具有防火防腐功能的硬质聚氨酯泡沫保温材料及其制备方法

摘要

本发明是一种具有防火防腐功能的硬质聚氨酯泡沫保温材料及其制备方法。由硬质聚氨酯泡沫、渗透底漆、防火中间漆、防腐封闭面漆组成，其特征在于硬质聚氨酯泡沫上面喷涂一层渗透底漆，再在渗透底漆上面再喷涂一层防火中间漆；最后在晾干的基材上喷涂一层防腐封闭面漆。该硬质聚氨酯泡沫保温材料的制作工艺为：在聚氨酯泡沫上面喷涂一层厚度为30-40μm的渗透底漆，在渗透底漆上面喷涂厚度为1-3mm的防火中间漆；最后喷涂一层厚度为30-40μm的防腐封闭面漆。本发明根据聚氨酯硬质泡沫防火防腐涂料和与基层粘合牢固，耐腐蚀、可在任意曲面上喷涂成型等性能，专用涂料涂层薄、耐燃时间长，发烟量少，毒性低等优点。
1. 一种具有防火防腐功能的硬质聚氨酯泡沫保温材料及其制备方法，由硬质聚氨酯泡沫、渗透底漆、防火中间漆、防腐封闭面漆组成，其特征在于硬质聚氨酯泡沫上面喷涂一层渗透底漆，在渗透底漆上面再喷涂一层防火中间漆；最后在晾干的基材上喷涂一层防腐封闭面漆。

2. 按照权利要求1所述的具有防火防腐功能的硬质聚氨酯泡沫保温材料，其特征在于渗透底漆、防火中间漆、防腐封闭面漆各组分重量具有严格要求。

3. 按照权利要求2所述的渗透底漆，其特征在于该重量份数组成为：
 - 氯化石蜡 5-8份；
 - 改性高氯化聚乙烯 20-30份；
 - 溶剂 50-60份。

4. 按照权利要求2所述的防火中间漆，其特征在于该重量份数组成为：
 - 改性高氯化聚乙烯 20-30份；
 - 丙烯酸树脂 10-15份；
 - 环氧树脂（50%） 2-5份；
 - 铝酸锌 6-10份；
 - 发泡阻燃剂 20-40份；
 - 氯化石蜡 2-6份；
 - 钛白粉 4-8份；
 - 阻燃剂 4-8份；
 - 无机阻燃剂 5-8份；
 - 有机膨胀剂 1-2份；
 - 其它助剂 1-2份；
 - 溶剂 10-15份。

5. 按照权利要求2所述的防腐封闭面漆，其特征在于该重量份数组成为：
 - 氯化石蜡 10-15份；
 - 改性高氯化聚乙烯 20-40份；
 - 溶剂 50-60份。

6. 按照权利要求3、4、5所述的溶剂，其特征在于溶剂为醋酸丁酯。

7. 按照权利要求4所述的其他助剂，其特征在于其他助剂为流平剂或消泡剂。

8. 一种具有防火防腐功能的硬质聚氨酯泡沫保温材料的制备方法，其特征在于在聚氨酯泡沫上面喷涂一层渗透底漆，其厚度30-40μm；在渗透底漆上面喷涂厚度为1-3mm的防火中间漆，最后喷涂一层防腐封闭面漆，厚度为30-40μm。

9. 按照权利要求8所述的防火中间漆的制备工艺，其特征在于将改性高氯化聚乙烯用溶剂在高速搅拌下溶化成30%的溶液，将丙烯酸树脂和环氧树脂加入，在低速搅拌下加入1-2份有机膨胀剂，搅拌10分钟；然后依次加入三聚氰胺、季戊四醇、铝酸锌、聚磷酸铵、氯化石蜡、钛白粉、阻燃剂，搅拌30分钟后进行砂磨机研磨，检测细度达到90μm后停止研磨；在搅拌下加入其他助剂，把剩下的溶剂加入调到应用所需的黏度搅匀即可。
具有防火防腐功能的硬质聚氨酯泡沫保温材料及其制备方法

技术领域
[0001] 本发明涉及一种保温材料，尤其涉及建筑领域采用的喷涂成型的硬质聚氨酯泡沫SPF，Sprayed Polyurethane Foam 保温层，更具体的说是一种具有防火防腐功能的硬质聚氨酯泡沫保温材料及其制备方法。

背景技术
[0002] 硬质聚氨酯泡沫是一种具有保温隔热和一定防水功能的材料，该泡沫具有良好的保温、隔热功能，导热系数极低，且不透水、不吸湿、绝缘、吸音、耐油、耐化学腐蚀、质轻，非常适合用于各种类型新建建筑及既有屋面防水与保温，因此广泛应用于各类工业与民用建筑的屋面、墙体、楼面的保温、隔热、防水。
[0003] 其中有一种聚氨酯硬泡沫的成型方法是直接将液体的原材料喷涂在基材上，然后使其膨胀很多倍后成型成需要的固态形状。喷涂成型的硬质聚氨酯泡沫简称SPF，此固态的硬度以及其它物理性能可以按照最终的使用需要而调节。这是一种在欧美市场上应用很广泛的工艺方法，在中国的市场上的应用也在逐渐普及。SPF 是建筑行业多功能材料之王，它的特点是施工简单方便，保温，隔热，密封效果极佳，是世界公认的最佳节能材料。由于 SPF 本身的可燃性质，因此要想使其做建筑保温材料必须在之上做防火处理。即使 SPF 中已添加阻燃剂能够起到一定的阻燃效果，但当燃烧时间足够长和火焰温度足够高时，SPF 硬质泡沫还是会被点燃，一旦被点燃，其燃烧温度可达 2000 多摄氏度。由于内、外墙体建筑保温材料引发的火灾频频出现，因此聚氨酯泡沫的耐燃、阻燃等问题已成为迫切需要解决的问题。除此之外，在使用环境恶劣的情况下，SPF 硬质泡沫还需要做防腐或耐候的表面处理。
[0004] 专利 ZL200610043347. X 提出一种聚氨酯硬泡外墙保温系统材料，由聚氨酯防潮底漆、聚氨酯硬体材料、界面剂、内含玻璃纤维网格布的抗裂聚合物水泥砂浆和涂料饰面组成。其特点是缓解外墙外保温墙面裂缝的现象，使外墙外保温系统材料各层彼此相容、相互协调达到平衡，形成一个有机整体。材料间易柔性释放形变应力，减少外墙外保温墙面裂缝的产生，并且喷涂聚氨酯硬泡体表面平整，无“爆米花”状凹凸不平及喷涂涂沫层与层之间附着力强，克服了 “千层饼”状脱层现象。但其造价高，防腐、阻燃性能差。
[0005] 专利 200810204580. 0 提出一种喷涂聚氨酯硬泡外墙保温系统，由防潮底漆、聚氨酯硬泡、界面砂浆、找平层、耐碱网格布、抹面砂浆、基层墙体组成，聚氨酯直接设于涂有防潮底漆的基层墙面上，在聚氨酯硬泡外设有找平层，在找平层与聚氨酯硬泡之间设有界面砂浆，在找平层外设有耐碱网格布，在耐碱网格布外设有抹面砂浆，结构简单、施工快捷，可有效防止墙面空鼓，阻火性能好。但其造价高，耐腐蚀、耐开裂、防渗水等功能性能差。
[0006] 专利 201010174224. 6 提出一种高阻燃的聚氨酯硬泡外墙保温材料及其制备方法。所述高阻燃的聚氨酯硬泡外墙保温材料由 A 组分和 B 组分组成，其中，A 组分由聚酯树脂、溴化环氧树脂、含磷的阻燃聚醚多元醇、有机硅泡沫稳定剂、催化剂二甲基乙醇胺、催化剂二月桂酸二丁基锡、阻燃剂以及发泡剂——氯二氯乙烷组成，B 组分为阻燃型多异氰酸酯固
化剂，本发明还提供了上述外墙保温材料的制备方法。本发明具有优异的力学性能和高阻燃性能，克服了原有聚氨酯硬泡保温材料防火阻燃性能与力学性能相互矛盾的问题，适用于防火等级要求较高的建筑的外墙保温施工。但绝缘、防火、耐燃等性能差。

发明内容

[0007] 为了解决上述问题，本发明提供一种与基层粘贴牢固、耐腐蚀、阻燃性高、使用寿命长的具有防火防腐功能的硬质聚氨酯泡沫保温材料及其制备方法，由硬质聚氨酯泡沫、渗透底漆、防火中间漆、防腐封闭面漆组成，其特征在于：硬质聚氨酯泡沫表面喷涂一层渗透底漆，在渗透底漆上面再喷涂一层防火中间漆；最后在晾干的基材上喷涂一层防腐封闭面漆。渗透底漆的重量份数组成为：氯化石蜡：5-8份、改性高氯化聚乙烯：20-30份、溶剂：50-60份。其中防火中间漆的重量份数组成为：改性高氯化聚乙烯：20-30份、丙烯酸树脂：10-15份、环氧树脂（50%）：2-5份、铝酸锌：6-10份、发泡阻燃剂：20-40份、氯化石蜡：2-6份、铁粉：4-8份、阻燃剂：4-8份、无机阻燃剂：5-8份、有机膨胀土：1-2份、其他助剂：1-2份、溶剂：10-15份。防腐封闭面漆的重量份数组成为：氯化石蜡：10-15份、改性高氯化聚乙烯：20-40份、溶剂：50-60份。溶剂为醋酸丁酯。其他助剂为流平剂或消泡剂。该硬质聚氨酯泡沫保温材料的制作工艺为：在聚氨酯泡沫表面上喷涂一层渗透底漆，其厚度30-40μm；在渗透底漆上面喷涂厚度为1-3mm的防火中间漆；最后喷涂一层防腐封闭面漆，厚度为30-40μm。防火中间漆的制备工艺为将改性高氯化聚乙烯用溶剂在高速搅拌下溶化成30%的溶液，将丙烯酸树脂和环氧树脂加入，再低速搅拌下加入有机膨胀土，搅拌10分钟；然后依次加入三聚氰胺、季戊四醇、铝酸锌、聚磷酸铵、氯化石蜡、铁粉、阻燃剂，搅拌30分钟后进入砂磨机研磨，检测细度达到90μm后停止研磨；在搅拌下加入流平剂或消泡剂，把剩下的溶剂加入到调到应用所需的黏度搅匀即可。

[0008] 本发明的有益效果为：本发明根据喷涂聚氨酯硬质泡沫专用防火防腐涂料有与基层粘贴牢固、耐腐蚀、使用寿命长，可在任意曲面上喷涂成型等基本性能，结合特定使用范围及使用时间等最终制定了一套完整的防火防腐技术路线。本发明选用了一种三层结构的防火、防腐涂料体系，直接喷涂于聚氨酯硬质泡沫（SPF）基材上，形成了这种新型的喷涂聚氨酯硬质泡沫保温材料。首先在聚氨酯泡沫上刷一层渗透底漆，考虑到防火涂料与聚氨酯泡沫的粘结性能，选用自身不燃烧的树脂配以能互溶的阻燃剂做成透明清漆，它不仅能够起到阻燃作用而且渗透性好。当它渗透进SPF泡沫里面干燥后在泡沫空隙处牢牢的和泡沫嵌在一起。这一层阻燃层既节省了防火涂料的用量又增加了防火涂料与底层的粘结强度。其次选用和聚氨酯硬质泡沫有高强粘结性和对于软质基材有足够的耐燃保护作用的粘合配方作为本发明的防火涂料。再次，考虑到防火涂料含固体物质多，空隙大，容易吸潮，更加环境里有腐蚀性的酸碱雾气，因此选用一层阻燃性能好的耐酸碱的面漆作为保温材料的防腐封闭面漆。

[0009] 综合以上所述，防火防腐的喷涂硬质聚氨酯泡沫保温材料的专用涂料具有涂层薄、耐燃时间长、发烟量少、毒性低可任意喷涂成型等有优点。由于在该泡沫外壁浸涂一面，因此可耐5% H_2SO_4·HCl等强酸腐蚀。实验表明，将保温材料在5% H_2SO_4·HCl 中浸泡30天涂层无任何变化。
具体实施方式

【0010】一种具有防火防腐功能的硬质聚氨酯泡沫保温材料，改性高氯化聚乙烯 20-30 份用溶剂在高速搅拌下融化成 30% 的溶液，并将丙烯酸树脂 10-15 份和环氧树脂 4-5 份加入，在低速搅拌下加入 1-2 份的有机膨胀土，搅拌十分钟左右；然后依次加入 2-5 份三聚氰胺、6-10 份季戊四醇、6-10 份氯酸锌、13-15 份聚磷酸铵、2-6 份氯化石蜡、2-6 份钛粉、4-8 份阻燃剂等，搅拌 30 分钟后送入研磨机研磨，检测细度达到 90 um 后停止研磨；在搅拌下加入 1-2 份消泡剂，并把剩下的 10-15 份溶剂全部加入搅拌均匀。将此制得的防火中间涂于已经硬质聚氨酯泡沫喷涂过渗透底漆的基材上，最后在晾干的材料上喷涂一层防腐封闭面漆。

【0011】我们模拟火灾现场实验，在 4cm 聚氨酯泡沫上涂 2mm 防火涂料，该（干膜）耐燃时间大于 90 分钟，干膜 1mm 耐燃时间大于 60 分钟。按国家标准检测，耐燃时间为 17 分钟，国家标准为 15 分钟，完全达到国家标准防火涂料的耐燃时间标准的要求。

【0012】制备制备成功后进行了多次耐燃试验，以下展示一组试验数据：

【0013】数据 1 为北京建筑材料质量检验站于 2010 年 12 月 24 日检测。

【0014】数据 2、3 为室外模拟火灾现场试验。

<table>
<thead>
<tr>
<th>序号</th>
<th>涂料型号</th>
<th>涂覆量</th>
<th>干膜厚</th>
<th>耐燃时间</th>
<th>膨胀膜状态</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MQF-1012-2</td>
<td>250</td>
<td>125 um</td>
<td>17min</td>
<td>致密坚固</td>
</tr>
<tr>
<td>2</td>
<td>MQF-1012-2</td>
<td>3000</td>
<td>1.7mm</td>
<td>60min</td>
<td>SPF 泡沫不燃</td>
</tr>
<tr>
<td>3</td>
<td>MQF-1012-2</td>
<td>3000</td>
<td>1.7mm</td>
<td>90min</td>
<td>SPF 泡沫不燃</td>
</tr>
</tbody>
</table>