US 20120254865A1

a2y Patent Application Publication o) Pub. No.: US 2012/0254865 A1

a9 United States

SAEKI et al. 43) Pub. Date: Oct. 4, 2012
(54) HYPERVISOR REPLACING METHOD AND (52) US.Cl .ot 718/1
INFORMATION PROCESSING DEVICE
57 ABSTRACT
(75) Inventors: Kazue SAEKI, Kawasaki (JP); When executin . .
" . g firmware of a first hypervisor stored in a first
Kenji Okano, Kawasaki (IP) memory area, an information processing device stores firm-
.) ware of a second hypervisor into a second memory area. The
(73) Assignee: EUJITSkI.J I;gNg)TED, information processing device issues, from the first hypervi-
awasaki-shi (JP) sor, a stopping instruction that instructs a caller of a hypervi-
) sor call to stop issuing a new hypervisor call. Herein, let
(21) Appl. No.: 13/422,454 designating information be information that designates a
_ memory area storing firmware of a hypervisor executed by
(22) Filed: Mar. 16, 2012 the information processing device. The information process-
. L. L. ing device rewrites the designating information from a first
(30) Foreign Application Priority Data value that designates the first memory area to a second value
that designates the second memory area. The information
Apr.4,2011 (JP) oo 2011-082892 processing device starts execution of the firmware of the
.. . . second hypervisor in response to the rewriting of the desig-
Publication Classification nating information. The information processing device
(51) Int.CL issues, from the second hypervisor to the caller, a canceling
GOG6F 9/455 (2006.01) instruction that cancels the stopping instruction.
100
!
10 v
AN S 120
MANAGEMENT UNIT 130 Vo
1 1\1\ | N CONTROL
D e L ONIT | 120
o TT— PREPROCESSING
FIRMWARE OF FIRMNARE OF UNIT
TARGET HYPERVISOR TARGET HYPERVISOR |
¥
- CODE LDADING UNIT
Y 127
DIMM 141
il 123 v
FIRMWARE OF A DATA UPDATING
CURRENT HYPERVISCR UNIT
FIRMWARE OF TARGET 124 - :
HYPERVISOR [T N
. . 4 SWITCHING UNIT
S o
142

140

Patent Application Publication Oct. 4,2012 Sheet 1 of 15 US 2012/0254865 A1

S

2a 2b
™o || os VO

HYPERV1SOR ﬁ:?
7

a 3 Y

2 2b
™o | [os V7 ¥

HYPERVISOR HYPERVISOR

A

v
2a. 2 33
NG s
q? qf S
HYPERVISOR HYPERVISOR
ta 9 1h <<:;;ii? 2
S4 2a- A
N N os 0s
HYPERVISOR HYPERV1SOR
7 EJ i
©oa-)
la \\Iliif/ 1h
?ﬁ
= %
?
o ATes s
1 1
HYPERY1SOR HYPERVISOR
- AN
la 9 e b

F1G. 1

US 2012/0254865 Al

Oct. 4,2012 Sheet 2 of 15

Patent Application Publication

lfl..x

A
oLt

2 ©14

or! 7wl

N f
: A 1308YL 40 JuVARY IS
LINA X 4OSTAYIAAH LNINNND

ONILYGdD Viva | 40 34vHNNI 4
o A =
ipi WH1d
T P
LINA BNIGYOT 3000 [R
 YOSIAYIJAH 130¥YL || | HOSIAYIJAH L39WV1
TN] 40 JUVMRNIZ 40 JuvINY 14
ONISSI00Ud T W\\\\‘zigaa;;, —
izb-" 1 LiNn - %
TONINGD ’
7 0gl
N~ LIND ININIOVNVH
0t]
.\\/\
001

Patent Application Publication Oct. 4,2012 Sheet 3 of 15 US 2012/0254865 A1

100
210 220a
211
"o)
\"\ SERVICE PROCESSOR SYSTEN BOARD o
- 221- 222
CPU EPRON :]
NOR FLASH | |NAND FLASH 223
MENORY | | MEMORY . DI |
. - SRAM \
212 213 -
e
—

;
)
f \
240~ [OUTPUT 2206 590

DEVICE

INPUT |
DEVICE ™~230

250~ STORAGE

DEVICE
DRIVE STORAGE
o DEVICE MEDTUM
260 - NETWORK
- CONNECTION |— N ~
DEVICE 270 290
\~ 280

F1G. 3

FI1G. 4

Patent Application Publication Oct. 4,2012 Sheet 4 of 15 US 2012/0254865 A1
SYSTEM BOARD
3303 330b 3%00 —~ 220a
J
[4 (.
DOMAIN DOMAIN DOMAIN
331a 331b 331c
S S -
SUSPENSTON SUSPENSTON SUSPENS TON
CONTROL CONTROL CONTROL
UNIT UNET UNIT
e ——
320
HYPERVISOR 8
<%
HARDWARE 310
/
CPU DIMM 1/0
/ / /
- { [
221 224 311

Patent Application Publication Oct. 4,2012 SheetSof 15 US 2012/0254865 A1

400
ADDRESS “ |
5 A 40
VALID MAP ADDRESS } COMMON AREA -
Al 421
DATA AREA -
""" A2) | 420
\ UPPER AREA -
422
CODE AREA -
< <
A3 431
DATA AREA LS
A
> LOWER AREA 430
432
CODE AREA -
v
AS

FI1G. 5

Patent Application Publication Oct. 4,2012 Sheet 6 of 15 US 2012/0254865 A1

500
RELATIVE ADDRESS .
IN FIRMWARE
5O)
501
ADDRESS MAP S

B} ~ 502
VERSION NUMBER OF HYPERVISOR

B3| VALID/INVALID FLAG FOR DYNAMIC
REPLACEMENT FUNCTION

AREA-IN-USE FLAG

VERSION NUMBER OF DATA FORMAT J~/f
f
S

DOMAIN CONTROL DATA fxf

B6

FI1G. 6

Patent Application Publication Oct. 4,2012 Sheet 7 of 15 US 2012/0254865 A1

RELATIVE 600
ADDRESS IN N
.......................... F1RMWARE - -
CO| CODE OF SUSPENSION CANCELING || 601
PROCESS
N 602
N CoDE OF WAITING PROCESS L
"""""""""" S 603
C2 GODE OF PREPROCESSING S
&3 N 604

CODE OF CODE LOADING PROCESS

8] ‘ 605
CODE OF DATA LOADING PROCESS }/

€5 CODE OF DATA CONVERTING 606
.................... PROGESS

C6| CODE OF ACCESS SUSPENDING || 607

______ PROCESS

7] CODE OF FIRMWARE SWITCHING || 608
... PROCESS L

¢8

F1G. 7

Patent Application Publication Oct. 4,2012 Sheet 8 of 15 US 2012/0254865 A1

FIRMWARE OF FIRMWARE OF
FIRMWARE OF HYPERVISOR HYPERVISOR
SERVIGE STORED iIN STORED IN _
PROCESSOR 210 UPPER AREA 420 LOWER AREA 430 DOMAIN 330
: : 411 ' ’
| z A
| WRITE FIRMWARE OF i | VALID NAP | :
: TARGET HYPERVISOR : ADDRESS ($102 ;
Ny AT 4 |
EPROM / HYPERVISOR CALL |
* 2/ 3 /' RESPONSE hi
e § $103

NOTIFIGATION OF | " gqpq:
CONPLETION OF | oAy FIRMWARE OF TARGET HYPERVISOR ONTO MEMORY

WRITING ,
: sios” | ; 5106
! COPY DATA IN DATA AREA /M HYPERVISOR
! » CALL !
| $108 : snf;? |
.~ STOPPING INSTRUCTION R
| : | RESPONSE [
' S10 o 5
| REWRITE VALID MAP ! 5109
‘ ADDRESS 411 SUSPENSION
Y PERIOD

VALID MAP j 3111

| | | ADDRESS /j CANCELING | |
§ § A3 INSTRUCTIONL

N{}TEFI:CATION OF COMPLETION /7 SHS :
OF REPLACEMENT S112 \/‘w HYPERVISOR CALL

RESPONSE
o~

;o
3

1 : T
y 3 I

1 i T I

1 1 4

‘ | Lsi14
1 3 3

1 1 H

FI1G. 8

Patent Application Publication Oct. 4,2012 Sheet 9 of 15 US 2012/0254865 A1

(st)

k4

PREPROCESSING 201

- < 5202
~¥L«;:j”PRGCESSINa TYPE

‘1 2

CODE LOADING 8203 E)
PROCESS - |
DATA LOADING - —S204
PROCESS

k4

S205
SWITCHING PROCESS .

FI1G. 9

Patent Application Publication Oct. 4,2012 Sheet 10 of 15 US 2012/0254865 A1

N
(START)

MANAGEMENT UNIT STORES FIRMWARE OF | ~—S301
HYPERVISOR IN EPROM

MANAGEMENT UNIT NOTIFIES 8302
PREPROCESSING UNIT IN GONTROL UNIT /
OF COMPLETION OF STORAGE OF
F IRMWARE

e =~ 5303
—" IS DYNANIC

NO
,\/// FIRMWARE REPLACEMENT FUNCTION >
VALID? 'ﬁ/

.\/““"

o

/;Ii?gs
\
$304
IS FIRMWARE
f’//ijRED IN EPROg&;;if\\‘\\\\\
T SAME AS FIRMWARE OF HYPERVISOR »
<i\\\\\\\\THAT [S CURRENTLY

RUNN 1 NG‘? - h 4] 3305
\\\\‘\\k\ — PROCESSING TYPE — 0 |/
NO
TS TS 5306
- FIRMHARE

STORED IN EPROM THE SAME \\\ YES

w FIRMWARE ALREADY LOADED .
INTO INACTIVE —

‘“\\\\‘ AREA? f,/ff”’!
I NO

fSSOS
PROCESSING TYPE « 2 PROCESSING TYPE « |

s 5307

¥

{ END) { E;\;D

FI1G. 10

Patent Application Publication Oct. 4,2012 Sheet 11 of 15 US 2012/0254865 A1

C smT)
;

LOAD, INTO CODE AREA IN INACTIVE AREA OF TWO S401
MEMORY AREAS FOR HYPERVISOR OPERATION, CODE s
OF FIRMWARE STORED IN EPRCM

FI1G., 11

Patent Application Publication Oct. 4,2012 Sheet 12 of 15 US 2012/0254865 A1

e

START
I — 3501
e \\\? v

——a

|

f:\hw\ggﬁg?ESS[NG TYPE T

***If*”’“” 5502
i2 A

COPY STATIC DATA IN DATA AREA OF TARGET HYPERVISOR STORED IN
EPROM TO DATA AREA IN INAGTIVE AREA IN DIMM

5504

%

o
e = §503
NG _~"" IS THERE ‘“*\\\ YES

, CHANGE IN DATA
BN . _FoRAT__ T E

COPY DOMAIN CONTROL DATA IN
ACTIVE AREA TO INACTIVE AREA No OF DATA FORHAT FOR ™~
<;~\ TARGET HYPERVISOR

\’/ < 5505
v“”/;;:VERSIGN

3507 U

=

I

-

END \f
i YES =~ 3506

ADDRESS 10 JUNP 1O ADDRESS 10 JUWP 10
ADDRESS CF CODE OF DATA ADBRESS OF CODE OF DATA
CONVERTING PROCESS IN ACTIVE CONVERTING PROCESS [N INACTIVE
AREA AREA

¥ ¥

$508 -—_ | INPUT ADDRESS <

STARTING ABDRESS OF DOMAIN GONTROL DATA IN ACTIVE AREA

y

5509 ~_ OUTPUT ADDRESS «—

STARTING ADDRESS OF DOMAIN CONTROL DATA IN INACTIVE AREA

'

{NPUT VERSION NUMBER —
VERSION NUMBER OF DATA FORMAT FOR GURRENT HYPERVISOR

v

S5 | QUTPUT VERSION NUMBER

VERSION NUMBER OF DATA FORMAT FOR TARGET HYPERVISOR

v

8512\\ USING [NPUT ADDRESS, GUTPUT ADDRESS, INPUT VERSION NUMBER, AND

GUTPUT VERSION NUMBER AS ARGUMENTS, CALL AND EXECUTE PROGESS AT
ADDRESS 1O JUMP TO

-

(END
FI1G. 12

Patent Application Publication Oct. 4,2012 Sheet 13 of 15 US 2012/0254865 A1

START)

FROM CURRENT HYPERVISOR, INSRTUCGT DONMAINS 10 5601
TEMPORARILY SUSPEND ACCESS TO HYPERVISOR

v
IF THERE 1S PROCESS FOR WHICH REQUEST FROM ANY DOMAIN 8602
HAS ALREADY BEEN ACCEPTED, EXECUTE AND COMPLETE THE =
PROGESS

v

VALID MAP ADDRESS - STARTING ADDRESS OF CURRENT | -S603
INACTIVE AREA

¥
CONTROL REGISTER FOR TRAP INSTRUCTION « STARTING | ,—S604
ADDRESS OF CURRENT INAGTIVE AREA

¥
AREA-IN-USE FLAG IN AREA THAT IS NOT AREA INDICATED BY | —S605
VALID MAP ADDRESS « ©

¥
AREA-IN-USE FLAG IN AREA INDICATED BY VALID MAP |~ 35606
ADDRESS « 1

¥

PROGRAM COUNTER IN CPU < (VALID MAP ADDRESS) + <607
(ADDRESS OF CODE OF SUSPENSION CANCELING PROCESS e
INDICATED BY ADDRESS MAP IN AREA [NDICATED BY VALID
MAP ADDRESS)

y

FROM HYPERVISOR THAT HAS NEWLY SWITCHED 7O "CURRENT JerSOS
HYPERVISOR”, INSTRUCT DOMAINS TO CANCEL SUSPENSION OF
ACCESS TO HYPERVISOR

v
NOTIFY MANAGEMENT UNIT OF COMPLETION OF REPLACEMENT OF | ~S609
FIRMWARE

v
START WAITING PROCESS BY INCREMENTING PROGRAM COUNTER

(rr"'
N

5610

END

FIG. 13

Patent Application Publication

ADDRESS
RECOGNIZED M
BY CPU U\
7B
ACTIVE DATA AREA
AREA L.
b
101 CODE ARFA
\
hY)
DATA AREA
INACTIVE
AREA B3
f/<
702 CODE AREA
\
B4

FI1G.

Oct. 4,2012 Sheet 14 of 15

14

US 2012/0254865 Al

10 PHYSTCAL
B ADDRESS
“ IN DIMM
EG ?11 """
DATA AREA ./
SV
CODE AREA —
£y
720 PHYSTCAL
N ADDRESS
IN DINMM
: ey 121
DATA AREA _/
B 199
CODE AREA e
£9

TSR)
(stmT)

k 4

Patent Application Publication Oct. 4,2012 Sheet 15 of 15 US 2012/0254865 A1

FROM CURRENT HYPERVISOR, INSTRUCT DOMAINS TO
TEMPORARILY SUSPEND ACCESS TO HYPERVISOR

- S701

IF THERE IS PROCESS FOR WHICH REQUEST FROM ANY DOMAIN
HAS ALREADY BEEN ACCEPTED, EXECUTE AND COMPLETE THE
PROCESS

§702
a

¥

AREA-IN-USE FLAG IN ACTIVE AREA — O

A

AREA-IN-USE FLAG IN INACTIVE AREA « 1

- S704

¥

INSTRUCT MEMORY MODULE SWITCH CONTROLLING CIRCUIT 10
SWITCH DIMM

5705

) 4

PROGRAM COUNTER IN CPU «— (STARTING ADDRESS OF ACTIVE
AREA) + (ADDRESS OF CODE OF SUSPENSION CANGELING
PROCESS INDICATED BY ADDRESS MAP IN ACTIVE AREA)

8706

L

¥

FROM HYPERVISOR THAT HAS NEWLY SWITCHED TO "CURRENT
HYPERVISOR”, INSTRUCT DOMAINS TO CANCEL SUSPENSION OF
ACCESS TO HYPERVISOR

~S707

¥

NOTIFY MANAGEMENT UNIT OF COMPLETION OF REPLACEMENT OF
F IRMWARE

5708

X

START WAITING PROCESS BY INCREMENTING PROGRAM COUNTER

~S709

{ END P,
FI1G. 15

US 2012/0254865 Al

HYPERVISOR REPLACING METHOD AND
INFORMATION PROCESSING DEVICE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the ben-
efit of priority of the prior Japanese Patent Application No.
2011-082892, filed on Apr. 4, 2011, the entire contents of
which are incorporated herein by reference.

FIELD

[0002] Theembodiments disclosed herein relate to replace-
ment of firmware of a hypervisor.

BACKGROUND

[0003] Inrecentyears, the use of a hypervisor is increasing.
The hypervisor is one of the virtualization techniques. There
are some types of hypervisors, and a certain type of a hyper-
visor is provided in a form of firmware.

[0004] Inacomputer system using the hypervisor provided
in the form of firmware, the firmware is upgraded when, for
example, a new version of the hypervisor is released. The
firmware maybe downgraded when a defect is found in the
hypervisor of the new version that has already been installed.
The firmware is replaced either when it is upgraded or when
it is downgraded. Some documents, such as Japanese Laid-
Open Patent Publication No. 2002-342102, are known with
respect to an updating method of a firmware program.
[0005] Meanwhile, in a computer system using some kind
of firmware, replacing (for example, upgrading) the firmware
may involve a halt of the computer system. For example,
according to an architecture designed to load the firmware on
a memory only when the computer boots up, the replacement
of the firmware involves a reboot of the computer, and there-
fore, involves a halt of the computer.

[0006] It is desirable, as much as possible, to prevent an
outage of a certain service provided by a certain kind of a
server. Consequently, the firmware may not be replaced in a
timely manner in the server in order to prevent the outage of
the service.

[0007] Therefore, if there is a technique that enables
replacement of firmware without a halt of a system, such a
technique is beneficial in promoting timely replacement of
the firmware. For example, with respect to a redundant sys-
tem including an active system and a standby system, the
following updating method is proposed to automatically
update a firmware program without temporarily halting the
entire system.

[0008] When a program managing unit detects an update of
a control program, the control program is downloaded
through an interface to each of controlling units respectively
provided in the active system and the standby system. The
controlling units each store the received control program in
their flash memories through their work memories.

[0009] The program managing unit then issues a program
update instruction to the controlling unit of the standby sys-
tem. When the controlling unit of the standby system that has
received the update instruction replaces the control program
to be updated, the program managing unit issues, to the con-
trolling unit of the standby system, an instruction for switch-
ing to the active system and issues, to the controlling unit of
the active system, an instruction for switching to the standby
system. The program managing unit further issues an update

Oct. 4,2012

instruction to the controlling unit that has switched from the
active system to the standby system, thereby realizing the
replacement of the control program to be updated.

SUMMARY

[0010] According to an aspect, a hypervisor replacing
method executed by an information processing device is pro-
vided.

[0011] The hypervisor replacing method includes storing,
when the information processing device executes firmware of
a first hypervisor stored in a first memory area, firmware of a
second hypervisor into a second memory area different from
the first memory area. The hypervisor replacing method fur-
ther includes issuing, from the first hypervisor, a stopping
instruction that instructs a caller of a hypervisor call to stop
issuing a new hypervisor call.

[0012] The hypervisor replacing method further includes
rewriting designating information from a first value to a sec-
ond value. The designating information designates a memory
area storing firmware of a hypervisor executed by the infor-
mation processing device. The first value designates the first
memory area, and the second value designates the second
memory area.

[0013] The hypervisor replacing method further includes
starting execution of the firmware of the second hypervisor in
response to the rewriting of the designating information.
[0014] The hypervisor replacing method further includes
issuing, from the second hypervisor to the caller, a canceling
instruction that cancels the stopping instruction.

[0015] The object and advantages of the invention will be
realized and attained by means of the elements and combina-
tions particularly pointed out in the claims.

[0016] Itisto be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.

BRIEF DESCRIPTION OF DRAWINGS

[0017] FIG. 1 is a diagram explaining an operation of an
information processing device of a first embodiment;

[0018] FIG. 2 is a block configuration diagram of an infor-
mation processing device of a second embodiment;

[0019] FIG. 3 is a hardware configuration diagram of the
information processing device of the second embodiment;
[0020] FIG. 4 is a diagram schematically explaining virtu-
alization using a hypervisor;

[0021] FIG. 5 is a diagram explaining memory allocation
related to firmware of the hypervisor according to the second
embodiment;

[0022] FIG. 6 is a diagram illustrating an example of a data
area;
[0023] FIG. 7 is a diagram illustrating an example of a code
area;
[0024] FIG. 8isasequence diagram illustrating an example

of replacement of the hypervisor;
[0025] FIG. 9 is a flowchart of a replacement process for
replacing the hypervisor;

[0026] FIG.101isaflowchart of preprocessing in the second
embodiment;
[0027] FIG. 11 is a flowchart of a code loading process in

the second embodiment;
[0028] FIG.12is a flowchart of a data loading process in the
second embodiment;

US 2012/0254865 Al

[0029] FIG. 13 is a flowchart of a switching process in the
second embodiment;

[0030] FIG. 14 is a diagram explaining memory allocation
related to the firmware of the hypervisor according to a third
embodiment; and

[0031] FIG. 15 is a flowchart of a switching process in the
third embodiment.

DESCRIPTION OF EMBODIMENTS

[0032] Hereinafter, embodiments will be described in
detail with reference to the drawings. Specifically, a first
embodiment will be described with reference to FIG. 1. A
second embodiment will be described with reference to FIGS.
2 to 13. A third embodiment will be described with reference
to FIGS. 14 and 15. Other modified examples will then be
described.

[0033] FIG. 1 is a diagram explaining an operation of an
information processing device of the first embodiment. The
information processing device, which is not illustrated in
FIG. 1, includes a memory and a CPU (Central Processing
Unit).

[0034] The CPU loads a program into the memory and
executes the program while using the memory also as a work-
ing area. The CPU executes various programs, such as firm-
ware of a hypervisor, a program of an OS (Operating System)
running on the hypervisor, and an application program run-
ning on the OS.

[0035] A virtual environment on the hypervisor is called a
“domain”, a“logical domain”, a “partition”, etc. Although the
term “domain” will be used for the convenience of the
description in the present specification, this is not intended to
limit the specific type of the hypervisor.

[0036] There may be one domain on the hypervisor or there
may be a plurality of domains on the hypervisor. Each domain
includes one OS. Each domain may further include one or
more device drivers and one or more applications. In the
example of FIG. 1, there are two domains running on the
hypervisor. Only OSs 2a and 25 in the domains are illustrated
in FI1G. 1, and the device driver(s) and the application(s) in the
domains are not illustrated in FIG. 1.

[0037] Specifically, the information processing device of
the first embodiment operates as follows.

[0038] Instep S1, the information processing device (more
specifically, the CPU included in the information processing
device) is executing firmware of a hypervisor 1a stored in a
first memory area in the memory. In the example of FIG. 1, the
OSs 2a and 25 are running on the hypervisor 1a in step S1.
[0039] When the information processing device is execut-
ing the firmware of the hypervisor 1a as in step S1, a user may
give the information processing device an input for instruct-
ing the information processing device to replace the hypervi-
sor la with a hypervisor 15. For example, the user may want to
replace the hypervisor 1a of a certain version with the hyper-
visor 15 of another version to upgrade or downgrade the
hypervisor. Consequently, the user inputs a replacing instruc-
tion for replacing the hypervisor 1a with the hypervisor 16
through an input device (such as a button and/or a keyboard),
which is not illustrated in FIG. 1.

[0040] After the replacing instruction is inputted, the infor-
mation processing device stores the firmware of the hypervi-
sor 16 in a second memory area in step S2. The second
memory area is different from the first memory area that
stores the firmware of the hypervisor 1a.

Oct. 4,2012

[0041] Specifically, the firmware of the hypervisor la
includes code for causing the information processing device
to execute a process of storing, in the second memory area, the
firmware of the hypervisor 15 designated as a replacement
target. Therefore, the information processing device, which is
executing the hypervisor 1a, operates in accordance with the
firmware of the hypervisor 1a and thereby stores the firmware
of'the hypervisor 15 in the second memory area as in step S2.
[0042] Then in step S3, the information processing device
issues a stopping instruction from the hypervisor la. The
stopping instruction instructs a caller of a hypervisor call to
stop issuing a new hypervisor call. The stopping instruction is
individually issued to every caller of a hypervisor call. Spe-
cifically, in the example of F1G. 1, the hypervisor 1a issues the
stopping instruction to each of the OSs 2a and 25.

[0043] A hypervisor callis also referred to as a “hypercall”.
A hypervisor call from the OS 2a is an interface for the OS 2a
in the domain to access the hypervisor. A hypervisor call from
the OS 25 is an interface for the OS 25 in the domain to access
the hypervisor.

[0044] The OSs 2a and 25, which have each received the
stopping instruction, stop issuing a new hypervisor call. As a
result, the OSs 2a and 26 temporarily stop accessing the
hypervisor 1a. The stopping instruction is issued in order to
prevent the OS 2a or 25 from accessing the hypervisor during
the switch from the hypervisor 1a to the hypervisor 15.
[0045] Meanwhile, the information processing device
holds designating information 3 for designating a memory
area storing the firmware of the hypervisor executed by the
information processing device.

[0046] The designating information 3 may be stored in, for
example, a predetermined register in the CPU. Depending on
the architecture of the information processing device, the
“predetermined register” may be, for example, a base register
indicating an offset used in addressing or may be a register
indicating an address to jump to when a trap instruction is
detected.

[0047] Theinformation processing device may also include
an address translation circuit that translates, into a physical
address, a logical address outputted to an address bus by the
CPU. In this case, the designating information 3 may be
stored in a storage device (e.g., a register) in the address
translation circuit.

[0048] The address translation circuit maps the same logi-
cal address to different physical addresses according to the
designating information 3. Therefore, in the information pro-
cessing device including the address translation circuit, it is
possible for the CPU to access different memory areas in one
memory module using the same logical address.

[0049] The designating information 3 may be stored at a
predetermined address in the memory. For example, the pre-
determined address, at which the designating information 3 is
stored, may be a predetermined address in a predetermined
area for the firmware of the hypervisor. Depending on the
architecture, an interrupt vector may be stored in a predeter-
mined area on the memory, and the address to jump to when
atrap instruction is detected may be indicated by a particular
element of the interrupt vector. In this case, the predetermined
address, at which the designating information 3 is stored, may
be the address of the particular element of the interrupt vector.
[0050] The information processing device may include a
plurality of physically different memory modules and may
use the plurality of memory modules while switching among
them from one to another. In this case, the designating infor-

US 2012/0254865 Al

mation 3 may be stored in a memory module switch control-
ling circuit for enabling the information processing device to
switch among the memory modules from one to another to
use one of them. The designating information 3 maybe stored
in, for example, a storage device (e.g., a register or a flip-flop)
in the memory module switch controlling circuit, or the des-
ignating information 3 maybe indicated by whether a particu-
lar transistor in the memory module switch controlling circuit
is turned on or turned off.

[0051] In this way, it may vary depending on the embodi-
ment where in the information processing device the desig-
nating information 3 is specifically stored. The designating
information 3 may also be stored in a plurality of devices in
the information processing device, such as in both the
memory and the register in the CPU.

[0052] No matter where the designating information 3 is
specifically stored, the designating information 3 designates
the first memory area, in which the firmware of the hypervisor
la is stored, during the above-mentioned steps S1 to S3 as
illustrated by arrows in FIG. 1. Then, in step S4, the informa-
tion processing device rewrites the designating information 3
from a first value designating the first memory area to a
second value designating the second memory area. The infor-
mation processing device then starts execution of the firm-
ware of the hypervisor 15 in response to the rewriting of the
designating information 3.

[0053] Specifically, the firmware of the hypervisor la
includes code for rewriting the designating information 3 and
code for switching from the hypervisor 1a to the hypervisor
Ib. Therefore, in step S4, the information processing device
operates in accordance with the firmware of the hypervisor
1a, thereby rewriting the designating information 3 and car-
rying out the switch from the hypervisor 1a to the hypervisor
1b. As a result, the information processing device starts
executing the firmware of the hypervisor 15 in step S4.
[0054] The OSs 24a and 25 in step S4 are still temporarily
suspending the access to the hypervisor in accordance with
the instruction in step S3.

[0055] The switch from the hypervisor 1a to the hypervisor
Ib is transparent to the OS 2a. In other words, the interface for
the OS 2ato access the hypervisor 1a and the interface for the
OS 2a to access the hypervisor 15 are the same hypervisor
call. Therefore, the OS 2a does not recognize the switch of the
hypervisor. The switch from the hypervisor 1a to the hyper-
visor 15 is similarly transparent to the OS 2.

[0056] Therefore,in FIG. 1, the blocks ofthe OSs 2a and 26
are depicted over the block of the hypervisor 1a in steps
[0057] S1 to S3, whereas the blocks of the OSs 2a and 24
are depicted over the block of the hypervisor 15 in steps S4
and S5. In other words, the OSs 2a and 25 come to run on the
hypervisor 15 as aresult of the switch of the hypervisor in step
S4.

[0058] Note that the stopping instruction in step S3 is still
valid for the OSs 2a and 25. Therefore, the OSs 2a and 25 do
not actually access the hypervisor 15 in step S4 yet.

[0059] Inthe following step S5, the information processing
device issues, from the hypervisor 15, a canceling instruction
that cancels the stopping instruction. The canceling instruc-
tion is individually issued to every caller of a hypervisor call.
Specifically, in the example of FIG. 1, the canceling instruc-
tionis issued from the hypervisor 15 to each of the OSs 2a and
2b.

[0060] As described, the switch of the hypervisor is trans-
parent to the OSs 2a and 2b. Therefore, the OSs 2a and 26

Oct. 4,2012

simply recognize that issuing a hypervisor call is now allowed
though it was instructed in the past to stop issuing the hyper-
visor call.

[0061] The OSs 2a and 25, which have each received the
canceling instruction instep S5, will hereafter invoke hyper-
visor calls as necessary. In other words, the OSs 2a and 25
running on the hypervisor 15 are enabled to actually access
the hypervisor 16 by receiving the canceling instruction in
step S5.

[0062] In the first embodiment in FIG. 1, the hypervisor is
accessed through hypervisor calls from the OSs. Therefore,
the stopping instruction and the canceling instruction are
issued to each of the OSs 2a and 24. On the other hand, in an
embodiment in which a device driver may invoke a hypervi-
sor call, the hypervisor 1a issues the stopping instruction also
to the device driver, and the hypervisor 15 issues the cancel-
ing instruction also to the device driver. The stopping instruc-
tion stops access to the hypervisor and the canceling instruc-
tion allows access to the hypervisor, regardless of whether the
stopping instruction and the canceling instruction are issued
only to the OSs or issued to both the OSs and the device driver.

[0063] The above-explained operation of the information
processing device as illustrated in FIG. 1 realizes replacement
of the hypervisor without rebooting the information process-
ing device (specifically, without rebooting the CPU that is
done by shutting down the power supply followed by turning
on the power supply again). In other words, the firmware of
the hypervisor is replaced while the information processing
device is operating (more specifically, while the information
processing device is being powered on and while the OSs 2a
and 25 are running). In this way, the first embodiment makes
it possible, while not necessitating halting the information
processing device, to replace the firmware of the hypervisor la
with the firmware of the hypervisor 16 and to cause the
information processing device to execute the firmware of the
hypervisor 15.

[0064] As described, the replacement of the hypervisor
according to the first embodiment does not halt user programs
(such as OSs, device drivers, and applications) executed on
the domains. In other words, the replacement of the hypervi-
sor according to the first embodiment is transparent to the user
programs. Therefore, according to the first embodiment, even
if the information processing device is used to provide a
service whose halt is not preferable, the service is not sus-
pended due to the replacement of the hypervisor.

[0065] Thus, the administrator of the information process-
ing device (for example, a server) is enabled to determine to
replace the hypervisor in a timely manner, independently of
the schedule of providing the service. As a result, timely
replacement of the hypervisor is promoted. The timely
replacement of the hypervisor is preferable. For example, the
timely replacement of the hypervisor is preferable from the
viewpoint of improving the security when a hypervisor of a
new version to which a patch for fixing vulnerability is
applied is released.

[0066] A defect may be found later in the hypervisor 15 that
has replaced the hypervisor 1la, therefore necessitating
switching back from the hypervisor 15 to the hypervisor 1a.
Even in such a case, the hypervisor 15 is able to be replaced
with the hypervisor 1a without halting the CPU, in a similar
way as described above. Therefore, even if a defect is found in
the hypervisor 15, the CPU does not have to be halted, and the
user programs do not have to be halted.

US 2012/0254865 Al

[0067] The replacement of the hypervisor according to the
first embodiment is realizable as long as the memory includes
the first memory area and the second memory area, and also
as long as the information processing device holds the desig-
nating information 3. In other words, the information pro-
cessing device does not have to be a redundant system includ-
ing an active system and a standby system.

[0068] Obviously, the memory may be redundant. In other
words, the first memory area and the second memory area
may be allocated on physically different memory modules.

[0069] In any case, according to the first embodiment, the
information processing device simultaneously holds the firm-
ware of the hypervisor 1a and that of the hypervisor 15 (i.e.,
respective instances of the firmware of the hypervisors of two
generations) in two memory areas, and thereby enabling the
replacement of the hypervisor without the need to reset the
CPU.

[0070] A second embodiment will now be described with
reference to FIGS. 210 13. For the convenience of the descrip-
tion, a currently running hypervisor is hereinafter called a
“current hypervisor”. When the current hypervisor is to be
replaced with a certain other hypervisor, the certain other
hypervisor that is the target of the replacement is called a
“target hypervisor”.

[0071] For example, when a hypervisor of version 2 is
currently running and the hypervisor is to be upgraded from
version 2 to version 3, the current hypervisor is the hypervisor
of version 2, and the target hypervisor is the hypervisor of
version 3. Conversely, when the hypervisor of version 3 is
currently running and the hypervisor is to be downgraded
from version 3 to version 2, the current hypervisor is the
hypervisor of version 3, and the target hypervisor is the hyper-
visor of version 2.

[0072] FIG. 2 is a block configuration diagram of an infor-
mation processing device of the second embodiment. An
information processing device 100 of FIG . 2 includes a
management unit 110 and a control unit 120. The manage-
ment unit 110 and the control unit 120 cooperatively execute
a process for replacing the firmware of the hypervisor (here-
inafter, this process is also called a “replacement process™).
The information processing device 100 further includes a
storage unit 130 that is accessible from both the management
unit 110 and the control unit 120. The information processing
device 100 also includes a DIMM (Dual In-line Memory
Module) 140 that is accessible from at least the control unit
120.

[0073] The management unit 110 includes a storage unit
111 that stores the firmware of the target hypervisor. When
the firmware of the target hypervisor is stored into the storage
unit 111, the management unit 110 starts the replacement
process. Specifically, the management unit 110 copies the
firmware of the target hypervisor stored in the storage unit
111 to the storage unit 130. When the copying is completed,
the management unit 110 then notifies the control unit 120 of
the completion of the copying.

[0074] The control unit 120 includes a preprocessing unit
121, a code loading unit 122, a data updating unit 123, and a
switching unit 124. As described later in detail, the control
unit 120 is realized by a CPU executing the firmware of the
hypervisor. In other words, the firmware of the hypervisor
includes not only code for providing each domain with a
virtual environment, but also code for realizing the prepro-
cessing unit 121, the code loading unit 122, the data updating

Oct. 4,2012

unit 123, and the switching unit 124. A summary of the
operation of the control unit 120 is as follows.

[0075] The preprocessing unit 121 first receives the above-
mentioned notification of the completion from the manage-
ment unit 110. Triggered by the reception of the notification,
the preprocessing unit 121 determines whether to continue
the replacement process or to end it.

[0076] If the preprocessing unit 121 determines to end the
replacement process, the preprocessing unit 121 notifies the
management unit 110 of the end of the replacement process.
On the other hand, if the preprocessing unit 121 determines to
continue the replacement process, the code loading unit 122
copies the section of program code in the firmware of the
target hypervisor stored in the storage unit 130 to an appro-
priate area in the DIMM 140.

[0077] For the convenience of the description, the section
of the program code in the firmware of the hypervisor is
hereinafter also called a “code area”. The section of data in the
firmware of the hypervisor is hereinafter also called a “data
area”.

[0078] The DIMM 140 includes at least two areas used for
the hypervisor, and firmware 141 of the current hypervisor is
stored in one of these areas. The code loading unit 122 copies
the code area in firmware 142 of the target hypervisor from
the storage unit 130 to the area not storing the firmware 141 of
the current hypervisor.

[0079] For the convenience of the description, the area
where the firmware 141 of the current hypervisor is stored is
hereinafter also called an “active area”. The area where the
firmware 141 of the current hypervisor is not stored is here-
inafter also called an “inactive area”.

[0080] The data updating unit 123 then loads the data area
within the firmware of the target hypervisor stored in the
storage unit 130 onto the inactive area in the DIMM 140. In
addition, the data updating unit 123 converts the format of
part of the data included in the data area in the firmware 141
of the current hypervisor as necessary and then loads the
format-converted data onto the inactive area in the DIMM
140.

[0081] The switching unit 124 then performs switch from
the current hypervisor to the target hypervisor. Although
details of processes associated with the switch will be
described later, these processes are, in summary, similar to the
processes of steps S3 to S5 in FIG. 1. Some ofthe functions of
the switching unit 124 are realized by the CPU executing the
firmware 141 of the current hypervisor, and the other func-
tions of the switching unit 124 are realized by the CPU
executing the firmware 142 of the target hypervisor.

[0082] After the completion of the switch from the current
hypervisor to the target hypervisor, the switching unit 124
notifies the management unit 110 of the completion of the
replacement process.

[0083] According to the replacement process executed by
the management unit 110 and the control unit 120 as
described above, the current hypervisor is replaced with the
target hypervisor without physically rebooting the informa-
tion processing device 100. In other words, shutting down the
power supply and turning on the power supply again are not
necessary to replace the hypervisor, and thus, the hypervisor
is replaced while the information processing device 100 is
operating. Therefore, the replacement of the current hypervi-
sor with the target hypervisor is executed without causing a
halt of a service provided by the information processing
device 100.

US 2012/0254865 Al

[0084] Therefore, in determining the schedule of the
replacement of the current hypervisor with the target hyper-
visor, it is not necessary to take into consideration the timing
at which the halt of the service is acceptable. In other words,
the second embodiment makes it possible to replace the cur-
rent hypervisor with the target hypervisor at an arbitrary
timing, thereby realizing timely replacement.

[0085] A hardware configuration of the information pro-
cessing device 100 of FIG. 2 will now be described with
reference to a hardware configuration diagram of FIG. 3.
[0086] Specifically, the information processing device 100
includes a service processor 210 and one or more system
boards.

[0087] Although three system boards 220a to 220c¢ are
illustrated in FIG. 3, the system boards 2205 and 220¢ may be
omitted. Conversely, the information processing device 100
may include four or more system boards.

[0088] The information processing device 100 further
includes an input device 230, an output device 240, a storage
device 250, a network connection device 260, and a drive
device 270. The service processor 210, the system boards
220a to 220c, the input device 230, the output device 240, the
storage device 250, the network connection device 260, and
the drive device 270 are connected to each other through a bus
280.

[0089] A computer-readable storage medium 290 may be
set to the drive device 270. A crossbar switch may be used in
place of the bus 280.

[0090] The service processor 210 includes a CPU 211, a
NOR flash memory 212, and a NAND flash memory 213. The
CPU 211 is connected to the NOR flash memory 212 and the
NAND flash memory 213. Obviously, the type of the memory
included in the service processor 210 is not limited to the
types exemplified in FIG. 3, andmaybe appropriately modi-
fied depending on the embodiment.

[0091] The system board 220qa includes a CPU 221, an
EPROM (Erasable Programmable Read Only Memory) 222,
an SRAM (Static Random Access Memory) 223, and a
DIMM 224. The CPU 221 is connected to the EPROM. 222
and the DIMM. 224. The EPROM. 222 and the SRAM 223
are also connected to the DIMM 224.

[0092] Obviously, the type of the memory included in the
system board 220« is not limited to the types exemplified in
FIG. 3, and may be appropriately modified depending on the
embodiment. The system boards 2205 and 220c¢ are config-
ured similarly to the system board 220a.

[0093] The service processor 210 operates independently
of the system boards 220a to 220c. For example, the service
processor 210 may monitor the voltage, the temperature, etc.,
based on the outputs of sensors, which are not illustrated in
the drawings, and may execute an appropriate process
according to the result of monitoring. The service processor
210 may provide a function of a forced reboot of the infor-
mation processing device 100.

[0094] Specifically, the NOR flash memory 212 stores, in
advance, firmware for the service processor 210. The CPU
211 of the service processor 210 operates, while using the
NOR flash memory 212 as a working area, in accordance with
the firmware stored in the NOR flash memory 212.

[0095] The NAND flash memory 213 is used to exchange
data between the service processor 210 and the system boards
220a to 220c.

[0096] For example, in order to replace the firmware of the
hypervisor of the system board 220q, the firmware 142 of the

Oct. 4,2012

target hypervisor is copied to the system board 220a from
outside of the systemboard 2204 . In the present embodiment,
the firmware 142 of the target hypervisor is first stored in the
NAND flash memory 213 of the service processor 210 and
then copied from the NAND flash memory 213 to the
EPROM 222 in the system. board 220a. Subsequently, the
firmware 142 of the target hypervisor is coped from the
EPROM 222 to the DIMM 224 within the system board 220a.
[0097] TheNAND flash memory 213 is used as an interface
for transferring the firmware 142 of the target hypervisor
from the service processor 210 to the system board 220qa as
exemplified above.

[0098] The types or versions of the hypervisors respec-
tively running on the system boards 220a to 220c¢ maybe
different from each other. In other words, the hypervisors on
the system boards are independent of each other. Therefore,
replacement of the hypervisor on one system board is execut-
able independently of the other system boards. For conve-
nience, replacement of the hypervisor on the system board
220q is described below as an example.

[0099] The service processor 210 of FIG. 3 realizes the
management unit 110 of FIG. 2. In other words, the firmware
for the service processor 210 stored in the NOR flash memory
212 includes code for causing the service processor 210 to
operate as the management unit 110.

[0100] The NAND flash memory 213 in the service proces-
sor 210 may realize the storage unit 111, which stores the
firmware of the target hypervisor in the management unit 110.
Obviously, another type of rewritable memory may be used as
the storage unit 111 in place of the NAND flash memory 213.
[0101] Ina case where the hypervisor on the system board
220a is to be replaced, the EPROM 222 in the system board
220qa may realize the storage unit 130, which is illustrated in
FIG. 2 and to which the firmware of the target hypervisor is
copied.

[0102] Obviously, another type of rewritable memory may
be used as the storage unit 130 in place of the EPROM 222.
[0103] Ina case where the hypervisor on the system board
220a is to be replaced, the DIMM 140 of FIG. 2 is the DIMM
224 in the system board 220a. In this case, the CPU 221 of'the
system board 2204 executes the firmware of the hypervisor on
the DIMM 224, thereby realizing the control unit 120 of FI1G.
2.

[0104] Not only the firmware of the hypervisor, but also
various other programs, such as OSs and applications, are
loaded into the DIMM 224. The CPU 221 executes various
programs loaded into the DIMM 224 while using the DIMM
224 also as a working area.

[0105] Meanwhile, the service processor 210 not only oper-
ates as the management unit 110, but also executes various
processes such as monitoring the voltage as described above.
Some of the processes executed by the service processor 210
involve input and output of small-sized data, such as control
data, between the service processor 210 and the system
boards 220a to 220c. For example, the SRAM 223 on the
system. board 220a may be used as an interface for exchang-
ing the control data between the service processor 210 and the
system board 220aq.

[0106] As described, when the management unit 110 of
FIG. 2 finishes copying the firmware of the target hypervisor
from the storage unit 111 to the storage unit 130, the man-
agement unit 110 notifies the preprocessing unit 121 in the
control unit 120 of the completion of the copying. Mean-
while, when the replacement of the hypervisor is completed,

US 2012/0254865 Al

the switching unit 124 notifies the management unit 110 of
the completion of the replacement.

[0107] The above-mentioned notifications of completion
may be made through the SRAM 223. For example, the CPU
211 in the service processor 210 may set a flag stored in a
predetermined area in the SRAM 223 in the system board
220a, thereby notifying the CPU 221 in the system board
220a of the completion of the copying. Similarly, the CPU
221 in the system board 220a may set a flag stored in another
predetermined area in the SRAM 223, thereby notifying the
CPU 211 inthe service processor 210 ofthe completion of the
replacement.

[0108] Meanwhile, the input device 230 is, for example, a
keyboard, a button, a pointing device (such as a mouse or a
touchscreen), a microphone, or a combination of these. The
output device 240 is, for example a display, a speaker, or a
combination of these. The display may be the touchscreen.
[0109] The storage device 250 is an external storage device
such as a hard disk device. Various programs, suchas OSs and
applications, are stored in the storage device 250, and they are
loaded from the storage device 250 into the DIMM 224.

[0110] The network connection device 260 is, for example,
a device that provides a network interface for a wired LAN
(Local Area Network) , a wireless LAN, or both. The network
connection device 260 may be, for example, a NIC (Network
Interface Card).

[0111] The drive device 270 is a drive device for the com-
puter-readable storage medium 290. The storage medium 290
maybe any of a magnetic disk, a magneto-optical disk, an
optical disk such as a CD (Compact Disc) and a DVD (Digital
Versatile Disk), and a semiconductor memory such as a USB
(Universal Serial Bus) memory card.

[0112] The NOR flash memory 212, the NAND flash
memory 213, the EPROM 222, the SRAM 223, the DIMM
224, the storage device 250, and the storage medium 290, all
of which are illustrated in FIG. 3, are examples of tangible
storage media. In other words, these tangible storage media
illustrated in FIG. 3 are not transitory media such as a signal
carrier.

[0113] Meanwhile, virtualization using the hypervisor is
implemented in the information processing device 100 con-
figured as in FIGS . 2 and 3 . FIG. 4 is a diagram schematically
explaining the virtualization using the hypervisor. Since the
hypervisors on the system boards are independent of each
other as described above, F1G. 4 only illustrates virtualization
in the system board 220a.

[0114] The information processing device 100 includes
various pieces of hardware 310. Examples of the hardware
310 include the CPU 221 and the DIMM 224 on the system
board 220a. Another example of the hardware 310 is an
input/output device (hereinafter, abbreviated as “I/0”) 311
outside of the system board 220a. Specific examples of the
1/0 311 include the input device 230, the output device 240,
the storage device 250, and the drive device 270. The hard-
ware 310 may further include one or more other devices such
as the network connection device 260.

[0115] A hypervisor 320 hides the physical hardware 310
and provides virtual environments. The virtual environments
provided by the hypervisor 320 are also called “domains™ as
described above.

[0116] In the example of FIG. 4, there are three domains
330a to 330c on the system board 220a. An OS, a device
driver(s), and an application(s) run on each domain.

Oct. 4,2012

[0117] An access from any of the domains 330a to 330c to
the hypervisor 320 is made through a hypervisor call. For
example, an embodiment in which only the OSs invoke the
hypervisor calls is possible, and an embodiment in which
both the OSs and the device drivers invoke the hypervisor
calls is also possible.

[0118] The caller of the hypervisor call in the domain 330a
(i.e., the OS, the device driver, or both in the domain 330a)
includes a suspension control unit 331a. The domains 3305
and 330c¢ similarly include suspension control units 3316 and
331c, respectively.

[0119] When the suspension control unit 331a receives,
from the hypervisor 320, a stopping instruction for instructing
the domain 330« to stop the hypervisor call, the suspension
control unit 331a stops the hypervisor call. In other words ,
upon receipt of the stopping instruction, the suspension con-
trol unit 331a suspends access to the hypervisor 320. As a
result, the access from the domain 330a to the hypervisor 320
is temporarily stopped.

[0120] When the suspension control unit 331a receives a
canceling instruction for canceling the stopping instruction
from the hypervisor 320, the suspension control unit 331a
cancels the suspension of the hypervisor call. As a result, the
access from the domain 330a to the hypervisor 320 is
resumed.

[0121] The suspension control unit 331¢ may include a
queue which is not illustrated and which is provided for
storing one or more hypervisor calls. In the period from the
reception of the stopping instruction to the reception of the
canceling instruction, the suspension control unit 331a may
store, in the queue, the content of each hypervisor call to be
invoked, instead of actually invoking the hypervisor call.
[0122] The suspension control unit 331a may use, for
example, a control flag indicating whether the hypervisor call
is permitted or not. The suspension control unit 331a is able
to determine whether to invoke the hypervisor call or to store
the content of the hypervisor call in the queue, in accordance
with the value of the control flag.

[0123] For example, when the stopping instruction is
received, the suspension control unit 331ae may set the control
flag to a value (for example, 0) indicating that the hypervisor
call is prohibited. When the canceling instruction is received,
the suspension control unit 331a may set the control flag to a
value (for example, 1) indicating that the hypervisor call is
permitted.

[0124] Alternatively, the hypervisor 320 may rewrite the
value of the control flag from 1 to O, thereby realizing the
issuance of the stopping instruction from the hypervisor 320.
The hypervisor 320 may rewrite the value of the control flag
from O to 1, thereby realizing the issuance of the canceling
instruction from the hypervisor 320.

[0125] The suspension control units 3316 and 331c¢ also
operate similarly to the suspension control unit 331a. In other
words, the suspension control units 331a to 331¢ included in
the OSs and/or the device drivers control the suspension and
the resumption of the hypervisor calls.

[0126] The second embodiment will now be described in
further detail with reference to FIGS. 5 to 13.

[0127] FIG. 5 is a diagram explaining memory allocation
related to the firmware of the hypervisor according to the
second embodiment. Specifically, FIG. 5 is a diagram
explaining physical memory allocation in the DIMM 140 of
FIG. 2 corresponding to the DIMM 224 of FIG. 3.

US 2012/0254865 Al

[0128] Addresses “A0” to “AS5” illustrated in FIG. 5 denote
physical addresses of the DIMM 140 (i.e., the DIMM 224).
The domains 330a to 330c do not recognize the physical
addresses ofthe DIMM 140 (i.e., thephysical addresses of the
realmachine) .

[0129] As illustrated in FIG. 5, an area 400 for the hyper-
visor includes a common area 410 that starts at the address
A0. The area 400 for the hypervisor also includes two areas
for respectively storing two versions of the firmware of the
hypervisor. Of these two areas, the area that starts at the
address Al will be called an “upper area 420, and the area that
starts at the address A3 will be called a “lower area 430" for
the convenience of the description. In the second embodi-
ment, the addresses A0, Al, and A3 are predetermined fixed
addresses.

[0130] The firmware 141 of the current hypervisor of FIG.
2 is stored in the upper area 420 or stored in the lower area 430
depending on the situation. Therefore, the area to which the
firmware 142 of the target hypervisor is copied may be the
lower area 430 or the upper area 420 depending on the situ-
ation.

[0131] Inother words, there may be a case where the upper
area 420 is the active area and the lower area 430 is the
inactive area; and there may be a case where the upper area
420 is the inactive area and the lower area 430 is the active
area. As is clear from the flowcharts described later, the upper
area 420 and the lower area 430 alternately serve as the active
area.

[0132] Specifically, a valid map address 411 is stored in the
common area 410. The valid map address 411 indicates in
which of the upper area 420 and the lower area 430 the
firmware 141 of the current hypervisor is stored. The valid
map address 411 is one of the specific examples of the des-
ignating information 3 of FIG. 1.

[0133] In other words, the valid map address 411 indicates
the address where the currently valid address map is stored.
The address map will be described later with reference to
FIG. 6. More specifically, the valid map address 411 indicates
the starting address Al of the upper area 420 or the starting
address A3 of the lower area 430.

[0134] The firmware 141 of the current hypervisor or the
firmware 142 of the target hypervisor is stored in the upper
area 420. In either case, the firmware of the hypervisor
includes a data area 421 and a code area 422. In the example
of FIG. 5, the data area 421 starts at the address Al, and the
code area 422 starts at the address A2.

[0135] The firmware 142 of the target hypervisor or the
firmware 141 of the current hypervisor is stored in the lower
area 430. In either case, the firmware of the hypervisor
includes a data area 431 and a code area 432. In the example
of FIG. 5, the data area 431 starts at the address A3, and the
code area 432 starts at the address A4.

[0136] Depending on the embodiment, one or more pieces
of data may be stored all over the data area 421, which starts
at the address Al and which ends at the address (A2-1).
Alternatively, one or more pieces of data may be stored only
in the area from the address A1 to the address (A2-j) where
j>1, and the rest of the data area 421 may not be used (i.e., the
area from the address (A2-j+1) to the address (A2-1) may not
be used). In other words, the data area 421 may include
padding. The code area 422, the data area 431, and the code
area 432 may similarly include unused areas at their ends.

Oct. 4,2012

[0137] Each of the data areas 421 and 431 includes various
data as in FIG. 6. FIG. 6 is a diagram illustrating an example
of'a data area.

[0138] Specifically, adataarea 500 of FIG. 6 is the data area
421 or431 of F1G. 5. Addresses B0 to B6 in FI1G. 6 are relative
addresses in the firmware.

[0139] More specifically, when the data area 500 is the data
area 421, the addresses of FIG. 6 are relative addresses rela-
tive to the address A1 of FIG. 5. When the data area 500 is the
data area 431, the addresses of FIG. 6 are relative addresses
relative to the address A3 of FIG. 5.

[0140] The data area 500 includes static data and dynamic
data. The “static data” is constant data determined in a fixed
manner according to the version of the hypervisor or data
which is variable but whose initial value is statically deter-
mined according to the version of the hypervisor. The
“dynamic data” is data that is dynamically rewritten by the
hypervisor while the hypervisor is running. More specifically,
the “dynamic data” is data which depends on, for example,
the hardware configuration of a machine in which the hyper-
visor is installed, the number of domains managed by the
hypervisor, and/or the states of the domains managed by the
hypervisor.

[0141] Examples of the static data include an address map
501, the version number 502 of a hypervisor, the version
number 503 of a data format, a valid/invalid flag 504 for a
dynamic replacement function, and an area-in-use flag 505.
An example of the dynamic data includes domain control data
506. The data area 500 may further include data other than the
data illustrated in FIG. 6. The sequential order of the data
items illustrated in FIG. 6 provides an example. The sequen-
tial order of the various data items in the data area 500 may be
appropriately changed depending on the embodiment.

[0142] The address map 501 stored in an area that starts at
the address B0 indicates details of the code area. Although
described in detail later with reference to FI1G. 7, the code area
includes pieces of code for various processes executed by the
hypervisor. The address map 501 is a map indicating at least
the starting address of each process (i.e., each subroutine) .
The address map 501 may further indicate what kind of infor-
mation is stored at which address in the data area 500.

[0143] Intheexample of FIG. 6, the version number 502 of
the hypervisor is stored at the address B1. For example, when
the data area 500 is the data area 421 of FIG. 5, the version
number 502 of the hypervisor is the version number of the
hypervisor whose firmware is stored in the upper area 420.
Conversely, when the data area 500 is the data area 431 of
FIG. 5, the version number 502 of the hypervisor is the
version number of the hypervisor whose firmware is stored in
the lower area 430.

[0144] Intheexample of FIG. 6, the version number 503 of
the data format used by the hypervisor is stored at the address
B2. In the second embodiment, not only the hypervisor itself,
but also the format of the data used by the hypervisor is
subject to versioning. More specifically, the version number
503 of the data format indicates the version of the data format
of'the dynamic data such as the domain control data 506.

[0145] For example, the data format of version 1 may be
used for the hypervisors of versions 1 to 3, and the data format
of'version 2 may be used for the hypervisors of versions 4 and
5. Under such a situation, for example, when the hypervisor is
upgraded from version 2 to version 3, the conversion of the
data format is not necessary. On the other hand, when the

US 2012/0254865 Al

hypervisor is upgraded from version 3 to version 4, the data
format is converted (as described in detail later with reference
to FIG. 12).

[0146] For example, when the data area 500 is the data area
421 of FIG. 5, the version number 503 of the data format is the
version number of the data format used by the hypervisor
whose firmware is stored in the upper area 420. On the other
hand, when the data area 500 is the data area 431 of FIG. 5, the
version number 503 of the data format is the version number
of the data format used by the hypervisor whose firmware is
stored in the lower area 430. If the version numbers 503 of the
data formats of two hypervisors are different from each other,
the version number 502 of one hypervisor with the newer
version number 503 of the data format is newer than the
version number 502 of the other hypervisor.

[0147] In the example of FIG. 6, the valid/invalid flag 504
for the dynamic replacement function is further stored at the
address B3 in the data area 500. The value of the valid/invalid
flag 504 may be fixed or may be switched, while the hyper-
visor is running, in accordance with, for example, an input
from the input device 230.

[0148] Even if the valid/invalid flag 504 is switchable, the
initial value of the valid/invalid flag 504 is fixed. Therefore,
the valid/invalid flag 504 is one of the static data.

[0149] For example, when the data area 500 is the data area
421 of FIG. 5, the valid/invalid flag 504 indicates whether it is
valid or not to dynamically replace the hypervisor whose
firmware is stored in the upper area 420 with the hypervisor
whose firmware is stored in the lower area 430. The dynamic
replacement means replacement of the hypervisor without
involving aphysical reboot of the CPU 221 (i.e., without
shutting down the power supply followed by turning on the
power supply again).

[0150] In other words, when the data area 500 is the data
area 421 of FIG. 5, the valid/invalid flag 504 indicates
whether or not replacement with a hypervisor of another
version is feasible without rebooting the CPU 221 while the
hypervisor stored in the upper area 420 is running. Similarly,
when the data area 500 is the data area 431 of FIG. 5, the
valid/invalid flag 504 indicates whether replacement with a
hypervisor of another version is feasible without rebooting
the CPU 221 while the hypervisor stored in the lower area 430
is running.

[0151] Inthe example of FIG. 6, the area-in-use flag 505 is
stored at the address B4 in the data area 500. The initial value
of'the area-in-use flag 505 is a value (for example, 0) indicat-
ing “not used”. Although the area-in-use flag 505 is rewritten
during the replacement process, the area-in-use flag 505 is
one of the static data because the initial value of the area-in-
use flag 505 is fixed.

[0152] More specifically, in a case where the data area 500
is the data area 421 of F1G. 5 and where the current hypervisor
is the hypervisor stored in the upper area 420, the value of the
area-in-use flag 505 is a value (for example, 1) indicating
“used”. On the other hand, in a case where the data area 500
is the data area 421 of F1G. 5 and where the current hypervisor
is the hypervisor stored in the lower area 430, the value of the
area-in-use flag 505 is a value (for example, 0) indicating “not
used”.

[0153] Inacase where the data area 500 is the data area 431
of FIG. 5 and where the current hypervisor is the hypervisor
stored in the upper area 420, the value of the area-in-use flag
505 is the value indicating “not used”. On the other hand, in a
case where the data area 500 is the data area 431 of FIG. Sand

Oct. 4,2012

where the current hypervisor is the hypervisor stored in the
lower area 430, the value of the area-in-use flag 505 is the
value indicating “used”.

[0154] In other words, the area-in-use flag 505 is rewritten
from the value indicating “not used” to the value indicating
“used” when a hypervisor of a certain version changes from
the target hypervisor to the current hypervisor as the replace-
ment process proceeds. The area-in-use flag 505 is rewritten
from the value indicating “used” to the value indicating “not
used” when the hypervisor that has been the current hypervi-
sor changes so as not to be the current hypervisor as the
replacement process proceeds.

[0155] In the example of FIG. 6, the domain control data
506 is further stored in the area that starts at the address B5 in
the data area 500. The domain control data 506 is dataused by
the hypervisor to control the domains 330a to 330¢ and is data
dynamically rewritten by the hypervisor while the hypervisor
is running.

[0156] For example, an address space that the OS in the
domain 330a recognizes as a physical address space is actu-
ally an address space of a virtual machine and is not a physical
address space of a real machine. Data (for example, a page
table) for translating an address that the OS in the domain
330a recognizes as a physical address into a physical address
of the real machine is an example of the domain control data
506. Obviously, there is similar data for the address transla-
tion for each of the other domains 33054 and 330c¢, and such
data is also included in the domain control data 506.

[0157] The hypervisor 320 also performs scheduling, such
as allocating the processing time of the real CPU 221 sequen-
tially to the domains 330a to 330c. The domain control data
506 may include one or more parameters for scheduling.

[0158] FIG. 7 is a diagram illustrating an example of the
code area. Specifically, a code area 600 of FIG. 7 is the code
area 422 or 432 of FIG. 5. Addresses C0 to C8 in FIG. 7 are
relative addresses in the firmware.

[0159] More specifically, when the code area 600 is the
code area 422, the addresses of FIG. 7 are relative addresses
relative to the address Al of FIG. 5. When the code area 600
is the code area 432, the addresses of FIG. 7 are relative
addresses relative to the address A3 of FIG. 5.

[0160] As described in relation to the address map 501 of
FIG. 6, the code area 600 includes pieces of code for various
processes executed by the hypervisor. The sequential order of
the pieces of code illustrated in FIG. 7 provides an example.

[0161] Depending on the embodiment, the sequential order
of'the pieces of code may be different from that illustrated in
FIG. 7.

[0162] Inthe example of FIG. 7, code 601 of a suspension
canceling process is stored in an area that starts at the address
C0. The suspension canceling process is a process of issuing
the canceling instruction to each of the suspension control
units 331a to 331c. The suspension canceling process is
executed just after the boot of the hypervisor (i.e., just after
the change from the target hypervisor to the current hypervi-
sor).

[0163] Code 602 of a waiting process is stored in an area
that starts at the address C1. The waiting process is a process
of'invoking an appropriate process in response to a hypervisor
call when the hypervisor call is received from any of the
domains 330a to 330c.

US 2012/0254865 Al

[0164] Code 603 of preprocessing is stored in an area that
starts at the address C2. The preprocessing unit 121 of FIG. 2
is realized by the CPU 221 executing the code 603 of the
preprocessing.
[0165] Code 604 of a code loading process is stored in an
area that starts at the address C3. The code loading unit 122 of
FIG. 2 is realized by the CPU 221 executing the code 604 of
the code loading process.
[0166] Code 605 of a data loading process is stored in an
area that starts at the address C4, and code 606 of a data
converting process is stored in an area that starts at the address
C5. The data updating unit 123 of FIG. 2 is realized by the
CPU 221 executing the code 605 of the data loading process
and the code 606 of the data converting process.
[0167] Code 607 of an access suspending process is stored
in an area that starts at the address C6, and code 608 of a
firmware switching process is stored in an area that starts at
the address C7. For example, in upgrading the hypervisor
from version 2 to version 3, the switching unit 124 is realized
by the CPU 221 executing the following pieces of code (al)
and (a2).

[0168] (al) The code 607 of the access suspending process
of the hypervisor of version 2 and the code 608 of the
firmware switching process of the hypervisor of version 2

[0169] (a2) The code 601 of the suspension canceling pro-
cess of the hypervisor of version 3

[0170] Although notillustrated in FIG. 7, the code area 600

further includes pieces of code for various other processes

executed by the hypervisor in areas in the address range from
the address C8. For example, the code area 600 includes code
for an appropriate process according to the type of a hyper-
visor call that the hypervisor receives during execution of the
waiting process. The code area 600 also includes code for

translation between the address recognized by the OS (i.e.,

the address ofthe virtual machine) and the physical address of

the real machine as well as code for scheduling among the
domains 330a to 330c.

[0171] The address map 501 of FIG. 6 includes at least

pieces of information indicating the following (b1) to (b8).

[0172] (bl) The starting address of the code 601 of the
suspension canceling process is CO.

[0173] (b2) The starting address of the code 602 of the
waiting process is C1.

[0174] (b3) The starting address of the code 603 of the
preprocessing is C2.

[0175] (b4) The starting address of the code 604 of the code
loading process is C3.

[0176] (b5) The starting address of the code 605 of the data
loading process is C4.

[0177] (b6) The starting address of the code 606 of the data
converting process is C5.

[0178] (b7) the starting address of the code 607 of the
access suspending process is C6.

[0179] (b8) The starting address of the code 608 of the
firmware switching process is C7.

[0180] Details of the replacement process will now be

described with reference to FIGS. 8 to 13. FIG. 8 is a sequence

diagram illustrating an example of replacement of the hyper-
visor.

[0181] The area used as the active area at the start of the

operational sequence of FIG. 8 is the upper area 420 of FIG.

5. More specifically, the valid map address 411 of FIG. 5

indicates the starting address A1 of the upper arca 420 at the

Oct. 4,2012

start of the operational sequence of FIG. 8. The domain 330 of
FIG. 8 may be any of the domains 330a to 330c of FIG. 4.
[0182] Intheservice processor 210 as the management unit
110, the CPU 211 operates in accordance with the firmware
stored in the NOR flash memory 212 in the service processor
210. Assume that the firmware of the target hypervisor is
already stored in the NAND flash memory 213 (i.e., the
storage unit 111 of FIG. 2) in the service processor 210 at the
start of the operational sequence of FIG. 8.

[0183] In step S101, the management unit 110 writes the
firmware of the target hypervisor stored in the NAND flash
memory 213 to the EPROM 222 (i.e., the storage unit 130 of
FIG. 2) in the system board 220aq.

[0184] Meanwhile, the domain 330 does not recognize that
the management unit 110 has started the replacement process.
Therefore, the domain 330 may invoke a hypervisor call, for
example at the timing indicated as step S102 in FIG. 8.
[0185] The current hypervisor then operates in accordance
with the code 602 of the waiting process in the code area 422
of the upper area 420 and another appropriate piece of code
that is not illustrated but that is stored in the code area 422 of
the upper area 420. The current hypervisor then returns a
response for the hypervisor call to the domain 330 in step
S103.

[0186] Ifthewritingin step S101 is completed successfully,
then in step S104, the management unit 110 notifies the
preprocessing unit 121 in the control unit 120 of the comple-
tion. Specifically, in the example of FIG. 8, the preprocessing
unit 121 is realized by the CPU 221 executing the code 603 of
the preprocessing included in the firmware of the current
hypervisor stored in the code area 422 of the upper area 420.
[0187] Upon the preprocessing unit 121 receiving the noti-
fication of the completion, in the next step S105, the code
loading unit 122 loads, onto the memory, the firmware of the
target hypervisor having been copied to the EPROM 222 (i.e.,
the storage unit 130 of FIG. 2). Specifically, the code loading
unit 122 in step S105 loads the code area in the firmware of the
target hypervisor on the EPROM 222 into the code area 432 of
the lower area 430, which is the inactive area.

[0188] Further in step S106, the data updating unit 123
copies the static data included in the data area in the firmware
of the target hypervisor on the EPROM 222 to the data area
431 of the lower area 430, which is the inactive area.

[0189] In step S106, the dataupdatingunit 123 further cop-
ies, to the data area 431, the dynamic data in the data area 421
of the upper area 420, which is the active area. In step S106,
the data updating unit 123 may simply copy the dynamic data
or may additionally perform the data format conversion,
depending on the version numbers 503 of the data formats for
the current hypervisor and the target hypervisor.

[0190] Meanwhile, the domain 330 does not recognize that
the replacement process is in progress. Therefore, as illus-
trated for example in step S107 of FIG. 8, the domain 330 may
invoke a hypervisor call at the timing significantly close to
step S106.

[0191] The current hypervisor then receives the hypervisor
call in accordance with the code 602 of the waiting process in
the code area 422 of the upper area 420. Meanwhile, after the
process of step S106 is completed, the switching unit 124
issues a stopping instruction to the domain 330 in step S108.
Specifically, the process of step S108 is executed in accor-
dance with the code 607 of the access suspending process in
the firmware of the current hypervisor.

US 2012/0254865 Al

[0192] The domain 330 that has received the stopping
instruction stops invoking a hypervisor call until a canceling
instruction, which is an instruction for cancellation of the
stopping instruction, is received. In the example of FIG. 8, the
domain 330 suspends the hypervisor call(s) during a period
indicated as a “suspension period” extending from step S108
to step S111 which is described later.

[0193] In other words, the domain 330 does not access the
hypervisor during the suspension period. Instead, the domain
330 may store the hypervisor call(s) intended to be invoked in
the queue during the suspension period.

[0194] Subsequently to the issuance of the stopping
instruction in step S108, the switching unit 124 operates in
step S109 as follows. That is, for each hypervisor call which
is received before the issuance of the stopping instruction and
for which a response is not returned yet, the switching unit
124 executes an appropriate process and returns a response to
the domain 330. In the example of FIG. 8, the response to the
hypervisor call of step S107 is returned in step S109. The
process of step S109 is also executed in accordance with the
code 607 of the access suspending process in the firmware of
the current hypervisor.

[0195] In the following step S110, the switching unit 124
rewrites the valid map address 411 with the starting address
A3 of the lower area 430, in which the firmware of the target
hypervisor is stored. The process of step S110 is executed in
accordance with the code 608 of the firmware switching
process in the firmware of the current hypervisor.

[0196] As aresult of step S110, the hypervisor whose firm-
ware is stored in the upper area 420 changes so that it is not the
current hypervisor, and the upper area 420 is switched from
the active area to the inactive area. Instead, the hypervisor
whose firmware is stored in the lower area 430 is switched
from the target hypervisor to the current hypervisor, and the
lower area 430 is switched from the inactive area to the active
area.

[0197] In the following step S111, the switching unit 124
issues a canceling instruction. In step S112, the switching unit
124 further notifies the service processor 210 as the manage-
ment unit 110 of the completion of the replacement of the
hypervisor. The processes of steps S111 and S112 are
executed in accordance with the code 601 of the suspension
canceling process in the code area 432 of the lower area 430.
[0198] The domain 330 that has received the canceling
instruction resumes invoking hypervisor calls. Specifically, if
the queue is not empty, the domain 330 sequentially invokes
the hypervisor call(s) stored in the queue. After the queue
becomes empty, the domain 330 also invokes hypervisor calls
as necessary.

[0199] For example, the domain 330 invokes a hypervisor
call in step S113. Consequently, the current hypervisor,
whose firmware is stored in the lower area 430, executes an
appropriate process according to the hypervisor call and
returns a response in step S114. In this way, the replacement
of the hypervisor is transparent to the domain 330. More
specifically, it is recognizedby the domain 330 as if the hyper-
visor just temporarily requested the domain 330 to stop the
hypervisor call.

[0200] Note that FIG. 8 is an example in which the active
area switches from the upper area 420 to the lower area 430
upon replacement of the hypervisor. However, there is obvi-
ously a case in which the active area switches from the lower
area 430 to the upper area 420 upon replacement of the
hypervisor.

Oct. 4,2012

[0201] FIG. 9 is a flowchart of the replacement process for
replacing the hypervisor. As can be understood from the
description so far, the replacement process itself is executed
by the hypervisor.

[0202] The replacement process of FIG. 9 is started if the
following conditions (c1) and (¢2) hold true.

[0203] (c1) The firmware of the target hypervisor is stored
in the storage unit 111 (specifically, for example, the NAND
flash memory 213) in the management unit 110.

[0204] (c2) It is explicitly or implicitly instructed to start
the replacement process.

[0205] Various methods make it realizable to read the firm-
ware of the target hypervisor from the outside of the infor-
mation processing device 100 to the storage unit 111. For
example, the firmware of the target hypervisor may be down-
loaded from a network through the network connection
device 260 and then may be stored in the NAND flash
memory 213.

[0206] Alternatively, the firmware of the target hypervisor
may be stored in advance in the storage medium 290. Then,
the firmware of the target hypervisor maybe read from the
storage medium 290 set to the drive device 270 and may be
copied to the NAND flash memory 213.

[0207] In any case, the condition (c1) holds true when the
firmware of the target hypervisor is read into the storage unit
111. An example of the explicit instruction in the condition
(c2) is an input from the user (for example, the administrator
of the information processing device 100) through the input
device 230. An example of the implicit instruction in the
condition (c2) is an event that storing the firmware of the
target hypervisor in the storage unit 111 is completed.
[0208] When the conditions (c1) and (c2) hold true, the
replacement process of FIG. 9 is started. Upon the replace-
ment process being started, first in step S201, the manage-
ment unit 110 and the preprocessing unit 121 execute the
preprocessing that is illustrated in FIG. 10. Although details
are described later with reference to FIG. 10, the preprocess-
ing includes copying from the storage unit 111 to the storage
unit 130 (i.e., copying from the NAND flash memory 213 to
the EPROM 222), and setting the “processing type” for the
flow control.

[0209] The value of the processing type is one of (d1) to
(d3).
[0210] (d1) A value indicating that the control unit 120 is

unable to continue the replacement process or it is not neces-
sary to continue the replacement process. Hereinafter, it is
assumed that this value is O for the convenience of the descrip-
tion.

[0211] (d2) A value indicating that it is the case where the
control unit 120 continues the replacement process and that
the firmware 142 of the target hypervisor remains in the
inactive area in the DIMM 140. Hereinafter, itis assumed that
this value is 1 for the convenience of the description.

[0212] (d3) A value indicating that it is the case where the
control unit 120 continues the replacement process and that
the firmware 142 of the target hypervisor is not stored in the
inactive area in the DIMM 140. Hereinafter, itis assumed that
this value is 2 for the convenience of the description.

[0213] For example, when the current hypervisor or the
target hypervisor does not support the dynamic replacement
function, the control unit 120 is unable to continue the
replacement process. Therefore, in this case, the value of the
processing type is 0. When the same hypervisor as the current
hypervisor is designated as the target hypervisor, the control

US 2012/0254865 Al

unit 120 does not have to continue the replacement process.
Therefore, also in this case, the value of the processing type is
0.

[0214] On the other hand, the case in which the control unit
120 continues the replacement process is a case in which it is
feasible to continue the replacement process and in which the
current hypervisor and the target hypervisor are different
from each other. When the control unit 120 continues the
replacement process, the value of the processing type is 1 or
2.

[0215] For example, if the target hypervisor is a hypervisor
that has been running on the information processing device
100 until just before the current hypervisor started to run, the
firmware of the target hypervisor remains in the inactive area.
Therefore, in this case, the value of the processing type is 1.
[0216] More specifically, for example, some kind of defect
may be found after the hypervisor is upgraded from version 2
to version 3. As a result, the hypervisor may be downgraded
from version 3 to version 2.

[0217] Inacase where the replacement process of FIG. 9 is
executed for downgrading as exemplified above, the current
inactive area is an area that was the active area when the
hypervisor of version 2 was running. In other words, the
firmware of the hypervisor of version 2 that is now the target
hypervisor is stored in the current inactive area. Therefore, the
value of the processing type is 1.

[0218] On the other hand, the firmware of the target hyper-
visor does not exist on the DIMM 140 in some cases, for
example when a hypervisor of version 5 is newly released,
and the replacement process of FIG. 9 is executed to upgrade
the hypervisor from version 4 to version 5. Therefore, the
value of the processing type is 2.

[0219] The hypervisor may be downgraded to version 1 for
some reason after the hypervisor is upgraded from version 1
to version 2 and then upgraded from version 2 to version 3. In
this case, the firmware of the target hypervisor in downgrad-
ing from version 3 to version 1 (i.e., the firmware of the
hypervisor of version 1) no longer exists on the DIMM 140.
Therefore, the value of the processing type is 2.

[0220] After the processing type described above is set in
the preprocessing in step S201, the preprocessing unit 121
judges whether the value of the processing type is 0, 1, or 2 in
the following step S202.

[0221] Ifthe value of'the processing type is 0, the processes
in and after step S203 are not necessary and therefore the
replacement process of FIG. 9 is finished. If the value of the
processing type is 1, the process proceeds to step S204. If the
value of the processing type is 2, the process proceeds to step
S203.

[0222] Instep S203, the code loading unit 122 executes the
code loading process that is illustrated in FIG. 11. In step
S204, the dataupdatingunit 123 executes the data loadingpro-
cess that is illustrated in FIG. 12. In the last step S205, the
switching unit 124 executes the switching process that is
illustrated in FIG. 13, and then the replacement process of
FIG. 9 ends.

[0223] Steps S101 and S104 of FIG. 8 are part of the pre-
processing in step S201 of FIG. 9. The value of the processing
type is 2 in the example of FIG. 8. Step S105 of FIG. 8
corresponds to step S203 of FIG. 9, and step S106 of FIG. 8
corresponds to step S204 of FIG. 9. Steps S108 to S112 of
FIG. 8 are part of step S205 of FIG. 9. Steps S102, S103,
S107, S113, and S114 of FIG. 8 are independent of the
replacement process of FIG. 9.

Oct. 4,2012

[0224] Details of the preprocessing illustrated in step S201
of FIG. 9 will now be described with reference to a flowchart
of FIG. 10.

[0225] Instep S301, the management unit 110 stores, in the
storage unit 130 of FIG. 2 (i.e., in the EPROM 222 of FIG. 3),
the firmware of the target hypervisor stored in the storage unit
111 (i.e., the NAND flash memory 213 of FIG. 3) in the
management unit 110.

[0226] Uponcompletion ofthe storage in step S301, next in
step S302, the management unit 110 notifies the preprocess-
ing unit 121 in the control unit 120 of the completion of the
storage of the firmware.

[0227] Then in step S303, the preprocessing unit 121 refers
to the valid/invalid flag 504 for the dynamic replacement
function in the data area 500 of the firmware of the current
hypervisor stored in the active area in the DIMM 140. The
preprocessing unit 121 refers to the valid map address 411 in
the common area 410, and is thereby able to recognize which
of'the upper area 420 and the lower area 430 is the active area.

[0228] The preprocessing unit 121 also refers to the valid/
invalid flag 504 for the dynamic replacement function in the
data area 500 of the firmware of the target hypervisor stored
in the storage unit 130. The preprocessing unit 121 then
judges whether the dynamic replacement function is valid or
not based on the values of the two valid/invalid flags 504.

[0229] Ifboth the valid/invalid flag 504 in the firmware of
the current hypervisor and the valid/invalid flag 504 in the
firmware of the target hypervisor have a value (for example,
1) indicating “valid”, the process proceeds to step S304. On
the other hand, if at least one of the valid/invalid flag 504 in
the firmware of the current hypervisor and the valid/invalid
flag 504 in the firmware of the target hypervisor has a value
(for example, 0) indicating “invalid”, the process proceeds to
step S305.

[0230] In step S304, the preprocessing unit 121 judges
whether the firmware of the target hypervisor stored in the
EPROM 222 is the same as the firmware of the current hyper-
visor that is currently running.

[0231] Specifically, the preprocessing unit 121 first refers
to the valid map address 411 in the common area 410 in the
area 400 for the hypervisor, and thereby judges which of the
upper area 420 and the lower area 430 is the active area.
Alternatively, the preprocessing unit 121 may memorize the
result of referencing the valid map address 411 in step S303.

[0232] If the starting address Al of the upper area 420 is
stored as the valid map address 411, the version number of the
current hypervisor is the version number 502 in the data area
421. Conversely, if the starting address A3 of the lower area
430 is stored as the valid map address 411, the version number
of'the current hypervisor is the version number 502 in the data
area 431. In this way, the preprocessing unit 121 recognizes
the version number of the current hypervisor.

[0233] The preprocessing unit 121 also refers to the version
number 502 in the data area 500 of the firmware of the target
hypervisor stored in the EPROM 222. The preprocessing unit
121 then compares the version numbers 502 of the current
hypervisor and the target hypervisor.

[0234] Ifthe two version numbers 502 are equal, there is no
need for the replacement because the target hypervisor and
the current hypervisor are the same. Therefore, the process
proceeds to step S305. Conversely, if the two version numbers
502 are different, the process proceeds to step S306.

US 2012/0254865 Al

[0235] In step S305, the preprocessing unit 121 sets the
value of the processing type to 0. Then, the preprocessing of
FIG. 10 is finished.

[0236] In step S306, the preprocessing unit 121 judges
whether the firmware of the hypervisor stored in the EPROM
222 is the same as the firmware of the hypervisor already
loaded into the inactive area.

[0237] Specifically, the preprocessing unit 121 first refers
to the valid map address 411 in the common area 410 in the
area 400 for the hypervisor, and thereby judges which of the
upper area 420 and the lower area 430 is the inactive area.
Since the preprocessing unit 121 has already referred to the
valid map address 411, the preprocessing unit 121 may not
refer to the valid map address 411 again in step S306 if the
result of the reference is stored. The preprocessing unit 121
may judge which of the upper area 420 and the lower area 430
is the inactive area in step S306 in accordance with the result
of referencing the valid map address 411 in the past.

[0238] If the starting address Al of the upper area 420 is
stored as the valid map address 411, the version number of the
hypervisor whose firmware is stored in the inactive area is the
version number 502 in the data area 431 of the lower area 430.
Conversely, if the starting address A3 of the lower area 430 is
stored as the valid map address 411, the version number of the
hypervisor whose firmware is stored in the inactive area is the
version number 502 in the data area 421 of the upper area 420.
In this way, the preprocessing unit 121 recognizes the version
number of the firmware of the hypervisor already loaded into
the inactive area.

[0239] The preprocessing unit 121 also refers to the version
number 502 in the data area 500 of the firmware of the target
hypervisor stored in the EPROM 222. The preprocessing unit
121 then compares the version numbers 502 of the target
hypervisor and the hypervisor already loaded into the inactive
area.

[0240] If the two version numbers 502 are equal, it is not
necessary to copy the firmware of the target hypervisor from
the EPROM 222 to the current inactive area. Therefore, the
process proceeds to step S307. Conversely, if the two version
numbers 502 are different, the process proceeds to step S308.
[0241] In step S307, the preprocessing unit 121 sets the
value of the processing type to 1. Then, the preprocessing of
FIG. 10 is finished.

[0242] In step S308, the preprocessing unit 121 sets the
value of the processing type to 2. Then, the preprocessing of
FIG. 10 is finished.

[0243] Details of the code loading process illustrated in
step S203 of FIG. 9 will now be described with reference to a
flowchart of FIG. 11.

[0244] In step S401, the code loading unit 122 loads, into
the code area of the inactive area of the two memory areas for
the hypervisor operation, the code of the firmware of the
target hypervisor stored in the EPROM 222.

[0245] Specifically, the code loading unit 122 first refers to
the valid map address 411 of FIG. 5, and thereby recognizes
which of the upper area 420 and the lower area 430 is the
inactive area.

[0246] If the valid map address 411 indicates the address
Al, the lower area 430 is the inactive area. Therefore, the code
loading unit 122 copies the code of the firmware of the target
hypervisor stored in the EPROM 222 to the code area 432 in
the lower area 430.

[0247] Conversely, if the valid map address 411 indicates
the address A3, the upper area 420 is the inactive area. There-

Oct. 4,2012

fore, the code loading unit 122 copies the code of the firmware
of'the target hypervisor stored in the EPROM 222 to the code
area 422 in the upper area 420.

[0248] Details of the data loading process illustrated in step
S204 of FIG. 9 will now be described with reference to a
flowchart of FIG. 12.

[0249] Instep S501, the data updating unit 123 refers to the
value of the processing type set in the preprocessing. If the
value of the processing type is the value (specifically, 1)
explained in (d2), the process proceeds to step S503. Con-
versely, if the value of the processing type is the value (spe-
cifically, 2) explained in (d3), the process proceeds to step
S502.

[0250] Ifthe value of the processing type is 1, the firmware
of the target hypervisor remains in the inactive area in the
DIMM 140. Therefore, it is not necessary to copy the static
data included in the data area 500 from the EPROM 222 to the
inactive area in the DIMM 224. Therefore, if the processing
type is 1, step S502 is skipped.

[0251] Conversely, if the value of the processing type is 2,
the firmware of the target hypervisor does not exist in the
inactive area in the DIMM 140. Therefore, in step S502, the
data updating unit 123 copies the static data in the data area
500 of the target hypervisor stored in the EPROM 222 to the
data area 500 in the inactive area in the DIMM 224.

[0252] Specifically, the data updating unit 123 copies the
address map 501, the version number 502 of the hypervisor,
the version number 503 of the data format, the valid/invalid
flag 504 for the dynamic replacement function, and the area-
in-use flag 505 of FIG. 6. Upon completion of the copying in
step S502, the process proceeds to step S503.

[0253] By referring to the valid map address 411, the data
updating unit 123 is able to recognize the starting address of
the inactive area (i.e., able to recognize the address where the
data is to be copied to).

[0254] If the valid map address 411 indicates the address
Al, the inactive area is the lower area 430. Therefore, the data
updating unit 123 recognizes the starting address A3 of the
lower area 430 as the starting address of the inactive area.
Conversely, if the valid map address 411 indicates the address
A3, the inactive area is the upper area 420. Therefore, the data
updating unit 123 recognizes the starting address Al of the
upper area 420 as the starting address of the inactive area.
[0255] In step S503, the data updating unit 123 judges
whether there is a change in the data format between the
current hypervisor and the target hypervisor. More specifi-
cally, the data updating unit 123 judges whether the version
number 503 of the data format in the data area 421 and the
version number 503 of the data format in the data area 431 are
equal to each other.

[0256] If the two version numbers 503 are equal, the data
format is not changed, and therefore the process proceeds to
step S504. On the other hand, if the two version numbers 503
are different, the process proceeds to step S505.

[0257] In step S504, the data updating unit 123 copies the
domain control data 506 in the active area to the inactive area.
More specifically, the domain control data 506 is copied to an
area which is configured to store the domain control data 506
and which is in the data area 500 in the inactive area.

[0258] In a case where the total length of the static data
included in the data area 500 is fixed, by adding this fixed
length to the starting address of the active area, the data
updating unit 123 is able to recognize the starting address of
the domain control data 506 that is a target to be copied.

US 2012/0254865 Al

Similarly, by adding the fixed length to the starting address of
the inactive area, the data updating unit 123 is able to recog-
nize the address to which the domain control data 506 is to be
copied.

[0259] Ina case where the address map 501 includes infor-
mation indicating the starting address of the domain control
data 506, by referring to the address map 501 of the current
hypervisor in the active area, the data updating unit 123 is able
to recognize the starting address of the target to be copied.
Similarly, by referring to the address map 501 of the target
hypervisor in the inactive area, the data updating unit 123 is
ableto recognize the address to which the domain control data
506 is to be copied.

[0260] Thedataloading process of FIG. 12 is finished when
the copying in step S504 is completed.

[0261] Meanwhile, in step S505, the data updating unit 123
judges whether the version of the data format for the target
hypervisor is newer than that for the current hypervisor. Note
that step S505 is executed only when there is a difference in
the version of the data format between the current hypervisor
and the target hypervisor.

[0262] When the hypervisor is to be replaced for upgrading
it, the version number of the data format for the target hyper-
visor is newer than the version number of the data format for
the current hypervisor. Therefore, the process proceeds from
step S505 to step S506.

[0263] Incontrast, when the hypervisor is to be replaced for
downgrading it, the version number of the data format for the
current hypervisor is newer than the version number of the
data format for the target hypervisor. Therefore, the process
proceeds from step S505 to step S507.

[0264] In step S506, the data updating unit 123 sets, as the
address to jump to, the address of the code 606 of the data
converting process in the code area in the inactive area. More
specifically, the data updating unit 123 determines to invoke,
in step S512 described later, the code 606 of the data convert-
ing process in the firmware of the target hypervisor. The
process of step S506 is specifically as follows.

[0265] When the valid map address 411 indicates the
address A1, the lower area 430 is the inactive area. Therefore,
in step S506, the data updating unit 123 refers to the address
map 501 in the data area 431 in the lower area 430, and
thereby recognizes the relative address, which is that in the
target firmware, of the code 606 of the data converting process
. The data updating unit 123 then adds the recognized relative
address and the starting address A3 of the lower area 430,
which is the inactive area, and thereby obtains the address to
jump to.

[0266] On the other hand, when the valid map address 411
indicates the address A3, the upper area 420 is the inactive
area. Therefore, in step S506, the data updating unit 123 refers
to the address map 501 in the data area 421 in the upper area
420, and thereby recognizes the relative address, which is that
in the target firmware, of the code 606 of the data converting
process. The data updating unit 123 then adds the recognized
relative address and the starting address A1 of the upper area
420, which is the inactive area, and thereby obtains the
address to jump to.

[0267] When the address to jump to (i.e., the jump-to
address) is set, the process proceeds to step S508.

[0268] In step S507, the data updating unit 123 sets, as the
address to jump to, the address of the code 606 of the data
converting process in the code area in the active area. More
specifically, the data updating unit 123 determines to invoke,

Oct. 4,2012

in step S512 described later, the code 606 of the data convert-
ing process in the firmware of the current hypervisor. The
process of step S507 is specifically as follows.
[0269] When the valid map address 411 indicates the
address A1, the upper area 420 is the active area. Therefore, in
step S507, the data updating unit 123 refers to the address
map 501 in the data area 421 in the upper area 420, and
thereby recognizes the relative address, which is that in the
current firmware, of the code 60 6 of the data converting
process . The data updating unit 123 then adds the recognized
relative address and the starting address A1 of the upper area
420, which is the active area, and thereby obtains the address
to jump to.
[0270] On the other hand, when the valid map address 411
indicates the address A3, the lower area 430 is the active area.
Therefore, in step S507, the data updating unit 123 refers to
the address map 501 in the data area 431 in the lower area 430,
and thereby recognizes the relative address, which is that in
the current firmware, of the code 606 of the data converting
process. The data updating unit 123 then adds the recognized
relative address and the starting address A3 of the lower area
430, which is the active area, and thereby obtains the address
to jump to.
[0271] When the address to jump to (i.e., the jump-to
address) is set, the process proceeds to step S508.
[0272] As a result of the above-mentioned step S506 or
S507, the absolute address of the code 606 of the data con-
verting process in the area storing the firmware of the hyper-
visor with the newer version number 503 of the data format is
set as the address to jump to. In the present embodiment, the
code 606 of the data converting process includes a piece of
code for supporting conversion from any older data format
and conversion to any older data format.
[0273] For example, the following pieces of code (el) and
(e2) are included in the code 606 of the data converting
process in the firmware of the hypervisor with the version
number 503 of the data format being 2.
[0274] (el) Code for conversion from the data format of
version 1 to the data format of version 2
[0275] (e2) Code for conversion from the data format of
version 2 to the data format of version 1
[0276] The following pieces of code (fl) to (f4) are
included in the code 606 of the data converting process in the
firmware of the hypervisor with the version number 503 ofthe
data format being 3.
[0277] (f1) Code for conversion from the data format of
version 1 to the data format of version 3
[0278] (f2) Code for conversion from the data format of
version 3 to the data format of version 1
[0279] (f3) Code for conversion from the data format of
version 2 to the data format of version 3
[0280] (f4) Code for conversion from the data format of
version 3 to the data format of version 2
[0281] Therefore, the code 606 of the data converting pro-
cess that starts at the jump-to address, which is set in step
S506 or S507, includes a piece of code for conversion from
the data format for the current hypervisor to the data format
for the target hypervisor.
[0282] After the execution of step S506 or S507, a series of
processes in steps S508 to S512 are executed. The sequential
order of steps S508 to S511 may be changed according to the
embodiment.
[0283] In step S508, the data updating unit 123 sets, as an
input address, the starting address of the domain control data

US 2012/0254865 Al

506 in the active area. The input address herein denotes the
starting address of the data to be converted, in other words, an
address for specifying input to the data converting process.
[0284] As instep S504, the data updating unit 123 is able to
acquire the absolute starting address of the domain control
data 506 in the active area. Therefore, the data updating unit
123 sets the acquired address as the input address.

[0285] In the following step S509, the data updating unit
123 sets, as an output address, the starting address of the
domain control data 506 in the inactive area. The output
address herein denotes the starting address of an area to which
the converted data is to be outputted.

[0286] Similarly to step S504, the data updating unit 123 is
able to acquire the absolute starting address of the domain
control data 506 in the inactive area. Therefore, the data
updating unit 123 sets the acquired address as the output
address .

[0287] In the following step S510, the data updating unit
123 sets, as an input version number, the version number 503
of the data format for the current hypervisor. The process of
step S510 is specifically as follows.

[0288] When the valid map address 411 indicates the
address A1, the firmware of the current hypervisor is stored in
the upper area 420. Therefore, the data updating unit 123 sets
the version number 503 of the data format in the data area 421
of the upper area 420 as the input version number in step
S510.

[0289] On the other hand, when the valid map address 411
indicates the address A3, the firmware of the current hyper-
visor is stored in the lower area 430. Therefore, the data
updating unit 123 sets the version number 503 of the data
format in the data area 431 of the lower area 430 as the input
version number in step S510.

[0290] In the following step S511, the data updating unit
123 further sets, as an output version number, the version
number 503 of the data format for the target hypervisor. The
process of step S511 is specifically as follows.

[0291] When the valid map address 411 indicates the
address A1, the firmware of the target hypervisor is stored in
the lower area 430. Therefore, the data updating unit 123 sets
the version number 503 of the data format in the data area 431
of the lower area 430 as the output version number in step
S511.

[0292] On the other hand, when the valid map address 411
indicates the address A3, the firmware of the target hypervisor
is stored in the upper area 420. Therefore, the data updating
unit 123 sets the version number 503 of the data format in the
data area 421 of the upper area 420 as the output version
number in step S511.

[0293] Then in step S512, using the input address, the out-
put address, the input version number, and the output version
number as arguments, the data updating unit 123 calls and
executes the process at the jump-to address. In other words,
the process of step S512 includes a subroutine call to the data
converting process and also includes execution of the data
converting process. The arguments may be passed through a
call stack or a register window depending on the architecture
of the information processing device 100.

[0294] When the CPU 221 finishes executing the code 606
of'the data converting process starting at the jump-to address
and control returns from the subroutine of the data converting
process upon encountering a return instruction, the process of
step S512 is finished. Consequently, the data loadingprocess

Oct. 4,2012

of FIG. 12 corresponding to step S204 of FIG. 9 is also
finished, and the switching process of step S205 is then
executed.

[0295] For example, the code 605 of the data loading pro-
cess may include, immediately after the call instruction for
calling the subroutine of the data converting process, an
unconditional jump instruction for jumping to the starting
address of the code 607 of the access suspending process. In
other words, this unconditional jump instruction may be
located at the return address of the subroutine call in step
S512.

[0296] In this case, when the CPU 221 finishes executing
the code 606 of the data converting process that starts at the
jump-to address having been set in step S506 or S507, the
program counter in the CPU 221 is updated to a value of the
return address. As a result, the CPU 221 executes the above-
mentioned unconditional jump instruction and then starts
executing the code 607 of the access suspending process in
the firmware of the current hypervisor. Control is passed from
the data updating unit 123 to the switching unit 124 as exem-
plified above, and the process proceeds from step S204 to step
S205 in FIG. 9.

[0297] Details of the switching process illustrated in step
S205 of FIG. 9 will now be described with reference to a
flowchart of FIG. 13.

[0298] In step S601, the switching unit 124 instructs, from
the current hypervisor, the domains 330a to 330c¢ to tempo-
rarily suspend access to the hypervisor. More specifically, the
switching unit 124 issues a stopping instruction to each of the
suspension control units 331ato 331c. The switchingunit 124
at the time when step S601 is executed is realized by the CPU
221 executing the code 607 of the access suspending process
in the firmware of the current hypervisor stored in the active
area.

[0299] As described, the suspension control units are
included in the respective OSs in the embodiment in which
only the OSs invoke hypervisor calls. Alternatively, the sus-
pension control unit is included in each of the OSs and the
device drivers in the embodiment in which both the OSs and
the device drivers invoke hypervisor calls. In either case, the
access from the domains 330a to 330c¢ to the current hyper-
visor is temporarily stopped as a result of issuing the stopping
instruction in step S601.

[0300] In the following step S602, if there is a process for
which a request from any of the domains 330a to 330c¢ has
already been accepted, the switching unit 124 executes and
completes the process , for which the request has been
accepted. For example, if the current hypervisor receives the
hypervisor call of step S107 just before the issuance of the
stopping instruction in step S108 as illustrated in FIG. 8, the
switchingunit 124 executes and completes the process for the
received hypervisor call.

[0301] For example, the hypervisor call received by the
current hypervisor from any of the domains 330« to 330¢ in
accordance with the code 602 of the waiting process of FIG.
7 may be temporarily stored in the queue used by the current
hypervisor. If there is one or more received hypervisor calls,
the switching unit 124 sequentially extracts the one or more
hypervisor calls from the queue in step S602, and for each
extracted hypervisor call, invokes an appropriate subroutine
according to the content of each extracted hypervisor call.

[0302] More specifically, the switching unit 124 at the time
when step S602 is executed is realized by the CPU 221

US 2012/0254865 Al

executing the following pieces of code (gl) and (g2) in the
firmware of the current hypervisor stored in the active area.
[0303] (gl) Thecode 608 ofthe firmware switching process
[0304] (g2) A piece (or pieces) of code of the above-men-
tioned subroutine (or subroutines) called from the code 608
of the firmware switching process (i.e., code that is in the
code area 600 but is not illustrated in FIG. 7)
[0305] Instep S602, the queue may be empty by chance, or
one or a plurality of hypervisor calls may be stored in the
queue. When the queue is emptied, the process proceeds to
step S603.
[0306] Then in step S603, the switching unit 124 sets the
starting address of the current inactive area into the valid map
address 411 in the common area 410. More specifically, if the
current valid map address 411 is the starting address Al of the
upper area 420, the switching unit 124 rewrites the valid map
address 411 with the starting address A3 of the lower area
430. Conversely, if the current valid map address 411 is the
starting address A3 of the lower area 430, the switching unit
124 rewrites the valid map address 411 with the starting
address Al of the upper arca 420.
[0307] Then in step S604, the switching unit 124 sets the
starting address of the current inactive area into the control
register for the trap instruction.
[0308] Although the details vary depending on the archi-
tecture of the CPU 221, the instruction set of CPU 221
includes a trap instruction for making a transition from an
unprivileged mode to a privileged mode. The hypervisor call
is implemented using the trap instruction. The argument(s) of
the trap instruction may include a number indicating the type
of the hypervisor call.
[0309] Upon detection of the trap instruction, the CPU 221
of'the present embodiment switches the execution mode from
the unprivileged mode to the privileged mode. When the CPU
221 detects the trap instruction, the CPU 221 also refers to the
above-mentioned special control register for the trap instruc-
tion. The CPU 221 then executes a jump to the address set in
the register. Depending on the embodiment, the CPU 221 may
execute a jump to an address obtained by adding an offset
according to the argument of the trap instruction to the
address that is set in the register.
[0310] Consequently, sequential pieces of code that start at
the address to which the jump has just been executed and that
are for the processing in the privileged mode are executed.
When the CPU 221 detects a return instruction included in the
sequential pieces of code, the CPU 221 switches the execu-
tion mode from the privileged mode to the unprivileged
mode, and the control returns to the address immediately after
the address of the trap instruction.
[0311] The hypervisor call is implemented using, for
example, the trap instruction as described above. Therefore,
in step S604, the switching unit 124 sets the starting address
of the current inactive area into the above-mentioned control
register for the trap instruction, thereby switching the address
to jump to when the trap instruction is next detected after the
CPU 221 returns to the unprivileged mode. In other words, in
step S604, the switching unit 124 sets the jump-to address for
the hypervisor call to be called after the switch of the hyper-
visor. Since the switching unit 124, which is included in the
hypervisor, operates in the privileged mode, the switching
unit 124 is able to rewrite the value of the above-mentioned
special register that is protected in the privileged mode.
[0312] Then in the following step S605, the switching unit
124 sets the value of the area-in-use flag 505 in the area that

Oct. 4,2012

is not the area indicated by the valid map address 411 to the
value (for example, O in the example of FIG. 13) indicating
“notused”. In other words, the switching unit 124 rewrites the
value of the area-in-use flag 505 in the area that has changed
from the active area to the inactive area, in accordance with
the change.
[0313] For example, when the switching unit 124 rewrites
the value of the valid map address 411 from the address Al to
the address A3 in step S603, the switching unit 124 sets, to 0,
the value of the area-in-use flag 505 in the data area 421 of the
upper area 420, which starts at the address Al. Conversely,
when the switching unit 124 rewrites the value of the valid
map address 411 from the address A3 to the address A1 in step
S603, the switching unit 124 sets, to 0, the value of the
area-in-use flag 505 in the data arca 431 of the lower area 430,
which starts at the address A3.
[0314] In step S606, the switching unit 124 further sets the
value of the area-in-use flag 505 in the area indicated by the
valid map address 411 to the value (for example, 1 in the
example of FIG. 13) indicating “used”. In other words, the
switching unit 124 rewrites the value of the area-in-use flag
505 in the area that has changed from the inactive area to the
active area, in accordance with the change.
[0315] For example, when the switching unit 124 rewrites
the value of the valid map address 411 from the address Al to
the address A3 in step S603, the switching unit 124 sets, to 1,
the value of the area-in-use flag 505 in the data area 431 of the
lower area 430, which starts at the address A3. Conversely,
when the switching unit 124 rewrites the value of the valid
map address 411 from the address A3 to the address A1 in step
S603, the switching unit 124 sets, to 1, the value of the
area-in-use flag 505 in the data area 421 of the upper area 420,
which starts at the address Al.
[0316] Then in step S607, the switching unit 124 rewrites
the value of the program counter in the CPU 221. The process
of step S607 is a process of switching the hypervisor by
designating an instruction in the firmware of the hypervisor
stored in the new active area as the instruction that the CPU
221 is to execute next.
[0317] Specifically, the switching unit 124 sets, into the
program counter, a sum of the valid map address 411 and the
address of the code 601 of the suspension canceling process
indicated by the address map 501 in the area indicated by the
valid map address 411.
[0318] For example, when the validmap address 411 is
rewritten from the address A1 to the address A3 in step S603,
asum (A3+C0) of the following addresses (h1) and (h2) is set
into the program counter.
[0319] (h1) The starting address A3 of the lower area 430,
which has newly switched to the active area
[0320] (h2) The relative address CO0 that is the address of the
code 601 of the suspension canceling process in the lower
area 430 and that is indicated by the address map 501 in the
data area 431 of the lower area 430.
[0321] On the other hand, when the valid map address 411
is rewritten from the address A3 to the address Al in step
S603, a sum (A1+C0) of the following addresses (i1) and (i2)
is set into the program counter.
[0322] (il) The starting address Al of the upper area 420,
which has newly switched to the active area
[0323] (i2) The relative address C0 that is the address of the
code 601 of the suspension canceling process in the upper
area 420 and that is indicated by the address map 501 in the
data area 421 of the upper area 420.

US 2012/0254865 Al

[0324] Although the same reference sign “C0” is used in
(h2) and (i2) in accordance with FIG. 7, specific values of the
relative address C0 in (h2) and the relative address C0 in (i2)
may not be the same. The sequential order of steps S604 to
$606 may be arbitrarily changed. The switching unit 124 at
the time when steps S603 to S607 are executed is realized by
the CPU 221 executing the code 608 of the firmware switch-
ing process in the area that the valid map address 411 has
indicated until the execution of step S602 inclusive.

[0325] The instruction to be executed next by the CPU 221
after the execution of step S607 is an instruction at the address
set into the program counter in step S607. In other words, the
CPU 221 next starts executing the code 601 of the suspension
canceling process in the firmware of the hypervisor that has
newly switched to the current hypervisor.

[0326] As a result, in step S608, the switching unit 124
instructs, from the hypervisor that has newly switched to the
current hypervisor, the domains 330a to 330c¢ to cancel the
suspension of access to the hypervisor. More specifically, the
switching unit 124 issues the canceling instruction to each of
the suspension control units 331ato 331c. Theissuance of the
canceling instruction in step S608 consequently leads the
domains 330a to 330c¢ to invoke hypervisor calls as necessary.
[0327] In the following step S609, the switching unit 124
notifies the management unit 110 of the completion of the
replacement of the firmware of the hypervisor. The notifica-
tion in step S609 may be performed through, for example, the
SRAM 223.

[0328] The switching unit 124 at the time when steps S608
and S609 are executed is realized by the CPU 221 executing
the code 601 of the suspension canceling process in the new
active area indicated by the valid map address 411 rewritten in
step S603.

[0329] In the present embodiment, the code 602 of the
waiting process exists immediately after the code 601 of the
suspension canceling process as illustrated in FIG. 7. There-
fore, in the following step S610, the CPU 221 starts executing
the code 602 ofthe waiting process by normally incrementing
the program counter. In other words, when the replacement of
the firmware of the hypervisor is finished, the hypervisor that
has newly switched to the current hypervisor automatically
starts the waiting process.

[0330] According to the second embodiment described
above, it is feasible to replace the hypervisor transparently to
the domains 330qa to 330¢ without physically rebooting the
CPU 221. More specifically, the replacement of the hypervi-
sor according to the second embodiment does not require the
reboot of the CPU 221, and therefore does not cause any
service provided by the information processing device 100 to
halt. Therefore, even ifthe information processing device 100
is used to provide a service whose halt is not preferable, the
hypervisor is able to be replaced in a timely manner without
being affected by the operation schedule of the service.
[0331] Not requiring the reboot of the CPU 221 produces
an advantageous effect of improving the availability of the
information processing device 100. In addition, upgrading
the hypervisor in a timely manner is beneficial in improving
the security in some cases for example, when a security hole
is found in the current hypervisor. Therefore, it is desirable
also from the viewpoint of the security to enable the timely
replacement of the hypervisor regardless of the use of the
information processing device 100.

[0332] Although a plurality of system boards 220a to 220¢
are illustrated in FIG. 3, the information processing device

Oct. 4,2012

100 may include only one system board 220a. Even if the
information processing device 100 includes a plurality of
system boards 220a to 220c, it is possible to independently
execute the replacement of the hypervisor in each system
board.

[0333] That s to say, according to the second embodiment,
it is possible to replace the hypervisor without rebooting the
CPU 221 even in the information processing device 100 that
is not configured redundantly. In other words, in the second
embodiment, it is possible to replace the hypervisor without
physically rebooting the CPU 221 as long as there are two
areas (i.e., the upper area 420 and the lower area 430 of FIG.
5) in the DIMM 140 (specifically, for example, the DIMM
224).

[0334] A defect may be found after a hypervisor of a new
version is released. More specifically, a defect of a hypervisor
of' a new version may be found for the first time during the
operation of the information processing device 100 after the
hypervisor is actually upgraded.

[0335] For example, assume that a hypervisor of version 3
is newly released and that the hypervisor is upgraded from-
version 2 to version 3 in accordance with the second embodi-
ment in the information processing device 100. Subsequently,
the hypervisor of version 3 runs on the information process-
ing device 100.

[0336] However, ifthereis somekind of defectin the hyper-
visor of version 3, an unexpected error may occur, for
example, in any of the domains 330a to 330c. Consequently,
the administrator of the information processing device 100
may determine to temporarily downgrade the hypervisor
from version 3 to version 2.

[0337] According to the second embodiment, the replace-
ment for downgrading the hypervisor is also performed in
accordance with the flowcharts of FIGS. 9 to 13, similarly to
the replacement for upgrading the hypervisor. That is to say,
according to the second embodiment, downgrading as a
recovery operation after the discovery of the defect is also
executable without rebooting the CPU 221. In other words,
even if the recovery operation is necessitated, it is not neces-
sary to halt the service provided by the information process-
ing device 100 for the recovery operation.

[0338] Therefore, according to the second embodiment, the
adverse effect on the availability of the information process-
ing device 100 is well controlled to a low level even if there is
a defect in the hypervisor of a newly released version.
[0339] The replacement of the hypervisor according to the
second embodiment does not significantly delay the execu-
tion of the programs (for example, the OSs and the user
application programs) that are running on the domains 330a
to 330c. Rather, the delay inherently associated with the
replacement of the hypervisor is significantly small.

[0340] Specifically, the period during which hypervisor
calls are temporarily stopped in the second embodiment is a
period from the issuance of the stopping instruction in step
S601 of FIG. 13 to the issuance of the canceling instruction in
step S608 . In the period from the issuance of the stopping
instruction to the issuance of the canceling instruction, the
processes that cause a delay inherently associated with the
replacement of the hypervisor are those of steps S603 to
S607.

[0341] Eachofthe processes of steps S603, S605, and S606
is a process for writing, in the DIMM 224, data of some bytes
at most. Each of the processes of steps S604 and S607 is a
process for updating the value of the register in the CPU 221.

US 2012/0254865 Al

Therefore, the time taken for the processes of steps S603 to
S607 is significantly short. In other words, the delay inher-
ently associated with the replacement of the hypervisor is
significantly small.

[0342] The delay caused by the process of step S602 is a
delay that occurs regardless of whether the hypervisor is
replaced or not. Therefore, this delay is not a delay that is
inherently associated with the replacement of the hypervisor.
More specifically, regardless of whether the hypervisor is
replaced or not, a situation may occur in which it takes a
certain amount of time to respond to a newly invoked hyper-
visor call because one or a plurality of hypervisor calls
already exist in the queue in the hypervisor. Therefore, the
delay caused by the process of step S602 is not a delay
inherently associated with the replacement of the hypervisor.
[0343] Another reason that enables the hypervisor to be
replaced only with a significantly short delay as described
above is that the processes of steps S201 to S204 of FIG. 9 are
executed before the issuance of the stopping instruction.
[0344] For example, the code loading process of step S203
and the data loading process of step S204 involve memory
access corresponding to the size of the firmware of the hyper-
visor. Therefore, it may take a certain amount of time to
execute the processes of steps S203 and S204.

[0345] However, when the processes of steps S203 and
S204 are executed, the stopping instruction is not issued yet
and therefore the domains 3304 to 330c are allowed to invoke
hypervisor calls. In addition, the current hypervisor may
operate in a multithreaded way. More specifically, the current
hypervisor is able to receive a hypervisor call(s) and process
the received hypervisor call(s) in parallel with the execution
of the processes of steps S203 and S204.

[0346] Therefore, the domains 330a to 330¢ are not made to
wait for the response to the hypervisor call while the current
hypervisor is executing the processes of steps S203 and S204,
and only a waiting time according to the state of the queue
occurs. In this way, in the second embodiment, the current
hypervisor executes the processes of steps S203 and S204,
which may take a certain amount of time, before the issuance
of the stopping instruction, thereby reducing the delay time
that occurs in association with the replacement of the hyper-
visor.

[0347] The sequential order of processes illustrated in
FIGS. 9 to 13 provides an example. For example, it is suffi-
cient for the data loading process of step S204 of FIG. 9 to be
executed before the start of the execution of the hypervisor
that is newly switched to the current hypervisor. More spe-
cifically, the data loading process of step S204 may not be
executed after steps S202 and S203 as illustrated in FIG. 9,
but may be executed before steps S202 and S203.

[0348] The following is comparison between the first
embodiment, which is illustrated in FIG. 1, and the second
embodiment.

[0349] InFIG.1, thehypervisor1aisthe current hypervisor
in steps S1 to S3. The input of the replacing instruction as a
trigger for transition from step S1 to step S2 in FIG. 1 corre-
sponds, for example, to the explicit instruction that is
described in (¢2) and that is given in order to start the replace-
ment process of FIG. 9.

[0350] Step S2 of FIG. 1 corresponds to the code loading
process of FIG. 11, and step S3 of FIG. 1 corresponds to step
S601 of FIG. 13.

[0351] The designating information 3 of FIG. 1 corre-
sponds to the valid map address 411 in the second embodi-

Oct. 4,2012

ment. In other words, rewriting the designating information 3
in step S4 of FIG. 1 corresponds to rewriting the valid map
address 411 in step S603 of FIG. 13.

[0352] In step S4 of FIG. 1, the information processing
device starts executing the firmware of the hypervisor 16 in
accordance with the rewriting of the designating information
3. The switch from the hypervisor 1a to the hypervisor 15 in
step S4 may be realized by, more specifically, the processes as
in steps S604 to S607 of FI1G. 13, for example.

[0353] The issuance of the canceling instruction in step S5
of FIG. 1 corresponds to step S608 of FIG. 13.

[0354] A third embodiment will now be described with
reference to FIGS. 14 and 15. Common points with the sec-
ond embodiment will not be repeated.

[0355] The difference between the second and third
embodiments lies in that physically different two memory
modules are used in the third embodiment in place of the
DIMM 224, which is physically single as in FIG. 3. For
example, the system board 220a of FIG. 3 is modified in the
third embodiment so as to include two memory modules and
a memory module switch controlling circuit, instead of the
single DIMM 224. In other words, in the third embodiment,
the two memory modules are used in place of the DIMM 140
in FIG. 2, and the firmware 141 of the current hypervisor and
the firmware 142 of the target hypervisor are stored in the two
physically different memory modules.

[0356] FIG. 14 is a diagram explaining memory allocation
related to the firmware ofthe hypervisor according to the third
embodiment. FIG. 14 illustrates an address space 700 recog-
nized by the CPU 221 of FIG. 3 operating as the control unit
120 of FIG. 2. FIG. 14 also illustrates two DIMMs, namely,
DIMMs 710 and 720.

[0357] The address space 700 recognizedby the CPU 221
includes an active area 701 and an inactive area 702. The
memory module switch controlling circuit maps the physical
memory space of one of the DIMMs 710 and 720 into the
active area 701 and maps the physical memory space of the
other into the inactive area 702.

[0358] Theactive area 701 is an area that starts at an address
D0, and more specifically, the active area 701 includes a data
area 703 that starts at the address D0 and a code area 704 that
starts at an address D1. The inactive area 702 is an area that
starts at an address D2, and more specifically, the inactive area
702 includes a data area 705 that starts at the address D2 and
acode area 706 that starts at an address D3. The addresses D0
to D4 illustrated in FIG. 14 are fixed addresses in the address
space 700, which is recognized by the CPU 221.

[0359] The DIMM 710 includes a data area 711 that starts
at an address E0 and a code area 712 that starts at an address
E1. The DIMM 720 includes a data area 721 that starts at the
address E0 and a code area 722 that starts at the address E1.
The addresses E0 to E2 illustrated in FIG. 14 are fixed physi-
cal addresses in the DIMMs.

[0360] The memory module switch controlling circuit,
which is not illustrated in the drawings, switches the DIMM
to be mapped into the active area 701.

[0361] Forthe convenience of the following description, let
a “first state” be a state in which the memory module switch
controlling circuit maps the DIMM 710 into the active area
701 and maps the DIMM 720 into the inactive area 702. More
specifically, physical entities of the data area 703 and the code
area 704 in the address space 700, which is recognized by the
CPU 221, in the first state are the data area 711 and the code
area 712 on the DIMM 710. Physical entities of the data area

US 2012/0254865 Al

705 and the code area 706 in the address space 700, which is
recognized by the CPU 221, in the first state are the data area
721 and the code area 722 on the DIMM 720.

[0362] Forthe convenience of the following description, let
a “second state” be a state in which the memory module
switch controlling circuit maps the DIMM 720 into the active
area 701 and maps the DIMM 710 into the inactive area 702.
More specifically, physical entities of the data area 703 and
the code area 704 in the address space 700, which is recog-
nized by the CPU 221, in the second state are the data area 721
and the code area 722 on the DIMM 720. Physical entities of
the data area 705 and the code area 706 in the address space
700, which is recognized by the CPU 221, in the second state
are the data area 711 and the code area 712 on the DIMM 710.
[0363] As can be understood from the description above,
the data areas illustrated in FIG. 14 are the same in size, and
the code areas illustrated in FIG. 14 are the same in size, in the
third embodiment. In other words, the following equations (1)
and (2) hold true.

D1-D0=D3-D2=E1-E0)
D2-D1-D4-D3-E2-E1)
[0364] Details of the data areas illustrated in FIG. 14 are

similar to those in FIG. 6. Although details of the code areas
illustrated in FIG. 14 are similar to those in FIG. 7, there are
some differences. The differences will be described later with
reference to FIG. 15.

[0365] The memory module switch controlling circuit,
which is not illustrated in the drawings, switches between the
first state and the second state every time a switch control
signal is asserted.

[0366] As a result of the switch from the first state to the
second state, the hypervisor whose firmware is physically
stored in the DIMM 710 changes from the “current hypervi-
sor” to the “hypervisor used in the latest past”. Meanwhile, as
aresult of the switch from the first state to the second state, the
hypervisor whose firmware is physically stored in the DIMM
720 changes from the “target hypervisor” to the “current
hypervisor”.

[0367] Conversely, as a result of the switch from the second
state to the first state, the hypervisor whose firmware is physi-
cally stored in the DIMM 710 changes from the “target hyper-
visor” to the “current hypervisor” . Meanwhile, as a result of
the switch from the second state to the first state, the hyper-
visor whose firmware is physically stored in the DIMM 720
changes from the “current hypervisor” to the “hypervisor
used in the latest past™.

[0368] The CPU 221 recognizes the hypervisor whose
firmware is stored in the active area 701 as the current hyper-
visor in both the first and second states.

[0369] TheCPU 221 executes memory access (specifically,
a load instruction, a store instruction, etc.) by specifying an
address in the address space 700, not recognizing which of the
DIMMSs 710 and 720 is mapped into the active area 701. More
specifically, the address outputted by the CPU 221 to the
address bus is the address in the address space 700. The
memory module switch controlling circuit converts the
address outputted from the CPU 221 to the address of the
DIMM 710 or 720 in accordance with whether the current
state is the first state or the second state, and thereby realizes
memory access to the DIMM 710 or 720.

[0370] The following is a description of the active area 701
and the current hypervisor from another viewpoint. An
instruction fetch address for the hypervisor is limited to an

Oct. 4,2012

address in the code area 704 in the active area 701 in the
address space 700. More specifically, any address in the code
area 706 in the inactive area 702 is not specified as an instruc-
tion fetch address, although may be specified as an argument
address of a store instruction which is for copying the code of
the firmware.

[0371] As described, in the memory access, it is not neces-
sary for the CPU 221 to recognize whether the current state is
the first state or the second state, and it is sufficient for the
CPU 221 to simply specify the address in the address space
700. Meanwhile, the CPU 221 is also able to instruct the
memory module switch controlling circuit to switch between
the first state and the second state.

[0372] Specifically, the CPU 221 outputs a switch control
signal to the memory module switch controlling circuit,
thereby instructing the memory module switch controlling
circuit to switch the state. If the current state is the first state,
the memory module switch controlling circuit switches the
first state to the second state upon receipt of the switch control
signal. If the current state is the second state, the memory
module switch controlling circuit switches the second state to
the first state upon receipt of the switch control signal.

[0373] Asis clear from the description so far, the informa-
tion that corresponds to the designating information 3 of FIG.
1 and that is used in the third embodiment is information that
is managed by the memory module switch controlling circuit
and that indicates whether the current state is the first state or
the second state. Specifically, the designating information 3
may be stored in a storage device (such as a register or a
flip-flop) in the memory module switch controlling circuit,
depending on the circuit configuration of the memory module
switch controlling circuit. Alternatively, the designating
information 3 may be expressed by the circuit state, such as
whether a particular transistor in the memory module switch
controlling circuit is turned on or turned off.

[0374] Details of the replacement process in the third
embodiment will now be described. Since the replacement
process in the third embodiment is similar to the replacement
process of FIG. 9 in the second embodiment, differences will
be mainly described.

[0375] The starting address of the active area recognized by
the CPU 221, which realizes the control unit 120, is variable
in the second embodiment, and specifically, switches
between the addresses A1 and A3 of FIG. 5. However, the
starting address of the active area 701 recognized by the CPU
221 is fixed to the address DO in the third embodiment.

[0376] Therefore, the valid map address 411 as in FIG. 5 is
omissible in the third embodiment. Even if there is no valid
map address 411, the components in the control unit 120
realized by the CPU 221 executing the firmware of the hyper-
visor is able to recognize the fixed starting addresses DO and
D2 of the active area 701 and the inactive area 702, respec-
tively.

[0377] Therefore, reference to the valid map address 411 is
omitted and rewriting the valid map address 411 is also omit-
ted in the third embodiment. However, for the rest, the pro-
cesses of FIGS. 9 to 12 are similarly performed in the third
embodiment.

[0378] On the other hand, the switching process of FIG. 13
corresponding to step S205 of FIG. 9 is modified as in FIG. 15
in the third embodiment. Hereinafter, the switching process in
the third embodiment will be described with reference to a
flowchart of FIG. 15.

US 2012/0254865 Al

[0379] Steps S701 and 5702 are similar to steps S601 and
5602 of FIG. 13.

[0380] Specifically, in step S701, the switching unit 124
instructs, from the current hypervisor, the domains 330a to
330c to temporarily suspend access to the hypervisor. The
switching unit 124 at the time when step S701 is executed is
realized by the CPU 221 executing the code 607 of the access
suspending process in the code area 704 in the active area 701.
[0381] Then in step S702, if there is a process for which a
request from any of the domains 330a to 330c¢ has already
been accepted, the switching unit 124 executes and completes
the process, for which the request has been accepted. The
switching unit 124 at the time when step S702 is executed is
realized by the CPU 221 executing the above-mentioned
pieces of code (g1) and (g2) in the code area 704 in the active
area 701.

[0382] As described, the starting address D0 of the active
area 701 is fixed in the third embodiment. Therefore, the
processes such as steps S603 and S604 of FIG. 13 are not
necessary in the third embodiment even if the hypervisor is to
be switched. Therefore, the process proceeds to step S703
after steps S701 and S702 are executed.

[0383] Then in step S703, the switching unit 124 sets the
value of the area-in-use flag 505 in the data area 703 of the
active area 701 to the value (for example, 0 in the example of
FIG. 15) indicating “not used”. More specifically, the switch-
ing unit 124 rewrites the value of the area-in-use flag 505 in
the DIMM, which is to be switched from the state of being
mapped into the active area 701 to the state of being mapped
into the inactive area 702, in accordance with the switch.
[0384] Specifically, the switching unit 124 executes a store
instruction for which the address (D0+B4) in the address
space 700 is specified, thereby realizing the rewriting in step
S703. The memory module switch controlling circuit con-
verts the specified address (D0+B4) to the physical address
(E0+B4) ofthe DIMM 710 in the first state and to the physical
address (E0+B4) of the DIMM 720 in the second state.
[0385] The switching unit 124 at the time when step S703 is
executed is realized by the CPU 221 executing the code 608 of
the firmware switching process in the code area 704 of the
active area 701.

[0386] In the following step S704, the switching unit 124
sets the value of the area-in-use flag 505 in the data area 705
of the inactive area 702 to the value (for example, 1 in the
example of FIG. 15) indicating “used”. More specifically, the
switching unit 124 rewrites the value of the area-in-use flag
505 in the DIMM, which is to be switched from the state of
being mapped into the inactive area 702 to the state of being
mapped into the active area 701, in accordance with the
switch.

[0387] Specifically, the switching unit 124 executes a store
instruction for which the address (D2+B4) in the address
space 700 is specified, thereby realizing the rewriting in step
S704. The memory module switch controlling circuit con-
verts the specified address (D2+B4) to the physical address
(E0+B4) of the DIMM 720 in the first state and to the physical
address (E0+B4) of the DIMM 710 in the second state.
[0388] The switching unit 124 at the time when step S704 is
executed is also realized by the CPU 221 executing the code
608 of the firmware switching process in the code area 704 of
the active area 701.

[0389] In the following step S705, the switching unit 124
outputs a switch control signal, thereby instructing the
memory module switch controlling circuit to switch the

Oct. 4,2012

DIMM. In relation to step S705 and the following step S706,
details of the code area in the third embodiment may be
different from those in F1G. 7. An example of the details of the
code area in the third embodiment will be described below.
[0390] The instruction fetch addresses from which instruc-
tions are fetched while the CPU 221 executes the firmware of
the current hypervisor are the addresses in the code area 704
of the active area 701 in the address space 700, as described
above.

[0391] If the current state is the first state, the instructions
are physically fetched from the code area 712 of the DIMM
710. Conversely, if the current state is the second state, the
instructions are physically fetched from the code area 722 of
the DIMM 720. Note that the process of converting the
address in the address space 700 to the physical address of the
DIMM 710 or 720 is executed by the memory module switch
controlling circuit.

[0392] Meanwhile, when the memory module switch con-
trolling circuit executes the switch between the first state and
the second state, the physical memory area mapped into the
code area 704 of the active area 701 is switched from the code
area 712 to the code area 722, or vice versa. Therefore, the
physical address corresponding to the instruction fetch
address, which is specified by using the address in the address
space 700, also switches to the physical address of the other
DIMM.

[0393] Therefore, the details of the code area may be
changed, for example, as follows in the third embodiment. In
FIG. 7, the code 601 of the suspension canceling process is
located at the top of the code area 600, and the code 608 of the
firmware switching process starts at the relative address C7.
However, part of the code 608 of the firmware switching
process (specifically, instructions related to steps S705 and
S706) may be located at the top of the code area in the third
embodiment.

[0394] The top of the code area is one of the specific
examples of a fixed relative address in the code area. It is
sufficient that the instructions related to steps S705 and S706
are located at predetermined positions in the code area and it
is not necessary for these instructions to be located at the top.
[0395] For example, part of the code 608 of the firmware
switching process may be located, as in FIG. 7, at a location
other than the top of the code area, and an unconditional jump
instruction for jumping to the top of the code area may be
located immediately after the store instruction for step S704.
Since the starting address of the code area of the firmware of
the current hypervisor is the fixed address D1 of FIG. 14, the
address to jump to is the fixed address D1.

[0396] The instructions related to steps S705 and S706 may
be located at the top of the code area. In other words, one or
more instructions for outputting the switch control signal to
the memory module switch controlling circuit and one or
more instructions for the following step S706 may be located
at the top of the code area, and the code 601 of the suspension
canceling process of FIG. 7 may follow these instructions.
[0397] According to the sequential order of the instructions
as described above, by using the fixed address D1, the instruc-
tion fetch address for the firmware of the current hypervisor is
aligned with that for the firmware of the target hypervisor.
Therefore, the switch of the hypervisor is realized as follows,
and the process proceeds from step S705 to step S706.
[0398] For the convenience of the description, assume that
the first state is switched to the second state in step S705.
More specifically, assume that the memory module switch

US 2012/0254865 Al

controlling circuit switches the DIMM mapped into the active
area 701 from the DIMM 710 to the DIMM 720 in response
to the instruction from the switching unit 124 in step S705.

[0399] After the execution of step S705, the program
counter in the CPU 221 is incremented as usual. Therefore,
the next instruction fetch address is the address of the instruc-
tion for step S706 located immediately after the instruction
for step S705. However, the physical address corresponding
to the instruction fetch address changes from the address in
the code area 712 ofthe DIMM 710 to the address in the code
area 722 of the DIMM 720 after the switch in step S705.

[0400] Assume that the instructions are ordered in the order
described above (i.e., the instructions for steps S705 and 5706
are located at the top of the code area) in the firmware of the
hypervisor of any version. In other words, assume that the
instructions for steps S705 and S706 are located at certain
fixed addresses in the firmware of the hypervisor of any
version.

[0401] Consequently, the physical address corresponding
to the address indicated by the program counter just after the
execution of step S705 is the address of the instruction for step
S706 in the code area 722 of the DIMM 720.

[0402] In other words, the instruction for step S706 in the
firmware of the hypervisor that has newly switched to the
current hypervisor is fetched just after step S705. As a result,
the switching unit 124 is realized in step S706 by the CPU 221
executing the one or more instructions for step S706 in the
firmware stored in the DIMM 720, which is newly mapped
into the active area 701. In other words, the switching unit 124
at the time when step S706 is executed is realized by the
hypervisor that has newly switched to the current hypervisor.

[0403] Although the case in which the first state is switched
to the second state in step S705 has been described as an
example for the convenience of the description, it is obvious
that the process appropriately proceeds to step S706 in a
similar manner when the second state is switched to the first
state.

[0404] Then in step S706, the switching unit 124 rewrites
the value ofthe program counter in the CPU 221. Specifically,
the switching unit 124 sets a sum of the following addresses
(1) and (j2) into the program counter in step S706.

[0405] (j1) The starting address DO of the active area 701

[0406] (j2) The relative address which is relative to the
address D0 and which is the starting address of the code
601 of the suspension canceling process in the code area
704 of the active area 701 (i.e., the relative address of the
code 601 of the suspension canceling process indicated by
the address map 501 in the data area 703 of the active area
701).

[0407] More specifically, the process of step S706 includes

execution of a jump instruction. Therefore, the CPU 221 next

executes the code 601 of the suspension canceling process
located at the jump-to address in accordance with the pro-
gram counter set in step S706. In other words, in step S707
that follows step S706, the CPU 221 starts executing the code

601 ofthe suspension canceling process in the firmware of the

hypervisor that has newly switched to the current hypervisor

in step S705.

[0408] As a result, in step S707, the switching unit 124

instructs, from the hypervisor that has newly switched to the

current hypervisor, the domains 330a to 330c¢ to cancel the
suspension of access to the hypervisor.

Oct. 4,2012

[0409] In the following step S708, the switching unit 124
notifies the management unit 110 of the completion of the
replacement of the firmware of the hypervisor.
[0410] The switching unit 124 at the time when steps S707
and S708 are executed is realized by the CPU 221 executing
the code 601 of the suspension canceling process stored in the
DIMM that is newly mapped into the active area 701 as a
result of the switch in step S705.
[0411] Also in the thirdembodiment, the code 602 of the
waiting process exists immediately after the code 601 of the
suspension canceling process as in FIG. 7. Therefore, in the
following step S709, the CPU 221 starts executing the code
602 of the waiting process by normally incrementing the
program counter. In other words, the hypervisor that has
newly switched to the current hypervisor automatically starts
the waiting process when the replacement of the firmware of
the hypervisor is finished.
[0412] The details of the above-described steps S707 to
S709 are similar to those of steps S608 to S610 in FIG. 13.
[0413] The third embodiment described above has, for
example, the following advantageous effects similar to those
in the second embodiment.
[0414] First, it is feasible to replace the hypervisor trans-
parently to the domains 330a to 330c without physically
rebooting the CPU 221. Therefore, the hypervisor is able to be
replaced in a timely manner without halting any service pro-
vided by the information processing device 100.
[0415] Secondly, the delay inherently caused by the
replacement of the hypervisor is significantly small.
[0416] Thirdly, the replacement for downgrading the
hypervisor is able to be performed similarly to the replace-
ment for upgrading the hypervisor. Therefore, even if the
hypervisor is downgraded for a recovery operation that is
necessitated by some kind of defect, it is not necessary to halt
the service provided by the information processing device
100 for the recovery operation, and a quick recovery is pos-
sible.
[0417] The present invention is not limited to the above-
mentioned embodiments. Although some modifications are
described above, the above-mentioned embodiments may be
further modified in various ways, for example, from the fol-
lowing viewpoints. The above-mentioned embodiments and
the following various modifications may be arbitrarily com-
bined as long as they do not contradict each other.

[0418] When the replacement process of FIG. 9 is executed

to restore the hypervisor of a version used before, some steps

may be skipped depending on the embodiment. A specific
example of such skip will be described below.

[0419] The process of restoring the hypervisor of the ver-

sion used before may be a downgrading process or may be an

upgrading process, as exemplified in the following processes

(k1) and (k2).

[0420] (k1) A process of restoring version 1 from version 2
after upgrading the hypervisor from version 1 to version 2
(i.e., the downgrading process)

[0421] (k2) A process of restoring version 3 from version 2
after downgrading the hypervisor from version 3 to version
2 (i.e., the upgrading process)

[0422] As described, the instruction for the start of the

replacement process may be an input from the input device

230. For the convenience of the description, let a “starting

instruction” be the instruction for the start of the replacement

process of FIG. 9 or of the replacement process in which some
steps are skipped.

US 2012/0254865 Al

[0423] There may be only one type of the starting instruc-
tion, namely, an instruction for the start of the replacement
process of FIG. 9 (hereinafter, this instruction is called a
“replacing instruction” for convenience) . Alternatively, there
may be two types of the starting instruction, namely, the
replacing instruction and an instruction for the start of the
replacement process in which some steps are omitted (here-
inafter, the latter type of the starting instruction is called a
“recovering instruction” for convenience).

[0424] If only the replacing instruction is used as the start-
ing instruction, the input of the replacing instruction is, for
example, press of a particular button or input of a particular
command. Triggered by the input of the replacing instruction,
the management unit 110 and the control unit 120 execute the
replacement process of FIG. 9 as described above. The
replacement process of FIG. 9 is a general process that is
applicable regardless of the version of the current hypervisor
and that of the target hypervisor. Therefore, there maybe only
one type of the starting instruction, namely, the replacing
instruction.

[0425] However, there may be two types of the starting
instruction, namely, the replacing instruction and the recov-
ering instruction. In this case, the management unit 110 and
the control unit 120 execute the replacement process of FI1G.
9 or execute the replacement process with some steps
skipped, depending on the type of the input from the input
device 230.

[0426] Specifically, the recovering instruction is an instruc-
tion for instructing the information processing device 100 to
execute the replacement process, in which some steps are
skipped, in order to restore the hypervisor of the version used
before. In other words, the recovering instruction is an
instruction for replacing the current hypervisor with the
hypervisor whose firmware remains in the inactive area,
which is included in the DIMM 224 or in the address space
700.

[0427] The management unit 110 may judge the type of the
starting instruction in accordance with, for example, the fol-
lowing matters (11), (12), or (13).

[0428] (11) Which one of two particular buttons is pressed?

[0429] (12) Which one of two particular commands is
inputted?

[0430] (13) How is/are the argument(s) specified for one

particular command?

[0431] If the inputted starting instruction is the replacing
instruction, the management unit 110 starts the replacement
process of FIG. 9. Conversely, if the inputted starting instruc-
tion is the recovering instruction, the management unit 110
notifies the preprocessing unit 121 in the control unit 120 that
the recovering instruction is inputted.

[0432] The target hypervisor in the case where the recov-
ering instruction is inputted is the hypervisor whose firmware
is stored in the inactive area, which is included in the DIMM
224 or in the address space 700. Therefore, when receiving
the notification that the recovering instruction is inputted, the
preprocessing unit 121 skips steps S301, S302, S304, S306,
and S308 in the preprocessing of FIG. 10.

[0433] More specifically, the preprocessing unit 121
executes the judgment of step S303 upon receipt of the noti-
fication of the input of the recovering instruction from the
management unit 110. If the dynamic firmware replacement
function is invalid, the preprocessing unit 121 then sets the
processing type to 0 in step S305 and ends the preprocessing.
Conversely, if the dynamic firmware replacement function is

Oct. 4,2012

valid, the preprocessing unit 121 then sets the processing type
to 1 in step S307 and ends the preprocessing.

[0434] Whentherecovering instruction is inputted, the pro-
cessing type is 0 or 1 as described above and therefore step
S203 of FIG. 9 (i.e., the code loading process of FIG. 11) is
not executed. If the processing type is 1, the data loading
process of FIG. 12 corresponding to step S204 and the switch-
ing process of FIG. 13 or 15 corresponding to step S205 are
executed, but steps S501 and S502 in the data loading process
are skipped.

[0435] In this way, some steps are omissible in the process
of restoring the hypervisor whose firmware remains in the
inactive area. Therefore, the recovering instruction may be
used as described above in order to explicitly notify the con-
trol unit 120 that there are some omissible steps.

[0436] The process of restoring the hypervisor whose firm-
ware remains in the inactive area may be realized by the
above-exemplified explicit recovering instruction and the
above-exemplified replacement process with some steps
skipped, but is also able to be equally realized by the replace-
ment process of FIG. 9. More specifically, if the firmware of
the target hypervisor stored in the storage unit 130 of FIG. 2
is the same as the firmware of the hypervisor remaining in the
inactive area, it is possible to regard the replacing instruction
as an implicit recovering instruction.

[0437] The explicit or implicit recovering instruction as
described above is obviously also applicable to the first
embodiment of FIG. 1. For example, the explicit or implicit
recovering instruction may be inputted to the information
processing device, which is described in relation to FIG. 1,
after the execution of steps S1 to S5 of FIG. 1. In other words,
this recovering instruction is an instruction for recovering the
hypervisor 1a from the hypervisor 14.

[0438] Triggered by the input of the recovering instruction,
the information processing device then issues, from the
hypervisor 15 this time, a new stopping instruction to each of
the OSs 2a and 25, which are the callers of the hypervisor
calls. Then, the information processing device rewrites the
designating information 3 from the value designating the
memory area storing the firmware of the hypervisor 15 to the
value designating the memory area storing the firmware of the
hypervisor 1a.

[0439] The information processing device starts execution
of the hypervisor 1a again in response to the rewriting of the
designating information 3. The information processing
device then issues, from the hypervisor 1a to each of the OSs
2a and 2b, a new canceling instruction for canceling the
above-described new stopping instruction.

[0440] In this way, triggered by the input of the recovering
instruction, the information processing device is able to
recover the hypervisor 1a from the hypervisor 16 by execut-
ing a process in which the hypervisors 1a and 15 are reverse
to those in steps S3 to S5.

[0441] The information processing device described in
relation to FIG. 1 may include the address translation circuit
as described above, and the designating information 3 may be
stored in the address translation circuit. Similarly, the infor-
mation processing device 100 of the second embodiment may
be modified so as to include an address translation circuit.
[0442] Forexample, the information processing device 100
may include the address translation circuit between the CPU
221 and the DIMM 224. The address translation circuit con-
verts an address outputtedby the CPU 221 to the address bus

US 2012/0254865 Al

to different physical addresses according to the cases. Spe-
cifically, the following address translation may be performed,
for example.

[0443] For example, the CPU 221 may recognize the
address space 700 as in FIG. 14. Meanwhile, two physical
memory areas in the single DIMM 224 may be used in place
of'the two DIMMSs 710 and 720 in FIG. 14. More specifically,
the address translation circuit may map one of the two physi-
cal memory areas within the DIMM 224 into the active area
701, and may map the other into the inactive area 702.
[0444] Inother words, in accordance with the switch of the
hypervisor, the address translation circuit changes the offset
values that are used for the address translation and that
respectively correspond to the two physical memory areas in
the DIMM 224. The address translation circuit may include
registers to hold the offset values. The offset values provide a
specific example of the designating information 3.

[0445] Inthereplacement process according to the embodi-
ment using the address translation circuit as described above,
the switch between the DIMMs performed by the memory
module switch controlling circuit in the third embodiment is
modified so that the address translation circuit rewrites the
two offset values.

[0446] Before being stored in the DIMM 224, the firmware
of the hypervisor may be temporarily stored in another stor-
age device or may be transmitted over the network.

[0447] For example, the firmware of the hypervisor may be
copied from the NAND flash memory 213 of the service
processor 210 to the EPROM 222 and then may be copied
from the EPROM 222 to the inactive area in the DIMM 224 as
described above.

[0448] In another way, the DIMM 224 may further include
a predetermined area for temporarily storing the firmware of
the hypervisor (this predetermined area is called a “temporary
storage area” for convenience) in addition to the upper area
420 and the lower area 430. The temporary storage area may
be used in place of the EPROM 222.

[0449] In yet another way, the firmware of the hypervisor
maybe stored in the storage medium 290 and may then be
provided. The firmware of the hypervisor may be read by the
drive device 270 from the storage medium 290 and may then
be copied to the DIMM 224. In yet another way, the firmware
of the hypervisor may be downloaded from the network
through the network connection device 260 and may then be
copied to the DIMM 224.

[0450] When the information processing device 100
acquires the firmware of the hypervisor from the storage
medium 290 or from the network, the firmware of the hyper-
visor may be temporarily copied to the storage device 250 and
may then be copied from the storage device 250 to the DIMM
224.

[0451] Instead of the CPU 211 of the service processor 210
of FIG. 3, the CPU 221 on the system board 220a may realize
the management unit 110 of FIG. 2.

[0452] Although the data area precedes the code area in
FIGS. 5 and 14, the sequential order of the data area and the
code area may be reversed. The data area and the code area
may not be contiguous depending on the embodiment. The
data area may be divided into a first area for static data and a
second area for dynamic data, and the first area and the second
area may not be contiguous.

[0453] Each of the data area and the code area may be a
fixed-length area that is allowed to include padding or may be
a variable-length area. When one or both of the data area and

Oct. 4,2012

the code area are of variable length, information indicating
the lengths of the data area and the code area maybe included,
for example, in the address map 501 in the data area.

[0454] The hypervisor replacing method in any embodi-
ment described above is a method that the information pro-
cessing device is able to execute regardless of whether the
information processing device is redundantly configured or
not.

[0455] According to the hypervisor replacing method of
any embodiment described above, the information processing
device that is executing the firmware of a first hypervisor is
allowed to continue to operate and does not have to halt . In
other words, it is possible to replace the firmware of the first
hypervisor with the firmware of a second hypervisor and to
cause the information processing device to execute the firm-
ware of the second hypervisor, without halting the informa-
tion processing device.

[0456] All examples and conditional language recited
herein are intended for pedagogical purposes to aid the reader
in understanding the invention and the concepts contributed
by the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited examples
and conditions, nor does the organization of such examples in
the specification relate to a showing of the superiority and
inferiority of the invention. Although the embodiments ofthe
present invention have been described in detail, it should be
understood that the various changes, substitutions, and alter-
ations could be made hereto without departing from the spirit
and scope of the invention.

What is claimed is:
1. A hypervisor replacing method executed by an informa-
tion processing device, the hypervisor replacing method com-
prising:
storing, when the information processing device executes
firmware of a first hypervisor stored in a first memory
area, firmware of a second hypervisor into a second
memory area different from the first memory area;

issuing, from the first hypervisor, a stopping instruction
that instructs a caller of a hypervisor call to stop issuing
a new hypervisor call;

rewriting designating information from a first value to a
second value wherein the designating information des-
ignates a memory area storing firmware of a hypervisor
executed by the information processing device, the first
value designates the first memory area, and the second
value designates the second memory area;

starting execution of the firmware of the second hypervisor

in response to the rewriting of the designating informa-
tion; and

issuing, from the second hypervisor to the caller, a cancel-

ing instruction that cancels the stopping instruction.

2. The hypervisor replacing method according to claim 1,
further comprising executing a data loading process before
the starting the execution of the firmware of the second hyper-
visor wherein the data loading process is a process of storing,
into the second memory area, particular information that is
stored in the first memory area and that is used by the first
hypervisor.

3. The hypervisor replacing method according to claim 2,
wherein when a first format for the particular information and
a second format for information used by the second hypervi-
sor are different, the data loading process includes a format
conversion process of converting the particular information
from the first format to the second format.

US 2012/0254865 Al

4. The hypervisor replacing method according to claim 3,
wherein

aversion of the second hypervisor is newer than a version of

the first hypervisor,

the firmware of the second hypervisor includes an instruc-

tion for a conversion from the first format to the second
format, and

the information processing device executes the format con-

version process by calling the instruction in the second
memory area from the first hypervisor.

5. The hypervisor replacing method according to claim 3,
wherein

a version of the first hypervisor is newer than a version of

the second hypervisor,

the firmware of the first hypervisor includes an instruction

for the format conversion process, and

the information processing device executes the format con-

version process in accordance with the instruction.

6. The hypervisor replacing method according to claim 1,
further comprising:

receiving a recovering instruction that instructs the infor-

mation processing device to recover the first hypervisor
from the second hypervisor;

issuing, from the second hypervisor, a new stopping

instruction that instructs the caller to stop issuing a new
hypervisor call;

rewriting the designating information from the second

value to the first value;

starting execution of the firmware of the first hypervisor in

response to the rewriting of the designating information;
and

issuing, from the first hypervisor to the caller, a new can-

celing instruction that cancels the new stopping instruc-
tion.

7. An information processing device comprising:

one or more memory modules; and

a control unit that executes firmware of a hypervisor stored

in a memory area designated by designating information
that designates one of memory areas in the one or more
memory modules, wherein

when the designating information designates a first

memory area storing firmware of a first hypervisor, the
control unit stores firmware of a second hypervisor into
a second memory area different from the first memory
area,

the control unit issues a stopping instruction that instructs

a caller of a hypervisor call to stop issuing a new hyper-
visor call,
the control unit rewrites the designating information from
a first value that designates the first memory area to a
second value that designates the second memory area,

the control unit starts execution of the firmware of the
second hypervisor, and

the control unit issues, from the second hypervisor to the

caller, a canceling instruction that cancels the stopping
instruction.

8. The information processing device according to claim 7,
wherein the control unit further stores, into the second
memory area, particular information that is stored in the first
memory area and that is used by the first hypervisor, before
starting the execution of the firmware of the second hypervi-
sor.

9. The information processing device according to claim 8,
wherein when a first format for the particular information and

Oct. 4,2012

a second format for information used by the second hypervi-
sor are different, the control unit converts the particular infor-
mation from the first format to the second format and stores
the format-converted particular information into the second
memory area.
10. The information processing device according to claim
7, further comprising:
a firmware storage unit that stores the firmware of the
second hypervisor in advance; and
a management unit that receives a replacing instruction or
a recovering instruction and notifies the control unit of
reception of the replacing instruction or the recovering
instruction, wherein
the replacing instruction instructs the information process-
ing device to replace the first hypervisor with the second
hypervisor,
the recovering instruction instructs the information pro-
cessing device to recover the first hypervisor from the
second hypervisor,
when the designating information indicates the first value
and the management unit receives the replacing instruc-
tion, the control unit
reads the firmware of the second hypervisor from the
firmware storage unit and
stores the read firmware of the second hypervisor into
the second memory area, and
when the designating information indicates the second
value and the management unit receives the recovering
instruction, the control unit
issues, from the second hypervisor, a new stopping
instruction that instructs the caller to stop issuing a
new hypervisor call,
rewrites the designating information from the second
value to the first value,
starts execution of the firmware of the first hypervisor in
response to rewriting of the designating information,
and
issues, from the first hypervisor to the caller, a new
canceling instruction that cancels the new stopping
instruction.
11. The information processing device according to claim
10, wherein the firmware storage unit is
a third memory area in the one or more memory modules or
another storage device different from the one or more
memory modules.
12. The information processing device according to claim
7, wherein
one of the one or more memory modules stores the desig-
nating information at a predetermined address; or
a number of the one or more memory modules is one, the
information processing device further comprises an
address translation circuit that translates a logical
address into a physical address of the one memory mod-
ule, and the address translation circuit stores the desig-
nating information; or
the number the one or more memory modules is plural, the
information processing device further comprises a
memory module switch controlling circuit that controls
switch between the plural memory modules, and the
memory module switch controlling circuit stores the
designating information; or
the information processing device further comprises a pre-
determined register and the predetermined register
stores the designating information.

US 2012/0254865 Al

13. A computer-readable non-transitory storage medium
that stores firmware of a first hypervisor to cause a computer
to execute a process, the process comprising:

issuing a canceling instruction that instructs a caller of a

hypervisor call to cancel stopping issuance of a new
hypervisor call;

storing firmware of a second hypervisor into a second

memory area different from a first memory area that
stores the firmware of the first hypervisor;

issuing a stopping instruction that instructs the caller to

stop issuing a new hypervisor call;

rewriting designating information from a first value to a

second value wherein the designating information des-
ignates a memory area storing firmware of a hypervisor
executed by the computer, the first value designates the
first memory area, and the second value designates the
second memory area; and

switching the first hypervisor to the second hypervisor by

designating an instruction included in the firmware of
the second hypervisor stored in the second memory area
as an instruction to be executed next by the computer,
wherein

in response to a replacing instruction that instructs the

computer to replace the first hypervisor with the second
hypervisor, the firmware of the first hypervisor causes
the computer to execute the storing, the issuing of the
stopping instruction, the rewriting, and the switching.

Oct. 4,2012

14. The storage medium according to claim 13, wherein

the firmware of the first hypervisor causes the computer to
further execute a data loading process before the switch-
ing, and

the data loading process is a process of storing, into the
second memory area, particular information that is
stored in the first memory area and that is used by the
first hypervisor.

15. The storage medium according to claim 14, wherein the

data loading process includes:

comparing a version of a first format for the particular
information and a version of a second format for infor-
mation used by the second hypervisor;

converting, when the version of the first format is newer
than the version of the second format, the particular
information from the first format to the second format in
accordance with the firmware of the first hypervisor; and

converting, when the version of the second format is newer
than the version of the first format, the particular infor-
mation from the first format to the second format by
calling an instruction that is included in the firmware of
the second hypervisor stored in the second memory area
and that is for conversion from the first format to the
second format.

