(54) 发明名称

一种新的芸豆烷型二萜苷化合物及其制备方法和用途

(57) 摘要

本发明公开了一种新的芸豆烷型二萜苷化合物及其制备方法和用途，涉及医药技术领域，具体是从蔷薇科植物华东覆盆子（Rubus chinensis Hu）的干燥果实中，经一定的制备步骤分离到一种新的芸豆烷型二萜苷化合物，称为覆盆子苷 A（英文名：Rambutanoside A），其分子式为 C_{30}H_{48}O_{12}。分子量为 664，化学结构式为式（1）。本发明公开了覆盆子苷 A 的理化性质，光学活性，并采用 MTT 法进行了体外活性筛选，结果表明对人胃癌细胞和人肝癌细胞有明显的抑制作用。可作为研制新型的抗肿瘤药物的先导化合物，也可作为研制治疗各种临床常见多发癌症的药物。
1. 从蔷薇科植物华东覆盆子（Rubus chinensis Linn）的干燥果实中分离到一种新的芳丹烷型二萜苷化合物，名称为覆盆子苷 A，化学名为 15,18-di-O-β-D-glucopyranosyl-13(E)-ent-labd-13-ene-3β,8α,15-triol，分子式为 C_{33}H_{50}O_{14}，其化学结构式如下：

2. 按照权利要求 1 所述的覆盆子苷 A 的制备方法，其特征是制备步骤依次如下：
   (1) 乙醇加热回流提取；阴干的覆盆子果实，经粉碎后用乙醇加热回流提取，过滤，得乙醇提取液；
   (2) 浓缩乙醇提取液，将乙醇提取液减压浓缩得乙醇浸膏；
   (3) 萃取：乙醇浸膏用蒸馏水溶解，再用氯仿、乙酸乙酯、水饱和正丁醇依次萃取，保留水饱和正丁醇萃取相，得水饱和正丁醇萃取液；
   (4) 浓缩水饱和正丁醇萃取液，将水饱和正丁醇萃取液减压浓缩，得正丁醇浸膏；
   (5) 柱层析分离：将正丁醇浸膏与硅胶拌样，转入层析柱，硅胶粒度 100～200 目，用氯仿-甲醇洗脱液洗脱，将洗脱液进行薄层检测，浓缩合并类似洗脱馏分，得 12 个馏分，第 10 个馏分与 C_{18} 柱样，转入中压反相柱层析，用甲醇-水洗脱液梯度洗脱，将洗脱液进行薄层检测，浓缩合并类似洗脱馏分，得覆盆子苷 A 粗品；
   (6) 单体化合物的纯化：覆盆子苷 A 粗品以甲醇-水为洗脱液，经制备液相制备得本发明的覆盆子苷 A。

3. 根据权利要求 2 所述的制备方法，其特征是步骤 (1) 中乙醇体积浓度为 70%～95%。
4. 根据权利要求 2 所述的制备方法，其特征是步骤 (5) 中洗脱剂为氯仿-甲醇，氯仿与甲醇体积配比为 20:1 或 15:1 或 10:1 或 7:1 或 5:1；梯度洗脱剂为甲醇-水，甲醇体积浓度为 20%～80%。
5. 根据权利要求 2 所述的制备方法，其特征是步骤 (6) 中洗脱剂为甲醇-水，甲醇与水体积浓度为 55%。
6. 按照权利要求 1 所述的覆盆子苷 A 的用途，其特征是在制备抗胃癌药物或抗肝癌药物中的应用。
7. 根据权利要求 6 所述的覆盆子苷 A 在制备抗胃癌或抗肝癌药物中的应用，其特征是覆盆子苷 A 在 1×10^{-6} mol/L～1×10^{-5} mol/L 时均对人胃癌细胞和人肝癌细胞表现出细胞毒活性，IC_{50} 分别为 1.7 μM 和 0.3 μM。
一种新的劳丹烷型二萜苷化合物及其制备方法和用途

技术领域
[0001] 本发明涉及医药技术领域，具体是以浙江省金华市产的覆盆子果实为原料首次分离到的劳丹烷型二萜苷化合物覆盆子苷A及其制备方法和用途。上述化合物对肿瘤细胞株具有明显的抑制作用，可作为研制新的抗肿瘤药物的先导化合物，也可以作为研制治疗各种临床常见多发癌症的药物。

背景技术
[0002] 覆盆子为蔷薇科植物华东覆盆子 Rubus chingii Hu 的干燥果实，该药材目前收录在《中国药典》2010 年版一部 359 页。覆盆子是蔷薇科悬钩子属浆果植物，别名各种田泡、树莓、牛奶果、大号角公，主要分布于浙江、江西、安徽及贵州等地。覆盆子性微温，味甘，酸；具有补肾、固精、明目之功效，用于肾虚遗尿、小便频数、阳痿早泄、遗精漏精等症的治疗。现代药理研究表明，覆盆子对人肝癌细胞的生长具有抑制作用。
[0003] 覆盆子所含化学成分较复杂且结构多样。目前，已经从覆盆子中分离出来的二萜有：GoshonosiAe-F1，GoshonosiAe-F2，GoshonosiAe-F3，GoshonosiAe-F4，GoshonosiAe-F5，GoshonosiAe-F6，GoshonosiAe-F7，rubusosiA。
[0004] 本发明中的劳丹烷型二萜化合物为首次从覆盆子中分离提取得到的新化合物，在已有的文献中未见报道，而实验证明这个化合物具有明显的抑制肿瘤细胞活性，可以在制备治疗癌症或肿瘤的药物中应用。

发明内容
[0005] 发明目的：

本发明的一个目的在于提供从覆盆子中提取得到一个新的劳丹烷型二萜苷化合物覆盆子苷A。
[0006] 本发明的另一个目的是提供上述劳丹烷型二萜苷化合物覆盆子苷A的制备方法。
[0007] 本发明的又一个目的是提供上述劳丹烷型二萜苷化合物覆盆子苷A在制备癌症和/或抗肿瘤药物中的应用。
[0008] 2、技术方案：本发明人在现有技术的基础上又做了进一步的研究，发现浙江省金华市产的覆盆子的浸膏中其抗癌的活性成分主要是本发明中的劳丹烷型二萜类化合物，并经资料查阅目前还没有文献报道劳丹烷型二萜苷化合物覆盆子苷A用于癌症和/或肿瘤的治疗。本发明从浙江省金华市产的覆盆子 Rubus chingii Hu 中首次提取分离得到一种劳丹烷型二萜苷化合物，名称为覆盆子苷A，化学名为 15,18-di-0-β-D-glucopyranosyl-13 (E)-ent-labd-13-ene-3 β, 8α, 15-triol，其分子式为 C_{36}H_{58}O_{14}，其化学结构式如下：
一种麻丹烷型二萜苷化合物覆盆子 A 的制备方法，其步骤依次是：

1. 乙醇加热回流提取。阴干的覆盆子果实，经粉碎后用乙醇加热回流提取，过滤，得乙醇提取液；

2. 浓缩乙醇提取液。将乙醇提取液减压浓缩得乙醇浸膏；

3. 萃取。乙醇浸膏用蒸馏水溶解，再用氯仿、乙酸乙酯、水饱和正丁醇依次萃取，保留水饱和正丁醇萃取相，得水饱和正丁醇萃取液；

4. 浓缩水饱和正丁醇萃取液。将水饱和正丁醇萃取液减压浓缩，得正丁醇浸膏；

5. 柱层析分离。将正丁醇浸膏与硅胶拌样，转入层析柱，硅胶粒度 100 ～ 200 目，用氯仿-甲醇洗脱液洗脱，将洗脱液进行薄层检测，浓缩合并类似洗脱馏分，静置，过滤得 12 个馏分，第 10 个馏分与 C_{18} 拌样，转入中压反相柱层析，用甲醇-水洗脱液梯度洗脱，将洗脱液进行薄层检测，浓缩合并类似洗脱馏分，静置，得覆盆子苷 A 粗品；

6. 单体化合物的纯化。覆盆子苷 A 粗品以甲醇-水为洗脱液，经制备液相色谱得本发明的覆盆子苷 A。

上述工艺步骤 (1) 中乙醇体积浓度为 70%。

上述工艺步骤 (5) 中洗脱剂为氯仿-甲醇，氯仿与甲醇体积配比为：20:1 或 15:1 或 10:1 或 7:1 或 5:1。甲醇-水洗脱剂中，甲醇体积浓度为 20%～80%。

上述工艺步骤 (6) 中洗脱剂甲醇-水，甲醇与水体积浓度为 55%。

本发明产品经超导核磁共振波谱、质谱等多种手段检测，确定了覆盆子苷 A 的分子式 C_{35}H_{50}O_{18}，化学结构式：

产品覆盆子苷 A 为白色无定形粉末，易溶于丙酮、正丁醇、吡啶、甲醇等有机试剂，熔点为 187 ～ 188℃，光学活性 $[\alpha]_D^{20} = -113$ (c 0.1, MeOH)，UV (CH$_3$OH) $\lambda_{max}$ 205 nm 和 255 nm。

试验证明覆盆子苷 A 在 $1 \times 10^{-8}$ mol/L ～ $1 \times 10^{-5}$ mol/L 时对人胃癌细胞和人肝癌细胞有明显的抑制作用，IC$_{50}$ 分别为 1.7 μM 和 0.3 μM。

附图说明

[0014] 图 1 为覆盆子苷 A 的制备工艺流程示意图，附图说明了覆盆子苷 A 的制备步骤为：
(1) 乙醇回流提取；(2) 浓缩乙醇提取液；(3) 氯仿、乙酸乙酯、正丁醇依次萃取；(4) 浓缩正丁醇萃取液；(5) 柱层析分离；(6) 纯化。

图 2 为质谱图，说明了覆盆子苷 A 的分子量；
图 3 为核磁共振 ¹H NMR 谱图，说明了覆盆子苷 A 结构中氢（-C=CH₂, -CH₃, -CH₂OH, -Glc=H 等）的归属；
图 4 为核磁共振 ¹³C NMR 谱图，说明了覆盆子苷 A 结构中碳（-C=CH₂, -CH₂-O=, -CH-OH 等）的归属；
图 5 为核磁共振 HSQC 谱图，说明了覆盆子苷 A 结构中相关的碳与氢的归属；
图 6 为核磁共振 HMBC 谱图，说明了覆盆子苷 A 结构中葡萄糖与苷元的连接位置；
图 7 为核磁共振 ¹H-¹H COSY 谱图，说明了覆盆子苷 A 结构中相关氢与氢的归属；
图 8 为核磁共振 NOESY 谱图，说明了覆盆子苷 A 结构中 3 位和 8 位羟基的相对构型。

具体实施方式

[0015] 下面结合实施例对本发明作进一步阐述，必须说明下述实施例是用于说明本发明而不是对本发明的限制。根据本发明的实质对本发明进行的简单改变都属于本发明要求保护的范围。

[0016] 岛津 2010 系列高效液相色谱仪（日本岛津公司），Buchi 中压液相制备色谱仪（瑞士步科公司），Waters 系列高效液相色谱仪（包括 Waters 600 Control, PAA02996 型二极管阵列检测器，Waters 717 Plus 自动进样器，Empower 化学工作站）（美国 Waters 公司），安捷伦 1200 型半制备高效液相色谱仪，Sartorus BP211A 型电子天平（德国赛托利斯集团），EYELA SB-1000 旋转蒸发仪（日本 EYELA 公司），电热恒温水浴锅（上海跃进医疗器械厂），UV-260 分光光度计（日本岛津公司），Varian UNITY NOVA 600 超导核磁共振仪（美国 Varian 公司），Micromass ZabSpec 质谱仪（美国 Micromass 公司），Autopol IV-T/V 旋光仪（美国 AKSH 公司），RY-1G 熔点测定仪（中国天津天光光学仪器有限公司）、C₁₈ 反相填充为 YMC 生产，柱层析硅胶、薄层层析硅胶为青岛海洋化工厂生产。

[0017] 甲醇为色谱纯，水为去离子水，其他试剂均分析纯。

[0018] 实施例 1：覆盆子中劣丹烷型二萜苷化合物覆盆子苷 A 的提取分离方法：

覆盆子于 2012 年 5 月采自浙江省金华市，经江西中医药大学范春生教授鉴定为蔷薇科植物华东覆盆子 Rubus chingii Hu 的干燥果实，标本保留在江西省食品药品研究所标本室（标本号：IPZ20120523）。

[0019] 覆盆子苷 A 的制备步骤依次如下：

(1) 乙醇加热回流提取：覆盆子果实阴干后粉碎，取粉碎后的覆盆子果实 50.0 Kg，用 70% 乙醇加热回流提取 3 次，过滤，得 70% 乙醇提取液；

(2) 浓缩 70% 乙醇提取液，将 70% 乙醇提取液减压浓缩至乙醇浸膏 1800 g，在减压浓缩过程中回收乙醇；

(3) 萃取：把 70% 乙醇浸膏溶解于蒸馏水中，再用氯仿萃取 2 次，乙酸乙酯萃取 3 次，水饱和正丁醇萃取 3 次，得水饱和正丁醇萃取液；

(4) 浓缩水饱和正丁醇萃取液，将水饱和正丁醇萃取液减压浓缩得正丁醇浸膏 175 g，再在减压浓缩过程中回收正丁醇；
（5）柱层析分离：将正丁醇饱和与硅胶拌样，转入层析柱，硅胶粒度 100～200 目，用氯仿－甲醇洗脱液梯度洗脱，氯仿与甲醇体积比为 5:1，将洗脱液进行薄层检测，浓缩合并类似洗脱馏分，得 12 个馏分，第 10 个馏分与 C8 拌样，转入中压反相柱层析，用甲醇－水洗脱液梯度洗脱，甲醇体积浓度为 20％～80％，将洗脱液进行薄层检测，浓缩合并类似洗脱馏分，得覆盆子苷 A 粗品；

（6）单体化合物的纯化：覆盆子苷 A 粗品以甲醇－水（55:45, v/v, 7 mL/min）为洗脱液，经制备液相制备得本发明的覆盆子苷 A（11 mg）。

【0020】实施例 2：苯并烷烃二萜苷化合物覆盆子苷 A 结构鉴定

覆盆子苷 A 的理化性质如下：白色无定形粉末，易溶于丙酮、正丁醇、吡啶、甲醇等有机试剂，熔点为 187～188℃，光学活性 [α]D 20 = -113 (c 0.1, MeOH), UV (CH3OH) λmax 205 nm 和 255 nm, 电喷雾－质谱给出准分子离子峰 [M + Na]+ 为 687.3, [M - H]− 为 663.3。1H 与 13C NMR 数据见表 1，同时，通过测定二维 H-H 相关谱 (H-H COSY)、H-C 相关谱 (HSQC)、H-C 远程相关谱 (HMBC) 以及旋转坐标系 NOE (ROESY)，确定了所有碳原子和氢原子的信号归属及该化合物的化学结构。化学结构式如下：

![化学结构式]

表 1 覆盆子苷 A 的氢谱和碳谱数据表（δ in ppm, J in Hz）

<table>
<thead>
<tr>
<th>位置</th>
<th>δH</th>
<th>δC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α</td>
<td>0.94 (1H, m)</td>
<td>37.9</td>
</tr>
<tr>
<td>1β</td>
<td>1.57 (1H, m)</td>
<td></td>
</tr>
<tr>
<td>2α</td>
<td>1.85 (1H, dd, 4.2, 3.6)</td>
<td>27.3</td>
</tr>
<tr>
<td>2β</td>
<td>1.86 (1H, m)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.18 (1H, m)</td>
<td>71.8</td>
</tr>
<tr>
<td>4</td>
<td>4.33 (1H, m)</td>
<td>43.0</td>
</tr>
<tr>
<td>5</td>
<td>1.80 (1H, dd, 1.8, 10.2)</td>
<td>47.7</td>
</tr>
<tr>
<td>6α</td>
<td>1.79 (1H, dd, 1.8, 11.4)</td>
<td>20.5</td>
</tr>
<tr>
<td>6β</td>
<td>1.36 (1H, d, 3.6)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.99 (2H, m)</td>
<td>44.4</td>
</tr>
<tr>
<td>8</td>
<td>72.9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>61.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>11α</td>
<td>1.37 (1H, m)</td>
<td>24.2</td>
</tr>
<tr>
<td>11β</td>
<td>1.86 (1H, m)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.38 (2H, m)</td>
<td>43.4</td>
</tr>
<tr>
<td>13</td>
<td>141.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.65 (1H, dd, 6.6, 7.8)</td>
<td>120.4</td>
</tr>
<tr>
<td>15</td>
<td>4.69 (1H, dd, 6.0, 12.0)</td>
<td>66.0</td>
</tr>
<tr>
<td>16</td>
<td>4.37 (1H, d, 4.8)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.61 (3H, s)</td>
<td>16.8</td>
</tr>
<tr>
<td>18</td>
<td>1.28 (3H, s)</td>
<td>24.5</td>
</tr>
<tr>
<td>18</td>
<td>3.54 (1H, d, 10.2)</td>
<td>74.5</td>
</tr>
<tr>
<td>18</td>
<td>4.46 (1H, d, 9.6)</td>
<td></td>
</tr>
</tbody>
</table>
注：INova 600 MHz；\( \delta \) 化学位移单位 ppm，\( ^{1}H-NMR \) 和 \( ^{13}C-NMR \) 分别以溶剂中残留的吡啶（\( \delta = 7.22, 7.58, 8.74 \) ppm）和氘代吡啶（\( \delta = 123.9, 135.9, 150.4 \) ppm）为内标；核磁共振信号的归属是在 HSQC、HMBC 等二维谱基础上完成的。

[0021] 实施例 3：劳丹烷型二萜苷化合物覆盆子苷的体外抗肿瘤活性测试

肿瘤细胞生长抑制率（%） = (1 - 实验孔测定值 / 对照孔测定值) × 100%

测试原理：MTT 法；活细胞的线粒体中存在着与 NAAP（烟酰胺腺嘌呤二核苷酸磷酸, 酶 II）相关的脱氢酶，将黄色的噻唑蓝 MTT（3-(4,5-Dimethylthiazol-2-yl)-2, 5-Diphenyl tetrazolium bromide）还原为不溶性的蓝紫色甲醇 (Formazan)，死细胞中此酶消失，MTT 不被还原。用 AMSO (二甲亚砜) 溶解甲醇后可用酶标仪在 570nm 处检测光密度 (OD)，光密度值与活细胞数成正比。

[0022] 所用细胞株为：BGC-823（人胃癌细胞）和 Be17402（人肝癌细胞）。

[0023] 试验方法：MTT 法；取对数生长期细胞，消化后分为吹打细胞悬液，计数后稀释成 1 × 10^5 cell/mL，接种于 96 孔培养板中，100 μL/孔。每一样品设计 4-5 个浓度级别，然后在实验孔中加入 100 μL 不同浓度级别样品的培养基，每一浓度级别平行 3 孔。对照组加入等体积试剂。将 96 孔培养板置于 37℃，5%CO₂, 饱和湿度培养箱中培养 96 小时后，弃去培养液，每孔加入新鲜配置的含 0.20 mg/mL MTT 的无血清培养基，37℃下继续培养 4 小时后，离心，除去上清液。每孔加入 150 μL AMSO 溶解 Formazan 沉淀，置微量震荡器上震荡 5 分钟使其充分溶解。在 BIORAA 550 型酶标仪上测定 570 nm 处的吸光度。作图得到数据，从曲线上读取药物的板书抑制浓度 (IC₅₀) 值。

[0024] 表 2 覆盆子苷 A 对 BGC-823（人胃癌细胞）的抑制作用

<table>
<thead>
<tr>
<th>样品</th>
<th>浓度 (mol/L)</th>
<th>抑制率 (%)</th>
<th>IC₅₀ (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>紫杉醇（阳性）</td>
<td>1×10⁻⁵</td>
<td>98.8</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁶</td>
<td>88.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁷</td>
<td>48.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁸</td>
<td>26.2</td>
<td></td>
</tr>
<tr>
<td>覆盆子苷 A</td>
<td>1×10⁻⁵</td>
<td>78.4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁶</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁷</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁸</td>
<td>5.8</td>
<td></td>
</tr>
</tbody>
</table>

表 2 覆盆子苷 A 对 Be17402（人肝癌细胞）的抑制作用
<table>
<thead>
<tr>
<th>样品</th>
<th>浓度 (μmol/L)</th>
<th>抑制率 (%)</th>
<th>IC₅₀ (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>紫杉醇（阳性）</td>
<td>1×10⁻⁵</td>
<td>94.0</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁶</td>
<td>86.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁷</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁸</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>覆盆子苷 A</td>
<td>1×10⁻⁵</td>
<td>93.2</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁶</td>
<td>76.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁷</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1×10⁻⁸</td>
<td>10.7</td>
<td></td>
</tr>
</tbody>
</table>

总结：覆盆子苷 A 对人胃癌细胞和肝癌细胞均有抑制作用，可用于研制治疗癌症或其他肿瘤的药物。