(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
07 January 2021 (07.01.2021)

(10) International Publication Number

WO 2021/000337 Al

WIPO I PCT

(51) International Patent Classification:
Ho04L 29/06 (2006.01)

(21) International Application Number:
PCT/CN2019/095299

(22) International Filing Date:
09 July 2019 (09.07.2019)

969 West Wen YiRoad, Yu Hang District, Hangzhou, Zhe-
jlang 311121 (CN). LIN, Yugqi; Alibaba Group Legal De-
partment 5/F, Building 3, No. 969 West Wen Yi Road, Yu
Hang District, Hangzhou, Zhejiang 311121 (CN). LIU, Ji-
awei, Alibaba Group Legal Department 5/F, Building 3, No.
969 West Wen YiRoad, Yu Hang District, Hangzhou, Zhe-
jlang 311121 (CN).

(25) Filing Language: English (74) Agent: BEIJING BESTIPR INTELLECTUAL PROP-
26) Publication L . Enelish ERTY LAW CORPORATION; Room 409, Tower B, Ka
(26) Publication Language: nglis Wah Building, No.9 Shangdi 3rd Street, Haidian District,
(30) Priority Data: Beijing 100085 (CN).

PCT/CN2019/09439602 July 2019 (02.07.2019) CN (81) Designated States (unless otherwise indicated, for every

(71) Applicant: ADVANCED NEW TECHNOLOGIES CO.,
LTD. [—/CN]; Cayman Corporate Centre, 27 Hospital
Road, George Town, Grand Cayman KY1-9008 (KY).

(72) Inventors: CHEN, Yuan; Alibaba Group Legal Depart-
ment 5/F, Building 3, No. 969 West Wen YiRoad, Yu Hang
District, Hangzhou, Zhejiang 311121 (CN). YANG, Ren-
hui; Alibaba Group Legal Department 5/F, Building 3, No.

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR, KW KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(54) Title: SYSTEM AND METHOD FOR MAPPING DECENTRALIZED IDENTIFIERS TO REAL-WORLD ENTITIES

Identity Auth
System 340

User-Side System
310

Service-Side
System 320

Request to create DID 1510

Request for ide ntity
authentication 1530

¥

Obtain identifiers
1520

.

g T BEELD0 293
Proof of authentication
1540
Obtain DID
1550
Store mapping
relationship
:I 1560
FIG. 15

wo 2021/000337 A1 |0 0000 KA Y YN 0

(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for mapping
decentralized identifiers (DIDs) to real-world entities. One of the methods includes: receiving a request for creating a DID; obtaining
a proof of identity authentication based on the received request, obtaining the DID based on the proof of identity authentication; and
storing a mapping relationship between the proof of identity authentication and the DID.

[Continued on next page]

WO 20217000337 A | [0} 00000 00RO A D OO

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2021/000337 PCT/CN2019/095299

SYSTEM AND METHOD FOR MAPPING DECENTRALIZED IDENTIFIERS TO
REAL-WORLD ENTITIES

CROSS REFERENCE TO RELATED APPLICATIONS

[1] This application claims priority to and benefits of International Application No.
PCT/CN2019/094396, filed with the State Intellectual Property Office (SIPO) of the People’s
Republic of China on July 2, 2019. The entire contents of the above-identified application is

incorporated herein by reference.

TECHNICAL FIELD

[2] This application generally relates to methods and devices mapping decentralized

identifiers to real-world entities based on identity authentication.

BACKGROUND

[3] Traditional identity management systems are based on centralized authorities such
as corporate directory services, certificate authorities, or domain name registries. Each of the
centralized authorities may serve as a root of trust that provides credibility to the identity it
endorses. For such systems, data associated with the identities is often stored in centralized
databases, if not traditional information storage media. The maintenance of identity of each
person or entity is under the control of the centralized authorities. Given its nature, traditional
identity management systems are subject to security risks suffered by each of the centralized
authorities and provide inefficient mechanisms for the aggregation of identities or credentials
provided by different centralized authorities. In such systems, individual entities or identity
owners are often neither free to choose the root of trust nor in control over their own
identities or credentials. Authentication and verification of their identities often prove to be

inefficient.

[4] Blockchain technology provides the opportunity to establish a trustworthy
decentralized system that does not require trust in each member of the system. Blockchain
provides data storage in a decentralized fashion by keeping the data in a series of data blocks
having precedence relationship between each other. The chain of blocks is maintained and
updated by a network of blockchain nodes, which are also responsible for validating data
under a consensus scheme. The stored data may include many data types, such as financial

transactions among parties, historical access information, etc.

WO 2021/000337 PCT/CN2019/095299

[5] Many blockchains (e.g., the Ethereum blockchain) have enabled blockchain
contracts (also referred to as smart contracts) that are executed through blockchain
transactions. Blockchain transactions are signed messages originated by externally owned
accounts (e.g., blockchain accounts), transmitted by the blockchain network, and recorded in
the blockchain. The blockchain contracts may be written to achieve various functions, such as
adding data to blockchain accounts, changing data in the blockchain, etc. Thus, the

blockchain can be maintained and updated by executing various blockchain transactions.

[6] Blockchain technology provides the means for managing a root of trust without
centralized authority. However, identity management systems built based on blockchain often
present substantive technical barriers for average users by requiring storage of a blockchain
ledger, capabilities to create and execute blockchain transactions and contracts, or
participation in the consensus scheme of the blockchain. Such identity management systems
also likely require frequent access to and interaction with the blockchain network, which may
be costly and resource consuming. An identity holder may be required to keep important
identity credentials such as cryptographic keys, which may subject the identity holder to the
risk of identity theft when such identity credentials are compromised. Furthermore, for
business entities with the needs to manage identities for a large number of users, such identity
management systems often prove to be inefficient and user-unfriendly. Mapping between
identities managed by such an identity management system and accounts or service IDs kept
by business entities are often difficult to maintain. Finally, the identity management systems
may often allow anonymous and arbitrary creation of decentralized identities and provide
little means to authenticate the real-world identities of the individuals behind the

decentralized identities.

SUMMARY

(7] Various embodiments of the specification include, but are not limited to, systems,
methods, and non-transitory computer readable media for mapping decentralized identifiers

to real-world entities.

[8] According to some embodiments, a computer-implemented method for mapping
decentralized identifiers (DIDs) to real-world entities comprises receiving a request for
obtaining a DID, obtaining a proof of identity authentication based on the received request,
obtaining the DID based on the proof of identity authentication, and storing a mapping

relationship between the proof of identity authentication and the DID.

WO 2021/000337 PCT/CN2019/095299

[9] In some embodiments, the proof of identity authentication comprises a proof of real-

person authentication or a proof of real-name authentication.

[10] In some embodiments, the obtaining a proof of identity authentication comprises
obtaining the proof of identity authentication from the request, wherein the request comprises

a relationship between the proof of identity authentication and an account identifier.

[11] In some embodiments, the method further comprises, subsequent to receiving the
request for creating a DID, determining that the request for creating a DID comprises the
proof of identity authentication and accepting the request based on the determining that the

request comprises the proof of identity authentication.

[12] In some embodiments, the method further comprises, subsequent to receiving the
request for creating a DID, determining that the request for creating a DID does not comprise
a proof of identity authentication, sending, to a sender of the request for creating a DID, a
request for the proof of identity authentication, and receiving, from the sender of the request

for creating a DID, the proof of identity authentication.

[13] In some embodiments, the obtaining a proof of identity authentication comprises
sending, to a blockchain node associated with a blockchain that stores information associated
with identity authentication, a blockchain transaction querying for the proof of identity
authentication and, in response to the blockchain transaction being successfully executed in

the blockchain, obtaining the proof of identity authentication from the blockchain.

[14] In some embodiments, the obtaining a proof of identity authentication comprises
sending, to a client-side application associated with a subject of the proof of identity
authentication, instructions to obtain data associated with one or more features of the subject

and obtaining the proof of identity authentication based on the obtained data.

[15] In some embodiments, the sending instructions to obtain data associated with one or
more features of the subject comprises sending, to the client-side application, instructions to

capture one or more images of the subject.

[16] In some embodiments, the sending instructions to obtain data associated with one or

more features of the subject comprises sending, to the client-side application, instructions to

WO 2021/000337 PCT/CN2019/095299

compare the obtained data associated with one or more features of the subject with pre-stored

data associated with an identifier of the subject.

[17] In some embodiments, the obtaining a DID comprises generating a key alias,
obtaining a public key of a cryptographic key pair, and storing a mapping relationship

between the proof of identity authentication, the public key, and the key alias.

[18] In some embodiments, the obtaining a DID further comprises generating, based on
the public key, one or more blockchain transactions for creating the DID and for adding a

DID document associated with the DID to a blockchain.

[19] In some embodiments, the method further comprises generating a verifiable claim
(VC) based on the proof of identity authentication and uploading the VC to a service
endpoint associated with the obtained DID.

[20] In some embodiments, the method further comprises receiving a request for the
proof of identity authentication, wherein the request comprises the obtained DID, and
locating the proof of identity authentication based on the mapping relationship between the

proof of identity authentication and the DID.

[21] According to other embodiments, a system for mapping decentralized identifiers
(DIDs) to real-world entities comprises one or more processors and one or more computer-
readable memories coupled to the one or more processors and having instructions stored
thereon that are executable by the one or more processors to perform the method of any of the

preceding embodiments.

[22] According to yet other embodiments, a non-transitory computer-readable storage
medium is configured with instructions executable by one or more processors to cause the

one or more processors to perform the method of any of the preceding embodiments.

[23] According to still other embodiments, an apparatus for mapping decentralized
identifiers (DIDs) to real-world entities comprises a plurality of modules for performing the

method of any of the preceding embodiments.

[24] According to some embodiments, a system for mapping decentralized identifiers
(DIDs) to real-world entities comprises one or more processors and one or more computer-

readable memories coupled to the one or more processors and having instructions stored

WO 2021/000337 PCT/CN2019/095299

thereon that are executable by the one or more processors to perform operations comprising
receiving a request for obtaining a DID, obtaining a proof of identity authentication based on
the received request, obtaining the DID based on the proof of identity authentication, and

storing a mapping relationship between the proof of identity authentication and the DID.

[25] According to other embodiments, a non-transitory computer-readable storage
medium is configured with instructions executable by one or more processors to cause the
one or more processors to perform operations comprising receiving a request for obtaining a
DID, obtaining a proof of identity authentication based on the received request, obtaining the
DID based on the proof of identity authentication, and storing a mapping relationship

between the proof of identity authentication and the DID.

[26] According to yet other embodiments, an apparatus for mapping decentralized
identifiers (DIDs) to real-world entities comprises a receiving module for receiving a request
for obtaining a DID; a first obtaining module for obtaining a proof of identity authentication
based on the received request; a second obtaining module for obtaining the DID based on the
proof of identity authentication; and a storing module for storing a mapping relationship

between the proof of identity authentication and the DID.

[27] Embodiments disclosed herein have one or more technical effects. In some
embodiments, an online platform provides online services for blockchain-based decentralized
identity management, such as agent services and resolver services, and makes such online
services accessible to users via API interfaces. This allows control of operations related to
decentralized identity management (e.g., creation and authentication of decentralized
identifiers, issuance and verification of verifiable claims) using programming languages or
protocols other than those required by the blockchain. In other embodiments, the online
platform provides interfaces and automated software solutions for an entity to manage
identities on behalf of a plurality of other entities. The online platform also includes storage
of mapping information between decentralized identities and business accounts or service IDs.
This facilitates creation of a large number of decentralized identifiers or verifiable claims
using simplified control actions as well as effective cross-reference of different identities for
a single person or entity. In yet other embodiments, the online platform incorporates identity
authentication functionalities and uses identity authentication in creating decentralized

identities. This allows identification of real-world entities corresponding to decentralized

WO 2021/000337 PCT/CN2019/095299

identities, creation of enhanced trust systems, and interoperability of the decentralized

identity management system and traditional identity management systems.

[28] These and other features of the systems, methods, and non-transitory computer
readable media disclosed herein, as well as the methods of operation and functions of the
related elements of structure and the combination of parts and economies of manufacture,
will become more apparent upon consideration of the following description and the appended
claims with reference to the accompanying drawings, all of which form a part of this
specification, wherein like reference numerals designate corresponding parts in the various
figures. It is to be expressly understood, however, that the drawings are for purposes of

illustration and description only and are not intended as limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

[29] FIG. 1 illustrates a network environment associated with a blockchain in accordance

with some embodiments.

[30] FIG. 2 illustrates a framework for implementing blockchain transactions in

accordance with some embodiments.

[31] FIG. 3 illustrates a network environment associated with a system for managing

decentralized identifiers and verifiable claims in accordance with some embodiments.

[32] FIG. 4 illustrates an architecture associated with a blockchain-based system for
managing decentralized identifiers and verifiable claims in accordance with some

embodiments.

[33] FIG. 5 illustrates a network environment associated with a system for implementing
various examples of functionalities associated with decentralized identifiers and verifiable

claims in accordance with some embodiments.

[34] FIG. 6 illustrates a method for creating a decentralized identifier in accordance with

some embodiments.

[35] FIG. 7 illustrates a method for authenticating a decentralized identifier using DID

authentication services in accordance with some embodiments.

WO 2021/000337 PCT/CN2019/095299

[36] FIG. 8 illustrates a method for authenticating a decentralized identifier using an

identity management application in accordance with some embodiments.

[37] FIG. 9 illustrates a method for issuing a verifiable claim in accordance with some

embodiments.

[38] FIG. 10 illustrates a method for verifying a verifiable claim in accordance with some

embodiments.

[39] FIG. 11 illustrates a method for creating a decentralized identifier using an agent

service in accordance with some embodiments.

[40] FIG. 12 illustrates a method for authenticating a decentralized identifier using an

agent service in accordance with some embodiments.

[41] FIG. 13 illustrates a method for issuing a verifiable claim using an agent service in

accordance with some embodiments.

[42] FIG. 14 illustrates a method for verifying a verifiable claim using an agent service in

accordance with some embodiments.

[43] FIG. 15 illustrates a method for obtaining a decentralized identifier based on identity

authentication in accordance with some embodiments.

[44] FIG. 16 illustrates a method for obtaining a proof of identity authentication in

accordance with some embodiments.

[45] FIG. 17 illustrates a flowchart of a method for mapping decentralized identifiers to

real-world entities in accordance with some embodiments.

[46] FIG. 18 illustrates a block diagram of a computer system for mapping decentralized

identifiers to real-world entities in accordance with some embodiments.

[47] FIG. 19 illustrates a block diagram of a computer system in which any of the

embodiments described herein may be implemented.

WO 2021/000337 PCT/CN2019/095299

DETAILED DESCRIPTION

[48] Embodiments described herein provide methods, systems, and apparatus associated
with an ecosystem for decentralized identity management that may provide unique and
verifiable identities to entities. A decentralized identifier (DID) for an entity may allow the
entity to obtain full control over its identity as well as information associated with the identity.
Verifiable claims (VCs) may allow for authorizations, endorsements, and acknowledgements
among different entities. In a business setting, a service or product provider may use its
customers’ DIDs and VCs to identify and authenticate the customers and to provide services

or products accordingly.

[49] In some embodiments, a DID may be a unique identifier indicating a mapping
relationship between a real-world entity and an online identity. The DID may comprise a
URL scheme identifier, an identifier for a DID method, and a DID method-specific identifier.
Each DID may point to a corresponding DID document. The DID document may comprise
descriptive text in a preset format (e.g., JSON-LD) about the DID and the owner of the DID.
The DID may serve as a uniform resource identifier (URI) for locating the DID document.
The DID document may comprise various properties such as contexts, DID subject, public
keys, authentication, authorization and delegation, service endpoints, creation, updates, proof,
extensibility, other suitable properties, or any combination thereof. The DID document may
define or point to resources defining a plurality of operations that can be performed with

respect to the DID.

[50] In some embodiments, a VC may provide verifiable online information about an
entity’s qualities, characteristics, relationships, and other relevant information. A VC may
comprise descriptive text in a preset format (e.g., JSON-LD) that describes one or more
declarations regarding a DID (e.g., age of the owner of the DID, educational background of
the owner of the DID) and an endorsement of an entity for the declaration. A VC may
comprise various properties such as contexts, identifiers, types, credential subject, issuer,
issuance date, proofs, expiration, status, presentations, other suitable properties, or any
combination thereof. The VC may specify a type of its claim, which may indicate a structure

of the claim. This may facilitate automatic processing by the VC issuer and VC verifiers.

[51] Owners of DIDs may participate in the identity management system in different
roles. For example, an individual may desire to use the services provided by a business entity,

which requires proof that the individual is over 18 years of age. The individual may be an

WO 2021/000337 PCT/CN2019/095299

owner of a DID and may request a VC issued by a government agency that provides
verification of citizens’ ages. The business entity may verify the VC to ascertain that the
individual meets the age requirement. In this scenario, the individual may be a DID owner
and a VC holder; the government agency may be a VC issuer, and the business entity may be
a VC verifier. As another example, a user may issue a VC to a first business allowing the first
business to use the user’s data stored by a second business. In this case, the user may act as a
VC issuer; the first business may act as a DID owner and VC holder; the second business

may act as a VC verifier.

[52] Some embodiments integrate various components, such as blockchain networks,
cloud applications, agent services, resolver services, user applications, application
programing interface (API) services, key management systems (KMS), identity
authentication systems and other suitable components, to enable functionalities such as
creation and authentication of DIDs and issuance and verification of VCs. In some
embodiments, an online platform integrating one or more of these components may facilitate
a business entity in smoothly creating DIDs and issuing VCs for its users. The business may
interact with the online platform via one or more API interfaces and trust a plurality of
cryptographic keys to the online platform. The online platform may offer agent services that
perform various operations related to DIDs and VCs on behalf of the business entity and/or
its users. Alternatively, the online platform may provide SDKs that can be integrated into
applications of the business entity for directly performing operations related to DIDs and VCs.
The online platform may also facilitate the business entity’s management of relationships
between DIDs, accounts maintained by the business entity, and identities of real-world

individuals corresponding to the DIDs and accounts.

[53] FIG. 1 illustrates a network environment associated with a blockchain in accordance
with some embodiments. As shown, in the environment 100, a client 111 may couple to a
server end 118, and the server end 118 and a Node B may couple to a blockchain system 112
through various communication networks. Similarly, the server end 118 may optionally
couple to more blockchain systems similar to the blockchain system 112 such as blockchain
system 113, blockchain system 114, etc. Each blockchain system may maintain one or more

blockchains.

[54] In some embodiments, the client 111 may comprise one or more servers (e.g., Node

C) and one or more other computing devices (e.g., Node Al, Node A2, Node A3). Node Al,

WO 2021/000337 PCT/CN2019/095299

Node A2, and Node A3 may couple to Node C. In some embodiments, Node C may be
implemented by an entity (e.g., website, mobile phone Application, organization, company,
enterprise), which has various local accounts (e.g., local accounts assessed from Node Al,
Node A2, Node A3). For example, a mobile phone Application may have millions of end-
users accessing the Application’s server from respective user accounts. The Application’s
server may correspondingly store millions of user accounts. The components of the client 111

and their arrangement may have many other configurations.

[55] In some embodiments, Node B may include a lightweight node. A lightweight node
may not download the complete blockchain, but may instead just download the block headers
to validate the authenticity of the blockchain transactions. Lightweight nodes may be served
by and effectively dependent on full nodes (e.g., blockchain nodes in the blockchain system
112) to access more functions of the blockchain. The lightweight nodes may be implemented
in electronic devices such as laptops, mobile phones, and the like by installing an appropriate

software.

[56] In some embodiments, there may be many more clients coupled to the server end
118 similar to client 111. The server end 118 may provide Blockchain-as-a-Service (BaaS)
and be referred to as a BaaS cloud. In one embodiment, BaaS is a cloud service model in
which clients or developers outsource behind-the-scenes aspects of a web or mobile
application. BaaS may provide pre-written software for activities that take place on
blockchains, such as user authentication, database management, and remote updating. The
BaaS cloud may be implemented in a server, server cluster, or other devices. In one
embodiment, the BaaS cloud provides an enterprise-level platform service based on
blockchain technologies. This service may help clients to build a secure and stable blockchain
environment as well as manage the deployment, operation, maintenance, and development of
blockchain easily. Based on the abundant security strategies and multi-tenant isolation of
cloud, the BaaS cloud can provide advanced security protection using chip encryption
technologies. Based on highly reliable data storage, this service may provide end-to-end and
highly available services that can scale up quickly without interruption. The BaaS cloud can

provide native support for standard blockchain applications and data.

[57] In some embodiments, the blockchain system 112 may comprise a plurality of
blockchain nodes (e.g., Blockchain Node 1, Blockchain Node 2, Blockchain Node 3,

Blockchain Node 4, Blockchain Node i, etc.) that maintain one or more blockchains (e.g.,

10

WO 2021/000337 PCT/CN2019/095299

public blockchain, private blockchain, consortium blockchain). Other blockchain systems
(e.g., blockchain system 113, blockchain system 114) may comprise similar arrangements of
blockchain nodes maintaining other blockchains. Each blockchain node may be found in one
or more blockchain systems. The blockchain nodes of each blockchain system may maintain
one or more blockchains. The blockchain nodes may include full nodes. Full nodes may
download every block and blockchain transaction and check them against the blockchain’s
consensus rules. The blockchain nodes may form a network (e.g., peer-to-peer network) with
one blockchain node communicating with another. The order and the number of the
blockchain nodes as shown are merely examples for illustration. The blockchain nodes may
be implemented in servers, computers, etc. For example, each blockchain node may be
implemented in a server or a cluster of servers. The cluster of servers may employ load
balancing. Each blockchain node may correspond to one or more physical hardware devices
or virtual devices coupled together via various types of communication methods such as
TCP/IP. Depending on the classifications, the blockchain nodes may also be referred to as

full nodes, Geth nodes, consensus nodes, etc.

[58] In the environment 100, each of the nodes and devices may be installed with
appropriate software (e.g., application program interface) and/or hardware (e.g., wires,
wireless connections) to access other devices of the environment 100. In general, the nodes
and devices may be able to communicate with one another through one or more wired or
wireless networks (e.g., the Internet) through which data can be communicated. Each of the
nodes and devices may include one or more processors and one or more memories coupled to
the one or more processors. The memories may be non-transitory and computer-readable and
configured with instructions executable by one or more processors to cause the one or more
processors to perform operations described herein. The instructions may be stored in the
memories or downloaded over a communications network without necessarily being stored in
the memories. Although the nodes and devices are shown as separate components in this
figure, it will be appreciated that these nodes and devices can be implemented as single
devices or multiple devices coupled together. For example, Node B may be alternatively

integrated into Blockchain Node 2.

[59] The devices such as Node Al, Node A2, Node A3, Node B, and Node C may be
installed with an appropriate blockchain software to create blockchain accounts, and initiate,

forward, or access blockchain transactions. The term “blockchain transaction” may refer to a

11

WO 2021/000337 PCT/CN2019/095299

unit of task executed in a blockchain system and recorded in the blockchain. For example,
Node Al may access the blockchain through communications with Node C, the server end
118, and Blockchain Node 1, and Node B may access the blockchain through
communications with Blockchain Node 2. In some embodiments, Node A1 may submit a
blockchain account creation request to Node C. Node C may forward the request and other
similar requests to the server end 118. The server end 118 may accordingly create blockchain

accounts.

[60] In some embodiments, after receiving a blockchain transaction request of an
unconfirmed blockchain transaction, a recipient blockchain node may perform some
preliminary verification of the blockchain transaction. For example, Blockchain Node 1 may
perform the preliminary verification after receiving a blockchain transaction from Node C.
Once verified, the blockchain transaction may be stored in the pool database of the recipient
blockchain node (e.g., Blockchain Node 1), which may also forward the blockchain
transaction to one or more other blockchain nodes (e.g., Blockchain Node 3, Blockchain
Node 4). As each blockchain node may comprise or couple to a memory, the pool database
may be respectively stored in the memories of the blockchain nodes. The pool database may
store a plurality of blockchain transactions submitted by the one or more client devices. After
receiving the blockchain transaction, the one or more other blockchain nodes may repeat the

process done by the recipient blockchain node.

[61] Each blockchain node may select some of the blockchain transactions from the pool
according to its preference and form them into a proposed new block for the blockchain. The
blockchain node may perform “mining” of the proposed new block by devoting computing
power to solve complex mathematical problems. If the blockchain transaction involves a
blockchain contract, the blockchain nodes may execute the blockchain contract locally in
respective virtual machines (VMs). To handle the blockchain contracts, each blockchain node
of the blockchain network may run a corresponding VM and executes the same instructions
in the blockchain contract. A VM is a software emulation of a computer system based on
computer architectures and provide functionality of a physical computer. VM in the
blockchain context can be understood as a system designed to operate as a runtime

environment for blockchain contracts.

[62] A certain blockchain node that successfully mines the proposed new block of

blockchain transactions in accordance with consensus rules may pack the new block into its

12

WO 2021/000337 PCT/CN2019/095299

local copy of the blockchain and multicast the results to other blockchain nodes. The certain
blockchain node may be a blockchain node that has first successfully completed the
verification, that has obtained a verification privilege, or that has been chosen based on
another consensus rule, etc. Then, the other blockchain nodes may follow the same order of
execution performed by the certain blockchain node to locally execute the blockchain
transactions in the new block, verify the execution results with one another (e.g., by
performing hash calculations), and synchronize their copies of the blockchain with that of the
certain blockchain node. By updating their local copies of the blockchain, the other
blockchain nodes may similarly write such information in the blockchain transaction into
respective local memories. As such, the blockchain contract can be deployed on the

blockchain. If the verification fails at some point, the blockchain transaction is rejected.

[63] The deployed blockchain contract may have an address, according to which the
deployed contract can be accessed. A blockchain node may invoke the deployed blockchain
contract by inputting certain parameters to the blockchain contract. In one embodiment, Node
C or Node B may request to invoke the deployed blockchain contract to perform various
operations. For example, data stored in the deployed blockchain contract may be retrieved.
For another example, data may be added to the deployed blockchain contract. For yet another
example, a financial transaction specified in the deployed blockchain contract may be
executed. Notwithstanding the above, other types of blockchain systems and associated

consensus rules may be applied to the disclosed blockchain system.

[64] FIG. 2 illustrates a framework for implementing blockchain transactions in
accordance with some embodiments. In some embodiments, the client 111 may transmit
information (e.g., a request with relevant information for creating a blockchain account) to
the server end 118 for the server end 118 to create a blockchain account. To this end, the
server end 118 may generate cryptography keys, compile the request with other account
creation requests, and/or perform other operations. Then, the server end 118 may transmit a
blockchain transaction (e.g., blockchain transaction A) including the compiled account

creation requests to one or more of blockchain nodes for execution.

[65] In some embodiments, Node B may construct a signed blockchain transaction and
transmit it to one or more blockchain nodes for execution. In one embodiment, Node B may
construct a blockchain transaction B. The blockchain transaction B may comprise a

blockchain contract B for deployment or invoking a deployed blockchain contract. For

13

WO 2021/000337 PCT/CN2019/095299

example, the blockchain transaction B may comprise a blockchain contract that creates a
blockchain account or invokes a deployed blockchain contract A. The blockchain contract B
may be programmed in source code at a user-end application 221. For example, a user or
machine may program the blockchain contract B. Node B may compile the source code using
a corresponding compiler, which converts the source code into bytecode. The blockchain
transaction B may comprise information such as nonce (e.g., transaction serial number), from
(e.g., a blockchain address of Node B or another blockchain address), to (e.g., empty if
deploying a blockchain contract), transaction fee, value (e.g., transaction amount), signature
(e.g., signature of Node B), data (e.g., message to a contract account), etc. The Node B may
send the blockchain transaction B to one or more blockchain nodes through a remote
procedure call (RPC) interface 223 for execution. RPC is a protocol that a first program (e.g.,
user-end application) can use to request a service from a second program located in another
computer on a network (e.g., blockchain node) without having to understand the network’s
details. When the first program causes a procedure to execute in a different address space, it
is as if a normal (local) procedure call, without the programmer explicitly coding the details

for the remote interaction.

[66] In some embodiments, on receiving the blockchain transaction (e.g., blockchain
transaction A or B), the recipient blockchain may verify if the blockchain transaction is valid.
For example, the signature and other formats may be verified. If the verification succeeds, the
recipient blockchain node may broadcast the received blockchain transaction (e.g.,
blockchain transaction A or B) to the blockchain network including various other blockchain
nodes. Some blockchain nodes may participate in the mining process of the blockchain
transactions. The blockchain transaction may be picked by a certain node for consensus
verification to pack into a new block. If the blockchain transaction involves a blockchain
contract, the certain node may create a contract account for a blockchain contract in
association with a contract account address. If the blockchain transaction involves invoking a
deployed blockchain contract, the certain node may trigger its local VM to execute the
received blockchain transaction, thereby invoking the deployed blockchain contract from its
local copy of the blockchain and updating the account states in the blockchain. If the certain
node succeeds in mining a new block, the certain node may broadcast the new block to other
blockchain nodes. The other blockchain nodes may verify the new block as mined by the
certain blockchain node. If consensus is reached, the blockchain transaction B is respectively

packed to the local copies of the blockchain maintained by the blockchain nodes. The

14

WO 2021/000337 PCT/CN2019/095299

blockchain nodes may similarly trigger their local VMs to execute the blockchain transaction
B, thus invoking the blockchain contract A deployed on the local copies of the blockchain

and making corresponding updates.

[67] Upon receiving the new block, the other blockchain nodes may perform verifications.
If a consensus is reached that the new block is valid, the new block is respectively packed to
the local copies of the blockchain maintained by the blockchain nodes. The blockchain nodes
may similarly trigger their local VMs (e.g., local VM 1, local VM 1, local VM 2) to execute
the blockchain transactions in the new block, thus invoking local copies of the blockchain
(e.g., local blockchain copy 1, local blockchain copy i, local blockchain copy 2) and making
corresponding updates. The hardware machine of each blockchain node may have access to
one or more virtual machines, which may be a part of or couple to the corresponding
blockchain node. Each time, a corresponding local VM may be triggered to execute the
blockchain transaction. Likewise, all other blockchain transactions in the new block will be

executed. Lightweight nodes may also synchronize to the updated blockchain.

[68] FIG. 3 illustrates a network environment associated with a system for managing
decentralized identifiers and verifiable claims in accordance with some embodiments. In
some embodiments, a user-side system 310 may correspond to an entity. The entity may be a
business entity that provides one or more products or services to a plurality of users. The
entity may also be an individual user, a group of users, an organization, other suitable entities,
or any combination thereof. The use-side system 310 may comprise a plurality of computer
systems, data stores, cloud services, mobile applications, other suitable components, or any
combination thereof. The user-side system 310 may comprise a server 311 and a database
313. The database 313 may store data associated with a plurality of user accounts of the users
of the entity. The entity corresponding to the user-side system 310 may desire to create and
manage DIDs and VCs for itself as well as its users. It may comprise one or more software
development kits (SDKs) 312 for managing creation and authentication of DIDs or issuance

and verification of VCs.

[69] In some embodiments, to implement functionalities associated with DIDs and Vs,
the user-side system 310 may interface with a service-side system 320. In some embodiments,
the service-side system 320 as illustrated in FIG. 3 may be equivalent to, be part of, or
comprise one or more components of the server end 118 as illustrated in FIGs. 1 and 2. The

service-side system 320 may comprise one or more agents 321, one or more resolvers 322,

15

WO 2021/000337 PCT/CN2019/095299

one or more key management systems 323, one or more clouds 324, other suitable
components or any combination thereof. The agent 321 may provide various services or
applications related to DIDs or VCs and maintain databases mapping account information or
other business data from the user-side system 310 to DIDs, VCs, or other information or data
stored on one or more blockchains. The agent 321 may provide one or more application
programming interfaces (APIs), which may be used by the user-side system 310 to directly
submit requests related to DIDs or VCs. The agent 321 may manage communications

between the user-side system 310 and the resolver 322 and the cloud 324.

[70] In some embodiments, the agent 321 may be coupled to a key management system
(KMS) 323. The KMS 323 may generate, distribute, and manage cryptographic keys for
devices and applications. It may cover security aspects {from secure generation of keys over
the secure exchange of keys to secure key handling and storage. The functionalities of the
KMS 323 may include key generation, distribution, and replacement as well as key injection,
storing, and management. The KMS 323 may comprise or be coupled to a trusted execution
environment (TEE). The TEE may be an isolated area on the main processor of a device that
is separate from the main operating system. The TEE may provide an isolated execution
environment offering security features such as isolated execution, integrity of applications
executing with the TEE, along with confidentiality of their assets. It may guarantee code and
data loaded inside to be protected with respect to confidentiality and integrity. In some
embodiments, the KMS 323 may generate one or more cryptographic key pairs in the TEE.
Before outputting the cryptographic key pair, the TEE may encrypt the private key. The
encryption of the private key can be based on various methods or standards, such as Data
Encryption Standard (DES), TripleDES, RSA, Advanced Encryption Standard (AES),
Twofish, etc. The KMS 323 may store the encrypted private key in association with the
public key. To use the private key, the KMS 323 may feed the encrypted private key to the
TEE for decryption and processing.

[71] In some embodiments, the agent 321 may be coupled to a resolver 322, which may
comprise software applications for managing interactions between the agent and a blockchain
330 in transactions related to DIDs or VCs (e.g., correspondence between a DID and a DID
document). Herein, depending on the context, the blockchain 330 may refer to a ledger of
records or a blockchain system that comprises a decentralized network of nodes that store the

ledger of records and participate in a consensus process for adding data to the ledger of

16

WO 2021/000337 PCT/CN2019/095299

records. The resolver 322 may be part of or coupled to the one or more cloud-based services.
The one or more cloud-based services may be associated with a blockchain-as-a-service
(BaaS) cloud 324 or other suitable cloud services. The BaaS cloud 324 may constitute a
platform that offers various interfaces to one or more blockchains 330. It may receive inputs
from an external application and facilitate the creation and execution of operations such as
blockchain transaction deployment, blockchain contract creation and execution, blockchain
account creation based on the inputs. The BaaS cloud 324 may also obtain information and
data from one or more blockchains 330 and feed the information and data to one or more
other systems using the BaaS cloud 324. In some embodiments, the agent 321 may be
directly coupled to the cloud 324 to use its services. In some embodiments, one or more of
the agent 321, the resolver 322, and the KMS 323 may be integrated as part of the BaaS cloud

324 or another suitable online platform.

[72] In some embodiments, the resolver 322 and cloud 324 may be coupled to a
blockchain 330. The blockchain 330 may comprise one or more blockchain contracts 331.
One or more of the blockchain contracts 331 may be configured to be executed by a virtual
machine associated with the blockchain 300 to perform one or more operations associated
with DIDs and VCs. The operations may comprise creating a new DID, storing a DID
document, updating a DID document, identifying a DID document based on a DID, storing
information associated with a VC, retrieving information associated with a VC, other suitable
operations, or any combination thereof. The resolver 322 and cloud 324 may be configured to
deploy one or more transactions on the blockchain 330 that invoke one or more of the
blockchain contracts 331. The transactions may trigger one or more operations related to

DIDs and VCs.

[73] In some embodiments, the network environment may comprise an identity
authentication system 340. The identity authentication system 340 may be used to establish
mapping relationships between DIDs and real-world identities. The identity authentication
system 340 may be associated with an entity performing identity authentication for
individuals or entities. The identity authentication may be performed based on documents,
photos, or other suitable materials provided by an individual or entity. The identity
authentication may also be performed based on data that is collected directly, such as photos,
fingerprints, password inputs, other suitable data, or any combination thereof. The identity

authentication system 340 may be coupled to the user-side system 310 and/or the service-side

17

WO 2021/000337 PCT/CN2019/095299

system 320. The identity authentication system 340 may receive one or more requests from
the user-side system 310 or the service-side system 320 for proofs of identity authentication.
In response, the identity authentication system 340 may perform any necessary identity
authentication and send the proofs of identity authentication back to the requester. The proofs
of identity authentication may comprise, for example, a confirmation message, a security key,
a unique identification code, other suitable proofs, or any combination thereof. In some
embodiments, the identity authentication system 340 may be coupled to a blockchain system.
The blockchain system connected to by the identity authentication system 340 may be the
blockchain system 330 that is coupled to the service-side system 320. Alternatively, although
FIG. 3 illustrates the identity authentication system 340 to be coupled to the blockchain 330,
this disclosure contemplates the scenario in which the identity authentication system 340 is
coupled to a different blockchain system. The identity authentication system 340 may have
access to the blockchain 330 or another suitable blockchain directly or via an intermediate

system (e.g., the BaaS cloud 324).

[74] The identity authentication system 340 may comprise an identity service 341, which
may be implemented on one or more servers or cloud platforms. In some embodiments, the
identity service 341 may be implemented as part of the service-side system 320 (e.g., the
cloud 324). In other embodiments, the identity service 341 may be implemented on a system
separate from the service-side system 320. The identity service 341 may be configured to
process requests for identity authentication, to control a client-side application 342 to collect
identity data, to generate proofs of identity authentication, to store or access identity
information in a database 343, to perform one or more operations on the blockchain 330 (e.g.,
obtain identity information, store proof of identity authentication). In some embodiments, the
identity authentication system 340 may comprise a client-side application 342 that is
connected to the identity service 341 via a network. The client-side application 342 may be
dedicated to identity authentication or may incorporate identity authentication as one of its
functions along with one or more other functions. The client-side application 342 may be
configured to collect data associated with a user. The client-side application 342 may further
be configured to compare collected data with pre-stored data corresponding to a purported
identity of a user to authenticate the identity of the user. In some embodiments, the identity
authentication system 340 may comprise a database 343 connected to the identity service 341.
The database 343 may store identity information associated with a plurality of individuals or

entities. The identity information may comprise, for example, a proof of identity

18

WO 2021/000337 PCT/CN2019/095299

authentication, visual features of a person, voice features of a person, a fingerprint of a person,
a signature of a person, a password associated with an identity, other suitable identity

information, or any combination thereof.

[75] FIG. 4 illustrates an architecture associated with a blockchain-based system for
managing decentralized identifiers and verifiable claims in accordance with some
embodiments. In some embodiments, the system may comprise three main components, one
or more agent services 321, one or more resolver services 322, and one or more blockchain
contracts 331. The one or more agent services 321 may be configured to process requests
related to DIDs and VCs that are received from users. The one or more agent services 321
may manage mapping relationships between account information on user-side systems 310
and DIDs of the owners of the accounts. The agent services 321 may comprise a DID agent
service API 410 for receiving DID-related requests from user-side systems 310. Depending
on the nature of a request, it may be fed to a user agent 411 for performing operations such as
creation and authentication of DIDs or an issue agent 412 for performing operations such as
issuance of VCs. The requests from a party desiring to verify a VC may be fed to the verifier
agent 413. The one or more agent services 321 may also provide a verifiable claim repository
414 for storing one or more VCs. The agent services 321 may also use one or more memories
415 and one or more databases 416. The agent services 321 may be coupled to a KMS 323

and a BaaS Cloud 324. The agent services 321 may be coupled to the resolver services 322.

[76] In some embodiments, one or more agents of the agent services 321 may send one or
more requests to a DID resolver API 420 associated with the resolver services 322. The
resolver services 322 may be configured to process interactions between the agent services
321 and the blockchain 330. The resolver services 322 may perform operations such as
obtaining data from the blockchain 300, adding data to the blockchain 330, creating
blockchain contracts 331, deploying transaction to the blockchain 330 to invoke blockchain
contracts 331, other suitable operations, or any combination thereof. The resolver services
322 may comprise a DID resolver 421 configured to manage DIDs and DID documents
stored on the blockchain 330 and a VC resolver 422 configured to manage VCs for DIDs
created based on the blockchain 330. The resolver services 322 may also comprise a listener
424 for obtaining data from the blockchain 331. The listener 424 may store obtained data to a
database 423. The data may be used by the DID resolver 421 and the VC resolver 422. The

19

WO 2021/000337 PCT/CN2019/095299

DID resolver 421, VC resolver 422, and listener 424 may be coupled to a BaaS cloud 324 for

interactions with the blockchain 330.

[77] In some embodiments, the blockchain 330 may comprise one or more blockchain
contracts (331a, 331b, 331c) for managing DIDs and DID documents and comprise one or
more contracts (331d, 331e, 331f) for managing VCs. The contracts may be executed by one
or more virtual machines associated with the blockchain 330 to perform operations such as
creating DIDs, storing DID documents, updating DID documents, storing information

associated with VCs, other suitable operations, or any combination thereof.

[78] FIG. 5 illustrates a network environment associated with a system for implementing
various examples of functionalities associated with decentralized identifiers and verifiable
claims in accordance with some embodiments. Components of the network environment may
be categorized into three layers 510, 520, and 530. In some embodiments, the bottom or core
layer 510 may comprise one or more blockchains 330, which may comprise one or more
blockchain contracts (331g, 331h, 3311) that can be executed to perform operations related to
DIDs and VCs. The blockchain 330 may store a plurality of DIDs and a plurality of DID
documents corresponding to the DIDs. The blockchain contracts (331g, 331h, 3311) may be
configured to manage mapping relationships between DIDs and DID documents, as well as
creation and changes to DID documents. The blockchains 330 may be accessible to one or
more resolvers (322a, 322b) for operations related to DIDs and VCs. The resolvers (322a,
322b) may be configured to provide to an external system services such as searching for DID
documents or data contained in DID documents based on inputted DIDs. One or more
method libraries 511 may also be available for external systems to adopt to interact with the

blockchain 330.

[79] In some embodiments, the middle or enhancement layer 520 may comprise one or
more user agents 411, one or more issuer agents 412, or one or more verifier agents 413. In
some embodiments, the blockchain 330 may comprise a consortium blockchain, which may
or may not be directly accessible to users that are not consensus nodes of the consortium
blockchain. A user agent 411 may provide an interface for an ordinary user to interact with
the blockchain. In some embodiments, the user agent 411 may be configured to create one or
more DIDs, authenticate one or more DIDs, interact with one or more verifiable data registry
521 or one or more DID hubs 522, send notifications to an owner of a DID, perform other

suitable functionalities, or any combination thereof. Here, a DID hub 522 may comprise a

20

WO 2021/000337 PCT/CN2019/095299

system in which an owner of a DID stores its sensitive data. The owner may grant certain
other entities (e.g., institutions issuing verifiable claims) access to data stored in the DID hub
522. A verifiable data registry 521 may comprise a VC repository for storing and managing
the VCs issued to an owner of a DID. An issuer agent 412 may comprise one or more APIs
(e.g., REST API) or SDKs. The issuer agent 412 may be configured to issue one or more
verifiable claims, withdraw one or more verifiable claims, check and inspect an existing
verifiable claim, publish a template for verifiable claims, maintain a template for verifiable
claims, perform other suitable operations, or any combination thereof. A verifier agent 413
may comprise one or more APIs (e.g., REST API) or SDKs and be configured to verify a
verifiable claim or perform one or more other suitable operations. In some embodiments, the
layer 520 may also comprise one or more code libraries (e.g., DID resolve library 523, DID
authentication library 524) that can be adopted and used to interact with the DID resolvers
322 or directly with the blockchain 330. The code libraries may be packaged into one or more
SDKSs and be used to perform functionalities such as DID authentication, interactions with the
blockchain 300, or interfacing with blockchain contracts 331. The issuer agent 412 and
verifier agent 413 may be used by key participants in the network environment associated
with DIDs and VCs such as entities able to perform know-your-customer (KYC)
authentication or endorsement for users or to issue or verify verifiable claims (e.g.,
government institutions, banks, financial service providers). The key participants may
provide third-party services that can be integrated via connections with the issuer agent 412,

the verifiable agent 413, or other suitable components of the network environment.

[80] In some embodiments, the upper or extension layer 530 may comprise one or more
external services or applications related to DIDs and VCs. The services or applications may
comprise one or more issuer applications 531, one or more verifier applications 532, an
identity management application 533, a service application 534, one or more other suitable
services or applications, or any combination thereof. An issuer application 531 may
correspond to an entity (e.g., government institution, banks, credit agency) issuing verifiable
claims signed or endorsed by the entity for users. The issuer application 531 may operate on a
user-side system 310. The issuer application 531 may comprise an issuer verifiable claim
manager service which may allow an issuer to manage issued VCs, maintain their status (e.g.,
validity), or perform other suitable operations. The issuer application 531 may interact with
the layers 510 and 520 via a connection or interface with the issuer agent 412 or one or more

code libraries 523 and 524. A verifier application 532 may correspond to an entity (e.g.,

21

WO 2021/000337 PCT/CN2019/095299

service provider, credit issuer) needing to verify verifiable claims to ascertain a user’s
information (e.g., identity, age, credit score). The verifier application 532 may operate on a
user-side system 310. The verifier application 532 may interact with layers 510 and 520 via a
connection or interface with the verifier agent 413 or one or more code libraries 523 and 524.
The identity management application 533 may be installed on a client device or terminal
associated with a user. The user may be a DID owner, which may be an individual, a business,
an organization, an application, or any other suitable entity. The identity management
application 533 may allow a user to manage cryptographic key pairs associated with DIDs,
original data, or VCs, to receive notifications from a user agent 411, to authenticate a DID, to
grant access to data, to use a VC, to perform other suitable operations, or any combination
thereof. The identity management application 533 may interact with the layers 510 and 520
via a connection or interface with the user agent 411. The service application 534 may also be
coupled to the user agent 411 and be configured to manage functions related to DIDs or VCs

for one or more users or accounts.

[81] FIGs. 6-10 illustrate example operations associated with DIDs or VCs performed by
one or more user-side systems 310, one or more resolvers 322, one or more clouds 324, or
one or more blockchain systems 330. In some embodiments, a user-side system 310 may
manage one or more DIDs or one or more VCs by interfacing with a DID resolver 322 and a
blockchain 330 storing DIDs and DID documents. The user-side system 310 may use one or
more SDKs 312 for managing DIDs that are compatible with methods associated with the
DIDs. The SDKs 312 may be integrated with one or more applications used by the user-side
system 310. The user-side system 310 may also interface with one or more service endpoints
for storing verifiable claims, one or more service endpoints for storing status information for
verifiable claims, one or more service endpoints for authentication of DIDs, other suitable

systems, or any combination thereof.

[82] FIG. 6 illustrates a method for creating a decentralized identifier in accordance with
some embodiments. The operations of the method presented below are intended to be
illustrative. Depending on the implementation, the method may include additional, fewer, or
alternative steps performed in various orders or in parallel. The method may start at step 602,
in which a server 311 of a user-side system 310 may obtain identity authentication for a user
for whom it is going to obtain a DID. In some embodiments, the user-side system 310 may

have performed identity authentication for the user based on, for example, identification

22

WO 2021/000337 PCT/CN2019/095299

documents or photos provided by the user. In other embodiments, the user-side system 310
may have obtained a proof of identity authentication for the user from an identity
authentication system 340. The proof of identity authentication for the user may comprise a
proof of real-name authentication, a proof of real-person authentication, a proof of other
identity authentication, or any combination thereof. The user-side system 310 may obtain the
proof of identity authentication in a manner illustrated in FIGs. 15-18. The user-side system
310 may also generate or retrieve a cryptographic key pair including a public key and a

private key for use to create the DID.

[83] At step 604, the server may invoke a functionality of an SDK 312 for creating a new
DID. Here, at least a public key of the cryptographic key pair may be inputted or otherwise
made available to the SDK 312. At step 606, the user-side system 310 may send a request for
creating a new DID to the resolver 322 using the SDK 312. At step 608, the resolver 322 may
send a request to a blockchain system 330 for creating a new blockchain account. Here, the
request may be directly sent to one or more blockchain nodes of the blockchain 330 in the
form of one or more blockchain transactions or be sent to a BaaS Cloud 324 or other suitable
interface systems associated with a blockchain 330. In response to the request from the
resolver 322, at step 610, the resolver 322 may obtain an indication that a new blockchain
account has been created from the cloud 324. The blockchain account may be associated with
an address on the blockchain 330. The information obtained by the resolver 322 may
comprise information associated with the newly-created blockchain address. It may comprise
a newly-created DID or at least information sufficient to construct the DID. At step 612, the
resolver 322 may send a message back to the SDK 312 associated with the user-side system

310. The message may comprise information associated with the newly created DID.

[84] In some embodiments, a DID document may be created and stored on the
blockchain 330. At step 614, the user-side system may use the SDK 312 to generate a DID
document and add the public key associated with the newly-created DID and authentication
information to the DID document. At step 616, the user-side system 310 may use the SDK
312 to add information associated with one or more service endpoints (e.g., information
associated with an authentication service endpoint, information associated with a verifiable
claim repository) to the DID document. The authentication service endpoint and the
verifiable claim repository may be provided as part of a system including the resolver 322 or

be provided by third-party systems. Then, at step 618, the user-side system may use the SDK

23

WO 2021/000337 PCT/CN2019/095299

312 to generate one or more blockchain transactions for storing the DID document to the
blockchain 330. The user-side system 310 may also use the SDK 312 to generate a hash value
of the blockchain transaction and generate a digital signature for the transaction using the
private key associated with the DID. At step 620, the SDK 312 may send the DID document
as well as the blockchain transaction to the DID resolver 322 for sending to the blockchain
system. At step 622, the DID resolver may send one or more transactions to the blockchain
system (e.g., one or more blockchain nodes, a BaaS Cloud 324). The one or more transactions
may invoke a blockchain contract 331 for managing DIDs and DID documents on the
blockchain 330. At step 624, the resolver 322 may obtain information from the blockchain
330 indicating that the DID document has been successfully stored. At step 626, the resolver
322 may forward a confirmation to the SDK 312. At step 628, the SDK 312 may send
information associated with the created DID and DID document to the server 311 of the user-
side system 310, which may then send a notification to the user confirming successful

creation of the DID at step 630.

[85] FIG. 7 illustrates a method for authenticating a decentralized identifier using DID
authentication services in accordance with some embodiments. The operations of the method
presented below are intended to be illustrative. Depending on the implementation, the method
may include additional, fewer, or alternative steps performed in various orders or in parallel.
In some embodiments, a user owning a DID may use DID authentication services provided
by a business entity to achieve authentication of its ownership of the DID. The owner may
trust a public-private key pair corresponding to the DID to the business entity for storage. The
owner may provide a network location (e.g., identified by a URL) of the DID authentication
services as a service endpoint for authentication of the DID. The location identifier of the
DID authentication services may be included in a “service” filed of the DID document

associated with the DID.

[86] In some embodiments, a verifier 532 (e.g., a service provider needing to verify
information of a customer) may initiate a DID authentication process using an SDK 312. At
step 702, the verifier 532 may obtain the DID provided by a purported owner. At step 704,
the verifier 532 may call the SDK 312 to create a DID authentication challenge. The verifier
532 may input to the SDK 312 the DID to be authenticated and a network address (e.g., a
URL) to which a response to the challenge is to be sent. At step 706, the SDK 312 may send
a query to a resolver 322 for the DID document associated with the DID to be authenticated.

24

WO 2021/000337 PCT/CN2019/095299

At step 708, the resolver 322 may formulate a blockchain transaction invoking a blockchain
contract 331 for managing DIDs and send the blockchain transaction to one or more
blockchain nodes associated with the blockchain 330 for execution. As a result, the resolver
322 may obtain the DID document corresponding to the DID at step 710 and forward it to the
SDK 312 at step 712. At step 714, the verifier 532 may use the SDK 312 to create a DID
authentication challenge based on the obtained DID document. In some embodiments, the
DID authentication challenge may comprise a ciphertext created by encrypting original text
using a public key associated with the DID that is recorded in the DID document. The
challenge may also comprise a network address to which a response is to be sent. At step 716,
the verifier 532 may obtain information associated with the authentication service endpoint
for the DID from the DID document. At step 718, the verifier 532 may use the SDK 312 to

send the challenge to the DID authentication services associated with the DID.

[87] In some embodiments, after obtaining the DID authentication challenge from the
verifier 532, the DID authentication services may obtain consent from the owner for such
authentication request at step 720. If the owner provides consent or permission for the
identity authentication, the DID authentication services may call its version of the SDK 312
to create a response to the DID authentication challenge at step 722. In some embodiments,
the response to the DID authentication challenge may comprise plaintext that is the result of
decrypting the ciphertext in the challenge using the private key associated with the DID. The
SDK 312 may return the response to the DID authentication services at step 724, which may
then send the response to the network address provided by the verifier 432 at step 726. Upon
receiving the response to the DID authentication challenge, the verifier 532 may call its SDK
312 at step 728 to check the response. At step 730, the SDK 312 may determine whether the
response proves that the user providing the DID is the owner of the DID. In some
embodiments, the SDK 312 may check the response by comparing decrypted text in the
response with the original text that was used to create the DID authentication challenge. If the
response is determined to be correct, the SDK 312 may return a message to the verifier 532
indicating the DID is a valid proof of identity of the user at step 732. At step 734, the verifier
532 may notify the user as to the validity of the DID.

[88] FIG. 8 illustrates a method for authenticating a decentralized identifier using an
identity management application in accordance with some embodiments. The operations of

the method presented below are intended to be illustrative. Depending on the implementation,

25

WO 2021/000337 PCT/CN2019/095299

the method may include additional, fewer, or alternative steps performed in various orders or
in parallel. In some embodiments, a user may use a terminal for managing DIDs, which may
comprise an identity management application or another suitable application. The application
may comprise a version of the SDK 312. In this example, the user may need services from a
service provider (i.e., verifier), which requires verification that the user owns a particular
DID in order to provide its services. The user may send a service request to the verifier. The

service request may be in the form of an HTTP request.

[89] At step 802, the user may call the identity management application to provide
authentication information for the service request. The user may provide the original service
request as an input to the SDK 312 included in the identity management application. At step
804, the SDK 312 may sign the content of the original service request using a private key of a
cryptographic key pair associated with the DID. The SDK 312 may be used to add the DID
and a digital signature for the original service request to the original service request to create
a signed service request. In case the original service request is a HTTP request, the SDK 312
may add the DID and the digital signature to a header of the HTTP request. At step 806, the
SDK 312 may send the signed service request to the verifier 532.

[90] In some embodiments, the verifier 532 may call its version of an SDK 312 to
authenticate the DID included in the signed service request at step 808. At step 810, the SDK
312 may obtain the DID and the digital signature included in the signed service request. In
case the signed service request is an HTTP request, the DID and the digital signature may be
obtained from the header of the HTTP request. At step 812, the SDK 312 may send a query to
a resolver 322 for the DID document associated with the DID to be authenticated. At step 814,
the resolver 322 may formulate a transaction invoking a blockchain contract 331 for
managing DIDs and send the transaction to one or more blockchain nodes associated with the
blockchain 330 for execution. As a result, the resolver 322 may obtain the DID document
corresponding to the DID at step 816 and forward it to the SDK 312 at step 818. At step 8§20,
the SDK 312 associated with the verifier 532 may check the signed service request to
determine whether it is from the owner of the DID based on the obtained DID document. In
some embodiments, the SDK 312 may sign the content of the service request using a public
key obtained from DID document, and check the resulting signature against the digital
signature included in the signed service request to determine if the public key is associated

with the key used to create the digital signature in the signed service request. If so, the SDK

26

WO 2021/000337 PCT/CN2019/095299

312 may determine that the service request from the user is valid. It may then send it to the
verifier 532 for processing at step 822. The verifier 532 may process the service request and
provide appropriate services to the user at step 824. Then, the verifier 532 may send a

response to the user at step 826 to confirm completion of the requested services.

[91] FIG. 9 illustrates a method for issuing a verifiable claim in accordance with some
embodiments. The operations of the method presented below are intended to be illustrative.
Depending on the implementation, the method may include additional, fewer, or alternative
steps performed in various orders or in parallel. In some embodiments, an issuer 531 may
issue a VC to a user. The VC may be used as a proof of certain facts or characteristics of the

user as endorsed by the issuer 531.

[92] At step 902, the issuer 531 may obtain a DID associated with the user and a proof of
the fact to be included in the VC. Here, the proof of the fact to be included in the VC may be
based on materials submitted by the user to the issuer 531, information or data obtained by
the issuer 531 from third-party systems, in-person verification of the facts, other suitable
sources of proof, or any combination thereof. After obtaining the DID and the proof, the
issuer 531 may call an SDK 312 associated with creation of VCs to initiate a process for
creating the VC at step 904. The message from the issuer 531 may comprise a statement of
the proven fact or a claim about the user. The SDK 312 may create a VC document including
the statement using a cryptographic key pair associated with the issuer 531. In some
embodiments, the VC may include a digital signature created based on a private key
associated with the issuer 531. At step 908, the SDK 312 may update a locally-stored status
of the VC.

[93] At step 910, the SDK 312 may send a query to a resolver 322 for the DID document
associated with the DID for which the VC is issued. At step 912, the resolver 322 may
formulate a transaction invoking a blockchain contract 331 for managing DIDs and send the
transaction to one or more blockchain nodes associated with the blockchain 330 for execution.
As a result, the resolver 322 may obtain the DID document corresponding to the DID at step
914 and forward it to the SDK 312 at step 916. At step 918, the SDK 312 may identify a VC
service endpoint associated with the DID of the user for storing VCs. The VC service
endpoint may correspond to a VC repository 414 used by the user or the owner of the DID.
Then at step 920, the issuer may use the SDK 312 to send the VC to the VC repository 414

for storage. The VC may also include information associated with a VC status service

27

WO 2021/000337 PCT/CN2019/095299

endpoint, which may store and provide status information for the VC. In some embodiments,
the information may comprise a network address (e.g., URL) for an issue agent service used
by the issuer 531 to keep status of VCs. The VC status service endpoint may or may not be
associated with the VC repository 414. The SDK 312 may provide the current status of the
newly generated VC to the VC status service endpoint for storing. The status of the VC may

be stored on a blockchain.

[94] FIG. 10 illustrates a method for verifying a verifiable claim in accordance with
some embodiments. The operations of the method presented below are intended to be
illustrative. Depending on the implementation, the method may include additional, fewer, or
alternative steps performed in various orders or in parallel. In some embodiments, a user may
provide a VC to another party (e.g., a verifier 532) to prove a fact stated in the VC. The VC
may be provided after the verifier 532 has verified that the user is the owner of a DID

associated with the VC.

[95] At step 1002, the verifier 532 may call an SDK 312 comprising code libraries
associated with VC verification to verify the VC. The SDK 312 may identify from the VC
(e.g., in a “credential status” field) information associated with a VC status service endpoint
for the VC. The VC status service endpoint may be associated with an issuer 531. At step
1004, the SDK 312 may send a query to the issuer 531 for the status of the VC. In response,
at step 1006, the issuer 531 may call an SDK 312 to obtain the status of the VC. The SDK
531 may obtain the status of the VC. As an example, the SDK 312 may determine that the
VC has a valid status and may return the information to the issuer 531 at step 1008. Then, at
step 1010, the issuer may return the valid status information to the SDK 312 associated with

the verifier 532.

[96] The verifier 532 may obtain an identifier associated with the issuer 531 of the VC.
For example, the identifier may be a DID of the issuer 531. At step 1012, the SDK 312 may
send a query to a resolver 322 for a public key associated with the DID of the issuer 531 of
the VC. At step 1014, the resolver 322 may formulate a transaction invoking a blockchain
contract 331 for managing DIDs and send the transaction to one or more blockchain nodes
associated with the blockchain 330 for execution. As a result, the resolver 322 may obtain the
public key corresponding to the DID at step 1016 and forward it to the SDK 312 associated
with the verifier 532 at step 1018. At step 1020, the SDK 312 associated with the verifier 532

may verify the VC based on a digital signature included therein and the public key associated

28

WO 2021/000337 PCT/CN2019/095299

with the issuer 531 of the VC. If the VC is verified, the SDK 312 may send a confirmation to
the verifier 532 at step 1022.

[97] FIGs. 11-14 illustrate example operations associated with DIDs or VCs performed
by one or more user-side systems 310, one or more agents 321, one or more resolvers 322,
one or more clouds 324, one or more blockchain systems 330, one or more KMSs, or other
suitable systems, applications, services. In some embodiments, a user-side system 310 may
manage one or more DIDs or VCs by interacting with an online platform integrating one or
more of the aforementioned components via one or more API interfaces (e.g., REST API).
The user-side system 310 may trust confidential information such as cryptographic key pairs

to the online platform for secure keeping.

[98] FIG. 11 illustrates a method for creating a decentralized identifier using an agent
service in accordance with some embodiments. The operations of the method presented
below are intended to be illustrative. Depending on the implementation, the method may
include additional, fewer, or alternative steps performed in various orders or in parallel. In
some embodiments, a user-side system 310 associated with an entity may use one or more
agent services 321 to create one or more DIDs for one or more users of the entity and
correlate the DIDs with internal accounts or identifications (e.g., service IDs) maintained by
the entity. In order to create DIDs for its users, the entity may have been authenticated by the
online platform as a trusted entity and may have made a commitment to provide truthful
information. In some embodiments, the entity may have been issued a VC by a bootstrap
issuer DID to certify that it is authenticated by an authoritative entity. The entity may be
required to authenticate the identities of its users. The user-side system 310 may use one or
more KMSs 323 and the secure environment (e.g., TEE) that they provide to manage
cryptographic keys associated with the created DIDs and to map the cryptographic keys to the
internal accounts or identifications maintained by the entity. With the help of the agent
services 321, the user-side system 310 may use services associated with DIDs without
keeping a record of the DIDs. Instead, it may simply provide its internal account information
or identification information for identification of the DIDs via one or more interfaces

associated with the agent services 321.

[99] In some embodiments, an online platform for managing DIDs may receive a request
for creating a DID. The request may be from a first entity on behalf of a second entity for

creating the DID for the second entity. In the example illustrated by FIG. 11, an entity (e.g.,

29

WO 2021/000337 PCT/CN2019/095299

first entity) may create a DID for a user (e.g., second entity), who may have an account with
the business entity. In some embodiments, the entity may authenticate the identity of a user
before creating a DID for the user. For example, at step 1102 of FIG. 11, a server 311 of a
user-side system 310 associated with the entity may perform identity authentication or
otherwise obtain identity authentication information for the user. The entity may have
authenticated the identity of the user earlier and may maintain such information in a database.
At step 1002, the server 311 may retrieve such information. Then, at step 1004, the server
311 may send the request for creating the DID to an agent service API 410 associated with a
user agent 411 associated with the online platform. The request may comprise an account
identifier corresponding to the user. The request may take the form of an API message. At
step 1006, the agent service API 410 may send a request to a user agent 411 for creating the
DID.

[100] At step 1108, the user agent 411 may check the request for required information. In
some embodiments, to create a DID for a user, the entity may be required to have an existing
DID for itself. The user agent 411 may check the request to determine that the sender of the
request has an existing DID and to determine the DID associated with the sender. In some
embodiments, the entity may be required to provide a proof of identity authentication for the
user. The proof of identity authentication may comprise a proof of real-person authentication,
a proof of real-name authentication, another suitable proof of authentication, or any
combination thereof. For example, a proof of real-name authentication may be based on a
user’s office identification (e.g., government-issued ID). An example proof may, for example,
be a number created by applying a hash function (e.g., SHA-256) to a combination of an ID
type, ID number, and a number of the user. Such a proof may ensure unique correspondence

with a particular user while maintaining sensitive information of the user confidential.

[101] In some embodiments, the user agent 411 may determine whether the request for
creating a DID comprises a proof of identity authentication. The proof of identity
authentication may comprise a proof of real-name authentication, a proof of real-person
authentication, proofs of other suitable methods of identity authentication, or any
combination thereof. If the user agent 411 determines that the request does comprise the
proof of identity authentication, the user agent 411 may accept the request based on the
determination. If the user agent 411 determines that the request for creating a DID does not

comprise a proof of identity authentication, the user agent 411 may reject the request.

30

WO 2021/000337 PCT/CN2019/095299

Alternatively, the user agent 411 may send to the server 311 a request for the proof of identity
authentication. The user agent 411 may then receive the required proof of identity
authentication from the server 311. The user agent 411 may also use other methods to obtain

identity authentication of the user.

[102] At step 1109, the user agent 411 may obtain the proof of identity authentication for
the user corresponding to the DID to be created. In some embodiments, the user agent 411
may directly obtain the proof of identity authentication based on the received request or other
information received from the server 311. The user-side system 310 may have obtained the
proof by performing identity authentication or by using an identity service 341. The user-side
system 310 may include a proof of identity authentication in the request for creating the DID
or include means to obtain the proof (e.g., a link). In some embodiments, the user-side system
310 may delegate the function of sending requests for creating DIDs to an identity service
341. The server 311 may send information associated with one or more users, for whom it
intends to create DIDs, to the identity service 341. The identity service 341 may perform
identity authentication on the users or confirm that identity authentication on the users has
been successfully completed. The identity service 341 may create one or more requests for
creating DIDs based on the information received from the server 311, the requests including
proofs of identity authentication for the users. In some embodiments, DID documents created
in response to requests from the identity service 341 may comprise a field (e.g., a “creator”
field) indicating that the DID is created based on identity authentication by the identity
service 341. In some embodiments, after the DID is created based on identity authentication
by identity service 341, the identity service 341 may issue a VC to the DID certifying the
real-world identity of the owner of the DID. In some embodiments, before another issuer
issues a VC to the owner of the DID, this other issuer may require the VC issued by the

identity service 341 as a proof of identity authentication of the DID owner.

[103] In some embodiments, the user agent 411 may obtain the proof of identity
authentication independently by using an identity service 341. In some embodiments, the
identity service 341 may correspond to an entity trusted by the service-side system 320. The
entity may perform identity authentication on users (e.g., real-name authentication, real-
person authentication). The identity authentication may comprise collecting various identity
information (e.g., name, date of birth, address, appearance features, fingerprint) associated

with an individual that corresponds to an identity and compare the collected information with

31

WO 2021/000337 PCT/CN2019/095299

information maintained by authoritative sources (e.g., government agencies). After successful
authentication of an individual’s identity, the identity service 341 may store a record of the
successful authentication (e.g., a proof of identity authentication) and identity information
associated with the individual in association with identifiers of the individual, such as an
account or a service ID. The identity service 341 may store identity information and proofs of
identity authentication in a database 343. Alternatively, the identity service 341 may store
identity information and proofs of identity authentication in a blockchain 330. In some
embodiments, the identity service 341 may create one or more blockchain transactions for
saving the identity information in the blockchain 330 and send the one or more blockchain
transactions to one or more blockchain nodes associated with the blockchain 330.
Alternatively, the identity service 341 may interact with the blockchain 330 via, for example,
the BaaS cloud 324. The identity service 341 may send the BaaS cloud 324 a request to store
the identity information and proof of identity authentication on the blockchain 330. The user
agent 411 may send a request to the identity service 341 for a proof of identity authentication
of a user. The user may correspond to a request for creating a DID. The identity service 341

may send back the requested proof of identity authentication.

[104] In some embodiments, the user agent 411 may obtain a DID in response to a request
without obtaining the proof of identity verification. The DID created in this manner may be
assigned a status of “authentication pending.” It may be mapped to a dummy account
identifier. The status may be represented in the DID document corresponding to the DID,
saved in a system storing status information for DIDs, or be saved by the user agent 411. The
operations that can be performed in relation to a DID with such a status may be limited. For
example, the owner of the DID may be prohibited from issuing VCs or being issued VCs.
The status of “authentication pending” may be removed after a proof of identity
authentication is provided to the user agent 411. The identity service 341 may send the user
agent 411 the proof of identity authentication proactively, or upon request by the user-side
system 310 or the user agent 411. After receiving the proof, the user agent 411 may update
status information stored in association with the DID. Furthermore, the user agent 411 may
store a mapping relationship between the DID and an account identifier associated with the
user whose identity has been authenticated. Further details about identity authentication are

described in relation to FIGs. 15-18.

32

WO 2021/000337 PCT/CN2019/095299

[105] After obtaining the proof of identity authentication, the user agent 411 may create a
key alias corresponding to the proof of identity authentication for the user at step 1110. In
some embodiments, the user agent 411 may obtain, in response to receiving the request, a
public key of a cryptographic key pair. The public key may later be used as a basis for
creating the DID. In some embodiments, the user agent 411 may obtain the public key from
the KMS 323. At step 1112, the user agent 411 may send a request to the KMS 323 for
generating and storing a cryptographic key pair. The KMS 323 may generate a cryptographic
key pair. In some embodiments, the KMS 323 may cause the cryptographic key pair to be
generated in a TEE associated with the KMS 323. After the key pair is generated, the KMS
323 may obtain a public key and an encrypted private key from the TEE. At step 1114, the
KMS 323 may send the public key to the user agent 411.

[106] In some embodiments, the online platform may obtain the DID based on the public
key. At step 1116, the user agent 411 may send a request for creating a new DID to the
resolver 322 The request may comprise the public key. In response, the resolver 322 may
generate, based on the public key, one or more blockchain transactions for creating the DID
and adding a DID document associated with the DID to a blockchain. Alternatively, the DID
resolver may send a request to the BaaS cloud 324 for generation of such transactions. For
example, at step 1118, the resolver 322 may send a request to a blockchain system 330 for
creating a new blockchain account. Here, the request may be directly sent to one or more
blockchain nodes of the blockchain 330 in the form of one or more blockchain transactions or
be sent to a BaaS Cloud 324 or other suitable interface systems associated with a blockchain
330. The blockchain transactions may invoke one or more blockchain contracts configured
for managing DIDs. In response to the request from the resolver 322, at step 1120, the DID
resolver may obtain an indication from the blockchain 330 or the cloud 324 that a new
blockchain account is successfully created. The blockchain account may be associated with
an address on the blockchain 330. Information obtained by the resolver 322 may comprise
information associated with the newly-created blockchain address. It may directly comprise a
newly-created DID or at least information sufficient to construct the DID. At step 1122, the
resolver 322 may send a message back to the user agent 411. The message may comprise

information associated with the newly created DID.

[107] In some embodiments, a DID document may be created and stored in the blockchain

330. At step 1124, the user agent 411 may generate a DID document and add the public key

33

WO 2021/000337 PCT/CN2019/095299

associated with the newly-created DID and authentication information to the DID document.
At step 1126, the user agent 411 may add information associated with one or more service
endpoints (e.g., information associated with an authentication service endpoint, information
associated with a verifiable claim repository) to the DID document. The authentication
service endpoint and the verifiable claim repository 414 may be provided as part of the online
platform. The DID document may comprise one or more public keys associated with the
obtained DID, authentication information associated with the obtained DID, authorization
information associated with the obtained DID, delegation information associated with the
obtained DID, one or more services associated with the obtained DID, one or more service
endpoints associated with the obtained DID, a DID of a creator of the obtained DID, other
suitable information, or any combination thereof. In some embodiments, the DID document
may comprise a “creator” field containing identification information (e.g., DID) of the entity
that sent the request for creating the DID on behalf of the user. The “creator” field may serve
as a record of the entity that authenticated of the identity of or endorsed the owner of the DID.
Then, at step 1128, the user agent 411 may generate one or more blockchain transactions for
storing the DID document to the blockchain 330. The user agent 411 may also generate one

or more hash values of the blockchain transactions.

[108] In some embodiments, for the one or more blockchain transactions to be executed by
one or more nodes of the blockchain 330, they are required to be signed using the private key
associated with the DID. The user agent 411 may obtain such a digital signature from the
KMS 323. At step 1130, the user agent 411 may send a request to the KMS 323 for signing a
blockchain transaction using the private key of the cryptographic key pair associated with the
DID. The request may comprise the hash value of the transaction and a public key associated
with the DID. The KMS 323 may create a digital signature for the transaction. In some
embodiments, the digital signature may be generated in a TEE associated with the KMS 323.
The KMS 323 may identify an encrypted private key associated with the public key and feed
the encrypted private key to the TEE. The encrypted private key may be decrypted within the
TEE and used to generate the digital signature for the transaction. The digital signature may
then be fed back to the KMS 323. At step 1132, the user agent 411 may receive from the

KMS a signed version of the blockchain transaction.

[109] At step 1134, the user agent 411 may send the DID document as well as the signed
blockchain transaction to the resolver 322 for sending to the blockchain system. At step 1136,

34

WO 2021/000337 PCT/CN2019/095299

the resolver 322 may send one or more transactions to the blockchain system (e.g., one or
more blockchain nodes, a BaaS Cloud 324). The transactions may invoke a blockchain
contract 331 for managing DIDs and DID documents on the blockchain 330. At step 1138,
the resolver 322 may obtain information from the blockchain 330 indicating that the DID
document has been successfully stored. At step 1140, the resolver 322 may forward a

confirmation to user agent 411.

[110] At step 1142, after a DID and its corresponding DID document have been created,
the user agent 411 may update the database 416 to store a mapping relationship among the
DID, an account identifier of the user, a proof of identity authentication of the user, a service
ID of the user, a public key associated with the DID, a key alias associated with the user or
the proof of identity authentication, other suitable information, or any combination thereof. In
some embodiments, the mapping relationship may be stored in an encrypted form. To store
the mapping relationship, the user agent 411 may calculate a hash value for a combination the
DID and one or more items of the other identification information. In some embodiments,
such a hash value may be stored as part of the DID document. The stored mapping
relationship may allow the user agent 441 to identify the DID based on information received
from the user-side system 310. In some embodiments, the user agent 411 may receive a
request associated with the obtained DID, wherein the request comprises the account
identifier and then identify the obtained DID based on the mapping relationship between the
account identifier and the obtained DID. In other embodiments, the user agent 441 may
receive a request for a proof of identity authentication, wherein the request comprises a DID
and then locate the proof of identity authentication based on the mapping relationship
between the proof of identity authentication and the DID. In some embodiments, the user
agent 411 may store a recovery key for recovering the private key corresponding to the DID
in association with identification information of the user. In this manner, the user agent 411
may allow the user to take control over the DID using the recovery key. Then, at step 1144,
the user agent 411 may send information associated with the DID to the server 311, which
may send a notification to the user at step 1146 to inform the user of the successful creation

of the DID.

[111] FIG. 12 illustrates a method for authenticating a decentralized identifier using an
agent service in accordance with some embodiments. The operations of the method presented

below are intended to be illustrative. Depending on the implementation, the method may

35

WO 2021/000337 PCT/CN2019/095299

include additional, fewer, or alternative steps performed in various orders or in parallel. In
some embodiments, a party (e.g., verifier) may desire to authenticate that another party (e.g.,
purported owner of DID) is the true owner of a DID. The authentication process may be

facilitated by agent services 321 available to both parties.

[112] In some embodiments, at step 1202, the verifier 532 may obtain a DID provided by
a purported owner. At step 1204, the verifier 532 may send a request to an agent service API
410 for creating a DID authentication challenge. The request may comprise the DID to be
authenticated and a network address (e.g., a URL) to which a response to the challenge is to
be sent. The network address may be accessible to the verifier 532. At step 1206, the request
may be forwarded from the agent service API 410 to a verifier agent 413 configured to
perform operations related to authentication of DIDs. At step 1208, the verifier agent 413
may send a query to a resolver 322 for the DID document associated with the DID to be
authenticated. At step 1210, the resolver 322 may formulate a transaction invoking a
blockchain contract 331 for managing DIDs and send the transaction to one or more
blockchain nodes associated with the blockchain 330 for execution. As a result, the resolver
322 may obtain the DID document corresponding to the DID at step 1212 and forward it to
the verifier agent 413 at step 1214. At step 1216, the verifier agent 413 may create a DID
authentication challenge based on the obtained DID document. In some embodiments, the
DID authentication challenge may comprise a ciphertext created by encrypting original text
using a public key associated with the DID that is recorded in the DID document. The
challenge may also comprise the network address associated with the verifier, to which a
response is to be sent. At step 1218, the verifier agent 413 may obtain information associated
with the authentication service endpoint for the DID from the DID document. At step 1220,
the verifier agent 413 may store an identifier of the challenge in relation to information
associated with the challenge in a memory using a key-value structure. For example, the
verifier agent 413 may store a challenge ID associated with the challenge in association with
the DID to be authenticated, a plaintext used to create the cyphertext, and the network
address for sending the response to the challenge. At step 1222, the verifier agent 413 may
send the challenge to the DID authentication services associated with the DID based on

information from the DID document.

[113] In some embodiments, after obtaining the DID authentication challenge from the

verifier agent 413, the DID authentication services may obtain consent from the owner of the

36

WO 2021/000337 PCT/CN2019/095299

DID for responding to such a challenge at step 1224. If the owner provides consent or
permission for the identity authentication, the DID authentication services may send a request
to an agent service API 410 associated with a user agent 411 for a response to the DID
authentication challenge at step 1226. At step 1228, the agent service API 410 may call a
corresponding functionality of the user agent 411 for creation of a response to the challenge.
The response to the challenge may require restoration of the plaintext used to create the
ciphertext included in the challenge using a private key associated with the DID to be
authenticated. At step 1230, the user agent 411 may send the cyphertext from the challenge to
the KMS 323 for decryption along with identification information associated with the DID
that is recognized by the KMS 323. The KMS 323 may store a plurality of public-private key
pairs in association with identification information for accounts or DIDs corresponding to the
key pairs. Based on the identification information received from the user agent 411, the KMS
323 may identify the public-private key pair associated with the DID. In some embodiments,
the KMS 323 may store the public key and an encrypted version of the private key. It may
send the encrypted private key to a TEE associated with the KMS 323 for decryption. The
private key may then be used to decrypt the ciphertext within the TEE. At step 1232, the user
agent 411 may obtain the decrypted plaintext from the KMS 323.

[114] At step 1234, the user agent 411 may generate a response to the challenge using the
plaintext and send the response back to the DID authentication services. The response may
comprise a challenge identifier that was contained in the original challenge. At step 1236, the
DID authentication services may send the response to the network address provided by the
verifier 532. Then, at step 1238, the verifier 532 may forward the response to the verifier
agent 413 for checking. The verifier agent 413 may first compare the challenge identifier in
the response with one or more challenge identifiers stored in the memory 415 to identify
information associated with the challenge corresponding to the response at step 1240. Then at
step 1242, the verifier agent 413 may determine if the purported owner of the DID is the
actual owner. In some embodiments, the verifier agent may determine if the plaintext
contained in the response is identical to the plaintext used to create the ciphertext in the
challenge. If so, the verifier agent 413 may determine that authentication is success. The
verifier agent 413 may send a confirmation message to the verifier at step 1244, which may

forward the confirmation message to the owner of the DID at step 1246.

37

WO 2021/000337 PCT/CN2019/095299

[115] FIG. 13 illustrates a method for issuing a verifiable claim using an agent service in
accordance with some embodiments. The operations of the method presented below are
intended to be illustrative. Depending on the implementation, the method may include
additional, fewer, or alternative steps performed in various orders or in parallel. In some
embodiments, a first entity (e.g., an issuer) may desire to issue a VC for a second entity (e.g.,
a user) to testify as to a fact related to the second entity. The process of issuing the VC may

be facilitated by agent services 321 available to the entities.

[116] In some embodiments, an agent service APl 410 may receive, from the issuer 531, a
request for creating an unsigned VC for a DID associated with the user at step 1302. At step
1304, the agent service API 410 may call the issuer agent 412 to execute operations to
generate a new VC. At step 1306, the issuer agent 412 may create a VC based on the request
received from the issuer 531. The VC may comprise a message that is included in the request.
In some embodiments, the VC may comprise an encrypted version of the message for
confidentiality reasons. The message may comprise a claim or statement regarding the user or
other suitable information or data that may be conveyed to a party with access to the VC. In
some embodiments, the VC may comprise a claim corresponding to identity authentication of
the user (e.g., real-name authentication, real-person authentication). The request may
comprise a DID of the user. The issuer agent 412 may directly create the VC based on the
DID. Alternatively, the request may comprise an account identifier associated with the user
(e.g., the user’s account with the entity issuing the VC). In this case, the issuer agent 412 may
obtain an account identifier associated with the user from the request and identify a DID
based on a pre-stored mapping relationship between the account identifier and the DID. The
issuer agent 412 may then create the unsigned VC based on the identified DID. The issuer

agent 412 may also calculate a hash value of the content of the unsigned VC.

[117] In some embodiments, the issuer agent 412 may obtain, in response to receiving the
request, a digital signature associated with the issuer. In some embodiments, the digital
signature may be obtained from the KMS 323. The issuer agent 412 may determine a key
alias associated with the issuer 531 at step 1308. At step 1310, the issuer agent 412 may send
a request to the KMS 323 for a digital signature associated with the issuer 531 on the VC.
The request may comprise the key alias, which may be used for identification of the
cryptographic keys associated with the issuer 531. The request may also comprise the hash

value of the unsigned VC created by the issuer agent 412. The KMS 323 may store a plurality

38

WO 2021/000337 PCT/CN2019/095299

of public-private key pairs in association with key aliases for entities or users. Based on the
key alias received from the issuer agent 412, the KMS 323 may identify the public-private
key pair associated with the issuer 531. In some embodiments, the KMS 323 may store the
public key and an encrypted version of the private key. It may send the encrypted private key
to a TEE associated with the KMS 323 for decryption. The private key may then be used to
create a digital signature of the issuer on the VC. The digital signature may be created by
encrypting the hash value of the unsigned VC using the private key. At step 1312, the digital
signature may be sent back to the issuer agent 412. Then, the issuer agent 412 may combine
the unsigned VC with the digital signature to compose a signed VC at step 1314. In this
manner, the signed VC is generated based on the request received from the issuer 531 and the

digital signature.

[118] In some embodiments, the issuer agent 412 may upload the VC to a service endpoint
associated with the DID of the user or the holder of the VC. The issuer agent 412 may
identify the service endpoint based on the DID document associated with the DID. At step
1316, the issuer agent 412 may send a query to a resolver 322 for the DID document
associated with the DID for which the VC is issued. At step 1318, the resolver 322 may
formulate a transaction invoking a blockchain contract 331 for managing DIDs and send the
transaction to one or more blockchain nodes associated with the blockchain 330 for execution.
The transaction may comprise information associated with the DID and may be for retrieving
a DID document corresponding to the DID. As a result, the resolver 322 may obtain the DID
document corresponding to the DID at step 1320 and forward it to the SDK 312 at step 1322.
Based on the DID document, the issuer agent 412 may obtain information (e.g., a network
address) associated with a service endpoint (e.g., a VC repository 414) for the DID from the
DID document. At step 1324, the issuer agent 412 may upload the VC to the service endpoint.

[119] In some embodiments, the issuer agent 412 may store a status of the VC. The status
of the VC may be stored in a blockchain 330. In some embodiments, the blockchain 330 may
be used by a service endpoint associated with the issuer 531 of the VC. At step 1326, the
issuer agent 412 may send a status (e.g., valid, invalid) of the VC and a hash value of the VC
to the resolver 322 for storing in the blockchain 330. At step 1328, the resolver 322 may
generate and send to a blockchain node of the blockchain 330 associated with the service
endpoint, a blockchain transaction for adding information associated with the VC to the

blockchain. The information may comprise the status and the hash value of the VC. In some

39

WO 2021/000337 PCT/CN2019/095299

embodiments, the blockchain transaction may invoke a blockchain contract 331 for managing
VCs. After sending the transaction to the blockchain node, the resolver 322 may determine
that the hash value and status of the VC have been successfully stored at step 1330 and may
send a confirmation to the issuer agent 412 at step 1332. In some embodiments, the status of
the VC may also be stored locally. At step 1334, the issuer agent 412 may store the VC and
its status at a database 416. The issuer agent 412 may receive a confirmation of successful
storage at step 1336, send a confirmation to the agent service API 410 at step 1338, which
may then send a confirmation to the issuer 531 indicating that the VC has been successfully
created at step 1340. The confirmation to the issue may comprise the VC that has been

created.

[120] In some embodiments, the VC may be provided to the user or the holder of the VC.
At step 1342, the issuer agent 412 may send the VC and/or a status of the VC to an agent
service API 410 associated with a user agent 411 for the holder of the VC. The agent service
API 410 may call the user agent 411 to upload the VC at step 1344. Here, the user agent 411
may serve as a service endpoint for the DID of the holder of the VC. The user agent 411 may
be implemented on the same physical system as the issuer agent 412. The user agent 411 may
save the VC to a database 416 at step 1346. After successful saving of the VC, the database
416 may return a success confirmation to the user agent 411 at step 1348. The user agent 411
may send a confirmation to the agent service API 410 at step 1350, which may forward a

confirmation to the issuer agent 412 at step 1352.

[121] FIG. 14 illustrates a method for verifying a verifiable claim using an agent service
in accordance with some embodiments. The operations of the method presented below are
intended to be illustrative. Depending on the implementation, the method may include
additional, fewer, or alternative steps performed in various orders or in parallel. In some
embodiments, a holder of a VC (or a subject of the VC) may present to a first entity (e.g.,
verifier) a VC issued by a second entity (e.g., issuer of the VC). The verifier may verify the

VC with the aid of agent services 321.

[122] In some embodiments, an agent service API 410 may receive from a verifier 532 a
request to verify a VC at step 1402. The VC may comprise a digital signature associated with
an issuer of the VC. At step 1404, the agent service API 410 may call a function of the
verifier agent 413 for verifying the VC. In some embodiments, the verifier 532 may have

directly obtained the VC from the holder of the VC. Alternatively, the verifier 532 may only

40

WO 2021/000337 PCT/CN2019/095299

have received an account identifier associated with a subject of the VC. The verifier 532 may
obtain the VC by obtaining a DID associated with the subject of the VC based on a pre-stored
mapping relationship between the account identifier and the DID, obtaining a DID document
associated with the DID, obtaining information associated with a service endpoint for

managing VCs from the DID document, and obtaining the VC from the service endpoint.

[123] In some embodiments, the verifier agent 413 may verify a status of the VC. The
verifier agent 413 may obtain and verify the status using either steps 1406a, 1408a, 1410a,
and 1412a or steps 1406b, 1408b, 1410b, and 1412b. In some embodiments, the verifier agent
413 may obtain the status of the VC from a blockchain storing information associated with a
plurality of VCs. At step 1406a, the verifier agent 413 may send to a resolver 322 a query for
a status of the VC. The query may comprise an identifier of the VC. At step 1408a, the
resolver 322 may create a blockchain transaction for retrieving a hash value and a status of
the VC and send it to one or more blockchain nodes associated with a blockchain 300. The
blockchain transaction may comprise a DID of the subject of the VC and may invoke a
blockchain contract 331 for managing VCs. At step 1410a, the resolver 322 may obtain a
status of the VC as well as a hash value associated with the VC from the blockchain 330. The
resolver 322 may then send the hash value and status to the verifier agent 413 at step 1412a
for verification. The verifier agent 413 may calculate a hash value by applying a hash
function on the VC that was provided by the holder. The verifier agent 413 may authenticate
the received status of the VC by comparing the hash value received from the blockchain 330
with the calculated hash value. If they are identical, the verifier agent 413 may determine that
the received status does correspond to the VC. If the status indicates that the VC is valid, the

verifier agent 413 may complete this step of the verification.

[124] In some embodiments, the verifier agent 413 may obtain the status of the VC from a
service endpoint associated with the VC. In some embodiments, the service endpoint may
correspond to an issuer agent 412 associated with the issuer. At step 1406b, the verifier agent
413 may send a query to the issuer agent 412 for status of the VC. The issuer agent 412 may
query the database 416 for the status of the VC at step 1408b and obtain a status and a
corresponding hash value of the VC at step 1410b. The issuer agent 412 may send the hash
value and the status to the verifier agent 413 at step 1412b. The verifier agent 413 may

authenticate the status and verify that the VC is valid in the manner discussed above.

41

WO 2021/000337 PCT/CN2019/095299

[125] In some embodiments, the verifier agent 413 may determine that the VC is issued by
the issuer identified on the VC. The verifier agent 413 may obtain, based on the VC, a public
key associated with the issuer. The verifier agent 413 may identify the issuer based on an
identifier in the VC. In some embodiments, the identifier may comprise a DID of the issuer.
The public key may be obtained from the blockchain 330 based on the DID of the issuer. At
step 1414, the verifier agent 413 may send a request to the resolver 322 for the public key
associated with the issuer. The request may comprise the DID of the issuer. At step 1416, the
resolver 322 may create a blockchain transaction invoking a blockchain contract 331 for
retrieving a public key or a DID document based on a DID and send the blockchain
transaction to a blockchain node of the blockchain 330. The resolver 322 may obtain the
public key (e.g., by retrieving from the DID document) at step 1418 and forward the public
key to the verifier agent 413 at step 1420. Then, at step 1422, the verifier agent 413 may
verify the VC using the public key by determining that the digital signature is created based
on a private key associated with the public key. In some embodiments, the verifier agent 413
may verify one or more other facts about the VC. For example, the verifier agent 413 may
obtain, from the VC, an issuance date of the VC and validate the obtained issuance date based
on a comparison between the obtained issuance date and a current date. As another example,
the verifier agent 413 may obtain, from the VC, an expiration date of the VC and validate that
the VC has not expired based on the expiration date and a current date. If verification of the
VC is successful, the verifier agent may send a confirmation to the agent service API 410 at
step 1424. The agent service API 410 may send a message to the verifier 532 confirming that
the VC is verified at step 1426.

[126] FIG. 15 illustrates a method for obtaining a decentralized identifier based on
identity authentication in accordance with some embodiments. The operations of the method
presented below are intended to be illustrative. Depending on the implementation, the method
may include additional, fewer, or alternative steps performed in various orders or in parallel.
In some embodiments, at step 1510, a service-side system 320 may receive a request for
creating a DID from a user-side system 310. To create a DID, the service-side system 320
may require identity authentication of the owner of the to-be-created DID. In some
embodiments, the service-side system 320 may determine that the request comprises a proof
of identity authentication. For example, the request may comprise a relationship between the

proof of identity authentication and an account identifier associated with the user

42

WO 2021/000337 PCT/CN2019/095299

corresponding to the DID. The service-side system 320 may directly obtain the required proof

of identity authentication from the request.

[127] In some embodiments, the service-side system 320 may determine that the request
does not comprise a proof of identity authentication and may proceed to obtain a proof of
identity authentication based on the received request. At step 1520, the service-side system
320 may obtain one or more identifiers based on the request. The identifiers may comprise an
identifier of an entity associated with the user-side system 310, an identifier of a user
corresponding to the to-be-created DID, other suitable identification information, or any
combination thereof. At step 1530, the service-side system 320 may send a request to the
identity authentication system 340 for the proof of identity authentication. The request may
comprise the one or more identifiers obtained from the request. The identity authentication
system 340 may identify a proof of identity authentication based on the one or more
identifiers. If no proof of identity authentication can be identified, the identity authentication
system 340 may authenticate the identity of the user identified in the request and create a
proof of identity authentication. At step 1540, the identity authentication system 340 may
send to the service-side system 320 the requested proof of identity authentication. In some
embodiments, the proof of identity authentication may comprise a proof of real-person
authentication, a proof of real-name authentication, other suitable proofs, or any combination

thereof.

[128] In some embodiments, after obtaining the proof of identity authentication, the
service-side system 320 may proceed to obtain the DID based on the proof of identity
authentication at step 1550. The DID may be obtained using one or more of the methods
disclosed herein. For example, the service-side system 320 may obtain a public key and
generate, based on the public key, one or more blockchain transactions for creating the DID
and for adding a DID document associated with the DID to a blockchain. The blockchain
transactions may be sent to one or more blockchain nodes associated with the blockchain 330
for execution. In some embodiments, the service-side system 320 may also generate a VC
based on the proof of identity authentication and upload the VC to a service endpoint

associated with the obtained DID for storage.

[129] In some embodiments, the service-side system 320 may store mapping relationship
between the proof of identity authentication and the DID at step 1560. For example, the

service-side system 320 may generate a key alias and store a mapping relationship between

43

WO 2021/000337 PCT/CN2019/095299

the proof of identity authentication, the public key associated with the DID, and the key alias.
The stored mapping relationship may be used for provisioning information about the identity
authentication in the future. For example, the service-side system 320 may receive a request
for the proof of identity authentication, wherein the request comprises the obtained DID. The
service-side system 320 may locate the proof of identity authentication based on the mapping
relationship between the proof of identity authentication and the DID and provide the proof

of identity authentication to the requester.

[130] FIG. 16 illustrates a method for obtaining a proof of identity authentication in
accordance with some embodiments. In some embodiments, a client-side application 342 and
data stored on a blockchain system 330 may be used to authenticate the identity of a user and
generate a proof of identity authentication. Such a proof of identity authentication can be
used to create or validate a DID according to the embodiments illustrated by FIGs. 6, 11, and
15. The operations of the method presented below are intended to be illustrative. Depending
on the implementation, the method may include additional, fewer, or alternative steps

performed in various orders or in parallel.

[131] In some embodiments, at step 1610, a system for creating a DID for a user may send
a request for identity authentication of a user to an identity service 341. The system sending
the request may comprise, for example, the agent 321 associated with the service-side system
320, the server 311 associated with the user-side system 310, another suitable system, or any
combination thereof. FIG. 16 illustrates the agent 321 as an example. The identity service 341
may initiate a process of real-person identity authentication by sending a request to a
blockchain system 330 at step 1620. The request may be in the form of one or more
blockchain transactions sent to one or more blockchain nodes for execution or in the form of
a request sent to an interface system associated with the blockchain 330 (e.g., the BaaS cloud
324). The request may comprise one or more identifiers associated with the user and may
query for identity information (e.g., one or more appearance features) associated with the user

that is stored in the blockchain.

[132] Responsive to the request, at step 1630, the identity information of the user may be
obtained from the blockchain system 330 and provided to a client-side application 342. In
some embodiments, the client-side application 342 may be installed on a client device
associated with the user and may have access to one or more sensors associated with the

client device. The client-side application 342 and the client device may have been determined

44

WO 2021/000337 PCT/CN2019/095299

based on a log-in by the user corresponding to the to-be-created DID. In some embodiments,
the identity service 341 may send, to the client-side application, instructions to obtain data
associated with one or more features of the subject of the identity authentication. For example,
the identity service 341 may send the client-side application 342 instructions to capture one
or more images of the user using one or more cameras on the client device. The proof of
identity authentication may be obtained based on data collected by the client-side application
342. For example, the identity service 341 may send the client-side application 342
instructions to compare the obtained data associated with one or more features of the subject
with pre-stored data associated with an identifier of the subject. The pre-stored data may be
obtained from a database 343 associated with the identity service 341 or be obtained from the

blockchain 330, as described above.

[133] In some embodiments, the identity authentication system 340, which may comprise
the client-side application 342 and the identity service 341, may perform real-person
authentication based on the data collected by the client-side application 342. The identity
authentication system 340 may incorporate functionalities such as face recognition and live
detection. The face recognition functionality may identify faces from images and compare
features of the identified faces with features of one or more other faces. This may be used to
identify one or more users in the images. The live detection functionality may distinguish
images of real persons from images of another image/video and may verify that the user
being authenticated is the actual person using the client device that runs the client-side
application 342. In some embodiments, the identity authentication system 340 may treat the
identity information stored on the blockchain 330 as authoritative information. The identity
information may comprise one or more features of the user’s face. The identity authentication
system 340 may compare the information collected by the client-side application 342 (e.g.,
one or more images of the user) with the authoritative information obtained from the
blockchain 330 to verify that the user logging into the client-side application 342 does
correspond to the identity stored on the blockchain 330. At step 1640, if authentication of the
user is successful, the client-side application 342 may return a message to the requester of
identity authentication (e.g., the agent 321) confirming that real-person authentication is
complete. The identity authentication system 340 may also store a result of the identity
authentication (e.g., a proof of identity authentication) in the blockchain system 330 by

sending one or more blockchain transactions to one or more blockchain nodes or by sending

45

WO 2021/000337 PCT/CN2019/095299

one or more requests to a system associated with the blockchain 330 (e.g., the BaaS cloud

324).

[134] In some embodiments, a requester of the proof of identity authentication (e.g., the
agent 321) may accept and directly obtain the proof of identity authentication from the
blockchain system 330. In this manner, real-time identity authentication as described in steps
1610-1640 may not be necessary. At step 1650, the agent 321 may send a request for proof of
identity authentication to the identity service 341. The identity service 341 may query the
blockchain system 330 for the proof of identity authentication at step 1660. In some
embodiments, the identity service 341 may send, to a blockchain node associated with a
blockchain 330 that stores information associated with identity authentication, a blockchain
transaction querying for the proof of identity authentication. The identity service 341 may
obtain the proof of identity authentication from the blockchain system 330 at step 1670. The
identity service 341 may send the proof of identity authentication to the agent 321 at step

1680.

[135] FIG. 17 illustrates a flowchart of a method for mapping decentralized identifiers to
real-world entities in accordance with some embodiments. The method 1700 may be
performed by a device, apparatus, or system for mapping decentralized identifiers to real-
world entities. The method 1700 may be performed by one or more components of the
environment or system illustrated by FIGs. 1-5, such as one or more components of the
service-side system 320. Depending on the implementation, the method 1700 may include

additional, fewer, or alternative steps performed in various orders or in parallel.

[136] Block 1710 includes receiving a request for obtaining a DID. In some embodiments,
the method further comprises, subsequent to receiving the request for creating a DID,
determining that the request for creating a DID comprises the proof of identity authentication
and accepting the request based on the determining that the request comprises the proof of
identity authentication. In some embodiments, the method further comprises, subsequent to
receiving the request for creating a DID, determining that the request for creating a DID does
not comprise a proof of identity authentication, sending, to a sender of the request for
creating a DID, a request for the proof of identity authentication, and receiving, from the

sender of the request for creating a DID, the proof of identity authentication.

46

WO 2021/000337 PCT/CN2019/095299

[137] Block 1720 includes obtaining a proof of identity authentication based on the
received request. In some embodiments, the proof of identity authentication comprises a
proof of real-person authentication or a proof of real-name authentication. In some
embodiments, the obtaining a proof of identity authentication comprises obtaining the proof
of identity authentication from the request, wherein the request comprises a relationship
between the proof of identity authentication and an account identifier. In some embodiments,
the obtaining a proof of identity authentication comprises sending, to a blockchain node
associated with a blockchain that stores information associated with identity authentication, a
blockchain transaction querying for the proof of identity authentication and, in response to
the blockchain transaction being successfully executed in the blockchain, obtaining the proof

of identity authentication from the blockchain.

[138] In some embodiments, the obtaining a proof of identity authentication comprises
sending, to a client-side application associated with a subject of the proof of identity
authentication, instructions to obtain data associated with one or more features of the subject
and obtaining the proof of identity authentication based on the obtained data. In some
embodiments, the sending instructions to obtain data associated with one or more features of
the subject comprises sending, to the client-side application, instructions to capture one or
more images of the subject. In some embodiments, the sending instructions to obtain data
associated with one or more features of the subject comprises sending, to the client-side
application, instructions to compare the obtained data associated with one or more features of

the subject with pre-stored data associated with an identifier of the subject.

[139] Block 1730 includes obtaining the DID based on the proof of identity authentication.
In some embodiments, the obtaining a DID comprises generating a key alias, obtaining a
public key of a cryptographic key pair, and storing a mapping relationship between the proof
of identity authentication, the public key, and the key alias. In some embodiments, the
obtaining a DID further comprises generating, based on the public key, one or more
blockchain transactions for creating the DID and for adding a DID document associated with

the DID to a blockchain.

[140] Block 1740 includes storing a mapping relationship between the proof of identity
authentication and the DID. In some embodiments, the method further comprises receiving a

request for the proof of identity authentication, wherein the request comprises the obtained

47

WO 2021/000337 PCT/CN2019/095299

DID, and locating the proof of identity authentication based on the mapping relationship

between the proof of identity authentication and the DID.

[141] In some embodiments, the method further comprises generating a verifiable claim
(VC) based on the proof of identity authentication and uploading the VC to a service
endpoint associated with the obtained DID.

[142] FIG. 18 illustrates a block diagram of a computer system for mapping decentralized
identifiers to real-world entities in accordance with some embodiments. The system 1800
may be an example of an implementation of one or more components of the service-side
system 320 of FIG. 3 or one or more other components illustrated in FIGs. 1-5. The method
1700 may be implemented by the computer system 1800. The computer system 1800 may
comprise one or more processors and one or more non-transitory computer-readable storage
media (e.g., one or more memories) coupled to the one or more processors and configured
with instructions executable by the one or more processors to cause the system or device (e.g.,
the processor) to perform the above-described method, e.g., the method 1700. The computer
system 1800 may comprise various units/modules corresponding to the instructions (e.g.,
software instructions). In some embodiments, the computer system 1800 may be referred to
as an apparatus for mapping decentralized identifiers to real-world entities. The apparatus
may comprise a receiving module 1810 for receiving a request for obtaining a DID; a first
obtaining module 1820 for obtaining a proof of identity authentication based on the received
request; a second obtaining module 1830 for obtaining the DID based on the proof of identity
authentication; and a storing module 1840 for storing a mapping relationship between the

proof of identity authentication and the DID.

[143] The techniques described herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices may be desktop computer
systems, server computer systems, portable computer systems, handheld devices, networking
devices or any other device or combination of devices that incorporate hard-wired and/or
program logic to implement the techniques. The special-purpose computing devices may be
implemented as personal computers, laptops, cellular phones, camera phones, smart phones,
personal digital assistants, media players, navigation devices, email devices, game consoles,
tablet computers, wearable devices, or a combination thereof. Computing device(s) are
generally controlled and coordinated by operating system software. Conventional operating

systems control and schedule computer processes for execution, perform memory

48

WO 2021/000337 PCT/CN2019/095299

management, provide file system, networking, I/O services, and provide a user interface
functionality, such as a graphical user interface (“GUI”), among other things. The various
systems, apparatuses, storage media, modules, and units described herein may be
implemented in the special-purpose computing devices, or one or more computing chips of
the one or more special-purpose computing devices. In some embodiments, the instructions
described herein may be implemented in a virtual machine on the special-purpose computing
device. When executed, the instructions may cause the special-purpose computing device to
perform various methods described herein. The virtual machine may include a software,

hardware, or a combination thereof.

[144] FIG. 19 illustrates a block diagram of a computer system in which any of the
embodiments described herein may be implemented. The system 1900 may be implemented
in any of the components of the environments or systems illustrated in FIGs. 1-5. the
software applications or services illustrated in FIGs. 1-5 may be implemented and operated
on the system 1900. One or more of the example methods illustrated by FIGs. 6-17 may be

performed by one or more implementations of the computer system 1900.

[145] The computer system 1900 may include a bus 1902 or other communication
mechanism for communicating information, one or more hardware processor(s) 1904 coupled
with bus 1902 for processing information. Hardware processor(s) 1904 may be, for example,

one or more general purpose microprocessors.

[146] The computer system 1900 may also include a main memory 1906, such as a
random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus
1902 for storing information and instructions executable by processor(s) 1904. Main memory
1906 also may be used for storing temporary variables or other intermediate information
during execution of instructions executable by processor(s) 1904. Such instructions, when
stored in storage media accessible to processor(s) 1904, render computer system 1900 into a
special-purpose machine that is customized to perform the operations specified in the
instructions. The computer system 1900 may further include a read only memory (ROM)
1908 or other static storage device coupled to bus 1902 for storing static information and
instructions for processor(s) 1904. A storage device 1910, such as a magnetic disk, optical
disk, or USB thumb drive (Flash drive), etc., may be provided and coupled to bus 1902 for

storing information and instructions.

49

WO 2021/000337 PCT/CN2019/095299

[147] The computer system 1900 may implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 1900 to
be a special-purpose machine. According to one embodiment, the operations, methods, and
processes described herein are performed by computer system 1900 in response to
processor(s) 1904 executing one or more sequences of one or more instructions contained in
main memory 1906. Such instructions may be read into main memory 1906 from another
storage medium, such as storage device 1910. Execution of the sequences of instructions
contained in main memory 1906 may cause processor(s) 1904 to perform the process steps
described herein. In alternative embodiments, hard-wired circuitry may be used in place of or

in combination with software instructions.

[148] The main memory 1906, the ROM 1908, and/or the storage 1910 may include non-
transitory storage media. The term “non-transitory media,” and similar terms, as used herein
refers to media that store data and/or instructions that cause a machine to operate in a specific
fashion, the media excludes transitory signals. Such non-transitory media may comprise non-
volatile media and/or volatile media. Non-volatile media includes, for example, optical or
magnetic disks, such as storage device 1910. Volatile media includes dynamic memory, such
as main memory 1906. Common forms of non-transitory media include, for example, a
floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic
data storage medium, a CD-ROM, any other optical data storage medium, any physical
medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM,

NVRAM, any other memory chip or cartridge, and networked versions of the same.

[149] The computer system 1900 may include a network interface 1918 coupled to bus
1902. Network interface 1918 may provide a two-way data communication coupling to one
or more network links that are connected to one or more local networks. For example,
network interface 1918 may be an integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data communication connection to a
corresponding type of telephone line. As another example, network interface 1918 may be a
local area network (LAN) card to provide a data communication connection to a compatible
LAN (or WAN component to communicated with a WAN). Wireless links may also be

implemented. In any such implementation, network interface 1918 may send and receive

50

WO 2021/000337 PCT/CN2019/095299

electrical, electromagnetic or optical signals that carry digital data streams representing

various types of information.

[150] The computer system 1900 can send messages and receive data, including program
code, through the network(s), network link and network interface 1918. In the Internet
example, a server might transmit a requested code for an application program through the

Internet, the ISP, the local network and the network interface 1918.

[151] The received code may be executed by processor(s) 1904 as it is received, and/or

stored in storage device 1910, or other non-volatile storage for later execution.

[152] Each of the processes, methods, and algorithms described in the preceding sections
may be embodied in, and fully or partially automated by, code modules executed by one or
more computer systems or computer processors comprising computer hardware. The
processes and algorithms may be implemented partially or wholly in application-specific

circuitry.

[153] The various features and processes described above may be used independently of
one another or may be combined in various ways. All possible combinations and sub-
combinations are intended to fall within the scope of this specification. In addition, certain
method or process blocks may be omitted in some implementations. The methods and
processes described herein are also not limited to any particular sequence, and the blocks or
states relating thereto can be performed in other sequences that are appropriate. For example,
described blocks or states may be performed in an order other than that specifically disclosed,
or multiple blocks or states may be combined in a single block or state. The examples of
blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or
states may be added to or removed from the disclosed embodiments. The examples of
systems and components described herein may be configured differently than described. For
example, elements may be added to, removed from, or rearranged compared to the disclosed

embodiments.

[154] The various operations of methods described herein may be performed, at least
partially, by one or more processors that are temporarily configured (e.g., by software) or
permanently configured to perform the relevant operations. Whether temporarily or
permanently configured, such processors may constitute processor-implemented engines that

operate to perform one or more operations or functions described herein.

51

WO 2021/000337 PCT/CN2019/095299

[155] Similarly, the methods described herein may be at least partially processor-
implemented, with a particular processor or processors being an example of hardware. For
example, at least some of the operations of a method may be performed by one or more
processors or processor-implemented engines. Moreover, the one or more processors may
also operate to support performance of the relevant operations in a “cloud computing”
environment or as a “software as a service” (SaaS). For example, at least some of the
operations may be performed by a group of computers (as examples of machines including
processors), with these operations being accessible via a network (e.g., the Internet) and via

one or more appropriate interfaces (e.g., an Application Program Interface (API)).

[156] The performance of certain of the operations may be distributed among the
processors, not only residing within a single machine, but deployed across a number of
machines. In some embodiments, the processors or processor-implemented engines may be
located in a single geographic location (e.g., within a home environment, an office
environment, or a server farm). In other embodiments, the processors or processor-

implemented engines may be distributed across a number of geographic locations.

[157] Throughout this specification, plural instances may implement components,
operations, or structures described as a single instance. Although individual operations of one
or more methods are illustrated and described as separate operations, one or more of the
individual operations may be performed concurrently, and nothing requires that the
operations be performed in the order illustrated. Structures and functionality presented as
separate components in configurations may be implemented as a combined structure or
component. Similarly, structures and functionality presented as a single component may be
implemented as separate components. These and other variations, modifications, additions,

and improvements fall within the scope of the subject matter herein.

[158] Although an overview of the subject matter has been described with reference to
specific embodiments, various modifications and changes may be made to these
embodiments without departing from the broader scope of embodiments of the specification.
The Detailed Description should not to be taken in a limiting sense, and the scope of various
embodiments is defined only by the appended claims, along with the full range of equivalents

2

to which such claims are entitled. Furthermore, related terms (such as “first,” “second,”

“third,” etc.) used herein do not denote any order, height, or importance, but rather are used

(13 29 LC 29

to distinguish one element from another element. Furthermore, the terms “a,” “an,” and
“plurality” do not denote a limitation of quantity herein, but rather denote the presence of at

least one of the articles mentioned.

52

WO 2021/000337 PCT/CN2019/095299

CLAIMS:

1. A computer-implemented method for mapping decentralized identifiers (DIDs) to
real-world entities, comprising:

receiving a request for obtaining a DID;

obtaining a proof of identity authentication based on the received request;

obtaining the DID based on the proof of identity authentication; and

storing a mapping relationship between the proof of identity authentication and the

DID.

2. The method of claim 1, wherein the proof of identity authentication comprises:
a proof of real-person authentication; or

a proof of real-name authentication.

3. The method of any of the claims 1-2, wherein the obtaining a proof of identity
authentication comprises:

obtaining the proof of identity authentication from the request, wherein the request
comprises a relationship between the proof of identity authentication and an account

identifier.

4. The method of any of the claims 1-2, further comprising, subsequent to receiving
the request for creating a DID:

determining that the request for creating a DID comprises the proof of identity
authentication; and

accepting the request based on the determining that the request comprises the proof of

identity authentication.

5. The method of any of the claims 1-2, further comprising, subsequent to receiving
the request for creating a DID:

determining that the request for creating a DID does not comprise a proof of identity
authentication;

sending, to a sender of the request for creating a DID, a request for the proof of

identity authentication; and

53

WO 2021/000337 PCT/CN2019/095299

receiving, from the sender of the request for creating a DID, the proof of identity

authentication.

6. The method of any of the claims 1-2, wherein the obtaining a proof of identity
authentication comprises:

sending, to a blockchain node associated with a blockchain that stores information
associated with identity authentication, a blockchain transaction querying for the proof of
identity authentication; and

in response to the blockchain transaction being successfully executed in the

blockchain, obtaining the proof of identity authentication from the blockchain.

7. The method of any of the claims 1-2, wherein the obtaining a proof of identity
authentication comprises:

sending, to a client-side application associated with a subject of the proof of identity
authentication, instructions to obtain data associated with one or more features of the subject;
and

obtaining the proof of identity authentication based on the obtained data.

8. The method of claim 7, wherein the sending instructions to obtain data associated
with one or more features of the subject comprises:
sending, to the client-side application, instructions to capture one or more images of

the subject.

9. The method of any of the claims 7-8, wherein the sending instructions to obtain
data associated with one or more features of the subject comprises:

sending, to the client-side application, instructions to compare the obtained data
associated with one or more features of the subject with pre-stored data associated with an

identifier of the subject.

10. The method of any of the preceding claims, wherein the obtaining a DID
comprises:
generating a key alias;

obtaining a public key of a cryptographic key pair; and

54

WO 2021/000337 PCT/CN2019/095299

storing a mapping relationship between the proof of identity authentication, the public

key, and the key alias.

11. The method of claim 10, wherein the obtaining a DID further comprises:
generating, based on the public key, one or more blockchain transactions for creating

the DID and for adding a DID document associated with the DID to a blockchain.

12. The method of any of the preceding claims, further comprising:
generating a verifiable claim (VC) based on the proof of identity authentication; and

uploading the VC to a service endpoint associated with the obtained DID.

13. The method of any of the preceding claims, further comprising:

receiving a request for the proof of identity authentication, wherein the request
comprises the obtained DID; and

locating the proof of identity authentication based on the mapping relationship

between the proof of identity authentication and the DID.

14. A system for mapping decentralized identifiers (DIDs) to real-world entities,
comprising:

one or more processors; and

one or more computer-readable memories coupled to the one or more processors and
having instructions stored thereon that are executable by the one or more processors to

perform the method of any of claims 1 to 13.
15. A non-transitory computer-readable storage medium configured with instructions
executable by one or more processors to cause the one or more processors to perform the

method of any of claims 1 to 13.

16. An apparatus for mapping decentralized identifiers (DIDs) to real-world entities

comprising a plurality of modules for performing the method of any of claims 1 to 13.

55

WO 2021/000337 PCT/CN2019/095299

190
.

RN

Node A1 Node A2 Nods A3

ﬁ
E
f

J

Noge G
2.4, user-side system sewvernt Client 1114

S

Blockchain
system
113

.................................... . Se&ver end 1 *%8‘ - Nﬂdﬁ E | -
{e.g., ighbweight node}

|

Blockchain nodes in a blockchain system 112

Blockchain
system
114

Blockchain Node 3 Blockehain Nods 2

o Q
N R——
® ¥ @ — P——
G
Blockehain Mode
O
— Binekohain Mods 8

Blockchain Node |

FIG. 1

1/19

WO 2021/000337

Client 111

Information for blockch

transaction A

.

Server end 118

ain

account creation, or
Information of blockchain

PCT/CN2019/095299

Node B

User-end |
application 221

Blockchain
transaction B

Y

RPC interface 223

l

Blockchain nodes in a blockchain system 112

Il

Blockchain Node 1

Blockchain Node i

Il

Blockchain Node 2

1

1

1

Local VM 1 Local WM i Local VM2
v Verification v Verification ¥
Computation |«¢—m] Computation |«g=————p Computation
Local Local Local
Blockchain Blockchain Blockchain
Copy 1 Copy i Copy 2
FIG. 2

2/19

WO 2021/000337 PCT/CN2019/095299

IElentity' Authentication i
|System§4_Q - |
| Client-Side Identity) Database |
| App 342 Service 341 343 |
e e > ~_
rU;ér-gde Sygém_] |_S¢=3_rvic_e-s—igeS_yst_e—m ______] |_Bgckc_hain o
:3_1g | :m | | 330 I
Server | I l
| 311 | | Agent Resolver | 4 |
| SDK 321 322
3	1! 21 3z		
			—
			Blockchain
i Contract			
		o 331	
		Man:gegment Cloud	
Database		System 324 L	?
) L= N |
l_ = _ T I |
FIG. 3

3/19

WO 2021/000337

PCT/CN2019/095299

g

DID Agent Service API

410
User Agent | Issuer Agent Verifier Agent { Verifiable Claim
Agent a11 | 412 413 i | repository 414
Service — \TTI—— ' [T
321 + ?
KMS 323
Database '
416 .
Baa$ Cloud 324 i
Y Y
DID Resolver AP}
/ 420
DID Resolver VCResolver
421 422
Resolver
Service — ' Dazzb;se
322 1
, Y.
BaaS Cloud § . Listener ‘
§ 324 | 424 |
/ Blockchain 330
DID Contract QD Contract DID Contract™, |
Contract __| ‘\-...-/m 331b ‘
331 VerifiableClaim VerifiableClaim VerifiableClaim™,
Contract331d Contract 331e \\C?w

FIG. 4

4/19

PCT/CN2019/095299

WO 2021/000337

¢ DA

o
oo
— FEE UipLa Ansds
“r] bn :www M__mo <> DEE uieydoig sn.m.wmm\.,
Ll -] 1 i
wn T TEE aTTT -
= —_— \ﬁﬂb:ou PeIuo)
= . 1d i
M m e aig qaia
> | [~ quanosay < = N
— aig P e
~ = Ad.
p— o B iz
— Lyl FEmar < 2
21 7 wovaia [TS q) 1443 e7TE Bl P
_M..g N — poyisin Qig 19A|053Y 13A{0S3Y =
. il
ST =
a || 34
= | > QU 2Aj053Y {4 444
aig sqny
B aia
- e - ‘ a LR Y e s 4 W\ :
“““ ualy) ad
BETIEEYY 13nss)
’ —
075
4 L
rdid %% , EES ddV W
»mw__mmw\z LWMmmm_] u:.m:.._wmmcm—)- ——
433148 , Auap) 0ts

5/19

WO 2021/000337 PCT/CN2019/095299

O Baas Cloud
Server 311 SDK 312 Resolver 322 Contract 331 aaSZ:u
T T T
1 | |
identity Authentication !
502 '

Call createDID 604

o
| ol

T
|
|
|
|
|
I
I

1
» applyAccount 608

{
success 610

)
|
|
| POSTDID 606
|
|
|
|
|

-~
|
|
1
|
!
|
|
|
L

|

|
Add Public Key, I
Authentication to OIDDoc |
614 | :
| |
Add DIDAuthService, VC !
‘ Repository to DID Doc 616

‘Generate! transaction, hash of 1
transaction, and digital signature
618 |

i
I purDIDE20 !

JERERE

e e L

: add DID Doc 622!

| I success 624]

| DID626 (—m—m e |

________ . !

DID 628 | ! !

___________ N | |

| | | |

notification 630 | | | I

re | | I

[| , | !
FIG. 6

6/19

WO 2021/000337 PCT/CN2019/095299

DID Challenge Response 726

-
. ot

DID Auth Verifier Resclver Contract
SOK 312 Service 532 SDk312 322 331
T T T T T T
]] Provide DID | | |
i I 702 I] !
| ! 1 1 | ! !
| ! Call authChallenge 704 :
1 e ; |
: : : : Query DID 706 |
: I : : | DID:query 708 |
I L
' l [! ! ! DIDDoc710 |
[[I | ' pIDDOc712 ¢———————-]
| | | | le _—_____1 |
| | | | | | |
: : : : :— Create'DID Auth :
! | ! | Lg Challenge 714 |
| | | 1 | | |
I I | ! — ! ..
| | | | | Obtain DID Auth endpoint
| | 1 I ! 716
| | | | :4 |
. 1 |
: :‘ DID Auth Challenge 718 | |
| (- i I | |
| I | 1
: [Consent? 720 : : :
i T T | | I
| ! I | I |
€all authChallenge 720 : ! ! !
e
I I I | I I
bID Challenge Response] : : :
. , |
r— JAA] 1 | | |
| | | !
!]
! |
|
|

'
Call CheckDIDAuthRsp 728

o I Correct? 730

| |

__ _Valid732 | '

valid 734 1 I

K |
|

|

N

7/19

WO 2021/000337 PCT/CN2019/095299

. SDK 312 Verifier 532 SDK 312 Resolver 322 Contract 331

T
| |

Cali DIDAuUthProxy 802

T T T T
| | | {
| | | i
»	I	
]	{	
]	i	
: : Sign request 804 : : :		
]		
r— I i I I		
:	Signed request 806	: : :
]		
: : Call didHttpRequestProcess 808 : :		
[' ! ': Obtain DID And		
: :	l———— signature 830	
		i !
		Query DID 812
: : : ; =! DID:query 814 :		
' ' ! : DID Doc 816 :		
! : ! . _ DIDDoc 18 K ——m ,		
I I I P TTTTET		
: [!	Correct? 820 !	
I		
.		
: : L httpRequest 822	:	
I	i	
I	i	
]]]	
: i i Service processing i I		
		824 '
! < '		
'(Response 826	I	I
e I		
		I
1		
		[
FIG. 8

8/19

WO 2021/000337 PCT/CN2019/095299

O
o
VC Repository Issuer SDK Resolver Contract
414 531 312 322 331
1 e 7 T T]
] | | |
i DID + Proof 902 | i |
| e ————— | | |
| I [| | |
i I Call generate VC 904 | |
| | I >t I |
! | : : Create VC 906 :
| | | [| |
| | | | 1 |
: ' : | Updaté vC :
:		Status pO8		
		r*		
			GETDID910	
l		¥		
l	l [[[
i	I		DID:query 912	
			P	
I			DIDDoc914	
: !	DiDDocots T T T T ,			
I		- T		
	I	!		
! !	: identify VC Endpoint 918			
			-———	
	I			
	veag			
[t }			[
1	1			
	I			
	!		I	
	I			
	l			
.]]] 1

FIG. 9

9/19

PCT/CN2019/095299

ZZ0T pleA

F-——m T o ——————— — —
8107 A3y i qnd

WO 2021/000337

EE LRIIUOD

A

101 gIg J=nss] 139

et i
900T SMIBISDANIRYD|BD

] "
$OOT sniels AsnD

7CE Jonosay CTENAS

_
_
_
!
!
_
_
_
_
_
_
_
_
_
_

[- == Ed _
!
[
[
_
_
|
_
_
!
|
[
[
i

Z00T DAALL9A lBD

1E A0S CES AP A

10/19

PCT/CN2019/095299

WO 2021/000337

91T uonEsynoN|!

WTT
uoleanUayIny

Anuap;

TTT 1am3S

| | | |
! _ [, Fo——m—— o ————————]
| | | | PHLT Q1Q
| | I I 5 I
f _ _ —— _
_ B i orTaia | _
i
_ P 9E1To00 QI PPY i _ ! |
_ [| | PEIT Q1A LNd | |
—————— 44— ———— - ————— — - = —— e — = > |
_ I ZETT aumeudis I _ _
"A ._ 0STT ainjeudis 3sanbay m _ _
| | —
_ | “ w_NS uoipesuen Jo ysey | “
	1	‘uonoesuel) JRIBUID		
				—
I			I	
			shiisoa !	
[I i gig 01 Asoysoday DA I i				
!	I ‘eomsasyinydiq ppy ——			
1	I		1	
			I	
! i _		WL ——P _		
!]	J20Q 4QIQ 03 uohenpuayiny			
“ !	" "hoxo11qhd PPY _ _			
		1T Jmininie ¢		
“	Tozirssaans	" "		
_ "A QT 1T 3uno2avAdde r _ _ “				
1 1	Q1T Gid 1S0d	I		
o ———— o ————— — - ——— == Fe————— = X [
I i PITT A% 0QNd	_ i I			
"A “ ZIL1 Aasuasnajesauad fjed - X “				
		i 0TTT SelyAd) 131D i		
		i		
1 I i mo.}” jooid _ ” I I				
		! uelqo		
	. o			
		1	P33 Tt 9011 T FOTT Qg	
" “ _ " | | qigateaiy ey | 31ean o33sanbay
343 vTE TET 44 ITv 1147 otv
SN pnop) seeg PEeIUoY 19Aj0SaY aa juady Jasn _mm%%m_ﬁmw

11/19

PCT/CN2019/095299

12/19

Z1 'DI4
| | I I I | L\h " “ “ '
} I I I I F 65 i
| _ ‘vt b oL > w,v_w\ﬁ,_ " _ _ !
I f : 1 ; Pt I !
_ | aomen 1 weipieA L P | _ _ |
_ i e — 2 3 I _ _ ! | _ I
| | _AI|QWNH|_ | | | | I | |
I I 1 o } i | |] I I
0 | | G193udjjeyd gezl dsyyinvaiaidsyd |ied | ! | I I
| | | 2iedwody | | e ———— | | I
I _ _ _ | 9gZ1 asuodsay sduajieyd aia I I _
I i I I I | | K—————— —-———— — i
I ! [| I { ! ez T asuodsay dduajeyd g _ow ||||| _
I |] i I i _ " I TETT w3ueld)
I I i I [I I ————————
I I | I I I I “ I 08z waudydn)
| 1 i | | | = |
[_ ! I f _ I | 8ZZT28uajieydyineg ||ed |
I ——— |
“ “ " “ “ _ | Q77T ﬂmcoamwm 159NDsy | “
| | I | | | jZz449 i | |
| I I ! I I J1U35UOD I | I
| | | | | I : - “ | |
_ " L J ZZZT98uRIE WD WV AId | _ _ ! !
I [l————| I | i ! | I I
I ! 0ZZ 104Ul d8uajjeyd puols I I n _ ! I I
I | I I I I ! i
_ . "BLLT _ _ I [_ _ _ _
I jutodpu3 yiny QIQ W=IGO ! f ! _ " _ _ |
[I ! I 1 |
| I o | I I ! [I !
[1 9TZT 33ud)eyd f : I [| ! I i i
_ © YIny GIQ 1eauld) _ i _ | ! I I _
I ! | 1 I ! | | | I
_ - = ——— & _ | ! _ ! _ !
L N vIZT200QI1d | | | ! I | | _
T2 90a 41a i I I | “ " _ “ |
et I I [I |
0TZT A13nbiqgig - I | i I _ " I I i
! _ g0z aig Aieno ! ! ! _ | " ! !
! I I 907 7 S3uajeyyine |23 I " “ “ I I
| | | | l—— | |
| | | | PO T UOHEDYLIBA Isanbay |] | |
I I I I I Z0C1 _ “ "]
| | | | | Qg 3piactd |
] ! i | L] I I] i
€% i (447 £y wasdy oLy TES) (147 153 =
- M_mmou Hm:mm.mm_m Aroway 43B3p E,w.%wnmﬂmm BEIBCY yiny Qia E_m:m..%w@._mm Juady Jasn £CE SWA

WO 2021/000337

PCT/CN2019/095299

WO 2021/000337

| 1 1
I | |
_ | |
| |
el T b —————— — b=
| 8FET $5390Ng v_ 0SET $5333N5 -_* | TSET 55923n8 |" I vn “ "
[t 1% e f t . t t t 1 |
| SrL1 sAeS | PEET DAMBN | | _ ZRET DA 1S0d _ | | 1 |
| e T e T T e T P ———— ==
" _ peojdn jfed _ _ _ _ "|mmma $5833n¢ V“I,mmm,ﬂ $5300Ng "laﬁm.ﬁ mmmuu:my_
| | | | | | P —
i i I | _ | PEET §MILIS ‘DA 21015 _ _
[[! ! I RV do >1 _ _
| | | | | QEET ss93ang | ZEET ssdoong 1 1 |
I I I [g o + | ! I
| | | | 8ZIET SNIEIS DA PPV 9ZET SMPES JA | 1 |
| | | | | | | | | I
|
" “ “ ! ! | wzeraApeoidn | ! ! “
| | | | | I ! | | I
| | l] | | | ! | |
_ I i ! e —— = —— = 4—— = | i
I I | | "‘owmﬁ 304 ¢lg _ul ZZET 300 qIa I] |
| | | | ;
_ i i _ |BTET szcnmﬁm 9IET QIQ 135 _ “ _
| 1 | | | | | | | |
| | _ | " | eransoues [%) | _
_ | _ _ | [! I I _
_ _ _ - S DU —— T P S _ _
I | | I | ZIET 24meusis | | | I
| | I -t t 1 4 | | |
| i | l PTET aumeud(s 1g4 15anbay | I I |
_ _ _ ! _ | S A | |
“ " _ “ _ _ 80€T mm"__m A2y sanssy uu_m “ _
| | | | | | and 1 | |
| _ | _ | | oo [| |
| | | 1 | | paudisun ajleas) | | I
| | | | | | | _ | |
_ - _
_ _ _ [_ _ [YOET JA 21eJ3ua8 11§D |
| | [
_ _ " _ “ _ ! " zpeT oA Isanbay
i] % 1] 1 l] L |
g7 12574 , 4 TEE 7T)57 7T o1y TES
8a wady sesn | | 1Y 7SS S peiuoy JaNj0s3Y 80 WaBGnss| 1Y oty > 19nss

13/19

PCT/CN2019/095299

WO 2021/000337

| | ! |
| | | I N
! _ _ ! I gzvtpien 1
| | | o .v_ |
_ ! ! I vzorpyea 7l _
| | | 1 | |
| |] | | |
I _ I _ _ | |
| | I I | |
_ _ I | i |
| | | | ..w_m I |
_ _ _ 3 _ _ _
I	I 1					
			I			
" _ “ " " YI¥T Q10 135St Eu“ “ !						
			1			
T T 1 T 1 T ! _						
L g _ qzTHT smels ‘ysey oA	y_ ! !					
qbTHYT sNIEIS ‘ysey JA l			I			
l—————		I				
! ggovT Alanbipa						
! [_ L L	I					
		q90prT sniels DA Aanp	I]			
l _ _		_ _				
} t t + f t						
		" “I				
! _ _ FTrTSMEs ey 3 _ !						
_	L N ezivI smels ‘ysey + ! !					
! !	eHILT smels yseya]				
		_A 1				
[I _ I “egoyt Asanbiop	! I I					
						1
" " “ “ _ e9ppT snieys Alanp “ “ I						
I] [[
1						
_	[_ _ _ vOrT JAAJLRA jjED _					
! I ———————————						
I] “	I I 20071 DA AJ113A 03 3s2nbay					
L L] _ [! _ "
3TY 4472 oy TEE [443 ETv uady aiv e
aa Juasdy sanss| _nm%%wﬂmm PEIIUOD 13n|053Y I3LUBA ”_am:mmuwﬂwm £5 1911IBA

14/19

WO 2021/000337 PCT/CN2019/095299

User-Side System identity Auth Service-Side
310 System 340 System 320

Requestto lcreéte DID 1510
: Obtain identifiers
1520

Request for identity

» authentication 1530

proof of authentication

Obtain DID
1550

relationship
1560

i
—— Store mapping
.

FIG. 15

15/19

WO 2021/000337 PCT/CN2019/095299

Agent Client-Side Identity Blockchain
321 App 342 Service 341 System 330

T I T T
[| [1
| I | I
: Request for identity authentication 1610 : Initiate real-person :
f L. authentication 1620 L
I -y

|

|

|

1

Features 1630
-
Authentication
- complete 1640

L

|
| T
| |
| T |
| | |
Request proof of ide ntity authentication 1650 .i :
|
|
|
|
|

Query authentication 1660

Proof 1670

: |

Proof 1680

T

FIG. 16

16/19

WO 2021/000337 PCT/CN2019/095299

1710: receiving a request for creating a DID

]

1720: obtaining a proof of identity authentication based on the received request

l

1730: obtaining the DID based on the proof of identity authentication

:

1740: storing a mapping relationship between the proof of identity authentication and the DID

FIG. 17

17/19

WO 2021/000337

PCT/CN2019/095299

1800

Receiving Module
1810

First Obtaining Module
1820

Second Obtaining Module
1830

Storing Module
1840

FIG. 18

18/19

WO 2021/000337 PCT/CN2019/095299

internet

: 1900 :
| Network
I Processor{(s) etwor :
) 1904 interface(s)
! 1918 :
| A |
l |
| |
I Bus :
' 1902 |
| |
| ! | |

|
: o ROM Storage :
| M]egmgoﬁry 1908 1910 |
' |

{
S |

FIG. 19

19/19

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2019/095299

A.

CLASSIFICATION OF SUBJECT MATTER
HO04L 29/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT,.CNKLWPLEPODOC: decentralized identifiers, DID, proof, identity, authentication, mapping, blockchain

C.

DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X
21 June 2019 (2019-06-21)
description, paragraphs 0047-0078

CN 109922077 A (BELIJING SYSWIN INTERCONNECTION TECHNOLOGY CO., LTD.)

A CN 109936569 A (LINGXIN ZHILIAN BEIJING TECHNOLOGY CO., LTD.)25 June

2019 (2019-06-25)
THE WHOLE DOCUMENT

A US 2019180311 A1 (AMERICAN EXPRESS TRAVEL RELATED SERVICES

COMPANY, INC.)13 June 2019 (2019-06-13)
THE WHOLE DOCUMENT

D Further documents are listed in the continuation of Box C.

See patent family annex.

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

> document published prior to the international filing date but later than
the priority date claimed

wr

D&

wyr

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

100088
China

Facsimile No. (86-10)62019451

04 March 2020 26 March 2020
Name and mailing address of the ISA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing HE Xijia

Telephone No. 86- (10) -53961586

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members

PCT/CN2019/095299
. Patf‘/nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
CN 109922077 A 21 June 2019 None
CN 109936569 A 25 June 2019 None
Us 2019180311 Al 13 June 2019 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - wo-search-report
	Page 78 - wo-search-report

