(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 01/80054 Al

(43) International Publication Date

25 October 2001 (25.10.2001)

(51) International Patent Classification’: GO6F 17/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US01/11961 CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
(22) International Filing Date: 12 April 2001 (12.04.2001) LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
(25) Filing Language: English TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(26) Publication Language: English g4y Designated States (regional): ARIPO patent (GH, GM,

L. KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

(30) Priority Data: . patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
60/196,816 13 April 2000 (13.04.2000) US patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

(71) Applicant: N-TIER FINANCIAL SERVICES, LLC CG, CL. CM. GA, GN, GW, ML, MR, NE, SN, TD, TG).

[US/US]; 380 Madison Avenue, New York, NY 10017
(US).
Published:
(72) Inventor: GARGONE, Peter, Sebastian; Apartment ~— With international search report
23G, 420 East 54th Street, New York, NY 10022 (US).
For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agents: CHANDRA, Arun et al.; Morgan & Finnegan, ance Notes on Codes and Abbreviations" appearing at the begin-
L.L.P, 345 Park Avenue, New York, NY 10154 (US). ning of each regular issue of the PCT Gazette.

(54) Title: BUSINESS OBJECTS PROCESS DEVELOPMENT FRAMEWORK FOR DATA RECONCILIATION

High level overview of sample objects in object architecture

General Configuration Objects 100 Automated Data Entry 1o User Intetface 120
Client Clicat systems l I Data display featares I
User accounts
Reference Library 105,
o [Fmeiase
oo | |
L . | l“' " “"‘"il
Reconciliation 1
definitions
Reconmlfanan Validation p
detail

Matching E; 130

System gencrated objects

Memory N Display N
E

(57) Abstract: A method, apparatus and system for performing a business function in an object architecture. The method comprises
utilizing configuration information (100) for directing at least one process to perform the business function, utilizing a reference
~~ library (105) for defining data external to the object architecture and supporting the configuration information, interfacing the process
associated with the object architecture with at least one in-memory object (130), and utilizing at least one data storage object (130)
for preserving the data affected by the process. According to one embodiment, the object architecture may be used to monitor data
integrity in a computing system, where the computing system has a plurality of data sources. The monitoring process comprises
analyzing data from the data sources, configuring the computing system to support data reconciliation for the data, and reconciling
data from the data sources.

0054 Al

WO 01/80054 PCT/US01/11961

BUSINESS OBJECTS PROCESS DEVELOPMENT FRAMEWORK FOR DATA
RECONCILIATION

This application claims priority to the U.S. provisional application with serial number
60/196,816 and attorney docket number 3984-4000, filed on April 13, 2000, and entitled
“System and method and system for supporting the data and operational requirements of a

business function.”

BACKGROUND OF THE INVENTION
Field of The Invention
The present invention relates to a method and system for automating the processing
requirements of given high level business functions, and more particularly to a method and
system which automates the business functions in a generic manner such that the invention
enables the related business functions to be automated and performed under varying

conditions with no recoding of core application objects and processes.

Description of Related Art

In today’s computing environment, existing applications attempt to bundle many
individual business functions as part of large comprehensive solutions or tend to support
smaller sets of business functions in very isolated circumstances. These applications by their
very nature fail to support variation in how their related processes are performed and what
information those processes are performed on. This lack of variation support results in
applications which can not be adapted to perform their related business functions in the many
different environments without significant modification. These solutions do not provide
common platforms for automating their related business functions and result in duplication of

processing, data, and effort.

WO 01/80054 PCT/US01/11961

One example of a business function supported in this manner is data reconciliation
and data quality management. Data reconciliation and data quality management is the process
of ensuring that duplicate businéss data, which resides in different systems or sub-systems
across an organization remains consistent throughout those systems.

The data reconciliation and data quality management function is traditionally
implemented in two modes of operation. In the first mode the required reconciliation
processes and data required to support these processes are part of a larger system’s processes
and data. In the second mode of implementing the reconciliation business function is
provided as separate application but will function only for very specific or isolated classes of
information such as financial data or inventory data.

In both of these instances, organizations need to have multiple aﬁd perhaps many
different data reconciliation or data quality management solutions resulting in much wasted
effort and inefficiencies. These inefficiencies emphasizes the need for an application which
automates the reconciliation business function in a manner, which is flexible and can be used

in any number of the different computing environments with out re-development.

WO 01/80054 PCT/US01/11961

SUMMARY OF THE INVENTION

The present invention overcomes the above-mentioned disadvantages. One aspect of
the present invention provides for a system, method and apparatus for providing a multi-tier
object architecture for supporting the automation of well-defined business functions. These
functions may be characterized by individual business processes which tend to be wide
spread across medium to large organizations and occur with a significant degree of variation,
while being capable of being isolated or segmented from other related processes.

The object architecture provides a very high level of antomated flexibility, which
enables the architecture to support variations in the underlying requirements of a given
business process, without requiring additional coding, programming and/or redevelopment.
The flexibility across the architecture impacts every aspect of processing from data storage
and display to the functioning of individual algorithms. According to one of the
embodiments, the flexibility may be exploited in the design of high-level processes for
performing generic tasks and the use of configuration objects to guide the detailed
implementation of a given task at run time.

In one exemplary embodiment, the present system, method and apparatus may be
used for automating and centralizing the data reconciliation and data quality management
process across any number of data sources of an organization, which may be located
internally or externally thereto. Data reconciliation and data quality management is the
process of ensuring that duplicate business data, which resides in different systems or sub-
systems across an organization and is generally updated through complex sets of manual or
automated processes, remains consistent between the various systems connected by the
reconciliation application of the present invention. |

The above advantages and features are of representative embodiments only, and are

not exhaustive and/or exclusive. They are presented only to assist in understanding the

WO 01/80054 PCT/US01/11961

invention. It should be understood that they are not representative of all the inventions
defined by the claims, to be considered limitations on the invention as defined by the claims,
or limitations on equivalents to the claims. For instance, some of these advantages may be
mutually contradictory, in that they cannot be simultaneously present in a single embodiment.
Similarly, some advantages are applicable to one aspect of the invention, and inapplicable to
others. Furthermore, ;:ertain aspects of the claimed invention have not been discussed herein.
However, no inference should be drawn regarding those discussed herein relative to those not
discussed herein other than for purposes of space and reducing repetition. Thus, this
summary of features and advantages should not be considered dispositive in determining

equivalence. Additional features and advantages of the invention will become apparent in the

following description, from the drawings, and from the claims.

WO 01/80054 PCT/US01/11961

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the logical representation of the object types in the object
architecture in accordance with one embodiment of the present invention;

Figure 2 illustrates the steps required to transform the object architecture into an
application for supporting a given set of business requirements;

Figure 3 illustrates the steps required to configure one of the architecture’s
applications to meet the processing requirements of a given computing environment;

Figure 4 illustrates the operational steps required to receive and process data on a
regular basis, through one of the architecture’s applications;

Figure 5 illustrates the basic user interaction facilities provided by one of the

.architecture’s applications;

Figure 6a-b provides a high-level business representation of the conﬁguiation
operational flow of the architecture’s reconciliation embodiment;

Figure 7 provides an overview the steps required for configuring the reconciliation
embodiment for operation in a specific computing environment;

Figure 8 shows the operation steps required for receiving and processing data through
the reconciliation embodiment;

Figure 9 shows the user interaction facilities provided by the reconciliation
embodiment;

Figure 10 shows a subset of the reconciliation embodiment’s in memory objecis
organized by their parent child relationships;

Figure 11 shows the user interface adapter programs of the reconciliation
embodiment;

Figure 12 shows core in-memory objects of the reconciliation embodiment;

WO 01/80054 PCT/US01/11961

Figure 13 shows the first portion of the in-memory reference library objects of the
reconciliation embodiment;

Figure 14 shows the second portion of in-memory reference library objects of the
reconciliation embodiment;

Figure 15 shows the third portion of the in-memory reference library objects of the
reconciliation embodiment;

Figure 16 shows the first part of the in-memory data manipulation objects of the
reconciliation embodiment;

Figure 17 shows the second part of the in-memory data manipulation objects of the
reconciliation embodiment;

Figure 18 shows the in-memory archive data manipulation object of the reconciliation
embodiment;

Figure 19 provides a detailed view of some of the miscellaneous in-memory objects
of the reconciliation embodiment;

Figure 20-22 is a detailed view of some of the database tables, indexes, and
constraints of the reconciliation embodiment;

Figure 23 outlines the process for defining a source system for the reference library of
the reconciliaﬁon embodiment;

Figu;e 24 outlines the process for defining a system field for an individual source
system of the reconciliation embodiment;

Figure 25 outlines the process for creating a reconciliation definition,

Figure 26 outlines the process for adding a source system to a given reconciliation
definition;

Figure 27 outlines the process for adding a key field to a given reconciliation system;

WO 01/80054 PCT/US01/11961

Figure 28 outlines the process for creating a data comparison in a given reconciliation
definition;

Figure 29 outlines the process for adding a data field to an individual reconciliation
system’s data comparison;

Figure 30 outlines the reconciliation embodiment’s process for adding an iﬁfonnation
field to a given reconciliation system;

Figure 31 outlines the process flow for deleting in-memory objects from the
application, in accordance with the reconciliation embodiment;

Figure 32 outlines the reconciliation embodiment’s process for receiving and
processing a singe text message containing related reconciliation information from a
designated source system;

Figure 33 outlines the process for creating a reconciliation item object from the text
message received in Figure 32;

Figure 34 outlines the process for decomposing the reconciliation item of figure 33
into a set of related in-memory and related database objects;

Figure 35 outlines the utility process for creating a temporary in-memory structure
containing the data elements of a given XML based text string that normally has
reconciliation data from a particular source system;

Figure 36 outlines the process for validating and storing the header information of the
message data contained in temporary memory structure created in figure 35;

Figure 37 outlines the process for creating a match key string for a reconciliation
message whose data is contained in the temporary memory structure created in figure 35;

Figuie 38 outlines the process for creating the data elements for a reconciliation

message whose data is contained in the temporary memory structure created in figure 35;

WO 01/80054 PCT/US01/11961

Figure 39 outlines the process for creating the information elements for a
reconciliation message whose data is contained in the temporary memory structure created in
figure 35;

Figure 40 outlines the reconciliation embodiment’s initial process for matching a
given reconciliation item to the application’s existing reconciliation data and data groups
based on the match key string created in figure 37,

Figure 41 outlines the first sub-process for matching a given reconciliation item to the
application’s existing reconciliation data utilizing specialized application features for group
and record replace;

Figure 42 outlines the second sub-process for matching a given reconciliation item to
the application’s existing reconciliation data utilizing specialized application features for
creating new groups and records;

Figure 43 outlines the process for creating a reconciliation data object based on the
results of the matching process described in figures 40-42;

Figure 44 outlines the process for creating a data group object based on the results of
the matching process described in figures 40-42;

Figure 45 outlines the process for reconciling the individual reconciliation items of a
given data group object;

Figure 46 outlines the process for integrating the flow of reconciliation messages from
external source systems via method calls directly into the reconciliation application;

Figure 47 outlines the process for integrating the flow of reconciliation information to
and from external source systems into and out-of the reconciliation application via a direct
data source link;

Figure 48 outlines the process for integrating the flow of reconciliation messages from

the external source systems via file based data transfer into the reconciliation application;

WO 01/80054 PCT/US01/11961

Figure 49 outlines the facilities and processes for supporting the retrieval, review, and
modification, of reconciliation data in the reconciliation application;
Figure 50 outlines the facilities and processes for supporting reporting and/or
updating of status and result details for individual reconciliations;
Figure 51 outlines the facilities for modifying client related configuration information
in the reconciliation embodiment;
Figure 52 outlines the facilities for modifying user and user security related
information in the reconciliation embodiment;
Figure 53 outlines the process for archiving data from the application’s live data
objects to the application’s online archive;
Figure 54 outlines the reconciliation embodiment’s process for restoring archived data
from the application’s online archive to the application’s live data objects;
Figure 55a outlines the facilities for supporting the initiation of the archiving process
for a given reconciliation;
Figure 55b outlines the facilities for retrieving reviewing, and restoring the archive
data of the reconciliation embodiment;
Figure 56 outlines the facilities for managing processing errors in the reconciliation
application;
With reference to the following detailed description, the aforementioned drawings
‘will be described in greater detail below. The leading reference numeral in each drawing
indicates the first drawing in which the reference numeral is introduced (e.g., elements 320

and 1140 are introduced in figures 3 and 11 respectively).

WO 01/80054 PCT/US01/11961

DETAILED DESCRIPTION

The present invention relates to a system, method and apparatus for providing a multi-
tier object architecture for supporting the automation of well-defined business functions.
These functions may be characterized by individual business processes which tend to be wide
spread across medium to large organizations and occur with a significant degree of variation,
while being capable of being isolated or segmented from other related processes.

The object architecture provides a very high level of automated flexibility, which
enables the architecture to support variations in the underlying requirements of a given
business process, without requiring additional coding, programming and/or redevelopmenf.
The flexibility across the architecture impacts every aspect of processing from data storage
and display to the functioning of individual algorithms. According to one of the
embodiments, the flexibility may be exploited in the design of high-level processes for
performing generic business processes and the use of configuration objects to guide the
detailed implementation of a given business process at run time.

In a nutshell, this object architecture is utilized in three primary stages. In the first
stage, the architecture is adapted to provide a specific business application, producing a set of
core configuration objects and related processes for the application. In the second stage,
these objects are configured to meet the specific processing requirements of a given
installation/client. In the third stage, the client may utilize the application by performing any
required integration and subsequently passing related information through the application for
ongoing processing, analysis, adjustment, and reporting.

Some examples of business functions that may utilize the disclosed object architecture
are data reconciliation and data quality management, position keeping and inventory

management, risk management and/or the like. The object architecture supports these

10

WO 01/80054 PCT/US01/11961

business functions by providing independent applications for each of the given business
functions. In other words, each of the applications may be an adaptation of the architecture’s
core configuration objects, processes, and concepts. Throughout the remainder of the
document data reconciliation and data quality management are referred to interchangeably. It
is to be understood that the term “application” is used to indicate an embodiment of the object
architecture disclosed and claimed herein.

In accordance with the present invention, the object architecture is described in
greater detail with the exemplary embodiment of a reconciliation manager for automating the
processes of identifying, managing, and correcting data inconsistencies in an organization’s
computer systems. While the detailed description discusses the particular example of a
reconciliation manager, it shoﬁld be noted that the scope of the present invention is not to be
limited to the embodiment of a reconciliation manager, but instead covers any and all
embodiments within the scope of the object architecture disclosed and claimed herein.

The exemplary embodiment is a system, method and apparatus for reconciling data
from a plurality of different computer systems internal or external to an organization for
maintaining integrity thereof.

In a nutshell, the exemplary embodiment of the present invention is a system, method
and apparatus for automating and centralizing the data reconciliation process across any
number of data systems of an organization, which may be located internally or externally
thereto. Data reconciliation is the process of ensuring that duplicate business data, which
resides in different systems or éub-systems across an organization and is generally updated
through complex sets of manual or automated processes, remains consistent between the
various systems connected by the reconciliation application of the present invention.

This process of reconciliation generally involves the key steps of gathering related

information from different source systems, matching the appropriate records together,

11

WO 01/80054 PCT/US01/11961

comparing the detailed data elements of these matched records, determining which elements
and records are in error, and then, specifying and applying required corrections back to
related source systems.

The present invention is unique in that it enables an organization to create one central
data integrity control and integration process for each particular class of information across
their entire organization, such as for their clients, accounts, inventory and/or the like. Using
the application’s different integration facilities, such as the file based message feed, the direct
message based connection facilities, and/or the direct data source linking facilities,
information flows to and from the source systems/users and the reconciliation manager is
automated. Once the data integrity controls are structured and information flow is autémated,
an organization will regularly process its related information through the reconciliation
manager and use the application’s facilities to discover and correct any data inconsistencies
existing in the related source systems.

The system of the present invention, which may also be called reconciliation manager,
works through a onetime multi-step configuration process, as well as a set of ongoing post
configuration operational process. Initially, the configuration involves defining the data
sources and data elements of the organization. Next, the data source and data element
definitions are combined, through configuration, into the required reconciliation controls.
Finally, the flow of information is automated between the data sources and the system of the
present invention. Throughout the remainder of the document data source and source system
are referred to interchangeably. |

Once the configuration is complete, data is received or extracted by the reconciliation
manager. It should be noted that the data is received independently for each data integrity
control source-system pair. This data is then decomposed, matched, and reconciled based on

the application’s configuration. The product is then used to manage the process of

12

WO 01/80054 PCT/US01/11961

determining the correct action for data inconsistencies and returning, or applying the
correction back to the originating source systems.

With reference to the figures, various embodiments of the present invention will now
be described in greater detail. It is to be understood that the tasks shown in the figures and
described in this description can be sequenced in many different orders to achieve the desired
result. The order or sequence of tasks illustrated in the figures is merely intended to be
exemplary of the concepts defined herein.

Figure. 1 provides a high-level overview of the sample objects in the object
architecture in accordance with the present invention. The first segment 100 represents a set
of general in-memory configuration object, which comprises a client object that defines the
individual clients that interface with the application. Related to these client objects, the
application may also contain sets of user and user related objects, such as user accounts.

The second segment 105 represents a set-of reference library or reference-library-
related in-memory objects. The reference library is a set of application components which
provide flexibility to the architecture by enabling the changing of details of the manner in
which processes are performed and the data on which these processes are performed through
configuration. The reference library is to be understood to mean the combination of data
definition objects and business process configuration objects. The data definition objects
define in detail the data and data sources external to the application, and where the business
process configuration objects direct the business process in conjunction with the data
definition objects. It is to be understood that the term “application” is used to indicate an
embodiment of the object architecture disclosed and claimed herein. '

These reference library objects 105 are used by applications of the architecture to
support the user configuration features of related applications and to control the processing

and object creation/management functions of a given application for performing its related

13

WO 01/80054 PCT/US01/11961

business tasks after configuration. Also related to the client objects, the reference library
objects may contain details on the individual client’s available data sources and their related
data fields. Further, related to the client information and particular to the reconciliation
embodiment’s usage of the present architecture, the reference library objects may contain sets
of reconciliation definition objects and their related reconciliation configuration detail.
Additional embodiments may also contain sets of business function related reference library
obj ecté. These other business objects may vary in detail from the reconciliation definition and
configuration objects represented here. However, business objects will consistently function
in a similar manner, providing business process control and flexibility within the related
application embodiment of the architecture.

The second segment 120 of the diagram shows some of the automated data
entry/integration facilities. These data integration facilities 120 are used by the architecture’s
applications to support the automated flow of business related data to and from the individual
data sources fo£ related clients. As can be seen by this representation, the structure generally
contains some interface to client/source systems, which are external to the architecture and its
related applications, but may be interfaced using a variety of facilities such as file or record
handlers, direct message based connections into the architecture or, direct database level
connections into the architecture. Using the connection facilities, data is pushed or pulled
from the client systems and fed for processing through initial application decomposition and
validation functions. These decomposition and validation processes utilize the reference
library information in performing their individual functions and when complete, pass the
related information or resulting business objects on for further processing within a given
application of the architecture.

The third segment 130 of the diagram represents some of business-related processes

or objects, which may be constructed utilizing the architecture to perform a given business

14

WO 01/80054 PCT/US01/11961

function. The information shown in 130 relates to the reconciliation embodiment of the
present invention and depicts a business process for matching the data arriving through the
data integration facilities 120. The example also depicts the matching engines process for
creating sets of related memory objects, data objects, display objects and report objects, based
on the information it is receiving and the information contained in the related reference
library objects. Data objects are also referred to as data storage objects in this application.
This matching process 130 is representative of how the many processes of each of the set of
processes required for any of the given application’s of the architecture are constructed to
utilize information flow, existing system objects, and reference library detail to achieve their
individual business functions in a flexible manner. In matching engine 130, memory objects
refer to the total set of in-memory objects in the architecture which includes both in-memory
representations of the data objects, reference library objects, general configuration objects
and/or the like.

The fourth and final segment 140 of the diagram represents some of the features
which may be available through the user interface of any of the architecture’s individual
applications.

These user interface features 140 are utilized to provide a dynamic interface for users to
retrieve, display, and update related business object and reference library information. The
interface may also provide general features for exporting related business object or process
data back to data sources or individuals in any number of different formats. In addition the
interface may provide any range or reporting features for the related data. All of these related
features are built on top of the individual application’s reference library structure and utilize
this object structure to maintain flexibility in how they display and manage the related classes

of business information for each of the applications.

15

WO 01/80054 PCT/US01/11961

Figure 2 describes the process of adapting the object architecture to create a new
software solution for automating a given business process. This process of adaptation begins
at step 201 in which the high-level processing requirements of the selected function(s) are
defined. For one embodiment in which data is reconciled, some high-level business
processes may include matching data records from different source systems based on a
specified reconciliation designator and based on data contained in a user defined set of fields
which when processed creates an individual match string, defining for aﬁy matched group of
records which individual values are compared and also specifying how data elements are
combined from individual data récords to compute the related values.

In looking at a position keeping/inventory management embodiment, some high-level
processes may include the ability to create a number of inventory tracking structures
including a primary inventory classification and for each primary class any number of sub-
classifications, and the ability to specify by data source which data elements are used to
compute the mapping of information from the related source system to the application’s
inventory tracking structure down to a sub-classification level. This function may also
include the ability to specify data transformation details for mapping inventory classifications
between the application and the individual source system.

With the process of adapting the object architecture complete, the architecture’s
reference library functionality is examined for possible modification and/or enhancement in
202. The architecture’s reference library may include a standard set of data abstraction,
ﬁanslaﬁon, and transformation services. The data definition object may include the ability to
define the available data sources within an organization through user specified source system
identifiers. The data definition object may also comprise the ability to specify the individual
data elements available for each of the different source systems where the information may

include the identifier, type, and format of the related data, the ability to load the related

16

WO 01/80054 PCT/US01/11961

information in an automated or semi-automated fashion with the assistance of a data
dictionary within the organization, the ability to specify for each data source a related
database to use during the automated exiraction of information from that system, and the
ability to specify for each user-defined field identifier a related database field identifier as
shown in box 202.

Once the reference library has been completed, the system’s business configuration
- objects (also referred to as business process configuration objects), data storage objects, and
user interface objects are designed in step 203. Business configuration objects are used in
conjunction with the architectures data abstraction facilities to direct the individual business
processes on how to perform their related business functions. One example of this type of
object is the reconciliation key field oﬁj ect 1381, which allows the user to specify the system
field objects 1311 from the data abstraction facilities that are used to compute the value of the
match key string for the given data record. This set of related business configuration objects
then works in conjunction with the build key process 3700 to provide the embodiment’s
ability to create any match key structure for a given réconciliation system.

Another example relates to an inventory management embodiment, and is the
inventory classification map object, which allows a user to select the system field objects
1311 from the data abstraction facility. The system field objects 1311 are used to create the
map key for targeting data from an individual source system to an inventory sub
classification. The build classification map key process uses these related configuration
objects to create map keys for transactions, as they are processes through the related
application. ‘

Once the set of required configuration objects has been created, the process moves to
the step of defining and creating the individual data storage objects for supporting the

application. Data storage objects are used by the infrastructure to preserve the data extracted

17

WO 01/80054 PCT/US01/11961

or submitted from the various source systems in a state that indicate the results of the
processes executed on that data. When these data storage objects are used in conjunction
with the configuration objects and related processes, they deliver the required processing
capability in a manner that supports the related application’s flexibility. One example of this
type of object from the reconciliation embodiment is the data group object 1661. This object
is used to store the individual data groups created for each reconciliation and unique match
key pair. The data storage objects when used in conjunction with related objects and
processes forms the basis for preserving the mapping of individual data records into related
grouping for further comparison and processing. A similar type of data storage object could
be used in inventory management system, in which case the object would preserve the
records of exactly which data transaction objects had been used to create a balance for a
specific inventory sub classification.

After the set of object definitions has been completed, the process may move to
completing the new application’s user interface. In this regard, the infrastructure provides a
standard structure or methodology for delivering a dynamic web base user interface. Using
user interface templates, which are explained with respect to the reconciliation embodiment,
in conjunction with the knowledge of processing requirements, data abstraction facilities,
business process cqnﬁguration and data storage objects, the application’s user interface can
be created. This process may involve creating individual sets of screens for functions such as
process management, data management, date extraction, and/or data reporting.

With these primary structures complete, the system’s processes are constructed to
deliver the required functionality in the flexible nature dictated by the overall architectural
design. In this regard, many of the core processes that are built in step 204 are reused by the
different application embodiments of the architecture, without any significant changes. Some

of these reusable processes may include the system and system field definition processes that

18

WO 01/80054 PCT/US01/11961

are shown infigures 23 and 24, the data integration processes that are shown in figures 46-48,
and all related security, user, and client process that are shown in figures 51-52. After step
204, the present system is complete and is ready to be adapted through configuration for use
within a given client’s environment.

Figure 3 shows the steps required for configuring the architecture’s related
applications for use specifically within their organization’s computing environment. In step
301, the user gains access to the applications configuration facilities provided through the
web-based screens of the system. Once access has been provided, the configuration process
of creating reference library information for the application’s data abstraction layer (also
referred to as data definition object(s)) begins, which is almost identical for each of the
embodiments described herein. In cases where organizations utilize the architecture to
deliver multiple systems, the ability to share or copy the related reference library information
between applications is provided, as shown in box 302. In step 303, the user configures the
related business process configuration objects of the application. This process is generally
unique to the individual application, except for the data link definition process. A data link
definition enables the application to automatically retrieve data for defined business objects
from external source systems linked at a database level directly to the application’s of the
architecture. In the data link definition process, a user may specify a table or a view to
receive related data for the given business object/process. Where the object architecture of
present invention is used for data reconciliation, some business process configuration steps
may include the creation of individual reconciliations; and, then for each reconciliation,
indicating which source systems participate in that reconciliation. The remainder of the
configuration steps, required for the reconciliation embodiment, are described in further

detail below.

19

WO 01/80054 PCT/US01/11961

For the inventory management embodiment, the business process configuration may
include creating the inventory tracking classifications, creating the mapping objects for
directing transactions from specific source systems to individual book structures, and creating
a definition of the products or instruments to be tracked, in 303.

Once the application’s processing has been configured, the architecture can support
the automated integration of data flow with source systems in a number of ways. First, if
message based integration is required, the application uses the business object configuration
information and accompanying data transformation layer information to create XML based
record layout templates for each of the sources and their related business objects. Developers
can then use these templates to format data records which will flow from the source systems
into the application hub from either the direct message based integration process that is
described in figure 46 or the file based integration process that is described in figure 48.
Alternatively, if the direct data source link based data integration is used, data is extracted for
related business objects directly from the linked data sources on a schedule or at the request
of auser. This extraction process is supported directly through the architecture’s
infrastructure without any message coding being required, in step 304. With integration
complete, the application configuration process ends and the client is ready to move into
production use of the application, as shown in box 305.

It should be noted, according to one embodiment, it is possible to just configure the
business process configuration objects, where the data abstraction layer has been hard-coded
into the architecture’s related application, within the scope of the present invention.
Alternately, it is possible to just configure the data abstraction layer, where the business
process configuration objects has been hard-coded into the architecture’s related application,

within the scope of the present invention.

20

WO 01/80054 PCT/US01/11961

With integration completed, the application configuration process ends and the client
is ready to move into production use of the application, as shown in box 305.

Figure 4 describes the steps supporting the ongoing receipt and/or extraction of data
and the data’s submission for initial processing. In general, these events can happen on any
schedule, based on the operational requirements of the individual application installation or
its particular business objects. The process can begin in several ways, utilizing any
combination of the architecture’s data integration facilities. These integration facilities
include the following embodiments. First, the ability for source systems to submit data
messages for processing using the architecture’s direct connect ENTERPRISE JAVABEANS
(EJB) message based link. Second, the ability for source systems to submit data messages in
message based files that are transferred either manually or automatically onto a predefined
directory on the application’s server or uploaded to this same directory manually through the
application’s user interface. Third, the ability for the data extraction process to attach to a
defined table or data view in a source system database and extract information related to a
given business object, and/or the like.

In step 401, after extraction, information is formatted and passed on for further
processing. During this receipt and/or extraction process, the required content and format of
the individual data messages is governed by the combination of the data abstractien layer
objects and business process configuration objects.

After receiving the individual data message in step 402, the core architecture
processes are used to work with the abstraction layer objects as well as the configuration
object to validate the individual data elements of the related message, and tc; transform the
message’s data into the related data objects which are used for further processing. In most
cases, the receipt of data Mgéers sets of core processes on the related data objects. This can

be seen with respect to the reconciliation embodiment, which upon receiving a data message

21

WO 01/80054 PCT/US01/11961

decomposes and validates the message and passes the resulting reconciliation item object
1701 on for matching and potentially reconciliation, in step 403. These processes can occur
continuously throughout operation. However, once data processing is completed, for related
sets of data the system generally moves the data to the next phase of application processing,
which is described below.

Figure 5 describes the process of a user interacting with the applications facilities to
review the business data, perform additional processing on the related data, adjust or modify
the data, and report or communicate any required status information regarding the data.
These facilities are provided to users through the applications web-based interface, in 501.
The system may provide a screen or sets of screens for retrieving the related business data
grouped, organized, and/or filtered by the status of one of the primary data storage objects.
This embodiment is demonstrated in detail within the context of a data reconciliation system
where data records are displayed in relation to their related data group object 1641. The
system provides facilities for filtering the related information on fields such as business data,
system date, and data group state in 502. From the applications’ daté review screens, the user
can trigger a number of system related processes on the data being viewed. For example, in
the case of the reconciliation embodiment, a user may select individual data groups and
perform tasks such as manually closing the group or re-reconciling the group.

Another functionality for the reconciliation embodiment includes the ability to
manually start the reconciliation process for a selected reconciliation object in 503. A user
may manually adjust related business data and subsequently pass this data for reporting or
other processing. According to one embodiment, these features may be supported through
the application’s web interface, and, in the case of the reconciliation embodiment may be
seen in the users’ ability to specify correction values for individual data breaks that arise

through the reconciliation process in 504.

22

WO 01/80054 PCT/US01/11961

Once the data review and adjustment process has been completed, the user may use
the application facilities to either manually or automatically communicate results or
correction information back to individual data sources or source system owners. The
information may be communicated using extracts, reports, emails containing EXCEL or
HTML-based information, and/or the like. The creation and or transmission Qf this
information may be automated or can be performed manually. According to another
embodiment, users may apply correction and status information updates to sources systems
tables as indicated in the data abstraction layer and the business object configuration process
in 505.

Figures 6a-6b describe an operational view of the architecture’s reconciliation
embodiment referred to as Reconciliation Manager. These figures illustrate the application’s
configuration and operation processes that are initially disclosed in figures 7-9, and
subsequently expanded upon in figures 10-56.

Figure 6a illustrates the business view of the steps required to configure and operate
the Reconciliation Manager. The figure outlines first the key step of analysis, where an
organization’s data and system structures are examined to determine the duplicate business
data that may exist, the reconciliation controls required, and the precise details of the
individual controls. Second, the application configuration steps are outlined where data
sources and data fields are defined, integrity controls/reconciliation are created combining
these data sources and data fields as required by the analysis, and data flow to and from the
Reconciliation Manager is integrated with the required source systems. Third, the operational
steps are outlined where, data is regularly received, processed, and reconciled from the
various source systems and subsequently acted on by users through the Reconciliation
Manager’s use;' interface to generate details such as corrections, reports, and status updates

back to individual source systems and users.

23

WO 01/80054 PCT/US01/11961

Figure 6b represents the logical flow of data related to the Reconciliation Manager
during its operational phase. As shown here, data requiring reconciliation regularly flows into
the Reconciliation Manager from the various client source systems as depicted by the sales
system, inventory system, accounting system, and billing system. Once received/extracted
this data is processed by the Reconciliation Manager for performing related tasks such as data
decomposition, validation, matching, and reconciliation. Once processed data is available,
users and system processes may use the applications facilities to generate information such as
status reports, data extracts, and data correction related to individual reconciliations and
source systems. As depicted in the diagram, this correction or status information can flow
back to the various source systems either automatically or through user interaction.

Figure 7 shows the process of configuring and using a given application, utilizing the
reconciliation manager as an exemplary embodiment. After the user connects to the system
through the application’s web based interface in 701, the user may use the application
reference library configuration screen as well as the architecture’s automated data dictionary
facilities to define the identifiers for each of the different source systems of the organization
in step 702. Then, using the same set of screens and potéritially the architectures automated
data dictionary facilities, the user may define the field identifier of the individual data
elements available from each of the systems and for each of these specify a related data type
and data format in 703.

Once the source systems and system fields are available, the various reconciliation
definitions can be created. For a reconciliation, a user specifies the source systems that
contribute data to the reconciliation, the data elements used in matching records between the
reconciliation’s systems, the individual data comparison points of the reconciliation, the data
fields from each system used to construct the values for given points and the method ih which

the related fields are combined, the information element tied to the records from each of the

24

WO 01/80054 PCT/US01/11961

systems, how and where the correction information is applied to the individual source
systems, and finally the archiving strategy used to transfer data from the live tables to the
applications online archive. These selections and specifications involve selecting information
from the previously constructed data abstraction layer details and these steps complete the
process of tying configuration objects, data abstraction layer objects, and system processes
together, thereby enabling the application to perform its reconciliation functions on the
related data in 704.

Once the overall configuration step is complete, the data flow integration process can
begin in 705. In the reconciliation application, data record transmission is organized by the
reconciliation and source system pair. Each of the different source systems of a given
reconciliation is expected to provide independent sets of data records for the given
reconciliation source system pair. The data records can be submitted for processing using any
of the related data integration facilities. In constructing the integration templates in step 705,
the system utilizes fixed header definition information for the client and combines the
reconciliation and systems definition information for producing a complete set of XML based
field and field format descriptors for the information required in each data record. The field
format description may include a unique list of key, data, and information field identifiers.

Figure 8 details the reconciliation manager’s operational steps, supporting the
ongoing receipt and/or extraction of data and its submission for initial processing, and
parallels the steps initially discussed with regards to figure 4. This process begins with data
receipt and extraction in 801. In this embodiment, the schedule of the information flow may
be driven by the characteristics of the individual reconciliation. As before, any of the
architectures integration facilities can be utilized. After the data receipt, the decomposition
process begins with the validation of header information, such as client identifier,

reconciliation identifier, and system identifier of the individual record. Once the validation

25

WO 01/80054 PCT/US01/11961

of header information is complete, the match key string is created based on key field objects
defined for the underlying reconciliation system. Next, the data comparison structure is
interpreted and the individual data comparison values are computed and stored in related data
storage objects in step 802. The next step in decomposition is the processing of the
information field objects against the data provided, and creating the related information data
storage objects in step 802. Next, this new item is passed on for matching the processes,
which groups the item with existing data in the system and subsequently. Then, if the
resulting data group is completely matched and the reconciliation is structured to reconcile
data real time, the data group is passed to the reconciliation process in step 803.

Figure 9 details the reconciliation manager’s user interaction steps and parallels the
steps initially detailed in figure 5. These facilities are provided to users through the
application’s web based interface in 901. The system includes screens for retrieving and
working with the processed data in the system. The data in this set of screens is grouped,
organized, and filtered by the data group object 1661 in addition to the status information
available on that object. Other facilities here may include the ability to apply business date,
system date, and comparison level filters in 902.

From the data review screens, the user can select individual data groups and perform
tasks such as manually closing the group or re-reconciling the group. In addition, the user
may manually start the reconciliation process for a reconciliation currently being viewed in
903. The screen provides functionality for users to specify correction values for individual
data breaks and, to use this information for further processing in the reporting process in 904.
Once the c{ata review and adjustment process is complete, the user may use application
facilities to either manually or automatically communicate the results or correction

information back to individual data sources or source systems, organized by reconciliation,

system, and information status type 905.

26

WO 01/80054 PCT/US01/11961

Figure 10 depicts one embodiment of the object model for the primary in-memory
objects of the Reconciliation Manager system. The figure shows the hierarchical nature of
these objects, and the manner in which the objects are accessed and used for processing. The
objects are segmented into four different groups to represent ownership and the parent-child
relationships. In this object model, a parent object such as client 1211 can have many child
objects such as users 1231, which can again have many child objects such as user security
role 1241. In order to preserve these parent-child relationships throughout the system,
primary details of a parent object are included in the related child objects. For example, the
field of client identifier will be replicated on all user objects 1231, because the user objects
1231 are children of the given client object 1211. These reproduced fields may have values
that originate directly from the immediate parent object. In managing the child objects, the
system provides a set of methods for creating, deleting, retrieving, listing and/or the like for
each type of the object. These methods are located in a child object’s immediate parent
object. In most cases, access to a particular type of child object is allowed through its parent
object and its related methods. These objects will be further discussed below.

Figure 11 lists the application’s user interface adapter programs. These adapter
programs are used to deliver the system’s advanced web based user interface comprising the
set of display and report objects.

Adapter programs are organized on the related list in sets with each set generally
having the following components. First, a main control window adapter program, which
manages the format of the main window for the given area of functionality, provides the
menu structure for the area of functionality, contains any required sub windows linked to
related adapter programs, and provides access to any related functions. Second, sub-window
adapter programs, which provide access to a subset of the given function’s related objects,

which contain the logic for initiating business functions on these objects and contain the logic

27

WO 01/80054 PCT/US01/11961

for extracting and displaying the information displayed in the objects. In the present
embodiment, the names of these adapter programs begin with “rh”, followed by the common
name of the control adapter and then a further descriptor. Third, related object
addition/modification forms that are used to gather user input to add or modify related
objects. The object addition/modification forms may be called from the control window,
gather the related information, validate the existence of user inputs, then call back to the
related sub form or forms with the information and an indicator as to which function to
perform. In the present embodiment, these object addition/modification forms use names
which are the same as the related sub windows except that they end in “addform.jsp”.
Fourth, related processing forms, which are used to start and monitor the execution of a
variety of system processes initiated from the user interface. These processing form adapter
programs may not contain sophisticated display logic and can be associated with either a
control window or a sub window. These adapters generally have names ending in “proc.jsp”.

Item 1101, rhdisclaimform.jsp, provides the legal disclaimers. Item 1102, rhlogin.jsp,
provides the display logic, validation logic, and session initiation logic for managing the user
login process. Item 1103, rhmain jsp, contains the main window control logic, and provides a
menu structure allowing access to the system’s other functionality. Item 1104,
rhmainprocform.jsp, supports the main windows exit process.

Items 1105 through 1111 provide a set of functionality related to the application’s
client information object. Item 1105 provides the main control window for accessing this
functionality. Item 1106 provides a sub windéws interface for displaying and applying
updates to primary details such as client name and header details. Item 1107 provides a sub
window interface for displaying and applying updates to secondary client infoﬁnation such as
input direcfories and output directories. Item 1108 provides an addition/modification

interface for changing the client name. Item 1109 provides an addition/modification interface

28

WO 01/80054 PCT/US01/11961

for changing the client header details. Item 1110 provides an addition/modification interface
for changing the client iﬁput directories. Item 1111 provides an addition/modification
interface for changing the client output directories. |

Items 1112 through 1116 provide the set of functionality related to the application’s
user and user security information. Item 1112 provides the main control window for
accessing this functionality. Item 1113 provides a sub windows interface for displaying and
applying updates to primary user information such as user idenﬁﬁer and password. Item
1114 provides a sub window interface for displaying and applying updates to user
preferepces such as date format. Item 1115 provides an addition/modification interface for
adding users and changing existing users passwords. Item 1116 provides a sub window
interface for displaying and capturing/applying updates to the users security role
configuration.

Items 1117 through 1121 provide the set of functionality related to the application’s
source system and system field information. Item 1117 provides the main control window
for accessing this functionality. Item 1118 provides a sub windows interface for displaying
and applying updates to system definition information such as system identifier and system
- name. Item 1119 provides an addition/modification interface for adding system definitions.
Item 1120 provides a sub windows interface for displaying and applying updates to system
field information such as field identifier and field type. Item 1121 provides an
addition/modification interface for adding system fields.

Items 1122 through 1138 provide the set of functionality related to the application’s
reconciliation definition information. Item 1122 provides the main control window for
accessing this functionality. Item 1123 provides support for the reconciliation definition
extract process. Item 1124 provides a sub windows interface for displaying and applying

updates to primary reconciliation information such as reconciliation identifier and

29

WO 01/80054 PCT/US01/11961

reconciliation description. Item 1125 provides an addition/modification interface for adding
reconciliation objects. Item 1126 provides a sub windows interface for displaying and
applying updates to reconciliation system information. Item 1127 provides an
addition/modification intefface for adding reconciliation system objects. Item 1128 provides
a sub windows interface for displaying and applying updates to reconciliation key field
information. Item 1129 provides an addition/modification interface for adding reconciliation
key field objects. Item 1130 provides a sub windows interface for displaying and applying
updates to reconciliation, data compare, and data field, information. Item 1131 provides an
addition/modification interface for adding or modifying data compare information such as
description, ignore case, and ignore space settings. Item 1132 provides an

_addition/modification interface for adding reconciliation data field objects. Item 1133
provides a sub windows interface for displaying and applying updates to reconciliation
information field information. Item 1134 provides an addition/modification interface for
adding reconciliation information field objects. Ttem 1135 provides a sub windows interface
for displaying and applying updates to archive move control and archive move status
information. Item 1136 provides an addition/modification interface for adding archive move
control objects. Item 1137 provides an addition/modification interface for adding archive
move status objects.. Item 1138 provides a sub windows interface for displaying, capturing,
and applying updates to secondary reconciliation informétion such as ignore space, ignore
case, and reconcile real-time settings.

Items 1139 through 1145 provide the set of functionality related to the application’s
reconciliation data and data manipulation functionality. Item 1139 provides the main control
window for accessing this functionality. Item 1140 provides support for the batch
reconciliation process. Item 1141 provides a sub windows interface for displaying and

applying lipdates to data group and related information such as reconciliation items. Item

30

WO 01/80054 PCT/US01/11961

1142 provides a processing interface for supporting manually initiated data group processes
such as close group and reset group. Item 1143 provides a popup window interface for
display further data group details and related information such as item compare element
details. Item 1144 provides a popup window interface for selecting and then applying field
level filters to the active sub window 1141. Item 1145 provides a sub windows interface for
displaying status information related to the active sub window 1141.

Jtems 1146 through 1150 provide the set of functionality related to the application’s
reconciliation data and data reporting functionality. Item 1146 provides the main control
window for accessing this functionality. Item 1147 a display template for the report
extraction process. Item 1148 provides a sub windows interface for displaying report
information for data groups and their related information such as reconciliation items. Item
1149 provides a popup window interface for selecting and then applying field level filters to
the active sub window provided by item 1148. Item 1150 provides a sub windows interface
for displaying status information related to the active sub window provided by item 1148.

Items 1151 through 1155 provide the set of functionality related to the application’s
archived data. Item 1151 provides the main control window for accessing this functionality.
Item 1152 provides a sub windows interface for displaying archive data information. Item
1153 provides support for the archive group’s restore process. Item 1154 provides a popup
window interface for display further archive data group details. Item 1155 provides a sub
windows interface for displaying status information related to the active sub window of item
1152. Ttems 1156 and 1157 provide utility level functionality for working with data
processing errors. Item 1156 provides the main control window for accessing this
functionality. Item 1157 provides a sub windows interface for displaying and modifying the

related error information.

31

WO 01/80054 PCT/US01/11961

Items 1158 through 1161 provide the set of functionality related to the application’s
file reader objects. Item 1158 provides the main control window for accessing this
functionality. Ttem 1159 provides a processing interface for starting and stopping individual
file readers as well as uploading data files for a specific reader. Item 1160 provides a sub
window interface for displaying and updating file reader information. Item 1161 provides an
addition/modification interface for adding file reader objects.

Items 1162 through 1164 provide the set of functionality related to the managing the
application’s archive processing. Item 1162 provides the main control window for accessing
this functionality. Item 1163 provides a processing interface for starting an archive process.
Item 1164 provides a sub window interface for displaying information related to the archive
move controls.

Items 1165 through 1170 provide the set of miscellaneous and shared functionality.
Item 1165 provides a popup windows interface for displaying information related to the
application’s version. Item 1166 provides a popup windows interface for displaying system
documentation information. Item 1167 provides a shared popup windows interface for
displaying and modifying context sensitive help information. Item 1168 provides a set of
shared java routines used by the adapter programs. Item 1169 provides a set of shared java
script routines used by the adapter programs. Item 1170 provides a set of shared user
interface formats used by the adapter programs.

Figure 12 shows a series of in-memory objects responsible for a set of basic
functionality within the system of the present invention. Object 1201 is the system’s base
object for tracking software installation identifier (installid) 1202 and version (version) 1203
of a particular installation of the Reconciliation Manager. The base object is the parent of all
client objects (client) 1211 and contains the access methods for these objects as referenced by

field 1204. The client 1211 represents the set of client detail objects, which are used to

32

WO 01/80054 PCT/US01/11961

manage information such as client identifier (client identifier) 1212 for the client object,
client name (clname) 1213, installation identifier (installid) 1214 that is repeated from its
parent obj‘ect, version number 1215 that is repeated from its parent object, client input
directory (clinputdir) 1216 and client output directory (cloutputdir) 1217 for receiving data
from and transferring data to a client’s machine, server input directory (srvinputdir) 1218 and
server output directory (srvoutputdir) 1219 used for reading data files from and sending data
files to a specific server location for the client, and header details (headerdtl) 1220 which
contains header information (in the form of a fixed string) required on all messages received
by the Reconciliation Manager from all source systems belonging to the particular client. It
should be noted that the source systems provide the data that is reconciled using the present
invention.

The client object is the parent object of, and contains the access methods for the
following set of user objects (user) 1221, system definitions (system definition) 1222,
reconciliation definitions (reconciliation) 1223, file readers (file reader) 1224 and/or the like.
The user object 1231 contains the basic information on users of the system. The system can
have a number of user objects, which are uniquely identified across all clients 1211 in the
system by the user identifier (userid) 1232. The user object contains fields for the user’s
password (userpw) 1233, client identifier 1234 that is inherited from its parent object, date
format (dateformat) 1235 for identifying the preferred data format of the user.

The user object is the parent object of, and contains the access methods for, the user’s
individual set of security role objects 1236. The user security role objects 1241 are used to
specify the level of access a particular user has been given for each of the system’s different
components or business functions. The user security role objects 1241 contain client
identifier 1242 and user identifier 1243 which each inherit directly from the parent object,

system component (syscomp) 1244 to identify the component which the access specification

33

WO 01/80054 PCT/US01/11961

applies to, and a no access indicator (none) 1245, a read only indicator (readonly) 1246, a
small modification deletion indicator (smmoddel) 1247, and a large modification indicator
(Igmoddel) 1248. Each of the indicators 1245-1248 indicate a specific type of access.
According to one embodiment, only one of these access types is specified for each of the
user’s system components and, the objects are unique with a given user having only one
object for each component. The system component object (system component) 1251 contains
a complete set of system components (syscomp) 1252. The system component object 1251
acts as a constraint on the syscomp identifiers 1252 used in both user security role 1241, and
the GUI item access requirements object 1261. The GUI item access requirement objects
defines the different business methods in the system which use security controls and for each
of these methods the type of access required to execute the method. These objects are
uniquely identified by the program body identifier (jspbodyid) 1262 and the action identifier
(itemid) 1263. Each object also contains a system component (syscomp) 1264 identifier
which determines which component of system’s functionality the action belong to and a
minimum access required (minaccsecreq) 1265 identifier which defines the minimum access
required to perform the related action.

Figure 13 represents some of the objects used to support Reconciliation Manager’s
reference library functionality. This complete set of reference library objects, as represented
in figures 13-15, provide the core of flexibility which enables the reconciliation application to
adapt its user interface, data storage, and processing structures to meet the goal of facilitating
reconciliation for any possible business information.

Object 1301 represents the system definition information (system definition) for the
various source systems of a particular client. A client may have any number of system
definition objects which are uniquely identified within the application by client identifier

1302 that is inherited from the parent object, and a system identifier (system identifier) 1303

34

WO 01/80054 PCT/US01/11961

that is either entered by the user or taken from the organization data dictionaries. The object
also contains system description (sysdesc) 1304 of the given.system, and a status indicator
(sysstatus) 1305 to specify whether the given system is currently active or suspended. Each
system object manages, and contains access methods for, its own set of system field object
1311 as represented by system field objects (system field) 1306.

The system field quect 1311 is used to define the individual data elements available
. for reconciliation from a given system. The system field object 1311 is uniquely identified in
the system by client identifier 1312 that is inherited from its parent object, system identifier
1313 that is inherited from its parent object, and the field identifier (field identifier) 1314 that
is entered by a user or derived from an organization’s data dictionary information. The object
also comprises a field type (fldtype) 1315 to identify the type of data expect in the field (i.e.
date, string, number and/or the like), and field format (fldformat) 1316 to specify formatting
characteristics of a given field, such as field date of format mm/dd/yyyy, and/or the like. The
typing and formatting of individual fields allows the Reconciliation Manager to perform
intelligent translation of data into the common system supported formats for matching and
comparison. The set of system field type objects 1331 provides the set of available field
types supported by the system. Each of these objects contains a field type 1332 value, the
complete set of which controls the field type values which can be entered into filed type
1315.

According to one embodiment, the system also supports a wide set of different field
formats that the system can accept, organized by data type. Also, a mapping tool is provided
which can map the different data types that may be encountered in the organization’s data
dictionary into their related Reconciliation Manager format and type.

Object 1341 represents the definition and characteristics of a reconciliation

(reconciliation). The system can contain any number of reconciliation objects 1341, which

35

WO 01/80054 PCT/US01/11961

are identified uniquely in the application by client identifier 1342 that is inherited from its
parent object, and reconciliation identifier (recid) 1343, a string value entered by a user.
Reconciliation objects 1341 and their related child objects are used to bring together the
information defined in a client’s system definition objects 1301 and system field objects
1311. These set of reconciliation and related reconciliation configuration objects define
precisely how the application will receive, match, reconcile, and report on the data
originating from a clients various processing environments/source systems.

The reconciliation object 1341 contains a user entered description of the
reconciliation (recdesc) 1344, a system managed indicator which tracks the number of
systems participating in the individual reconciliation (noofsys) 1345, a system managed field
which indicates if the batch driven reconciliation 4process is currently running for the given
reconciliation (running) 1346, a system managed field which indicates if the last batch driven
reconciliation process has completed successfully (complete) 1347, a system managed field
which indicates the number of reconciliations performed during the last batch driven
reconciliation process (grpsprocessed) 1348, a system managed field which indicates the last
data identifier sequence number used by the reconciliation’s set of reconciliation data child
objects 1601 (lastdatid) 1349. The reconciliation object 1341 also comprises a user specified
setting which tells the system if it should reconcile data real-time as the matching process is
completed for individual data group or whether it should leave matched groups un-reconciled
pending batch driven reconcih'étion (recrealtime) 1350, a user indicated setting which
determine if new data items should be placed into existing reconciliation data group or if
these items should cause the system to create new groups as existing groups become
complete (groupreplace) 1351, a user indicated setting which determines how the system
treats the addition of data item to existing groups when using group replace (recordreplace)

1352. Ifthis record replace 1352 setting is true, then any new data items will be added to

36

WO 01/80054 PCT/US01/11961

data groups using the group replace methodology and if a data item exists in the group for the
given source system, this data item will be replaced by the new data item. However, if the
record replace 1352 setting is false, the new data will be placed in the data group either new
or existing along with ény existing data items of the same group. There exists a system
managed field , nooferrs 1353, that indicates the number of active processing errors that exist
for the reconciliation, a system managed field indicating the last date an error occurred for the
reconciliation (lasterrdate) 1354, a user specified setting which determines how the system
treats character case in constructing match key values for data records of the reconciliation
(ignkeycase) 1355, a user specified setting which determines how the system treats white
space in constructing match key values for data records of the reconciliation (ignkeyspace)
1356.

The reconciliation object manages, and contains access methods for sets of child
objects reconciliation system objects 1357, data comparison attribute objects 1358, archive
move control objects 1359, and reconciliation data objects 1360. The reconciliation system
objects 1371 are used to indicate to the application which system definition objects are part of
a given reconciliation. These objects are uniquely identified in the system using client
identifier 1372, inherited from the parent object, reconciliation identifier 1373 inherited from
the parent object, and system identifier 1374 which is selected by the user from the clients set
of available system definition objects 1301.

According to one embodiment, reconciliation system object 1371 also comprises
ignore space field (ignspace) 1375 and ignore case field (igncase) 1376 which are user
indicated settings for determining how the application manages character case and white
space for data originating from the particular system. The reconciliation system object 1371
manages, and contains access methods for reconciliation key fields 1377, reconciliation

system data compare objects 1378, and reconciliation information field objects 1379. The

37

WO 01/80054 PCT/US01/11961

reconciliation key field objects (reconciliation key field) 1381 allow users to configure, for
each system of a reconciliation, how the application combines the information provided on
individual data items into character based match strings which, are later used to match related
data items from the different system’s of a reconciliation into data groups for reconciliation.
Reconciliation key field objects 1381 are identified uniquely in the system by client identifier
1382 that is inherited from the parent object, reconciliation identifier 1383 that is inherited
from the parent object, system identifier 1384 that is inherited from the parent object, field
identifier 1385 that is selected by the user from the set of available field identifiers for the
clients given system. The object also includes a system managed field used to control the
order in which an individual set of key field objects is processed (keypos) 1386 and, a system
managed field inherited from the related system field object 1311 (fldtype) to indicate the
data type expected for information received for the given field identifier 1387.

Figure 14 contains additional objects which are part of the set of objects supporting
Reconciliation Manager’s reference library functionality. The data compare attribute (data
compare attrib) objects 1401 is a set of objects that control the individual processing
characteristics of each of the different data comparisons for an individual reconciliation.
According to one embodiment, a given reconciliation can have any number of comparisons
with each comparison utilizing exactly one data compare attribute object 1601. These data
compare attribute objects 1401 are core to providing the intelligence/processing
characteristics of a reconciliation’s individual data comparisons and, control precisely how
the application determines which data elements, from matched data items of each of the
different systems of a reconciliation, can be considered equal. The attribute objects 1401 are
uniquely identified in the system using a client identifier 1402 that is inherited from the

parent object, reconciliation identifier 1403 that is inherited from the parent object, compare

38

WO 01/80054 PCT/US01/11961

identifier (compare identifier) 1404 which is a system generated field that assigns a numeric
identifier to the individual comparison as it is created by the user.

The data compare attribute object 1401 also comprises a user entered description of
the individual comparison (cmpdesc) 1405, a user selected data type for the comparison
originating in the applications set of system field type objects 1331 (cmpdattype) 1406, a user
indicated setting which determines if white space characters are significant in the individual
data comparison (ignspace) 1407, a user indicated setting which determines if character case
is significant for the individual comparison (igncase) 1408, a user selected value which
determines the type of comparison (i.e. strictly equal, absolute value) (cmpemptype) 1409, a
user selected value originating from the set of reconciliation system objects 1371 for the
given reconciliation and determining which of the comparisons system’s to use in generating
auto correction values (cmpprmsysid) 1410, a user selected value indicating which type of
tolerance processing should apply to the comparison (cmptolprctype) 1411, a user provided
value indicating a numeric amount to apply to individual tolerance calculations (cmptolamnt)
1412. Using this group of tolerance settings, the Reconciliation Manager allows a user tp
differentiate types and levels of tolerance by user provided tolerance key values tied to the
different system field of a given reconciliation. This feature may enable a user to provide a
tolerance specification coupled to an individual field such as payment currency designator
(such as U.S. Dollars, Italian Lira) and then specify different tolerance types and levels based
on the value of the specified field. If, for instance, the payment is in U.S. Dollars the
tolerance could be 0.05 and if the payment where in Italian Lira, the tolerance could be
2,000.00. These tolerance amounts are used to determine whether values that are not exactly
the same can be considered equal for reconciliation purposes. The system also provides a
variety features for tracking and reporting on individual and cumulative amounts written off

due to tolerance processing.

39

WO 01/80054 PCT/US01/11961

The set of comparison type objects (comparison type) 1421 contains the different
comparison types supported by the system. This object/field controls the values which can be
entered into the comparison field (cmpemptype) 1409. The set of available tolerance
processing types objects (tolerance type) 1431 provides the available tolerance processing
options a user can select within the system. These values are stored in field (cmptolprctype)
1432. The reconciliation system data compare (reconciliation system data compare) 1441
objects define additional characteristics of the data comparison process for each system and
data comparison of a reconciliation. The reconciliation system data compare objects are
uniquely identified within the system using client identifier 1442, inherited from parent
object reconciliation system 1371, reconciliation identifier 1443, inherited from parent object
reconciliation system 1371, system identifier 1444, inherited from parent object
reconciliation system 1371, compare identifier 1445 that is inherited from the related data
compare attribute object 1401, ignore space 1446 that is inherited from the related data
compare attribute object 1401, compare data type 1447 that is inherited from the related data
compare attribute object 1401. In addition, according to one embodiment, a user selected
field that determines how the system will combine multiple values from the given system and
comparison into an ultimate value for reconciliation (cmpoprt) 1448 may be part of the
reconciliation system data compare objects. This cmpoprt value 1448 in conjunction with
data type 1447 will determine how the ultimate comparison value is derived. For example, a
numeric data type could use the average setting to compute an average value for all the fields
which are part of the particular comparison from the given system not clear return.

The reconciliation system data compare object 1441 manages and contains access
method for a set of related reconciliation data field objects 1449. The reconciliation data
field objects (reconciliation data field) 1471 are used to indicate to the application which

individual data fields are used to extract and derive comparison values from data records

40

WO 01/80054 PCT/US01/11961

which are sent to reconciliation manager from a given system for a given reconciliation.
Similar to other objects described above, these object 1471 are uniquely identified in the
application using client identifier 1472, reconciliation identifier 1473, system identifier 1474,
compare identifier 1475, and a field identifier 1476.

This object 1471 also contains a system managed field used to control the order in
which individual set of data field objects is processed (datpos) 1477, and a system managed
field inherited from the related system field object 1311 (fldtype) indicating the data type
expected for information received for the given field identifier 1478.

Figure 15 describes the third and final set of objects used in Reconciliaion Manager’s
reference library. The figure begins with the reconciliation information field object
(reconciliation information field) 1501, which is used to define information data for the given
reconciliation system 1371 which, once extracted from data records using the specified field
identifiers, is then used to tie the reconciliation correction and status information back to
related data records in the individual source systems, either manually or automatically. These
objects 1501 are uniquely identified within the application using client identifier 1502 that is
inherited from parent object 1371, reconciliation identifier 1503 that is inherited from parent
object 1371, system identifier 1504 that is inherited from parent object 1371, and a field '
identifier 1505 that is selected by the user from the set of available field identifiers for the
client’s given system. This object also comprises a system managed field used to control the
order in which individual set of data field objects are processed (infpos) 1506, and a system
managed field inherited from the related system field object 1311 (fldtype) indicating the data
type expected for information received for the given field identifier 1507.

. The archive move control object (archive move control) 1521 is used by the system to
manage the process of moving old or unused reconciliation data from the processing

environment into the system’s online archive. Using this object 1521, a user can define how

41

WO 01/80054 PCT/US01/11961

long a reconciliation’s data groups should remain in the system before being archived. The
object is uniquely defined in the system by client identifier 1522 that is inherited from parent
object 1341, and a reconciliation identifier 1523 that is inherited from parent object 1341.
The object also contains a user se]ec;ced setting which determine if data groups are selected
for archive based on the business date or the system date (datetype) 1524, a user specified
number which indicates the total number of days records will remain in the system before
they are archived (daysbfrarch) 1525, a system managed field which indicates the last date
the archive process was run for the given reconciliation (Istarchdate) 1526, a system managed
field indicating the number of data groups archived during the last completed archive process
run (numgrpsarch) 1527, a date which indicates the next date the system’s auto archive
process is scheduled to run (nxtschddate) 1528.

The archived move control 1521 also manages and contains access methods for the
related set of archive move status objects 1529. The archive move status object (archive
move status) 1541 controls which data groups are eligible for archive by preventing the
system from archiving groups which do not have a status type in the related set of archive
move status objects. These objects are uniquely identified in the system by client identifier
1542 that is inherited from the parent object, a reconciliation identifier 1543 that is inherited
from the parent object, and a value selected by the user from the set of available system group
status options (grpstat) 1544. The object also contains a description of the given status
inherited from the related group status type object (statdesc) 1545. The group status type
object (group status type) 1551 defines the set of available group status options for the
application. These object are uniquely identified by a fixed numeric status identifier (grpétat)
1552. The object also contains a fixed description of the status (statdesc) 1553. This object
provides the set of available options for selecting values for group status 1544 and status

description 1545.

42

WO 01/80054 PCT/US01/11961

Figure 16 contains a portion of the overall set of objects used to manage the storage
and processing of reconciliation data within the Reconciliation Manager. Objects in this
segment of the application are generally created as data items arrive into the Reconciliation
Manager for processing from the individual source systems for designated reconciliations.
System processes are used to receive this data then use the related reference library
information to interpret and process the data and produces new sets of related reconciliation
data objects. The ﬁfst object in this set is the reconciliation data object (reconciliation data)
1601, which is used to segment and manage data for a given client and reconciliation by
match key string. For example, a reconciliation could have data organized by a match key of
account identifier and if one particular account identifier was “1234567” then any non
archived data for this client, reconciliation, and account identifier would be accessible
through the related reconciliation data object 1601 and its related child objects. These
reconciliation data objects 1601 are uniquely identified within the system using client
identifier 1602, inherited from the parent object, reconciliation identifier 1603, inherited from
the parent object, and a key identifier 1604 which is computed for the related data item
during the decoml;osition process and then inherited from the reconciliation item’s match key
field 1710.

Other fields of this object are system managed fields indicating the latest business
date of data contained in the object’s child objects (Istbusdatupd) 1605 that is used to control
object selection for retrieval, é system managed field indicating the latest system date of data
contained in the object’s child objects (Istsysdatupd) 1606 that is used to control object
selection for retrieval. A system managed field indicating the number of systems which
participate in the given reconciliation (noofsys) 1607, a system managed field which is used
to generate sequence numbers for related data group child objects (lastgrpid) 1608, a system

managed field derived from the parent object as a sequence number for the reconciliation data

43

WO 01/80054 PCT/US01/11961

object of the reconciliation (datid) 1609. According to another embodiment, the
reconciliation data object 1601 also comprises a system managed field indicating the number
of child data group objects having a status of error (nooferrdatgrps) 1610, system managed
field indicating the number of child data group objects having a status of unmatched
(noofunmcheddatgrps) 1611, a system managed field indicating the number of child data
group objects having a status matched pending reconciliation (noofichpndrecdatgrps) 1612,
a system managed field indicating the number of child data group objects having a status
reconciled with data breaks (noofrcldwthbrkdatgrps) 1613, a system managed field indicating
the number of child data group objects having a status reconciled with no breaks
(noofrcldnobrkdatgrps) 1614, system managed field indicating the number of child data
group objects having a status of manually closed (noofmanclsddatgrps) 1615, a system
managed field indicating the number of child data group objects havinga status manually
ungrouped (noofmanungrpddatgrps) 1616. According to another embodiment, the
reconciliation data object 1601 also comprises a system managed field indicating the total
number of child data group objects (noofdatgrps) 1617.

The reconciliation data object 1601 also manages, and contains access method for the
following set of child objects, system match queue objects 1618, and data group objects
1619. System match queue object (system match queue) 1631 are used by the Reconciliation
Manager to segment the un-matched data groups of a clients reconciliation which are
awaiting data records from individual source system for a particular match key to complete
their individual match process. These system match queue objects 1631 and are identified
uniquely in the application using client identifier 1632 that is inherited from parent object,
reconciliation identifier 1633 that is inherited from parent object, key identifier 1634 that is
inherited from parent object, and system identifier 1635 that is inherited from a related

reconciliation system object 1371. A given system match queue object 1631 manages, and

44

WO 01/80054 PCT/US01/11961

provided access methods for its related group match queue objects 1636. Group match queue
objects (group match queue) 1641 are used to indicate and provide an ordered list of data
group objects which are awaiting information from a particular system to complete their
matching process. These group match queue objects 1641 are uniquely identified in the
application using client identifier 1642 that is inherited from parent object, a reconciliation |
identifier 1643 that is inherited from parent object, key identifier 1644 that is inherited from
parent object, system identifier 1645 that is inherited from the parent object, and a group
identifier 1646 that is inherited from the related data group object 1661. The data group
objects (data group object) 1661 are used by the application to combine data records from the
different systems for a given client, reconciliation, and key identifier combination into
grouped sets of information which are then used as a group for reconciliation, reporting and
various other system processes. These data group objects are uniquely identified in the
system using client identifier 1662 that is inherited from the parent object, reconciliation
identifier 1663 that is inherited from the parent object, key identifier 1664 that is inherited
from the parent object, and group identifier 1665 which is a unique sequence identifier
derived from the parent object’s last group identifier (LastGrpID) 1608, last business data
update (Istbusdatupd) 1666 that is inherited from the parent object, last system date update
(Istsysdatupd) 1667 that is inherited from the parent object, number of system’s unmatched
(noofsysunmch) 1668 which is a system managed field that indicates the number of systems
that remain to contribute data to the group before its match process is complete, group status
(grpstat) 1669 that is a system managed field indicating the status of the individual group,
absolute data group id (absdatgrpid) 1670 that is a system managed field which identifies the
data group absolutely with in the application’s set of data groups. This absolute data group
identifier is generated using the sequence generation object 1951, data group notes (notes)

1671 is provided as a field for capturing and reporting on user generated notes for the given

45

WO 01/80054 PCT/US01/11961

data group, data group has error (haserror) 1672 is a system managed field indicating if the
data group has a processing error, error message (errmessage) 1673, is a system managed
field which indicated a group’s any related processing error message if they exist. The data
group object 1661 manages and contains access methods for related data group compare child
objects 1674. Data group compare objects (data group compare object) 1691, are used by
reconciliation manager to store and report on the status on an individual data comparison for
the related data group parent object. The data group compare objects are identified uniquely
with in the application using an absolute data group identifier (absdatgrpid) 1692 that is
inherited from the parent object, and a compare identifier 1693 that is inherited from the
related data compare attribute object 1401. The object also contains compare status (cmpstat)
1694 that is derived through the application’s reconciliation process and, related to, limited
by, the application’s set of group status types 1551.

Figure 17 contains additional objects which support Reconciliation Manager’s data
storage and processing capabilities. The reconciliétion item objects (reconciliation item)
1701 are used by the application to store and manage the details of individual data records
originating from the different source systems. These objects are uniquely identified in the ’
aioplication using the item identifier (itemid), 1702 an application wide sequence number
generated by the sequence generation object 1951. These reconciliation item objects also
comprise a system managed field containing the actual text of the data record message
received 1703, a business date extracted by the application from the individual messages
header information (busdate) 1704, a system generated date indicating the date on the server
at the time the message is processed (sysdate) 1705. These reconciliation item objects also
comprise a client identifier 1706 which is a value contained in the message header that is
validated then inherited from the related client object 1211, a system identifier 1707 which is

a value contained in the message header that is validated then inherited from the related

46

WO 01/80054 PCT/US01/11961

reconciliation system object 1371, a reconciliation identifier 1708 which is a value contained
in the message header that is validated and then inherited from the related reconciliation
object 1341, a user identifier 1709 which is a value contained in the message header that is
validated then inherited from the related user object 1231, match key string (matchkey) 1710,
a value which is derived using the contents of the message and the set of reconciliation key
filed objects 1381 for the given reconciliation system.

This match key string 1710 is related to the key identifier as that value appears
throughout other objects in the system, group identifier 1711, a value which in conjunction
with client identifier, reconciliation identifier, and match key string indicates which data
group object 1661 the related reconciliation item 1701 belongs to, a system managed field
containing a numeric value indicating the status of the item (itemstat) 1712, a system
managed field indicating a textual abbreviaﬁon of the items status (matchstat) 1713, a system
managed field indicating the last successful process run against the item (lastproc) 1714, a
system managed indicator specifying if the item is in an error state (haserror) 1715, a system
managed field indicate a related error message for the item (errmsg) 1716, a system managed
field inherited from the related data group object 1661 and also indicating which data group
the item belongs to (absdatgrpid) 1717.

The reconciliation item obj ec;c manages, and contains the access method for the
related item information element objects 1718, and related item compare element objects
1719. Item information element objects (item information element) 1731 are used to store
the individual information reference values for a reconciliation item parent object 1701.
These item information element objects are uniquely ideﬁtiﬁed in the system using item
identifier 1732 that is inherited from the parent object, and field identifier 1733 which is a
value that is contained in the related message data that is validated then inherited from the

related reconciliation information field objects 1501.

47

WO 01/80054 PCT/US01/11961

The item information element also contains a field which holds the data for its
associated field identifier (flddatchar) 1734. This data is extracted from the related message
and placed in flddatchar 1734 as part of the message decomposition process. Item compare
element objects (item compare element) 1741 are used by Reconciliation Manager to store
and manage the derived comparison values for thé related reconciliation item parent object
1701. These item compare elements are uniquely identified in the system using item
identifier 1742 that is inherited from the parent object, and a compare identifier 1743 that is
inherifed from its related reconciliation system data compare object 1741. The object 1741
also contains a system derived value which indicates if a comparison value is expected for the
related reconciliation system data compare objects 1741 and reconciliation data field objects
1471 (cmpactive) 1744, the comparison’s data type (cmpdattype) 1745 that is inherited from
the related reconciliation system data compare objects 1441, a list of list of field identifiers
obtained from the related set of reconciliation data field objects 1471 used in computing the
value (cmpfldids) 1746, a field which stores a user generated correction value or note for the
individual comparison element value (cmprefval) 1747, a system generated string based
display version of individual compare value (cmpdispval) 1748, the system generated derived
character value for the comparison element (cmpvalchar) 1749 which is used only if
cmpdattype is “string”, the system generated derived numeric value for the comparison
element (cmpvalnumb) 1750 that is used only if cmpdattype is “number”, the system
generated derived date time value for the coniparison element (cmpvaldatetime) 1751 that is
used only if cmpdattype is “date”, a system generated string containing the data values which
went into computing the related derived value for the element (cmpfldvals) 1752, and a
system managed field containing a numeric status indicator for the individual status element

(cmpstat) 1753.

48

WO 01/80054 PCT/US01/11961

Figure 18 contains the archive data object (archive data) 1801, which is used to store
the archived version of individual data groups objects and the complete set of related data
objects. These objects 1801 are condensed into a system managed XML format for object or
set of object with, the complete set of related data for a particular data group being stored in
the archive data object as one individual object or record. These archive data group objects
are identified uniquely in the application be a unique system wide sequence number
generated by the sequence generation object 1951 (archgrpid) 1802.

The archive data object also contains a client identifier 1803, reconciliation identifier
1804, key identifier 1805 each inherited from the related data group object 1661, originél
group identifier (origgrpid) 1806 that is inherited from group identifier 1665, last business
date update (Istbusdatupd) 1807, lasts system date update (lstsysdatup;i) 1808, number of
system’s unmatched (noofsysunmched) 1809, group status (grpstat) 1810, wherein of these
fields is inherited from the related data group object 1661. The archive data object also
contains original absolute data group identifier (origabsgrpid) 1811 that is inherited from
absolute data group identifier (absdatgrpid) 1670, original data group notes (origgrpnotes)
1812 that is inherited from notes 1671, original data group has error (origgrphaserror) 1813
that is inherited from has error field (haserror) 1672, original data group error message
(origgrperrmessage) 1814 that is inherited from error message 1673, data group match quene
data (grpmchquedata) 1815 which is a system generated value containing a condensed
version of all of the data group objects related group match queue objects 1841, data group
comparison data (datgrpcmpdata) 1816 which is a system generated value containing a
condensed version of all of the data group objects related data group compare objects 1691,
reconciliation minimum business date (recitemminbusdate) 1817 which is a system generated
value containing the minimum business date of all related reconciliation items 1901,

reconciliation item maximum business date (recitemmaxbusdate) 2818 which is a system

49

WO 01/80054 PCT/US01/11961

generated value containing the maximum business date of all related reconciliation items
1901, reconciliation item minimum system date (recitemminsysdate) 1819 which is a system
generated value containing the minimum system date of all related reconciliation items 1901,
reconciliation item maximum system date (recitemmaxsysdate) 1820 which is a system
generated value containing the maximum system date of all related reconciliation items 1701, 4
reconciliation item original text (recitemorigtext) 1821 which is a system generated value
containing a condensed version of all of the data group objects related reconciliation item
objects 1701 related item fields 1703, reconciliation item data (recitemdata) 1822 which is a
system generated value containing a condensed version of all of the data group objects related
reconciliation item objects 1701, reconciliation item information element data
(reciteminflmntdata) 1823 which is a system generated value containing a condensed version
of all of the data group objects related reconciliation item objects 1701 related item
information element objects 1731, reconciliation item compare element data
(recitemcmplmntdata) 1824 which is a system generated value containing a condensed
version of all of the data group objects related reconciliation item objects 1901 related item
compare element objects 1741.

Figure 19 shows a file reader object (file reader) 1901 that is used by the application
to manage the reader processes for a given client. These reader processes are used to retrieve
data record files for the client from server and submit the reconciliation text massages
contained in these files to Reconciliation Manager for processing. The file reader objects are
uniquely identified in the system using client identifier 1902 that is inherited from the parent
object 1211, and the file reader identifier (frdrid) 1903 which is a system generated sequence
number for the individual file reader object. The object also contains a user enter value
specifying the directory location where a related reader process will look for files on the

application server (finputdir) 1904, a user enter value specifying the directory location where

50

WO 01/80054 PCT/US01/11961

a related reader process will generate output files on the application server (foutputdir) 1905,
a system managed field indicating if the associated reader process is currently active for the
file reader object (active) 1906, a system managed field indicating if the associated reader
process is currently in the process of shutting down for the file reader object (sdinprog) 1907,
and a system managed field indicating any error messages generated by an associated reader
process (errmsg) 1908.

The data processing errors objects (data processing error) 1921 are used by
Reconciliation Manager to report on, and manage related objects for, any processing errors
that occur in the application. Data processing error object are uniquely identified in the
system using error identifier (errid) 1922 which is a unique system wide sequence number
generated by the sequence generation object 1951. The data processing error obj ects also
contains error type identifier (errtype) 1923 which is a system generatéd numeric type
indicator for the error, error description field (errtypedesc) 1924 that is a system generated
description of the error, error date time (errdatetime) 1925 that is the system date time when
the error occurred, client identifier 1926 that is inherited from the object originating the error,
a reconciliation identifier 1927 that is inherited from the object originating the error, file
reader 1928 that is inherited from the file reader object 1901 on which the error occurred, the
name of the input message file containing the data record which caused the error (filename)
1929, a system generated description of the error (errtext) 1930, item identifier (itemid) 1931
that is inherited from the reconciliation item object 1701 which caused the error.

The sequence generation object (sequence generation) 1951 is an application wide
object which is used to produce incremental and unique sequence numbers for various type of
objects and object fields. These objects are identified uniquely by sequence name (seqname)
1952, where the system contains a predefined set of these objects and has related sequence

name (seqname) codes hard coded as part of the object creation process. The object also

51

WO 01/80054 PCT/US01/11961

contains (seqnumber) 1953 which hold the last sequence use for any of the given sequence
generation objects.

A context help object (context help) 1961 may be used by Reconciliation Manager to
provide a GUI item’s specific help information which is accessible and modifiable directly
though the application’s user interface. These objects are uniquely identified in the
application using c.lient identifier 1962 inherited from a related client object 1211, form
identifier (formid) 1963 that is derived from the form identifier for an associated adapter
program 1100, field identifier (fielded) 1964 which is a GUI item or function identifier for
the related adapter program, language identifier (languageid) 1965 which identifies the
language used for the help text. The object also contains original help text (orighelptext)
1966 that is the original system provided help text for the object, current help text
(currhelptext) 1967, which is the user modified version of help text for the object.

Figures 20-22 illustrate the application’s database tables, their primary index
stfucture, and their defined relation constraints. These database tables are used to store the
data for their related in memory object counterparts. In these? database tables, the system
creates one individual record for each of the related in memory objects. Primary key
structures for the individual tables map exactly to the primary key structures for the
individual in memory objects. The mapping of individual tables to related in memory objects
will be apparent from the table and object names where the table name is the same or, an
abbreviation of, the object name except for the related table’s préﬁx “rh”. For example, table
reconciliation manager base (rthbase) 2003 maps to in-memory object base 1201 and table
reconciliation manager client (rhel) 2101 maps to in-memory object client 1211.

Other points of interest in relation to the above mentioned figures includes the use of
relational table constraints and the method of persisting data between the objects and the

tables. Table constraints are used between the tables to ensure the continuous integrity of the

52

WO 01/80054 PCT/US01/11961

tables and related objects data. For example there exists a constraint between client table
(thel) 2101, and the file reader table (rhfilereader) 2103. This constrains the each record in
the file reader table 2103 contains a clid values which exists in the client table 2101. In terms
of persisting data between objects and tables this is achieved using industry standard
techniques supported by the EJB standard and the web server’s infrastructure.

Figure 23 provides a flow diagram of the Reconciliation Manager’s processes for
enabling the user to create definitions of source systems that exist in their company through
the application’s user interface. These systems may be used to construct individual
reconciliations and process the company's related data. This feature supports a link directly
to an organization’s data dictionaries for automated loading and selection of system
information. The create system process of figure 23 begins with a user selecting the
"Reference Library" menu option then selecting "Source Systems" menu option from the
main window interface 1103. This option calls adapter program rhclsysform 1117. Then,
selecting the “Add System” option provided by rhclsysform 1117 will call rhsysaddform
1119. Adapter program rhsysaddform 1119 presents the user With a screen for entering a
system identifier, a system description, and an optional data source identifier. After this
information is entered by the user and submitted we begin our processing with step 2301.
Adapter program rhsysaddform 1119 begins by checking the existence and length of the
system identifier and system description fields in 2302. If the information provided is valid,
in 2303, the adapter program rhsysaddform 1119 calls rhsysform 1118, retrieves the client
object 1211 from the existing user session in 2305. If the information entered is not complete
or correct, the caller is alerted and asked to fix the data provided in 2304. With the obtained
client object 1211, the adapter program calls the client object's 1211 add system (addsys)
method, passing as parameters the system identifier and the system description. Using the

client identifier 1212 from client object 1211 and the information provided, the add system

53

WO 01/80054 PCT/US01/11961

(addsys) method attempts to create a new system definition object 1301, in 2306. If the
system identifier provided is unique for the given client identifier then the system definition
object is created in 2307. However, if the system identifier is not unique or some other
unforeseen error occurs, the addition process is abandoned and the caller is notified in 2308.
If the object creation is successful then client identifier 1302 will be set to client identifier
1212 as part of the normal system process for creating the related child objects of a given
object though managed inheritance of values, system identifier 1303 will be set to the system
identifier provided as part of the process for user configuration of the system/processing
environment, sysdesc 1304 will be set to the description provided, the data source identifier
will be stored in related field of the object, and sysstatus 1305 will be set to true indicating
that the field is available for use in reconciliation. During this creation process, all leading
and trailing spaces are removed from the system identifier and system description in 2309.
Once the object creation process is complete the system creates a record for the object in
table rhsys 2007 and returns the object to the calling adapter program rhsysform 1118, in
2310. The adapter program then refreshes the user’s screen an(i display the information
entered in 2311.

Figure 24 illustrates the feature that allows a user to define through the application’s
interface the field identifiers/data elements of each of their organization’s systems. The
feature supports type specific data, such as dates, numbers, and strings. The typing of
individual fields enables Reconciliation Manager to perform intelligent comparisons of data
elements in different systems. Also provided is support for a range of ﬁeld formats as well as
links directly to an organization’s data dictionaries for automated loading and selection of
system field information.

The create system field process of figure 24 begins with a user selecting the

"Reference Library" menu option and then selecting "Source Systems" menu option in the

54

WO 01/80054 PCT/US01/11961

" main window interface 1103. This option' calls adapter program rhelsysform 1117. Then,
highlighting a system on the screen and selecting the “Add System Field” option provided by
rhelsysform 1117 will call rhsysfldaddform 1121. Adapter program rhsysfldaddform 1121
presents the user with a screen for entering a filed identifier, selecting a field type, and
selecting a field format. The list of field type options is retrieved by obtaining all field type
objects 1331 from the application. The field format options are retrieved in the same manner.
After this information is entered by the user and submitted, we begin our processing
with step in 2401. Adapter program rhsysfldaddform 1121 checks the existence and length of
the field identifier in 2402. If the provided field identifier is valid and the other information
is set properly, in 2403, adapter program rhsysfldaddform 1121 calls rhsysfldform 1120.
Receiving this call rhsysfldform 1120 retrieves the client object 1211 from the existing user
session and using the client object's get system (getsys) method retrieves the system
definition object 1301 for the selected system in 2405. If the information entered is not
complete or correct, the caller is alerted and asked to fix the data provided in 2404. With the
system definition object 1301, the adapter program calls the addsysfld method passing as
parameters the field identifier, type, and format and other related information. Using the
client identifier 1302 from system definition object 1301, the system identifier 1303 from
system definition object 1301, and the information provided, the addsysfld method attempts
to create a new system field object 1311, in 2406. If the provided field identifier is unique
within the given system definition object’s set of system field objects 1311 the system field
object 1311 is created in 2407. If the field identifier is not unique or some other unforeseen
error occurs the addition process is abandoned and the caller is notified in 2408. If the object
creation is successful then client identifier 1312 will be set to client identifier 1302, system

identifier 1313 will be set to system identifier 1303, field identifier 1314 will be set to the

55

WO 01/80054 PCT/US01/11961

field identifier provided, field type 1315 will be set to the field type selected, and field format
1316 will be set to the selected field format.

’ During the creation process, all leading and trailing spaces are removed from the
system identifier and field identifier in 2409. Once the object creation process is complete,
the system creates a record for the object in table rhsysfld 2008 and returns the object to the
calling adapter program rhsysfldform 1120. The adapter program then refreshes the user’s
screen and display the information entered in 2411.

Figure 25 shows the process to allow the user to create the individual reconciliation
control objects for their organization. This is the first step in the process of structuring data
controls that utilize the system and system filed information previously added to
Reconciliation Manager.

The create reconciliation definition process in figure 25 begins with a user selecting
the "Reference Library" menu option then selecting the "Reconciliations" menu option
presented by the main window interface 1103. Making these selections will call adapter
program rhelrecform 1122 and presents the user with an additional "Add Rec" menu option.
On making this selection, rhelrecform 1122 calls threcaddform 1125 and the add
reconciliation process begins. Adapter program r.hrecaddform 1125 presents the user with a
screen for entering a reconciliation identifier and a reconciliation description. After this
information is entered by the user and submitted we begin our processing with step 2501.
Adapter program rhrecaddform 1125 checks the existence and length of the reconciliation
identifier and reconciliation description fields in 2502. If the information provided is valid,
in 2503, adapter program rhaddrecform 1125 calls rhrecform 1124, which refrieves the client
object 1211 from the existing user session in 2505. If the information entered is not complete
or correct, the caller is alerted and asked to fix the data provided in 2504. With client object

the adapter program then calls the client object's 1211 addrec method passing as parameters

56

WO 01/80054 PCT/US01/11961

the reconciliation identifier and the reconciliation description. Using the client identifier
1212 from client object 1211 and the information provided, the addrec method attempts to
create a new reconciliation definition object 1341, in 2506. If the provided reconciliation
identifier is unique within the given client objects’ existing set of reconciliation objects 1341,
then the reconciliation definition object is created in 2507. However, if the reconciliation
identifier is not unique or some other unforeseen error occurs, the addition process is
abandoned and the caller is notified in 2508. If the object creation is successful, then client
identifier 1342 will be set to client identifier 1212, reconciliation identifier 1343 will be set to
the reconciliation identifier provided, reconciliation description 1343 will be set to the
description provided. All other variables 1345 through 1356 will be set to either 0", "null",
or "false", depending on the data type of the individual fields. The setting provided on object
creation for variables 1345 through 1356 are only temporary as the related values will be
set/modify during later system processes. During this creation process, all leading and

- trailing spaces are removed from both the reconciliation identifier and reconciliation
description in 2509.

Once the object creation process is complete, the system creates a record for the
object in table rhrec 2102 and returns the object to the calling adapter program rhrecform
1124, in 2510. The adapter program then refreshes the user’s screen and display the
information entered in 2511.

Figure 26 illustrates the process where a user indicates which systems from their
organization will participate and submit data for an individual reconciliation. The
reconciliation manager supports many way (i.e., n-way) matching, allowing any number of
systems to participate in a given reconciliation. A given system can also participate in any
number of reconciliations. Also available is the option to specify if source data is retrieved

and updated in the related data sources and corresponding tables and views directly.

57

WO 01/80054 PCT/US01/11961

The process begins with a user selecting the “Reference Library” menu option, then
selecting the "Reconciliations" menu option, presented by the main window interface 1303.
Making this selection calls adapter program rhelrecform 1122 which present the user with a
second screen. On this second screen the user can highlight a reconciliation and select the
"Add System" option, which calls rhrecsysaddform 1127 and begins the process.

Adapter program rhrecsysaddform 1127 presents the user with a screen for selecting a
system identifier. The list of available systems is obtained by retrieving the client object
1211 from the existing user session and using the client object's list related systems (listsyss)
method which returns all related system definition objects 1301 for the client object 1211.
Some other options which determine how the application manages data integration and
updating include (a) the ability to specify if data retrieval is done via a linked data source and
if so an option to chose from among the set of data source identifiers for the system and
specify a related table or view, and (b) the ability to indicate if data updates are done viaa
linked data source and if so an option to chose from among the set of data source identifiers
for the system and specify a related table or view. After this information is provided and
submitted by the user, the Reconciliation Manager begins processing the related information
with step 2601. Adapter program threcsysaddform 1127 begins by checking that a system
selection was made in 2602.

If the system identifier is selected and the other information is set properly, adapter
program rhrecsysaddform 1127 calls rhrecsysform 1126 which retrieves the client object
1211 from the existing user session and using the client object's get reconciliation (getrec)
method retrieves the reconciliation definition object 1341 for the selected reconciliation in
2605. If a system selection is not made, the caller is alerted and asked to correct the problem

2604,

58

WO 01/80054 PCT/US01/11961

Once the reconciliation definition object 1341 is obtained the adapter program begins
by deriving the ignore case and ignore space setting from the information provided. The
adapter program then calls reconciliation definition object's 1341 add reconciliation system
(addrecsys) method passing as parameters the system identifier, ignore case, ignore space
settings, and other related table aﬁd view information. Using the client identifier 1342 from
reconciliation object 1341, the reconciliation identifier 1343 from reconciliation object 1341,
and the system, ignore case, ignore space information, refrieval direct data ﬁﬁk, retrieval
direct source, retrieval direct data table, update direct data link, update direct source, update
direct data table, this method attempts to create a new reconciliation system object 1371, in
2606.

If the provided system identifier is unique for the given reconciliation, then the
reconciliation system object is created in 2607. If the system identifier is not unique or some
other unforeseen error occurs, the addition process is abandoned and the caller is notified in
2608.

If the object creation is successful then client identifier 1372 will be set to client
identifier 1342, reconciliation identifier 1373 will be set to reconciliation identifier 1343,
system identifier 1374 will be set to the system identifier selected origiﬁating from the system
definition object’s system identifier field 1303, ignore character space (ignspace) 1375 will
be set to the related derived value, and ignore character case (igncase) 1376 will be set the
related derived value derived from user entered setting for the process. During this creation
process, all leading and trailing spaces are removed from the client identifier, reconciliation
identifier, system identifier and the data retrieval and update information will be set as
indicated by the user in 2809.

Once the creation process is complete, the add reconciliation system (addrecsys)

routine increments its number of system (noofsys) field 1345 by one. Then using the

59

WO 01/80054 PCT/US01/11961

reconciliation data object’s 1601 find by client identifier, reconciliation identifier
(findbyclidrecid) routine, the process retrieves all reconciliation data object’s 1601 for the
client and reconciliation, in blocks of two thousand, and sets each of the objects number of
system (noofsys) field 1607 equal to noofsys field 1345, in 2610.

Once this process is complete, the application creates a record for the new
reconciliation system object 1371, in table rhrecsys 2009. Then, the object is returned to the
calling adapter rhrecsysform 1126 2611, the user’s screen is refreshed, display the
information entered, and the process ends in 2612.

Figure 27 illustrates the process to define a key structure for each system of a
reconciliation. The key structure enables the Reconciliation Manager to create a match key
string for data records as they arrive from the individual source systems of a reconciliation.
These key strings are used to automatically group records together before they are passed on
for reconciliation. A keys structure consists of a set of individual field ids from a particular
system. These field identifiers are used to extract data from the systems records and
concatenate this data into the match key string.

The add key field to reconciliation system process of figure 27 begins with a user
selecting the "Reference Library" menu option and then the "Reconciliations" menu option
presented by the main window interface 1103. This selection calls adapter program
rhelrecform 1122 which presents the reconciliation configuration screen. Using this screen,
the user selects the keys tab, a reconciliation, and a system. After making these selections,
choosing the "Add Key Field" menu option will call adapter program rhreckeyaddform 1129.

Adapter program rhreckeyaddform 1129 presents thé user with a screen for selecting a
field identifier from the set of system field objects 1311 belonging to the selected system
object 1301. This set of system ficld objects is obtained by retrieving the client object 1211

from the existing user session, and using the client object's get related systems (getsyss)

60

WO 01/80054 PCT/US01/11961

method which returns the system definition object 1301 for the selected system. Then, using
the system definition object's list related system fields (listsysflds) method, a list of system
field objects 1311 is retrieved for the selected system. After a system field identifier is
selected from this list and submitted we begin our process with step 2701. Adapter program
rhreckeyaddform 1129 checks that a selection was made in 2702.

If the system field identifier is selected and the other information of the form is set
properly adapter program rhreckeyaddform 1129 calls threckeyform 1128 which retrieves the
client object 1211 from the existing user session, and using the client object's get
reconciliation (getrec) method retrieves the reconciliation object 1341 for the selected
reconciliation 2705. Then using the reconciliation object's get reconciliation system
(getrecsys) method, the routine retrieves the reconciliation system object 3571 for the
selected system 2705. If a system field identifier selection is not méde, the caller is alerted
and asked to correct the problem in 2704.

Using the reconciliation system object’s 1371 add reconciliation system key field
(addrécsyskeyﬂd) method, the rhreckeyform adapter program 1128 begins the reconciliation
key field creation process. In calling this method, the field identifier and field type are passed
as parameters. This method begins by deriving the next available key position value from the
set of existing reconciliation key field objects 1381 belonging to the selected reconciliation
system object 1371, in 2706. This value will be set as one more than the highest existing
value.

Using the derived key position, client identifier 1372, reconciliation identifier 13<73,
system identifier 1374, and the selected field identifier and field type, which originate from a
field identifier 1314 and a field type 1315, the method attempts to create a new reconciliation

key field object 1381, in 2707.

61

WO 01/80054 PCT/US01/11961

If the field identifier is unique within the given reconciliation system object’s 1371
child reconciliation system key field objects 1381, then the reconciliation key field object
1381 is created, in 2708. Ifthe field identifier is not unique or some other unforeseen error
occurs, the addition process is abandoned and the call is notified 2709.

If the object creation is successful, client identifier 1382 will be set to client identifier
1372, reconciliation identifier 1383 will be set to reconciliation identifier 1373, system
identifier 13484 will be set to system identifier 1374, field identifier 1385 will be set to the
selected field identifier 1314, key position (keypos) 1386 will be set to the derived key
position, and field type (fldType) 1387 is set to the field type 1315 of the selected system
field object 1311. The key position filed is used during processing to maintain the order of
the reconciliation key field objects in the ordered they were entered. The field type is
replicated and inherited from a related value in-order to make the data type information
readily available duriﬁg later processing. During this creation process all leading and trailing
spaces are removed from the client identifier, reconciliation identifier, and system identifier
in 2710.

Once the creation process is complete, the system creates a record for the object in
table rhrecsyskeyfld 2011 and returns the object to the calling adapter program rhreckeyform
1128 in 2711. The adapter program then refreshes the user’s screen and display the
information entered and the process ends in 2712.

Figure 28 shows the process to create and configure the individual data comparisons
of a given reconciliation. In general, there should be one comparison created for each set of
fields the user wants to compare between the different systems of the given reconciliation.

The create data comparison in reconciliation definition process of figure 28 begins
with a user selecting the "Reference Library" menu option and then the "Reconciliations"

menu option presented by the main window interface 1103. This selection calls adapter

62

WO 01/80054 PCT/US01/11961

program rhelrecform 1122, which presents the reconciliation configuration screen. Using this
screen the user selects the data tab and a reconciliation. After making these selections and
choosing the "Add Compare" menu option adapter program rhrecdatcmpform 1131 is called.

Adapter program rhrecdatcmpform 1131 presents the user with a screen for
specifying, and selecting, a range of details which control the operation of the individual data
comparison. The screen provides the ability to enter a description, select a data type (such as
string, number, or date), and indicate settings that govern the treatment of case and spaces for
the comparison. In presenting this interface the adapter program retrieves the client object
1211 from the existing user session and uses the client object's get reconciliation (getrec)
method to return the reconciliation object 1341 for the selected reconciliation. Then, using
the reconciliation object's list reconciliation system (listrecsyss) method a list of related
reconciliation system objects 1371 is retrieved for the reconciliation object 1341. Other
objects also retrieved include the full set of system field type objects 1331, the full set of
comparison type objects 1421, and the full set of tolerance type objects 1431. Each of these
data sets is presented to the user as a list of possible selections. Once the user completes the
required information and submits the form for processing, the primary details of description,
primary system, data type, comparison type, tolerance type, and tolerance amount are
validated in 2802.

If the required information is set properly in 2803, the adapter program
rhrecdatcmpform 1131 calls rhrecdatform 1130 which retrieves the client object 1211 from
the existing user session and uses client object's get reconciliation (getrec) method to retrieve
the reconciliation object 1341 for the selected reconciliation in 2805. The adapter program
then converts the type of the ignore space and ignore case parameters from strings into

related boolean values.

63

WO 01/80054 PCT/US01/11961

After obtaining the reconciliation object 1341, the program then uses the
addreccmpatrib method to begin the processes of creating a data compare attribute object
1401. This method call takes description, comparison type, primary system, tolerance type,
tolerance amount, ignore space, and ignore case variables as parameters. The method begins
the comparison creation process by deriving the next available comparison identifier value
from the set of existing data compare attribute objects 1401 belonging to the reconciliation
object 1341. This value is set at one more than the highest existing comparison identifier
value in 2806.

Using the client identifier 1342, the reconciliation identifier 1343, the derived
comparison identifier, the description, the comparison type, the primary system, the tolerance
type, the tolerance amount, the data type and the ignore case and space settings, the
addreccmpatrib method attempts to create a new data compare attribute object 1401, in 2807.
On creation, the object is instantiated in 2808 and the client identifier 1402 is set to client
identifier 1342, reconciliation identifier 1403 is set to reconciliation identifier 1343, compare
identifier 1404 is set to the derived comparison identifier, and the comparison description
(cmpdesc) 1405, comparison data type (cmpdattype) 1406, the comparison’s ignore character
space setting (ignspace) 1407, the comparison’s ignore character case setting (igncase) 1408,
comparison type (cmpcmptype) 1409, the primary system identified (cmpprmsysid) 1410,
tolerance processing type (cmptolprctype) 1411, tolerance amount (cmptolamnt) 1412 is each
set to their related selected values.

Once the creation process is complete, the system creates a record for the object in
table threccmpatrib 2104 and returns the object to the calling adapter program rhrecdatform
1130, in 2809. The adapter program ends the process in 2810 and refreshes the user’s screen

and display the information entered.

64

WO 01/80054 PCT/US01/11961

Figure 29 shows the process for specifying the individual data fields from each
system definition object 1301 which are used to create an individual comparison value for
each of the individual system’s of a particular comparison and reconciliation.

The add data field to reconciliation system data comparison process of figure 29
begins with a user selecting the "Reference Library" menu option and then selecting the
"Reconciliations" menu option presented by adapter program the main window interface
1103. Making this selection calls adapter program rhelrecform 1122 and presents the
reconciliation configuration screen. If the user selects the data tab, highlights a
reconciliation, a comparison identifier, and a system, then, selects the "Add Data Field"
option, the rhrecdatfldaddform 1132 is called.

Adapter program rhrecdatfldaddform 1132 presents the user with a screen for
selecting a field identifier from the set of system field objects 1311 belonging to the selected
system definition 1301. This list of fields is obtained by retrieving client object 1211 from
the existing user session and using the client object's get system (getsys) method to réturn the
system definition object 1301 for the selected system identifier. Then, using the client
object's get reconconciliation (getrec) method the reconciliation object 1341 is obtained and,
using the reconciliation object's get reconciliation comparison attribute (getreccmpatrib)
method the data compare attribute object 1401 is retrieved. Then, using the selected system
definition object's 1301 list system fields by field type (listsysfldsbyfldtype) method and the
data compare attribute object's comparison data type (cmpdattype) field 1406, as a parameter,
a list of system field objects 1311 of the appropriate data type is retrieved. Other options.
included on this screen include the ability to specify how fields from the same system of a
compa:rison should be combined. By select a field for addition and submitting the
information, the user beginning process in 2901. Adapter program rhrecdatfldaddform 1132

then checks the selection.

65

WO 01/80054 PCT/US01/11961

If the information is not set properly in 2903 the caller is alerted in 2904. Otherwise
the information is set correctly in 2903 and rhrecdatfldaddform 1132 calls the rhrecdatform
1130 with the related data. Receiving this call rhrecdatform 1130 retrieves the client object
1211 from the existing user session and uses this object's get reconciliation (getrec) method to
retrieve the reconciliation object 1341 for the selected reconciliation. Then, using the
reconciliation object's get reconciliation comparison attribute (getreccmpatrib) method and
the get reconciliation system (getrecsys) method, the appropriate data compare attribute
object 1401 and reconciliation system object 1371 are retrieved in 2905. Then, the
reconciliation system object's get reconciliation system data comparison (getrecsysdatcomp)
method is used to find the reconciliation system data compare object 1441 for the compare
identifier fetrieved from compare identifier 1404, in 2906.

If the reconciliation system data compare object does not exist, in step 2907, a new
data compare object 1441 is created in 2908 using the reconciliation system's 1371 add
reconciliation system data comparison (addrecsysdatcomp) method. The parameters passed
to this routine are comparison identifier 1404, the selected comparison operator (cmpoprt)
which derives from the set of reconciliation comparison operator objects 1461, the
comparison data type (cmpdattype) 1406, and the ignore character space (ignspace) 1407.
On creation the client identifier 1442 will be set to client identifier 1372, reconciliation
identifier 1443 will be set to reconciliation identifier 1373, system identifier 1444 will be set
to system identifier 1374, éompare identifier 1445 will be set to compare identifier 1404,
ignore character space 1446 will be set to ignore character space 1407, compare data type
(CmpDatType) 1447 will be set to compare data type (cmpdattype) 1406, and comparison
operator (cmpoprt) 1448 will be set to the selected compare operator (cmpoprt) 1462 in 2909.
Then, a record for this object is created in table rhrecsysdatcomp 2015 and the object is

returned to process 2911 in 2910. If the reconciliation data compare object existed

66

WO 01/80054 PCT/US01/11961

previously 2906 this set of processes 2908, 2909, and 2910 would be skipped and the
application processing goes directly from step 2907 to 2911.

After obtaining or creating the reconciliati'on system data compare object 1441, the
system uses the add reconciliation system data field (addrecsysdatfld) method to begin the
reconciliation data field object’s 1471 creation process. Field identifier and field type are
passed as parameters to this method call. This process begins with the system deriving the
next available data position value from the set of existing reconciliation data field objects
belonging to the reconciliation system data comparison in 2911. This value will be set as one
more than the highest existing data position value.

Using the derived data position, client identifier 1442, reconciliation identifier 1443,
system identifier 1444, compare identifier 1445, and the selected field identifier and field
type, which originate from a field identifier 1314 and a comparison data type (cmpdattype)
1406, the method attempts to create a new reconciliation data field object 1471, in 2912.

In 2913, if the object is unique and the creation process is successful, the object is
instantiated and client identifier 1472 is set to client identifier 1442, reconciliation identifier
1473 is set to reconciliation identifier 1443, system identifier 1474 is set to system identifier
1444, compare identifier 1475 is set to compare identifier 1445, field identifier 1476 is set to
the selected field identifier, data position (datpos) 1477 will be set to the derived data
position, and field type (fldtype) 1478 will be set to compare data type (cmpdattype) 1406.
After setting these variables, a record is created for the object in table rhrecsysdatfld 2014. If
the field identifier is not unique or some other unforeseen error occurs, the addition process is
abandoned and the caller is notified in 2914.

The system then returns the object to the calling adapter program rhrecdatform 1130,
in 2916, which ends the process in 2917 and refreshes the user’s screen displaying the

information entered.

67

WO 01/80054 PCT/US01/11961

Figure 30 shows the option to configure the reconciliation manager such that
information fields can be attached to the individual data records from each system of a
reconciliation. These information fields are used to allow information to flow back to the
individual source systems and their related data records by identifying these records within a
source system’s data set. This option enables the reconciliation manager to automate the
process or returning and applying reconciliation correction and status information in related
source systems.

The add information field to reconciliation system process of figure 30 begins with a
user selecting the "Reference Library" menu option and then selecting the "Reconciliations"
menu option presented by the main window interface 1103. This selection calls adapter
program rhelrecform 1122 presenting the reconciliation configuration screen. By select the
information tab, highlighting a reconciliation and a system on the screen, and choosing the
"Add Information Field" option, the user causes the system to call rhrecinfaddform 1134.

Adapter program rhrecinfaddform 1134 presents the user with a screen for selecting a
field identifier from the set of system filed objects 1311 belonging to the highlighted system
definition object 1301. The field list is obtained by retrieving the client object 1211 from the
existing user session and using the client object's get system (getsys) method to return the
system definition object 1301 for the selected system. Then, using the system object's list
system fields (listsysflds) method, a sét of system field objects 1311 belonging to the selected
system definition object 1301 is retrieved. After a system field identifier is selected from the
set and submitted we begin our process with step 3001. Adapter program rhrecinfaddform
1134 checks that the selection was made in 3002.

If the field identifier is selected and the other information of the form is set properly,
adapter program rhrecinfaddform 1134 calls rhrecinfform 1133 which retrieves the client

object 1211 from the existing user session and uses the client object's get reconciliation

68

WO 01/80054 PCT/US01/11961

(getrec) method to retrieve the reconciliation object 1341 for the selected reconciliation.
Then, using the reconciliation object's get reconciliation system (getrecsys) method, the
process retrieves the reconciliation system object 1371 for the selected system in 3005. If a
field identifier selection is not made the caller is alerted and asked to correct the problem in
3004.

Using the reconciliation system object’s 1371 add reconciliation system information
filed (addrecsysinffld) method the rhrecinfform adapter program 1133 begins the
reconciliation information field creation process. In calling this method, the field identifier
and field type are passed as parameters. This method begins by deriving the next available
information position value from the set of existing reconciliation information field objects
1501 belonging to the reconciliation system 1371, in 3006. This value will be set as one
more than the highest existing information position value 1506.

Using the derived information position, client identifier 1372, reconciliation identifier
1373, system identifier 1374, and the selected field identifier and field type, which originate
from a field identifier 1314 and a field type (fldtype) 1315, the method attempts to create a
new reconciliation information field object 1501, in 3007.

If the field identifier does not exist in the given reconciliation system object’s 1371
reconciliation information field objects 1501 then the reconciliation information field object
1501 is created, in 3008. If the field identifier is not unique or some other unforeseen error
occurs, the addition process is abandoned and the caller is notified in 3009.

If the object creation is successful the object is instantiated and client identifier 1502
is set to client identifier 1372, reconciliation identifier 1503 is set to reconciliation identifier
1373, system identifier 1504 is set to system identifier 1374, field identifier 1505 is set to the
selected field identifier, information position (infpos) 1506 is set to the derived information

position, and field type (fldtype) 1507 is set to the field type of the selected system field

69

WO 01/80054 PCT/US01/11961

object 1311. During this creation process all leading and trailing spaces are removed from
each of the applicable string fields in 3010.

Once the creation process is complete, the application creates a record for the object
in table rhrecsysinffld 2013 and return the object to the calling adapter program rhrecinfform
1133, in 3011. The adapter program then ends the process in 3012 and refreshes the users
screen displaying the information entered.

The reconciliation manager supports a series of automated object deletion and cleanup
routines as depicted in figure 31. In general, these routines are structured to preserve the
parent-child relations of the objects. For example, according to one embodiment, if a user
were to attempt the deletion of a user object 1231, in 3103, the application would first
retrieve and delete all related user security role objects 1241, in 3104, and then, delete itself.

All reference library objects support deletion through the user interface. Access to
these deletion facilities is provided through object deletion menus, which are located with,
and work in the same way as, their object’s corresponding addition menus described earlier.
In the application’s deletion process of the system definition object 1301 and the system field
object 1311 in 3105-3106, the application can potentially prevent the deletion of related
objects, which will cause an alert to be generated back to the application’s user interface
notifying the user of the failed deletion. The deletion will fail in the case where the object
being deleted is currently used in any of the application’s reconciliation objects 1341. In the
case of the system definition object 1301 this would occur if the client identifier 1302 and
system identifier 1303 values are used in any of the application’s reconciliation system
object’s 1371 client identifier 1372 and system identifier 1374. In the case of the system
field object 1311 an error would occur if the system field object 1311 being deleted has its
client identifier 1312, system identifier 1313, and field identifier 1314 used in any of the

reconciliation’s key field objects 1381, client identifier 1382, system identifier 1384, and

70

WO 01/80054 PCT/US01/11961

field identifier 1385, or reconciliation data field objects 1471, client identifier 1472, system
identifier 1474, and field identifier 1476, or recon;:iliation information field objects 1501,
client identifier 1502, system identifier 1504, and field identifier 1505.

These deletion routines are accessed from a variety of other processes in the
application, which are described below. In most cases, the routines work similar to the prior
example in which the deletion of a parent object causes the deletion of its related child
objects. However, the reset data group’s set number of status fields process 3122 is unique
and is of particular interest. This process 3122 is used to update the data group counter fields
1610-1617 of the parent reconciliation data object 1601. These updates are made as each
data group object 1661 is removed from the system. The update process 3122 will decrement
the appropriate status fields in the appropriate reconciliation data object 1601 based on the
value of data group status (grpstat) 1669 in the data group object 1661 being removed. As
part of this process, the reconciliation data object 1601 is retrieved using its primary key and
the client identifier 1662, reconciliation identifier 1663, and key identifier 1664 values of the
data group object 1661.

Figure 32 describes the main control program for processing a reconciliation message.
A reconciliation message is a text string containing a record of data from a particular source
system which requires processing in the application. The application accepts these
reconciliation messages from defined source system’s on a per-reconciliation basis. These
messages must be in the agreed format and must contain header ficlds identifying the source
system and the reconciliation of the particular reconciliation message. The application
provides a variety of options for interfacing with the message processor of figure 32, which
are described below.

The single reconciliation message process of figure 32 begins with one of the calling

methods initiating this process with a reconciliation message as a parameter in the form of a

71

WO 01/80054 PCT/US01/11961

string in 3201. On receiving this call, the process checks that the message string is not empty
in 3202. If the reconciliation message is empty, an alert message is printed on the server
console in 3203 and the process ends in 3204, otherwise the processing continues with a call
to create a new reconciliation item object in 3205 described in figure 33. The create
reconciliation item process either returns a valid reconciliation item object 1701or throws an
exception. In the case of an exception being generated, this is handled in step 3210 which is
described later and is used to manage all exceptions received by the single reconciliation .
message process.

If the processes of step 3205 is successful, the program then passes the returned
reconciliation item object 1701 on for decomposition in 3206. The decomposition process
breaks down the text based XML message structure and generates a set of data related objects
which are utilized in further processes. The decomposition process and these data related
objects are described along with figure 34. If the decomposition process generates an
exception, we move to step 3210; else, we continue with our processing.

After receiving a decomposed reconciliation item 1701 back from process of figure
34, the program calls the match process with the reconciliation item 3207. The match
process will place the reconciliation item in the appropriate data group 1661 based on the
combination of match key value 171 0; system identifier 1707, and reconciliation identifier
1708. This process is detailed and described beginning in figure 40. If this match process
3207 completes and returns a data group object 1661 then two events have occured. First, the
reconciliation item must be part of a data group that is completely matched (i.e., contains one
reconciliation item 1701 from each of the systems contained in the reconciliation), and is
ready to have its data elements reconciled. Second, the particular reconciliation object 1341
for this reconciliation item 1701 must have is reconcile data group real time flag (recrealtime)

1350 set to true. This option for supporting the real-time reconciliation of data groups is a

72

WO 01/80054 PCT/US01/11961

critical feature and allows Reconciliation Manager to generate real-time notification
messages back to individual users or systems as data breaks are found between the data
records submitted for processing.

On receiving a data group 1661 back from the match process, the application will
make a call to the reconciliation process described in figure 45. This reconciliation process
of figure 45 goes through each of individual comparisons constructed for the reconciliation
and compares the data elements from each of the individual system. This process of figure
45 results in a detailed analysis and understanding of which of the data elements provided
from each system in the particular data group is potentially in error. If no data group 1661 is
returned then the process ends in 3211.

The error management process for this routine is exception based and will respond to
exceptions generated by any of the routines which the process calls in steps 3210, 3212.
During the process if any errors are generated, they are handled by the error management
process. Any exceptions in the reconciliation process may result in the data group 1661
having its error field 1672 set to true and its error message field 1673 set to the text of the
individual message. Any errors generated from the other related processes results in the
reconciliation item 1701 having its group identifier 1711, absolute data group identifier 1717,
item status 1712 set to a negative one. Its has error indicator 1715 will be set to true and its
error message 1716 will be set to the text of the individual message. In certain cases, this
error process returns an exception to the process that initiated this process single
reconciliation message process of figure 32.

Figure 33 details the create reconciliation item object process. This process will set
the primary details of the reconciliation item based on the text message it receives as a
parameter to the call 3301. The first step in the process is to determine the sequence number

for the new reconciliation item object 1701 in 3302. This is done using the sequence

73

WO 01/80054 PCT/US01/11961

generation object 1951 with a key value of “itemid”. Using this key value and calling the
object’s get sequence number (getseqnumber) routine increments the sequence number in the
object by one and then returns the starting sequence number which is used on the new
reconciliation item. The process of figure 33 sets item identifier 1702 to the returned
sequence number, item 1703 to the message text, system date 1705 to the current date of the
application’s server, and the absolute data group identifier 1717 to —1 (i.e., negative one). All
other field values for the object are set to either zero or null and will be set and utilized by
other processes in 3303. The new reconciliation item object 1701 is returned in 3304 and the
process ends in 3305.

Figure 34 details the message decomposition process. This process is an overall
control process which prepares the individual reconciliation item 1701 for matching and
reconciliation. This process uses a number of sub processes to extract header details, create a
match key string, create the items data elements, and create the item’s information elements.

After receiving a call with the reconciliation item 1701 as the parameter, in 3401, the
process calls the XML message parser process, in step 3402, which is described in ﬁéure 35.
On completion of the message parsing process, there resides in the control processes local
memory a hash table containing all of the messages fields and individual vales obtained from
the original text message of field 1703. The in-memory message field identifiers and values
are used to support the subsequent decomposition processes.

Then the header validation process is called in step 3403. This process identifier
detailed in figure 36. The processes primary task is to extract and check the primary details
of user identifier, system identifier, and reconciliation identifier from the message string
provided. These details are then used to map the reconciliation item 1701 back to the
individual components of the applications reference library, which guide the remaining

decomposition processes.

74

WO 01/80054 PCT/US01/11961

Then, the build key process is used to construct a match key value 1710 for the
reconciliation item object 1701 in 3604. The build key process is described in figure 37. The
resulting match key value is used in later processes to determine which data group object
1661 this item belongs to.

After the match key creation, the message decomposition process calls the build data
process in 3405. This build data process is detailed in figure 38. The overall purpose of the
build data process is to use the comparison information defined in the reconciliation for the
particular system to create a set of individual item compare elements 1741. These item
compare elements will then be used in the message reconciliation and reporting process.

Then, the build information process is called in 3406. This build information process
is detailed in figure 39. The purpose of the build information process is to create the
individual item information element objects 1731 for the reconciliation item and the defined
reconciliation, reconciliation system pair of the reference library.

Once the set of processes is complete, the reconciliation item 1701 is returned to the -
calling process in 3407 and the decomposition process ends in 3410. If, however, any
processing error is generated during this decomposition process the routine jumps to step
3408 and then 3409. In this error case, any subsequent process after the process that
generated the error is not called, and a reconciliation item object is not returned to the caller.
Regardless of the error type, the application will return a detailed decomposition exception
back to the calling process in 3609 and end the process in 3611.

Figure 35 describes the XML message parsing process. This process takes as input an
XML based message string and decomposes the string putting the results into a shared in
memory hash table which is used by the other decomposition processes to retrieve and

process individual message’s data elements.

75

WO 01/80054 PCT/US01/11961

The process begins on receipt of the call in 3501 and continues to iterate through steps
3503 through 3505 until the entire message has been processed in 3502. The process works
by searching the given string sequentially for the start of a field token i.e. “<” followed by
“>”, in 3503, in this process any text between these symbols is taken as the token identifier
such that a sample of a complete starting token could look like “<System identifier>". Then,
the process continues searching sequentially for the corresponding end token, such as
“</System identifier>" in 3504. The process then extracts the portion of the string stored
between the start and end tokens and places this in the hash table with a key value equal to
the ;coken identifier-field identifier such as “</System identifier>" in 3505.

The process checks for several types of processing errors as represented in 3506. For
cach error that occurs, a detailed parse XML exception will be sent back to the calling routine
in 3508 and the process will be terminated in 3509. Duplicate token identifier are considered
an error as well as and missing end of token identifiers i.e. “>”, and end token identifiers.
Once complete, if no errors have occurred, the process ends normally in 3507 and the hash
table is available for use.

Figure 36 details the header detail extraction and validation process. This process is
used to extract a predefined set of header details from the shared in memory hash table
constructed in process shown in figure 35. For each of these predefined values, the system
retrieves and validates the data, then, sets the corresponding value on the reconciliation item
object 1701 which was passed as a parameter to the process in 3601. The process begins by
extracting and checking the existence of the following values from the hash table, user
identifier, client identifier, reconciliation identifier, and system identifier in 3602. If any of
these primary details do not exist in the hash table than a header processing exception is

generated back to the caller and the process is terminated in steps 3603, 3611, 3612.

76

WO 01/80054 PCT/US01/11961

Then, if all of the above values are present, the header extraction process attempts to
validate the user identifier by retrieving the related user object 1231 with the primary key
equal to the respective user identifier in 3604. If the given user object 1231 cannot be found
then a header processing exception is generated back to the caller and the process is
terminated in steps 3605, 3611, 3612.

Then, if no errors have occurred, the header extraction process attempts to validate the
client identifier, the reconciliation identifier, and the system identifier in 3606. This is done
by retrieving first a base object 1201 then using the base object’s get client (getcl) method
retrieving the client object 1211 for the extracted client identifier. Next, the system usesthe
client object’s 1211 get reconciliation (getrec) method to retrieve the reconciliation object
1341 for the extracted reconciliation identifier, and then, using the reconciliation object’s get
reconciliation system (getrecsys) method, the application retrieves the reconciliation system
object 1371. This header extraction process ensures that the client exists, the reconcili‘ation
exists for the client, and the system exists for the reconciliation. If this is not the case then an
exception is generated back to the caller and the process is terminated in steps 3607, 3611,
and 3612.

After completing the header extraction’s validation processes, the related values on
the reconciliation item are set in 3608. Setting these values entails user identifier 1709 being
set to the extracted user identifier, client identifier 1706 being to the extracted client
identifier, reconciliation identifier 1708 being set to the extracted reconciliation identifier,
and system identifier 1707 being set to the extracted system identifier. In extracting and
setting these values the reconciliation item 1701 is now made available for further system
processing.

The header extraction process contains a general exception management routine for

handling any unexpected processing errors in 3609. In the event an error occurs the

77

WO 01/80054 PCT/US01/11961

application jumps to step 3609 and then step 3611 which generates a header processing
exception, and ends the extraction process in 3612. If no errors have occurred, the process
ends normally with step 3610.

Figure 37 details the build key process, which is used too create a match key string for
the reconciliation item 1701 from the data provided and the reference library information for
the particular reconciliation identifier 1708 and system identifier combination 1707.

The build key process begins with receipt of the call containing an item object 1701
as the parameter. The build key process first initializes several local key value variables to
represent a new and empty match key strings in 3702. Then using the reconciliation system
object 1371, as set in the header extraction process of figure 36, the application calls the
reconciliation systems (listrecsyskeyflds) method, retrieving a set of reconciliation key field
objects 1381 for the reconciliation system 1371 in 3703. |

For each key field object 1381 in the set, the application performs the following steps
3704. First, the field identifier 1385 is obtained from the reconciliation key field object 3705.
Then the hash table is checked to ensure it has a value for this field identifier; if no value
exists in 3706, the process jumps to step 3717, generates a build key exception and terminates
at step 3718. If the value exists, the value’s expected type is checked in 3707 using the field
type value from (fldtype) 1387. If the type is a string, the value is appended to the existing
local key value variable 3709 and the process returns to step 3704.

If, however, the value is a date then the system will determine which date format the
system is expecting. Then using that date format, the system will convert the string retrieved
from the hash table into a date value. This date value will then be converted into a string
using a common system date format (i.e. “YYMMDDDD”), and then appended to the derived
string value to the existing local key value variable, and then the process returns to steps

3704, in 3708. This date formatting feature allows the system to take information from

78

WO 01/80054 PCT/US01/11961

different geographical regions and process the related data converting it into a uniform
system date format which can be intelligently matched. For example, dates in different
formats such as 12/28/2000 and 28/12/2000 could be fed through the system and matched as
a system string of 20001228.

Once all key fields objects 1381 have been processed, the application moves from
step 3704 to step 3710. The build key process then uses the ignore space setting retrieved
from the reconciliation object 1341 field (ignkeyspace) 1356, determining how to treat any
white space which may exist in the derived local key string value that was created in 3710. If
ignore space setting is true, then the application goes through the string sequentially and
removes any white space characters in 3711. Then using the ignore case setting retrieved
from the field identifier (ignkeycase) 1355 of the reconciliation object 1341, the application
determines how to manage the character case of the key string in 3712. If the value of the
retrieved setting is true the application converts the derived local key string value to all
uppercase characters in 3713 and sets match key field value 1710 to the upper case deﬁved
key value in 3714. If this setting is false, the system sct field value 1710 to the unaltered
derived key value in 3714,

The build key process contains general exception management as represented in step
3715. This allows the process to respond to any unexpected errors such as date conversion
problems. If any error occurs during the build key process, the application jumps to step
3715, throws a build key exception 3717, and terminates with step 3718. If step 3414 is
completed successfully, the flow move thfough step 3715 and end the process normally at
step 3716.

Figure 38 represents thé build data elements process. This build data element process
is the essential task of constructing the individual data elements from the text message

provided and the reference library information added to the system during the reconciliation

79

WO 01/80054 PCT/US01/11961

configuration process. The result of this process will be a set of item compare elements 1741
for the individual reconciliation item 1701. These elements will be used in the subsequent
reconciliation and reporting processes.

The process begins with the receipt of a method call containing the reconciliation item
object 1701 as a parameter in 3801. The next step in the process is to initialize primary
variables to hold the comparison type information and a list of field identifiers processed in
3802. Then using the reconciliation system object’s 1571 list reconciliation system data
compare objects (listrecsysdatcomps) method, a list of the reconciliation system data compare
objects 1441 for the given reconciliation system as set in the header extraction process of
figure 36, is obtained in 3803.

Then starting with the first data compare object 1441, representing an individual data
comparison point, and processing all compare objects 1441 in the set, the application
performs each of the following step in 3804. The application resets the local variables which
will be used to hold, the computed value for the current comparison, the field identifiers used
in creating the value, the type of the value, and the format of the value 3805. Once these
variables are reset, the application retrieve the set of reconciliation data field objects 1471
using the data compare object’s 1441 list reconciliation system data fields (listrecsysdatflds)
method. The application then performs the following set of prbcesses for each of the data
fields objects 1471 in the set in order to derive a single comparison value for the
reconciliation comparison and the system. Next, the application retrieves the field identifier
using field 1476 of the current reconciliation data field object 1471. Then the application
checks that the shared decomposition hash table contains a value for the field identifier in
1809. Ifno value exists, the process jumps to step 3919, generates a build data exception
back to the caller and terminates with step 3820. If the value exists the application retrieves

the value from the hash table for processing in 3810. The application then appends the field

80

WO 01/80054 PCT/US01/11961

identifier value to the local variable containing list of field identifier used to compute our
final value 3811.

The application then gets the data type of the value from field 1478 in 3812. Then,
based on the type of the value the application determines if any value conversion is required,
which varia'tble type to use in storing the value, and how to combine the value with the
existing derived comparison value for the current comparison loop. For example, if the field
value is a string, the system simply appends the value to the local variable containing the
existing string value. For strings multiple field values participating in a single comparison
will produce a concatenated string value for the comparison containing each of the fields
related values. If the value type is a number, however, then the system converts the fields
related string value from the hash table to a number and adds this converted number to the
existing derived local number value for the compaﬁson loop. Ifthe value type is a date, the
system will determine which date format is being used for the field and it will convert this
date format to the common system date format and then will set the date value for the
comparison in steps 3813, 3814.

Once the application has completed traversing the set of data field objects 1471 for
the comparison, an item compare element 1741 is created for the derived value, and the build
data process moves from step 3807 to step 3815. The application attempts this creation
process using the reconciliation item’s add reconciliation item compare element
(addrecitememplmnt) method passing as parameters a comparison identifier from field 1445,
an active indicator which is false only if no fields exists for the comparison and system, the
comparison data type 1447, the derived list of field identifiers used in computing the value, a
string based display representation of the derived value, a string, number, and date value,

only one of which will actually have a value and will be identified by value type information

81

WO 01/80054 PCT/US01/11961

provided, and the list of individual field values used in computing the final value and
represented as a string in 3815.

If this process is successful the item compare element 1741 is instantiated with the
following details. Item identifier 1742 is set to item identifier 1702, compare identifier 1743
is set to compare identifier 1445, compare active 1744 is set to the true or false indicator
provided, compare data type 1745 is set to comparison data type 1447, compare field ids
1746 is set to the derive list provided, compare reference value 1747 is set to null, compare
display value 1748 is set to the derived display value, one of compare value char 1749,
number 1750, date 1751 will be set to their related value provided. Note, only one of these
fields will actually be used and this will depend on the value of the data type information.
Compare field values 1753 will be set to the derived vale provided, and the compare element
status field 1753 is set to zero representing a new element. On successful completion of the
instantiation process a record for the object is created in table rhrecitememplmnt 2211 and the
process moves back to step 3804 to derive data for the next comparison.

On completion of this process for all compare objects, the application jumps from
3804 to step 3817 and if no errors have occurred, the process terminates with step 3818. If
during this process any errors did occur, the program jumps to step 3817 then to step 3819.
At step 3819, a build data exception is generated back to the caller and the process then
terminates with step 3820.

Figure 39 describes the build information process. This build information process is
used to construct a set of information data elements 1731 for the related reconciliation
configuration information in the application’s reference library, and the text message
provided by the reconciliation item 1701.

The process begins with the receipt of a method call containing the reconciliation item

1701 as a parameter in 3901. The process then retrieves the set of reconciliation information

82

WO 01/80054 PCT/US01/11961

field objects 1501 for the given reconciliation system object 1371 as set in the header
extraction process of figure 36. This is achieved using the related reconciliation system
object’s 1371 list reconciliation system information fields (listrecsysinfflds) method in 3902.
Then the application goes through this set of information field objects1381, and as long as
there are more objects 1381 to look at, the application performs the following set of actions in
3903. The process gets the information field objects field identifier 1505, in 3904. Then, the
build information process checks the field identifier has a corresponding value in the in
memory hash table in 3905. If no value exists, a build information exception is returned to
the caller and the process terminates in steps 3905, 3910, 3911; otherwise, the process
attempts to create a new item information element object 1731 using the reconciliation item’s
1701 add reconciliation item information element (reciteminflmnt) method passing as
parameters the field identifier 1505, and the value retrieved from the hash table in 3906. On
creation, the item information element is instantiated and item identifier 1732 is set to item
identifier 1702, field identifier 1733 is set to field identifier 1505, and the field data string
1734 is set to the value from the hash table in 3907. Once complete, a record is created for
the new object in table rhreciteminflmnt 2210.

If no error occurs during the process, in 3908, the process will end normally with step
3909. Otherwise, if any errors occur during the process they are caught at step 3908 which
then uses process 3910 to throw a build information exception back to the caller and
terminate at step 3911.

Figure 40 describes the main control program for Reconciliation Manager’s matchiné
process. This matching process takes the reconciliation item objects 1701 and determines
which data group objects 1661 these items should be allocated to, and thereby which of the
reconciliation items from the other source systems in their reconciliation they will be

compared to.

83

WO 01/80054 PCT/US01/11961

This matching process begins on receipt of a method call with the related
reconciliation item 1701 as a parameter in 4001, The matching process then retrieves the
system’s base object 1201 and using the base objects get client (getcl) method retrieves the
client object 1211 for the client identifier 1706 on reconciliation item 1701, in 4002. The
matching process then retrieves the reconciliation object 1341 using the client objects get
reconciliation (getrec) method and the reconciliation identifier 1708 from reconciliation item
1701, in 4003. Then the matching process retrieves the reconciliation data object 1601 using
the reconciliation object’s 1701 get reconciliation data (getrecdat) method and match key
1710, in step 4004.

If no reconciliation data object 1601 is found in 4005 for the combination of
reconciliation identifier and match key, then the application calls the create reconciliation
data process detailed in figure 43, to create a new reconciliation data object 1601 in 4006.
This create reconciliation data process returns a new reconciliation data object 1601 which is
then used as a parameter for the add data group process called in step 4007. The add data
group process is detailed in ﬁgﬁre 44. From the call to the add data group process, a data
group object 1661 or null is returned and this value is returned directly to the caller in 4007.
If during match process no errors have occurred 4011, then the process ends at step 4013. If
an error has occurred then a match exception is thrown back to the caller in 4012 and the
process ends in 4013.

If the reconciliation data object 1601 is found, the match process will use the
reconciliation object’s 1341 group replace field 1351 to determine which sub match process
to call. If group replace is false then the application will call the match with new group
process, detailed in figure 42, in step 4009. If group replace is true then the system calls the
sub match with group/record replace process, detailed in figure 41, in step 4010. In either

case, these sub match processes will return null or a data group object 1661 which is returned

84

WO 01/80054 PCT/US01/11961

directly to the routine’s caller. If during this match process no errors have occurred in 4011,
then the match process terminates at step 4013. If, however, an error does occur then a match
exception is thrown back to the caller in step 4012 and the match process ends in 4013.

Figure 41 describes the match with group and record replace process. This is a sub
match process used to complete the matching function for reconciliations 1341, which have
their related group replace flag set to true 1351. In completing the matching function, this
process will allocate reconciliation items 1701 to their related data group objects 1661 based
on the items match key 1710 regardless of the status of the corresponding data group 1661.
Also, if the reconciliation’s record replace flag is set to true 1352 then a reconciliation item
1701 will replace any reconciliation items from the same source system in the existing data
group. Otherwise, reconciliation items 1701will simply be added to the data group 1661 and
a data group will potentially contain multiple reconciliation items from the same source
system in the data group.

This sub match process begins with receipt of a method call containing the
reconciliation object 1341, reconciliation data object 1601, and the reconciliation item object
1701 in 4101. The sub match process first checks that there is not more than one active data
group object 1661 for the given reconciliation data object 1601 in 4102. This is achieved by
summing the data group counters on the reconciliation data object 1611 through 1614. If
more one data group 1661 exists, this is considered an application error, and an exception is
returned to the caller in 4124 and the process terminates in 4125. If no error has occurred, the
sub match process continues by retrieving the system match queue object 1631 for the system
identifier 1707. This is done using the get system match queue (getsysmchque) method of
the reconciliation data object 1601 in 4103.

If a system match queue object 1631 is not found then the process jumps to step 4110

which is described below, in 4104. If the system match queue object 1631 is found, the sub

85

WO 01/80054 PCT/US01/11961

match process then uses the system match queues get group match queue (getgrpmchque)
method to retrieve the group match queue object 1641, in 4105. If a group match queue
object is not found, the process jumps to step 4110 which is described below, in step 4106. If
the group match queue object 1641 is found then the proces“s sets group identifier 1711 to
group identifier 1646 and deletes the group match queue object 1641 from the application in
4107. The process then uses the reconciliation data object’s 1601 get data group (getdatgrp)
method to refrieve the data group object 1661 in 4108 using the group identifier of field 1711
and then reduces the number of unmatched systems on the group 1668 by one in 4109.

In step 4110, the process ensures that the data group object being used is not null and
if it is the proéess retrieves the set of active data group objects using the reconciliation data
object’s list data groups by client identifier, reconciliation identifier, match key, and status
method. In this case there should be no more than one data group in the set and this then set
to be the current data group objectin 4111.

In the case where this set is empty and there is still no current data group object, in
4112, the process calls the add data group process in 4113 and returns the resulting data
group object 1661of this process to the caller and proceeds to step 4123.

If the active data group is now set then the process examines the reconciliation object
record replace option 1352, and if this true in 4114, the process retrieves all reconciliation
item objects which belong to the data group object using the data group object’s list
reconciliation items (listrecitems) method and then deletes any of these object which have the
same system identifier 1707 as the reconciliation item 1701 the process is current trying to
match 4115.

The process then continues by setting the group identifier 1711 and absolute group
identifier 1717, to the group identifier 1665 and absolute group identifier 1670 respectively.

Then the process sets match status 1713 to “MCH” and completes step in 4116.

86

WO 01/80054 PCT/US01/11961

The process then examines the business date field 1704 on the reconciliation item and
if this is later thaﬁ the last business date field 1605 on the reconciliation data object the field
1605 and the last business date filed 1666 of the data group object is set to the date value
- 1704. After completing this, the last system date update ﬁelds 1606 and 1667 of the
reconciliation data object data group object are both set to the value of reconciliation’s
system date field 1705, in 4117.

The system then checks if the data group is completely matched by looking at the
value of the number of systems un-matched 1668 stored on the group object. If this value is
not zero, then the process moves to step 4122 returning null to the caller. Ifthe value is zero
then the process will set the reconciliation data objects data group counters 1611 through
1612 to reflect that one data group is pending reconciliation. Then the status of the data
group held in field 1669 is set to “1”, indicating the group is fully matched pending
reconciliation 4119.

After completing this step, the application checks the reconciliation’s real-time setting
1350, and if this is true then the data group object is returned to the calling process which will
pass this obj ect on for reconciliation in 4121. Otherwise, the process returns null to the call
and leaves the user to complete the data group’s reconciliation process in 4122. If any errors
occur duringl this process, they are trapped at step 4123 will proceed to step 4124 generating a
group replace exception back to the caller and terminating the process 4125. Ifno 'errors
have occurred the process will simply terminate normally at step 4125.

Figure 42 describes the match to new group process. This process is similar to the
process described in figure 41 except that it will only allocate a given reconciliation item
object to its related data group object if the data group is un-matched and still expecting a

reconciliation item from the source system of the reconciliation item object 1701. In the case

87

WO 01/80054 PCT/US01/11961

where no data group is waiting for the given reconciliation item from the source system 1701,
anew data group object 1661 will be created.

This match new group process begins with receipt of a method call containing
reconciliation object 1341, reconciliation data object 1601, and the reconciliation item object
1701, in 4201. The process first retrieves the system match queue objects 1631 for the
system identifier 1707, using the get system match queue (getsysmchque) method of the
reconciliation data object 1601 in 4202,

If a system match queue object is not found in 4203, the process jumps to step 4204
that calls the add data group process and returns the data group object 1661, which was
returned from the add process, then proceeding to step 4218 for process completion. Ifa
system match queue object 1661 is found, the process then uses the system match queue’s get
group match queue (getgrpmchque) method to retrieve the group match queue object 1641, in
4205.

If a group match queue object 1641 is not found in 4206 then the process jumps to
step 4207 which calls the add data group process and returns data group object 1661 returned
from the add process back to the caller, then proceeding to step 4218 for process completion.
If the group match queue object 1641 is found then the process sets group identifier 1711 to
group identifier 1646 and deletes the group match queue object 1641 from the application in
4208. The process then uses tﬁe reconciliation data object’s get data group (getdatgrp)
method to retrieve the data group object 1661, in 4209, and then reduces the number of
unmatched systems on the data group 1668 by one in 4210.

The process then continues by setting the group identifier and absolute group
identifier, 1711, 1717 respectively, to the group identifier and absolute group identifier, 1665
and 1670 respectively. Then the process sets match status 1713 to “MCH” in step 4211. The

process then examines the business date field 1704 on the reconciliation item and if this is

88

WO 01/80054 PCT/US01/11961

later than the last business date field 1605 on the reconciliation data object the field 1605 and
the last business date filed 1666 of the data group object is set to the date value 1704. After
completing this, the last system date update fields 1606 and 1667 of the reconciliation data
object data group object are both set to the value of reconciliation’s system date field 1705, in
4212.

The system then checks if the data group is completely matched in 4213 by looking at
the value of the number of systems un-matched 1668 stored on the group object. If this value
is not zero then the process moves to step 4217 returning null to the caller. If the value is
zero then the process will set the reconciliation data objects data group counters 1611 through
1612 to reflect that one data group is pending reconciliation. Then the status of the data
group held in field 1669 is set to “1” indicating the group is fully matched pending.
reconciliation in 4214.

After completing this step, the system checks the reconciliation’s real-time setting
1350, and if this is true in 4215 then the data group object is returned to the calling process
which will pass this object on for reconciliation in 4216. Otherwise the process returns null
to the call and leaves the user to complete the data group’s reconciliation process in 4217. If
any errors occur during this process, they are trapped at step 4218 which will proceed to step
4219, generating a group new exception back to the caller and terminating the process in
4220. If no errors have occurred, the process will simply terminate normally at step 4220.

Figure 43 depicts the process of creating reconciliation data. This process is used to
create a reconciliation data object for a particular reconciliation and match key as required by
match process of figure 40. Each reconciliation object 1341 will have its own set of
reconcilia;cion data objects 1601 which are unique for each match key field meaning, that
each unique match key string will have only one reconciliation data object 1601 for a given

reconciliation 1341.

89

WO 01/80054 PCT/US01/11961

This process begins with receipt of a method call containing a business date, system
date, and match key identifier. Each of these field identifiers is taken from the individual
reconciliation item 1701, which is originating the process in 4301. The process first
increments the reconciliation data counter stored in the reconciliation object’s (lastdatid) field
1349, in 4302. Then using this data counter information, the date information provided, and
details from the related reconciliation object 1341 the application creates a new reconciliation
data object 1601 in 4303. On completing the create process, the object is instantiated and
client identifier 1602 is set to client identifier 1342, reconciliation identifier 1603 is set to
reconciliation identifier 1343, key identifier 1604 is set to the key identifier provided, last |
business date update 1605 is set to the business date provided, last system date 1606 is set to
the system date provided, number of systems 1607 is set to the number of systems 1345, last
group identifier 1608 is set to zero, data identifier 1609 is set to the new last data identifier
1349, and all data group counters 1610 through 1617 are each set to zero. Once instantiated a
record for the object is created in table rhrecdat 2105, in 4304.

If these processes complete without an error in 4305, the new reconciliation data
object 1601 is returned to the caller in 4307 and the process ends with step 4309. If,
however, an error occurs during the process then an error message is printed on the servers
console 4306, null is returned to the caller in 4308, and the process terminates at step 4309.

Figure 44 describes the add data group process. This process is used to create new
data group objects 1661 for individual reconciliation items 1701 as required by the system
matching processes of figures 40-42. The add data group process begins with receipt of a
method call containing reconciliation object 1341, reconciliation data object 1601, and the
reconciliation item object 1701, in 4401. The process then calls the reconciliation data
object’s 1601 add data group (adddatagrp) method passing the business date 1704 and system

date 1705 of the reconciliation item 1701. This call increments the last data group counter

90

WO 01/80054 PCT/US01/11961

1608, and the number of data groups counter 1617 of the reconciliation data object 1601, in
4402. The process then set the last business date 1605 to the business date provided if that
date is later than the current date in field 1605. On completing this the last system date field
1606 is set to the system date provided.

Using values from the parent object and the business date value provided the new data
group object 1661 is created in 4204. After creation the object instantiation process begins
by retrieving the related sequence generation object 1951 for the key value of “absdatgrpid”.
Then calling the object’s get sequence number (getseqnumber) routine which increments the
sequence number in the object by one and then returns the starting sequence number. This
value is then used to set the data group’s absolute data group identifier 1670. In this process,
client identifier 1662 is set to client identifier 1602, reconciliation identifier 1663 is set to
reconciliation identifier 1603, key identifier 1664 is set to key identifier 1604, group
identifier 1665 is set to last group identifier 1608, last business date 1666 is set to the
business date provided, last system date 1667 is set to last system date 1606, the number of
systems unmatched 1668 is set to number of systems 1607, group status 1669 is set to zero,
the notes field 1671 is set to null, the has error indicator 1672 is set to false, and the error
message field 1673 is set to null. Once instantiation is complete a record is created for the
object in table rhdatgrp 2109 and the record is returned ready for use in the initial process in
4405.

Using the newly created data group object, the number of system unmatched field
1668 is decremented by one in 4406. The process then continues by setting the group
identifier and absolute group identifier 1711, 1717 respectively, to the group identifier and
absolute group identifier, 1665 and 1670 respectively in 4407. Then the process sets item

status 1712 to “1” and match status 1713 to “MCH” and completes step 4408.

91

WO 01/80054 PCT/US01/11961

The system then checks if the data group 1661 is completely matched by looking at
the value of the number of S}‘rstems un-matched 1668 stored on the group object. If this value
is not zero in 4409 then the process moves to step 4410 in which it retrieves a list of all
reconciliation systems 1371 participating in the given reconciliation, using the reconciliation
object’s 1341 list reconciliation systems (listrecsyss) methqd in 4410.

Then as long the derived reconciliation system’s 1371 set is not empty, in step 4411,
the application gets the next object 1371 and performs the following set of tasks: 1) Checking
that the system identifier field 1374 is not equal the system identifier field 1707 and if the
values are not equal in 4412, the flow proceeds to step 4413; otherwise the flow returns to
step 4411.

Step 4413 uses the add system match queue (addsysmchque) method of the
reconciliation data object 1601 to return a system match queue object 1631 for the system
identifier 1707 of the current reconciliation system object. This process will simply return
the object 1631 if it exists or will create the object, instantiate it using information from its
parent object and the system identifier provided, and then return it. Using the system match
queue object’s 1631 add group match quene (addgrpmchque) method a group match queue
object 1641 is created using details of the parent object and the group identifier 1665, in
4414, This process results in a set of group match queue object 1641 being created to instruct
the application as to which source system have not yet provided an individual reconciliation
item 1701 for the new data group 1661. On completing this process the application proceeds
to step 4419 returning null to the caller.

If, however, the data group is completely matched in step 4409, the application
proceeds to step 4415, setting the reconciliation data objects data group counters 1611

through 1614 to reflect that one data group is pending reconciliation. Then the status of the

92

WO 01/80054 PCT/US01/11961

data group held in field 1669 is set to “1” indicating the group is fully matched pending
reconciliation 4416.
After completing this step, the system checks the reconciliation’s real-time setting

1350, and if this is true in 4417 the data group object 1661 is returned to the calling process
which will pass this object on for reconciliation in 4418. Otherwise the process returns nﬁll
to the call and leaves the user to complete the data group’s reconciliation process in 4419. If
any errors occur during this process they are trapped at step 4420 which will proceed to step
4421 generating a add data group exception back to the caller and terminating the process in
4422. If no errors occur, the process terminates at step 4422.

Figure 45 describes the reconciliation manager’s data reconciliation process.
This reconciliation process is used to determine if the individual reconciliation items 1701
and their related item compare elements 1741 may be considered equal based on
configuration information provided in the individual reconciliation’s 1341 reference library
information. This process performs its comparison and sets status indicators on related
objects, which are used to support the application’s reporting, status update, and other
processing and functionality. The reconciliation process is at the core of the application
flexibility and supports a wide range of features and steps in performing its data
reconciliation function. In summary, these steps may be comprised of the following: first,
receiving a call to reconcile the data of a particular group; second, retrieving the data groups
reference library objects which determine how the comparison process will be performed;
third, retrieving the complete set of data comparison attributes for the data group’s
reconciliation and iterating through each of the data comparisons performing the following
steps; fourth, retrieve the related data elements from the reconciliation items specifically for
the comparison; fifth, deriving a base value for comparison from the data elements; sixth,

deriving and comparing each derived value against the base value and setting the status of the

93

WO 01/80054 PCT/US01/11961

individual data elements; seventh, setting comparison status information for the compatrison;
and eighth, once all comparison’s have been performed setting the status information for the
data group and its related objects. This process is described in detail below along with many
of its related features and options.

The process begins with the receipt of a call to this method containing a data group
1661 which the system is attempting to reconcile. The éall may also contain the data group’s
related parent reconciliation data object 1601 and the reconciliation data object’s parent
reconciliation object 1341, in step 4501. The process checks the status of the data group to
ensure it can be reconciled. Ifthis group status field 1669 is not of the appropriate type, in
step 4502, the process prints a console message as shown in step 4531, and returns the data
group in step 4532.

If the data group is in the proper state for reconciliation, the process retrieves the data
groups related reference library objects as follows. First, check that the reconciliation object
1341 exists as a parameter in 4503. If the parameter does not exist, the process retrieves the
base object 1201 and uses the base object’s get client method to retrieve the client object
1211 for client identifier 1662, then uses the client object’s get reconciliation method to
retrieve reconciliation object 1341 for reconciliation identifier 1663, in 4504. Then the
application checks that the reconciliation data object 1601 parameter exists in 4505 and if it
does not the application uses the reconciliation object’s 1341 get reconciliation data
(getrecdat) method to retrieve the reconciliation data object 1601 for key identifier 1664, in
4506. The process then uses the data group’s 1661 list reconciliation items (listrecitems)
method to return the set of reconciliation item objects 1701 which belong to the individual
data group in 4507. These reconciliation items are placed into an in memory object for

retrieval during the remainder of the process and according to one embodiment, these

94

WO 01/80054 PCT/US01/11961

reconciliation items may be sorted into groups based on the individual items grouping key
values, in 4508.

The process then sets the initial status for the data group’s reconciliation items 1701
to reconciled in 4509 and retrieves the set of data compare attribute objects 1401 using the
reconciliation object’s (listreccmpatrib’s) method in 4510. The application then begins going
through the set of defined data combarc atribute objects 1401 and for each object performs
the following set of actions, in 4511.

As part of the processing loop described in 4511, first, a number of steps are used to
set the environment for the comparison (1) set a local variable indicating the comparison
reconciled successfully; (2) initialize a set of variables to store the computed comparison
values in 4512; (3) determine the data type of the comparison using comparison data type
(cmpdattype) 1406 in 4513.

Second, utilize a variety of potential methodologies a base comparison value is
computed. According to one embodiment, the base value is taken from the first
reconciliation item in the set of reconciliation items 1701. According to another
embodiment, the comparison type information and other setting on the data compare attribute
object 1401 may be used to determine the methodology for computing the base comparison
value. Exemplary methodologies may include, first system, primary system, most common
value, average, minimum, maximum, and/or grouping and combining related values based on
a group key value. In each of the embodiments and for each of the required reconciliation
items, the related item compare elements 1741 are retrieved using the reconciliation item’s
1701 get reconciliation item compare elements (getrecitememplmnt) method and the compare
identifier 1404. Then each of these comparison values is combined appropriately into the

required base value for comparison in 4514, 4515.

95

WO 01/80054 PCT/US01/11961

Third, the comparison type is selected utilizing for example the data type and other
option settings on the data compare attribute object 1401. One example could be a data type
of string and ignoring all character space 1407 and character case 1408 for the comparison.
In this instance, the application will remove all white space from strings before comparison
and will not consider character case when performing the string comparison. A second
example could be a data type of number and a tolerance type of absolute with a suggested
tolerance of “.05”. In this instance, the system would ensure the given value is not less than
the base value minus .05 and not greater then the base value plus .05, in 4516.

Fourth, in 4517, the process iterates through the reconciliation items 1701 performing
the following set of steps performing the following actions for each item which requires
comparison: (1) select the individual reconciliation item 1701, in 4518; (2) retrieve the
related item compare element 1741 using the reconciliation item’s 1701 get reconciliation
item compare elements (getrecitemcmplmnt) method and the compare identifier 1404, in
4519; (3) set the element’s comparison status (cmpstat) 1753 to indicate reconciled in 4520;
(4) retrieve the value from the appropriate compare element field 1749 through 1751, based
on the comparison type; (5) combine the value with the existing comparison value for the key
group (it should be noted that this can be done through a variety of options including
addition, averaging, and concatenation in 4521); (6) if the application is not in key group

mode or, this is the last reconciliation item in the set or, the next reconciliation item belongs
to a different key group in 4522 then proceed to step 4523 otherwise the application goes
back to step 4517.

Five, in 4523, using the appropriate comparison method, the computed value is
compared against the base value and, if the values are not equal the process sets the local
variable for the group to not reconciled, sets the local variable for the individual comparison

to not reconciled, and if the comparison is set to track breaks at item compare element level,

96

WO 01/80054 PCT/US01/11961

sets each of the item compare element’s 1741 used to compute the compare value to have a
compare status (cmpstat) 1753 indicating not reconciled, in steps 4524, 4525. Then the
process resets the computed comparison values and returns to step 4517 to retrieve the next
set of items. If the values are equal, the process resets the computed comparison values and
proceeds directly to step 4517 and retrieves the next set of items.

After examining all reconciliation items 1701 for the related comparing, the system
goes from step 4517 to step 4526. In step 4526, the process adds, or sets, the data group
compare object 1691 to have a compare status (cmpstat) 1694 equal to the compaﬁson value
derived from the process in 4526. Then, if the individual comparison is not reconciled and
the comparison does not track breaks at tﬁe element level in 4527 then, the application will
retrieve all the related item compare elements 1741 and set their compare status (cmpstat)
fields 1753 indicating not reconciled in 4528. Once complete this process jumps to step 4511
to begin processing the next comparison attribute.

Once this process has been performed for each of the related data compare attribute
objects 1401, the system moves from step 4511 to step 4529. At this point, the process
updates the reconciliation data objects 1601 data group status counters reducing the number
of matched pending reconciliation data groups (noofinchpndrecdatgrps) 1612 by one, and
incrementing either number of reconciled with data breaks (noofrcldwthbrkdatgrps) or
number of reconciled with no data breaks (noofrcldnobrkdatgrps) counters by one based on
the derived reconciliation status of the group, in 4529. The process then set the status as
required on the data group 1661 in field group status (grpstat) 1669. Then, the process will
go through each of the related reconciliation item objects 1701 and set their individual item
status (itemstat) fields 1712, and match status (matchstat) fields 1713 to indicate the status of

the group either reconciled or data breaks in 4530.

97

WO 01/80054 PCT/US01/11961

At this point, the process has completed and the application returns the data group
1661 to the caller in 4532. If, however, an error occurred during the processing 4533, the
application will throw a reconcile data group exception back to the caller as indicated by step
4534. In either case, the process terminates at step 4535.

Figures 46-48 describe the different facilities available in the architecture for feeding
data messages from external sources into the given application. For each of these data
message feeds utilize the common processes single reconciliation message process of figure
32 is used to ultimately transmit the given data message for processing. Specifically, figure
46 details the options available for a client or source system application to integrate their
processes directly with the application’s single reconciliation message process of figure 32.
In this regard, they would perform the following tasks with their process/system. Their
system must maintain a connection to the application web server and have access to the
single reconciliation message process of figure 32. Once access is achieved their process can
instantiate a copy of the single reconciliation message process object in 4601 and as long as
their system has data messages to submit, it can continue calling the following set of
processes in 4602. The client application calls the message process which will submit the
data for processing, running the required processes as indicated in figure 32. Upon
completion of processing, the message process of figure 32 returns a reconciliation item
object 1701 to the caller in 4603. The calling application can then use this object and other
related objects, such as the item compare elements 1741, and the related data group object
1661 to retrieve and update information or correction data from the application’s
reconciliation process within their own system in 4604. If during this process any errors
occur, the single reconciliation message process will return an exception to the caller and the
caller can manage this as indicated in steps 4605-4606. Otherwise, the caller can terminate

the connection to the process single reconciliation message process in 4607.

98

WO 01/80054 PCT/US01/11961

Figure 47 details the application’s facility for retrieving data directly from, and
applying updates directly to, the data source tables/views specified by the reconciliation
configuration information. This process is initiated by a configuration based timer or
alternatively a user request from the application’s user interface in 4701. On receiving the
request, the process uses base object’s 1201 get client method to retrieve the related client
object 1211 for the reconciliation system object 1371, passed as a parameter to the call.
Using the client object’s header detail information 1220, the process constructs a header
record for use at the beginning of each data record that is subsequently submitted in 4702.
The process uses the reconciliation system object’s 1371 get reconciliation system method to
return a list of the field identifier required to submit a data record for this reconciliation
system 1371. Using this information, an in-memory array of the required field identifiers is
created in 4703. Then, information is retrieved and set to indicate the fields that should be
updated with related reference value information if a data break occurs during reconciliation
in 4704. The process then retrieves the reconciliation system’s configuration information
specifying the fields to update the related table or view with relevant status and error
information in 4705. Then, in a series of steps, the process instantiates a copy of the
reconciliation message process of figure 32, establishes a database connection (such as
JDBC) through the web server to the reconciliation systems’ related database, and retrieves
the data set of records from the view or table, in 4706, 4707, 4708. The process then goes
through each record in the data set and updates the headers business date if the business date
is available on the record, extracts the data for each field identifier in the in memory array of
field identifiers, and combining this into an XML base string format for submission in 4709,
4710, 4711. Then the process single message process of figure 32 is used to submit the
record for processing with the result being returned in the form of a reconciliation item 1701,

in 4712. The reconciliation item 1701 is then used to retrieve the processes status and error

99

WO 01/80054 PCT/US01/11961

information and use this to update the data sets related status and error fields in 4713. If the
returned reconciliation item contains a data break, as indicated by the item status 1712, the
process begins a series of steps which calculate and apply updated correction values to the
original source record in the data set in 4714. This process uses the reconciliation item object
1701 to obtain the set or related item compare elements 1741 which contain data breaks as
indicated by the compare status (cmpstat) field 1753 and then resets a computed update
statement variable for creating the related update command in 4715, 4716. For‘ each item
compare element, the source field identifiers are derived from compare field identifiers
(cmpfldids) 1746 and for each field identifier which requires updating an update value is
computed using the compare reference value (cmprefval) 1747 and the compare element’s
update formula in 4717, 4720, 4721, 4722, 4723, if the update value is computed then the
information is appended to the update variable in 4724. Once complete, the process moves to
step 4718 where it will either apply the update if it exists 4719 and then return to step 4709 to
continue processing any remaining data records in 4709. On completing all records, the
process checks for processing errors in 4725. If any processing errors exist, the process
moves to step 4726 to report on the error and terminated with step 4727. Alternatively the
process simply ends with step 4727.

Figure 48 describes a combination of processes for managing and working with file
reader objects 1901 which are used to process files containing data records submitted for
processing on their related application server. These facilities are accessible by user through
the application interface and the utilities and file reader menu options in 4801. In selecting
this option, a set of related adapter programs 1158 through 1161 are used to retrieve and
display a list of file reader objects for the users client object in 4802. At this point, a user
may choose to add a new file reader or can select one from the list as indicated in steps 4803,

4804.

100

WO 01/80054 PCT/US01/11961

On selecting a reader, the user has a number of options including the ability to delete,
start, stop, or upload a file for the reader object in steps 4805-4808, respectively. The delete
option simply removes the selected reader from the application. The start option creates a
system timer to continuously run a process that looks for, and processes, files as they arrive in
the reader’s input directory 1904, in 4809. After being started, this reader process will
execute periodically (based on a predetermined time period), until it is stopped by the user in
4807, 4810, or a terminal reader error occurs in 4818, or the application server is shut down.
The reader process checks that the input and output directories exist and can be accessed by
the process then obtains a list of the files in the nput directory in 4811-4812. For each file in
the list, the process checks the process being shut down by a user, renames the active file to
indicate it is being processed, and opens the file to begin processing its messages in 4813-
4814,

Next, for each message in the file, assuming one message per line, the data is read and
submitted for processing, usi1lé a call to the process single message process of figure 32, in
steps 4815-4816. If any errors occur during this process, they are handled by the routines
exception management functions in 4817-4818 and potentially tracked on both the file level
and the reconciliation item 1701 level. If the errors are terminal for the file reader the process
ends with step 4819 otherwise it would continue with either the next message 4815 or file in
4813. If no errors occur, the application processes all messages then moves to step 4813 to
get the next file and when all files are complete moves to step 4817 and terminates at step
4819, The upload file process is used by the application to provide a facility for a user to
select a file from their local environment via the application interface and submit this for
processing on the selected file reader in 4808.

Figure 49 describes the rangé of features which exist in the application for users to

retrieve, review, and update the data submitted and processed for their related reconciliations.

101

WO 01/80054 PCT/US01/11961

This functionality is accessible to a user of the application via the user interface and the
processed data and reconciliation results menu options in 4901. Selecting these options will
utilize the interface adapter programs 1139-1145 to provide a number of functions. On initial
selection, the user interface is displayed for the first reconciliation in the list of user
reconciliation and the default selection criteria of the related adapter program in 4902. At
any point, the user can reset the selection option and after making the necessary changes, the
screen will be refreshed. Some of the selection options provided include the ability to select
areconciliation and for the reconciliation set which data group types are desired, unmatched,
matched pending reconciliation, reconciled with data breaks, reconciled with no data breaks,
manually closed, and manually ungrouped. Also included is the ability to filter data groups
on date range either by system processing date or by business date. " A further option allows a
user to specify which data comparisons will be looked at for any of the reconciled data
groups in 4903. On completing a selection, data group and related object information is
retrieved and presented to the user in 4904. The system then gives a range of options to the
user. For example, the user can initiate the reconciliation process for the selected
reconciliation object 1341 which will retrieve all data group objects which are pending
reconciliation and will go through the set of object, submitting each object for reconciliation
using the reconcile process described in figure 45, in 4905. The user can select a given data
group in 4906 by highlighting the group on the screen at which point the system provides a
number of options, such as the ability to double click on a group open a new window
displaying information regarding the data group 1661, the data groups related queue
information 1641, the group’s reconciliation items 1701 and related item compare and
information elements 1731, 1741. In addition, the ability to manually close a data group and
prevent it from being used in further matching or reconciliation is provided, which is

achieved by pre-determined key stroke(s). The process removes all of the group’s related

102

WO 01/80054 PCT/US01/11961

queue objects 1641 and data group compare objects 1691, then the appropriate status counter
for the parent reconciliation data object is updated 1601, 1610 - 1616 and the status of the
group status (grpstat) 1669 is changed. Another option relates to the ability to reset a data
group which will bring it back to either the unmatched state or the matched pending
reconciliation state, which is achieved by pre-determined key stroke(s). The process runs the
close group process on the data group, resets the business and system dates 1666, 1667,
creates any required system match queue and group match queue objects for the related list of
reconciliation system object 1371 not represent by reconciliation items 1701 currently
allocated to the data group, reset status indicators of the reconciliation data object 1601 and
the sets the data group’s group status (grpstat) 1669. Furthermore, the ability to submit an
individual data group for reconciliation by pre-determined key stroke(s) is provided. This
process closes the data group, resets the data group,Aand if the status of the group is then
matched pending reconciliatioﬁ the group is submitted for reconciliation using the reconcile
process of figure of figure 47.

As another feature, the ability to move a data group into the online archive is
provided, which is achieved by a pre-determined key stroke(s). This process uses the move
data group to archive process of figure 53 for transfer the selected data group 1601 to the
archive. Ifthe user has selected a combination data group in 4906 and a reconciliation item
in 4907, then the application provides the ability to remove the selected item from its current
data group and place it in the selected data group, which is achieved by pre-determined key
stroke(s). This move reconciliation item processv will close each of the data groups, set the
reconciliation items related group identifiers 1711, 1717, to the new data group identifiers
1665, 1670, reset each of the data groups, and delete the data group from which the item was
removed if that group contains no other reconciliation items 1701 in 4911. On selecting only

areconciliation item the system provides the ability to move the selected item to a system

103 l

WO 01/80054 PCT/US01/11961

managed data group called the ungroup data group. This functionality is used to pull
individual items out of the application’s processing structure, which is achieved by pre-
determined key stroke(s). The un-group reconciliation item process closes the data group,
gets or creates the reconciliation data object 1601 for the reconciliation item’s match key
value 1710, gets or creates the special un-group data group for the reconciliation data object,
set reconciliation items related group identifiers 1711, 1717, to the new data group identifiers
1665, 1670, reset each the original data group, and delete the data group which the item was
removed from if that group contains no other reconciliation items 1701 in 4910. Other core
functionality provided by this interface is the ability to set reference or correction values for
any set of item compare elements 1741 which are pért of an individual comparison and are in
a state which indicates a data break.

In setting reference values for a given data group comparison, the user can either
select from the range of values provided by the related compare elements, achieved by double
clicking on the desired data point, or can specify their own value by double clicking on group
reference value bar below the related comparison and entering the value. The user can set
reference values for the data group retrieved by the interface and then save these
modifications by selecting the set reference values menu option. On selecting this set
reference values option, the process goes through the list of reference values provided,
retrieves the related reconciliation data object 1601, retrieves the related data group object
1661, and calls the data group’s set reference values (setrefvals) process. The set reference
values (setrefvals) process then retrieves the set of reconciliation items 1701, and for each of
these items gets the item compare element 1741, for the comparison identifier provided sets
the comparison reference value (cmprefval) 1747 to the value provided; if a data type is
provided, the process compares the converted value to the correct value from fields 1749 —

1751. If the values are equal, then the comparison status (cmpstat) 1753 is set to reconciled.

104

WO 01/80054 PCT/US01/11961

If the values are not equal or are not of a type that can be compared or converted, the status is
set as not reconciled in 4908.

Figure 50 describes the range of functionality which is available to the user for |
creating reports, data extractiqns, and applying correction updates back to the individual
source system of a reconciliation. This functionality is accessible to a user of the system via
the user interface and the processed data and reconciliation results menu options in 5001.
Selecting these options requires utilization of the interface adapter programs 1146 — 1150.

On initial selection, the user interface is display for the first reconciliation in the list of user
reconciliation and this first system of the selected reconciliation and the default selection
criteria of the related adapter program in 5002. At any point, the user can reset the selection
option, and after making changes the screen will be refreshed. Some of the selection options
provided include the ability to select a reconciliation and a system, and for this combination
set the data group types that are desired, unmatched, matched pending reconciliation,
reconciled with data breaks, reconciled with no data breaks, manually closed, and/or
manually ungrouped. Also included, is the ability to filter data groups on date range either by
system processing date or by a business date. A further option allows a user to specify which
data comparisons will be looked at for any of the reconciled data groups in 5003. On
completing a selection, data group and related object information is retrieved and presented to
the user in 5004. The system then gives a few options to the user: (a) the user can print a
report of the data presented by the current selection in 5005; (b) the user can create an extract
file for the data presented by the current selection, which allows the data file to be created in
HTML or EXCEL format in 5006; and (c) the user can choose to apply the updates for the
selected reconciliation system 1371, in 5007. This update process uses the database and
table/view information provided in reconciliation system object 1371 to connect to the data

source and format and apply a series of status and correction updates to the specified

105

WO 01/80054 PCT/US01/11961

table/view. Here the process of creating and applying status and correction updates is
achieved in a similar manner as the related process described in figure 47.

Figure 51 describes a range of features which support the modification of client
related details through the application’s user interface. These features are accessible to users
of the application via the file and client details menu options in 5201. On selecting these
options, the system utilizes the interface programs 1105 — 1111 to retrieve the client object
1211 for the user and display the current primary and secondary information for the related
client in 5102. The user is then provided with a plurality of options: (a) the users may modify
the name of the client in 5103; (b) the user may change the client header detail string which is
used at the beginning of each data input template record to identify the client, specify the user
identifier used for data feeds, and provide formatting of other required system information
such as business date in 5104; (c) the use may modify the client side directories which are
used to determine where on a client’s PC data is sent to or retrieved from when interacting
with the application server in 5105; and (d) the user may modify the server side directories
which are used to determine where on server data is sent to or retrieved from for the client in
5106.

Figure 52 describes the range of features that are available for the user to manage the
creation and deletion of users and the configuration of users individual security profiles and
environment preferences. These features are accessible through the application’s user
interface by selecting the file and users menu options in 5201. On making these selections,
the system retrieves the client object for the user’s session and uses this client object to obtain
and display the set of related user objects 1231, in 5202. The interface provides the ability
for the active user of the system to create new application users, assigning a user identifier
and a password in 5203. On creating a user, the display will be refreshed and the new user

name is displayed along with any of the client object’s 1211 other application users.

106

WO 01/80054 PCT/US01/11961

The interface enables the active user to select a given application user by clicking on
it in 5204. On user selection, the security role and user preference information is displayed
for the related user. A set of features are made available: a) the active user may delete the
selected user in 5205, b) the active user may modify the password of the selected user in
5206, c) the active user may change the security profile for the selected user by first selecting
an access level (such as none, read only, small modification deletion, large modification
deletion) for each of the different system component. Some system components available
include archive, client, data, reference library, and reports. After making all selections the
active user must choose the save security profile menu option which uses a method in the
user object 1231 to retrieve or create a user security role object 1241 and set the related
access type stored in fields 1245 — 1248 for each of the system components specified. The
security role objects are used throughout the system in conjunction with GUI item access
requirement object 1261 to validate the ability of users to perform individual tasks in the
system. In cases where a user does not have the required access or better for a given task, the
system displays a security access alert message and denies the use of the ability to perform
the requested action in 5207. In addition, the active user can set the user preferences for the
selected user. Preferences may include the ability to set the default date format for the user in
5208.

Figure 53 illustrates the process to move an individual data group object 1661 and its
related data objects from the production environment to the applications online archive. This
process condenses all related objects and their individual state information in sets of XML
based string information, which is then stored as object for the entire data group. The process
begins on a call with the data group 1661 as a parameter in 5301. The process begins by
crcatiﬁg and instantiating a new archive data object 1801 to hold the related information. The

process uses the sequence generation object 1951 to assign the new archive data a sequence

107

WO 01/80054 PCT/US01/11961

number and store this value in archive group identifier (archgrpid) 1802. On instantiation the
following archive data object values are set to their related data group values which are
passed as parameters to the create call, client identifier 1803, reconciliation identifier 1804,
key identifier 1805, original group identifier 1806, last business date update 1807, last system
date update 1808, number of systems unmatched 1809, group status 1810, original absolute
group identifier 1811, original group notes 1812, original group has error 1813, the original
group error message 1814.

After instantiation, a record is created for the object in table rharchdata 2204 in 5302.
Once complete, the process retrieves the set of group match queue objects 1641 for the dafa
group 1661 and for each of these data groups objects, puts XML based headers around the
objects data which is retrieved and represent as a XML based string containing the field
identifiers and field values for each required field of the object. This computed string is then
appended to a string variable that will be saved after all group match queues are processed.
Once this iterative process is complete the archive data object GrpMchQueData 1815 is set to-
the computed string comprising this entire set of group match queue object data in 5303.
This extraction and compression process is then performed on the data group’s set of data
group compare objects 1691. And, once this iterative process is complete the archive data
object DatGrpCmpData 1816 is set to the computed string comprising this entire set of data
group compare objects object data in 5304. The process then initializes the minimum and
maximum business dates and system dates for the archive data object 1801,
recitemminbusdate 1817, recitemmaxbusdate 1818, recitemminsysdate 1819,
recitemmaxsysdate 1820 using the data group object’s 1661 Istbusdatupd 1666 and
Istsysdateupd 1667, in 5305. |

Next, a set of temporary string variables is created and each initialized to the empty

string. The set includes variables for computing archive strings for the set of, original data

108

WO 01/80054 PCT/US01/11961

record strings, reconciliation item archive strings, item information strings, and item compare
element strings in 5306. The data group’s reconciliation items 1701 are then retrieved and
for each the following processes are completed. First, the archive groups minimum and
maximum business dates are adjusted based on the items busdate 1704 and sysdate 1705, in
5309. Second, the item original text string, item 1703 is enclosed in XML headers and
appended to the variable for this data in 5310. Third, the reconciliation items archive string is
retrieved, using the item’s toarchstring method, enclosed in XML headers and appended to
the related variable, in 5311. Fourth, the set of related item information element’s 1731 is
retrieved and each of the objects is converted to an archive string, enclosed in XML headers.
When the entire set has been processed the resulting string is enclosed in a further set of
XML headers indicating which reconciliation item the data belongs to. Then this entire string
is appended to the related variable in 5312. Fifth, the set of related item comparison
element’s 1741 is ‘retrieved and each of the objects is converted to an archive string, enclosed
in XML headers. When the entire set has been processed, the resulting string is enclosed in a
further set of XML headers indicating which reconciliation item the data belongs to. Then
this entire string is appended to the related variable in 5313. Once all reconciliation items
1701 have béen processed the recitemorigtext 1821 is set using the related computed string
value in 5314, the recitemdata 1822 is set using the related computed string in 5315, the
reciteminflmntdata 1823 is set using the related computed string in 5316, and the
recitememplmntdata is set using its related computed string in 5317. On completing this
process the data group object 1661 is deleted from the system which deletes all related child
objects as indicated in figure 3116 as shown in ﬁgﬁre 31,1in 5318. At step 5319, if no errors
have occurred then the process ends with step 5321; otherwise, an exception is thrown in step

5320 and the effects of the entire process are reversed.

109

WO 01/80054 PCT/US01/11961

Figure 54 describes the process for restoring an archive data group 1801 from the
application’s online archive back to the production environment. This process begins with
the receipt of the related call containing the identifier of the archive data group object 1801,
in 5401. The process then retrieves the archive data object 1801 for the identifier, the base
object 1201 for the application; the client object 1211 for the archive data object’s client
identifier 1803, the reconciliation object 1341 for reconciliation identifier 1804, in 5402. The
reconciliation data object 1801 is retrieved or created using the key identifier 1805 and other
related information from the archive data object 1801, in 5403. A new data group object
1661 is added to the reconciliation data object 1601 and in a series of calls the new data
group’s notes field 1671, has error field 1672, error message field 1673, number of systems
unmatched (noossysunmched) 1668, group stat (grpstat) 1669, each have their values set
using the related archive data object variables in 5404, 5405.

The restore from archive process increments the correct status counter on the
reconciliation data object 1601, one of the fields 1610 — 1616, the selection of which is based
on the group status (grpstat) 1669, in 5406. The process retrieves the data group compare
data (datgrpcmpdata) 1816 and for each sub record in this string, a data group compare object
1691 is added to the data group with the appropriate compare identifier 1693 and compare
status 1694 in 5407. Then, in a series of calls, the process will retrieve the set of
reconciliation item original text stings 1821, reconciliation item data 1822, reconciliation
item compare element reco;ds 1823, and reconciliation item information records 1824, in
5408. The process then breaks down each of these strings using an internal XML parse
routine and for each reconciliation original text string, creates a new reconciliation item 1701
for each string, set the field values of the item using the corresponding reconciliation item
data, creates a compare elements 1741 for each of the items corresponding compare data

strings, and creates an information element 1731 for each of the items corresponding

110

WO 01/80054 PCT/US01/11961

information data strings 5409-5412. During this process, the group identifiers are updated on
each of the reconciliation items 1701 using the new data group’s identifier values 1665, 1670
and the system dates for both the reconciliation data object 1601 and the data group object
1661 are updated. After processing all reconciliation item sets, the application restores the
set of system match queue objects 1631 and the set of group match queue objects 1641 from
the related archive string’s grpmchquedata 1815. This is achieved by using the reconciliation
data object 1601 to retrieve or create a system match queue 1631 for each of the system
identifiers in the string and then for each system match queue using the system match queue
1631 to add the group match queue object 1641 for the new data group object 1661, in 5413.
After successfully completing these steps, the archive data object 1801 is deleted form the
application in‘5414 and if no errors have occurred in step 5415, the process ends with step
5417. If any errors do occur during the process, a restore from archive exception is thrown
back to the caller in 5416, the effects of the process are reversed, and the process terminates
with step 5417.

Figure 55a-b describes range of features available through the applications user
interface for managing both archive processing and archive data. This figure is divided into
two sections, each of which is accessible through related screens in the application’s user
interface. In figure 55a, in step 5501, the process of utilizing functionality for running the
archive process for selected reconciliation begins. This facility is accessible through the
utilities menu and the archive options menu in 5501. The application utilizes the adapter
program 1162 — 1164 to retrieve and display the set of archive move control objects 1521 for
the related client object 1211, in 5502. On completing the display process, the user may
select a given control and initiate its archive data process. The archive data process retrieves
the control objects archive move status objects 1541 and uses these in conjunction with the

derived business or system cutoff date to retrieve a set of data group objects 1661, which it

111

WO 01/80054 PCT/US01/11961

will attempt to archive. For each object in the set, the process calls the move data group to
archive process of figure 53. Once all data groups in the set are removed, the process reviews
the set of reconciliation data objects 1601 for the reconciliation and deletes any of these
objects having no remaining child data group objects, in 5503.

In Figure 55b, step 5504 begins the process of utilizing the applications features for
reviewing and restoring the systems archived data groups. These features are accessible to
client via the processed data and data archive menu options. Selecting these options will
utilize the interface adapter programs 1151 — 1155 to provide the following set of options.

On initial selection, the user interface is displayed for the first reconciliation in the list of user
reconciliation and the default selection criteria of the related adapter program, in 5505. At
any point, the user can reset selection option after making changes the screen will be
refreshed. Some of the selectioﬁ options provided include the ability to select a reconciliation
and set which data group types are desired, unmatched, matched pending reconciliation,
reconciled with data breaks, reconciled with no data breaks, manually closed, and manually
ungrouped. Also included, is the ability to filter data groups on date range either by system
processing date or by business date in 5506. On completing a selection, the related archive
data objects 2001 are retrieved and presented to the user in 5507. The system then gives a
number of options: a) the user can double click on an archive data objects in display all its
related details in a separate popup window in 5508, b) the user may restore a group to
production by pre-determined key stroke(s), which will then pass the selected group to the
restore group from archive process 5400, in 5509.

Figurq 56 describes the range of error management facilities available through the
applications user interface. These features are accessible to a client via the processed data
and data processing errors mcﬁu options. Selecting these options will utilize the interface

adapter programs 1156 — 1157 to provide the following set of options in 5601. On initial

112

WO 01/80054 PCT/US01/11961

selection, the user interface is displayed for the first reconciliation in the list of user
reconciliation and the default selection criteria of the related adapter program in 5602. At
any point, the user can reset selection option and after making changes the screen will be
refreshed. Some of the selection options provided include the ability to select a reconciliation
or all reconciliations. Also included is the ability to filter data groups on date range in 5603.
On completing a selection the related data processing error objects 1921 are retrieved and
presented to the user in 5604. The application then gives a number of options: a) the user can
clear the related errors deleting these objects from the system in 5605, b) the user can retrieve
the set of related objects by double clinking on the error in 5606, ¢) the user can execute a
range of reprocessing options for the related objects. The specific options available depend
on the iﬁdividual object type. For example if the error is caused by a reconciliation item 1701
and its decomposition the user could attempt to reprocess the item beginning with
decomposition process in 5607.

A second embodiment of the object architecture is a risk management system for
monitoring exposure on open positions. Implementing the risk management system in the
new architecture involves: first, setting up a product master for the instruments to be tracked;
second, builc‘ling a set of configurable exposure objects to determine which products go into
the exposure calculation, what fields of what products are used for the calculation, and what
the precise details of the calculation are. With this complete, an algorithm is constructcgi to
interpret the configuration objects, perform the business function, and return the results into
the environment. User interface, data storage, and report objects are then constructed around
the configuration objects for each of exposure types defined in the system.

In summary, the pfesent invention is a flexible multi-tier object architecture for
supporting the processing requirements of a set of defined business functions. The

architecture is unique in the automated flexibility and configuration it provides. Specific

113

WO 01/80054 PCT/US01/11961

applications of the architecture are targeted at generic or high-level business processes, such
as data reconciliation, position management, and/or risk management. For each of the target
business function an independent application is provided which supports the automation of
the given function under varying conditions. The foundation of flexibility across the
architecture impacts every aspect of processing from data storage and display to the
fﬁnctioning of individual algorithms. One aspect of this flexibility is in the design of high-
level processes for performing generic tasks and the use of configuration objects to guide the
detailed implementation of a given task at run time.

The present invention uses advanced software techniques to construct each
application with the following set of characteristics: first, the application supports a well-
defined business function under all circumstances; second, the application supports variation
in the business function through configuration; third, the application provides seamless
integration with other systems while maintaining complete independence from other systems;
and fourth, allows the application’s availability over the Internet.

As discussed above, one embodiment of the present invention relates to the business
process of reconciliation. Reconciliation processing is the essential task of identifying and
tracking differences in the critical business data of an organization. This business function is
characterized by high level of consistency in the process with wide divergence in the
underlying business data. As noted above, some examples of this process include data
integrity management and cash/stock management. The reconciliation software of the
present invention provides support for the key processes of this business function while
supporting the required variation in the underlying data. The reconciliation software of the
present invention can, through configuration, perform new and different reconciliations

without re-development or redesign. The configuration of new reconciliations is done at the

114

WO 01/80054 PCT/US01/11961

business level and limits the amount of development time required to implement new
reconciliation.

In data reconciliation, the primary tasks are defining the data sets to reconcile. Then,
defining how the individual data records for any given data sets match together. Then, once a
set of records is matched, define how the individual data points of the records are compared.
In the present invention this process is supported by first, building a library of potential data
sources. Second, constructing a set of flexible reconciliation configuration objects for
determining which data sources match together and how the data elements are compared.
With this complete an algorithm is constructed to interpret the configuration objects, perform
the business process, and return the results into the environment. User interface, data storage,
and report objects are constructed around the configuration objects.

It is to be understood that the above description is only representative of illustrative
examples of embodiments and implementations. For the reader's convenience, the above
description has focused on a representative sample of all possible embodiments, a sample that
teaches the principles of the invention. Other embodiments may result from a different
combination of portions of different embodiments. The description has not attempted to
exhaustively enumerate all possible variations.

It should be recognized that the method and system of the present invention has many
applications, and that the present invention is not limited to the representative examples
disclosed herein. Alternate embodiments may not have been presented for a specific portion
of the invention. Some alternate embodiments may result from a different combination of
described portions, or other un-described alternate embodiments may be available for a
portion. This is not to be considered a disclaimer of those alternate embodiments, because
many of those un-described embodiments are within the literal scope of the following claims,

and others are equivalent.

115

WO 01/80054 PCT/US01/11961

It is to be further understood that the tasks described in the following claims can be
sequenced in many different orders to achieve the desired result. Thus, the scope of the
present invention covellrs conventionally known variations and modifications to the system
components and the method stepé described herein, as would be known by those skilled in the

art.

116

WO 01/80054 PCT/US01/11961

‘What is claimed is:

1. A method for performing a business function in an object architecture,

comprising:

utilizing configuration information for directing at least one process to
perform said business function;

utilizing a reference library for defining data external to the object
architecture and supporting said configuration information;

interfacing said at least one process associated with the object
- architecture with at least one in-memory object; and
utilizing at least one data storage object for preserving the data affected

by said at least one process.

2. The method of claim 1, wherein said reference library comprises at

least one business process configuration object for managing said configuration information.
3. The method of claim 2, wherein said reference library comprises at
least one data definition object for managing the definition of the data external to the object

architecture.

4. The method of claim 3, wherein said business process configuration

object directs said at least one process in conjunction with said data definition object.

5. The method of claim 4, wherein said data definition object is created

by specifying source information for said data.

117

WO 01/80054 PCT/US01/11961

6. A method for supporting requirements of a business function,
comprising:
creating a library of data source configuration objects;
constructing a plurality of flexible business function management
objects;

receiving data based on the configuration objects;

decomposing said data based on the configuration objects;
interpreting said data source configuration qu ects;

performing at least one business function on the received data; and

returning the results of the processed information.

7. A method for reconciling data in a computing system, comprising:

utilizing configuration information for directing at least one process to
perform reconciliation of data;

utilizing a reference library for defining data external to said
computing system and supporting said configuration information;

interfacing said at least one process associated with the computing
system with at least one in-memory object; and

utilizing at least one data storage object for preserving the data a‘ffected

by said at least one process.

8. The method of claim 7, wherein said reference library comprises at

least one business process configuration object for managing said configuration information.

118

WO 01/80054 PCT/US01/11961

9. The method of claim 8, wherein said reference library comprises at .
least one data definition object for managing the definition of the data external to the

computing system.

10. The method of claim 9, wherein said business process configuration

object directs said at least one process in conjunction with said data definition object.

11. The method of claim 10, wherein said data definition object is created

by specifying source information for said data.

12. A method for monitoring data integrity in a computing system, the
computing sy\stem having a plurality of data sources, comprising:
analyzing data from said plurality of data sources;
configuring the computing system to support data reconciliation for
said data, said configuring based on the data analysis; and
reconciling data from said plurality of data sources, said reconciling

dependent on information obtained during said configuring.

119

WO 01/80054 PCT/US01/11961

13. The method of claim 12, wherein said configuring comprises:
defining data characteristics for said plurality of data sources, said
characteristics allowing identification and interpretation of said data,
creating at least one data integrity control in accordance with said
analysis; and
configuring said at least one data integrity control, wherein said
configuring determines the data sources containing said data, matches said data between said

plurality of data sources, and compares individual data elements of the matched data.

14. The method of claim 13, wherein said reconciling comprises:
obtaining data from said plurality of data sources for said at least one
data integrity control; and
decomposing, matching, and identifying inconsistencies in said data by
utilizing said data characteristics, said data integrity control, and at least one system process

to obtain data reconciliation analysis for said data.

15. The method of claim 14, further comprising:
determining corrective instructions for said data reconciliation
analysis; and

utilizing information related to said corrective instructions.

120

WO 01/80054 PCT/US01/11961

16. The method of claim 15, wherein said configuring comprises:
configuring said at least one data integrity control for storing at least
one field of an identifier for linking data records in the system to related data records in said
plurality of data sources; and |
configuring said at least one data integrity control for updating said

information in said plurality of data sources.
17. The method of claim 16, wherein said utilizing comprises:
transmitting said information back to one of said plurality of data

SOources.

18. The method of claim 16, wherein said utilizing comprises:

transmitting said information back to an individual.

121

WO 01/80054

19.

PCT/US01/11961

A computing device comprising a computer readable medium having

computer readable code means embodied therein for supporting the process requirements for

data reconciliation, said computing device further comprising:

management objects;

means for creating a library of data source configuration objects;

means for constructing a plurality of flexible business function

means for receiving data based on the configuration objects;
means for decomposing said data based on the configuration objects;

means for interpreting said data source configuration objects;

means for performing at least one business function on the received

data; and

I

means for returning the results of the processed information.

122

WO 01/80054 PCT/US01/11961
20. A system for performing a business function in an object architecture,
comprising:
a, a memory unit; and
b. a processing unit disposed in communication with said memory unit,
said processing unit configured to:
utilize configuration information for directing at least one process to
perform said business function;
utilize a reference library for defining data external to the object
architecture and supporting said configuration information;
interface said at least one process associated with the object
architecture with at least one in-memory object; and
utilize at least one data storage object for preserving the data affected

by said at least one process.

21. The method of claim 20, wherein said reference library comprises at

least one business process configuration object for managing said configuration information.
22. The method of claim 21, wherein said reference library comprises at
least one data definition object for managing the definition of the data external to the object

architecture.

23. The method of claim 22, wherein said business process configuration

object directs said at least one process in conjunction with said data definition object.

123

WO 01/80054 PCT/US01/11961

24. The method of claim 23, wherein said data definition object is created

by specifying source information for said data.

25. A system for reconciling data in a computing system, comprising:
a. a memory unit; and
b. a processing unit disposed in communication with said memory unit,
said processing unit configured to:
utilize configuration information for directing at least one process to
perform reconciliation of data;
utilize a reference library for defining data external to said computing
system and supporting said configuration information;
interface said at least one process associated with the computing
system with at least one in-memory object; and
utilize at least one data storage object for preserving the data affected

by said at least one process.

26. The method of claim 25, wherein said reference library comprises at

least one business process configuration object for managing said configuration information.

27. The method of claim 26, wherein said reference library comprises at
least one data definition object for managing the definition of the data external to the

computing system.

28. The method of claim 27, wherein said business process configuration

object directs said at least one process in conjunction with said data definition object.

124

WO 01/80054 PCT/US01/11961

29. The method of claim 28, wherein said data definition object is created

by specifying source information for said data.

30. A system for monitoring data integrity in a computing system, the
computing system having a plurality of data sources, comprising:
a. a memory unit; and
b. a processing unit disposed in communication with said memory unit,
said processing unit configured to:
analyze data from said plurality of data sources;
configure the computing system to support data reconciliation for said
data, said configuring based on the data analysis; and
reconcile data from said plurality of data sources, said reconciling

dependent on information obtained during said configuring.

31. The system of claim 30, wherein said processing unit is further

configured to:

define data characteristics for said plurality of data sources, said
characteristics allowing identification and interpretation of said data;

create at least one data integrity control in accordance with said
analysis; and

configure said at least one data integrity control, wherein said
configuring determines the data sources containing said data, matches said data between said

plurality of data sources, and compares individual data elements of the matched data.

125

WO 01/80054 PCT/US01/11961

32. The system of claim 31, wherein said processing unit is further
configured to:
obtain data from said plurality of data sources for said at least one data
integrity control; and
decompose, match, and identify inconsistencies in said data by
utilizing said data characteristics, said data integrity control, and at least one system process

to obtain data reconciliation analysis for said data.

33. The system of claim 32, Qherein said processing unit is further
configured to:
determine corrective instructions for said data reconciliation analysis;
and

utilize information related to said corrective instructions.

34. The system of claim 33, wherein said processing unit is further
configured to:
configure said at least one data integrity control for storing at least one
field of an identifier for linking data records in the system to related data records in said
plurality of data sources; and
| configure said at least one data integrity control for updating said

information in said plurality of data sources.

35. The system of claim 34, wherein said processing unit is further

configured to:

transmit said information back to one of said plurality of data sources.

126

WO 01/80054 PCT/US01/11961

36. The system of claim 34, wherein said processing unit is further
configured to:

transmit said information back to an individual.

37. A system for performing a business function in an object architecture,

comprising:

means for utilizing configuration information for directing at least one
process to perform said business function;

means for utilizing a reference library for defining data external to the
object architecture and supporting said configuration information;

means for interfacing said at least one process associated with the
object architecture with at least one in-memory object; and

means for utilizing at least one data storage object for preserving the

data affected by said at least one process.

38. The system of claim 37, wherein said reference library comprises at

least one business process configuration object for managing said configuration information.

39. The system of claim 38, wherein said reference library comprises at
least one data definition object for managing the definition of the data external to the object

architecture.

40. The system of claim 39, wherein said business process configuration

object directs said at least one process in conjunction with said data definition object.

127

WO 01/80054 PCT/US01/11961

41. The system of claim 40, wherein said data definition object is created

by specifying source information for said data.

42. A system for reconciling data in a computing system, comprising:

means for utilizing configuration information for directing at least one
process to perform reconciliation of data;

means for utilizing a reference library for defining data external to said
computing system and supporting said configuration information;

means for interfacing said at least one process associated with the
computing system with at least one in-memory object; and

| means for utilizing at least one data storage object for preserving the

data affected by said at least one process.

43. The system of claim 42, wherein said reference library comprises at

least one business process configuration object for managing said configuration information.
44. The system of claim 43, wherein said reference library comprises at
least one data definition object for managing the definition of the data external to the

computing system.

45. The system of claim 44, wherein said business process configuration

object directs said at least one process in conjunction with said data definition object.

128

WO 01/80054 PCT/US01/11961

46. The system of claim 45, wherein said data definition object is created

by specifying source information for said data.

47. A system for monitoring data integrity in a computing system, the
computing system having a plurality of data sources, comprising:
means for analyzing data from said plurality of data sources;
means for configuring the computing system to support data
reconciliation for said data, said configuring based on the data analysis; and
means for reconciling data from said plurality of data sources, said

reconciling dependent on information obtained during said configuring.

48. The system of claim 47, wherein said means for configuring the

computing system comprises:

means for defining data characteristics for said plurality of data
sources, séid characteristics allowing identification and interpretation of said data;

means for creating at least one data integrity control in accordance
with said analysis; and

means for configuring said at least one data integrity control, wherein
said configuring determines the data sources containing said data, matches said data between

said plurality of data sources, and compares individual data elements of the matched data.

129

WO 01/80054 PCT/US01/11961

49 The system of claim 31, wherein means for reconciling data comprises:
means for obtaining data from said plurality of data sources for said at
least one data integrity control; and
means for decomposing, matching, and identifying inconsistencies in
said data by utilizing said data characteristics, said data integrity control, and at least one

system process to obtain data reconciliation analysis for said data.

50. The system of claim 49, further comprising:
means for determining corrective instructions for said data
reconciliation analysis; and

means for utilizing information related to said corrective instructions.

51. The system of claim 50, wherein said means for configuring the
computing system further comprises:
means for configuring said at least one data integrity control for storing
at least one field of an identifier for linking data records in the system to related data records
in said plurality of data sources; and
means for configuring said at least one data integrity control for

updating said information in said plurality of data sources.
52. The system of claim 51, wherein said means for utilizing comprises:

means for transmitting said information back to one of said plurality of

data sources.

130

WO 01/80054 PCT/US01/11961

53. The system of claim 51, wherein said means for utilizing comprises:

means for transmitting said information back to an individual.

54. A computer device comprising a computer readable medium having
computer readable code means embodied therein for performing a business function in an
object architecture, said computer readable code means further comprising:

means for utilizing configuration information for directing at least one
process to perform said business function;

means for utilizing a reference library for defining data external to the
object architecture and supporting said configuration information;

means for interfacing said at least one process associated with the
object architecture with at least one in-memory object; and

means for utilizing at least one data storage object for preserving the

data affected by said at least one process.

55. The computer readable code means of claim 54, wherein said reference
library comprises at least one business process configuration object for managing said

configuration information.
56. The computer readable code means of claim 55, wherein said reference

library comprises at least one data definition object for managing the definition of the data

external to the object architecture.

131

WO 01/80054 PCT/US01/11961

57. The computer readable code means of claim 56, wherein said business
process configuration object directs said at least one process in conjunction with said data

definition object.

58. The computer readable code means of claim 57, wherein said data

definition object is created by specifying source information for said data.

59. A computer devicé comprising a computer readable medium having
computer readable code means embodied therein for reconciling data in a computing system,
said computer readable code means further comprising:

means for utilizing configuration information for directing at least one
process to perform reconciliation of data;

means for utilizing a reference library for defining data external to said
computing system and supporting said configuration information;

means for interfacing said at least one process associated with the
computing system with at least one in-memory object; and

means for utilizing at least one data storage object for preserving the

data affected by said at least one process.
60. The computer readable code means of claim 59, wherein said reference

library comprises at least one business process configuration object for managing said

configuration information.

132

WO 01/80054 PCT/US01/11961

61. The computer readable code means of claim 60, wherein said reference
library comprises at least one data definition object for managing the definition of the data

external to the computing system.

62. The computer readable code means of claim 61, wherein said business
process configuration object directs said at least one process in conjunction with said data

definition object.

63. The computer readable code means of claim 62, wherein said data

definition object is created by specifying source information for said data.

64. A computer device comprising a computer readable medium having
computer readable code means embodied therein for monitoring data integrity in a computing
system, the computing system having a plurality of data sources, said computer readable code
means further comprising:

means for analyzing data from said plurality of data sources;

means for configuring the computing system to support data
reconciliation for said data, said configuring based on the data analysis; and

means for reconciling data from said plurality of data sources, said

reconciling dependent on information obtained during said configuring.

133

WO 01/80054 PCT/US01/11961

65. The computer readable code means of claim 64, wherein said means

for configuring the computiné sysfem comprises:

means for defining data characteristics for said plurality of data
sources, said characteristics allowing identification and interpretation of said data;

means for creating at least one data integrity control in accordance
with said analysis; and

means for configuring said at least one data integrity control, wherein
said configuring determines the data sources containing said data, matches said data between

said plurality of data sources, and compares individual data elements of the matched data.

66. The computer readable code means of claim 65, wherein means for
reconciling data comprises:
means for obtaining data from said plurality of data sources for said at
least one data integrity control; and
means for decomposing, matching, and identifying inconsistencies in
said data by utilizing said data characteristics, said data integrity control, and at least one

system process to obtain data reconciliation analysis for said data.

67. The computer readable code means of claim 66, further comprising:
means for determining corrective instructions for said data
reconciliation analysis; and

means for utilizing information related to said corrective instructions.

134

WO 01/80054 PCT/US01/11961

68. The computer readable code means of claim 67, wherein said means
for configuring the computing system further comprises:
means for configuring said at least one data integrity control for storing
at least one field of an identifier for linking data records in the system to related data records
in said plurality of data sources; and
means for configuring said at least one data integrity control for

updating said information in said plurality of data sources.

69. The computer readable code means of claim 68, wherein said means
for utilizing comprises:
means for transmitting said information back to one of said plurality of

data sources.

70. The computer readable code means of claim 68, wherein said means

for utilizing comprises:

means for transmitting said information back to an individual.

135

WO 01/80054

71.
comprising:
a.

b.

PCT/US01/11961

A system for supporting requirements of a business function,

a memory unit; and

a processing unit disposed in communication with said memory unit,

said processing unit configured to:

72.

comprising:

management objects;

data; and

create a library of data source configuration objects;

construct a plurality of flexible business function management objects;
receive data based on the configuration objects;

decompose said data based on the configuration objects;

interpret said data source configuration objects;

perform at least one business ﬁmctibn on the received data; and

return the results of the processed information.

A system for supporting requirements of a business function,

means for creating a library of data source configuration objects;

means for constructing a plurality of flexible business function
means for receiving data based on the configuration objects;

means for decomposing said data based on the configuration objects;
means for interpreting said data source configuration objects;

means for performing at least one business function on the received

means for returning the results of the processed information.

136

WO 01/80054 PCT/US01/11961

73. A computer device comprising a computer readable medium having
computer readable code means embodied therein for supporting requirements of a business
function, said computer readable code means further comprising:

means for creating a library of data source configuration objects;

means for constructing a plurality of flexible business function
management objects;

means for receiving data based on the configuration objects;

means for decomposing said data based on the configuration objects;

means for interpreting said data source conﬁgul;ation objects;

means for performing at least one business function on the received
data; and

means for returning the results of the processed information.

74. A method for supporting the process requirements for data

reconciliation, comprising:

creating a library of data source configuration objects;

constructing a plurality of flexible business function management
objects;

receiving data based on the configuration objects;

decomposing said data based on the configuration objects;

interpreting said data source configuration objects;

performing at least one business function on the received data; and

returning the results of the processed information.

137

WO 01/80054

75.

PCT/US01/11961

A system for supporting the process requirements for data

reconciliation, comprising:

a.

b.

a memory unit; and

a processing unit disposed in communication with said memory unit,

said processing unit configured to:

76.

construct a plurality of flexible business function management objects;
receive data based on the configuration objects;

decompose said data based on the configuration objects;

interpret said data source configuration objects;

perform at least one business function on the received data; and

return the results of the processed information.

A system for supporting the process requirements for data

reconciliation, comprising:

management objects;

data; and

means for creating a library of data source configuration objects;

means for constructing a plurality of flexible business function
means for receiving data based on the configuration objects;

means for decomposing said data based on the configuration objects;
means for interpreting said data source configuration objects;

means for performing at least one business function on the received

means for returning the results of the processed information.

138

WO 01/80054 PCT/US01/11961
1/56

High level overview of sample objects in object architecture

General Configuration Objects 100 Automated Data Entry 110 User Interface 120
Client Client systems Data display features
User accounts
Reference Library 105
Data sources \ File/record handler R Data export features
' Data fields
Decomposition process Data reporting features
Reconciliation
definitions
Reconcxl}atlon Validation process
detail
[
Matching Engine 130
System generated objh
Memory Display .
abjecis Data objects objects Report objects

FI1G. 1

WO 01/80054
2/56

TECHNOLOGY BUILD

KEY TASKS FOR ARCHITECTING NEW BUSINESS SOLUTION

DEFINE GENERIC HIGH LEVEL PROCESSING
REQUIREMENTS

201

y
ARCHITECT AND BUILD CORE COMPONENTS
OF THE REFERENCE LIBRARY'S DATA
DEFINITION OBIECTS

202

ARCHITECT AND BUILD REFERENCE
LIBRARY'S CONFIGURATION OBJECTS FOR
PROCESSING, DATA STORAGE, AND USER

203

BUILD CORE PROCESSES

204

l

C END OF PROCESS > 205

FIG. 2

PCT/US01/11961

PCT/US01/11961

WO 01/80054

3/56

¢ DI4

m $S900¥d 40 ANH
<S0E

P0E

£0¢

[443

10€

HNISSHIOUI NOLLYIITddV DNITINOIANOD HOd SASYL ATA

1

AIANOIIH SI NOILVIDHLNI MO VIVA
JHIINOHY ANV NOLLVINDIANOD 40 NOILHTIdNOD NO

{

SLOFrg0 NOILVINONGD SASSTO0Ud
TVAATAIANI 404 STIVIHA STANOINOD ¥HSN

1

AgvIarT HONTIHITY YOI VIVA SENIAHA ddSN

f

IND HONOYHL WHLSAS
0L SLOFNNOD ¥HSN ANV dNIFS ST.INNOJOV ¥dsM

HNISSTIOUL NOLLVII'TIIY YIS

PCT/US01/11961

WO 01/80054

4/56

¥ "DIA

m\ SSHO0Y 40 ANG U
vop

NO GILI0dHE ANV ‘TRIOLS “HLAdNOD IV SLINSHA
ANV SHSSHO0Yd AT HHL OL qaSVd YV SLOHI€0 VIVd

I

204

NOILISOdIWODHA
ANV NOLLYAITVA ¥0d SIDHFO0 NOLLVANDIANOD
zop] NV YMEIAVTNOLLOVELSEY VIVAHONOYHL gHSNd VLVA

1

LVAOd ITIOV NV NI
SIWELSAS TVNIELXH WO¥ ILOVIIXE YO QHATHOHN S V.LVA

oy

ONISSEIOYd ANV NOILOVILX A/ LIIHDTI VIVA TVILINI
DNISSAIOWd VLVA CILVINOLAY

WO 01/80054

5/56

USER APPLICATION PROCESSING
STANDARD USER INTERACTION PROCESS

USER CONNECTS TO SYSTEM THROUGH GUIL

501

v

USER EXAMINES STATUS OF THEIR DATA IN THE SYSTEM

502

v

USER PERFORMS ADDITIONAL SYSTEM PROCESSES ON
THE SELECTED DATA

503

\4

USER MODIFIES AND MANIPULATES / CORRECTS DATA 504

IN THE SYSTEM

’

USER CREATES REPORTS AND EXTRACTS FOR THEIR
DATA

505

'

506
C END OF PROCESS D

FIG. 5

PCT/US01/11961

WO 01/80054 PCT/US01/11961
6/56

Reconciliation Manager business process overview

601 602

CONSTRUCT
¥] REFERENCE LIBRARY
[OF DATA ELEMENTS

RECEIVE & RECONCILE MANAGE/REPORT :
DATA FOR RESULT & CORRECTION B
3] BUSINESS OBJECTS {3 INSTRUCTIONS d

AREAS OF
DATA OVERLAP

604 605 606 607

650

USER INTERFACE
CORRECTION MANAGMENT
& REPORTING

USER INTERFACE
CORRECTION MANAEMENT
& REPORTING

ENTRY

FIG. 6b

PCT/US01/11961

WO 01/80054

7/56

S0L

SOL

YOoL

€0L

[4U2

10L

L DIA

m SSHDOAd HO AN U

SSADO¥ NOILVIOELNI MOTd VLVA HHL ALHTINOD
OL SALLITDVL NNLDFLHDIYV STZITLLNA NOILVZINVDUO

A

SIWHLSAS ADUNO0S INTIHIIIA
AHL NFZMIFT SNOILVITIONOOTY STINDIINOD dHSN

A

SIWHLSAS 3DUNOS JIHHL
A0 HOVH JO4 TV IVAY ST T HH.L SENIFHA dESN

f

ANVIdlrT HONTIHATT
NI SIWFLSAS HOYUNOS JO LHS ¥IHHL SHNIJHA YESN

f

11O HONOYHL WALSAS
OL SIDINNOD ¥dSN ANV dNLIS SI. LNNODOVY JHsN

SASSID0Ud NOLLVINOIANOD NOILVOI'TddV
TAODVNVIN NOLLVI'TIONOOTA

WO 01/80054 PCT/US01/11961
8/56

AUTOMATED DATA PROCESSING
RECONCILIATION MANAGER DATA RECEIPT/EXTRACTION AND PROCESSING

DATA IS RECEIVED OR EXTRACTED FROM EXTERNAL SYSTEMS IN 801
AN AGREED FORMAT

.

DATA PUSHED THROUGH DATA ABSTRACTION LAYER AND |802
CONFIGURATION OBJECTS FOR VALIDATION AND DECOMPOSITION

v

DATA OBJECTS ARE PASSED TO MATCH PROCESSES AND THEN ON [803
FOR RECONCILIATION

804
.END OF PROCESS

FIG. 8

WO 01/80054

9/56

USER APPLICATION PROCESSING
RECONCILIATION MANAGER USER INTERACTION PROCESS

901
USER CONNECTS TO SYSTEM THROUGH GUI

'

USER EXAMINES STATUS OF THEIR DATA IN THE SYSTEM

v

USER PERFORMS ADDITIONAL SYSTEM PROCESSES ON [203
THE SELECTED DATA

902

\4

USER MODIFIES AND MANIPULATES / CORRECTS DATA [%04
IN THE SYSTEM

'

USER CREATES REPORTS AND EXTRACTS FOR THEIR |703
DATA

906
C END OF PROCESS)

FIG. 9

PCT/US01/11961

PCT/US01/11961

WO 01/80054

10/56

0T "DI4

(L1} (1€L1)
$190[q0 WAWT $03[g0 WALAIF
aredwoy) way |eoneuncyur way
(1561) safgo uopaIouan 2awnbog (1761) s199{90 1017 Suissd01g RIRQ (1081) $12[q0 3Rq PAYITY (10L1) SPRGQ Wy UOREIPL0IIY
(1601) (o1 (iLyy) 280
s192fqQ @rdwoy swaAqQ enand) PidIg BRQ
dnoup wie@ oy duoin uoye U0y
n
(1e91) (ws1) (1081) 192090 G (18€1) 919°[40
cwwv mw_wao £1a40 99D spofqQ stmg pIs1 UOHERLOJUT uummaoﬂmwﬁ PRI A5
"9 ERd oIy WNSAY QAOA] ALY UOLEHiou0dy :a.«m—___ucuuuma uoRel|loucTy
(1zs) (10v1) i (1 a10Y
(11ED) WM
(1091) sw2lqQ =R VOHRIIO10SY s199[go [onued 193000 qUIV (12£1) 51930 WaISAS UONEIIOu09TY POt woishs ALNOAS
BACW IAIYITY oredwo)) eeqy - w=SN
(10g1) 5199090
¢
QMMWMMMMO (19£1) P30 uoneoUc0Ry vopiuIeQ (1sze)
. usks

—mbﬂmo gasn

(1121} SLOErd0 INJITD

TIAOW LDATTO ALOWTIW NE TFATT HOIH

WO 01/80054

ADAPTER PROGRAM NAME
1101 RHCLDISCLAIMFORM.ISP
1102 RHLOGIN.JSP

1103 RHMAIN.JSP

1104 RHMAINPROC.ISP

1105 RHCLCLIENTFORM.JSP

1106 RHCLIENTPRMDTLFORM.ISP
1107 RHCLIENTSECDTLFORM.ISP
1108 RECLIENTNAMEFORM.ISP
1109 RHCLIENTHEADERFORM.JSP
1110 RHCLEENTCLDIRSFORM.JSP
1111 RHCLIENTSRVDIRSFORM.JSP
1112 RHCLUSERFORM.JSP

1113 RHUSERFORM.JSP

1114 RHUSERPREFSFORM.JSP
1115 REUSERADDCHNGFORM.JSP
1115 REUSERSECROLEFORM.JSP
1117 RHCLSYSFORM.JSP

1118 RHSYSFORM.JSP

1119 RHSYSADDFORM.JSP

1120 RHSYSFLDFORM.ISP

1121 RHSYSFLDADDFORM.JSP
1122 RHCLRECFORM.JSP

1123 RHCLRECPROC.JSP

1124 RHRECFORM.JSP

1125 RHRECADDFORM.ISP

1126 RHRECSYSFORM ISP

1127 RHRECSYSADDFORM.JSP
1128 RHRECKEYFORM.JSP

1129 RHRECKEYADDFORM.JSP
1130 RHRECDATFORM.ISP

1131 RHRECDATCMPFORM.ISP
1132 RHRECDATFLDADDFORM.JSP
1133 RHRECINFFORM.JSP

1134 RHRECINFADDFORM,JSP
1135 RHRECARCHFORM.JSP

1136 RHRECARCHADDFORM JSP
1137 RHRECARCHSTATADDFORM.JSP
1138 RHRECOPTFORM.JSP

1139 RHCLDATFORM.JSP

1140 RHCLDATPROC.ISP

1141 REDATRECFORM.ISP

1142 REDATRECPROC.ISP

1143 RHGRPDETAILFORM.JSP
1144 RHDATFLTRFORM.ISP

1145 RHDATSTATFORM,JSF

1146 RHCLRPTFORM.ISP

1147 RHRPTEXPFORM.JSP

1148 RHRPTRECFORM.JSP

1149 RHRPTFLTRFORM.JSP

1150 RHRPTSTATFORM.ISP

1151 RHCLARCHFORM.ISP

1152 RADATARCHFORM.ISP

1153 RHDATARCHPROC.JSP

11/56

USER INTERFACE ADAPTER PROGRAMS

ADAPTER PROGRAM DESCRIPTION

PRODUCT LEGAL NOTICE DISPLAY INTERFACE

USER LOGIN PROGRAM INTERFACE

APPLICATION MAIN DISPLAY INTERFACE

APPLICATION MAIN PROGRAM INTERFACE

CLIENT OBIECT ADAPTER PROGRAMS

PRIMARY DETAILS DISPLAY / PROGRAM INTERFACE
SECONDARY DETAILS DISPLAY / PROGRAM INTERFACE
NAME MODIFICATION INTERFACE

HEADER MODIFICATION INTERFACE

CLIENT SIDE DIRECTORIES MODIFICATION INTERFACE
SERVER SIDE DIRECTQRIES MODIFICATION INTERFACE
USER AND USER SECURITY OBJECT ADAPTER PROGRAMS
USER DETAILS DISPLAY / PROGRAM INTERFACE

USER PREFERENCES DISPLAY / PROGRAM INTERFACE
USER ADD / MODIFICATION INTERFACE

USER SECURITY DISPLAY / CRANGE MODIFICATION INTERFACE
SYSTEM AND SYSTEM FIELD3 OBJECT ADAPTER PROGRAMS
SYSTEM DISFLAY / PROGRAM INTERFACE

SYSTEM ADD INTERFACE ,

SYSTEM FIELD DISPLAY / PROGRAM INTERFACE

SYSTEM FIELD ADD INTERFACE

PCT/US01/11961

RELATED IN MEMORY QBJECTS
NONE

CLIENT & USER
VARIED
VARIED

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

USER

USER

USER

USER

USER SECURITY ROLE
SYSTEM
SYSTEM
SYSTEM
SYSTEM FIELD
SYSTEM FIELD

RECONCILIATION AND RECONCILIATION SUB OBJECT ADAPTER PROGRAN RECONCILIATION

RECONCILIATION PROGRAM INTERFACE

RECONCILIATION DISPLAY / PROGRAM INTERFACE

RECONCILIATION ADD INTERFACE i
RECONCILIATION SYSTEM DISPLAY / PROGRAM INTERFACE
RECONCILIATION SYSTEM ADD INTERFACE

RECONCILIATION KEY FIELD DISPLAY / PROGRAM INTERFACE
RECONCILIATION KBY FIELD ADD INTERFACE

RECONCILIATION DATA DEFINITION DISPLAY / PROGRAM INTERFACE
RECONCILIATION DATA DEFINITION ADD / MODIFICATION INTERBACE
RECONCILIATION DATA FIELD ADD INTERFACE

RECONCILIATION INFORMATION DISPLAY / PROGRAM INTERFACE
RECONCILIATION INFORMATION ADD INTERFACE

RECONCILIATION ARCHIVE CONTROL DISPLAY / PROGRAM INTERFACE
RECONCILIATION ARCHIVE CONTROL ADD INTERFACE
RECONCILIATION ARCRIVE STATUS ADD INTERFACE
RECONCILIATION OPTIONS DISPLAY / PROGRAM INTERFACE
RECONCILIATION DATA ADAPTER PROGRAMS

RECONCILIATION DATA PROGRAM INTERFACE

RECONCILIATION DATA DISPLAY / PROGRAM INTERFACE
RECONCILIATION DATA PROGRAM INTERFACE

RECONCILIATION DATA DETALL DISPLAY INTERFACE
RECONCILIATION DATA FILTER INTERFACE

RECONCILIATION DATA STATUS DISPLAY INTERFACE
RECONCILIATION REPORT ADAPTER PROGRAMS

RECONCILIATION REPORT EXPORT PROGRAM INTERFACE
RECONCILIATION REPORT DISPLAY / FROGRAM INTERFACE

. RECONCILIATION REPORT FILTER INTERFACE

RECONCILIATION REPORT STATUS DISPLAY INTERFACE
ARCHIVE DATA ADAPTER PROGRAMS

ARCHIVE DATA DISPLAY INTERFACE

ARCHIVE DATA PROGRAM INTERFACE

1154 RHDATARCHGRPDETAILFORM. ISt ARCHIVE DATA DETAIL DISPLAY INTERFACE

1155 RHARCHSTATFORM.JSP

ARCHIVE DATA STATUS DISPLAY INTERFACE

1156 RHCLDATPROCERRORSFORM.JSP DATA PROCESSING ERRORS ADAPTER PROGRAMS

1157 RHDATPROCERRORSFORM.JSP
1158 RHCLFRDRFORM.JSP

1159 RHCLFRDRPROC.ISP

1160 RHFRDRFORM.JSP

1161 RHFRDRADDFORM.JSP

DATA PROCESSING ERRORS DISFLAY / PROGRAM INTERFACE
FILE READER ADAPTER PROGRAMS

FILE READER PROGRAM INTERFACE

FILE READER DISPLAY INTERFACE

FILE RBADER ADD INTERFACE

1162 RHCLARCHGRPMVECNTRFORM.J$ ARCHIVE MOVE CONTROL ADAPTER PROGRAMS
1163 RHCLARCHGRPMVECNTRPROC.JS ARCHIVE MOVE CONTROL PROGRAM INTERFACE
1164 RHARCHGRFMVECNTRFORM.JSP ARCHIVE MOVE CONTROL DISPLAY INTERFACE

1165 RHCLABOUTFORM.ISP

1166 RHJAVADOC.JSP

1167 RHCONTEXTHELPFORM.JSP
1168 RHCOMMONMETHODS.JSP
1169 RHCOMMONSCRIPTS.JSP
1170 RHCOMMONSTYLES.CSS

PRODUCT INFORMATION DISPLAY INTERFACE

SYSTEM DOCUMENTATION INTERFACE

APPLICATION CONTEXT HELP DISPLAY / PROGRAM INTERFACE
APPLICATION SHARED METHODS PROGRAM INTERFACE
APPLICATION SHARED SCRIPTS PROGRAM INTERFACE
APPLICATICN SHARED SCREEN FORMATTING CODES

FIG. 11

RECONCILIATION

RECONCILIATION

RECONCILIATION

RECONCILIATION SYSTEM
RECONCILJIATION §YSTEM
RECONCILIATION KEY FIELD
RECONCILIATION KEY FIELD
RECONCILIATION DATA COMPARE &DATA COMPARE ATRIB
RECONCILIATION DATA COMPARE &DATA COMPARE ATRIB
RECONCILIATION DATA FIELD
RECONCILIATION INFORMATION FIELD
RECONCILIATION INFORMATION FIELD
ARCHIVE MOVE CONTROL & ARCHIVE MOVE STATUS
ARCHIVE MOVE CONTROL

ARCHIVE MOVE STATUS
RECONCILIATION

RECONCILIATION DATA OBJECTS
RECONCILIATION DATA OBJECTS
RECONCILIATION DATA OBJECTS
RECONCILIATION DATA OBJECTS
RECONCILIATION DATA OBIECTS
RECONCILIATION DATA OBIECTS
RECONCILIATION DATA OBIECTS
RECONCILIATION DATA OBJECTS
RECONCILIATION DATA OBJECTS
RECONCILIATION DATA OBJECTS
RECONCILIATION DATA OBJECTS
RECONCILIATION DATA OBJECTS
ARCHIVE DATA

ARCHIVE DATA

ARCHIVE DATA

ARCHIVE DATA

ARCHIVE DATA

DATA PROCESSING ERRORS

DATA PROCESSING ERRORS

FILE READER

FILE READER

FILE READER

FILE READER

ARCHIVE MOVE CONTROL

ARCHIVE MOVE CONTROL

ARCHIVE MOVE CONTROL

NONE

NONE

CONTEXT HELP

VARIED

NONE

NONE

PCT/US01/11961

WO 01/80054

12/56

AE|

bayoagoovaIN dmogysis arueiy QrApogdsy
19¢1
£9¢l y9cL €921 [£248 IRARTIINOIT STA00V AL D
drmopsAs
15¢1
sl INEROJAOT WAISXS
1PaponaT | [PAPONTS Amopeay SUON dmopsds Q981 ams
el
8¥21 L¥Tl o¥el [341 Lzl G4 Wil TTOY XITHMDES 44871
JBHLIOA31E(] and M0 aresl
2 1€21
9€Z1 SETt 14748 €ETE [£x41 RiE 1Y
Nawepeel fn@admoals | BEpuduiarg | JEAGNOID sqndugdy TOISISA anyesu] SWENID am
Tl
144 6121 :3148 Liet 9ICI Siet viel {1544 [A%43 INATID
UOISIOA qnresuy
101
voet £0CL ot1 asvd

SLDAFF0 ALIANDAS ANV “WASN ‘INATTD ‘ASYE XJOWAW NI

PCT/US01/11961

WO 01/80054

13/56

¢l Dld

adAxpId S04A9Y Pl asAs arsd ano

18€1

LBEL 98¢€1 S8el PecT £8¢1 8¢€1 TTHR XTI NOILVITIONODEd

osenudy sordgusy qrsis sy ano

TLEl

SLET PLEL €LE1 TLET WHISAS NOILVTTIONODOHE
9SEL Ss¢1 bSel €eet (4534 1SE1
sovdgAopmsy oseD)Ka3us[srequmseT | sumooN | soeideyproosy |eoeideydnorp

W [eoYosy anese1 i passasorgsdin aorduro) Sunmmy SASIOON 952(199Y ansg ano

¥

(331 6vel 8PEl Lyel 5431 SpveEl PhEl €pel wel NOILVITIONOJ=d
2dAIPIA
Teel
TEEL AIXL TEE SAS

JeLIOAP]S adA1p]a amwid a@sis ano

1rel

91¢1 s1et [4118 1541 TIEL TTII WAISXS

SteISSES 2s2(s4S asis an

Toel

90¢€1 S0€T HO¢T £0¢T Toel NOTRIFAT WHLSAS

SIDACAO XAVHAIT IONTHHITE XHOWTIA NI

PCT/US01/11961

WO 01/80054

14/56

v1 DId

1248

T9vl

Tpyl

1eyl

144!

10v1

odArprL sogied aiigks qdw) ars4s aray amn
8L¥T LLYT (744 17248 Lyl €LY (7% 4
udodw)
4248
udpdury {odLreqdw) | soedgusy adw) arsis anay aimn
(3241 344! Lol 9pvl Syt k442! 344! (4441
adA1augrordur)
Terl
ad4 1dupdur)
p449)
uuryyoldu) | adL 10110 duy (arsdguugduy) adA ydwndu) asepuif soedgud] {odApieqduw) | ssaqdw) [aiclie} anayg ann
vl 2548 1184 60vT 80¥T (X0 4% 90vi SO1 (it i1 2071

SLOHAMAO AVIdr T ADNTIIAT ATFOWHA NI

PCT/US01/11961

WO 01/80054

15/56

¢1 DIA

osa(pEIS yeisdin

1561

€551 7881 TIXTSNIVIS JN0¥D

osomg mgdin q1osy ano

Trs1

SHS1 7psi Bl THSI SILVIS ZA0W 2ATHDIY

sonEOEq.ZA NRUOIVIST |yoavyasieq | odi1srec ey feiite]

1Z81

6¢51 8TS1 LTSt 9Zs1 sTsT ¥Ts1 €251 (23 TOIINOD HAOW HATHDIV

adf1pid sodyu[apid as4s feicard an

1051

LOST 9051 $0ST $0ST T0SE T NOILVAE0ANI NOITVITIONCOTd

SIDAFGO XAVl SONTITITI AJOWHIA NI

€051

PCT/US01/11961

WO 01/80054

16/56

91 'DI4

wgdury sy ariprasqy
1691
691 €691 7691 “TIVINOD 0D VIVA
L £291 291 1L91 091 6991 8991
SSESSILE J0UTSEH SION @dorasqy 15din Yo SASFOON
PANECsASIST pANEASNEST ado a3y apay ano
1991
1991 9991 5991 +991 €991 7991 A0 vIvd
ado ‘ aisis _ [a1255's _ aney _’ ano ;_vﬁ
9v91 Spot P91 €91 91 SN0 BIIVAdNO D
amsis asy _ arsy ano
1€91
¥E9T €£91 ze91 VN0 HITYWIWAISXS
9I91 S191 191 £19] zI91 191 0191
sUDEGOON sdiyeapdiSunuepgOoN | SLDIBARSIOVEABOON | SOBEIEONPISIOON SUOICRHENMPT dioieqes PRIOON| sdmeq WOON sdiniequITIOON
anea adose] SASIOON pdpEQsAsIsT pdryeasngnst arkay ansd auo
: 1091
6051 8091 1091 9091 5091 $091 €091 209t VIVAINOLLVTTIONOSTY

S1DEr40 NOILVINAINVIN VLV NOILYITIDNOD T AYOWIN NI

PCT/US01/11961

WO 01/80054

17/56

LT DA

€sL1 [AYA 16L1 0SLI
ygdmy) | SpEAPLIdU) | aurLaeqRAGU) EnNTEAdWD)
IEydERAGL) | EAdSIAdu) | [eAsogdw) | sarpradw) {sdArieqdu)| aagoydu) ardud anuay
Ll
6VLI SPL1 LPL] opLl SYLT VYL evLI WLl
Iey1eapId aipid arusy
1€L1
VELT €ELL TELL
L1L1 91LL S1LL ¥1LL €1L1 (4751 TiL1 OILL
Idipeasqy| Ssug IougseH 201431581 1EISUIBIN FLANTRTE qrdin Ao3uorey
amesn arsd ars4s am areqsAs seqgsng wa] Qe
10L1
60L1 80L1 LOLY 90L1 S0LI vOLT €0L1 20L1

SLDACE0 NOLLVIIJINVIA VLV NOILVITIONOCOT XMOWI NI

PCT/US01/11961

WO 01/80054

18/56

81 DIA

1081

z81 [24:1 f44:)8 1281 0Z81 6181 3181 £181 9181 <181 $181 €181
ge@uudwuapey | wequugurueesy | eRqUsIY wa18uQUARY {SIEGSASEI o |oreasksuwasoy freasnaxepmonosy easngumipay | weqdupdieq | megandwNdo [odessspuadinduo | JouaseHdinduo
sNdH8H0 adiosyyiuo ymsdin poyouu)sAI0ON | PArpeasAsIsT pdmeasnenst aidodpo ke amy am Aoy
eIl 1181 oIl 6081 8081 o1 9081 S 0BT €081 2081

SLOALAO NOLLVINJINVIN VIV JATHOYY AHOWIW NI

PCT/US01/11961

WO 01/80054

19/56

61 DId

aiprR

1961

1561

1761

1061

1xa 1 djoHnD ixa1 djo3uQ| arsdensue] Qo amn
L961 9961 $961 Y961 o £961 7961
saquinpbag | swrenbag
£561 7661
anisi [RSARLC SweN[(€920 rosy amn sunyoreug [osoqedAyug | odArum arg
1€61 0t61 6261 8761 LT61 9T61 se61 Y261 €61 261
SSLE S01JuIPS AV n@adinog | aamdung anrpiyg ano
8061 L061 9061 S061 Y061 £061 7061

SLOHALFO XFOWAN NI SNOANVTTIOSIN

FHAVEL T1

WO 01/80054

PCT/US01/11961
20/56

DATABASE TABLES

.. WI:TI'— Ty
TR)
oy el

Wmm:m 'um ;
R cRuhain ey
By A e S
kB =

nm&"&?{

£ R Pradbiried R
e e

1 0] Y

M.—-mﬁmmum&.

WO 01/80054 PCT/US01/11961
21/56

DATABASE TABLES

P SN
oAl

~ Joesarhogizt 1y

Ly B
paashgst) | ceascha:
T e g
lfi‘l?l“i‘E!QL“ ey

|13 kel
Seipmcie i &
S Bibmsssmmuscscnm Ciicumemns
WA svashaBiod seadha

st el
saahaChad madiEnal
noshus. e)

chvitriciags ke it
et T B P

B WUEREY
ik ke (D

BRI BREBEDL
w MIMAE’MK

4.9 iarn i st

Nkl aine Sildirm

Bgingd | dbuees g&iﬁm

- e

it
ot
enexthar
ot

e WIS
i reRa e LTt d
oo ewhonim
| hawtiof £ -

pErkebsl | DNRBIIND) evaethar

"m'augmi} it
poxthaiEnt Taetivr

e T DT
{:ﬂﬂ\ﬁ!ﬂ)

pii-l
| inecivs
m

WO 01/80054 PCT/US01/11961
22/56

DATABASE TABLES

T SR —
mlyHs ~u*mn~(i§] suuxw

dwm - Gﬁl}m
T T
m.hma-‘&u rnum

ﬂt

CTIT

i

T

I

AT

i

i

o

"
] i
Fr— -
mg&xi inme g B
R M L) G
T P e v Sy P
o 2 mumw‘l’:x Y)
Flil"“,sl 1]“ wadsta B
E‘.'.‘.‘.L";‘JL“‘@”LJ“"’" .
ST e 3
Do
3
Gidire. gyt @
:frg_k: 3% nlilmjlm P‘JM“QK 8
o
Erme B e

FIG. 22

WO 01/80054

PCT/US01/11961

23/56

REFERENCE LIBRARY PROCESSES
DEFINE SOURCE SYSTEM FOR REFERENCE LIBRARY

RECEIVE THIS CALL FROM CLIENT APP WITH SYSTEM ID{2301

, AND DESCRIPTION

v

. CHECK ALL PRIMARY DETAILS ARE PRESENT

2302

!

2303
DATA COMPLETE NO—» ALERT CALLER

YES

RETRIEVE THE CLIENT OBJECT

2305

Y

CREATE NEW SYSTEM

2306

!

2307
OBJECT UNIQUE NO —P ABANDON ADDITION AND NOTIFY CALLER

YES

INSTANTIATE CLIENT SYSTEM DEFINITION OBJECT

2309

J

RETURN OBJECT TO CALLER

2310

Y

C END OF PROCESS D 23t

FIG. 23

2304

2308

WO 01/80054

PCT/US01/11961
24/56

REFERENCE LIBRARY PROCESSES
DEFINE SYSTEM FIELD FOR SOURCE SYSTEM

RECEIVE THIS CALL FROM CLIENT APP WITH SYSTEM
FIELD ID, TYPE, AND FORMAT

\4

CHECK ALL PRIMARY DETAILS ARE PRESENT

!

2403 2404
DATA COMPLETE NO—P ALERT CALLER

YES

2401

2402

RETRIEVE THE CLIENT SYS DEFINITION OBJECT

2405

\ 4

CREATE NEW SYSTEM FIELD

2406

!

2407 ' 2408
OBJECT UNIQUE NO —»| ABANDON ADDITION AND NOTIFY CALLER

YES

INSTANTIATE SYS FIELD DEFINITION OBJECT

2409

!

RETURN OBJECT TO CALLER

2410

v

(END OF PROCESS D 2411

FIG. 24

WO 01/80054

PCT/US01/11961

25/56

REFERENCE LIBRARY PROCESSES
CREATE RECONCILIATION DEFINITION

RECEIVE THIS CALL FROM CLIENT APP WITH
RECONCILIATION DEFINITION ID AND DESCRIPTION

\4

CHECK ALL PRIMARY DETAILS ARE PRESENT

v

2501

2502

2503
DATA COMPLETE NO—P ALERT CALLER

YES

v

RETRIEVE THE CLIENT OBJECT

2505

I

CREATE NEW RECONCILIATION DEFINITION OBJECT

2506

v

2504

2507
OBJECT UNIQUE NO — P ABANDON ADDITION AND NOTIFY CALLER

YES

2508

INSTANTIATE RECONCILIATION DEFINITION OBJECT

2509

v

RETURN OBJECT TO CALLER

2510

Y

. 2
C END OF PROCESS) St

FIG. 25

WO 01/80054

PCT/US01/11961

26/56

REFERENCE LIBRARY PROCESSES
ADD SOURCE SYSTEM TO RECONCILIATION DEFINITION

RECEIVE THIS CALL FROM CLIENT APP WITH SYSTEM ID,
AND OTHER SYSTEM INFO

\ 4

CHECK ALL PRIMARY DETAILS ARE PRESENT

|

2601

2602

2603
DATA COMPLETE NO —| ALERT CALLER

YES

RETRIEVE THE RECONCILIATION DEFINITION OBJECT

I

CREATE NEW RECONCILIATION SYSTEM OBJECT

'

2604

2605

2606

2607
OBJECT UNIQUE NO—P> ABANDON ADDITION AND NOTIFY CALLER

YES

INSTANTIATE RECONCILIATION SYSTEM OBJECT

‘

INCREMENT VARIABLE FOR NUMBER OF SYSTEMS IN
THE RECONCILIATION DEFINITION OBJECT

Y

RETURN OBJECT TO CALLER

Y

2609

2610

2611

2612
C END OF PROCESS >

FI1G. 26

2608

WO 01/80054

PCT/US01/11961
27/56

REFERENCE LIBRARY PROCESSES
ADD KEY FIELD TO RECONCILIATION SYSTEM

RECEIVE THIS CALL FROM CLIENT APP WITH SYSTEM ID
AND RECONCILIATION KEY ATTRIBUTES

'

CHECK ALL PRIMARY DETAILS ARE PRESENT

v

2701

2702

2703
DATA COMPLETE NO—» ALERT CALLER

YES

RETRIEVE THE RECONCILIATION SYSTEM OBJECT

2705

|

DERIVE SEQUENCE NUMBER FOR KEY FIELD

2706

'

CREATE NEW RECONCILIATION KEY FIELD OBJECT

2707

|

2704

2708
- OBJECT UNIQUE NO —» ABANDON ADDITION AND NOTIFY CALLER

YES

2709

INSTANTIATE RECONCILIATION KEY FIELD OBJECT

2710

v

RETURN OBJECT TO CALLER

2711

!

2712
(::::fr END OF PROCESS 4;::::)

FIG. 27

WO 01/80054 PCT/US01/11961
28/56

REFERENCE LIBRARY PROCESSES
CREATE DATA COMPARISON IN RECONCILIATION DEFINITION

RECEIVE THIS CALL FROM CLIENT APP WITH THE REC 2801
DEF 1D, REC DATA COMPARISON ID, AND THE SET OF
ATTRIBUTES

v

CHECK ALL PRIMARY DETAILS ARE PRESENT

2802

803 2804
DATA COMPLETE NO —| ALBRT CALLER

YES

2805
RETRIEVE THE RECONCILIATION OBJECT

)

DERIVE COMPARISON ID FOR OBJECT

2806

\ 4

CREATE NEW DATA COMPARE ATTRIBUTE OBJECT

2807

\4

2808
INSTANTIATE DATA COMPARE ATTRIBUTE OBJECT

v

RETURN OBJECT TO CALLER
2810
C END OF PROCESS >

FIG. 28

2809

WO 01/80054 PCT/US01/11961
29/56

REFERENCE LIBRARY PROCESSES
ADD DATA FIELD TO RECONCILIATION SYSTEM DATA COMPARISON

RECEIVE THIS CALL FROM CLIENT APP WITH A SYSTEM 2001

1D, A COMPARISON ID, AND OTHER DATA DEFINITION
DETAILS

Y

2902
CHECK ALL PRIMARY DETAILS ARE PRESENT

2903 NO 2904
DATA COMPLETE —> ALERT CALLER '

YES

v

RETRIEVE THE RECONCILIATION SYSTEM AND DATA
COMPARE ATTRIBUTE OBIECTS

M

RETRIEVE RECONCILIATION DATA COMPARE OBJECT

2907 t 2908
NO —>| CREATE NEW RECONCILIATION DATA COMPARE OBJECT

Y

2905

2906

2909
INSTANTIATE RECONCILIATION DATA COMPARE OBJECT

\ v

2911 2910
DERIVE SEQUENCE NUMBER FOR KEY FIELD [—— RETURN OBJECT TO CALLER

v

CREATE NEW RECONCILIATION DATA FIELD OBIECT

2913 2914
OBJECT UNIQUE NO—P ABANDON ADDITION AND NOTIFY CALLER,

YES

2912

2915
INSTANTIATE RECONCILIATION DATA FIELD OBJECT

\4

2916
RETURN OBJECT TO CALLER

2917
END OF PROCESS

FIG. 29

WO 01/80054

RECEIVE THIS CALL FROM CLIENT WITH THE SYSTEM ID,
AND INFORMATION DEFINITION DETAILS

!

CHECK ALL PRIMARY DETAILS ARE PRESENT

'

PCT/US01/11961
30/56
REFERENCE LIBRARY PROCESSES
ADD INFORMATION FIELD TO RECONCILIATION SYSTEM
3001
3002
3004

3003
DATA COMPLETE

YES

NO
—p ALERT CALLER

RETRIEVE THE RECONCILIATION SYSTEM OBJECT

3005

!

DERIVE SEQUENCE NUMBER FOR INFORMATION FIELD

3006

Y

CREATE NEW RECONCILIATION INFORMATION FIELD
OBJECT

3007

!

3008
OBJECT UNIQUE NO—P ABANDON ADDITION AND NOTIFY CALLER

YES

3009

INSTANTIATE RECONCILIATION INFORMATION FIELD
OBJECT

3010

v

RETURN OBJECT TO CALLER

3011

!

3012
END OF PROCESS

FIG. 30

PCT/US01/11961

WO 01/80054

31/56

1€ D14

N_om._ (1081) SAOWTH LOAA0 VIVA IATHOYY J
<

L (1rS1) FAONI LOACAO SALY.LS HAQW SAIHOEY
LAty

TIAQWE DNIRE 40D 20 SNLVISHHL
_um.* (reLT) SAOWE LOATHO INSAETA NOLLYINEOINT NI T' N_n_ NO QESVE ST SALY.IS 400N §.4N0¥0 VIV AT €|

DN”U.* (19L1) SAOREN LOAr0 INGWATE TIVINCO I — e (F0LD) FAQWTY 1OEr80 WAL NOLLYITIONODES tTl

l (179T) SAOWEE JOZE0 ANAND HILYW dNCHD \Tl.
81l

wﬂﬁ (1651) TAOWEN LOSIE0 IVAWOD drOED VYA _All_ (1597) TAOWERS LOEIHO ANOEOVIVA HH—V
L S|

0.— {1657) ZAOWY IDTrEOANIND HOLVIN WAISAS _l {£091) FAOWSY LOFISQ VLVA NOILVITIONODTY —
S11¢] PILE]

(tos1)
Z11g) IAONRL LOAEOTTEL NOLLYVINIOINT NOILVITIONCOTY

(1251) SAOWEY LOHIE0 TIOWINOD SAOW SATHOUY \TI

Sm_

(176T) BAOWERI LOAE0 SHOWIE ONISSIOUd VLYQ _A'

[eizg)]
FAAOWY LOAr80 HNVIWNOD VLVA NOLLYTHONCOTY

:0.—‘??5 FAOWE LOFI€0 GTEIE VIVA NOLLYITIONOOTE
111E (1344

0*1 (10v1) FAOWER LOALEO ETELY TIVANOD VIVA T
1t

uNL

{1061) TAOWTH 1A (A0 WAAVAY T LAI!

(1261) SAOWTY LOFIE0 WILLEAS MOLIVITIONOIHE

L (¥851) IAOWEY LOAAGO QTE1d ATH NOLLVIHONOOTY
601t|

P

101¢]

(€D IAOWE LOAr80 NOLIVITIONOD=

=

(T1€1) SAOW LOAfHO GTAII WHISAS
001E] SOLE|

(10£1) SAOWEY LOFE0 NOILINIFHG NEISAS

-

1.

g\L

Q* (1v2r) SAOWE LIAIA0 TI08 AIRINDES ¥ISN \I {1621) HAOWE LOA(EHO0 50
FOIE| EOIE
{1121) BAOWER LOEM80 LNEI1D
01|
{xo#1) SAOWR 103190 3SvE _
LaLe|

SEOHLYW NOLLITIA LDIMT0 ATOWTA-NIT

WO 01/80054

PCT/US01/11961

32/56

MESSAGE RELATED PROCESSES
PROCESS SINGE RECONCILIATION MESSAGE

RECEI'\/E THIS CALL WITH MESSAGE TEXT IN THE FORM
OF A STRING

3201

!

3202
STRING PROVIDED NO — P

YES

CALL RECONCILIATION ITEM OBJECT CREATE METHOD
WITH MESSAGE TEXT

3205

v

CALL THE MESSAGE DECOMPOSITION PROCESS WITH
THE RECONCILIATION ITEM OBJECT

3206

'

CALL MATCH PROCESS WITH RECONCILIATION ITEM
OBJECT

3207

v

3208
DATA GROUP RETURNED - YES—P|

GENERATE CONSOLE MESSAGE

!

END OF PROCESS

-

3203

> 3204

CALL RECONCILIATION PROCESS WITH DATA GROUP
OBJECT

3209

3210
ON PROCESS EXCEPTION YES—P|

SET ERROR MESSAGE ON RECONCILIATION ITEM OR

3212

DATA GROUP
NO l
3211 3213
END OF PROCESS END OF PROCESS

FIG. 32

WO 01/80054 PCT/US01/11961

33/56

MESSAGE RELATED PROCESSES
CREATE RECONCILIATION ITEM OBJECT

3301
RECEIVE THIS CALL WITH MESSAGE TEXT

\

3302
GET THE NEXT INTERNAL MESSAGE ID

'

INSTANTIATE RECONCILIATION ITEM OBJECT

3303

Y

3304
RETURN RECONCILIATION ITEM OBJECT TO CALLER

3305
C END OF PROCESS)

FIG. 33

WO 01/80054

34/56

MESSAGE RELATED PROCESSES
DECOMPOSE RECONCILIATION ITEM

RECEIVE THIS CALL WITH RECONCILIATION ITEM
OBJECT

'

3401

CALL XML MESSAGE PARSER PROCESS WITH MESSAGE
STRING (3501)

3402

!

CALL HEADER VALIDATION PROCESS WITH
RECONCILIATION ITEM OBJECT

3403

v

CALL BUILD KEY PROCESS WITH RECONCILIATION ITEM
OBJECT

3404

v

CALL BUILD DATA PROCESS WITH REC RECONCILIATION
ITEM OBJECT

3405

'

CALL BUILD INFO PROCESS WITH RECONCILIATION ITEM

3406

OBRJECT

‘

RETURN RECONCILIATION ITEM OBJECT TO CALLER

3407

'

) 3408
ON PROCESS ERROR YES—P>
>

I\f

END OF PROCESS

_

PCT/US01/11961
THROW MESSAGE DECOMPOSITION ERROR BACK TO {3409
CALLER
3411
END OF PROCESS

FI1G. 34

WO 01/80054 PCT/US01/11961
35/56

MESSAGE RELATED PROCESSES
XML MESSAGE PARSER

3501
RECEIVE THIS CALL WITH MESSAGE STRING

—»>
V

3502
STRING HAS MORE DATA NO—

YES

3503
GET THE FIELD IDENTIFIER

v

FIND THE CORRESPONDING END TOKEN

3504

Y

3505

L—— EXTRACT THE DATA AND PUT INTO THE HASH TABLE

3506 3508
ON PROCESS ERROR YES—P THROW PARSE XML ERROR BACK. TO CALLER
v ;
3507 3509
END OF PROCESS END OF PROCESS

FIG. 35

WO 01/80054
36/56

MESSAGE RELATED PROCESSES
PROCESS HEADER DETAILS

RECEIVE THIS CALL WITH RECONCILIATION ITEM |3601
OBJECT

v

3602
CHECK REQUIRED DETAILS IN HASH TABLE

PCT/US01/11961

NO

YES

3604
CHECK USER ID EXISTS

USER ID VALID NO

YES

CHECK RECONCILIATION EXISTS FOR CLIENT AND [3606
SYSTEM EXISTS FOR RECONCILIATION

VALID REC//SYSTEM NO

g

YES

.) 3608
SET RELATED RECONCILIATION ITEM VARIABLES

A4

\d A\ 4

ON PROCESS ERROR YES—P THROW HEADER EXCEPTION BACK TO CALLER

4—%’&
% :

!

A

3610
END OF PROCESS

3611

3612
END OF PROCESS

TFIG. 36

WO 01/80054

37/56

MESSAGE RELATED PROCESSES
BUILD KEY

3701
L RECEIVE THIS CALL WITH REC ITEM OBJECT J

|

370
9‘ AFPEND STRING TO KEY VALUE

371
l REMOVE SPACES FROM STRING

3702
l INITIALIZE PRIMARY VARIABLES l
3703
RETRIEVE SET OF KEY FIELDS
> :i
3704
NO
YES
3705
GET THE FIELD IDENTIFIER

3706
o A
Yis
3707
O

YES

CONVERT TO DATE THEN STRING AND APPEND TOKEY 3708
VALUE

3710
I4———v1~:s IGNORE SPACE

3713
l SET MATCHKEY VALUE IN UPPERCASE

PCT/US01/11961

1 2O
Y
3714
SET MATCHKEY VALUE
3Ins
‘ON PROCESS ERROR vEs—» ‘
NO

3717
THROW KEY EXCEPTION BACK TO CALLER ‘l

3716 3718
C END OF PROCESS) C END OF PROCESS)

FIG. 37

WO 01/80054 PCT/US01/11961
38/56

MESSAGE RELATED PROCESSES
BUILD DATA

3801
[RECEIVE THE CALL WITH RECONCILIATION ITEM l

v

3802
INITIALIZE PRIMARY VARIABLES —l

’

RETRIEVE SET OF RECONCILIATION SYSTEMDATA |83
COMPARE OBIECTS

‘f

3304
NO MORE COMEARISONS

YES

3805
INITIALIZE LOCAL VARIABLES

'

F.ETRJEVE THE SET OF RECONCILIATION DATA FIELDS

3807 3815
MORE DATA FIELDS No ———P I CREATE A NEW ITEM COMPARE ELEMENT l
vis l

3806

3808 3816
[; GET THE FIELD IDENTIFIER l l INSTANTIATE ITEM COMPARE ELEMENT |'—_‘
3809
1D EXISTS IN HASH TABLE No
v
3810
GET TEE VALUE

!

I ADD FIELDID 70 LIST OF FIELDS

|

3812
GET THE DATA TYPE OF FIELD

Iasu

3813
‘CONVERT THE DATA ITEM TO THE APPROPRIATE T\(Pi‘

|

——‘ SET THENEW COMPARISON VALUE

Iasu

l Y
3817 3819
ON PROCESS ERROR, YES——P THROW DATA EXCEPTION BACK TO CALLER
v v
3818 : 3820
(END OF PROCESS END OF PROCESS

FIG. 38

WO 01/80054 PCT/US01/11961
39/56

MESSAGE RELATED PROCESSES
BUILD INFORMATION

3901
RECEIVE THIS CALL WITH REC ITEM OBJECT

v

RETRIEVE SET OF INFORMATION FIELDS

3902

3903
MORE INFORMATION FIELDS NO —

YES

3904
GET THE FIELD IDENTIFIER

' 3905 :
ID EXISTS IN HASH TABLE NO —] =

YES

CREATE A NEW ITEM INFORMATION ELEMENT WITH 3906
VALUE

{

3907

INSTANTIATE ITEM INFORMATION ELEMENT

v v
3908 3910
ON PROCESS ERROR. . YES—P THROW INFORMATION EXCEPTION BACK TO CALLER

NO

'
C END OF PROCESS)3909 C END OF PROCESS) »h
FIG. 39

WO 01/80054

40/56

PCT/US01/11961

MESSAGE RELATED PROCESSES
MATCH

RECEIVE THIS CALL WITH REC ITEM OBJECT

4001

v

RETRIEVE THE CLIENT OBJECT

4002

'

RETRIEVE THE RECONCILIATION OBJECT

4003

'

FIND THE RECONCILIATION DATA OBJECT

4004

4005
REC. DATA OBJECT FOUND NO—p

Y

t

S

4008

GROUP REPLACE

‘ﬁ

YES

NO—»

CALL MATCH WITH GROUP/RECORD REPLACE AND
RETURN RESULT

4010

CALL ADD RECONCILIATION DATA PROCESS

4006

v

CALL ADD DATA GROUP PROCESS AND RETURN
RESULT

4007

CALL MATCH WITH NEW GROUP AND RETURN RESULT

4009

4011

ON PROCESS ERROR

"7\

NO
1

YES —P>

THROW MATCH EXCEPTION BACK TO CALLER

4012

*‘

a

4013
END OF PROCESS

FIG. 40

WO 01/80054

A124

‘THROW GROUP REPLACE EXCEPTION BACK TO CALLER|

PCT/US01/11961
41/56

MESSAGE RELATED PROCESSES
MATCH WITH GROUIRECORY REPLACE

RECEFVE THIS CALL WITH REC. OBJECT, REC. DATA (4101
OBJECT AND REC. ITEM OBJECT
4
MORE THAN ONE DATA 12
NO

v

GET THE SYSTEM MATCH QUEUE ORJECT FOR My |4103
SYSTEM

4104
SYSTEM MATCH QUEUE NO*—

GET THE GROUP MATCH QUEUE FROM SYSTEM MATCH| 4105
QUEUE OBJECT

06
NO—]

L SET THE GROUP ID ON RECONCILIATION [TEM AND l“‘"

DELETE GROUP MATCH QUEUE OBIECT

v

GET THE DATA GROUP FROM RECONCILIATION DATA |#108
OBIECT

i

DECREMENT NO OF SYSTEMS UNMATCHED ON DATA }4109
GROUP

[
< <

4110
DATA GROUP 1§ NULL No

RETRIEVE SET FROM RECONCILIATION DATA AND SET |11
CURRENT TO LAST ELENENT IN SET

4112 4113
vsA—-PI ADD DATA GROUP THEN RETURN RESULT]—
v
REPLA LN, r_,i FIND THE EXISTING RECONCILIATION ITEM(S)FROM. {4115
RECORD ce MY SYSTEM AND DELETE THEM
%, 1
v

SET GRP IDS AND MATCH STATUS OF THE 4116
RECONCILIATION STEM OBJECT

SETTHE BUSINESS DATE AND S YSTEM DATE ON THE 14117
DATA GROUP OBJECT AND THE RECONCILIATION DATA
nnIrr
4118
GROUP MATCH COMFLETE NO———————— 1

SET RECONCILIATION DATA AND DAT GROUP STATUS [4119

INDICATORS

4120 Y
RECONCILE REAL TIME NO
A4
4121 4122
RETURN DATA GROUP RETURN NULL
| I”

< <+

- 4123
e

No

END OF PROCESS

FIG. 41

WO 01/80054 PCT/US01/11961
42/56

MESSAGE RELATED PROCESSES
MATCH WITH NEW GROU/P

RECEIVE THIS CALL WITH REC. OBJECT, REC. DATA (%201
OBJECT AND REC. [TEM OBIECT

!

GET THE SYSTEM MATCH QUEUE OBJECTFOR MY [#202
SYSTEM

4203 4204
NO ——>I ADD DATA GROUP THEN RETURN RESULT
3

GET THE GROUP MATCH QUEUE FROM SYSTEM MATCH 205
QUEUE OBIECT

4206 |4207
GROUP MATCH QUEUE NO ——'P’ ADD DATA GROUP THEN RETURN RESULT
v

4208

SET THE GROUP ID ON RECONCILIATION ITEM AND
DELETE GROUP MATCH QUEUE OBJECT

GET THE DATA GROUP FROM RECONCILIATION DATA. |4209
OBJECT

'

DECREMENT NO OF SYSTEMS UNMATCHED ON DATA

!

SET GRP IDS AND MATCH STATUS OF THE 4211
RECONCILIATION ITEM OBJECT

A
4212
DATA GROUP OBIECT AND THE RECONCILIATION DATA
Q&-lEF L
4213
&

YES

v

SET RECONCILIATION DATA AND DAT GROUP STATUS [4214
INDICATORS

4215 A 4
RECONCILE REAL TIME NO

YES

v v

4216 4217
RETURN DATA GROUP RETURN NULL
[« <

<% <

4218 4219
ON PROCESS ERROR YES-"iTHROW GROUP NEW EXCEPTION BACK TO CALLERJ

C END OF PROCESS D 4220
FIG. 42

4210

A

WO 01/80054 PCT/US01/11961
43/56

MESSAGE RELATED PROCESSES
CREATE RECONCILJATION DATA OBJECT

RECEIVE THIS CALL WITH BUSINESS DATE, SYSTEM [#301
DATE, AND A KEY ID

v

INCREMENT RECONCILIATION DATA COUNTER

!

CREATE NEW RECONCILIATION DATA OBIECT

!

INSTANTIATE A RECONCILIATION DATA OBJECT

v

4302

4303

4304

4305 4306
ON PROCESS ERROR YES— P PRINT ERROR ON CONSOLE
NO
Y
4307 4308
RETURN OBJECT TO CALLER RETURN NULL
< ll
<
A\ 4

. 4309
END OF PROCESS

FIG. 43

WO 01/80054

44/56

MESSAGE RELATED PROCESSES
ADD DATA GROUP

RECEIVE THIS WITH RECONCILIATION, RECONCILIATION] 440!
DATA, AND RECONCILIATION ITEM

4402
[INCREMENT DAT GROUP COUNTERS

'

l SET BUSINESS DATE AND SYSTEM DATE l

|

(CREATE NEW DATA GROUP OBIECT

{

INSTANTIATE A MATCHED DATA GROUP OBJECT FOR {4405
GROUF POS ID

|

[SET NUMBER OF UNMATCHED SYSTEMS ONDATA | 406

4403

J«m

ROUP

44z
L SET GROUP IDS ON RECONCILIATION ITEM OBJECT J
4408
SET THE MATCH STATUS ON RECONCILIATION TTEM
4409
— NO SYSTEMS UNMATCHED
4410
RETRIEVE A LIST OF RECONCILIATION SYSTEMS
an
NO —————————————,

ADD/GET SYSTEM MATCH QUEUE OBJECT

v

[ADD GROUF MATCH QUEUE OB/ECT

L 1

——

|44|3

4414

¥

SET NUMBER OF MATCHED PENDING RECONCILIATION [$415
SYSTEMS ON RECONCILIATION DATA

4416
SETSTATUS ON DATA GROUP
4417 A 4
RECONCILE REAL TIME NO
v)

4418 4419
RETURN DATA GROUP RETURN NULL
l: |
ONPROCESS ERROR. 4420 THROW ADD DATA GROUP EXCEFTION BACKTO |42
CALLER
NS —T
i

Q END OF PROCESS) “n
FIG. 44

PCT/US01/11961

WO 01/80054 PCT/US01/11961
45/56

MESSAGE RELATED PROCESSES
RECONCILE

RECEIVE CALL WITH A DATA GROUP, AND POTENTIALLY A| 4501
RECONCILIATION AND RECONCILIATION DATA

4502

GROUP FENDING REC,

Y|

4503 4504
REC, AS PARAMETER NO—',i‘ RETRIEVE THE RECONCILIATION QBIECT]

g

4505 4506
No—br RETRIEVE THE RECONCILIATION DATA OBJECT l

Yj

[RETRIEVE RECONCILIATION ITEMS FOR DATA OROUP _]4507

SORT AND PLACE ITEMS IN AN IN-MEMORY STRUCTURE 14503

INITIALIZE GROUP COMPARE STATUS VARIADLES 4509

GET DATA COMPARE ATTRIBS FOR RECONCILIATION |4510
¢

4511
—

h{

[NIMIALIZE ATTRIBUTE COMPARE STATUS VARIABLES 4512

I £ THE DATA TYPE OF Jasis

DETERMINE METHODOLOGY FORCOMPUTING BASE [4514
COMPARE VALUE

SET BASEVALUEFOR COMPARISON AND EXCLUDE ANY (4515
RELATED ITEMS FROM FURTHER COMPARISON

[DETERMINE AND SELECTCOMPARISON OPTION __|4516

4517
MORE ITEMS TO COMPARE NO—
v

| SELECT THE NEXT RECONCILIATION ITEM lass

[RETRIEVE 17EM COMPARE ELEMENT FOR ATTRIBUTE | 4519

|__SET COMPARE ELEMENTS STATUS ASRECONCILED __ |4520

A [_RETRIEVEAND COMPUTENEW COMPAREVALUE __|4521

4522
[TNO 'NOT GROUP OR GROUP END

Y]

L r COMPARE VALUE 10 THE BASE VALUE s

R D —

0

SET STATUS INDICATORS GROUP & COMPAREATRIB & (4525
TTEM COMPARE ELEMENTS

SETSTATUS ON DATA OROUP COMPARE ELEMENT __|4526

4

4527
STATUS UPDATE REQUIRED NO-———]

SET STATUS INDICATORS FOR RELATED ITEM COMPARE 4528
ELEMENTS

3

[UPDATERECONGILIATION DATA Jasw
SETSTATUS INDICATORS ON DATA GROUF AND RELATED [530
L RECONCILIATION ITEMS
A,
PRINT CONSOLE MESSAGE Jasa—y [RETURN DATA GROUP ~ Jesm
Ys__,i THROW RECONCILE DATA GROUP EXCEFTION BAGK TO [534
% I
Ad

(END OF PROCESS) a3
FIG. 45

WO 01/80054

46/56

PCT/US01/11961

DATA INTEGRATION PROCESSES
DIRECT MESSAGE BASED DATA INTEGRATION

EXTERNAL SYSTEM OR MESSAGE BUS CONNECTS TO [4601

WEB SERVER AN INSTANTIATES REC MESSAGE PROCESS

3400

'

Lal

M

4602
MORE MESSAGES TO NO~

YES

EXTERNAL SYSTEM OR MESSAGE BUS CALLS PROCESS |4603

SINGLE RECONCILIATION MESSAGE

'

RETRIEVE RESULTS AND APPLY UPDATES OR ERROR (4604

STATUS TO SOURCE SYSTEM

MANAGE PROCESSING EXCEPTION

TERMINATE CONNECTION AND END PROCESS

4607

FIG. 46

4606

WO 01/80054
47/56

PCT/US01/11961

DATA INTEGRATION PROCESSES
DIRECT DATA SOURCE LINK BASED DATA INTEGRATION

RECEIVE SCHEDULE OR USER INITIATED CALL TO EXTRACT 4701
DATA FROM SOURCE FOR A RECONCILIATION SYSTEM

RETRIEVE RELATED CLIENT OBJECT AND SETRECORD |4702
HEADER FOR PROCESS

RETRIEVE AND SETUP THE LIST OF DATA FIELDS REQUIRED |4703
FOR THE RECONCILIATION SYSTEM

RETRIEVE AND SETUP THE LIST OF DATA FIELDS WHICH |4704
REQUIRE UFDATE ON DATA BREAK

SET THE STATUS AND ERROR MESSAGE UPDATE FIELDS FOR |4705
SOURCE SYSTEM

v

L INSTANTIATE REC MESSAGE FROCESS 3400 J470s

ESTABLISH A CONNECTION TO THE RECONCILIATION |4707
SYSTEM'S RELATED DATABASE

RETRIEVE THE DATA SET FROM THE RECONCILIATION [4708
SYSTEM'S RELATED TABLE OR VIEW

A4

4719

xo 4
4718 an7
COMPLETE AND APPLY UPDATE STATEMENT | —YES UFDATE REQUIRED “+—no 'WHILE MORE ELEMENTS NO—|

SR »
L >
4709
MORE DATASET RECORDS NO —
YES o

¥

[UPDATE BUSTNESS DATE ON HEADER IF EXISTSIN RECORD_|4710

EXTRACT DATA FOR EACH FIELD AND CREATE A RELATED |74}
XML BASED MESSAGE

CALL PROCESS SINGLE RECONCILIATION MESSAGE WITH (1712
THIS XML MESSAGE

RETRIEVE RESULTS AND APPLY STATUS AND ERROR 4713
MESSAGE UPDATES IF UPDATE FIELDS ARE PROVIDED

v

4714
——NO IFDATA BREAK &

+\nzs
RETRIEVE THE MBSSAGR'S RECONCILIATION ITEM ANDITS [4715
RELATED ITEM COMPARE ELEMENTS WITH DATA BREAKS

l RESET UPDATE STATEMENT l47 16

4
YES

v

l GO THROUGH FACH ELEMENT DETERMINE THE HELD ID(S)]““"

OF ORIGIN AND METHOD OF CALCULATING UPDATE

>
»,

4

4721
‘WHILE MORE FIELD IDS N

]
YES
YES

0 —
) v

a1
___no FIELD ID IN UPDATE LIST

| RETRIEVE AND CALCULATE UPDATE VALUE {4723

4726

[MANAGE PROCESSING EXCEPTION

o — MODIFY UPDATE STATEMENT [4724

s
}4—'1135 ERROR

v

FIG. 47

N

[TERMINATE CONNECTION AND END FROCESS |47

WO 01/80054 PCT/US01/11961
48/56

DATA INTEGRATION PROCESSES
FILE BASED DATA INTEGRATION

4801
USER CONNECTS THROUGH GUI AND SELECTS THE UTILITIES AND FILE READERS OPTIONS

A 4
N 4802
SYSTEM DISPLAYS ALL FILE READERS FOR GIVEN CLIENT

v v

4803 4804
ADD FILE READER READER SELECTED
l L 4 l
4805 4806 4807 4808
DELETE READER START READER STOP READER UPLOAD FILE

v v

4809 43810
SET READER STATUS TO SHUTTING POWN

SET TIMER TO RERUN PROCESS BELOW
EVERY 10 SECONDS

. 4811
DIRECTORIES OK NO—

YES

4312}
OBTAIN FILE LIST

»|
o

Y

4813
FILES & RUNNING NoA

YES Y

4814
RENAME-AND OPEN FILE

»
L

Y

4815
AN MESSAGES

YES

4816)

CALL SINGLE REC MESS PROCESS

4817 4818)
SET FILE ERRORS AND STOP READER IF
S ERR
ON PROCESS ERROR YES— QUIRED

NO]

4819
DELETE THE TIMER PROCESS

FIG. 48

PCT/US01/11961

WO 01/80054

49/56

8067

€061

SHNTVA HSONTIHITI HAYS ANV LES

1

6v DId

dNoYH
7 WAL ADAFN

116¥ Ar

WNHLT dNOYONN

(0124

SHA

dNo¥n Tv.LIa
dNO¥D BAIHONY | e dNOY¥D LESEM | dNOWDESOD | ot
co6p A A A A A
SHA

A

dNouo
SEX RAR S¢S
Lo6¥ 906 S06¥|

SSEO0W NOLLVITIONOD T N

A

06y

N

NOLLVIAEOINI QELY THY

ANV SANOYD VLVA IIOTTES SAVIISIA ANV STAHRILEE WALSAS

Ar

—
Ld

_

VIAIRID NOIIOHTES dNO¥H VIVA SHIJIAOW d48N

T

. T06Y|

BAZCIR.AKCT. |
dNO¥O YIVA ¥0d NOLLOF1HS LINVJHJ HHL SL3S WALSAS

Ar

106

NOILJO SLTNSHA NOILVITIONOIHE] ANV VAvVd

QHESSEO0YUd FHL SLOFTAS ANV IND HONOJHL SLOINNOD ddsn

ALVAIN / AATATE / TVATRILTE VEVA
SASSTI0UL V.LVA NIAIA YIS

WO 01/80054

50/56

USER DRIVEN DATA PROCESSES

REPORT CREATION / EXTRACTION/ UPDATING

USER CONNECTS THROUGH GUI AND SELECTS THE

PROCESSED DATA AND REPORTS / EXTRACTS OPTION

5001

v

PCT/US01/11961

SYSTEM SETS THE DEFAULT SELECTION FOR DATA
GROUP RETRIEVAL

5002

USER MODIFIES DATA GROUP SELECTION CRITERIA

|

v

SYSTEM RETRIBVES AND DISPLAYS SELECTED DATA

GROUPS AND RELATED INFORMATION

5004

PRINT REPORT

5005

!

CREATE EXTRACT

5006

APPLY RELATED UPDATES

FIG. 50

5003

5007

WO 01/80054

51/56

USER DRIVEN DATA PROCESSES
CLIENT DETAIL MODIFICATION

USER CONNECTS THROUGH GUI AND SELECTS THE FILE
AND CLIENT DETAILS OPTIONS

PCT/US01/11961

5101

v

SYSTEM SELECTS AND DISPLAYS PRIMARY AND
SECONDARY CLIENT DETAILS

5102

A\ 4

5103

MODIFY NAME

MODIFY HEADER
DETAILS

5104

MODIFY CLIENT
DIRECTORIES

5105

MODIFY SERVER
DIRECTORIES

FIG. 51

5106

WO 01/80054 PCT/US01/11961
52/56
USER DRIVEN DATA PROCESSES
USER ADD / DELETE / DETAIL MODIFICATION
5201
USER CONNECTS THROUGH GUI AND SELECTS THE FILE
AND USERS OPTIONS
5202
* SYSTEM DISPLAYS ALL USER FOR GIVEN CLIENT
5203 5204
USER
ADD USER SBELECTED
A4 l v i
5205 5206 5207 5208
SET SECURITY SET USER
DELETE USER CHANGE PASSWORD PROFILE PREFERENCES

FIG. 52

WO 01/80054

53/56

ARCHIVE RELATED PROCESSES
MOVE DATA GROUP TO ARCHIVE

l RECEIVECALL WITH A DATA GROUP OBJECT J

5301

CREATE AND INSTANTIATE A NEW DATA ARCHIVE {%302
OBJECT

5303
l SAVE GROUP MATCH QUEUE OBIECTS AS A STRING J

l SAVE DATA GROUF COMPARE OBJECTS AS A STRING

5304

;

r SET BUSINESS DATE, SYSTEM DATE.

lszns

|

SET ITEM, ITEM INFORMATION FLEMENT, AND ITEM
COMPARE ELEMENT STRING VARIARLES

]s:os

RETRIEVE SET OF RECONCILIATION ITEM OBJECTS Foiim’

DATA GROUP

N
v

YES

5308
NO =

ADJUST BUSINESS AND SYSTEM DAT VALUES FOR
ARCHIVE DATA OBJECT

5309

l:FPEND ITEMS ORIGINAL TEXT TO RELATED VARIABLE]|

5310

TEMPORARY VARIABLE

GET AND APPEND ITEMS ARCHIVE STRING TO m;r_A'rEr“‘

APPEND THE ITEM ID AND THE INDIVIDUAL
INFORMATION ELEMENT(S) ARCHIVE STRING TO
RELATED TEMFORARY VARIAGLE

5312

ELEMENT(S) ARCHIVE STRING TO RELATED
TEMPORARY VARIABLE

APPEND THEITEM iD AND THE INDKVIDUALCQMPAREJH 13

RELATED TEMPORARY VARIABLE

| ‘SET ARCHIVE DATA'S ITEM ORIGINAL TEXT VALUE mJ 5314

RELATED TEMPORARY VARIABLE

l SET ARCHIVE DATA'S ITEM DATA TEXT VALUETO J-"“S

SET ARCHIVE DATA'S ITEM INFORMATION ELEMENT
TEXT VALUETO RELATED TEMPORARY VARIABLE

316

SET ARCHIVE DATA'S ITEM COMPARE ELEMENT TEXT [$317

[VALUETO RELATED TEMPORARY VARIABLE

|53 1B
l REMOVE THE DATA GROUP

5319
ON PROCESS ERROR YB_’{i ‘THROW MOVE TO ARCHIVE EXCEPTION

]

T
A

5321
C END OF PROCESS)]

FIG. 53

5320

PCT/US01/11961

WO 01/80054 PCT/US01/11961
54/56

ARCHIVE RELATED PROCESSES
RESTORE DATA GROUP FROM ARCHIVE

5401
RECEIVE CALL WITH A ARCHIVE DATA GROUP ID

,

RETRIEVE ARCHIVE DATA, BASE, CLIENT, AND {9402
RECONCILIATION OBJECTS

Y

GET OR CREATE RECONCILIATION DATA OBJECT FOR
MATCHKEY

5403

\4

ADD A DATA GROUP TO THE RECONCILIATION DATA
OBJECT

v

SET THE DATA GROUPS VALUES FROM THE ARCHIVE
DATA OBJECT INFORMATION

v

ADJUST THE RECONCILIATION DATA OBJECTS STATUS
COUNTERS

5404

5405

5406

[T EXTRACT THEDATA GROUP COMPARE RECORDS AND [5407
FOR EACH CREATE A NEW DATA GROUP COMPARE
QBIECT

5408
EXTRACT THE SET OF RECONCILIATION ITEM STRINGS

CREATE A RECONCILIATION ITEM OBJECT AND SETITS |5410
VALUES FROM THE STRING

:

CREATE A ITEM COMPARE ELEMENT AND SET I'TS
VALUES

FOR EACH RELATED ITEM INFORMATION ELEMENT |5412
STRING CREATE A ITEM INFORMATION AND SET ITS
VALUES

5413

5411

EACH CREATE A SYSTEM AND GROUP MATCH QUEUE
OBIECTS

\4

5414
REMOVE THE ARCHIVE DATA OBIECT

5415 5416
ON PROCESS ERROR YES— THROW RESTORE FROM ARCHIVE EXCEPTION

J

Y%
o)

(" END OF PROCESS)54]7
FIG. 54

WO 01/80054 PCT/US01/11961
55/56

USER DRIVEN DATA PROCESSES
ARCHIVE GROUP MANAGEMENT

5501

USER CONNECTS THROUGH GUI AND SELECTS THE
UTILITIES AND ARCHIVE OPTIONS

v

5502

SYSTEM RETRIEVES AND DISPLAYS CLIENT; ARCHIVE
MOVE CONTROL OBJECTS

Y

5503
USER HAS OPTION TO SELECT AN ARCHIVE CONTROL
AND RUN THE RELATED MOVE TO ARCHIVE PROCESS FIG 5 5 a

5504

USER CONNECTS THROUGH GUI AND SELECTS THE
PROCESSED DATA AND DATA ARCHIVE OPTIONS

v
5505 5506
SYSTEM SETS THE DEFAULT SELECTION FOR ARCHIVE -
DATA RETRIEVAL P USER MODIFIES ARCHIVE DATA SELECTION CRITERIA

hl

v

5507
SYSTEM RETRIEVES AND DISPLAYS SELECTED ARCHIVE
DATA OBIECTS AND RELATED INFORMATION

! !

5508 5509
VIEW ARCHIVE GROUP DETAIL RESTORE ARCHIVE GROUP TO PRODUCTION

FIG. 55b

WO 01/80054

56/56

USER DRIVEN DATA PROCESSES
ERROR REVIEW AND MANAGEMENT

'USER CONNECTS THROUGH GUIAND SELECTS THE
PROCESSED DATA AND DATA PROCESSING ERRORS

5601

y

PCT/US01/11961

5603

5602
SYSTEM SETS THE DEFAULT SELECTION FOR DATA USER MODIFIES DATA PROCESSING ERROR SELECTION
PROCESSING ERROR RETRIEVAL CRITERIA
<
v
15604
SYSTEM RETRIEVES AND DISPLAYS SELECTED DATA
PROCESSING ERRORS AND RELATED INFORMATION
v A v

CLEAR SELECTED ERRORS

5605

VIEW ERRORS RELATED OBJECTS

5606

ADJUST OR REPROCESS ERROR DATA

FIG. 56

5607

Interna I application No.

INTERNATIONAL SEARCH REPORT

PCT/US01/11961
A, CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GOGF 17/00
USCL : Tw1L707/4

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 707/10,101,201;717/1-11

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST, ACM, IEEE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 5,666,553 A (CROZIER) 09 September 1997 (09.09.1997). 1-76

Y US 5,933,836 A (GOBAT) 03 August 1999 (03.08.1999). 6-11,19,25-29,42-
46,59-63,71-76

A US 5,745,751 A. (NELSON et al) 28 April 1998 (28.04.1998). 1-76

Y EPJ ?77, 323. A2 (KUNG) 11 November 1998 (11.11.1998). 12-18,30-36,47-53,64-
70

X US 5,960,200 A (EAGER et al) 28 September 1999 (28.09.1999). 1,20,37,54

Y 2-19,21-36,38-53,55-
76

A US 5,987,247 A (LAU) 16 November 1999 (16.11.1999). 1-76

m Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “" later document published after the interational filing date or priority
date and not in conflict with the application but cited to undemstand the
“A" document defining the general atate of the art which is not considered to be principle or theoty underlying the invention
of particular relevance
“x* document of particular relevance; the claimed invention cannot be
“E” carlicr application or patent published on or after the intemational filing date considered novel or cannot be idered to involve an j ive step
when the document is taken alone
“L” document which may throw doulxs on priority claim(s) or which is cited to
cstablish the publication date of another citation or other special reason (as “" document of particular relevance; the claimed invention cannot be
specified) considered to favolve an inventive step when the document is
combined with one or more other such documients, such combination
“0” document referring to an oral disclosure, use, exhibition or othicr means being obvious to a person skilled in the art
‘P document published prior to the international filing date but later than the “&° document member of the same patent family
priority date claimed :
Date of the actual completion of the international search Date of mailing of the international search report

27 June 2001 (27.06.2001) @ 2 AU& ZO 0 1

Name and mailing address of the ISA/US Authorized off'gr A
Commissi f Patents and Trademarks
BoxPCT Tariq Hafiz V455 CU\)\,OCJL

Washington, D.C. 20231
Facsimile No. (703)305-3230 Telephone No. 703.305.3900

Rorm PCT/ISA/210 (second sheet) (Yuly 1998)

INTERNATIONAL SEARCH REPORT

and 13.

Internafional application No.
. PCT/US01/11961
C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
AP US 6,199,195 B1 (GOODWIN et al) 06 March 2001 (06.03.2001), 1-76
A ORFALI et al. The Essential Distributed Objects Survival Guide. Wiley and Sons, 1995, chapters 2 1-76

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

