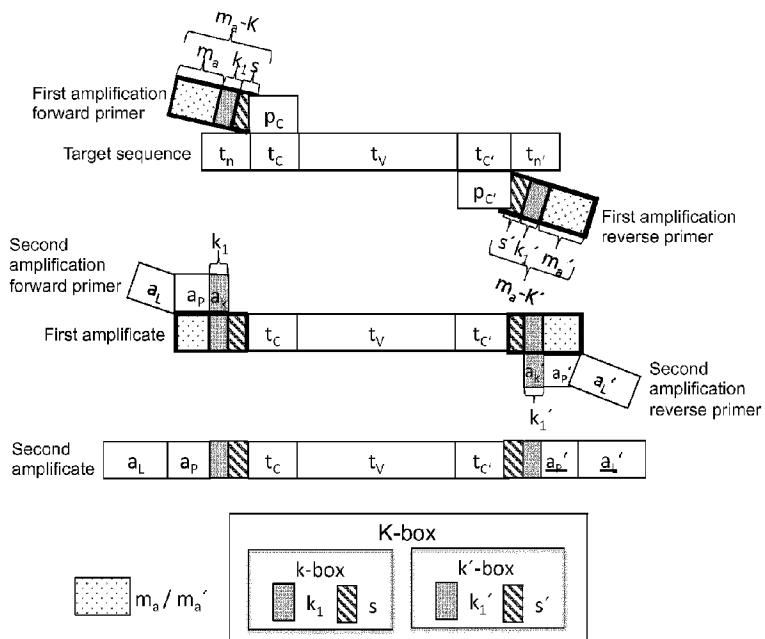




(86) Date de dépôt PCT/PCT Filing Date: 2013/12/20  
(87) Date publication PCT/PCT Publication Date: 2014/06/26  
(45) Date de délivrance/Issue Date: 2021/03/02  
(85) Entrée phase nationale/National Entry: 2015/06/10  
(86) N° demande PCT/PCT Application No.: EP 2013/077763  
(87) N° publication PCT/PCT Publication No.: 2014/096394  
(30) Priorités/Priorities: 2012/12/23 (EP12199315.8);  
2013/07/04 (EP13175199.2)


(51) Cl.Int./Int.Cl. C12Q 1/6869 (2018.01),  
C12Q 1/6844 (2018.01), C12Q 1/686 (2018.01),  
C12Q 1/6876 (2018.01), C40B 40/06 (2006.01)

(72) Inventeurs/Inventors:  
HENNIG, STEFFEN, DE;  
SEITZ, VOLKHARD, DE;  
RITTER, JULIA-MARIE, DE;  
HUMMEL, MICHAEL, DE

(73) Propriétaire/Owner:  
HS DIAGNOMICS GMBH, DE

(74) Agent: CASSAN MACLEAN IP AGENCY INC.

(54) Titre : PROCEDES ET JEUX D'AMORCES POUR SEQUENCAGE PAR PCR A HAUT RENDEMENT  
(54) Title: METHODS AND PRIMER SETS FOR HIGH THROUGHPUT PCR SEQUENCING



(57) Abrégé/Abstract:

The invention relates to a method for amplifying a target nucleic acid sequence  $t_n-t_c-t_v-t_c'-t_n'$  comprising a first amplification using a first primer pair with sequence  $m_a-K-p_c$  and  $m_a'-K'-p_c'$ , and a subsequent second amplification using a second primer pair with sequence  $a_L-a_p-a_K$  and  $a_L'-a_p'-a_K'$ , wherein  $p_c$  is the same sequence as sequence element  $t_c$ ,  $p_c$  and  $p_c'$  are 8 to 40 nucleotides in length,  $K$  comprises a 3'-terminal sequence  $k_1-k_2-s$ ,  $s$  is a mismatch sequences preventing PCR bias,  $a_K$  is the same sequence as sequence element  $k_1$ ,  $a_p-a_K$  hybridize to a contiguous sequence on sequence element  $m_a-K$ ,  $k_1$  is 2 to 9 nucleotides in length,  $a_L$  and  $a_L'$  can be any sequence, and  $t_v$  is a variable region within said target nucleic acid sequence. The invention further relates to collections of primer sets for use in the method of the invention.

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau(43) International Publication Date  
26 June 2014 (26.06.2014)(10) International Publication Number  
**WO 2014/096394 A1**

## (51) International Patent Classification:

*Cl2Q 1/68* (2006.01)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

## (21) International Application Number:

PCT/EP2013/077763

## (22) International Filing Date:

20 December 2013 (20.12.2013)

## (25) Filing Language:

English

## (26) Publication Language:

English

## (30) Priority Data:

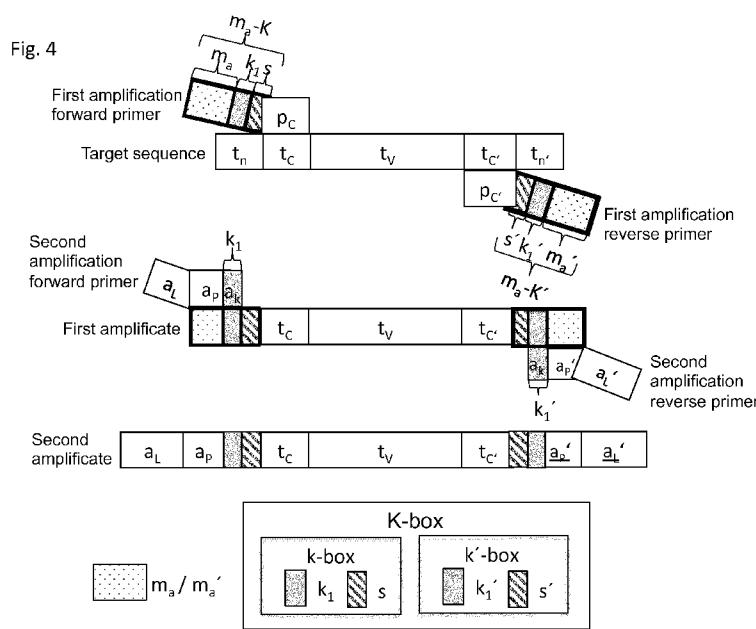
12199315.8 23 December 2012 (23.12.2012) EP  
13175199.2 4 July 2013 (04.07.2013) EP

(71) Applicant: HS DIAGNOMICS GMBH [DE/DE]; Schleiermacherstrasse 14, 10961 Berlin (DE).

(72) Inventors: RITTER, Julia-Marie; Thorwaldsenstrasse 16, 12157 Berlin (DE). SEITZ, Volkhard; Vionvillestrasse 12, 12167 Berlin (DE). HENNIG, Steffen; Scheiermacherstrasse 14, 10961 Berlin (DE). HUMMEL, Michael; Kaisserstrasse 4, 12105 Berlin (DE).

(74) Agent: JUNGHANS, Claas; Schulz Junghans Patentwälte, Chausseestrasse 5, 10115 Berlin (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

## Declarations under Rule 4.17:

- as to the identity of the inventor (Rule 4.17(i))
- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

*[Continued on next page]*

## (54) Title: METHODS AND PRIMER SETS FOR HIGH THROUGHPUT PCR SEQUENCING



(57) Abstract: The invention relates to a method for amplifying a target nucleic acid sequence  $t_n - t_c - t_v - t_c' - t_n'$  comprising a first amplification using a first primer pair with sequence  $m_a - K - p_c$  and  $m_a' - K' - p_c'$ , and a subsequent second amplification using a second primer pair with sequence  $a_L - a_p - a_K$  and  $a_L' - a_p' - a_K'$ , wherein  $p_c$  is the same sequence as sequence element  $t_c$ .  $p_c'$  are 8 to 40 nucleotides in length,  $K$  comprises a 3'-terminal sequence  $k_1 - k_2 - s$ ,  $s$  is a mismatch sequences preventing PCR bias,  $a_K$  is the same sequence as sequence element  $k_1$ ,  $a_p - a_K$  hybridize to a contiguous sequence on sequence element  $m_a - K$ ,  $k_1$  is 2 to 9 nucleotides in length,  $a_L$  and  $a_L'$  can be any sequence, and  $t_v$  is a variable region within said target nucleic acid sequence. The invention further relates to collections of primer sets for use in the method of the invention.

**WO 2014/096394 A1**



**Published:**

— *with international search report (Art. 21(3))*

— *with sequence listing part of description (Rule 5.2(a))*

## Methods and primer sets for high throughput PCR sequencing

Description

Innovative techniques have been recently developed that allow the parallel generation of millions of sequence reads in a single run. High-dimensional data derived from this "next 5 generation" or high throughput sequencing (NGS or HTS) may be used to resolve the biological variability within a single individual or within a population to a hitherto unknown precision and depth. Very sensitive techniques, however, bear the high risk of (cross-) contaminations from various sources. In order to avoid misinterpretation of NGS/HTS data, methods are needed that (i) prevent the amplification of potentially contaminating sequences 10 and/or (ii) allow detecting the presence of contaminating sequences. The prevention of contaminations, in cooperation with identification of potential residual contaminations, is crucial for sensitive and reliable NGS diagnostics.

One major source for contamination is a two-step PCR amplification strategy, which is frequently used to generate PCR libraries suitable for NGS sequencing (Baetens et al., 15 Human Mutation 32, 1053-1062 (2011)). In the first amplification reaction, the target nucleic acid sequence is amplified using specific primers flanked by a tail sequence (designated as  $M_a$  in the context of the present specification; e.g. a M13 or T7 tail). Subsequently, a second (adaptor) primer pair amplifies the first amplicate producing the second amplicate, which can be used for sequencing. In the second amplification reaction, nucleic acid sequences 20 required for NGS sequencing are introduced, employing primers complementary at their 3' end to the tail sequence of the first amplification primers. To make this approach more cost-efficient, multiplexing of several samples for NGS sequencing can be performed (Baetens, ibid.) by introducing so-called barcodes or multiplex-identifiers in the middle or close to the 5' end of the second amplification primers.

25 An overview showing potential sources of contamination is given in the table overleaf. Fields C and D are of most relevance for the present invention. A two-step amplification strategy shows a high probability for cross-contamination by carry-over of amplicons from the first PCR to the re-amplification (C) due to the high number of amplicons generated in the first amplification reaction. Furthermore, PCR products of a second amplification may 30 contaminate other second amplification reactions (D). In the case of amplicon isolation by gel extraction or PCR-purification kits, the risk of contamination is even higher.

| Type of contamination                     | Timepoint of contamination                                                                                                                      |                                                                                              |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                           | First amplification PCR mix                                                                                                                     | Second amplification PCR mix                                                                 |
| 1 <sup>st</sup> amplification PCR product | (A)<br><br><u>Prevention:</u> UTP/UNG System<br><u>Detection:</u> PCR with first. amplification tail-specific primers                           | (C)<br><br><u>Prevention and detection:</u> Double contamination protection (this invention) |
| 2 <sup>nd</sup> amplification PCR product | (B)<br><br><u>Detection:</u> PCR with first or second amplification tail- or adaptor-specific primers.<br><br><u>Prevention:</u> UTP/UNG System | (D)<br><br><u>Prevention and detection:</u> Double contamination protection (this invention) |

**Table 1:** Sources of cross-contamination and its prevention in a two-step PCR setting for NGS library generation. A & B: Contaminations of the first amplification by PCR products derived from another first or second amplification can be prevented by the UTP/UNG system and detected by tail- or adaptor-specific primers (US5035996, also published as EP0401037, 5 US6844155B2, US7914986B2). C & D: Contaminations of the second amplification by PCR products derived from another first or second amplification can be prevented and detected by the “double contamination protection” described in the present invention.

The objective of the present invention is to (i) avoid and/or to (ii) detect PCR-based contamination in applications employing massive parallel sequencing (NGS/HTS) 10 techniques. This objective is attained by the subject matter of the independent claims.

#### Terms and definitions

Nucleic acid sequences are given from 5' to 3' end. A sequence tract in the context used herein refers to a contiguous sequence; a sequence tract designator is a letter, optionally having a subscript or superscript, representing a sequence tract.  $k_1$ ,  $k_1'$ ,  $k_2$ ,  $k_2'$ ,  $s$  and  $s'$  15 are examples for sequence tract designators. Where sequences are given as a sequence of sequence tract designators, such sequences are understood to be ordered similarly in 5' to 3' order. A sequence tract is also called a sequence element.

Nucleic acid target sequences may be DNA or RNA; in case of RNA being the target sequence for amplification and sequencing, RNA is transcribed into cDNA (by reverse 20 transcriptase) prior to amplification.

A "primer" in the context of the present specification refers to a single stranded DNA -or nucleic acid analogue building block- oligomer having a length between 8 and 100 nucleotides.

"Capable of forming a hybrid" in the context of the present invention relates to sequences 5 that are able to bind selectively to their target sequence under the conditions of a PCR or sequencing reaction (for example, 10 mmol/l Tris-HCl pH 8.3; 100 mmol/l KCl; 1.5 mmol/l MgCl<sub>2</sub>; 0.2 mmol/l dNTP, each; primer annealing temperature of 40°C to 68°C). Such hybridizing sequences may be contiguously reverse-complementary to the target sequence, or may comprise gaps, mismatches or additional non-matching nucleotides. The minimal 10 length for a sequence to be capable of forming a hybrid depends on its composition, with C or G nucleotides contributing more to the energy of binding than A or T/U nucleotides, and on the backbone chemistry, with some modifications such as LNA having significantly higher binding energy and thus, shorter minimal lengths, compared to DNA.

"Nucleotide" in the context of the present invention is a nucleic acid or nucleic acid analogue 15 building block, an oligomer of which is capable of forming selective hybrids with an RNA or DNA sequence on the basis of base pairing. The term *nucleotides* in this context includes the classic ribonucleotide building blocks adenosine, guanosine, uridine (and ribosylthymine), cytidine, and the classic deoxyribonucleotides deoxyadenosine, deoxyguanosine, thymidine, deoxyuridine and deoxycytidine. The term *nucleotides* further includes analogues of nucleic 20 acids, such as phosphorothioates, 2'O-methylphosphothioates, peptide nucleic acids (PNA; N-(2-aminoethyl)-glycine units linked by peptide linkage, with the nucleobase attached to the alpha-carbon of the glycine) or *locked nucleic acids* (LNA; 2'O, 4'C methylene bridged RNA building blocks). A *primer sequence* as used in the context of the present specification may 25 be composed of any of the above nucleotides, or mixtures thereof. In some embodiments, a primer sequence is composed of deoxynucleotides, with the last (from the 3' position) 1, 2, 3 or 4 internucleotide bonds being phosphorothioates. In certain embodiments, the last 4, 3, 2 or 1 nucleotides (counting from the 3'position) are LNA nucleotide analogues. In certain embodiments, the second nucleotide from the 3'position is a LNA nucleotide analogue. In certain embodiments, the second and third nucleotide from the 3'position is a LNA nucleotide 30 analogue.

### Summary of the invention

The present invention provides guidelines for the design of three synergistically acting primer elements (designated generally as K-box with a capital "K", subdivided into a k-box (written with a lower case "k") for the forward primers and a k'-box for the reverse primers 5 respectively) which in combination greatly improves the accuracy of PCR library preparations that can be analysed by methods including, but not restricted to, next generation sequencing (NGS).

The method of the invention makes use of two primer pairs. The first or initial primer pair amplifies the target sequence generating a first amplicate. Subsequently, a nested second 10 adaptor primer pair amplifies the first amplicate producing the second amplicate, which can be used for sequencing.

For the analysis of a plurality of samples in parallel, the invention introduces the use of "sets" of individualized primer pairs for the first and second amplification to avoid cross-contamination, i.e. for each individual sample a different set is used. Thereby, a specific 15 second primer pair is designed to only work together with a specific first primer pair within an individual set. The first and second primer pairs of an individualized primer set comprise a specially designed sequence tract referred to as K-box (K). Each K-box is specific for an individual primer set. The K-box of the (initial) primers for the first amplification step can comprise different elements  $k_1$ ,  $k_1'$ ,  $k_2$ ,  $k_2'$ ,  $s$  and  $s'$ . As explained in detail below,  $s/s'$  prevent PCR bias,  $k_2/k_2'$  serve to detect contaminations and  $k_1/k_1'$ , which are also present 20 in the K-box of the second amplification primers, prevent contamination. Importantly, matching  $k_1/k_1'$  sequences enable the second primer pair to amplify the first amplicate only if the matching  $k_1/k_1'$  sequences were comprised in the first primer of the same set that was used to generate the first amplicate. Primer pairs are arranged in corresponding and 25 matching sets. A number of sets (e.g. set 1 - 300) represent a collection. A collection with N sets will allow processing N different samples without cross-contaminations in the second amplification reactions.

All initial primers of the first amplification step of a collection amplify the same target sequence. Different collections, amplifying different target sequences (i.e. in a multiplex 30 PCR), may be combined as a multiplex-collection.

## Definition of frequently used terms

| Term                 | Description                                                                                                                  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|
| Set                  | Within an individual set, a specific second primer pair is designed to work only together with a specific first primer pair. |
| Collection           | A number of sets represent a collection.                                                                                     |
| Multiplex collection | A combination of different collections amplifying different target sequences.                                                |

Detailed description of the invention

## Overview of the target and primer sequence tracts

## Short description of primer and sequence tract abbreviations

| Abbreviation                                                       | Description                                                                                    |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| <b>Target sequence tracts</b>                                      |                                                                                                |
| $t_n-t_C-t_V-t_C'-t_n'$                                            | Different sequence tracts of the target nucleic acid sequence.                                 |
| $t_C/t_C'$                                                         | Target sequence tract used for target-specific primer binding                                  |
| $t_V$                                                              | Target nucleic acid sequence of interest.                                                      |
| $t_n/t_n'$                                                         | Sequence tracts of the target gene located in 5' and 3' position of $t_C/t_C'$ , respectively. |
| <b>Sequence tracts of the primers used for first amplification</b> |                                                                                                |
| $m_a/m_a'$                                                         | Tail sequence (e.g. M13) of first amplification primer.                                        |
| $m_a-K/m_a-K'$                                                     | Tail sequence + K-box of first amplification primer.                                           |
| $p_C/p_C'$                                                         | First amplification primer sequence tracts which provide target specificity.                   |

| Sequence tracts of the primers used for second amplification |                                                                                                                           |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| $a_P/a_P'$                                                   | Second amplification primer sequence tracts which hybridize to $m_a/m_a'$ .                                               |
| $a_L/a_L'$                                                   | Second amplification primer sequence tracts for NGS sequencing.                                                           |
| K-box                                                        |                                                                                                                           |
| K-box                                                        | Comprises the sequence tracts $k_1/k_1'$ , $k_2/k_2'$ , $s/s'$ .                                                          |
| k-box                                                        | K-box of the left (up-stream) first and second amplification primer.                                                      |
| $k'$ -box                                                    | K-box of the right (down-stream) first and second amplification primer.                                                   |
| $k_1/k_1'$                                                   | K-box elements of first and second amplification primers for suppression of contaminations.                               |
| $k_2/k_2'$                                                   | K-box element of first amplification primers for detection of contaminations.                                             |
| $s/s'$                                                       | K-box element present in first amplification primers to avoid a PCR bias possibly introduced by $k_1/k_1'$ , $k_2/k_2'$ . |

In general, the “prime” or apostrophe (‘) indicates that a sequence tract or element has a similar functional characteristic as its non-prime counterpart, but is located on a primer on the other side of the target sequence, and is understood to work in reverse direction.

The target nucleic acid sequences subject to amplification are described as  $t_C-t_V-t_C'$ .

5 Therein,  $t_C/t_C'$  are the sequence tracts to which the forward (left) and reverse (right) primary amplification primer hybridizes, respectively.  $t_V$  is a region of interest (the sequenced part likely to contain the variability that the sequencing seeks to elucidate) within a target nucleic acid sequence. Furthermore the target nucleic acid sequence elements  $t_n$  and  $t_n'$  are located in 5' and 3' position, respectively, of  $t_C-t_V-t_C'$ . The target structure can also be described as

10  $t_n-t_C-t_V-t_C'-t_n'$ .

A primer for use in a method or collection of primers according to the invention is composed of at least two sequence tracts.

A left first or initial primer used in the first round of amplification comprises (from 5' to 3' OH-end) a sequence tract  $m_a$ -K-box (also designated as  $m_a$ -K) and a sequence tract  $p_c$  (Fig. 1). Sequence tract  $p_c$  provides target specificity, while  $m_a$ -K provides a non-target-specific sequence tract, parts or all of which can be used for hybridization of a second 5 "adaptor" primer. Within  $m_a$ -K the sequence tract  $m_a$  can comprise sequence elements necessary for sequencing purposes or consist of sequences such as M13, whereas the K-box comprises the K-box elements ( $k_1/k_1'$ ,  $k_2/k_2'$ ,  $s/s'$ ).

The left adaptor (second) primer comprises distinct sequence tracts, designated  $a_L$  and  $a_P$ - $a_K$ , which are used for the second amplification.  $a_L$  and  $a_P$  confer functional features for 10 high throughput sequencing, e.g. template sequences for sequencing primers and/or for attachment of the amplicate to a solid surface such as a slide or a bead. Furthermore,  $a_P$  can consist of a sequence such as M13. The sequence tract  $a_K$  comprises  $k_1$ , which is a sequence element of the K-box.

The reverse or right primers, of both the initial and adaptor primers, comprise sequence 15 tracts of similar characteristics, designated  $m_a'$ -K'-box (also designated as  $m_a$ -K') and  $p_c'$  for the right initial (first) primer. The right adaptor (second) primer comprises the sequence tracts  $a_L'$  and  $a_P'-a_K'$  (Fig. 1).

Sequence elements  $a_L$  and  $a_P$  are used for sequencing purposes, such as, by way of non-limiting example, sequencing primer hybridization sites and/or solid support attachment sites. 20 Methods for high-throughput sequencing are well known in the art and include so called "Illumina" bridge PCR-sequencing methods, shown inter alia in US2011045541A1, US2005100900A1, US2002055100A1; pyrosequencing, shown inter alia in US6,274,320, US 7,244,567, US 7,264,929; US 7,323,305 and US 7,575,865; "2 base encoding" technology (US4883750, US5750341) and others. Further relevant methods for high-25 throughput sequencing and applications are described in the following manuscripts:

Robustness of Amplicon Deep Sequencing Underlines Its Utility in Clinical Applications. Grossmann et al. J Mol Diagn. 2013 May 14. doi:pii: S1525-1578(13)00057-3. PMID:23680131; Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA. Haque et al. Nano Today. 2013 Feb;8(1):56-74. 30 PMID:23504223; Next-generation sequencing - feasibility and practicality in haematology. Kohlmann et al. Br J Haematol. 2013 Mar;160(6):736-53. doi: 10.1111/bjh.12194. Epub 2013 Jan 7. PMID:23294427; Progress in ion torrent semiconductor chip based sequencing.

Merriman et al. Electrophoresis. 2012 Dec;33(23):3397-417. doi: 10.1002/elps.201200424. Erratum in: Electrophoresis. 2013 Feb;34(4):619. PMID:23208921; Comparison of next-generation sequencing systems. Liu et al. J Biomed Biotechnol. 2012;2012:251364. doi: 10.1155/2012/251364. PMID:22829749; Current state-of-art of sequencing technologies for 5 plant genomics research. Thudi M et al. Brief Funct Genomics. 2012 Jan;11(1):3-11. doi: 10.1093/bfgp/elr045. PMID:22345601; Integration of next-generation sequencing into clinical practice: are we there yet? Kohlmann A et al. Semin Oncol. 2012 Feb;39(1):26-36. doi: 10.1053/j.seminoncol.2011.11.008. PMID:22289489.

The primers of the invention provide particular sequence elements (**K**-boxes), which greatly 10 reduce the likelihood that such contaminations occur and enable the recognition of amplicon contaminations within the sequencing results. The **K**-box elements are designated  $k_1$ ,  $k_1'$ ,  $k_2$ ,  $k_2'$ , **S** and **S'**, and are selected by bioinformatics methods as one single **K**-box, the selection being made not to perform mismatches with the 3' ends of the primers employed. For clarification of their mode of action, however, the three **K**-box elements are outlined in 15 the following in detail separately:

*Role of  $k_1$  and  $k_1'$  **K**-box elements and mode of action:*

The  $k_1/k_1'$  sequences are designed to prevent contamination from previous amplification reactions. As outlined in Fig. 1 the forward primer of the first PCR is composed of (i) a target-specific proportion  $p_C$ , (ii) and the **K**-box sequence element  $k_1$ , which is specific for each 20 primer set and (iii) and a sequence element  $M_a$ . The reverse primer of the first PCR is composed in the same way but in reverse-complement fashion.

A specific  $k_1$  and/or  $k_1'$  element is used for a particular reaction and is varied when the amplification reaction is performed repeatedly. In other words, if a routine diagnostic amplification reaction (e.g. the analysis of T-cell receptor beta (TCR $\beta$ ) rearrangements or the 25 analysis of cancer genes) is performed a plurality of times in the same laboratory, primers using different  $k_1/k_1'$  elements may be used for each individual experiment until all variations of  $k_1$  and  $k_1'$  have been consumed. The 3' end of the second (or adaptor) primer is chosen to hybridize to  $k_1$  or  $k_1'$ , respectively, along the entire length of  $k_1$  (or  $k_1'$ ). Thus, pairs of first and second primers are formed, where the "left" adaptor primer hybridizes to sequence tract 30  $k_1$  that was generated by the "left" initial primer, and the "right" adaptor primer hybridizes to the sequence tract  $k_1'$  that was generated by the "right" initial primer. In order to allow full hybridization, the adaptor primer will hybridize not necessarily only to the tract generated by

$k_1$  (or  $k_1'$ ), but - if  $k_1$  (or  $k_1'$ ) does not provide sufficient length of hybridization tract - for the hybridization temperature selected for the reaction - also to a sequence tract adjacent to  $k_1$  (or  $k_1'$ ) on its 5' end, namely  $m_a$  and  $m_a'$  (see Fig. 1).

As example, five samples are processed in parallel with five different sets of first (initial) and 5 second (adaptor) primers with a  $k_1/k_1'$  element combination specific for each of the five samples. In the case of contamination of the second PCR of sample 2 with PCR products derived from the primary PCR of sample 1, the mismatch between the  $k_1$  and/or  $k_1'$  element of the PCR product of sample 1 and the different  $k_1$  and/or  $k_1'$  elements of the sample 2 primers will prevent the amplification of the contaminating material.

10 Both,  $k_1$  and  $k_1'$  can be of 1, 2, 3, 4, 5, 6, 7, 8, 9 or more bases in length. As shown in the proof of principle example below (Table 4) even a  $k_1/k_1'$  sequence of one base reduces contamination. However since the number of permutations is relatively low and the discriminatory power (in the sense of contamination suppression) of a one-base mismatch not as great as that of longer mismatches,  $k_1$  and  $k_1'$  elements of greater length, for example 15 2, 3, 4, 5, 6, 7, 8 or 9 have broader utility (Examples are given in Tables 16-19).

*Role of  $k_2$  and  $k_2'$  K-box elements and mode of action:*

A further K-box element is a sequence element  $k_2$  or  $k_2'$ , comprised in the sequence tract  $m_a-K$  or  $m_a-K'$ , respectively, of the initial primer, but not in the corresponding sequence tract in the second amplification (adaptor) primer (Fig. 2). Hence,  $k_2$  and  $k_2'$  are 20 characteristic of the initial primer only. In embodiments where  $k_2$  (or  $k_2'$ ) and  $k_1$  (or  $k_1'$ ) sequences are comprised in the initial primer, the  $k_2$  (or  $k_2'$ ) element is downstream (towards the 3' end) from the  $k_1$  (or  $k_1'$ ) sequence element (Fig. 2).

While  $k_1$  and  $k_1'$  lead to suppression of contaminations, the  $k_2/k_2'$  sequences are designed to detect contamination from previous amplification reactions.

25 Therefore, as in the case of  $k_1$  (or  $k_1'$ ), the presence of  $k_2$  (or  $k_2'$ ) in specific variation (Examples are provided in Table 20) over a plurality of primer sets used at different times or for different samples in the same routine setting helps to detect contaminations and synergistically control the contamination suppression efficacy of  $k_1/k_1'$ .

*Role of  $s$  and  $s'$  K-box elements and mode of action:*

30 The K-box elements  $s/s'$  prevent a possible PCR bias dependent on  $k_1/k_1'$  and  $k_2/k_2'$  sequences as outlined below.

**S** separates the target-specific left initial primer sequence  $p_C$  from the sequence tracts  $k_2$  and/or  $k_1$ . **S'** separates the target-specific right initial primer sequence  $p_C'$  from  $k_2'$  and/or  $k_1'$  (see Fig. 3-4). Since  $k_1/k_1'$  and  $k_2/k_2'$  vary among different primers used in subsequent amplifications, some variations of  $k_2/k_2'$  and/or  $k_1/k_1'$  may coincidentally match in their 3' end nucleotides the sequence of the target next to the hybridizing part of the initial primers  $p_C$  or  $p_C'$ . The target sequence-matching tract of the initial primer would be longer for some targets than for others, leading to PCR bias resulting from higher annealing temperatures.

This problem is amplified if – as provided in some embodiments of the present invention – multiplex-collections are employed. A set within a multiplex collection addresses different 10 target sequences for use in a multiplex PCR, but carries the same  $k_1$  (and  $k_1'$ ) and, optionally,  $k_2$  (and  $k_2'$ ) elements. Here, different annealing temperatures might introduce a PCR bias that may significantly skew any quantitative interpretation of the results.

Hence, in some embodiments a short (1, 2, 3 or 4 nucleotides) separator sequence **S** (**S'**) is introduced into the  $k/k'$  sequence tract, immediately upstream of the  $p_C/p_C'$  sequence 15 tract, i.e., at the 3' terminal end of  $k/k'$ . **S** and **S'** are thus designed to prevent a hybrid formation with the template (target) sequence  $t_n/t_n'$  adjacent to the primer-hybridizing sequence tract  $t_C/t_C'$ , as outlined in Fig. 3-4.

*Advantages of using combined  $k_1$ ,  $k_2$ , **S** and  $k_1'$ ,  $k_2'$ , **S'** sequence elements:*

The three **K**-box elements work synergistically to achieve the overall goal of preventing 20 PCR-based contamination in applications employing NGS/HTS techniques.

Since the  $k_2/k_2'$  elements are only present in the first amplification primers an eventual contamination can still be identified in the second amplification product. Thus,  $k_2/k_2'$  elements determine and therefore control the contamination suppression efficiency of  $k_1/k_1'$ .

Furthermore, **S/S'** is the **K**-box family member that solves the problem of a possible PCR 25 bias dependent on  $k_1/k_1'$  and  $k_2/k_2'$  sequences.

Finally, all three **K**-box elements together must be designed bioinformatically as one unit and optimized not to form hybrids (e.g. more than 6 bp match within 10 bp) that might lead to mispriming with any primer sequence but especially at the 3'ends of the primers employed.

*Different aspects of the invention:*

30 According to a first aspect of the invention, a method for amplifying a target nucleic acid sequence  $t_C-t_V-t_C'$  comprised within a sequence tract  $t_n-t_C-t_V-t_C'-t_n'$  is provided, said

method comprising conducting a plurality of polymerase chain reaction (PCR) amplification reactions. In other words, the invention is directed toward a method of repeatedly amplifying or sequencing the same target sequence (albeit in variation that may occur within a sequence tract of interest designated  $t_V$ ). Each reaction comprises two PCR amplification steps: a first amplification step, in which a target nucleic acid sequence is amplified using a first ("initial") primer pair, and includes the reactants known to the skilled artisan as necessary for conducting a PCR reaction, i.e. nucleoside triphosphates (ATP, GTP, TTP, CTP), a suitable buffer and thermostable polymerase such as Taq polymerase. This initial primer pair is composed of a left (forward) first ("initial") PCR primer having a sequence  $m_a-K-p_c$  composed of two sequence elements  $m_a-K$  and  $p_c$  in 5'-3' orientation, and a right (reverse) initial primer having a sequence  $m_a-K'-p_c'$ , similarly oriented from 5' to 3'. The product of the first amplification set is a first amplificate, comprising the target nucleic acid sequence flanked on either side by sequence tracts  $m_a-K$  and  $m_a-K'$ , respectively (Fig. 1).

The sequence  $t_c-t_V-t_c'$  constitutes the amplified region of the target, whereas the short sequence elements  $t_n$  and  $t_n'$  are flanking regions that define the selection of sequence elements  $S$  and  $S'$  in the primer set.

The method of the invention further comprises a second PCR amplification step, whereby a first amplificate is re-amplified using a second ("adaptor") primer pair composed of a left (forward) second ("adaptor") PCR primer having a sequence  $a_L-a_P-a_K$  composed of the sequence elements  $a_L$ ,  $a_P$  and  $a_K$  in 5'-3' orientation and a right (reverse) second ("adaptor") PCR primer having a sequence  $a_L'-a_P'-a_K'$ . Again, the reactants necessary for conducting a PCR reaction, i.e. nucleoside triphosphates, a suitable buffer and thermostable polymerase are present. The product of the second amplification is a second amplificate (Fig. 1).

25 Within the first primer pair,  $p_c$  displays the same sequence as the target sequence element  $t_c$ ,  $p_c'$  is the reverse complimentary sequence to  $t_c'$ . In other words,  $p_c$  and  $p_c'$  are the target-specific primer sequences that hybridize to the target and effect amplification.  $p_c$  and  $p_c'$  each independently from one another are 8 to 40 nucleotides in length.

Within the first primer pair,  $m_a-K$  comprises a  $k$ -box with the sequence element  $k_1$ , and  $m_a-K'$  comprises a  $k'$ -box with a sequence element  $k_1'$ .  $k_1$  and  $k_1'$  each independently from one another are a sequence 2, 3, 4, 5, 6, 7, 8 or 9 nucleotides in length.  $k_1$  and  $k_1'$  are not meant to hybridize to the target sequence. A first primer pair and a second primer pair with

identical  $k_1$  and  $k_1'$  form a set.  $k_1$  and  $k_1'$  are the sequence elements that individualize different primer sets from one another.  $k_1$  and  $k_1'$  match the first "initial" and the second "adaptor" PCR primer pairs to one another within a set. Thus,  $k_1$  and  $k_1'$  of the first initial primer pair correspond to the sequence elements  $a_K$  ( $k_1$ ) and  $a_K'$  ( $k_1'$ ), respectively, in the 5 second primer pair (Fig. 1).

Furthermore,  $m_a$ -K comprises a sequence element S on its 3' terminus and  $m_a$ -K' comprises a sequence element S' on its 3' terminus. S and S' are mismatch sequences selected not to form a continuous hybrid sequence with sequence element  $t_n$  and  $t_n'$  and S and S' are independently 1, 2, 3, 4 or 5 nucleotides in length. As described in detail above, 10 the effect of this element is to avoid an inadvertent rise of the annealing temperature of  $p_C$  and  $p_C'$  on the target in some primers dependent on  $m_a$ -K and/or  $m_a$ -K' sequences. This element helps to avoid PCR bias (Fig. 3-4).

Sequence tract  $a_P$ - $a_K$  hybridizes to a contiguous sequence on sequence element  $m_a$ -K, and  $a_P'$ - $a_K'$  hybridizes to a contiguous sequence on sequence element  $m_a$ -K'. In other 15 words,  $a_P$ - $a_K$  (and its analogue  $a_P'$ - $a_K'$ ) is the sequence tract on the 3' terminal end of the adaptor primer that recognizes the initial primer.

$m_a$ -K and  $m_a$ -K' can be of any length that fits their general purpose, but will generally be within the usual length of a primer target sequence, i.e.  $m_a$ -K and  $m_a$ -K' will be generally each independently from one another a sequence 10 to 40 nucleotides in length, in certain 20 embodiments from about 15 to 30 nucleotides in length.

$a_L$  and  $a_L'$  and also  $a_P$  and  $a_P'$  independently from one another can be any sequence that fits the general purpose of providing a sequence useful for sequencing the second amplificate, for example by providing a sequencing primer annealing target and/or a sequence for attaching the second amplificate to a chip or bead or any other surface-bound 25 structure as may be useful in NGS/HTS sequencing.

$t_V$  is a variable region within said target nucleic acid sequence.

Additionally, according to this first aspect of the invention, a particular set of primers for each one of said plurality of amplification reactions is provided, for each of which the sequence of one of  $k_1$  and  $k_1'$  is different from the sequence of any other  $k_1$  and  $k_1'$ , respectively, in any 30 other set of the sets of primers. In other words, no particular sequence of  $k_1$  and/or  $k_1'$  occurs more than once in any set.

In some embodiments,  $a_L$  and  $a_L'$  are 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or 70 nucleotides in length. In some embodiments,  $p_C$  and  $p_C'$  each independently from one another are 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38 or 40 nucleotides in length.

5 Thus, in certain embodiments,  $m_a$ -K comprises a 3'-terminal sequence  $k_1$ -s, and  $m_a$ -K' comprises a 3'-terminal sequence  $k_1'$ -s'.

In certain embodiments,  $m_a$ -K comprises a sequence element  $k_2$  3'-terminal to sequence element  $k_1$ , and  $m_a$ -K' comprises a sequence element  $k_2'$  3'-terminal to sequence element  $k_1'$  (Fig. 2).  $k_2$  and  $k_2'$  each independently from one another are 2, 3, 4, 5, 6 or 7 nucleotides in length.  $k_2$  and  $k_2'$  serve to individualize the first primer pair of the set from other first (initial) primers.  $k_2$  and  $k_2'$  have no complementary sequence elements on the second ("adaptor") primers. The second primers  $k_1$  and  $k_1'$  have complementary sequences to the first primers within one primer set.

15 In some embodiments, the primer set uses all three elements  $k_1$ / $k_1'$ ,  $k_2$ / $k_2'$  and s/s' (Fig. 3). Thus  $m_a$ -K comprises a 3'-terminal sequence  $k_1$ - $k_2$ -s, and  $m_a$ -K' comprises a 3'-terminal sequence  $k_1'$ - $k_2'$ -s'. In some embodiments,  $m_a$ -K comprises a 3'-terminal sequence  $k_1$ - $k_2$ -s, and  $m_a$ -K' comprises a 3'-terminal sequence  $k_1'$ - $k_2'$ -s' and the first and/or second primer pairs have phosphorothiolated moieties on the last 1, 2, 3 or 4 internucleotide linkages at their 3' terminal end.

20 In certain embodiments, K comprises a 3'-terminal sequence  $k_1$ - $k_2$ -s, and K' comprises a 3'-terminal sequence  $k_1'$ - $k_2'$ -s', wherein

- $k_1$  and  $k_1'$  each independently from one another are a sequence 2 to 9 nucleotides in length,
- $k_2$  and  $k_2'$  each independently from one another are a sequence 2 to 7 nucleotides in length;
- s and s' are mismatch sequences selected not to form a continuous hybrid sequence with sequence element  $t_h$  and  $t_h'$ , and s and s' are independently 1, 2, 3, 4 or 5 nucleotides in length,
- $a_k$  is the same sequence as sequence element  $k_1$  and  $a_k'$  is the same sequence as sequence element  $k_1'$ ,
- $a_k$  and  $a_k'$  are selected not to hybridize to  $k_2$  and  $k_2'$ , respectively;

- $a_P-a_K$  hybridizes to a contiguous sequence on  $m_a-K$  and  $a_P'-a_K'$  hybridizes to a contiguous sequence on  $m_a-K'$
- $p_C, p_C', m_a-K$  and  $m_a-K'$  each independently from one another are a sequence 10 to 40 nucleotides in length, and  $a_L$  and  $a_L'$  independently from one another can be any sequence.

5

In certain embodiments,  $k_1$  and  $k_1'$  each independently from one another are a sequence 5, 6, 7, 8 or 9 nucleotides in length,  $s$  and  $s'$  are each independently 2, 3, or 4 nucleotides in length, and /or  $k_2$  and  $k_2'$  each independently from one another are a sequence 2, 3, 4, 5 or 6 nucleotides in length.

10 In certain embodiments, for each particular set of primers,

- each  $k_1$  is different from of any other  $k_1$  and each  $k_1'$  is different from any other  $k_1'$ , resulting in a specific combination of  $k_1$  and  $k_1'$  for each set, and/or
- each  $k_2$  is different from of any other  $k_2$  and each  $k_2'$  is different from any other  $k_2'$ , resulting in a specific combination of  $k_2$  and  $k_2'$  for each set.

15 In some embodiments, the sets of primers comprise

- a left (forward) initial primer comprising a sequence element  $p_C$  selected from any one of SEQ ID NO 001 to SEQ ID NO 045 and a right (reverse) initial primer comprising a sequence element  $p_C'$  selected from any one of SEQ ID NO 046 to SEQ ID NO 058; and/or
- a left (forward) initial primer comprising a sequence element  $p_C$  selected from any one of SEQ ID NO 189 to SEQ ID NO 232 and a right (reverse) initial primer comprising a sequence element  $p_C'$  selected from any one of SEQ ID NO 233 to SEQ ID NO 246; and/or
- a left (forward) initial primer comprising a sequence element  $m_a$  selected from any one of SEQ ID NO 059 to SEQ ID NO 085 and a right (reverse) initial primer comprising a sequence element  $m_a$  selected from any one of SEQ ID NO 086 to SEQ ID NO 117; and/or
- a left (forward) adaptor primer comprising a sequence element  $a_L-a_P$  selected from any one of SEQ ID NO 118 to SEQ ID NO 149 and a right (reverse) adaptor primer

20

25

comprising a sequence element  $M_a$  selected from any one of SEQ ID NO 150 to SEQ ID NO 182.

In certain embodiments,  $k_1$  and  $k_1'$  and/or  $k_2$  and  $k_2'$  (where  $k_2$  and  $k_2'$  are contained in the sequence) are selected not to hybridize to the sequence elements  $t_n$  and  $t_n'$  adjacent to the amplified sequence tract. In other words,  $k_1$  and  $k_1'$  and  $k_2$  and  $k_2'$  (where  $k_2$  and  $k_2'$  are contained in the sequence) are separate and distinct from a primer sequence directed toward target amplification. All k-box components solely and exclusively have the purpose of distinguishing the primer set, and thus preventing erroneous amplification of amplicon contaminations, as set forth above.

10 In some embodiments, the left initial primer, the right initial primer, the left adaptor primer and/or the right adaptor primer are characterized by one or several nuclease resistant nucleotide(s) or nuclease resistant internucleosidic bond(s) on or near (at position 1, 2, 3 and /or 4 counting from) the 3' terminus of the primers. In other words, the 3' end of the primer is protected against 3' exonuclease digestion by providing bonds that inhibit or resist the 15 exonuclease activity.

In some embodiments, the nuclease resistant internucleosidic bond is a phosphorothioate bond. In some embodiments, the nuclease resistant nucleotide is a 2-O-methylated ribonucleotide. In some embodiments, the nuclease resistant nucleotide is an LNA building block (a 2'O, 4'C-methylene bridged RNA building block). In some embodiments, the 20 nuclease resistant nucleotide is a 2-F-deoxyribonucleotide. In some embodiments, the nuclease resistant nucleotide is a 2-propyne-deoxyribonucleotide.

In some embodiments, the nuclease resistant nucleotide or nuclease resistant internucleosidic bond is the last internucleosidic bond counting from the 3' terminus of said primer(s). In some embodiments, the nuclease resistant nucleotide or nuclease resistant 25 internucleosidic bond is located on position -1, -2, -3, and/or -4 counting from the 3' terminus of said primer(s). In some embodiments, the nuclease resistant nucleotide or nuclease resistant internucleosidic bond are located at position -1 and -2, in some embodiments at position -1 and -2 and -3, or in some embodiments at position -1 and -2 and -3 and -4.

For avoidance of doubt, in the sequence 5' GpApTxGyC 3', y marks the -1 position, x marks 30 the -2 position, p marks the -3 and -4 position of the internucleosidic bonds, and C marks the position -1 and G marks the position -2 of the nucleotide counting from the 3' end.

According to one alternative of this first aspect of the invention, a method for sequencing a target sequence  $t_C-t_V-t_C'$  comprised within a sequence tract  $t_n-t_C-t_V-t_C'-t_n'$  is provided, said method comprising the steps of

- a. amplifying said target sequence by a method as outlined above in any of the aspects and embodiments provided, and
- 5 b. sequencing said second amplificate including sequence elements  $m_a-K$  and/or  $m_a-K'$ , yielding a set of readout sequences.

Methods of sequencing are known to the skilled artisan and include (but are not limited to) the methods described in the publications referenced above.

10 In some embodiments, the method for sequencing a target sequence further comprises the steps of

- c. aligning each member of said set of readout sequences to sequence element  $m_a-K$  and/or  $m_a-K'$  comprised in said initial primer, respectively, and

15 d. assigning a value of 0 or 1 as a measure of contamination to each sequence of said set of readout sequences (e.g. the results of NGS sequencing of one sample), wherein complete alignment of a member of said set of readout sequences (i.e. a particular readout sequence) to said sequence element  $m_a-K$  or  $m_a-K'$  corresponds to the value of 0 (signifying no contamination for that particular set member), and incomplete alignment of a member of said set of readout sequences to said sequence element  $m_a-K$  or  $m_a-K'$  corresponds to 1 (signifying that this particular read was caused by a contamination); and

20

- (i) determining a percentage of contamination by adding all values assigned in step d), resulting in a value sum, and dividing said value sum by the total number of reads; and / or
- (ii) removing the sequences having a value of "1" from the sequence set.

Thus, if the set of readout sequences consists of 10.000 sequences, for 32 of which the sequence tract corresponding to  $m_a-K$  or  $m_a-K'$  does not align with the particular sequence expected (chosen) for the particular run, then a percentage of contamination of 32/10.000, resulting in 0,0032 or 0,32% is computed.

30 In other words, the method for sequencing a target sequence includes a step of validation or quality control, wherein all sequences obtained are checked for the presence of identifier

sequences  $k_2$ ,  $k_2'$  and/or  $k_1$ ,  $k_1'$  ( $k_1$ ,  $k_1'$  can be relevant as identifier of the first amplification reaction, since  $k_1$ ,  $k_1'$  of the second amplification primer can be partially degraded in the second PCR by proof reading polymerases as outlined in detail in the proof of principle examples). Unexpected identifier sequences, or unexpected combinations 5 thereof, are regarded as contamination.

For each amplification reaction, a different set of primers is used, the difference being in different sequence elements  $k_1$ ,  $k_1'$ ,  $k_2$  and  $k_2'$  or combinations thereof. In other words, the method comprises the steps of providing a set of primers for each sample of said plurality of samples, each set of primers comprising a pair of initial PCR primers comprising a left initial 10 initial PCR primer having a sequence  $m_a$ -K- $p_C$  and a right initial primer having a sequence and  $m_a$ -K'- $p_C'$ , and a pair of adaptor PCR primers comprising a left adaptor PCR primer having a sequence  $a_L$ - $a_P$ - $a_K$  and a right adaptor PCR primer having a sequence  $a_L'$ - $a_P'$ - $a_K'$ .

According to another aspect of the invention, a set of primers for use in a method for amplifying or sequencing a target nucleic acid sequence according to the invention is 15 provided, wherein each set of primers of said collection comprises

- i. a pair of initial PCR primers comprising a left (forward) initial PCR primer having a sequence  $m_a$ -K- $p_C$  and a right (reverse) initial primer having a sequence and  $m_a$ -K'- $p_C'$ , and
- ii. a pair of adaptor PCR primers comprising a left adaptor PCR primer having a sequence  $a_L$ - $a_P$ - $a_K$  and a right adaptor PCR primer having a sequence  $a_L'$ - $a_P'$ - $a_K'$ ,

20 wherein all sequence designators have the meaning outlined above, namely:

- $p_C$  is the same sequence as sequence element  $t_C$  and  $p_C'$  is the reverse complimentary sequence to  $t_C'$ ,
- K comprises a sequence element  $k_1$  and a 3'-terminal sequence element  $S$ , and K' 25 comprises a sequence element  $k_1'$  and a 3'-terminal sequence element  $S'$ , wherein

20 >  $k_1$  and  $k_1'$  each independently from one another are a sequence 2 to 9 nucleotides in length,

>  $S$  and  $S'$  are mismatch sequences selected not to form a continuous hybrid sequence with sequence element  $t_n$  and  $t_n'$ , and  $S$  and  $S'$  are each independently 1, 2, 3, 4 or 5 nucleotides in length,

- $a_k$  is the same sequence as sequence element  $k_1$  and  $a_{K'}$  is the same sequence as sequence element  $k_1'$ ,
- $a_P-a_K$  hybridizes to a contiguous sequence on  $m_a-K$  and  $a_P'-a_{K'}$  hybridizes to a contiguous sequence on  $m_a-K'$

5 -  $p_c$ ,  $p_c'$ ,  $m_a-K$  and  $m_a-K'$  each independently from one another are a sequence 10 to 40 nucleotides in length, and  $a_L$  and  $a_L'$  independently from one another can be any sequence.

In some embodiments,  $K$  comprises a 3'-terminal sequence  $k_1-k_2-s$ , and  $K'$  comprises a 3'-terminal sequence  $k_1'-k_2'-s'$ , wherein  $k_2$  and  $k_2'$  each independently from one another are

10 a sequence 2 to 7 nucleotides in length, and  $a_k$  and  $a_{K'}$  are selected not to hybridize to  $k_2$  and  $k_2'$ , respectively.

In certain embodiments, all sequence elements  $a_P$  are the same and all sequence elements  $a_P'$  are the same for a collection.

In one embodiment, a set of primers according to the invention (and intended for use in a

15 method of the invention) comprises:

- a left (forward) initial primer comprising a sequence element  $p_c$  selected from any one of SEQ ID NO 001 to SEQ ID NO 045 and a right (reverse) initial primer comprising a sequence element  $p_c'$  selected from any one of SEQ ID NO 046 to SEQ ID NO 058; and/or
- 20 - a left (forward) initial primer comprising a sequence element  $p_c$  selected from any one of SEQ ID NO 189 to SEQ ID NO 232 and a right (reverse) initial primer comprising a sequence element  $p_c'$  selected from any one of SEQ ID NO 233 to SEQ ID NO 246; and/or
- a left (forward) initial primer comprising a sequence element  $m_a$  selected from any one of SEQ ID NO 059 to SEQ ID NO 085 and a right (reverse) initial primer comprising a sequence element  $m_a$  selected from any one of SEQ ID NO 086 to SEQ ID NO 117; and/or
- 25 - a left (forward) adaptor primer comprising a sequence element  $a_L-a_P$  selected from any one of SEQ ID NO 118 to SEQ ID NO 149 and a right (reverse) adaptor primer comprising a sequence element  $m_a$  selected from any one of SEQ ID NO 150 to SEQ ID NO 182.

According to another aspect of the invention, a collection of sets of primers for use in a method for amplifying or sequencing a target nucleic acid sequence according to any of the preceding aspects and embodiments is provided, wherein each set adheres to the definition given for the previously defined aspect of the invention (a set of primers according to the invention), and wherein for all sets of primers comprised within said collection, all sequence elements  $p_C$  are the same and all sequence elements  $p_C'$  are the same. Furthermore, each set of primers is characterized by a different combination of  $k_1$  and  $k_1'$  from any other set of primers.

In other words: in each of these sets of primers,  $k_1$  is different from one of any other  $k_1$  and/or  $k_1'$  is different from one of any other  $k_1'$  in each of the other sets. In other words, 10 each set has a unique  $K_1/K_1'$  combination.

In some embodiments of this aspect of the invention, where  $k_2$  and  $k_2'$  are present, for each said particular set of primers, one of  $k_2$  and  $k_2'$  are different from of any other  $k_2$  and  $k_2'$ , respectively. In other words: each set of primers is characterized by a different combination 15 of  $k_1$ ,  $k_1'$ ,  $k_2$  and  $k_2'$  from any other set of primers.

In certain embodiments, the collection of sets of primers according to the invention comprise 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 160, 200, 256 or 1024 different sets of primers.

According to yet another aspect of the invention, a multiplex-collection (primer library) comprising a plurality of collections of sets of primers according to the invention is provided, 20 whereby each collection is characterized by a different combination of  $p_C$  and  $p_C'$ .

A multiplex set within a multiplex collection is defined as a multiplex collection member (primer library member). In other words, a multiplex set is a plurality of sets of primers for employment in a method of the invention, wherein the plurality is characterized in that each member set differs from any other member set in their combination of  $p_C$  and  $p_C'$ , but for all 25 member sets,  $k_1$  and  $k_1'$  (and, where applicable,  $k_2$  and  $k_2'$ ) are the same. The multiplex collection members can thus be used together, within the same multiplex PCR, and different multiplex collection members (discriminated by different K-boxes) will be used in repeated PCR/sequencing rounds.

To demonstrate the validity and power of the present invention, a PCR-based analysis of T-cell receptor beta (TCR $\beta$ ) gene rearrangements was performed.

In general, the use of a two-step PCR strategy for TCR analyses has the advantage that the initial PCR with gene-specific TCR primers requires only a few PCR cycles minimizing PCR-generated bias, and thereafter the first amplicate is amplified evenly with the adaptor specific primers by a further PCR step. Furthermore, different adaptors suitable for different  
5 NGS platforms can be added by the second PCR.

In one embodiment, sequences for the target-binding tract of left ( $p_C$ ) initial primer are those given as SEQ ID NO 001-045, and right ( $p_C'$ ) initial primer sequences are those given as SEQ ID NO 046-058. In another embodiment for the target-binding tract of left ( $p_C$ ) initial primer are those given as SEQ ID NO 189-232, and right ( $p_C'$ ) initial primer sequences are  
10 those given as SEQ ID NO 233-246. The primers given as SEQ ID NO 001-058 and as SEQ ID NO 189-246 were optimized in two aspects: 1) to have a similar annealing temperature and 2) to minimize self priming.

The methods, sets of primers, collections and multiplex collections provided herein are of particular use in methods for analysing *in vitro* the TCR $\beta$  repertoire of a human patient.  
15 Wherever alternatives for single separable features are laid out herein as "embodiments", it is to be understood that such alternatives may be combined freely to form discrete embodiments of the invention disclosed herein.

The invention is further illustrated by the following examples and figures, from which further embodiments and advantages can be drawn. These examples are meant to illustrate the  
20 invention but not to limit its scope.

#### Short description of the figures

Fig. 1 shows the primers, target and first and second amplicate of the method of the invention, wherein the sequence tract  $m_a$ -K comprises a sequence element  $k_1$  and the sequence tract  $m_a$ -K' comprises a sequence element  $k_1'$ .  
25 Reverse complementary sequence tracts are underlined.  
Fig. 2 shows the primers, target and first and second amplicate of the method of the invention, wherein the sequence tract  $m_a$ -K, in addition to  $k_1$ , comprises a sequence element  $k_2$  and the sequence tract  $m_a$ -K', in addition to  $k_1'$ , comprises a sequence element  $k_2'$ . Reverse complementary sequence tracts  
30 are underlined.

Fig. 3 shows the primers, target and first and second amplificate of the method of the invention, wherein the sequence tract  $m_a-K$ , in addition to  $k_1$  and  $k_2$  comprises a sequence element  $S$  and the sequence tract  $m_a-K'$ , in addition to  $k_1'$  and  $k_2'$ , comprises a sequence element  $S'$ . Reverse complementary sequence tracts are underlined.

Fig. 4 shows the primers, target and first and second amplificate of the method of the invention, wherein the sequence tract  $m_a-K$ , in addition to  $k_1$ , comprises a sequence element  $S$  and the sequence tract  $m_a-K'$ , in addition to  $k_1'$  comprises a sequence element  $S'$ . Reverse complementary sequence tracts are underlined.

### Examples

In the proof of principle experiments  $k_1/k_1'$  (with a lower case  $k$ ) are together also termed  $K_1$  with a capital letter and  $k_2/k_2'$  sequence tracts are thereafter also termed  $K_2$ . Furthermore,  $S_1/S_1'$  sequence tracts are thereafter also termed  $S$ . In general, the “prime” or apostrophe (‘) indicates that a sequence tract or element has a similar functional characteristic as its non-prime counterpart, but is located on a primer on the other side of the target sequence.

#### Example 1: Proof of principle experiments for $K_1$ function.

The basic experimental layout to demonstrate contamination suppression is outlined below:

20 1) PCR products of the first amplification were defined as a 100% contamination and were used as template for the second amplification. In order to demonstrate the function and effectiveness of  $K_1$  sequence tracts to suppress this contamination,  $K_1$  mismatches of different length ( $N = 1, 2, 3, 4, 6$  bp) between primers of the first and second PCR amplification were investigated. Furthermore, effects on contamination suppression, (i) employing polymerases with and without proofreading activity and (ii) primers with and without phosphorothioate bonds or LNAs were analysed.

25 2) For comparison and to simulate the situation without contamination suppression, simultaneous PCRs employing primers with completely matching  $K_1$  sequences were performed.

30 3) The amount of the PCR products generated by the PCRs under (1) and (2) were quantified and normalized as described more detailed below. Replicates were

performed for all experiments and the mean and standard deviation of PCR product quantity was calculated to obtain statistical reliable results.

If a reamplification with  $K_1$  sequence tracts that mismatch between the first and the second amplification primers showed no PCR product after the second amplification, this was 5 regarded as a complete suppression of the contamination from the primary amplification.

If a reamplification with  $K_1$  sequence tracts that mismatch between the first and the second amplification primers showed PCR products after the second amplification, this was regarded as an incomplete suppression of the contamination from the primary amplification.

Detailed description of the methods:

10 PCR was performed using a DNA thermal cycler (PE 9700, Perkin Elmer, Rodgau, Germany). As template for first amplification reactions 100 ng DNA from the T-cell lymphoma cell line Peer was applied, which carries a known TCR $\beta$  gene rearrangement employing the V-4 and J-2-1 segments.

15 The initial primers used for the first round of amplification comprised in order from 5' to 3' end a sequence tract  $m_a$ -K and a sequence tract  $p_C$  (Fig. 1). Sequence tract  $p_C$  provided target specificity, while  $m_a$ -K provided a non-target-specific sequence tract, parts or all of which can be used for hybridization of a second "adaptor" primer. The left initial PCR primers had a sequence  $m_a$ -K- $p_C$  with the matching sequence  $p_C$  to the V-4 segment (SEQ 183; TTATTCCTTCACCTACACACCCTGC), whereas the right initial primers which had the 20 sequence and  $m_a$ -K'- $p_C'$  with the matching sequence  $p_C'$  (SEQ ID NO 184; AGCACTGTCAGCCGGGTGCCTGG) to the J-2.1 segment.

The 3' end of the K-box of forward initial primers had the sequence element S with the two nucleotides "GG", whereas the 3' end of the K'-box of the initial reverse primer had a sequence element S' with two nucleotides "TA".

25 Furthermore, the K-box of the forward initial primers had a sequence element  $m_a$  (SEQ ID NO 185; CGCTCTTCCGATCT) on the 5' end and the K'-box of the initial reverse primers had a sequence element  $m_a'$  (SEQ ID NO 186; TGCTCTTCCGATCT) on the 5' end (See Fig. 3 for the overview of the sequence tract names).

As listed in Table 2, the K-box of the initial forward primers harboured different  $k_1$  and  $k_2$  30 sequences and the K'-box of the initial reverse primers harboured different  $k_1'$  and  $k_2'$  sequences.

| <b>k-box</b> | <b>k<sub>1</sub>sequence</b> | <b>k<sub>2</sub> sequence</b> | <b>k'-box</b> | <b>k<sub>1</sub>'sequence</b> | <b>k<sub>2</sub>'sequence</b> |
|--------------|------------------------------|-------------------------------|---------------|-------------------------------|-------------------------------|
| <b>name</b>  | <b>name</b>                  |                               |               |                               |                               |
| 1bpV1        | G                            | G                             | 1bJ1          | C                             | C                             |
| 1bpV2        | A                            | C                             | 1bpJ2         | T                             | G                             |
| 2bpV1        | AC                           | G                             | 2bpJ1         | TG                            | C                             |
| 2bpV2        | CA                           | C                             | 2bpJ2         | GT                            | G                             |
| 3bpV1        | ACC                          | G                             | 3bpJ1         | TGG                           | C                             |
| 3bpV2        | CAG                          | C                             | 3bpJ2         | GTC                           | G                             |

**Table 2:** k-box and k'-box element sequences are listed as present in 5'-3' orientation of the forward or reverse primers.

First amplification steps were performed in a final volume of 50  $\mu$ l with final concentrations of

5 1 x PCR Buffer containing 3 mM MgCl<sub>2</sub>, 0.2 mM of each dNTP, 1.0  $\mu$ M forward primer and 1.0  $\mu$ M reverse primer and 1 unit AmpliTaq Gold DNA Polymerase (Applied Biosystems, Foster City, CA, USA) and the following cycling conditions: 1 cycle at 95°C for 15 min, 34 cycles at 95°C for 30 s, 65°C for 45 s and 72°C for 45 sec respectively, and a final 10 min elongation step at 72°C. Primary PCR products were purified using the QIAquick PCR

10 Purification Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. DNA concentration was determined via the Qubit® 1.0 Fluorometer (Invitrogen, Darmstadt, Germany). As template for the second amplification 500 pg from the purified first amplification product was used.

For second amplification a pair of adaptor PCR primers comprising a left adaptor PCR primer

15 having a sequence  $a_L-a_P-a_K$  and a right adaptor PCR primer having a sequence  $a_L'-a_P'-a_K'$  was employed.

The left adaptor primers had the sequence element  $a_L-a_P$  (SEQ ID NO 187) whereas the

right adaptor primers had the sequence element  $a_L'-a_P'$  (SEQ ID NO 188).

Furthermore, the k-box of the forward adaptor primer harbored different k<sub>1</sub> sequences and

20 the k'-box of the reverse adaptor primers harbored different k<sub>1</sub>' (listed in Table 2).

Since K<sub>1</sub> mismatches of the second amplification primer can be removed at the 3' end by the 3'-5' exonuclease-activity of a proofreading polymerase during the second amplification, the strength of a protective effect of phosphorothioates at (i) the first, (ii) the first and second (iii) and at the first to third position from the 3' end of the k-box and k'-box from the left

(forward) and right (reverse) second amplification primer, respectively, was analysed in comparison to primers without protective phosphorothioate bonds.

The second amplification steps were performed (i) with a proofreading polymerase (Phusion High-Fidelity DNA Polymerase (Finnzymes, Espoo, Finland)) or (ii) a polymerase without

5 proofreading activity (AmpliTaq Gold).

For PCRs with proofreading polymerase the second amplification step was performed in a final volume of 50  $\mu$ l including final concentrations of 1 x Phusion HF Buffer with 1.5 mM MgCl<sub>2</sub>, 0.05 mM of each dNTP, 1.0  $\mu$ M forward primer, 1.0  $\mu$ M reverse primer and 1 unit Phusion High-Fidelity DNA Polymerase. The following thermal cycling conditions were used

10 for the second amplification: 1 cycle at 98°C for 30 s, 12 cycles at 98°C for 10 s, 58°C for 30 s and 72°C for 30s respectively, and a final 5 min elongation at 72°C.

For PCRs with AmpliTaq-Gold the second amplification step was performed in a final volume of 50  $\mu$ l with final concentrations of 1 x PCR Buffer, 3 mM MgCl<sub>2</sub>, 0.2 mM of each dNTP, 1.0  $\mu$ M forward primer and 1.0  $\mu$ M reverse primer and 1 unit AmpliTaq Gold DNA Polymerase.

15 The following thermal cycling conditions were used for the second amplification: 1 cycle at 95°C for 15 min, 23 cycles at 98°C for 10 s, 54°C for 30 s and 72°C for 30 s, respectively, and a final 5 min elongation step at 72°C.

PCR products were analysed on a 6% acrylamide gels and Tif files were produced with Biorad GelDoc 2000 (München, Germany) using default conditions. PCR bands were further

20 quantified with the FusionCapt Advance software (Vilber Lourmat, Eberhardzell, Germany).

For quantification of the PCR products, equal areas (= gates) were analysed from (i) a gel quantification standard (= a Peer PCR product, 8  $\mu$ l) which was set to 100% for each analysis, (ii) the PCR products (iii) a no template control (NTC) and (iv) the background gate.

As FusionCapt Advance software parameters linear background subtraction was set for each

25 gel in the middle of the background band and a rolling ball background subtraction (size = 11) was employed. With the help of Microsoft Excel the mean and standard derivation (SDN) of replicated experiments was determined.

## Results

The results for the experiments regarding the K<sub>1</sub>-mediated suppression of contamination by

30 mismatches in the K-boxes including the impact of the number of phosphorothioate bonds are given as single values in Table 3. A summary of Table 3 is given in Table 4. The second amplification primers in the experiments had 0-3 phosphorothioate bonds. A 100%

contamination was simulated (a PCR product amplified with the Peer specific first amplification primers described above, employing Peer DNA as template) by adding a PCR product generated in a first PCR round into the second PCR. The second PCR was performed with matching second amplification primers ( $K_1 = 0$  bp mismatch) and second amplification primers with 1 bp and 2 bp  $K_1$  mismatches (summing up the  $K_1$  mismatches of the forward and reverse primer).

The usage of mismatched  $K$ -boxes leads to a strong reduction of amplification, which was more pronounced when using 2 bases as compared to only one base. This demonstrates the validity our concept (Table 3 and 4).

10

| Analysed sample / FA primer combination | SA primer combination | $K_1$ mis-match (bp) | Vol. % (3 PT) | Vol. % (2 PT) | Vol. % (1 PT) | Vol. % (0 PT) |
|-----------------------------------------|-----------------------|----------------------|---------------|---------------|---------------|---------------|
| Gel quant standard                      |                       |                      | 100.0         | 100.0         | 100.0         | 100.0         |
| Peer 1bpV1 1bpJ1                        | 1bpV1 1bpJ1           | 0                    | 136.7         | 163.1         | 152.4         | 176.9         |
| Peer 1bpV1 1bpJ1                        | 1bpV1 1bpJ2           | 1                    | 28.7          | 38.4          | 63.6          | 171.8         |
| Peer 1bpV1 1bpJ1                        | 1bpV2 1bpJ1           | 1                    | 41.6          | 40.9          | 69.6          | 169.9         |
| Peer 1bpV1 1bpJ1                        | 1bpV2 1bpJ2           | 2                    | 17.0          | 12.2          | 28.7          | 127.7         |
| NTC 1bpV1 1bpJ1                         | 1bpV1 1bpJ1           | 0                    | 13.7          | 10.8          | 11.6          | 14.0          |
| Background                              |                       |                      | 12.0          | 9.7           | 8.8           | 15.7          |
| Gel quant standard                      |                       |                      | 100.0         | 100.0         | 100.0         | 100.0         |
| Peer 1bpV1 1bpJ2                        | 1bpV1 1bpJ1           | 1                    | 8.9           | 20.1          | 18.6          | 109.3         |
| Peer 1bpV1 1bpJ2                        | 1bpV1 1bpJ2           | 0                    | 84.8          | 119.5         | 100.5         | 122.0         |
| Peer 1bpV1 1bpJ2                        | 1bpV2 1bpJ1           | 2                    | 7.8           | 12.7          | 10.8          | 76.7          |
| Peer 1bpV1 1bpJ2                        | 1bpV2 1bpJ1           | 1                    | 13.9          | 22.0          | 25.8          | 104.3         |
| NTC 1bpV1 1bpJ2                         | 1bpV1 1bpJ1           | 1                    | 9.5           | 12.0          | 7.5           | 9.6           |
| Background                              |                       |                      | 7.7           | 11.0          | 8.0           | 7.9           |
| Gel quant standard                      |                       |                      | 100.0         | 100.0         | 100.0         | 100.0         |
| Peer 1bpV2 1bpJ1                        | 1bpV1 1bpJ1           | 1                    | 19.3          | 28.2          | 45.1          | 87.0          |
| Peer 1bpV2 1bpJ1                        | 1bpV1 1bpJ2           | 2                    | 10.6          | 11.9          | 14.2          | 80.5          |
| Peer 1bpV2 1bpJ1                        | 1bpV2 1bpJ1           | 0                    | 82.4          | 83.9          | 86.8          | 101.3         |
| Peer 1bpV2 1bpJ1                        | 1bpV2 1bpJ2           | 1                    | 11.7          | 16.8          | 21.3          | 78.0          |
| NTC 1bpV2 1bpJ1                         | 1bpV1 1bpJ1           | 1                    | 9.2           | 8.5           | 8.9           | 7.8           |
| Background                              |                       |                      | 7.0           | 12.0          | 6.8           | 8.2           |
| Gel quant standard                      |                       |                      | 100.0         | 100.0         | 100.0         | 100.0         |

|                  |             |   |      |      |      |       |
|------------------|-------------|---|------|------|------|-------|
| Peer 1bpV2 1bpJ2 | 1bpV1 1bpJ1 | 2 | 10.1 | 10.2 | 11.8 | 81.7  |
| Peer 1bpV2 1bpJ2 | 1bpV1 1bpJ2 | 1 | 22.7 | 22.5 | 38.2 | 113.8 |
| Peer 1bpV2 1bpJ2 | 1bpV2 1bpJ1 | 1 | 11.4 | 11.3 | 13.1 | 103.0 |
| Peer 1bpV2 1bpJ2 | 1bpV2 1bpJ2 | 0 | 94.0 | 81.1 | 78.7 | 96.9  |
| NTC 1bpV2 1bpJ2  | 1bpV1 1bpJ1 | 2 | 9.3  | 8.2  | 8.1  | 10.0  |
| Background       |             |   | 9.7  | 7.9  | 8.2  | 10.2  |

**Table 3:** Effect of the number of  $K_1$  mismatches (1 and 2 bp) on contamination suppression employing second amplification primers with 3, 2, 1 and 0 phosphorothioate (PT) bonds at their 3'end and proofreading polymerase. As gel quantification (quant) standard the same Peer TCR PCR product was used on each gel for normalization of the PCR product quantities and was set to 100%. Therefore, Vol. % larger than 100% can be achieved. Relevant for the effect of contamination suppression are the summary statistics (Table 4). (FA = first amplification, SA = second amplification, NTC no template control, bp = base pair, Vol. % volume percent as determined by FusionCapt Advance software, PT = phosphorothioate bond).

10

| $K_1$<br>mismatch<br>(bp) | Vol. %<br>(3 PT)<br>Mean | Vol. %<br>(3 PT)<br>SDN | Vol. %<br>(2 PT)<br>Mean | Vol. %<br>(2 PT)<br>SDN | Vol. %<br>(1 PT)<br>Mean | Vol. %<br>(1 PT)<br>SDN | Vol. %<br>(0 PT)<br>Mean | Vol. %<br>(0 PT)<br>SDN |
|---------------------------|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------------|
| 0                         | 99.5                     | 21.9                    | 111.9                    | 33.2                    | 104.6                    | 28.7                    | 124.3                    | 31.8                    |
| 1                         | 19.8                     | 10.3                    | 25.0                     | 9.6                     | 36.9                     | 19.7                    | 117.1                    | 32.9                    |
| 2                         | 11.4                     | 3.4                     | 11.8                     | 0.9                     | 16.4                     | 7.2                     | 91.7                     | 20.9                    |

**Table 4:** Summary statistics of Table 3 (bp = base pair, Vol. % volume percent, SDN = standard deviation, PT = phosphorothioate bond). Quantities around 100% Vol. mean that there is no suppression of contamination. A lower Vol. % is the result of contamination suppression.

15 The mean of all NTCs in Table 3 was 9.7 (SDN: 1.9) and the mean of background was 9.4 (SDN: 2.3).

Taken together, Table 3 and 4 demonstrate that in a setting with a proofreading polymerase employed in the second amplification, contamination suppression is much more effective with phosphorothioate bonds at the 3'end of the  $K$ -box and  $K'$ -box of reamplification primers.

20 Furthermore, an increasing number of  $K_1$  mismatches leads to improved contamination suppression. For example with 2 bp  $K_1$  mismatches and 2 phosphorothioate bonds the contamination (mean of 11.8, SDN: 0.9) is almost suppressed to NTC or background level.

Further experiments with longer  $K_1$  mismatches revealed a complete suppression of contamination. The effectiveness of  $K_1$  mismatches of 2, 3, 4, and 6 bp total length, to suppress contaminations was analysed in comparison to controls without  $K_1$  mismatches. The second amplification primers in these experiments had 3 phosphorothioate bonds. The 5 results are given in Table 5. A summary statistic with mean and standard deviation of the results in Table 5 is given in Table 6.

| Analysed sample / FA primer combination | SA primer combination | Vol. % (3 PT) | $K_1$ mismatch (bp) |
|-----------------------------------------|-----------------------|---------------|---------------------|
| Gel quant standard                      |                       | 100.0         |                     |
| Peer 2bpV1 2bpJ1                        | 2bpV1 2bpJ1           | 113.8         | 0                   |
| Peer 2bpV1 2bpJ1                        | 2bpV1 2bpJ2           | 11.5          | 2                   |
| Peer 2bpV1 2bpJ1                        | 2bpV2 2bpJ1           | 10.4          | 2                   |
| Peer 2bpV1 2bpJ1                        | 2bpV2 2bpJ2           | 10.9          | 4                   |
| NTC 2bpV1 2bpJ1                         | 2bpV1 2bpJ1           | 10.6          | 0                   |
| Background                              |                       | 9.5           |                     |
| Gel quant standard                      |                       | 100.0         |                     |
| Peer 2bpV1 2bpJ2                        | 2bpV1 2bpJ1           | 9.8           | 2                   |
| Peer 2bpV1 2bpJ2                        | 2bpV1 2bpJ2           | 99.3          | 0                   |
| Peer 2bpV1 2bpJ2                        | 2bpV2 2bpJ1           | 8.5           | 4                   |
| Peer 2bpV1 2bpJ2                        | 2bpV2 2bpJ2           | 8.9           | 2                   |
| NTC 2bpV1 2bpJ2                         | 2bpV1 2bpJ1           | 7.6           | 2                   |
| Background                              |                       | 8.0           |                     |
| Gel quant standard                      |                       | 100.0         |                     |
| Peer 2bpV2 2bpJ1                        | 2bpV1 2bpJ1           | 11.2          | 2                   |
| Peer 2bpV2 2bpJ1                        | 2bpV1 2bpJ2           | 8.1           | 4                   |
| Peer 2bpV2 2bpJ1                        | 2bpV2 2bpJ1           | 88.9          | 0                   |
| Peer 2bpV2 2bpJ1                        | 2bpV2 2bpJ2           | 8.5           | 2                   |
| NTC 2bpV2 2bpJ1                         | 2bpV1 2bpJ1           | 7.7           | 2                   |
| Background                              |                       | 9.4           |                     |
| Gel quant standard                      |                       | 100.0         |                     |
| Peer 2bpV2 2bpJ2                        | 2bpV1 2bpJ1           | 10.8          | 4                   |
| Peer 2bpV2 2bpJ2                        | 2bpV1 2bpJ2           | 13.1          | 2                   |
| Peer 2bpV2 2bpJ2                        | 2bpV2 2bpJ1           | 9.6           | 2                   |
| Peer 2bpV2 2bpJ2                        | 2bpV2 2bpJ2           | 98.5          | 0                   |

|                    |             |       |   |
|--------------------|-------------|-------|---|
| NTC 2bpV2 2bpJ2    | 2bpV1 2bpJ1 | 11.8  | 4 |
| Background         |             | 11.1  |   |
| Gel quant standard |             | 100.0 |   |
| Peer 3bpV1 3bpJ1   | 3bpV1 3bpJ1 | 70.1  | 0 |
| Peer 3bpV1 3bpJ1   | 3bpV1 3bpJ2 | 12.1  | 3 |
| Peer 3bpV1 3bpJ1   | 3bpV2 3bpJ1 | 22.4  | 3 |
| Peer 3bpV1 3bpJ1   | 3bpV2 3bpJ2 | 12.8  | 6 |
| NTC 3bpV1 3bpJ1    | 3bpV1 3bpJ1 | 19.0  | 0 |
| Background         |             | 9.9   |   |
| Gel quant standard |             | 100.0 |   |
| Peer 3bpV1 3bpJ2   | 3bpV1 3bpJ1 | 10.0  | 3 |
| Peer 3bpV1 3bpJ2   | 3bpV1 3bpJ2 | 79.8  | 0 |
| Peer 3bpV1 3bpJ2   | 3bpV2 3bpJ1 | 9.2   | 6 |
| Peer 3bpV1 3bpJ2   | 3bpV2 3bpJ2 | 17.5  | 3 |
| NTC 3bpV1 3bpJ2    | 3bpV1 3bpJ1 | 8.4   | 3 |
| Background         |             | 8.2   |   |
| Gel quant standard |             | 100.0 |   |
| Peer 3bpV2 3bpJ1   | 3bpV1 3bpJ1 | 8.6   | 3 |
| Peer 3bpV2 3bpJ1   | 3bpV1 3bpJ2 | 7.0   | 6 |
| Peer 3bpV2 3bpJ1   | 3bpV2 3bpJ1 | 71.5  | 0 |
| Peer 3bpV2 3bpJ1   | 3bpV2 3bpJ2 | 7.6   | 3 |
| NTC 3bpV2 3bpJ1    | 3bpV1 3bpJ1 | 6.8   | 3 |
| Background         |             | 7.8   |   |
| Gel quant standard |             | 100.0 |   |
| Peer 3bpV2 3bpJ2   | 3bpV1 3bpJ1 | 7.2   | 6 |
| Peer 3bpV2 3bpJ2   | 3bpV1 3bpJ2 | 7.4   | 3 |
| Peer 3bpV2 3bpJ2   | 3bpV2 3bpJ1 | 9.2   | 3 |
| Peer 3bpV2 3bpJ2   | 3bpV2 3bpJ2 | 61.4  | 0 |
| NTC 3bpV2 3bpJ2    | 3bpV1 3bpJ1 | 8.0   | 6 |
| Background         |             | 8.8   |   |

**Table 5** Effect of the number of  $K_1$  mismatches (2, 3 4 and 6 bp total length) on contamination suppression employing second amplification primers with 3 phosphorothioate bonds at their 3' end and proofreading polymerase. As gel quantification (quant) standard the same Peer TCR PCR product was used on each gel for normalization of the PCR product 5 quantities and was set to 100%. Therefore, Vol. % larger than 100% can be achieved. Quantities around 100% Vol. mean that there is no contaminations suppression. A lower Vol. % is a result of contamination suppression. (FA = first amplification, SA = second

amplification, NTC = no template control, bp = base pair, Vol. % volume percent, PT = phosphorothioate bond).

| <b><math>K_1</math><br/>mismatch</b> | <b>Vol. %<br/>Mean</b> | <b>Vol. %<br/>SDN</b> |
|--------------------------------------|------------------------|-----------------------|
| 0                                    | 85.4                   | 16.7                  |
| 2                                    | 10.4                   | 1.4                   |
| 3                                    | 11.9                   | 5.0                   |
| 4                                    | 9.6                    | 1.3                   |
| 6                                    | 9.1                    | 2.3                   |

**Table 6:** Summary statistics of Table 5. Quantities around 100% Vol. means that there is no contamination suppression. A lower Vol. % is a result of the contamination suppression. (bp = base pair, Vol. % volume percent, SDN = standard deviation).

In Table 5 the mean of all NTCs was 10.0 (SDN: 3.7) and the mean of background was 9.1 (SDN: 1.0).

10 In summary, Table 5 and 6 show that in a setting with a proofreading polymerase employed in second amplification and 3 phosphorothioate bonds at the 3'end of the  $k$ -box and  $k'$ -box of the second amplification primers  $K_1$  mismatches of 4 bp (mean 9.6, SDN 1.3) and 6 bp (mean 9.1, SDN 2.3) lead to complete suppression of contaminations comparable to NTCs and background.

15 In another experiment the effect of the number of  $K_1$  mismatches (1 and 2 bp) on contamination suppression employing second amplification primers without phosphorothioate bonds and a polymerase without proofreading activity (AmpliTaq Gold) was analysed (Table 7). Summary statistics for Table 7 are provided in Table 8.

| <b>Analysed sample /FA<br/>primer combination</b> | <b>SA primer<br/>combination</b> | <b>Vol. %</b> | <b><math>K_1</math><br/>mismatch</b> |
|---------------------------------------------------|----------------------------------|---------------|--------------------------------------|
| Gel quant standard                                | -                                | 100           |                                      |
| Peer 1bpV1 1bpJ1                                  | 1bpV1 1bpJ1                      | 155.7         | 0                                    |
| Peer 1bpV1 1bpJ1                                  | 1bpV2 1bpJ1                      | 92.1          | 1                                    |
| Peer 1bpV1 1bpJ1                                  | 1bpV2 1bpJ2                      | 54.9          | 2                                    |

|                    |             |       |   |
|--------------------|-------------|-------|---|
| NTC 1bpV1 1bpJ1    | 1bpV1 1bpJ1 | 13.8  | 0 |
| NTC 1bpV1 1bpJ1    | 1bpV2 1bpJ1 | 14.2  | 1 |
| NTC 1bpV1 1bpJ1    | 1bpV2 1bpJ2 | 11.9  | 2 |
| Background         | -           | 13.2  |   |
| Gel quant standard | -           | 100   |   |
| Peer 1bpV1 1bpJ2   | 1bpV2 1bpJ1 | 51.0  | 2 |
| Peer 1bpV1 1bpJ2   | 1bpV1 1bpJ2 | 115.0 | 0 |
| Peer 1bpV1 1bpJ2   | 1bpV2 1bpJ2 | 84.7  | 1 |
| NTC 1bpV1 1bpJ2    | 1bpV2 1bpJ1 | 10.3  | 2 |
| NTC 1bpV1 1bpJ2    | 1bpV1 1bpJ2 | 10.8  | 0 |
| NTC 1bpV1 1bpJ2    | 1bpV2 1bpJ2 | 9.4   | 1 |
| Background         | -           | 9.8   |   |
| Gel quant standard | -           | 100   |   |
| Peer 1bpV2 1bpJ1   | 1bpV1 1bpJ1 | 104.6 | 1 |
| Peer 1bpV2 1bpJ1   | 1bpV2 1bpJ1 | 120.3 | 0 |
| Peer 1bpV2 1bpJ1   | 1bpV1 1bpJ2 | 77.8  | 2 |
| NTC 1bpV2 1bpJ1    | 1bpV1 1bpJ1 | 38.0  | 1 |
| NTC 1bpV2 1bpJ1    | 1bpV2 1bpJ1 | 30.2  | 0 |
| NTC 1bpV2 1bpJ1    | 1bpV1 1bpJ2 | 20.3  | 2 |
| Background         | -           | 14.5  |   |
| Gel quant standard | -           | 100   |   |
| Peer 1bpV2 1bpJ2   | 1bpV1 1bpJ1 | 50.1  | 2 |
| Peer 1bpV2 1bpJ2   | 1bpV2 1bpJ1 | 62.7  | 1 |
| Peer 1bpV2 1bpJ2   | 1bpV2 1bpJ2 | 89.1  | 0 |
| NTC 1bpV2 1bpJ2    | 1bpV1 1bpJ1 | 12.5  | 2 |
| NTC 1bpV2 1bpJ2    | 1bpV2 1bpJ1 | 16.5  | 1 |
| NTC 1bpV2 1bpJ2    | 1bpV2 1bpJ2 | 15.0  | 0 |
| Background         | -           | 11.2  |   |

**Table 7:** Effect of the number of  $K_1$  mismatches (1 and 2 bp total length) on contamination suppression employing second amplification primers without phosphorothioate bonds and a polymerase without proofreading activity. As gel quantification (quant) standard the same Peer TCR PCR product was used on each gel for normalization of the PCR product quantities and was set to 100%. Therefore, Vol. % larger than 100% can be achieved. Quantities around 100% Vol. mean that there is no contaminations suppression. A lower Vol. % is a result of contamination suppression. (FA = first amplification, SA = second amplification, bp = base pair, Vol. % volume percent)

| <b><math>K_1</math><br/>mismatches</b> | <b>Vol. %</b> | <b>Vol. %</b> |
|----------------------------------------|---------------|---------------|
|                                        | <b>Mean</b>   | <b>SDN</b>    |
| 0                                      | 120.0         | 23.7          |
| 1                                      | 86.0          | 15.2          |
| 2                                      | 58.5          | 11.3          |

**Table 8:** A summary statistics of Table 7 is provided. Quantities around 100% Vol. mean that there is no contamination suppression. A lower Vol. % is a result of contamination suppression. (bp = base pair, Vol. % volume percent, SDN = standard deviation).

5 The mean of all NTCs in Table 7 was 16.9 (SDN: 8.0) and the mean of background was 12.2 (SDN: 1.8).

In summary, Table 7 and 8 show that also in a setting with a polymerase without proofreading activity and second amplification primers without phosphorothioate bonds at the 3'end of the  $k$ -box and  $k'$ -box contamination suppression increases with an increasing 10 number of  $K_1$  mismatches.

#### Contamination suppression by $K_1$ employing a TCR $\beta$ multiplex-collection

To demonstrate that  $K_1$  is able to suppress contaminations employing a multiplex collection (referred to as TCR $\beta$  multiplex collection) with 44 TCR $\beta$  V segment specific primers ( $p_C$ , SEQ ID NO 189 - 232) and 14 TCR $\beta$  J segment specific primers ( $p_C'$ , SEQ ID NO 233 - 15 246) was used in the first PCR amplification. Each of these primers had a 5'  $S$  sequence of two nucleotides in length (For the SEQ ID NO 189-193, 195, 197, 198, 201-211, 213-221, 223-229, 231, 233-241 and 243-246 the  $S$  sequence was "GG", for the SEQ ID NO 194, 200 and 230, the  $S$  sequence was "TG", for the SEQ ID NO 196, 199, 212, 222, 242 the  $S$  sequence was "GT", for the SEQ ID NO 232 the  $S$  sequence was "TT". The orientation of 20 these  $S$  sequences is in 5'- 3'direction of the primer.

Furthermore, in this TCR $\beta$  multiplex collection the  $k$ -box of the forward initial primers had the tail sequence element  $M_a$  (SEQ ID NO 247 GCTCTTCCGATCT) on their 5' end and the  $k'$ -box of the initial reverse primers had a sequence element  $M_a'$  (SEQ ID NO 247; GCTCTTCCGATCT) on their 5' end.

25 Second amplification primers were employed (i) with 2 phosphorothioate bonds at their 3' end and in another experiment with (ii) an LNA at the second position from the 3' end. Three primer sets (Set 1-3) were used with the set specific  $K_1$  and  $K_2$  sequences given in Table 9.

| Name | k <sub>1</sub> sequence | k <sub>2</sub> sequence | k <sub>1</sub> ' sequence | k <sub>2</sub> ' sequence |
|------|-------------------------|-------------------------|---------------------------|---------------------------|
| Set1 | CACCCAA                 | GAC                     | GTTGGTT                   | CGT                       |
| Set2 | AGTTTTG                 | CGG                     | GGTCATG                   | TGG                       |
| Set3 | CTTTAGA                 | GTG                     | GCCATT                    | TAA                       |

**Table 9:** k-box and k'-box element sequences are listed as present in 5'-3' orientation of the forward or reverse primers.

5 The first PCRs (with AmpliTaq-Gold) and second PCRs (with the proofreading Phusion High-Fidelity DNA Polymerase) were performed as described above, with 100 ng of tonsillar DNA as template. The PCR results were quantified with the FusionCapt Advance software as described above.

10 The performed PCR reactions (all nine K<sub>1</sub> match and mismatch combinations possible for Set 1-3) and the results are given in Table 10.

| Analysed sample / FA primer set | SA primer set | Vol. % (PT) | Vol. % (LNA) | K <sub>1</sub> match/ mismatch |
|---------------------------------|---------------|-------------|--------------|--------------------------------|
| Gel quant standard              | -             | 100         | 100          | -                              |
| Set1                            | Set 1         | 113.6       | 62.8         | match                          |
| Set1                            | Set 2         | 29.5        | 28.6         | mismatch                       |
| Set1                            | Set 3         | 28.8        | 34.3         | mismatch                       |
| NTC Set1                        | NTC Set1      | 24.1        | 26.9         | match                          |
| NTC Set1                        | NTC Set2      | 24.1        | 31.0         | mismatch                       |
| NTC Set1                        | NTC Set2      | 22.1        | 31.3         | mismatch                       |
| Background                      | -             | 25.5        | 34.0         | -                              |
| Gel quant standard              | -             | 100         | 100          | -                              |
| Set2                            | Set2          | 83.5        | 102.1        | match                          |
| Set2                            | Set1          | 25.1        | 21.7         | mismatch                       |
| Set2                            | Set3          | 23.5        | 24.2         | mismatch                       |
| NTC Set2                        | NTCSet2       | 21.0        | 19.0         | match                          |
| NTC Set2                        | NTCSet1       | 23.9        | 20.4         | mismatch                       |

|                    |         |       |      |          |
|--------------------|---------|-------|------|----------|
| NTC Set2           | NTCSet3 | 29.0  | 23.0 | mismatch |
| Background         | -       | 23.6  | 20.7 | -        |
| Gel quant standard | -       | 100   | 100  | -        |
| Set3               | Set3    | 104.8 | 50.9 | match    |
| Set3               | Set1    | 28.7  | 14.4 | mismatch |
| Set3               | Set2    | 23.8  | 18.1 | mismatch |
| NTCSet3            | NTCSet3 | 26.8  | 18.3 | match    |
| NTCSet3            | NTCSet1 | 21.3  | 20.0 | mismatch |
| NTCSet3            | NTCSet2 | 22.0  | 17.1 | Mismatch |
| Background         | -       | 26.8  | 21.5 | -        |

**Table 10** Analysis of contamination suppression by  $K_1$  employing a TCR $\beta$  multiplex-collection. As gel quantification (quant) standard the same Peer TCR PCR product was used on each gel for normalization of the PCR product quantities and was set to 100%. Therefore, Vol. % larger than 100% can be achieved. Quantities around 100% Vol. mean that there is no contaminations suppression. A lower Vol. % is a result of contamination suppression. (FA = first amplification, SA = second amplification, Vol. % volume percent, PT = phosphorothioate bonds; LNA = locked nucleic acid)

A summary statistics of Table 10 is provided in Table 11. These results show, that in a  $K_1$  match situation the contamination is amplified, whereas in the  $K_1$  mismatch situation the contamination is not amplified (being comparable to background, considering the SDN).

|                   | Vol. % Mean<br>(PT) | Vol. % SDN<br>(PT) | Vol. % Mean<br>(LNA) | Vol. % SDN<br>(LNA) |
|-------------------|---------------------|--------------------|----------------------|---------------------|
| <b>Match</b>      | 100.6               | 12.6               | 71.9                 | 21.9                |
| <b>Mismatch</b>   | 26.6                | 2,5                | 23.6                 | 6.6                 |
| <b>NTC</b>        | 23.8                | 2.5                | 23.0                 | 5.1                 |
| <b>Background</b> | 25.3                | 1.3                | 25.4                 | 6.1                 |

**Table 11:** Summary statistics of Table 10. Quantities around 100% Vol. mean that there is no contaminations suppression. A lower Vol. % is a result of the contamination suppression. (Vol. % volume percent, SDN = standard deviation, PT = phosphorothioate bonds; LNA = locked nucleic acid).

**15 Example 2: Proof of principle for  $k_2$  and  $k_2'$  function:**

As a short sequence element,  $k_2$  is located at the 3'-end of the sequence element  $k_1$  and  $k_2'$  is a sequence element located at the 3'-end of the sequence element  $k_1'$  (Fig. 2-3).  $K_2$  serves to individualize the first primer pair of the set and have no complementary sequence

elements on the second (“adaptor”) primers.  $K_2$  sequences are designed to detect contamination from previous amplification reactions and therefore control the suppression efficiency of  $K_1$ .

For this example, it is assumed that five samples are processed in parallel in a stripe with 5

5 PCR tubes for the first amplification and another stripe with 5 PCR tubes for the second amplification using five different primer sets. In this example for “Tube Nr. 1” one specific  $k_2$  and/or  $k_2'$  sequence in the first amplification primer is employed as well as a  $k_1$  and  $k_1'$  sequence matching the first and second amplification primer. In this setting a contamination can be clearly identified by a mismatched  $k_2$  (or  $k_2'$ ) element if a “Tube Nr. 2” second 10 amplification product contains  $k_2/k_2'$  elements of the “Tube Nr. 1” amplification product but  $k_1$  and  $k_1'$  sequences of the “Tube Nr. 2” second amplification primers. In this case the contamination is caused by nonspecific priming of “Tube Nr. 2”  $k_1$  and  $k_1'$  element of the second amplification primers to the “Tube Nr. 1”  $k_1$  and  $k_1'$  element in the first amplification product. Furthermore the contamination amplification could be caused by partial or full 15 degradation of the “Tube Nr. 2”  $k_1$  and  $k_1'$  element by polymerases with proofreading activity. Since the  $k_2/k_2'$  elements are only present in the first amplification primers the contamination can still be identified in the second amplification product. Therefore,  $k_2/k_2'$  elements can be seen as a valuable safe lock mechanism to detect contaminations, complementing the already significant contribution of  $k_1/k_1'$  sequences to avoid such 20 contaminations. There is a synergistic control function of  $k_2/k_2'$  that ensures the  $k_1/k_1'$  contamination suppression works 100%.

In order to demonstrate the function and effectiveness of  $k_2/k_2'$  sequence tracts to detect contaminations a first and second amplification with primers specific for the Peer TCR as described above were used with the following  $K$ -box and  $K'$ -box elements for the first

25 forward amplification primer given in Table 2:

“Tube Nr. 1” (Set1) first amplification: forward primer 1bpV1 and reverse primer 1bpJ1

“Tube Nr. 2” (Set 2) second amplification: forward primer 1bpV2 and reverse primer 1bpJ1

Therefore, there is 1 bp  $K_1$  mismatch between the “Tube Nr. 1” first amplification primer ( $K_1$  = “G”) and the “Tube Nr. 2” second amplification primer ( $K_1$  = “A”). Furthermore, the “Tube Nr.

30 “1” first amplification primer had the  $k_2$  = “G” (Table 2).

The first “Tube Nr. 1” amplification was regarded to be a “100% contamination” (“Tube Nr. 1” primary amplification product) of “Tube Nr. 2” second amplification. Therefore, a second

amplification was performed with "Tube Nr. 2" second amplification primers and the "Tube Nr. 1" first amplification product as template. In the gel analysis of the resulting second amplification PCR product there was a PCR product detectable, since due to the only 1 bp long  $k_1$  mismatch this "Tube Nr. 1" contamination was not completely suppressed during 5 second amplification (with "Tube Nr. 2" second amplification primers). This PCR product was sequenced.

Sanger sequencing of the amplicon identified the  $k_2$  sequence of the amplicon as identifier of the "Tube Nr. 1" primary amplification forward primer ( $k_2$  = "G"). Therefore, in this case the "Tube Nr. 1" specific  $k_2'$  sequence ( $k_2$  = "G") identified the contamination from the "Tube Nr. 10 Nr. 1" primary amplification product in the "Tube Nr. 2" second amplification (The "Tube Nr. 2"  $k_2$  sequence would have been "C" for the "Tube Nr. 2" k-box 1bpV2 Table 2).

To gain a deeper understanding of this contamination detection and prevention system the second amplification in this experiment was performed independently with proofreading polymerase and with a polymerase without proofreading activity, with the PCR conditions 15 described above for these reactions. As a result, in both experiments the contamination ("Tube Nr. 1" sample) could be identified by Sanger sequencing due to the contamination specific  $k_2$  sequence ( $k_2$  = "G").

The sequencing results revealed that with proofreading polymerase the  $k_1$  sequence from the contaminating ("Tube Nr. 1") sample was found, whereas in the second amplification 20 employing a polymerase without proofreading activity  $k_1$  sequences from the second amplification primers ("Tube Nr. 2" amplification) were present. This is due to fact that there was a  $k_1$  mismatch between the first and second amplification reverse primer and the  $k_1$  element of the second amplification primer was removed (degraded) at the 3' end by the exonuclease-activity of a proofreading polymerase during the second amplification, despite 25 the second amplification primers harbouring two phosphorothioate bonds. In contrast, the  $k_1$  element of the second amplification primer was not removed using a polymerase without proofreading activity.

Taken together, the Sanger sequencing demonstrated the  $k_2/k_2'$  function to detect 30 contamination. Thereby polymerase with or without proofreading polymerase can be used in second amplification. Importantly  $k_2/k_2'$  elements help to understand and control the function of  $k_1/k_1'$ . Another important result of this experiment is that if proofreading polymerase is employed, unexpected  $k_1/k_1'$  hybrids can be detected in the resulting

sequence reads by bioinformatics methods and these sequences can be removed as contaminations.

Example 3: Proof of principle for S function

A feature that improves on the performance of the above elements  $k_1$  (and  $k_1'$ ) and  $k_2$  (and

5  $k_2'$ ) is the introduction of short separator sequences  $S$  and  $S'$  (Fig. 3-4).  $S$  separates the constant initial primer sequence  $p_C$  from the sequence tracts  $k_1$  and  $k_2$  and  $S'$  separates the constant initial primer sequence  $p_C'$  from  $k_1'$  and  $k_2'$  respectively. Since  $k_1/k_1'$  and  $k_2/k_2'$  vary among different primers used in subsequent reactions, it may well be that some variations of  $k_1/k_1'$  and / or  $k_2/k_2'$  coincidentally match in their last nucleotides on the 3'

10 terminal end the sequence of the target next to the hybridizing part of the initial primer,  $p_C$  or  $p_C'$ . Therefore, the target sequence-matching tract of the initial primer would be elongated, leading to higher annealing temperatures and thus, possibly, PCR bias.

As a proof of principle that  $S$  reduces PCR bias a simulation of an incidentally match of 6 bp length of the  $k$ -box and  $k'$ -box in the first amplification primers to the target sequence was

15 analysed with  $S$  of 1, 2 and 3 bp length and no  $S$  sequence for comparison.

The first amplification was performed as described above with 100 ng template DNA from the T-cell lymphoma cell line Peer and the following cycle conditions. 1 cycle at 95°C for 15 min, 29 cycles at 95°C for 30 s, 68 °C for 45 s and 72°C for 45 sec respectively, and a final 10 min elongation at 72°C.

20 The first amplification PCR primers had a sequence  $m_aK-p_C$  with the matching sequence  $p_C$  to the V-4 segment (SEQ ID NO 248; ACCTACACACCCTGC), whereas the right first amplification primers which had the sequence and  $m_aK'-p_C'$  had the matching sequence  $p_C'$  (SEQ ID NO 249; AGCCGGGTGCCTGG) to the J-2.1 segment. Furthermore, the  $k$ -box of the left first amplification primers had a sequence element  $m_a$  (SEQ ID NO 250; CGCTCTTCCGATCT) on the 5' terminus and the  $k'$ -box of the right first amplification primers had a sequence element  $m_a'$  (SEQ ID NO 251; TGCTCTTCCGATCT) on the 5' terminus.

25

An overview of the 6bp matching  $K$ -box sequences to the V-4 segment and J-2.1 segment together with the  $s$  sequences of different length are given in Table 12.

| Primer | K-box sequence | Template sequence match | S sequence |
|--------|----------------|-------------------------|------------|
| VKM    | TCCTTC         | Yes                     | none       |
| VKMS1  | TTCCTT         | Yes                     | G          |
| VKMS2  | ATTCCT         | Yes                     | GG         |
| VKMS3  | TATTCC         | Yes                     | AGG        |
| VKMM   | CAACGT         | No                      | none       |
| VKMMS1 | GGTTCA         | No                      | G          |
| VKMMS2 | GGAGTA         | No                      | GG         |
| VKMMS3 | GCACTT         | No                      | AGG        |
| JKM    | ACTGTC         | yes                     | none       |
| JKMS1  | CACTGT         | yes                     | T          |
| JKMS2  | GCACTG         | yes                     | GT         |
| JKMS3  | AGCACT         | yes                     | CGT        |
| JKMM   | TGACGA         | No                      | none       |
| JKMMS1 | GTTGAC         | No                      | T          |
| JKMMS2 | ATGACT         | No                      | GT         |
| JKMMS3 | GTTGAG         | No                      | CGT        |

**Table 12:** Overview of S sequences and 6 bp K-box sequences. Some of the K-box sequences have a full-match to the V-4 segment and J-2.1 segment to simulate an incidentally matched K-box to the template sequence. In the first column (Primer) the first letter "V" or "J" stands for the V- or J- TCR Primer in which the respective K-box is comprised, "KM" stands for K-box match to template sequence; "KMM" stand for K-box mismatch to template sequence and S1-3 gives the length of a separator sequence S (1-3 nucleotides).

| Nr | Sample  | Primer         | Vol. | Vol. | Vol. | Vol. | Vol. | Mean  | SDN |
|----|---------|----------------|------|------|------|------|------|-------|-----|
|    |         |                | % E1 | % E2 | % E3 | % E4 | % E5 |       |     |
| 1  | Gel-St. | -              | 100  | 100  | 100  | 100  | 100  | 100.0 | 0.0 |
| 2  | Peer    | VKM JKM        | 67.1 | 56.4 | 54.2 | 48.9 | 65.8 | 58.5  | 7.0 |
| 3  | Peer    | VKMM JKMM      | 27.6 | 13.6 | 15.1 | 14.9 | 16.7 | 17.6  | 5.1 |
| 4  | Peer    | VKMS1 JKMS1    | 30.7 | 24.5 | 27.7 | 22.0 | 29.2 | 26.8  | 3.2 |
| 5  | Peer    | VKMS2 JKMS2    | 39.8 | 20.5 | 19.5 | 26.6 | 14.9 | 24.3  | 8.6 |
| 6  | Peer    | VKMS3 JKMS3    | 27.1 | 14.5 | 16.9 | 16.2 | 17.3 | 18.4  | 4.5 |
| 7  | Peer    | VKMMS1 JKMMMS1 | 16.6 | 11.4 | 14.6 | 13.4 | 13.7 | 13.9  | 1.7 |

|    |             |                           |      |      |      |      |      |       |     |
|----|-------------|---------------------------|------|------|------|------|------|-------|-----|
| 8  | Peer        | VKMMS2 JKMM <sub>S2</sub> | 24.2 | 14.3 | 13.6 | 13.4 | 12.9 | 15.7  | 4.3 |
| 9  | Peer        | VKMMS3 JKMM <sub>S3</sub> | 21.0 | 9.6  | 21.3 | 14.4 | 21.4 | 17.5  | 4.8 |
| 10 | Back-ground | -                         | 11.3 | 8.5  | 10.9 | 10   | 11.1 | 10.4  | 1.0 |
| 11 | Gel-St.     | -                         | 100  | 100  | 100  | 100  | 100  | 100.0 | 0.0 |
| 12 | NTC         | VKM JKM                   | 7.2  | 8    | 9.3  | 6.3  | 7.3  | 7.6   | 0.9 |
| 13 | NTC         | VKMM JKMM                 | 9.5  | 7.8  | 9.4  | 6.8  | 6.9  | 8.1   | 1.1 |
| 14 | NTC         | VKMS1 JKMS1               | 9.5  | 8.5  | 9.7  | 7.8  | 8.7  | 8.8   | 0.6 |
| 15 | NTC         | VKMS2 JKMS2               | 9.2  | 9.1  | 10.8 | 6.8  | 7.7  | 8.7   | 1.3 |
| 16 | NTC         | VKMS3 JKMS3               | 8.6  | 8.2  | 9.2  | 6.7  | 7.1  | 8.0   | 0.8 |
| 17 | NTC         | VKMMS1 JKMM <sub>S1</sub> | 9.1  | 9.1  | 9.7  | 6.9  | 7.9  | 8.5   | 0.9 |
| 18 | NTC         | VKMMS2 JKMM <sub>S2</sub> | 7.3  | 7.2  | 9.7  | 7.6  | 7.7  | 7.9   | 0.8 |
| 19 | NTC         | VKMMS3 JKMM <sub>S3</sub> | 7.7  | 9.1  | 9.5  | 6.7  | 7.7  | 8.1   | 0.9 |
| 20 | Back-ground | -                         | 8    | 9.1  | 8.6  | 5.8  | 7.5  | 7.8   | 1.0 |

**Table 13:** Experiment Nr. and results of proof of principle experiments to show that **S** can help to avoid a PCR bias by preventing **K**-box matches to the DNA template and therefore preventing unequal primer annealing temperatures and different amplification rates. Gel-St. (Gel quantification standard) = the same Peer TCR PCR product was used on each gel as

standard for normalization of PCR product quantity and was set to 100%. Vol. % = volume percent, E1-5 = Experiment 1-5 (Replicates), SDN = standard deviation). In the third column (Primer) the primer pairs employed in the PCR are given. Thereby the first letter "V" or "J" stands for the V- or J- TCR Primer in which the respective **K**-box is comprised, "KM" stands for **K**-box match to template sequence; "KMM" stand for **K**-box mismatch to template sequence and **S1-3** gives the length of a separator sequence **S** (1-3 nucleotides).

Table 13 shows that **S** sequences lead to a similar amplification despite of coincidentally template matching **k**-box and **k'**-box sequences. For example in Table 13 line 6 the amplification (Vol. %) with primers harbouring a **S** sequence of 3 bp length and template matching **k**-box and **k'**-box sequences have a mean of 18.4 (SDN 4.5) which is comparable to the amplification without template matching **k**-box and **k'**-box sequences in Table 13 line 3 with a mean of 17.6 (SDN 5.1).

This is the proof of the principle that **S** functions in a synergistic way to avoid PCR bias, due to altered primer annealing temperatures in the case of coincidentally template matching variations of some **K**-box sequences.

Example 4: Contamination suppression by **K**<sub>1</sub> and detection by **K**<sub>2</sub> employing a TCR $\beta$

5 multiplex collection and NGS analysis

We employed the TCR $\beta$  multiplex collection (SEQ ID NO 189-246) with the related **S** sequences as described above, to analyse the effectiveness of **K**<sub>1</sub> to suppress contaminations and **K**<sub>2</sub> to detect residual contaminations. The **K**<sub>1</sub> and **K**<sub>2</sub> elements employed in Set 1-3 are described in Table 9).

10 Two analyses listed in Table 14 were performed in duplicates. In these experiments tonsillar DNA was used as template for the first amplification as well as the DNA of two T-cell lines (Jurkat and Karpas299). As template for the second amplification a total of 500 pg from the purified first amplification products was used as product mix.

15 In the first duplicate (Sample Nr. 1 and 2, Table 14) the first amplificate mix used as template for second amplification comprised 50% tonsillar amplificate (Set1), 25% Jurkat amplificate (Set1) and 25% Karpas299 amplificate (Set1). The second amplification primers were from Set1.

20 In the second duplicate (Sample 3 and 4, Table 14) the amplificate mix was used as template for second amplification comprised 50% tonsillar amplificate (Set1), 25% Jurkat amplificate (Set2) and 25% Karpas299 amplificate (Set3). The second amplification primers were from Set1.

25 Therefore In the first duplicate tonsillar TCRs were amplified without contamination protection and two spiked in contaminations (Jurkat, Karpas299 TCRs) and in the second duplicate tonsillar TCRs are amplified with contamination protection and the same spiked in contaminations (Jurkat, Karpas299)..

| Sample Nr<br>(Barcode) | Template for second amplification                  | Function                                                               |
|------------------------|----------------------------------------------------|------------------------------------------------------------------------|
| 1                      | 50% First amplification with tonsillar DNA (Set 1) | Contamination with Jurkat and Karpas 299 (no contamination protection) |
|                        | 25% First amplification of Jurkat DNA (Set1)       |                                                                        |
| 2                      | 25% First amplification of Karpas299 DNA (Set1)    | Contamination with Jurkat and Karpas 299 (contamination protection)    |
|                        | 50% First amplification with tonsillar DNA (Set 1) |                                                                        |
| 3                      | 25% First amplification of Jurkat DNA (Set2)       | Contamination with Jurkat and Karpas 299 (contamination protection)    |
|                        | 25% First amplification of Karpas299 DNA (Set3)    |                                                                        |

**Table 14:** Experimental design to analyse contamination suppression by  $K_1$  and detection by  $K_2$  employing a TCR $\beta$  multiplex-collection and NGS analysis. For each of the 4 samples an individual standard Illumina barcodes was introduced into the amplification product by the right second amplification primer to allow NGS multiplexing.

The resulting 4 NGS libraries were sequenced with MISEQ (Illumina) in the paired end modus (2 x 150 bp). By a tailored bioinformatics algorithm resulting reads were clustered and classified with respect to the  $K$ -box elements and the templates used. Frequencies of the respective tonsil and cell line reads and respective primer elements (Set 1-3) were counted and tabulated (Table 15).

The results given in Table 15 demonstrate that (i) without contamination protection (sample 1 and 2) the 2 cell line contaminations were detected with the expected percentage of approximately 25 %. Strikingly in sample 3 and 4 due to the contamination protection by  $K_1$  the 2 cell line contaminations were suppressed totally (cell line 1) and down to a percentage of 0.01 in (cell line 2). The residual cell line 2 contamination could be detected by  $K_2$ .

| Sample | SET     | Tonsil | Cell line 1<br>(Jurkat) | Cell line 2<br>(Karpas299) | Total read<br>number |
|--------|---------|--------|-------------------------|----------------------------|----------------------|
| 1      | (1/1/1) | 48,79% | 23,70%                  | 27,51%                     | 180226               |
| 2      | (1/1/1) | 49,74% | 23,30%                  | 26,96%                     | 272669               |
| 3      | (1/2/3) | 99,99% | 0,00%                   | 0,01%                      | 314388               |
| 4      | (1/2/3) | 99,99% | 0,00%                   | 0,01%                      | 311956               |

Table 15 NGS results of contamination suppression analysis described in Table 14. The Set information of the related reads refers always to the triplet (Tonsil/cell line 1/cell line 2).

5 *Design of suitable  $k_1/k_1'$  and  $k_2/k_2'$  sequences.*

To provide examples for suitable  $k_1$  and  $k_1'$  sequences, they were designed in a way to (a) optimally avoid cross-hybridization between all  $k_1$  and  $k_1'$  sequences given in one of the Tables 16-19 below, (b) adjust the melting temperatures of  $k_1$  and  $k_1'$  sequences in a narrow range and (c) to avoid low complex base compositions with > 2/3 of the bases being the same nucleotide (A,C,G,T),

Each of the Tables 16-19 consists of an equal number of  $k_1$  and  $k_1'$  sequences for the forward and reverse primers and a specific length (4, 5, 6, 7 or 8 nucleotides).

In detail, features a)-c) were established by comparing all potential  $k_1$  and  $k_1'$  sequences of one specific length (4, 5, 6, 7 or 8 bp) against each other and excluded all those which were reverse-complements to any other  $k_1$  and  $k_1'$  sequences of this specific length. To further refine the  $k_1$  and  $k_1'$  sequences the design algorithm compared in a further step all  $k_1$  and  $k_1'$  sequences of one specific length (4, 5, 6, 7 or 8 bp) against all other reverse complement  $k_1$  and  $k_1'$  sequences of this specific length and excluded all  $k_1$  and  $k_1'$  sequences which either had >2 common bases at the 3' terminal end of the  $k_1$  and  $k_1'$  sequences or had >60% bases in common with another  $k_1$  and  $k_1'$  sequence.

The final results of this optimized  $k_1$  and  $k_1'$  sequences are given in Tables 16-19. It is understood that this are examples and that other optimized  $K_1$ -boxes with different selection criteria are possible.

Furthermore, examples of suitable  $k_2/k_2'$  sequences are provided (Table 20), which were 5 designed in a way to exclude all respective reverse complement sequences from the set of  $k_2/k_2'$  sequences. As an example, if ATC is chosen as one possible  $k_2$  element, GAT is automatically excluded from the set of  $k_2'$  elements.

For final incorporation into the primer design, the  $K$ -boxes are designed as one unit being selected to form a minimum of cross-hybridization with the 3' ends of the primers employed.

10

| Primer side | $k_1$ - or $k_1'$ sequence | Melting temperature |
|-------------|----------------------------|---------------------|
| A           | CTGA                       | 12                  |
| A           | AGTG                       | 12                  |
| A           | CAAC                       | 12                  |
| A           | GGAA                       | 12                  |
| A           | GTCA                       | 12                  |
| A           | AAGC                       | 12                  |
| A           | ATTA                       | 8                   |
| A           | AGCC                       | 14                  |
| A           | CGAG                       | 14                  |
| A           | AGGA                       | 12                  |
| A           | TAGA                       | 10                  |
| B           | GCGA                       | 14                  |
| B           | ACGG                       | 14                  |
| B           | CGTA                       | 12                  |
| B           | ACTC                       | 12                  |
| B           | CTTC                       | 12                  |
| B           | ACCA                       | 12                  |
| B           | GCAC                       | 14                  |
| B           | GACC                       | 14                  |
| B           | ATAC                       | 10                  |
| B           | CGGC                       | 16                  |
| B           | GATA                       | 10                  |

**Table 16:** Optimized  $k_1$  and  $k_1'$  sequences of 4 bp length. For example the segment side A can be employed in the right primers and B in the left primers. Furthermore, the segment side B can be employed in the right primers and A in the left primers.

| Primer side | $k_1$ – or $k_1'$ sequence | Melting temperature |
|-------------|----------------------------|---------------------|
| A           | CTCTA                      | 14                  |
| A           | ATCAG                      | 14                  |
| A           | ATTGG                      | 14                  |
| A           | ATACG                      | 14                  |
| A           | ACGCA                      | 16                  |
| A           | ACCAA                      | 14                  |
| A           | AATGC                      | 14                  |
| A           | AAGGA                      | 14                  |
| A           | TCACA                      | 14                  |
| A           | ATATA                      | 10                  |
| A           | ATGTC                      | 14                  |
| A           | AGCTG                      | 16                  |
| A           | CAACC                      | 16                  |
| B           | GTTTA                      | 12                  |
| B           | GCTCC                      | 18                  |
| B           | CTTAA                      | 12                  |
| B           | GAGGC                      | 18                  |
| B           | ACACT                      | 14                  |
| B           | AATCG                      | 14                  |
| B           | CATCA                      | 14                  |
| B           | GTAGA                      | 14                  |
| B           | CTTTC                      | 14                  |
| B           | AAGCC                      | 16                  |
| B           | AAAGT                      | 12                  |
| B           | CGGAA                      | 16                  |
| B           | CTCAC                      | 16                  |
| B           | CGGAA                      | 16                  |
| B           | CTCAC                      | 16                  |

**Table 17:** Optimized  $k_1$  and  $k_1'$  sequences of 5 bp length. For example the segment side A can be employed in the right primers and B in the left primers. Furthermore, the segment side B can be employed in the right primers and A in the left primers.

| Primer side | $k_1$ – or $k_1'$ sequence | Melting temperature [°C] |
|-------------|----------------------------|--------------------------|
| A           | CTCTGA                     | 18                       |
| A           | GGTTAA                     | 16                       |
| A           | GCCTTA                     | 18                       |
| A           | CGGACG                     | 22                       |
| A           | GTCAAA                     | 16                       |
| A           | GATCGA                     | 18                       |
| A           | CTTGTA                     | 16                       |
| A           | AACTTG                     | 16                       |
| A           | AATCAT                     | 14                       |
| A           | ACTATG                     | 16                       |
| A           | GCAACA                     | 18                       |
| A           | CGAAGC                     | 20                       |
| A           | GAGTCC                     | 20                       |
| A           | GGCAAC                     | 20                       |
| A           | AAATGT                     | 14                       |
| A           | CTATCA                     | 16                       |
| B           | AAGCTG                     | 18                       |
| B           | GCCCAA                     | 20                       |
| B           | ATCAGA                     | 16                       |
| B           | ACTCAG                     | 18                       |
| B           | GGTATA                     | 16                       |
| B           | AAAGGG                     | 18                       |
| B           | AATGCT                     | 16                       |
| B           | CCAAGG                     | 20                       |
| B           | ACGCGG                     | 22                       |
| B           | GACGGA                     | 20                       |
| B           | GCGCAC                     | 22                       |
| B           | GTAGAA                     | 16                       |
| B           | ACCGCA                     | 20                       |
| B           | AAACCC                     | 18                       |
| B           | AGAACT                     | 16                       |
| B           | GAGCTA                     | 18                       |

**Table 18:** Optimized  $k_1$  and  $k_1'$  sequence of 6 bp length. For example the segment side A can be employed in the right primers and B in the left primers. Furthermore, the segment side B can be employed in the right primers and A in the left primers.

| K1 "A 7 nt" | K1 "B 7 nt" | K1 "A 8 nt" | K1 "B 8 nt" |
|-------------|-------------|-------------|-------------|
| AACCAAC     | GAGCACCA    | CGTGTGCG    | AGGCACCA    |
| CATGACC     | CACCCAA     | ATGATGAC    | GCTTCTTA    |
| CATGACC     | CACCCAA     | ATGATGAC    | GCTTCTTA    |
| AAATGGC     | CTTCCTA     | AAACCTGT    | ATACTTCG    |
| AGGTAGC     | AGTTTG      | GAATGATA    | ACGATTGG    |
| TATGTCA     | CTGTTAA     | ATCGGTGC    | GGCAGCGA    |
| CTATGTA     | CTTTAGA     | GATGTTCA    | ATGTTCGG    |
| CATTGCG     | AAGACGG     | CTGCGACA    | GGTGGCTA    |
| AGAAGGA     | AGCGGCC     | CATCTAGA    | CAATACCC    |
| GATCTCC     | CAGTAGG     | AACGCTGA    | CTATTTAC    |
| ACTATGC     | AGTGCCA     | ATGCTGTG    | TGCGAAAA    |
| GACGCAC     | GAGCACCA    | GAACACAA    | CAAGCGAG    |
| ACTTGAA     | GAGCACCA    | CTTAAGTC    | CAGCCGAA    |
| CGGTGAC     | CACCCAA     | GAGAAGGC    | CCCAAAAC    |
| GAACTGA     | AGTTTG      | GGATGTAA    | AGGCACCA    |
| CGGATTA     | AGTTTG      | AGCAAGGA    | AGGCACCA    |
| GTATAAA     | CTGTTAA     | ACTCAGTA    | GCTTCTTA    |

**Table 19:** Optimized  $k_1$  and  $k_1'$  sequence of 7 and 8 nucleotide (nt) length. For example the segment side A can be employed in the right primers and B in the left primers. Furthermore, the segment side B can be employed in the right primers and A in the left primers.

5

| Primer side | $k_2$ – or $k_2'$ sequence |  | Primer side | $k_2$ – or $k_2'$ sequence |
|-------------|----------------------------|--|-------------|----------------------------|
| A           | ACG                        |  | B           | GAC                        |
| A           | CCA                        |  | B           | CGG                        |
| A           | TTA                        |  | B           | GTG                        |
| A           | TCG                        |  | B           | TGT                        |
| A           | GGT                        |  | B           | AAG                        |

**Table 20:** Examples for  $k_2$  and  $k_2'$  sequence of 3 bp length. For example the segment side A can be employed in the right primers and B in the left primers. Furthermore, the segment side B can be employed in the right primers and A in the left primers.

What is claimed is:

1. A method for amplifying a target nucleic acid sequence  $t_c-t_v-t_c'$  comprised within a sequence tract  $t_n-t_c-t_v-t_c'-t_n'$ , said method comprising conducting a plurality of amplification reactions, each reaction comprising

5 – a first amplification step, whereby said target nucleic acid sequence is amplified using

- i. a left (forward) initial PCR primer having a sequence  $m_a-K-p_c$  and
- ii. a right (reverse) initial primer having a sequence and  $m_a-K'-p_c'$ , yielding a first amplificate,

10 – a second amplification step, whereby said first amplificate is amplified using

- iii. a left (forward) adaptor PCR primer consisting of a sequence  $a_L-a_P-a_K$  and
- iv. a right (reverse) adaptor PCR primer consisting of a sequence  $a_L'-a_P'-a_K'$ ,

15 yielding a second amplificate,

wherein

- $t_v$  is a variable region within said target nucleic acid sequence,
- $p_c$  is the same sequence as sequence element  $t_c$  and  $p_c'$  is the reverse complementary sequence to  $t_c'$ ,
- $K$  comprises a sequence element  $K_1$  and a 3'-terminal sequence element  $S$ , and  $K'$  comprises a sequence element  $K_1'$  and a 3'-terminal sequence element  $S'$ , wherein
  - $K_1$  and  $K_1'$  each independently from one another are a sequence 2 to 9 nucleotides in length,
  - $S$  and  $S'$  are mismatch sequences selected not to form a continuous hybrid sequence with sequence element  $t_n$  and  $t_n'$ , and  $S$  and  $S'$  are each independently 1, 2, 3, 4 or 5 nucleotides in length,

- $a_k$  is the same sequence as sequence element  $k_1$  and  $a_k'$  is the same sequence as sequence element  $k_1'$ ,
- $a_P-a_K$  hybridizes to a contiguous sequence on  $m_a-K$  and  $a_P'-a_K'$  hybridizes to a contiguous sequence on  $m_a-K'$ ,

5      -  $p_c, p_c', m_a-K$  and  $m_a-K'$  each independently from one another are a sequence 10 to 40 nucleotides in length, and  $a_L$  and  $a_L'$  independently from one another can be any sequence, and wherein

a particular set of primers for each one of said plurality of amplification reactions is provided, wherein in each of these sets of primers

10     -  $k_1$  of said particular set is different from any other  $k_1$  in any of the other sets and/or

      -  $k_1'$  of said particular set is different from any other  $k_1'$  in any of the other sets.

2. The method according to claim 1, wherein  $K$  comprises a 3'-terminal sequence  $k_1-k_2-S$ , and  $K'$  comprises a 3'-terminal sequence  $k_1'-k_2'-S'$ , wherein

15     -  $k_2$  and  $k_2'$  each independently from one another are a sequence 2 to 7 nucleotides in length,

      -  $a_k$  and  $a_k'$  are selected not to hybridize to  $k_2$  and  $k_2'$ , respectively;

      - for each said particular set of primers, one of  $k_2$  and  $k_2'$  are different from any other  $k_2$  and  $k_2'$ , respectively

20     and  $k_1, k_1', S$  and  $S'$  are as defined in claim 1.

3. The method according to any one of claims 1-2, wherein said particular sets of primers comprise

25     - a left (forward) initial primer comprising a sequence element  $p_c$  selected from any one of SEQ ID NO 001 to SEQ ID NO 045 and a right (reverse) initial primer comprising a sequence element  $p_c'$  selected from any one of SEQ ID NO 046 to SEQ ID NO 058; and/or

      - a left (forward) initial primer comprising a sequence element  $p_c$  selected from any one of SEQ ID NO 189 to SEQ ID NO 232 and a right (reverse) initial primer comprising a sequence element  $p_c'$  selected from any one of SEQ ID NO 233 to

30     SEQ ID NO 246; and/or

- a left (forward) initial primer comprising a sequence element  $m_a$  selected from any one of SEQ ID NO 059 to SEQ ID NO 085 and a right (reverse) initial primer comprising a sequence element  $m_a$  selected from any one of SEQ ID NO 086 to SEQ ID NO 117.

5       4. The method for amplifying a target nucleic acid sequence according to any one of claims 1-3, wherein in the first and/or second amplification step, a DNA polymerase having a 3'-5' exonuclease proofreading activity is used.

5. A method for sequencing a target sequence  $tc-tv-tc'$  comprised within a sequence tract  $t_n-tc-tv-tc'-t_n'$ , comprising the steps of

10      a) amplifying said target sequence by a method according to claim 1, 3 or 4; and

          b) sequencing said second amplificate including sequence elements  $m_a-K$  and / or  $m_a-K'$ , yielding a set of readout sequences.

6. The method of claim 5, further comprising the steps of

15      c) aligning each member of said set of readout sequences to sequence element  $m_a-K$  and/or  $m_a-K'$  comprised in said initial primer, respectively, and

          d) assigning a value of 0 or 1 as a measure of contamination to each sequence of said set of readout sequences, wherein complete alignment of a member of said set of readout sequences to said sequence element  $m_a-K$  or  $m_a-K'$  corresponds to a value of 0, and incomplete alignment of a member of said

20      set of readout sequences to said sequence element  $m_a-K$  or  $m_a-K'$  corresponds to a value of 1; and

          (i) determining a percentage of contamination by adding all values assigned in step d), resulting in a value sum, and dividing said value sum by the total number of reads; and / or

25      (ii) removing the sequences having a value of "1" from the sequence set.

7. A collection of sets of primers for use in a method for amplifying or sequencing a target nucleic acid sequence  $tc-tv-tc'$  comprised within a sequence tract  $t_n-tc-tv-tc'-t_n'$  according to any one of claims 1 to 6, wherein each set of primers comprises

- i. a pair of initial PCR primers comprising a left (forward) initial PCR primer having a sequence  $m_a\text{-}K\text{-}pc$  and a right (reverse) initial primer having a sequence and  $m_a\text{-}K'\text{-}pc'$ , and
- ii. a pair of adaptor PCR primers comprising a left adaptor PCR primer consisting of a sequence  $a_L\text{-}a_P\text{-}a_K$  and a right adaptor PCR primer consisting of a sequence  $a_L'\text{-}a_P'\text{-}a_K'$ ,

5 wherein

- $pc$  is the same sequence as sequence element  $t_C$  and  $pc'$  is the reverse complementary sequence to  $t_C'$ ,
- $K$  comprises a sequence element  $k_1$  and a 3'-terminal sequence element  $S$ , and  $K'$  comprises a sequence element  $k_1'$  and a 3'-terminal sequence element  $S'$ ,  
10 wherein
  - >  $k_1$  and  $k_1'$  each independently from one another are a sequence 2 to 9 nucleotides in length,
  - >  $S$  and  $S'$  are mismatch sequences selected not to form a continuous hybrid sequence with sequence element  $t_n$  and  $t_n'$ , and  $S$  and  $S'$  are each independently 1, 2, 3, 4 or 5 nucleotides in length,
- $a_k$  is the same sequence as sequence element  $k_1$  and  $a_k'$  is the same sequence as sequence element  $k_1'$ ,
- $a_P\text{-}a_K$  hybridizes to a contiguous sequence on  $m_a\text{-}K$  and  $a_P'\text{-}a_K'$  hybridizes to a contiguous sequence on  $m_a\text{-}K'$ , and

20  $pc$ ,  $pc'$ ,  $m_a\text{-}K$  and  $m_a\text{-}K'$  each independently from one another are a sequence 10 to 40 nucleotides in length, and  $a_L$  and  $a_L'$  independently from one another can be any sequence,

25 and wherein

- for all sets of primers comprised within said collection, all sequence elements  $pc$  are the same and all sequence elements  $pc'$  are the same; and

in each of these sets of primers

- $k_1$  is different from one of any other  $k_1$  and/or

- $k_1'$  is different from one of any other  $k_1'$  in each of the other sets.

8. A collection of sets of primers according to claim 7, wherein

- sequence element  $p_C$  of said left (forward) initial primer is selected from any one of SEQ ID NO 001 to SEQ ID NO 045 and sequence element  $p_C'$  of said right (reverse) initial primer is selected from any one of SEQ ID NO 046 to SEQ ID NO 058; and/or
- sequence element  $p_C$  of said left (forward) initial primer is selected from any one of SEQ ID NO 189 to SEQ ID NO 232 and sequence element  $p_C'$  of said right (reverse) initial primer is selected from any one of SEQ ID NO 233 to SEQ ID NO 246; and/or
- sequence element  $m_a$  of said left (forward) initial primer is selected from any one of SEQ ID NO 059 to SEQ ID NO 085 and sequence element  $m_a$  of said right (reverse) initial primer is selected from any one of SEQ ID NO 086 to SEQ ID NO 117.

9. The collection of sets of primers according to claim 8, wherein  $K$  comprises a 3'-terminal sequence  $k_1-k_2-S$ , and  $K'$  comprises a 3'-terminal sequence  $k_1'-k_2'-S'$ , wherein

- $k_2$  and  $k_2'$  each independently from one another are a sequence 2 to 7 nucleotides in length,
- $a_k$  and  $a_k'$  are selected not to hybridize to  $k_2$  and  $k_2'$ , respectively;

in each of these sets of primers

- $k_2$  is different from one of any other  $k_2$  and/or
- $k_2'$  is different from one of any other  $k_2'$

in each of the other sets, and  $k_1$ ,  $k_1'$ ,  $S$  and  $S'$  are as defined in claim 7.

10. The collection of sets of primers according to any one of claims 7 to 9, comprising 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 160, 200, 256 or 1024 different sets of primers.

11. The collection of sets of primers according to any one of claims 7 to 10, wherein

- $k_1$  and  $k_1'$  and/or  $k_2$  and  $k_2'$  are selected not to hybridize to the sequence elements  $t_n$  and  $t_n'$ ;
- all sequence elements  $a_P$  are the same and all sequence elements  $a_{P'}$  are the same; and /or
- $a_k$  and  $a_{k'}$  are selected not to hybridize to  $k_2$  and  $k_2'$ , respectively.

5

12. A multiplex collection comprising a plurality of collections of sets of primers according to any one of claims 7 to 11, wherein each collection is characterized by a different combination of  $p_C$  and  $p_{C'}$ .

13. The multiplex collection according to claim 12, wherein

- 10 – each  $p_C$  comprises, or is, a sequence selected from any one of SEQ ID NO 001 to SEQ ID NO 045, and wherein each  $p_{C'}$  comprises, or is, a sequence selected from any one of SEQ ID NO 046 to SEQ ID NO 058, or
- wherein each  $p_C$  comprises, or is, a sequence selected from any one of SEQ ID NO 189 to SEQ ID NO 232, and wherein each  $p_{C'}$  comprises, or is, a sequence selected from any one of SEQ ID NO 233 to SEQ ID NO 246.

15

14. A method for ex-vivo analysis of the T cell receptor  $\beta$  chain repertoire of a patient, comprising the use of a method according to any one of claims 1 to 6, or of a collection of sets of primers according to any one of claims 7 to 11 or a multiplex collection according to claim 12 or 13.

20

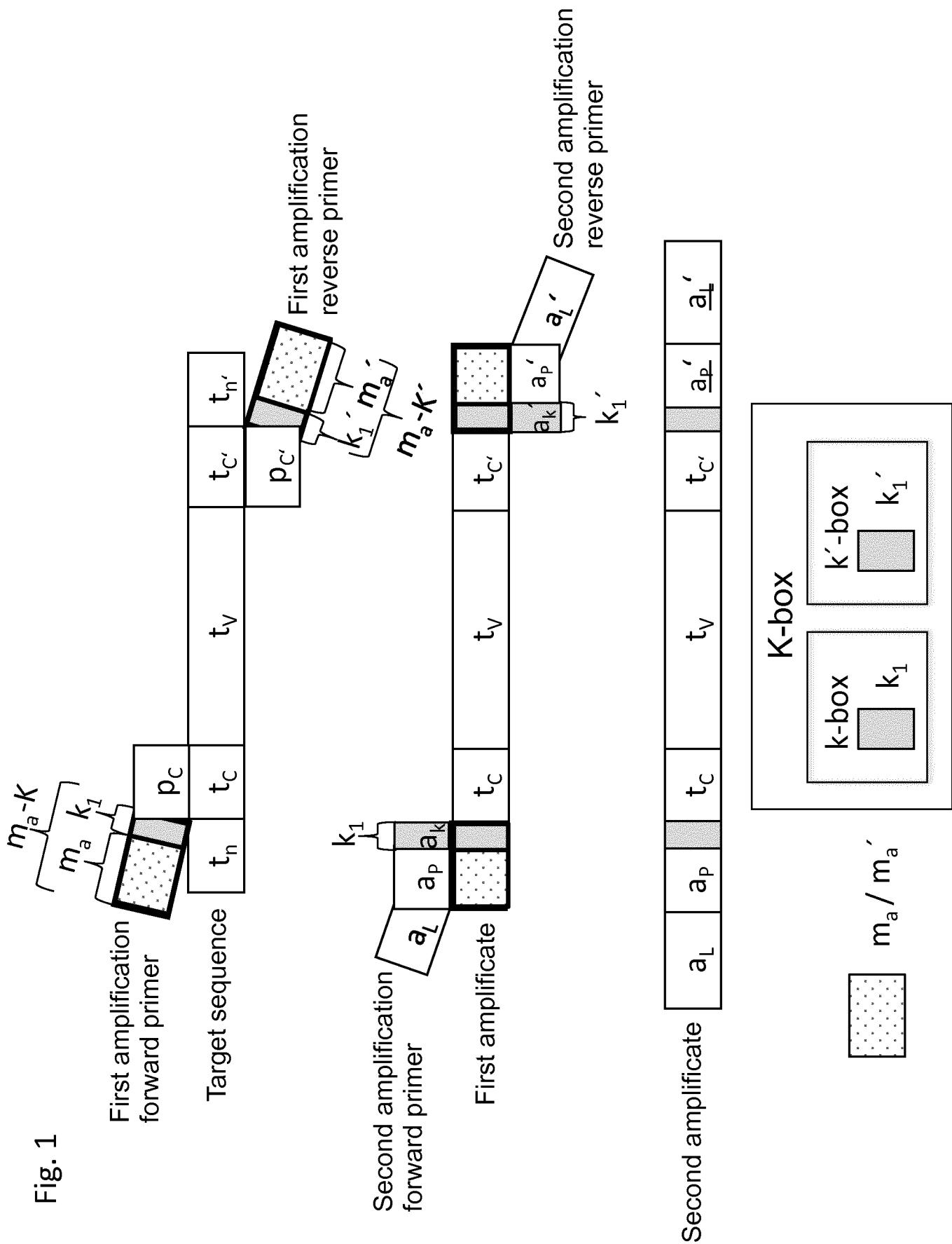
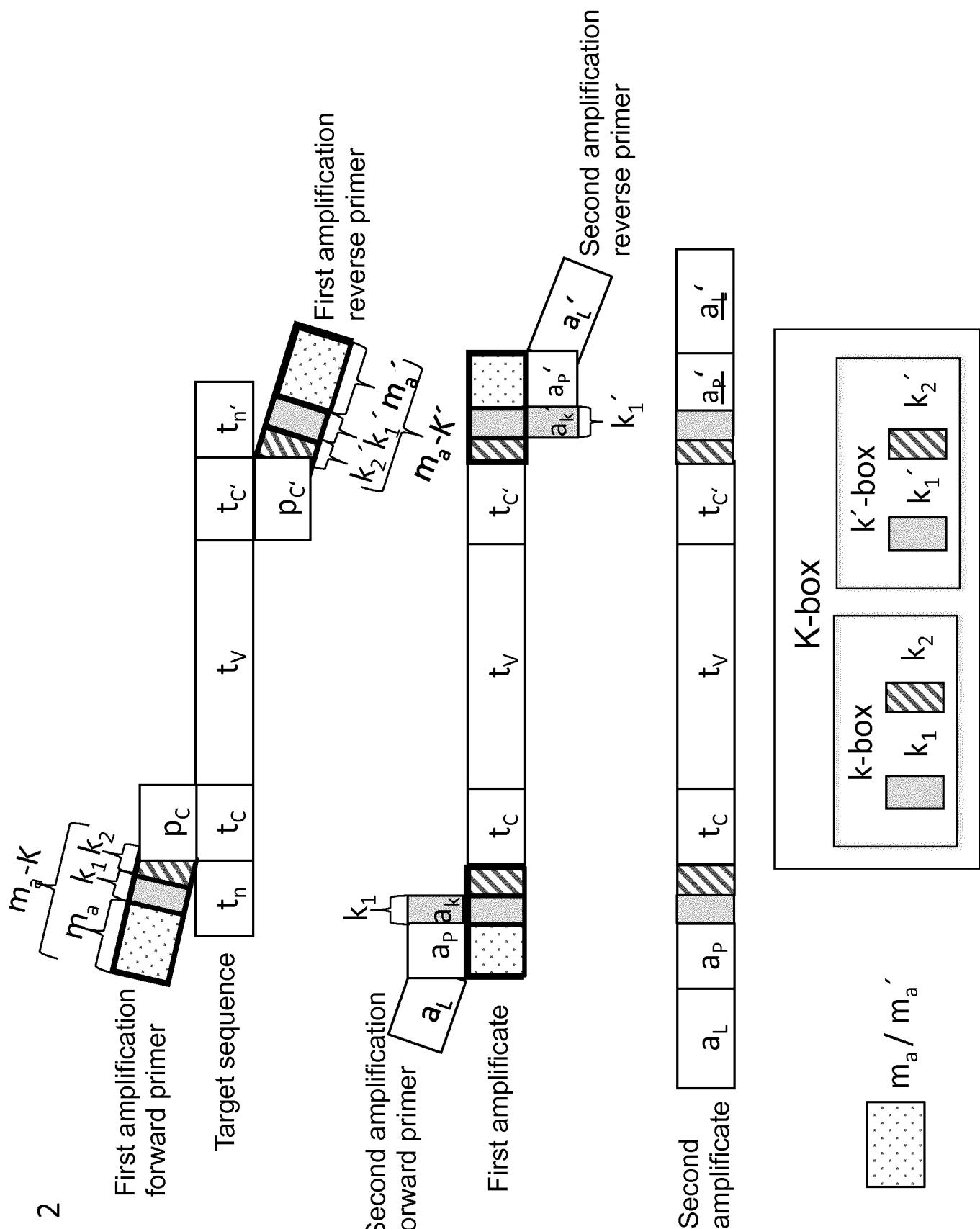




Fig. 2



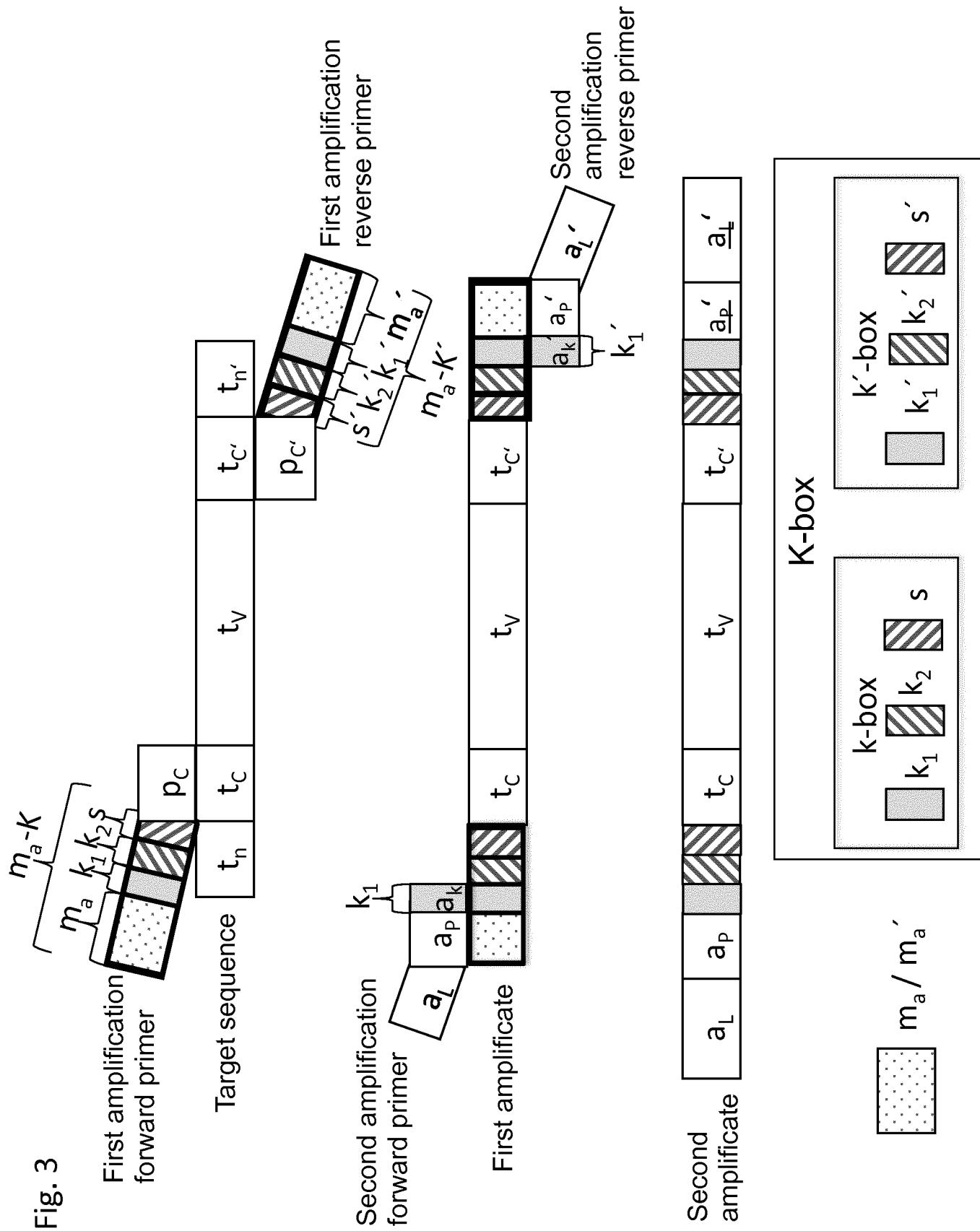
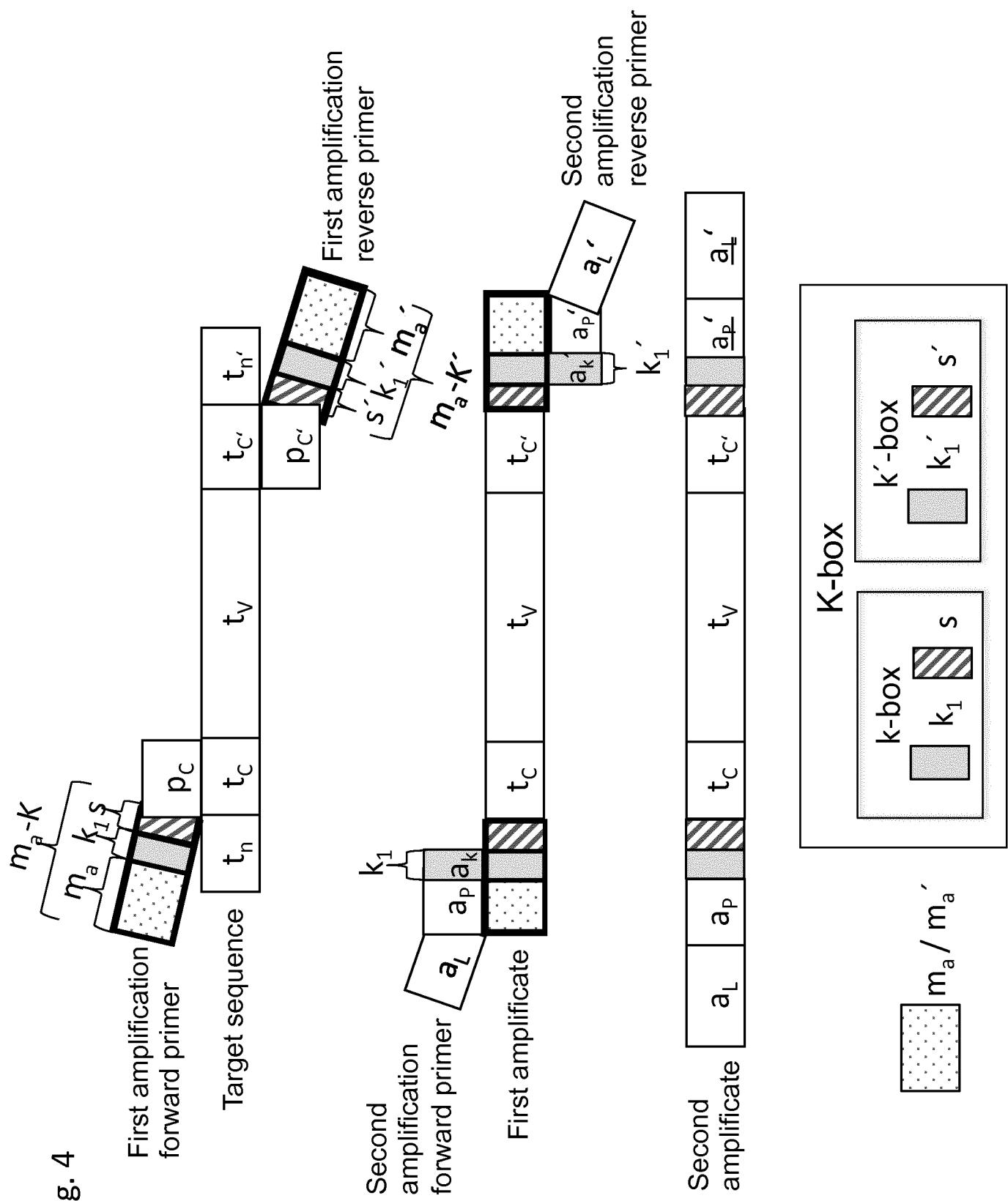
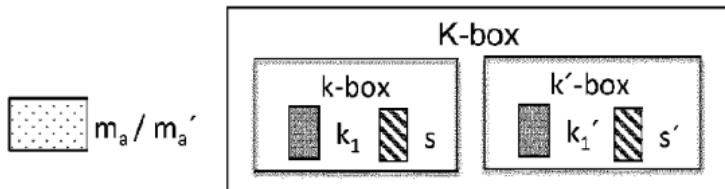
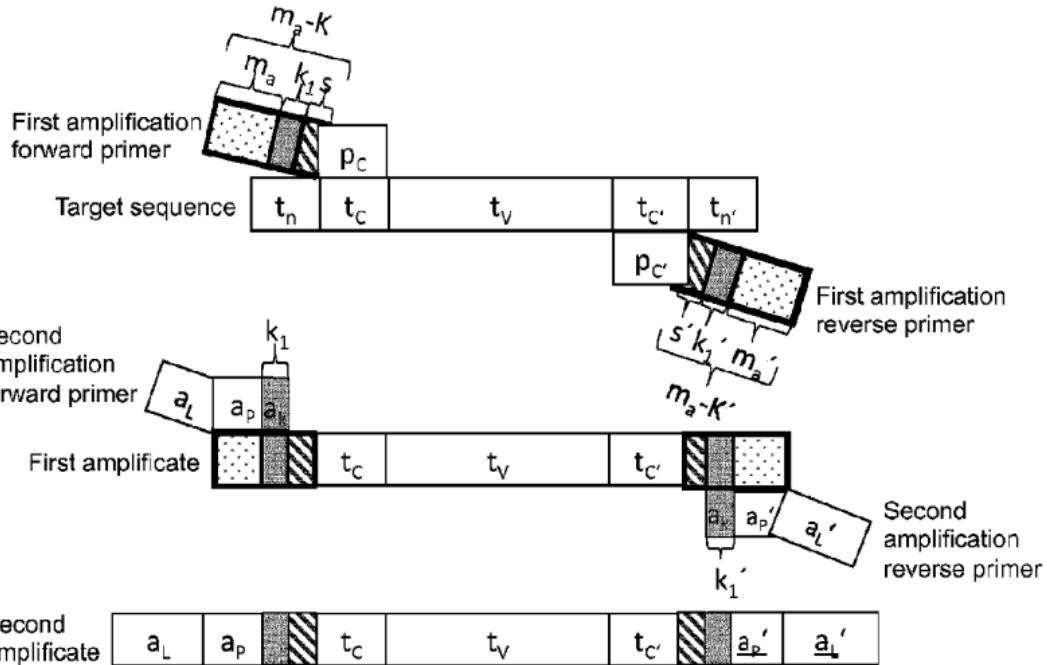






Fig. 4



