wo 2015/077175 A1 || NN OO0 OO0 OO R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/077175 Al

28 May 2015 (28.05.2015) WIPO I PCT
(51) International Patent Classification: Road,3rd, 4th, and 5th Floors, Bangalore 560 016 (IN).
GO6F 17/30 (2006.01) SHEOPORY, Abhishek; c/o GOOGLE INC., No. 3, RMZ
21) Tt tional Application Number- Infinity, Tower E, Old Madras, Road,3rd, 4th, and 5th
(21) International Application Number: PCTIUSI014/065906 Floors, Bangalore 560 016 (IN). AGARWAL, Ankit; c/o
GOOGLE INC., No. 3, RMZ Infinity, Tower E, OIld
(22) International Filing Date: Madras, Road,3rd, 4th, and 5th Floors, Bangalore 560 016
17 November 2014 (17.11.2014) (IN).

(25) Filing Language: English (74) Agent: CAMMARATA, Michael R.; c/o Birch, Stewart,
L. . Kolasch & Birch, LLP, P.O. Box 747, Falls Church, Vir-

(26) Publication Language: English ginia 22040-0747 (US).
(30) Priority Data: (81) Designated States (unless otherwise indicated, for every
14/084,399 19 November 2013 (19.11.2013) us kind of national protection available). AE, AG, AL, AM,
(71) Applicant: GOOGLE INC. [US/US]; 1600 Amphitheatre A0, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
Parkway, Mountain View, California 94043 (US). BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(72) Inventors: RAJANNA, Ramakrishna; c/o GOOGLE HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

INC., No. 3, RMZ Infinity, Tower E, Old Madras,
Road,3rd, 4th, and 5th Floors, Bangalore 560 016 (IN).
GUPTA, Deepank; c/o GOOGLE INC., 1600 Amphi-
theatre Parkway, Mountain View, California 94043 (US).
VELAYUTHAM, Arul Siva Murugan; ¢/o GOOGLE
INC., No. 3, RMZ Infinity, Tower E, Old Madras,

KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: CALLPATH FINDER

‘ Add Function To
———————— ¥ Graph
i 1070

Read Funetion,
o Signature:
1001

Get Call-To / Call-|
Erom ;
1200

Add: overridden |
as child nodes |
1020

|

/ﬁ;;erfac
£ cali?
. 1010

Vst

11090

No

Make Bloom

Build Graph: Filters

1050 1040

N
N

-
A Un read™
b FUNCHIQNS? oo
. e
~, 1060 ¢
RN

o
—_—
Reduce Memery:
Footprint
1080

Fig. la

(57) Abstract: Techniques and systems for creating a function call
graph for a codebase are disclosed. Graph creation includes identify-
ing functions (1001) in the codebase by a function signature and rep-
resenting a function (1070) as a first node in the call graph. For that
function, identitying (1200) call-to functions, call-from functions, and
inheritance parents and children, and a base class from the function
signature of that function; adding child nodes (1020) to the first node
based on the identified call-to and call-from functions; for an interface
call (1010) to a base class method in the function, adding child nodes
(1020) to the first node based on implementations of an override of
the base class method (1090); for an added child node, removing that
child node from the first node if a source file that includes an imple-
mentation of an override and a source code file that includes the func-
tion don't share at least one common binary file (1100)-(1150).

WO 2015/077175 A1 IWANT 00PN VAT 0TSO

(84) Designated States (unless otherwise indicated, for every Declarations under Rule 4.17:
kind of regional protection available): ARIPO (BW, GH, __ . , .
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Zsp ;Ote‘,’f;p(%‘l’:;s I%Zjemem to apply for and be granted
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Published:
DK, EE, ES, FL, FR, GB, GR, HR, HU, IF, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

WO 2015/077175 PCT/US2014/065906

CALLPATH FINDER

Background:

[001] Increasingly, a complex large-scale software product or software development
environment may require that programmers doing development or maintenance read
unfamiliar code. In such situations, it may be challenging and time-consuming to trace

the control flow from one function to another.

Summary:

[002] In some embodiments of solutions discussed herein pertain to a method of generating
a function call graph for a codebase, the method comprising: identifying functions in the
codebase by a function signature; representing a particular identified function as a first
node in the function call graph; for the particular function, identifying call-to functions,
call-from functions, inheritance parents, and inheritance children, and a base class
associated with the particular function based on the function signature of that particular
function; adding first child nodes to the first node based on the identified call-to and call-
from functions; for an interface call to a base class method in the particular function,
adding second child nodes to the first node based on implementations of an override of
the base class method; for at least one added second child node, determining whether a
first source code file that includes a particular added implementation of an override and a
second source code file that includes the particular function share at least one common
binary file; and in response to a determination that the first and second source code files
do not share a common binary file, removing the added second child node from the first

node.

[003] In some embodiments, the method includes identifying graph edges between the first
node and the added second child nodes for subsequent ranking. In some embodiments the

method includes reducing a memory footprint of the function call graph.

[004] In some embodiments, reducing a memory footprint includes applying a hash function
to each function signature and storing a result of the hash function as a representation of

the function signature.

WO 2015/077175 PCT/US2014/065906

[005] In some embodiments, determining whether a first source code file that includes a
particular added implementation of an override and a second source code file that
includes the particular function share at least one common binary file includes:
identifying dependencies associated with the particular function; generating a first Bloom
filter to test binary files for the identified dependencies, generating a Bloom filter
including varying a size of the first generated Bloom filter based on a number of
identified dependencies; and applying the first generated Bloom filter to a particular
binary file in order to determine whether the particular binary file includes the particular

function.

[006] In some embodiments, determining whether a first source code file that includes a
particular added implementation of an override and a second source code file that
includes the particular function share at least one common binary file further includes:
applying a second generated Bloom filter to the particular binary file in order to
determine whether the particular binary file includes the particular added implementation;
and determining that the first and second source code files share the particular binary file
as a common binary file in response to the particular binary file passing both the first and

second generated Bloom filters.

[007] In some embodiments, the method further includes generating a Bloom filter based on
binary files of the codebase that are compiled or generated using the second source code

file; and adding the generated Bloom filter to the first node.

[008] In some embodiments, determining whether a first source code file that includes a
particular added implementation of an override and a second source code file that
includes the particular function share at least one common binary file includes: applying

the Bloom filter of the first node to the first source code file.

[009] In some embodiments, the size of the Bloom filter is determined by how many binary
files of the codebase are compiled or generated using the second source code file, such

that a frequently-used source code file is associated with a larger size Bloom filter.

WO 2015/077175 PCT/US2014/065906

[010] In some embodiments of solutions discussed herein pertain to a method of
determining a likely call path between two functions in a code base, the method
comprising: receiving, as inputs, a source function and a destination function; identifying,
in a function call graph, a starting node associated with the source function and an ending
node associated with the destination function; searching possible paths in the function call
graph between the starting node and the ending node, said searching including, for each
node along a search path, evaluating the node against a list of common dependencies
shared by the starting node and the ending node; for an evaluated node having a
dependency included in the list of common dependencies, including the evaluated node in
a possible path and searching all possible paths in the function call graph between any
child nodes of the evaluated node and the starting node or the ending node; for an
evaluated node not having a dependency included in the list of common dependencies,
excluding the evaluated node from any possible path; sorting all possible paths between
the starting node and the ending node generated as a result of said searching ad evaluating

steps; and returning, as a likely call path, at least one of the sorted possible paths.

[011] In some embodiments, sorting all possible paths includes: ordering said all possible
paths from shortest to longest; identifying, from among the ordered paths, those paths
entirely within a single codebase; applying weight factors to the ordered paths such that
said all possible paths are ordered from most likely to least likely based on path length
and weight factor, the weight factor including indicating as more likely those paths
entirely within a single codebase; and returning, as a likely call path, at least the most

likely path after said applying weight factors.

[012] In some embodiments, applying weight factors includes generating weight factors
based on historical trace data generated from previous function executions such that
function call paths indicated by the historical trace data are associated with weight factors

indicating those paths as more likely.

WO 2015/077175 PCT/US2014/065906

[013] In some embodiments, applying weight factors includes applying class-based weight
factors such that call paths including commonly used object classes will be indicated as

more likely.

[014] In some embodiments, searching possible paths includes searching all possible paths.
In some embodiments, searching possible paths includes performing a bi-directional

search originating from both the starting and ending nodes.

[015] In some embodiments of solutions discussed herein pertain to a data structure
representing a function call graph for a codebase, the graph comprising: a plurality of
graph nodes, each graph node representing a callable function within the codebase, a first
graph node from among said plurality including a function signature uniquely identifying
the callable function within the codebase; a first graph node absolute path identifying an
absolute location of a data file that includes the callable function within a file system;
information identifying a child node of the first graph node, said information identifying a
child node including a representation of a child function signature identifying a child
function associated with the child node and a child node kind associated with the child
node, where the child function signature associated with the child node represents a
graph edge connecting the first graph node and the child node; and where the child node
kind includes one of a direct call kind and an instance call kind, the instance call kind
indicating that the child node represents an implementation of an override of a base class

method invoked in the callable function.

[016] In some embodiments, information identifying a child node further includes a flag
indicating whether or not the child function associated with the child node is a remote

procedure call function.

[017] In some embodiments, the function signature is included in the first graph node in a

hashed form, the hashed form occupying less data storage space in the medium.

[018] In some embodiments, the child node includes the child function signature uniquely

identifying the child function within the codebase; a child node absolute path identifying

WO 2015/077175 PCT/US2014/065906

an absolute location of a data file that includes the child function within a file system;
information identifying a connecting node of the graph node, said information identifying
a connecting node including a representation of a call-from function signature identifying
a call-from function that invokes the child function represented by the child node, where
the call-from function signature associated with the connecting node represents a graph

edge connecting the child node and the connecting node.

[019] In some embodiments, the first graph node is a connecting node of the child node.

[020] Embodiments of solutions, techniques, and systems described herein may include a
system comprising: a processor and a processor-readable memory having embodied
thereon instructions configured to cause the processor to some or all of the steps or
operations described above and / or to create representations of one or more of the data

structures described above.

[021] Embodiments of solutions, techniques, and systems described herein may include a
transitory or non-transitory computer-readable medium having embodied thereon
instructions that cause a computer to perform some or all of the steps described above and

/ or to create representations of one or more of the data structures described above.

[022] Further scope of applicability of the systems and methods discussed will become
apparent from the detailed description given hereinafter. However, it should be
understood that the detailed description and specific examples, while indicating
embodiments of the systems and methods, are given by way of illustration only, since
various changes and modifications within the spirit and scope of the concepts disclosed

herein will become apparent to those skilled in the art from this detailed description.

Brief Description of the Drawings:
[023] The systems and methods discussed will become more fully understood from the
detailed description given herein below and the accompanying drawings that are given by

way of illustration only and thus are not limitative.

WO 2015/077175 PCT/US2014/065906

[024] Fig. 1a shows a block diagram representing an embodiment of a function call graph

generation operation as described herein;

[025] Fig. 1b shows a block diagram representing an embodiment of a shared binary

identification operation as described herein;

[026] Fig. 1c shows a block diagram representing an embodiment of a portion of a function

call graph as described herein;

[027] Fig. 2 shows a block diagram representing an embodiment of a graph node as

described herein;

[028] Fig. 3 shows a block diagram representing an embodiment of a graph search and call

path generation operation as described herein;

[029] Fig. 4 shows a block diagram representing an embodiment of a call path sorting or

raking operation as described herein; and

[030] Fig. 5 shows a block diagram representing an embodiment of a computing device
arranged to carry out some or all of the graph generation and call path identification

operations described herein.

[031] The drawings will be described in detail in the course of the detailed description.

Detailed Description:

[032] The following detailed description refers to the accompanying drawings. The same
reference numbers in different drawings identify the same or similar elements. Also, the
following detailed description does not limit the concepts discussed. Instead, the scope of

the concepts discussed herein is defined by the appended claims and equivalents thereof.

[033] A complex large-scale software product or software development environment may

require that programmers doing development and / or code maintenance read unfamiliar

WO 2015/077175 PCT/US2014/065906

code. In such situations, it may be challenging and time-consuming to trace the control
flow from one function to another. A call path finder capable of finding one or more
likely paths between any two functions in a codebase may simplify the process of
understanding code and allow for faster and easier software development and

maintenance.

[034] An embodiment of a call path finder for a particular code base may be realized by
creating and then querying a graph or tree data structure. In some embodiments, such a
graph may include each function of the code base as a graph node, with connecting nodes
representing all other possible functions and / or function instances that are or could be
called from that function. Furthermore, connecting nodes may also represent call-from
functions, which are functions and / or function instances that do or can invoke the

function represented by a particular node.

[035] In a monolithic code base, for example, such a graph could be built as a sorted key
map in one or more database tables. Each graph node may include a unique signature,
such as a function signature, that identifies the particular function represented by the
node. To account for updates and changes to the codebase, such a graph could be rebuilt

and / or updated at regular intervals (e.g. nightly).

[036] In embodiments involving object-oriented technologies, a static analysis of incoming
and outgoing function calls may not capture subtleties or variations caused by things such
as function overloading or override. In some embodiments, a function may make an
interface call to a method or function of a base class. In some cases, this may be a call to
an instance of the base class. In other cases, this may be a call to an overloaded instance
of the base class method. In some embodiments meant to account for overloaded
functions, the number of connections to a given node may be expanded to include each

implementation of an override of the base class method as a child or connecting node.

[037] An embodiment of a graph construction process for a monolithic codebase is shown
in Fig. 1a. In the embodiment shown, each function in the codebase may have a function

signature. This may be a number, string, or other piece of information that uniquely

WO 2015/077175 PCT/US2014/065906

identifies the function within the codebase. In some embodiments, such a function
signature may be generated for the function as part of the graph construction process. In
some embodiments, source management policies or practices for the codebase or
development environment may require that each function and / or each class be associated

with a unique identifier that may be used as part or all of a function signature.

[038] An example of a function signature may include a class signature in an object-
oriented programming language such as, for example, Java. Another example of a
function signature may include a name created from a directory path of a source code file
for a particular class, the name of the class, and the name of the function within the class.
Other embodiments may utilize other techniques to create unique identifiers to use as

function signatures.

[039] The function signature may be generated or read 1001 and the function identified by
the signature may be added to the graph 1070 as a node. In some embodiments, adding
the function to the graph 1070 as a node may include parsing or otherwise traversing the

function to identify call-to and call-from functions 1200.

[040] Call-to functions are those functions that are or can be called from within the added
function. Such call-to functions may have their function signatures included as children
or connecting nodes of the node representing the added function. In some embodiments,
call-from functions, which are those functions which call or may call the added function,

may also be identified based on the function signature.

[041] In some embodiments, all the function signatures of a codebase may be stored in one
or more database tables. In some embodiments, the signatures may be stored in a sorted
string table for ease of data lookup. In some embodiments, the function signatures may
indicate or serve as a key to access the call-to, call-from, and any related inheritance
information for a particular function. In such embodiments, scanning such database

tables may provide the call-to and call-from data for a particular function.

WO 2015/077175 PCT/US2014/065906

[042] In other embodiments, call-from information may be generated recursively during
graph construction. In such embodiments, identifying a call-from function in a particular
node may enable that particular node to be identified as a call-to node for the node
representing the call-from function. In some such embodiments, a master call-to or call-
from table or data structure may be dynamically created in one or more database tables as
part of the graph generation process. In some embodiments, all the graph nodes may
include call-to values to facilitate breadth-first searching. In some embodiments, all the

graph nodes may include call-from values to facilitate breadth-first searching.

[043] In some object-oriented embodiments, an added function may include an interface call
1010 to a base class method. Such an interface call 1010 to a method or function of a
base class may, in some cases, be a call to an instance of the base class. In other cases,
such an interface call 1010 may be a call to an overloaded instance of the base class
method. Because it cannot be readily determined, in a static analysis setting, whether the
interface call 1010 is to an overloaded instance or not, some embodiments of a graph
construction method may add each implementation of an override of the base class

method as a call-to child or connecting node 1020 of the node representing the function.

[044] In some embodiments, such inheritance expansion may cause the number of nodes
and connections in the graph to become unmanageably large. In some embodiments,
such inheritance expansion may add child or connecting nodes that suggest impossible or

otherwise unlikley (e.g. false positive) graph edges.

[045] In some embodiments, the function, along with any potential child nodes 1020 may be
added to the call graph 1090. The graph may be built 1050 in this way for the various call
paths, with each graph node being associated with a filter such as a Bloom filter. The
Bloom filter for a given call from / call to function pair may be created 1040 based on the

binary files common to the functions.

[046] In some embodiments, Bloom filters may be created based on each binary file that is
compiled or indicated for compilation within the codebase. In some embodiments, such

Bloom filters may be created based on a utility such as a version control tool that

WO 2015/077175 PCT/US2014/065906

10

identifies which source code files and which source code file versions are to be compiled
into a particular version of an application or program. The length or data size of a
particular Bloom filter may, in some embodiments, vary based on a number of source
code files and / or functions included in a particular binary file representing a compiled

application or program.

[047] In some embodiments, the graph construction process may read each function within
the codebase. In some such embodiments, once the graph construction process indicates
that all the functions have been read 1060 and added to the graph 1090, it may then
proceed to reduce a memory footprint of the created graph 1080. Embodiments of
memory footprint reduction may include employing hashed function signatures and

variable-length Bloom filters as discussed above.

[048] In some embodiments, the constructed call graph may be stored in volatile memory or
fast-access memory such as Flash memory to allow for faster access to and traversal of
the graph. In some such embodiments, the length or data size of a Bloom Filter may be
varied depending on a desired tolerance for false positive outcomes. In some
embodiments, varying a size of a Bloom filter to allow for 0.01% false positive outcomes
may allow for a good balance between data quality and data size. In embodiments
employing function-based Bloom filters, functions whose files exist in more binary files

may get larger size Bloom filters.

[049] An example of an embodiment of a common binary file identification process to find
a call path is depicted in Fig. 1b Starting with a binary file filter 1100 such as a Bloom
filter, and a starting node 1170 and ending node 1180 in a graph, the function signatures
associated with the start and end nodes may be evaluated using the filter 1110. If the
functions identified by the function signatures are not indicated as being included in the
binary files represented by the filter 1130, the filtering process for that Bloom filter stops

and a filtering process for a subsequent set of binary files may be initiated.

[050] If the functions identified by the function signatures are indicated as being included in

the binary files represented in the Bloom filter 1120, each implementation of an override

WO 2015/077175 PCT/US2014/065906

11

of the base class method added as a child or connecting node may be evaluated using that
same filter 1140. Fach implementation of an override of the base class method that
passes the filter is determined to be included in the binary files 1150 and remains as a
potential node in a function call path. Fach implementation of an override of the base
class method that does not pass the filter is determined to not have that binary file in
common with the calling (call-from) function 1160 and is therefore not a potential node in

a function call path.

[051] In other embodiments, a Bloom filter may be created for each graph node / function
signature having child or connecting nodes added to account for inheritance expansion.
In such embodiments, the Bloom filter may be created based on a utility such as a version
control tool that identifies which source code files and which source code file versions are
to be compiled into a particular version of an application or program. The Bloom filter
for a particular set of binary files based on functions identified by the function signatures
of graph nodes may include information about all the functions in each of the binary files
where the identified functions occur. In such an embodiment, a Bloom filter may allow
for direct evaluation each implementation of an override of the base class method added
as a child or connecting node 1140 because the Bloom filter would already be specific to

the binary files that include the functions represented in the start and end nodes.

[052] An embodiment of an exemplary function call graph or graph portion is depicted in
Fig. 1c. In the embodiment shown, the function call paths from an update request
function 1500 are depicted. An update request function 1500 called in a class Client may
call an update request handler function 1510 in a class Server. The update request
handler function 1510 may call a request validation function 1520, a request processing
function 1530, and a response setting function 1540. The request processing function
1530 from class Action may be overridden by request processing functions 1550 1560
1570 in classes Actionl, Action2, and Action3, respectively. These connections are
indicated by dashed lines because, in some embodiments, they must be resolved within
the graph during run-time analysis instead of through static analysis. The Action2 request
processing function 1560 may call a recursive calculation function 1580 which calls back

on itself. In the embodiments shown, each of the functions represents a graph node.

WO 2015/077175 PCT/US2014/065906

12

[053] An embodiment of a data structure representing a node of a function call graph as
discussed herein is shown in Fig. 2. In the embodiment shown, a graph node 2010 may
include information indicating a function signature 20200 that identifies the particular
function represented by the node. The graph node 2010 may also include information
indicating an absolute path of the source file that includes the function identified by the
function signature 20190. Such an absolute path 20190 may include information about a
particular file location in one or both of a directory in a virtual or logical file system and
an absolute physical location of the data in a particular storage location of one or more

specific storage or storage-equipped devices.

[054] An embodiment of a graph node 2010 may also include information representing a
Bloom filter 20210 based on all the binary files into which the function identified by the
graph node is compiled. As discussed above, such a Bloom filter may be variable in
length based on a desired or acceptable level of fault tolerance. In some embodiments
where false positive (or false negative) outcomes are not tolerated or otherwise

acceptable, a different type of filter may be employed.

[055] An embodiment of the graph node 2010 may also include a listing of child or
connecting nodes. Although listed as child nodes, such nodes represent connections from
the graph node to other nodes and do not otherwise indicate a hierarchy or a conveyance
or commonality of features or data between a parent and a child graph node. The
exemplary graph node 2010 shown includes a potentially arbitrary number of child nodes
20100, 20130, 20160. FEach child node 20100, 20130, 20160 may be identified in the
graph node 2010 according to the function signatures of the respective child nodes 20100,
20130, 20160. In embodiments where each function is equipped with or identified by a
unique function signature, such function signatures also allow for each graph node to be

uniquely identified.

[056] Each child node 20100, 20130, 20160 represented in the graph node 2010 may also
include information about a node kind 20110, 20140, 20170. In some embodiments, node

kind includes one of a direct call kind and an instance call kind, the instance call kind

WO 2015/077175 PCT/US2014/065906

13

indicating that the child node represents an implementation of an override of a base class
method invoked in the callable function. Direct function calls may be visible or
otherwise available for static analysis without having to traverse the graph through the

bloom filters. Instance calls may require run-time analysis.

[057] In some embodiments, each child node 20100, 20130, 20160 represented in the graph
node 2010 may also include a flag specifying whether or not that child node represents a
remote procedure call 20120, 20150, 20180. Such a flag may enable identification of
functions that refer to procedures or subroutines that may invoke or trigger functions
outside of the codebase. Furthermore, a function that is flagged as a remote procedure

call may, in some embodiments, have no call-to functions within the codebase.

[058] Once an embodiment of a function call graph is generated, the graph can be searched
to find one or more possible function call paths between a starting function and an ending

function. An embodiment of a call path search operation is depicted in Fig. 3

[059] In the embodiment shown, a call graph search tool may receive, as inputs, a function
signature identifying a starting graph node 3001 and a function signature identifying an
ending graph node 3010. In some embodiments, the call graph search tool may also
construct or access a listing or database showing common dependencies of the starting
and ending node. Such dependencies may include, for example, all the binaries that
contain a particular class, function, or source file as a dependency. In some such
embodiments, in determining a call graph path from a first function to a second function
where both functions exist only in a particular executable, all the intermediate graph
nodes should also exist only in that particular executable. This may speed up graph
search by eliminating from consideration graph nodes related to functions from different

executable files.

[060] Beginning at either the starting node 3001 or the ending node 3010 or, in some
embodiments, proceeding bi-directionally from both starting 3001 and ending nodes
3010, a breadth-first path search may be initiated of all the child or connecting nodes. In

some embodiments, this may be realized by first checking if either the start or end node

WO 2015/077175 PCT/US2014/065906

14

includes a remote procedure call (RPC) 3020. This check may be performed in some
embodiments because even in a monolithic codebase, a remote procedure call may refer
to functions in a set of binary files beyond those which include the functions represented

by the start and end nodes.

[061] In embodiments where one of the start and end nodes is an RPC 3020, the set of
binaries used may include all the binaries that refer to either of the start or end nodes
3040. In embodiments where the neither the start nor the end node is an RPC, the set of
binaries used may include only those binaries that refer to both the start and end nodes

3030.

[062] For each node, its Bloom filter may be extracted and the binary files may be tested
against the Bloom filter 3080 to determine whether the at least one of the common

dependencies passes the Bloom filter for that node 3080.

[063] If the binary files representative of the common dependencies do not pass the Bloom
filter for that node, the node is discarded 3070 as not being part of a possible or probable
function call path. If the common dependencies pass the Bloom filter for that node, that
node is then added to the listing or trace of possible call paths 3090. In embodiments
employing breadth-first searching, such evaluation may proceed for all nodes in a given
level of the graph 3110 or for all nodes in a given level of the graph that can be analyzed
within a given time period or with a particular allocation of computing resources. In such
embodiments, after a given node in the graph level is evaluated with its associated Bloom
filters, the next node in the level 3100 may then be similarly evaluated until either all the
nodes in the level have been evaluated 3110 or, in some cases, until a predetermined

amount of time elapses or amount of computing resources is consumed.

[064] The nodes included in the path list may then be ranked 3130 according to a ranking
scheme to determine a most likely next node and a least likely next node. In some
embodiments, ranking may be determined based on factors such as whether the node is a
direct function call or an overloaded / inherited function call. In some such embodiments,

direct function calls may be ranked higher than overloaded or inherited function calls. In

WO 2015/077175 PCT/US2014/065906

15

some embodiments, only a certain number of ranked nodes may be of interest. In some
such embodiments, only the five highest-ranked nodes may be kept as ranked nodes, with
the remaining nodes discarded or not otherwise further evaluated. In some embodiments,

a node matching the ending node 3010 may be the highest ranked node.

[065] After the nodes are ranked 3130, the ranked nodes may each be expanded 3120,
starting with the highest-ranked node, to determine whether it has child nodes 3060 to
include in a subsequent breadth-first path search 3050. Such expansion may proceed for
all ranked nodes 3050 or for all ranked nodes that can be analyzed within a given time

period or with a particular allocation of computing resources.

[066] In some embodiments, this search and evaluate operation continues until either the
search path terminates at the starting 3001 or ending node 3010 or, in bi-directional
embodiments, until the search paths meet and there are no child or connecting nodes
remaining to be expanded and searched 3140. Once a list of possible function call paths
is created, the list of paths may be sorted 3150 or ranked to identify one or more function
call paths deemed to be the most likely or most probable. The graph search tool may then

return some or all of the call paths 3160 including the most likely paths.

[067] In some embodiments, the graph search tool may include or be a part of a graphical
interface that may depict function call paths as representations of nodes connected along a
single or branching path. In some embodiments, graph edges that connect nodes based on
inheritance expansion may be identified or otherwise differently displayed to identify

them as such.

[068] In some embodiments, a path list may be sorted by various criteria, including factors
such as an overall path length (e.g. a number of nodes or a number of graph edges in the
path), whether or not the path crosses between application or product codebases, whether
the path invokes functions from particular objects or object classes, and previous run-time
traces showing frequent function call behavior. An embodiment of a path list sorting and

probability determination operation is depicted in Fig. 4

WO 2015/077175 PCT/US2014/065906

16

[069] Starting with a path list 4001 compiled based on a graph search operation such as the
one shown in Fig. 3, a sorting and path probability process may identify the shortest paths
4010 in the list. In some embodiments, a number of shortest paths may be determined by
a externally defined or externally controlled setting that governs a number of paths to
return and / or a maximum permitted path length. A path length may be determined by a
number of nodes in the path, a number of graph edges included in the path, or a
combination thereof. In some paths, for example, a node may be passed-through multiple
times making a number of graph edges in the path larger than a number of nodes in the

path.

[070] In some embodiments, paths may be identified based on whether they are entirely
within a codebase for a particular product or application 4020. In some embodiments,
preference may be given to paths based on path length and also based on whether they
remain within a single product codebase 4020. In some such embodiments, a path
entirely within a product or application codebase may be sorted as more likely or more
probable than a path of equal or similar length that is not entirely within a single product

or application codebase.

[071] In some embodiments, object class weighting factors may also be applied to paths.
Such object class weight factors may be determined based, in some embodiments, on
frequency of use associated with particular objects or object classes. In such
embodiments, function call paths that include a node representing a function from a
particular object or object class associated with a weight factor may be given a higher

likelihood or probability than function call paths of equal or similar length that do not.

[072] In some embodiments, a likelihood or probability of a particular function call path
may be associated with a specific probability percentage calculated based on path length,
codebase, and class weight factors. In other embodiments, a likelihood or probability of a
particular function call path may be expressed in relative terms compared to other call
paths without providing a specific percentage. In some embodiments, a likelihood or
probability of a particular function call path may be indicated by a ranking order of a

particular call path in the call path list. In some embodiments, determining a call path

WO 2015/077175 PCT/US2014/065906

17

probability 4040 may include re-ordering or re-ranking the function call paths based on

path length 4010, path length within a codebase 4020 and / or class weight factors 4030.

[073] In some embodiments, such re-ordering or re-ranking of function call paths in a path
list to determine path probability 4040 may also include evaluating the function call paths
against past run-time traces 4050. Such run-time traces may include historical function
call data showing frequent and / or likely call paths based on historical application
behavior. Once an absolute or relative call path probability is determined by, for
example, ranking or ordering the call paths from most to least likely 4040, some amount
of the most likely call paths (e.g. the top-ranked paths) may be returned or otherwise
selected for presentation to a user of the path search tool or other information requesting
entity (such as, for example, an application development or prototyping program or

program suite).

[074] Although discussed above in terms of functionality, the features and properties of
function graph generation and call path search may be realized through the use of one or
more specialized, programmable, and / or specially programmed computing devices or

portions thereof.

[075] Fig. 5 is a block diagram illustrating an example computing device 500 that is
arranged to perform call graph generation and call path search techniques as described
herein. In a very basic configuration 501, computing device 500 typically includes one or
more processors 510 and system memory 520. A memory bus 530 can be used for

communicating between the processor 510 and the system memory 520.

[076] Depending on the desired configuration, processor 510 can be of any type including
but not limited to a microprocessor (uP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 510 can include one more levels of
caching, such as a level one cache 511 and a level two cache 512, a processor core 513,
and registers 514. The processor core 513 can include an arithmetic logic unit (ALU), a

floating point unit (FPU), a digital signal processing core (DSP Core), or any combination

WO 2015/077175 PCT/US2014/065906

18

thereof. A memory controller 515 can also be used with the processor 510, or in some

implementations the memory controller 515 can be an internal part of the processor 510.

[077] Depending on the desired configuration, the system memory 520 can be of any type
including but not limited to volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof. System memory 520 typically
includes an operating system 521, one or more applications 522, and program data
524. Application 522 may include a call graph generation and / or call path search feature
as discussed herein. Program Data 524 includes location data such as one or more
dependency lists or object name lists 525 that are useful for performing the desired
operations as described above. In some embodiments, application 522 can be arranged to
operate with program data 524 on an operating system 521 such that the overall system
performs one or more specific variations of techniques as discussed herein. This

described basic configuration is illustrated in FIG. 5 by those components within line 501.

[078] Computing device 500 can have additional features or functionality, and additional
interfaces to facilitate communications between the basic configuration 501 and any
required devices and interfaces. For example, a bus/interface controller 540 can be used
to facilitate communications between the basic configuration 501 and one or more data
storage devices 550 via a storage interface bus 541. The data storage devices 550 can be
removable storage devices 551, non-removable storage devices 552, or a combination
thereof. Examples of removable storage and non-removable storage devices include
magnetic disk devices such as flexible disk drives and hard-disk drives (HDD), optical
disk drives such as compact disk (CD) drives or digital versatile disk (DVD) drives, solid
state drives (SSD), and tape drives to name a few. Example computer storage media can
include volatile and nonvolatile, removable and non-removable media implemented in
any method or technology for storage of information, such as computer readable

instructions, data structures, program modules, or other data.

[079] System memory 520, removable storage 551 and non-removable storage 552 are all
examples of computer storage media. Computer storage media includes, but is not

limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-

WO 2015/077175 PCT/US2014/065906

19

ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium
which can be used to store the desired information and which can be accessed by

computing device 500. Any such computer storage media can be part of device 500.

[080] Computing device 500 can also include an interface bus 542 for facilitating
communication from various interface devices (e.g., output interfaces, peripheral
interfaces, and communication interfaces) to the basic configuration 501 via the
bus/interface controller 540. Example output devices 560 include a graphics processing
unit 561 and an audio processing unit 562, which can be configured to communicate to
various external devices such as a display or speakers via one or more A/V ports 563.
Example peripheral interfaces 570 include a serial interface controller 571 or a parallel
interface controller 572, which can be configured to communicate with external devices
such as input devices (e.g., keyboard, mouse, pen, voice input device, camera, touch input
device, etc.) or other peripheral devices (e.g., printer, scanner, etc.) via one or more 1/0O
ports 573. An example communication device 580 includes a network controller 581,
which can be arranged to facilitate communications with one or more other computing

devices 590 over a network communication via one or more communication ports 582.

[081] The communication connection is one example of a communication
media. Communication media may typically be embodied by computer readable
instructions, data structures, program modules, or other data in a modulated data signal,
such as a carrier wave or other transport mechanism, and includes any information
delivery media. A “modulated data signal” can be a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the signal. By
way of example, and not limitation, communication media can include wired media such
as a wired network or direct-wired connection, and wireless media such as acoustic, radio
frequency (RF), infrared (IR) and other wireless media. The term computer readable

media as used herein can include both storage media and communication media.

[082] Computing device 500 can be implemented as a portion of a small-form factor

portable (or mobile) electronic device such as a cell phone, a personal data assistant

WO 2015/077175 PCT/US2014/065906

20

(PDA), a personal media player device, a wireless web-watch device, a personal headset
device, an application specific device, or a hybrid device that include any of the above
functions. Computing device 500 can also be implemented as a personal computer

including both laptop computer and non-laptop computer configurations.

[083] In some cases, little distinction remains between hardware and software
implementations of aspects of systems; the use of hardware or software is generally (but
not always, in that in certain contexts the choice between hardware and software can
become significant) a design choice representing cost vs. efficiency tradeoffs. There are
various vehicles by which processes and/or systems and/or other technologies described
herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred
vehicle will vary with the context in which the processes and/or systems and/or other
technologies are deployed. For example, if an implementer determines that speed and
accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware
vehicle; if flexibility is paramount, the implementer may opt for a mainly software
implementation; or, yet again alternatively, the implementer may opt for some

combination of hardware, software, and/or firmware.

[084] The foregoing detailed description has set forth various embodiments of the devices
and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as
such block diagrams, flowcharts, and/or examples contain one or more functions and/or
operations, it will be understood by those within the art that each function and/or
operation within such block diagrams, flowcharts, or examples can be implemented,
individually and/or collectively, by a wide range of hardware, software, firmware, or
virtually any combination thereof. In one embodiment, several portions of the subject
matter described herein may be implemented via Application Specific Integrated Circuits
(ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or
other integrated formats. However, those skilled in the art will recognize that some
aspects of the embodiments disclosed herein, in whole or in part, can be equivalently
implemented in integrated circuits, as one or more computer programs runhing on one or
more computers (e.g., as one Or more programs running on one or more computer

systems), as one or more programs I'U.l’ll’lil’lg on one Oor more processors (e.g., as one or

WO 2015/077175 PCT/US2014/065906

21

more programs running on one or more microprocessors), as firmware, or as virtually any
combination thereof, and that designing the circuitry and/or writing the code for the
software and or firmware would be well within the skill of one of skill in the art in light
of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms
of the subject matter described herein are capable of being distributed as a program
product in a variety of forms, and that an illustrative embodiment of the subject matter
described herein applies regardless of the particular type of signal bearing medium used
to actually carry out the distribution. Examples of a signal bearing medium include, but
are not limited to, the following: a recordable type medium such as a floppy disk, a hard
disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer
memory, etc.; and a transmission type medium such as a digital and/or an analog
communication medium (e.g., a fiber optic cable, a waveguide, a wired communications

link, a wireless communication link, etc.).

[085] Those skilled in the art will recognize that it is common within the art to describe
devices and/or processes in the fashion set forth herein, and thereafter use engineering
practices to integrate such described devices and/or processes into data processing
systems. That is, at least a portion of the devices and/or processes described herein can
be integrated into a data processing system via a reasonable amount of
experimentation. Those having skill in the art will recognize that a typical data
processing system generally includes one or more of a system unit housing, a video
display device, a memory such as volatile and non-volatile memory, processors such as
microprocessors and digital signal processors, computational entities such as operating
systems, drivers, graphical user interfaces, and applications programs, one or more
interaction devices, such as a touch pad or screen, and/or control systems including
feedback loops and control motors (e.g., feedback for sensing position and/or velocity;
control motors for moving and/or adjusting components and/or quantities). A typical data
processing system may be implemented utilizing any suitable commercially available
components, such as those typically found in data computing/communication and/or

network computing/communication systems.

WO 2015/077175 PCT/US2014/065906

22

[086] With respect to the use of substantially any plural and/or singular terms herein, those
having skill in the art can translate from the plural to the singular and/or from the singular
to the plural as is appropriate to the context and/or application. The various

singular/plural permutations may be expressly set forth herein for sake of clarity.

[087] Only exemplary embodiments of the systems and solutions discussed herein are
shown and described in the present disclosure. It is to be understood that the systems and
solutions discussed herein are capable of use in various other combinations and
environments and are capable of changes or modifications within the scope of the
concepts as expressed herein. Some variations may be embodied in combinations of
hardware, firmware, and / or software. Some variations may be embodied at least in part
on computer-readable storage media such as memory chips, hard drives, flash memory,
optical storage media, or as fully or partially compiled programs suitable for transmission
to / download by / installation on various hardware devices and / or combinations /
collections of hardware devices. Such variations are not to be regarded as departure from
the spirit and scope of the systems and solutions discussed herein, and all such
modifications as would be obvious to one skilled in the art are intended to be included

within the scope of the following claims:

WO 2015/077175 PCT/US2014/065906

23

CLAIMS:

1. A computer-based method of generating a function call graph for a codebase, the method
comprising:

Identifying (1001), with a processor, functions in the codebase using a function
signature;

representing a particular identified function as a first node (1070) in the function call
graph;

for the particular function, identifying (1200) call-to functions, call-from functions,
inheritance parents, and inheritance children, and a base class associated with the particular
function based on the function signature of that particular function;

adding (1090) first child nodes (1020) to the first node based on the identified call-to
and call-from functions;

for an interface call (1010) to a base class method in the particular function, adding
second child nodes to the first node based on implementations of an override of the base class
method;

for each child node (1020) of the first node, generating (1040) a binary file filter for
the parent-child relationship, the binary file filter being based on binary files that include the

particular function and a function represented by a child node.

2. The method of claim 1, the binary file filter being a Bloom filter configured to indicate
binary files that include the particular function and the function represented by the child node

as files that pass the Bloom filter.

3. The method of claim 1, the method further comprising reducing (1080) a memory

footprint of the function call graph.
4. The method of claim 3, said reducing a memory footprint including applying a hash
function to function signatures and storing a result of the hash function as a representation of

the function signatures.

5. A method of determining whether a binary file includes a call path between two functions:

WO 2015/077175 PCT/US2014/065906

24

receiving information representing a starting node (1170) in a function call graph, the
starting node being associated with a starting function;

receiving information representing an ending node (1180) in a function call graph, the
ending node being associated with an ending function;

testing a binary file associated with at least one of the starting node and the ending
node with a first Bloom filter (1110, 1140), said testing including applying the first Bloom
filter to the binary file in order to determine whether the binary file includes the starting

function and the ending function (1130, 1120).

6. The method of claim 2, the method further comprising varying a size of the Bloom filter
based on a number of binary files that include the particular function and the function

represented by the child node.

7. The method of claim 1, generating a binary filter including generating a Bloom filter
based on binary files of the codebase; and

the method further comprising adding the generated Bloom filter to the first node.

8. The method of claim 7, said determining whether a first source code file that includes a
particular added implementation of an override and a second source code file that includes
the particular function share at least one common binary file including:

applying the Bloom filter of the first node to a binary file compiled using the first

source code file.

9. The method of claim 8, where a size of the Bloom filter is determined by how many
binary files of the codebase are compiled or generated using the second source code file, such

that a frequently-used source code file is associated with a larger size Bloom filter.

10. A method of determining a likely call path between two functions in a code base, the
method comprising:

receiving, as inputs, a source function and a destination function;

identifying, in a function call graph, a starting node (3001) associated with the source

function and an ending node (3010) associated with the destination function;

WO 2015/077175 PCT/US2014/065906

25

searching possible paths (3050) in the function call graph between the starting node
and the ending node, said searching including, for each node at a level of the graph,
evaluating the node against a list of common dependencies shared by the
starting node and the ending node (3080);
for an evaluated node having a dependency included in the list of common
dependencies, including the evaluated node in a possible path list (3080, 3090);
for an evaluated node not having a dependency included in the list of common
dependencies, excluding the evaluated node from any possible path list (3080, 3070);
ranking the nodes included in the possible path list (3130);
for each ranked node, expanding the ranked node to determine if the ranked node
includes child nodes;
responsive to a determination that the ranked node has child nodes, treating the ranked
node as a starting node and performing said searching possible paths for each child node of
the ranked node (3060);
responsive to a determination that the ranked node has no child nodes, identifying a
function call path including the ranked node as a possible function call path (3060, 3140);
sorting the possible function call paths between the starting node and the ending node
(3150); and
returning, as a likely call path, at least one of the sorted possible function call paths

(3160).

11. The method of claim 10, the said sorting all possible function call paths including:

ordering said all possible function call paths from shortest to longest;

identifying, from among the ordered function call paths, those function call paths
entirely within a single codebase;

applying weight factors to the ordered function call paths such that said all possible
function call paths are ordered from most likely to least likely based on function call path
length and weight factor, the weight factor including indicating as more likely those function
call paths entirely within a single codebase; and

returning, as a likely call path, at least the most likely function call path after said

applying weight factors.

WO 2015/077175 PCT/US2014/065906

26

12. The method of claim 11, said applying weight factors including generating weight factors
based on historical trace data generated from previous function executions such that function
call paths indicated by the historical trace data are associated with weight factors indicating

those function call paths as more likely.

13. The method of claim 10, said applying weight factors including applying class-based
weight factors such that call paths including commonly used object classes will be indicated

as more likely.

14. The method of claim 10, said searching possible paths including searching all possible

paths within the graph.

15. The method of claim 10, said searching possible paths including performing a bi-

directional search originating from both the starting and ending nodes.

16. The method of claim 10, said evaluating a the node against a list of common
dependencies including applying a Bloom filter associated with the node to at least one
binary file compiled from a source code file that includes at least one of the source function
and the destination function;

the node being evaluated as having a dependency included in the list of common

dependencies in response to said at least one binary file passing the applied Bloom filter.

17. The method of claim 16, the method further comprising:
in response to a determination that at least one of the source function and the
destination function are remote procedure calls, said Bloom filter being configured to pass
those binary files that include at least one of the source function and the destination function;
in response to a determination that at least one of the source function and the
destination function are not remote procedure calls, said Bloom filter being configured to

pass those binary files that include both of the source function and the destination function.

18. The method of claim 16, where a size of the Bloom filter is based on a number of binary

files the Bloom filter is configured to pass.

WO 2015/077175 PCT/US2014/065906

27

19. A non-transitory computer-readable medium having embodied thereon a data structure
representing a function call graph for a codebase, the graph comprising:
a plurality of graph nodes, each graph node representing a callable function within the
codebase, a first graph node from among said pluraltiy including
a function signature uniquely identifying the callable function within the
codebase;
a first graph node absolute path identifying an absolute location of a data file
that includes the callable function within a file system;
information identifying a child node of the first graph node, said information
identifying a child node including a representation of a child function signature
identifying a child function associated with the child node and a child node kind
associated with the child node,
where the child function signature associated with the child node represents a
graph edge connecting the first graph node and the child node; and
where the child node kind includes one of a direct call kind and an instance
call kind, the instance call kind indicating that the child node represents an

implementation of an override of a base class method invoked in the callable function.

20. The data structure of claim 19, said information identifying a child node further
including a flag indicating whether or not the child function associated with the child node is

a remote procedure call function.

21. The data structure of claim 19, where the function signature is included in the first graph

node in a hashed form, the hashed form occupying less data storage space in the medium.

22. 'The data structure of claim 19, the child node including

the child function signature uniquely identifying the child function within the
codebase;

a child node absolute path identifying an absolute location of a data file that includes

the child function within a file system;

WO 2015/077175 PCT/US2014/065906

28

information identifying a connecting node of the graph node, said information
identifying a connecting node including a representation of a call-from function signature
identifying a call-from function that invokes the child function represented by the child node,

where the call-from function signature associated with the connecting node represents

a graph edge connecting the child node and the connecting node.

23. The data structure of claim 19, where the first graph node is a connecting node of the

child node.

24. The method of claim 22, each graph edge representing at least part of a function call
path, the method further comprising: performing said subsequent ranking by evaluating the

function call paths against past run-time traces.

25. A system comprising:

a processor;

a processor-readable memory having embodied thereon instructions which for causing
the processor to perform a method of generating a function call graph for a codebase, the
method comprising:

identifying (1001), with a processor, functions in the codebase using a function
signature;

representing a particular identified function as a first node (1070) in the function call
graph;

for the particular function, identifying (1200) call-to functions, call-from functions,
inheritance parents, and inheritance children, and a base class associated with the particular
function based on the function signature of that particular function;

adding (1090) first child nodes (1020) to the first node based on the identified call-to
and call-from functions;

for an interface call (1010) to a base class method in the particular function, adding
second child nodes to the first node based on implementations of an override of the base class

method;

WO 2015/077175 PCT/US2014/065906

29

for each child node (1020) of the first node, generating (1040) a binary file filter for
the parent-child relationship, the binary file filter being based on binary files that include the

particular function and a function represented by a child node.

26. A system comprising:
a processor;
a processor-readable memory having embodied thereon instructions for causing the processor
to perform a method of determining a likely call path between two functions in a code base,
the method comprising:
receiving, as inputs, a source function and a destination function;
identifying, in a function call graph, a starting node (3001)associated with the source
function and an ending node (3010) associated with the destination function;
searching possible paths (3050) in the function call graph between the starting node
and the ending node, said searching including, for each node at a level of the graph,
evaluating the node against a list of common dependencies shared by the
starting node and the ending node (3080);
for an evaluated node having a dependency included in the list of common
dependencies, including the evaluated node in a possible path list (3080, 3090);
for an evaluated node not having a dependency included in the list of common
dependencies, excluding the evaluated node from any possible path list (3080, 3070);
ranking the nodes included in the possible path list (3130);
for each ranked node, expanding the ranked node to determine if the ranked node
includes child nodes;
responsive to a determination that the ranked node has child nodes, treating the ranked
node as a starting node and performing said searching possible paths for each child node of
the ranked node (3060);
responsive to a determination that the ranked node has no child nodes, identifying a
function call path including the ranked node as a possible function call path (3060, 3140);
sorting the possible function call paths between the starting node and the ending node
(3150); and
returning, as a likely call path, at least one of the sorted possible function call paths

(3160).

WO 2015/077175

e FUNCtiONS?

1/7

:; Signature
: 1001

PCT/US2014/065906

Get Call-To / Call-
Erom.
1200

AN
7N

" Unread ™

kA

1090

Build: Graph:

Make. Bloom
Filters.

1040

N Joso. el

Footprint
1080

Reduce Memory

Fig. la

WO 2015/077175 PCT/US2014/065906
2/7

i/ VVVVVVV PR
Binary: File Filter NSt,art Node 1179 [

y
1100 { End Node 1180]

N
27N

T AN
7 Filter F1 ™~
NG5
~ s
No ™~ o Yes

P

E1 exists in F1 does not exist
Binary File(s) | ~ inBinary File |
1120 1130

e
e :
S A
< Filter QF1 ™
No N (”/‘ Yes

OF1 exists.in
Binary:File
1150

F‘i:l:e;
1160

Fig. 1b

WO 2015/077175 PCT/US2014/065906
3/7

¥ ¥ ; ¥

Data.validateRequest Action.processRequest Server.setResponse

1520 1530 1540

Fig. 1c

WO 2015/077175 PCT/US2014/065906
4/7

Graph Node
2010.

Function Sematare
20200

Bloom Filter
20216

20190,

Node Child: 1 |{Child 1 Kind: éC,hi;Iid 1RPC
20100 20110 20120

Node Child 2 Child 2 Kind Child 2 RPC
20130 20140 20150

Node Childn |Child n Kind _|Child n.RPC
20160 20170 20180

Fig. 2

WO 2015/077175

5/7

Fig. 3

Starting Node
3001

Ending Node
3010

Search: Paths.
3050

|

re
Nodes?

.
\\

A

N
/6 ildren Z\\

3060
%

PCT/US2014/065906

R

L

Get Intersect
Binaries:
3030

;;;;;;;;;;;;;;;;;;; P,

Binaries:
3040

>

3070:

Discard Node

=N

. /:v/D'.épefn~d,e;ncy\

A 4
PN
o Pass

Next Node In
Level

3100

N

—

N

Nodes?
. 3140
h e

PR

Expand Node

Q---—No-—-—-—-—-—-fi

3090

S EA&d.d: to Path List |

/$\
TN
All Nodes .
Level?

N
1
Yes

¥

Rank Nodes

3120

e

3130

[

Sort Path List
3150

Return Meost

3 Likely Paths:
: 3160:;

WO 2015/077175 PCT/US2014/065906
6/7

Path List
4001

Identify Shortest
Paths ;

Identify Shortest |
Paths Within A |
Codebase
4020

h:d ¥

Evaluate Past Apply Class |
Run-Time Traces | Weight Factors |
4050 § 4030 ‘

Determine Path
3 Probability !
4040

Fig. 4

(NERTET
BNILNINOD

PCT/US2014/065906

7/7

¥IH10 T
5 . {ana/as “39)
(zss) 3ovdOLs | | (1S5) IDVHOLS
JTEVAOWIY-NON | | 3I1GVAONIY

| (zss)

| (S)reod
| WINOD | | MOMIAN
(085 SIIATA NOIIVOINNNINGD

(185) , ;;;; T —

(978) Y1VA DINYTS

(245) 109INOD
K21 20ovauaIN
(ezg) | | 1ATIvdvd

]:

(F¢q) V1VA INVYDO0Yd

Nshwod |
| O | (1L5) 1081N0D
N IOV4UILNI
TVIYIS

(yT6) S¥31SIOFY L

(€15) dSa/nd4/nTv L (ees)Tvsuaavel

(¢vs) sng IOVAHILNI

S — (z15) | (119) | || TCZSTNOIIVOIddY

erral Lomow | wew |

ONISSTOO¥d | pooe Rl || TEAT

o (TZS) WALSAS ONILYHIIO
(£99)

WO 2015/077175

| olanv dsa/an/dn

; - | NVY/NOY
>\< | A.._”@AMV |_|_ZD | : AO._”mv HY0OSSIO0Hd [
M/ ONISSII0Y] | . (0ZG) AHOINTIN INTLSAS

, SOHdVYD | ﬁ

ST ($)1M0d

105) NOILVENDIINOD DISvd

(095

(005) 301A3d ONILNANOD

International application No.

A A A
INTERNATIONAL SEARCH REPORT PCT/US2014/065906

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 17/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 17/30; GOGF 9/44; GO6F 9/45; GO6F 11/36

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: function, call graph, codebase, inheritance, node, override, binary, filter, and similar terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

see paragraphs [0032]-[0033]; and figures 2-3.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2011-0145800 A1 (ABHIJIT RAO et al.) 16 June 2011 1-7,10-26
see paragraphs [0004]-[0008] and [0032]-[0037]; claim 1; and figure 1A.

A US 2007-0150878 A1 (CLAIRE S. CATES) 28 June 2007 1-7,10-26
see paragraphs [0010] and [0022]-[0026]; claim 1; and figures 2-3.

A US 2006-0236309 A1 (JINI SUSAN GEORGE) 19 October 2006 1-7,10-26
see paragraphs [0010] and [0016]-[0024]; and figure 1.

A US 2009-0293049 A1 (EKATERINA GORELKINA) 26 November 2009 1-7,10-26
see paragraphs [0013]-[0014] and [0041]-[0048]; and figure 2.

A EP 2390790 A1 (FUJITSU LIMITED) 30 November 2011 1-7,10-26

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later
than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
27 February 2015 (27.02.2015)

Date of mailing of the international search report

27 February 2015 (27.02.2015)

Name and mailing address of the ISA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-1o, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No. ++82 42 472 3473

Authorized officer

NHO, Ji Myong

Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/065906

Box No. I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. m Claims Nos.: 8-9
) because they relate to patts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:
Claim 8 referring to claim 7 is worded in reference to "said determining whether ~ share at least one common binary file." However, the
"determining whether ~ share at least one common binary file" has not been previously defined. Therefore, claim 8 is unsearchable

that is unsearchable.

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

because claim 8 does not clearly define the matter for which protection is sought. And claim 9 is also unclear because it refers to claim 8

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. |:| As all required addtional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment
of any additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search repott covers
only those claims for which fees were paid, specifically claims Nos.:

4, |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest |:| The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.
|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2014/065906
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011-0145800 Al 16/06/2011 US 8595709 B2 26/11/2013
US 2007-0150878 Al 28/06/2007 US 7721269 B2 18/05/2010
US 2006-0236309 Al 19/10/2006 US 7661095 B2 09/02/2010
US 2009-0293049 Al 26/11/2009 KR 10-2009-0122879 A 01/12/2009
RU 2008-120587 A 10/12/2009
EP 2390790 Al 30/11/2011 JP 2011-248895 A 08/12/2011
JP 5648584 B2 07/01/2015

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report
	Page 41 - wo-search-report

