A MULTI-LAYERED BACK PLANE FOR A COMPUTER SYSTEM

The multi-layered back plane (100) permits a plurality of processors (200, 205, 210, 215) and a plurality of memories (220, 225) to be interleaved through separate memory interface boards (230A-230H, 230AA-230HH) in a computer in a manner which provides a significant reduction of path length while eliminating crossover of signal cables (40A-40H) and permitting the use of identical memory interface boards, resulting in a significant increase in the clock rate and efficiency of the computer system.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>LI</th>
<th>Liechtenstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
A MULTI-LAYERED BACK PLANE FOR A COMPUTER SYSTEM

Background of the Invention

Back planes of the prior art are exemplified in U.S. Patent Application Serial No. 714,925, filed by Arnold F. Christiansen, Donald E. MacDonald, and George H. Wells, on August 16, 1976, and assigned to Technology Marketing Incorporated, the disclosure of which is incorporated herein by reference. Such back planes typically have two layers of parallel conductor buses and pins connecting finger connectors to those buses via conductor pads. The finger connectors connect to circuit boards mounted edgewise on the back plane. One goal in the art has been to find an efficient way of connecting a plurality of processor circuit boards through separate memory interface boards to separate memory circuit boards. Another goal in the art has been to decrease the signal path length in the computer in order to increase the clock speed of the computer. Yet another goal in the art has been to use identical components such as memory interface circuit boards to reduce costs. However, use of prior art back planes such as the type disclosed in the above-referenced patent application has prevented the reduction of signal path lengths when a plurality of memories and a plurality of processors are interleaved and has prevented the use of identical memory interface circuit boards when the signal path lengths are minimized. Thus, the prior art has taught that there is no way to avoid an increase in path length with the addition of more memories and processors to be interleaved using back planes of the prior art. Furthermore, the prior art has taught that crossover of signal paths, which is well known to be undesirable in the art, cannot be avoided if identical memory interface circuit boards are used, thereby increasing the cost of interconnecting a plurality of processors and memories.
Summary of the Invention

The multi-layered back plane of this invention results in a decrease in path length when a plurality of memories and processors are interleaved. Furthermore, the multi-layered back plane of this invention eliminates the crossover of signal paths while allowing the use of identical memory interface boards, thereby minimizing the cost of interleaving the plurality of memories and circuit boards.

The multi-layered back plane of this invention comprises a plurality of back planes superimposed, each back plane connectably accessible by circuit boards mounted on the front or the back face of the multi-layered back plane. Each of the planes has two layers of parallel conductor buses. Finger connectors for connecting circuit boards edgewise are provided on both front and back faces of the multi-layered back plane. The finger connectors are selectively connected to the conductor buses through pins extending perpendicularly through all layers of the multi-layered back plane. However, none of the pins intersects any of the conductor buses. Instead, the pins are selectively connected to the conductor buses by means of conductive pads extending from the conductor buses, each pad lying in the same plane with its associated conductor bus. The pads are selectively located to be intersected by a particular pin. Thus, an important feature of the invention is that the conductor pad locations may be selected to permit a connection of a particular finger connector which may be disposed on either the front or the back face of the multi-layered back plane to a particular conductor bus in any layer of the multi-layered back plane.

Thus, the invention provides a multi-layered back plane having independent circuits within the plane, each circuit accessible from either face of the multi-
layered back plane.
In a particular embodiment, a front and a back memory, each comprising a group of circuit boards, are mounted on the front and back faces of a multi-layered back plane, respectively. A front and a back processor are similarly mounted on a second multi-layered back plane. An additional pair of processors may be mounted on a third multi-layered back plane.

Interconnection between the front and back memories on the first multi-layered back plane and the front and back processors on the second and third multi-layered back planes may be accomplished by the means of ribbon cables which are connected between memory interface circuit boards. Use of these memory interface circuit boards, in combination with this unique back plane, prevents crossover of ribbon cables because a memory interface circuit board mounted on a face of the multi-layered back plane may be connected to circuit boards mounted on either face of the same multi-layered back plane. Thus, it is seen that crossover of the ribbon cable is completely eliminated because a memory interface circuit board mounted on either face of a multi-layered back plane may be connected to either the front memory or the back memory.

The signal path length is reduced significantly because each multi-layered back plane, which has substantially the same surface area as prior art back planes, mounts two memories or two processors while eliminating cable crossover by providing connection between some front and back circuit boards.

Description of the Figures
Figure 1 is a perspective view of the interconnection of four processors with two memories using back planes of the prior art, clearly showing the long signal paths and the crossover of ribbon cables;

Figure 2 is a perspective view of the preferred
embodiment of this invention in which three multi-layered back planes of this invention are used to interleave four processors with two memories;

Figure 3 is a cross-sectional view of Figure 2 taken along lines 3-3 of Figure 2; and

Figure 4 is an exploded perspective view of one of the back planes of Figure 3.

Detailed Description

Prior Art

The problems of long signal path lengths and crossover of cables encountered in interleaving a plurality of processors with a plurality of memories using back planes of the prior art are illustrated in Figure 1. A processor consisting of a plurality of processor circuit boards 50 is mounted on each back plane 30A, 30B, 30E, and 30F. A memory consisting of a plurality of memory circuit boards 70 is mounted on each back plane 30C and 30D. Each of the back planes 30A through 30F is a prior art back plane, such as the type disclosed in the Christiansen patent, which mounts a plurality of circuit boards in planes orthogonal to the back planes.

The interconnection between the processor circuit boards 50 and the memory circuit boards 70 is made by means of ribbon cables 40A through 40H crossing over one another at points 75 to connect between memory interface circuit boards 60 connected on each of the back planes 30A through 30F. Each of the memory interface circuit boards 60 is provided with cable connectors 65 which permit the ribbon cable 40A through 40H to connect between the various back planes 30A through 30F.

Each processor back plane 30A, 30B, 30E, 30F is separately connected to each memory back plane 30C, 30D through individual memory interface circuit boards 60 to provide for electrical isolation among processors and
memories.

It is apparent in Figure 1 that these connections may only be made by forcing the ribbon cables 40A through 40H to cross over one another at crossover points 75 and by forming the long signal path extending all the way from back plane 30A at the top of Figure 1 to back plane 30F at the bottom of Figure 1. The signal path length is in direct proportion to the number of processors and memories interleaved, and inversely related to the maximum speed of the computer. These long path lengths thus result in a substantial degradation computer performance.

Interleaving Four Processors With Two Memories By the Multi-Layered Back Plane of This Invention

Figure 2 illustrates a preferred embodiment in which three multi-layered back planes of this invention may be used to interleave four processors with two memories. Multi-layered back planes 100A, 100B, and 100C are placed end-to-end in a coplanar array. A front processor 200 comprises processor circuit boards 200A through 200J mounted orthogonally on the front face of the multi-layered back plane 100A and a back processor 205 comprises processor circuit boards 205A through 205J mounted orthogonally on the back face of the multi-layered back plane 100A. A second front processor 210 comprises processor circuit boards 210A through 210J mounted on the front face of multi-layered back plane 100C and a second back processor 215 comprises processor circuit boards 215A through 215J mounted on the back face of the multi-layered back plane 100C. A front memory 220 comprises memory circuit boards 220A through 220H mounted on the front face of multi-layered back plane 100B, and a back memory 225 comprises memory circuit boards 225A through 225H mounted on the back face of the multi-layered back plane 100B.

It is desirable to interconnect each processor 200, 205, 210, and 215 with each memory 220 and 225. Connection between memories and processors mounted on
opposite sides of the common plane of the back planes 100
is accomplished by means of ribbon cables connected between
memory interface circuit boards without any crossover of
the ribbon cables. For example, the front processor 200
is connected to the back memory 225 via the ribbon cable
40A. One end of ribbon cable 40A is connected to the back
memory interface board 230AA, which is mounted on the
back of the multi-layered back plane 100B and connected
to the back memory 225. The other end of ribbon cable
40A is connected to the back memory interface board 230A
which, although mounted on the back of the multi-layered
back plane 100A, is connected to the front processor 200.
Connection between memories and processors mounted on the
same sides is similarly made. For example, back processor
205 is connected to the back memory 225 via ribbon cable
40D between back memory interface boards 230D and 230DD
mounted on the back faces of multi-layered back planes 100A
and 100B, respectively. From these examples, it is seen
that the back memory 225 on the multi-layered back plane
100B is connected to both the front processor 200 and
the back processor 205 by means of two ribbon cables 40A
and 40D without any crossover of the ribbon cables 40A and
40D and without requiring any of the ribbon cables to
extend the length of any multi-layered back plane. Figure
2 shows that all of the ribbon cables 40A through 40H are
connected between adjacent or nearly adjacent memory
interface boards 230A through 230H and 230AA through 230HH.
Comparing Figure 2 with the prior art interconnection shown
in Figure 1, it is seen that each prior art back plane
mounts only one processor or memory and not two. In
Figure 1, the ribbon cables 40E and 40A must extend the
length of at least two of the back planes 30B and 30C.
Thus, comparing the signal path lengths required by the
back planes of the prior art 30A through 30F in Figure 1
with the shorter signal path lengths provided by the
multi-layered back planes 100A, 100D, and 100C of this
invention, it is seen that this invention results in a
significant reduction in the signal path length between
interconnected processors and memories and elimination
of the crossover at points 75 of the cables.

Memory Interface Circuit Boards

This invention reduces signal path lengths and
eliminates crossover of cables by providing circuit
elements mounted on each multi-layered back plane which
connect memory interface circuit boards mounted on one
face to other circuit boards mounted on either the front
or back face of the multi-layered back plane. These
circuit elements are discussed in the next sub-title
of this specification. The memory interface boards 230A
through 230H and 230AA through 230HH may be identical, and
must provide a connection between the ribbon cables 40A
through 40H and the multi-layered back plane. For this
purpose, each memory interface board has a ribbon cable
connector 65 mounted on its outer edge, as illustrated in

Figure 2. It should be recognized that each of the memory
interface boards may also have logic elements which control
the addressing of and transfer of data with a particular
memory by a particular processor.

Crossover Elements Within Each Layer of the

Multi-Layered Back Plane

Figure 3 is a cross-sectional view of the three multi-
layered back planes of Figure 2 taken along lines 3-3 of
Figure 2. Figure 3 shows that each of the multi-layered
back planes 100A, 100B, and 100C is comprised of four
layers of a plurality of insulated parallel co-planar
conductor buses. For example, the cross-sectional view in
Figure 3 of the multi-layered back plane 100A shows four
conductor buses 300A, 300B, 300C, 300D in four different
layers of the multi-layered back plane 100A. Although
Figure 3 shows only one conductor bus 300 in each of the
four layers, additional conductor buses having the same
structure are present in each of the layers and are
aligned directly behind the buses 300A, B, C, D and therefore are not visible in the view of Figure 3. Each of the buses 300A, 300B, 300C, 300D has a plurality of extending conductor pads 315, each intersected by one of a plurality of perpendicular pins 320. The pins 320 pass completely through the multi-layered back plane 100A and are connected in pairs to finger connectors 325. The finger connectors 325 mount the plurality of circuit boards comprising the front processor 200 and the back processor 205. The pins 320 are located so as not to intersect or connect to any of the conductor buses 300A, 300B, 300C, 300D. Connection is made only at the pads 315 extending from the conductor buses 300A, 300B, 300C, 300D, which are selectively located so as to be intersected by certain ones of the pins 320. This feature will be described below in a later subtitle of this specification.

The conductor buses 300A, 300B may be considered as front conductor buses, while the conductor buses 300C, 300D may be considered back conductor buses.

Figure 3 shows that the location of the pads 315 forms a repetitive periodic pattern beginning at the top and extending to the bottom of the multi-layered back plane 100A. Finger connectors 325 are connected to alternating pairs of the pins 320 on each face of the back plane 100A in order to permit mutual interconnection of circuit boards mounted on the same side of the plane 100A. Mutual connection of front circuit boards is made through front buses 300A, 300B while mutual connection of back circuit boards is made through rear buses 300C, 300D, exclusively. Inspection of Figure 3 shows that the front processor boards 200A through 200J are all connected to the front-conductor buses 300A, 300B by selectively located pads 315 intersected by pins 320. Similarly, the back processor boards 205A through 205J are connected to the back conductor buses 300C, 300D by other selectively
located pads 315 intersected by other pins 320. Likewise, on back plane 100B, front memory boards 220A-H are mutually connected via front conductor buses 305A, 305B and back memory boards 225A-H are mutually connected via back conductor buses 305C, 305D. The processor boards mounted on back plane 100C are mutually connected as on back plane 100A, except that the memory interface boards 230E-H are mounted at the top instead of the bottom of the back plane 100C, because of the bottom location of back plane 100C, requiring some processor boards to be mounted at the bottom of the back plane 100C.

Figure 3 shows that the pattern of pad locations repeats at every four pads, but is reversed, in back plane 100A for example, at the four pads 315AA, AB, AC, AD, connected to interface boards 230A and 230C, so that each of the memory interface boards 230A and 230C may be mounted on one side of the plane 100A but connected to circuit boards mounted on the opposite side of the back plane 100A. Thus, back memory interface board 230A is connected to front conductor buses 300A, 300B while front memory interface board 230C is connected to back conductor buses 300C and 300D. The pad location pattern resumes, however, so that memory interface boards 230D and 230B are connected to circuit boards mounted on the same side of the back plane 100A. Thus, it is seen that it is the location of the pads 315 and not any structural or electrical differences between memory interface boards which determines whether a memory interface board is to connect to circuit boards mounted on the same side or the opposite side of the back plane.

Inspection of the location of the pads 315 in the multi-layered back planes 100B, 100C shows that the location of the pads 315 in multi-layered back planes 100B, 100C is identical to the location of the pads 315 in multi-layered back plane 100A. Thus, all three back planes 100A, 100B, 100C may be of identical structure and
are interchangeable. Each of the back planes, 100A, B, and C, has four of its pads, 315AA-AD, 315BA-BD, and 315CA-CD, respectively, disposed in a location pattern reversed from the periodic location pattern of the remaining pads 315, as discussed above in connection with back plane 100A, for connecting some of the memory interface circuit boards to circuit boards on the opposite side of the back plane. However, the pads 315CA-CD in back plane 100C having a reversed location pattern are connected to processor boards 210I and 215I, instead of memory interface boards, because the bottom location of back plane 100C requires memory interface boards to be mounted at the top of back plane 100C. As a result, the front processor board 210I must be mounted on the back and the back processor board 215I must be mounted on the front of back plane 100C, as shown in Figure 3.

For purposes of this description, memory interface boards 230A, 230C, 230FF, and 230HH which are connected to circuit boards mounted on the opposite face of the back plane by virtue of their connection to pairs of the pads 315AA-AD, 315BA-BD having reversed pad location patterns shall be referred to as "reversing" memory interface boards. The term "reversing" merely refers to the connection of these interface boards with pairs of the pads 315AA-AD, 315BA-BD having reversed pad location patterns, but does not refer to any differences between memory interface boards. As discussed above, it is the location of the pads 315 and not any structural or electrical differences between memory interface boards which determines whether a memory interface board is to connect to circuit boards mounted on the same side or the opposite side of the back plane. Thus, it is seen that identical memory interface boards may be used so that all memory interface boards are interchangeable. For example, memory interface boards 230A and 230D are interchangeable while the location pattern of the pads
315 is reversed between memory interface boards 230A and 230D.

The use of identical memory interface boards 230A through 230H to interleave the processors 200, 205, 210, 215 with the memories 220, 225 using the multi-layered back planes 100A, 100B, 100C of this invention requires that front memory interface boards 230C, 230B, 230BB, 230CC, 230FF, 230EE, 230E, 230F be mounted with their components "up" as shown in Figure 3, while back memory interface boards 230A, 230D, 230DD, 230AA, 230HH, 230GG, 230G, 230H are mounted with their circuit board components "down" as shown in Figure 3. Preferably, every front and back circuit board is mounted with components "up" and "down", respectively, including memory boards and processor boards, so that identical boards can be used on the front and back. It will be recognized that this requires the reversal of the location pattern of some of the pads 315 discussed above.

Connection of the Ribbon Cables

Connections are made between various processors and memories by means of ribbon cables 40A through 40H connected between memory interface boards on different multi-layered back planes in such a manner that the cables never cross over one another nor cross over to an opposite side of the back plane assembly. In general, the front processors are connected to front memories via ribbon cables connected between front memory interface boards. Back processors are connected to back memories via ribbon cables connected between back memory interface boards. Front processors are connected to back memories via ribbon cables connected either between a front memory interface board and a reversing front memory interface board, or between a back memory interface board and a reversing back memory interface board. Connection between front memories and back processors are made in the same manner. As an example of the reversing type of connection, front processor 200 is connected to back memory 225 via ribbon
cable 40A connected between reversing back memory interface board 230A mounted on multi-layered back plane 100A and back memory interface board 230AA mounted on multi-layered back plane 100B. Thus, whenever a front processor 200 or 210 is connected to a back memory 225, or whenever a back processor 205, 215 is connected to a front memory 220, it is seen that a reversing memory interface board must be used for each individual connection. It should also be noted that whenever a front processor 200, 210 is connected to a front memory 220 or whenever a back processor 205, 215 is connected to a back memory 225, no reversing memory interface board need be used.

Ribbon cables 40A through 40D constitute all of the connections between multi-layered back planes 100A and 100B. Ribbon cables 40E through 40H constitute all of the connections between multi-layered back planes 100B and 100C.

As a consequence of the location of the pads 315 shown in Figure 3 throughout the multi-layered back planes 100A, 100B, 100C, ribbon cable 40A connects between front processor 200 and back memory 225 via reversing memory interface board 230A and memory interface board 230AA, ribbon cable 40B connects between front processor 200 and front memory 220 via memory interface boards 230B and 230BB, ribbon cable 40C connects between back processor 205 and front memory 220 via reversing memory interface board 230C and memory interface board 230CC while ribbon cable 40D connects between back processor 205 and back memory 225 via memory interface boards 230D and 230DD. Likewise, ribbon cable 40E connects between front memory 220 and front processor 210 via memory interface boards 230E and 230EE, ribbon cable 40F connects between back memory 225 and front processor 210 via reversing memory interface board 230FF and memory interface board 230F, ribbon cable 40G connects between back memory 225 and
back processor 215 via memory interface boards 230GG and 230G, and ribbon cable 40H connects between front memory 220 and rear processor 215 via reversing memory interface board 230HH and memory interface board 230H.

Connections Between Conductor Buses and Circuit Boards

Figure 4 is an exploded perspective view of a portion of the multi-layered back plane 100A of Figures 2 and 3 in which the length of the pins 320 is exaggerated for purposes of illustration. Figure 4 shows the connection of only the four memory interface boards 230A-D to back plane 100A. Although Figure 4 illustrates only a portion of back plane 100A, the structure shown in Figure 4 may be considered typical of all three back planes 100A, B, C.

Figure 4 shows that the multi-layered back plane 100A is comprised of four insulating printed circuit board planes 400A, 400B, 400C, 400D, providing the four layers of a plurality of insulated and mutually parallel conductor buses which were described above in connection with Figure 3. The outer plane 400A defines the front of the multi-layered back plane 100A, and the outer plane 400D defines the back. Printed circuit board plane 400A has conductor buses 300A, 301A, 302A, 303A, and other conductor buses not shown in Figure 4. Likewise, printed circuit board plane 400B has conductor buses 300B, 301B, 302B, 303B, and other conductor buses not shown in Figure 4. In similar fashion, the printed circuit board planes 400C and 400D have conductor buses 300C-303C and 300D-303D, respectively, and additional buses not shown. The plurality of conductor buses shown in Figure 4 in each printed circuit board plane 400A, B, C, D are connected to the circuit boards in the same manner as the individual buses 300A, B, C, D shown in Figure 3. Thus, for example, processor boards 200A-J shown in Figure 3 are mutually connected not only by conductor buses 300A, B, as previously discussed in connection with Figure 3; but also by conducting buses 301A, 302A, 303A, and 301B, 302B, 303B, shown in Figure 4 in the planes 400A and 400B, respectively. Inspection of
Figure 4 shows that the conductor buses in each layer 400 have identical structures. Thus, the structure and the location of pads 315 is identical on all conductor buses 300A, 301A, 302A, 303A in the plane 400A. The same is true of conductor buses located in the other planes 400B, C, D.

Figure 4 shows a plurality of pins 320 passing through all four printed circuit board planes 400A, 400B, 400C, 400D. It may be seen in Figure 4 that the pins 320 pass adjacent to the conductor buses 300-303 but do not intersect the buses. The pins 320, however, do intersect pads 315 at selected locations. Each of the pads 315 is selectively connected to a particular one of the conductor buses, and extends away from that conductor bus to be intersected by one of the pins 320. Selective placement of the plurality of pads 315 assures a unique connection between a particular pin 320 and a particular one of the conductor buses.

The plurality of pins 320 are grouped into pin pairs 322. The pin pairs 322 are arranged in rows 323 which are parallel to each of the printed circuit boards 400, and are perpendicular to the conductor buses 300-303. Each of the pins 320 has end portions 321 protruding from the outer printed circuit board planes 400A, 400D. A pair of the end portions 321A, 321B of the pins 320 in each pin pair 322 mounts a pair of finger springs 330A, B forming one female finger connector 325 for each pin pair. Figure 4 shows that each of the circuit boards 230A through 230D has a plurality of male finger pads 345A, 345B on the top and bottom surfaces, respectively, of the board adjacent its edge facing the multi-layered back plane 100A. Each male finger pad 345A, 345B makes a wiping connection with a female finger spring 330A, 330B, respectively, as the boards are inserted. This arrangement is typical of all circuit boards mounted on the multi-layered back plane 100 of this invention.
Each circuit board is mounted in a particular row 323 of pin pairs 322 with female finger spring connectors 325. It should be noted that finger connectors 325 are provided in alternating rows 323A, 323B only on the front and back faces, respectively, of the back plane 100A, and that the rows 323A of finger connectors 325 on the front face of the plane 100A are staggered with respect to rows 323B on the back face. Therefore, each row 323 of pin pairs 322 has a plurality of finger connectors 325 on one face only of the back plane 100A mounting one circuit board.

Thus, it is seen that front circuit boards, namely circuit boards mounted in the front rows 323A of connectors 325, and back circuit boards, namely those circuit boards mounted on the back rows 323B of connectors 325, may be selectively connected to any one of the conductor buses in any of the planes 400A, 400B, 400C, or 400D by a proper selection of the location of the pads 315. As a result, back circuit boards may be selectively connected to front circuit boards. For example, the pads 315AA through AD illustrated in Figure 4 make connection between the front processor boards 205A through 205J shown in Figure 3 and reversing back memory interface board 230A via conductor buses 300A-303A and 300B-303B in the planes 400A and 400B, respectively.

The staggered alternating rows 323A, B of the connectors 325, provided on both faces of the three back planes 100A, B, C, in combination with the repetitive periodic location pattern of the plurality of pads 315, permit circuit boards to be mounted in each of the staggered rows 323A, 323B of the connectors 325 on both faces of the back planes 100A, B, C, as shown in Figure 2. Also, the repetitive periodic location of pattern of the pads 315 permit mutual interconnection of front memory boards 220 with the front processor boards 200 and 210, and permit mutual interconnection of the back
memory boards 225 with the back processor boards 205 and 215. The reversal of the location pattern of some of the pads including pads 315AA-AD shown in Figure 4, in combination with the staggered alternating rows 323A, 323B of connectors 235, permits the connection between front memory boards 220 and back processor boards 205 and 215, and permits the connection between back memory boards 225 and front processor boards 200 and 210. Furthermore, each of the cables 40 is connected exclusively on the same side of the common plane of the back planes 100A, B, C, and do not cross over other cables 40 nor to the opposite side of the common plane, as shown in Figure 2. Figure 2 clearly shows the simplified connections formed by the four ribbon cables 40 afforded by the staggered rows 323A, 323B of connectors 325 combined with the normal and reversed periodic location pattern of pads 315 for separately connecting each memory board 210, 215 to each processor board 200, 205, 220, 225 through separate memory interface boards.

In Figure 2, it is seen that each of the cables 40 connect only between memory interface boards 230 which are mounted on the same side, either front or back, of the common plane of the back plane 100A, B, C, and none of the cables 40 are connected between the front and back sides of this plane. In this way, the interleaving of the plurality of memories and processors shown in Figure 2 is accomplished without any crossover of cables 40, which is necessary when using prior art back planes, as illustrated in Figure 1. If the prior art back planes 30 of Figure 1 were substituted for the multi-layered back planes 100A, B, C of Figure 2 in the interleaved system illustrated in Figure 2, in which each of the cables 40 are connected on a single side of the common plane only, it would not be possible to interleave all of the memories with all of the processors. In order to interleave all the memories with all the processors using prior art back planes, at
least some of the cables 40 would have to be connected between opposite sides of the common plane in order that front memories may be connected to back processors and back memories may be connected to front processors.

In the interleaved system of Figure 2, it is unnecessary to cross over any of the cables 40 in order to connect between components mounted on opposite sides of the common plane of the back planes 100A, B, C, since the location pattern of some of the pads 315 in each multi-layered back plane 100A, B, C, of this invention is "reversed" and these "reversed" pads, when connected to memory interface boards, provide electrical circuits which permit the data signal paths to cross over from one side of the common plane to the other side of the common plane in order to connect between components mounted on opposite sides of the common plane, thereby eliminating the need for any of the cables 40 to connect between opposite sides of the plane or to cross over one another. Thus, it is the reversal of the location pattern of some of the pads in each of the multi-layered back planes 100A, B, C, of this invention, and the connection of memory interface boards to these pads which causes the cables 40, connected exclusively on one side of the common plane, to interleave between not only a plurality of memories and processors mounted on the same side of the common plane, but also to interleave between memories and processors mounted on different sides of the common plane. Without this feature, the interleaved system of Figure 2 would not interleave all of the memories, 200, 225 with all the processors 200, 205, 210, 215. In the absence of the crossover signal paths provided by the reversed location patterns of some of the paths 315 in each of the multi-layered back planes 100A, B, C, the interleaving of all of the components in the system of Figure 2 could only be accomplished by crossing cables over one another and between opposite sides of the common plane.
Thus, it is seen that the multi-layered back plane 100A permits the connection of separate components on opposite faces of the plane 100A and, when used in conjunction with a plurality of other identical multi-layered back planes, permits interleaving a plurality of different components such as processors and memories without any crossover of cable paths while at the same time significantly reducing the signal path lengths between the processor and the memories. Because the invention permits the use of identical multi-layered back planes and the use of identical memory interface circuit boards, this invention results in significant cost savings. At the same time, use of this invention in a computer allows the clock rate of the computer to be significantly increased because the use of the multi-layered back plane of this invention reduces the signal path length significantly.

While Figures 3 and 4 disclose only four layers within a single multi-layered back plane, it should be recognized that this invention includes similar multi-layered back planes which have more than four layers of conductor buses. For example, other conducting layers may be introduced between the layers 400A, 400B, 400C, 400D to provide a voltage plane or a ground plane, or additional signal planes. Thus, this invention includes multi-layered back planes with any number of layers interleaving any number of components such as memories and processors with minimized path lengths hitherto unattainable in the prior art, without any crossover of cables.
1. A computer system having a plurality of circuit board components such as processors or memories mounted on a plurality of pairs of back planes, each of said back plane pairs comprising a front back plane having front and back faces, and a rear back plane having front and back faces, the back face of said front back plane facing the front face of said rear back plane, in which:

one of said back plane pairs comprises a processor back plane pair having a first front face and a first back face; and

another of said back plane pairs comprises a memory back plane pair having a second front face and a second back face, said system further comprising:

front and back processor circuit board components mounted on said first front and back faces, respectively, said front processor components insulated from said back processor components;

front and back memory circuit board components mounted on said second front and back faces, respectively, said front memory components insulated from said back memory components;

first means in one of said processor and memory back plane pairs for providing electrical access on the front face of said one back plane pair to front and back components mounted on the front and back faces, respectively, of said one back plane pair while maintaining the front components of said one back plane pair insulated from its back components;

second means in said one back plane pair for providing electrical access on the back face of said one back plane pair to said front and back components of said one back plane
20
pair to said front and back components of said one back plane pair and maintaining said
front components of said one back plane pair insulated from its back components; and
plural connecting means, some of which are connected between said first means and
the front face of the other of said back
plane pairs, others of which are connected
between said second means and the back face
of said other back plane pair, said connecting
means for connecting each of said front and
back processor components to each of said
front and back memory components.

2. A computer system as defined in Claim 1
wherein said connecting means comprises a plurality of
ribbon cables.

3. A computer system as defined in Claim 1
wherein said processor and memory components comprise
circuit boards mounted on said processor and memory
back plane pairs, respectively.

4. A computer system as defined in Claim 1
wherein said back plane pairs each comprises a pair of
printed circuit boards, each board having front and
back faces, said boards mutually parallel, the back face
of one of said pair of printed circuit boards adjacent
the front face of the other.

5. A computer system as defined in Claim 1
further comprising a second processor back plane pair
connected by said connecting means to said memory back
plane pair.

6. A back plane pair comprising a front back
plane and a rear back plane having adjoining faces
facing toward one another and outer faces facing away
from one another for mounting a plurality of circuit
boards on the outer faces of said front and rear back
planes, said back plane pair further comprising:
means for mutually interconnecting the plurality of circuit boards mounted on the front back plane, and mutually interconnecting the plurality of circuit boards mounted on the rear back plane;

means insulating the circuit boards mounted on the front back plane from the circuit boards mounted on the rear back plane; and

means providing electrical access on both of said front and rear back planes to circuit boards mounted on the front back plane.

7. A back plane pair as defined in Claim 6 further comprising means providing electrical access on both of said front and rear back planes to circuit boards mounted on the rear back plane.

8. A back plane pair as defined in Claim 6 wherein each back plane of each of said back plane pairs comprises a printed circuit board having front and back faces, the front face of one of said printed circuit boards parallel and facing the back face of the other.

9. A multi-layered back plane having front and back faces for mounting front and back pluralities of circuit boards perpendicularly on said front and back faces, respectively, said back plane comprising:

first means for interconnecting some of said front plurality of circuit boards on said front face exclusively;

second means for interconnecting some of said back plurality of circuit boards on said back face exclusively; and

third means insulated from said first means, said third means for selectively interconnecting another of said front plurality of circuit boards with said second means.
10. An interleaved array of circuit boards mounted on first and second multi-layered back planes, each of said back planes having front and back faces, said array comprising:

first and second pluralities of circuit boards mounted on said front and back faces, respectively, of said first back plane, said first plurality insulated from said second plurality;

third and fourth pluralities of circuit boards mounted on said front and back faces, respectively, of said second back plane, said third plurality insulated from said fourth plurality;

front and back pluralities of interface circuit boards mounted on said front and back faces, respectively, of said first back plane;

first means within said first back plane for exclusively connecting said first plurality of circuit boards to some of said front and back pluralities of interface boards;

second means within said first back plane for exclusively connecting said second plurality of circuit boards to others of said front and back pluralities of interface boards, said second means insulated from said first means;

first cable connector means for connecting between said front plurality of interface boards and said third plurality of circuit boards; and

second cable connector means for connecting between said back plurality of interface boards and said fourth plurality of circuit boards.

11. An interleaved array of circuit boards as defined in Claim 10 wherein said front plurality of interface boards are identical and interchangeable.

12. An interleaved array of circuit boards as defined in Claim 10 wherein said front plurality of
interface boards are identical to and interchangeable with said back plurality of interface boards.

13. An interleaved array of circuit boards as defined in Claim 10 wherein said first and second back planes are identical and interchangeable.

14. A multi-layered back plane mounting a plurality of circuit boards, said back plane having a front face and a back face, said back plane comprising:

first means for mounting a first plurality of circuit boards on said front face;
second means for mounting a second plurality of circuit boards on said back face, said second means insulated from said first plurality of circuit boards;
third means for mutually connecting some of said first plurality of circuit boards with one another, said third means insulated from said second plurality of circuit boards; and
fourth means for selectively connecting others of said first plurality of circuit boards with some of said second plurality of circuit boards, said fourth means insulated from said third means.

15. A multi-layered back plane as defined in Claim 14 further comprising:

fifth means for mutually connecting some of said second plurality of circuit boards with one another, said fifth means insulated from said first plurality of circuit boards; and

sixth means for selectively connecting others of said second plurality of circuit boards with some of said first plurality of circuit boards, said sixth means insulated from said fifth means.

16. A multi-layered back plane as defined in Claim 14 wherein said first and second means comprises a front and a back plurality of parallel rows of finger connectors, respectively, mounted on said front and back faces, respectively.
17. A multi-layered back plane as defined in Claim 16 wherein said third means comprises:

- a plurality of printed circuit planes within said back plane, each of said printed circuit planes comprising a plurality of conductor buses extending in a direction transverse to said rows of finger connectors;

- a plurality of conductor pins, each of said pins passing through said back plane and not intersecting said buses, some of said pins connected to said front plurality of rows of finger connectors, others of said pins connected to said back plurality of rows of finger connectors; and

- a first plurality of conductor pads disposed in one of said printed circuit planes, said first plurality of pads extending from and connected to conductor buses comprising said one printed circuit plane, said first plurality of pads intersected by said pins which are connected to said front plurality of rows of finger connectors.

18. A multi-layered back plane as defined in Claim 17, wherein said fourth means comprises a second plurality of conductor pads disposed in said one plane, said second plurality of pads extending from and connected to said conductor buses comprising said one plane, said second plurality of pads intersected by said pins which are connected to some of said back plurality of rows of finger connectors.

19. A multi-layered back plane as defined in Claim 18 wherein said first plurality of pads are located in a repetitive periodic location pattern with other pads.

20. A multi-layered back plane as defined in Claim 19 wherein said second plurality of pads are located in a repetitive location pattern reversed from the location pattern of said first plurality of pads.
pads.

21. A multi-layered back plane as defined in Claim 20 wherein said front plurality of parallel rows of connectors are parallel to said back plurality of rows of connectors.

22. A multi-layered back plane as defined in Claim 21 wherein said front plurality of parallel rows of finger connectors are staggered with respect to said back plurality of rows of finger connectors.
I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)
According to International Patent Classification (IPC) or to both National Classification and IPC

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>364/200, 900 361/413, 414, 412, 395</td>
</tr>
</tbody>
</table>

II. FIELDS SEARCHED

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 14 with indication, where appropriate, of the relevant passages 17</th>
<th>Relevant to Claim No. 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US,A, 3,992,686, Published 16 NOVEMBER 1976, CANNING</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>US,A, 4,038,642, Published 26 JULY 1977, BOUKNESHT et al</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>GB,A, 1,533,576, Published 29 NOVEMBER 1978, BARREN et al</td>
<td>1-5</td>
</tr>
<tr>
<td>X</td>
<td>N, IBM Technical Disclosure Bulletin, vol.13, no. 6, issued November 1970, Tsui et al, Double Board Arrangement, see pages 1411 and 1412</td>
<td>6-9,14-16</td>
</tr>
<tr>
<td>X</td>
<td>N, The Electronic Engineer, issued June 1972, Richard Hunter, Back-Panel Wiring, See page 41</td>
<td>6-9,14-16</td>
</tr>
<tr>
<td>X</td>
<td>DE,A, 2,214,678, Published 27 September 1973</td>
<td>6-9,14-16</td>
</tr>
<tr>
<td>A</td>
<td>US,A, 4,054,939, Published 18 October 1977, Ammon</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 16
 * "A" document defining the general state of the art
 * "E" earlier document but published on or after the international filing date
 * "L" document cited for special reason other than those referred to in the other categories
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but on or after the priority date claimed
 * "T" later document published on or after the international filing date or priority date and not in conflict with the application, but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance

IV. CERTIFICATION

Date of the Actual Completion of the International Search 2
3 April 1980

Date of Mailing of this International Search Report
25 APR 1980

International Searching Authority 1
ISA/US

Signature of Authorized Officer 15

Form PCT/ISA/210 (second sheet) (October 1977)
FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

A	US, A, 3,923,359, Published 2 December 1975, Newsam
A	US, A, 3,270,251, Published 30 August 1966, Evans
A	US, A, 2,925,537, Published 16 February 1960, Winkler
A	US, A, 3,591,834, Published 6 July 1971, Kolias
A	US, A, 3,727,168, Published 10 April 1973, Henschen et al

OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This International search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers..., because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers..., because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this International application as follows:

1. CLAIMS 1-5
2. CLAIMS 6-?

1. As all required additional search fees were timely paid by the applicant, this International search report covers all searchable claims of the International application.

2. As only some of the required additional search fees were timely paid by the applicant, this International search report covers only those claims of the International application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this International search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.