电源系统的最佳控制。

监控采用 ARM 或 PC 机，通过 RS485/CAN 通信网通讯，实现集散式远程控制。