发明名称
一种内燃机尾气过滤器再生点的测量方法

摘要
一种内燃机尾气过滤器再生点的测量方法，用于对内燃机尾气过滤器再生点进行判断，以便及时对所述的过滤器进行再生。本测量方法所用的装置结构包括：连接在进气管（1）上的尾气过滤器（2），具有一定阻力系数的压力参比管（4），其特征是在尾气过滤器的排气管（3）上连接有电动阀（5），在排气管和电动阀之间的排气管管道上连接有所述的压力参比管，在进气管上装有第一压力传感器（61），在压力参比管的进口位置上装有第二压力传感器（62）；测量原理为：计算尾气过滤器的压力值 P1 与压力参比管的压力值 P2 的比值 K，比值 K 与一设定值 K' 比较得出再生点，其有益效果是：可及时判断再生点，同时也避免了电动阀反复动作的现象发生，延长了电动阀的使用寿命。
1. 一种内燃机尾气过滤器再生点的测量方法，其测量方法所用的装置结构包括：连接在进气管（1）上的尾气过滤器（2），具有一定阻力系数的压力参比管（4），其特征是，在尾气过滤器的排气管（3）上连接有电动阀（5），在排气管和电动阀之间的排气管管道上连接有所述的压力参比管，在进气管上装有第一压力传感器（61），在压力参比管的进口位置上装有第二压力传感器（62）；测量步骤为：

压力采样：令电动阀关闭，通过第一压力传感器测量进气管中的压力值P0；通过第二压力传感器测量压力参比管上压力值P2；

比值计算：计算尾气过滤器的压力值P1与压力参比管的压力值P2的比值K，尾气过滤器的压力值P1为进气管的压力值P0与压力参比管的比值P2之差，

\[P_1 = P_0 - P_2 \]

\[K = \frac{P_1}{P_2} \]

再生点判断：即将比值K与一设定值K’比较，如果K ≥ K’表明尾气过滤器达再生点；发出需要再生的提示信号，测量过程结束；如果K < K’则打开电动阀，隔一段等待时间从压力采样步骤开始继续重复上述方法过程。

2. 根据权利要求1所述的测量方法，其特征是，所述的压力参比管的阻力系数为所述的尾气过滤器达再生点时的阻力系数的10%至100%。
说明书

一种内燃机尾气过滤器再生点的测量方法

技术领域
[0001] 一种内燃机尾气过滤器再生点的测量方法，用于对内燃机尾气过滤器再生点进行判断，以便及时对所述的过滤器进行再生。

背景技术
[0002] 现有技术对内燃机尾气排放的颗粒一般采用壁式流式陶瓷过滤器进行过滤，当陶瓷过滤器中的颗粒积累到一定量时，即到再生点时，对陶瓷过滤器进行再生，通过加热、燃烧将颗粒清除以便再次进行过滤。所述的再生点必须有一合适的范围，过低燃烧不充分，过高燃烧时会使过滤陶瓷损伤，所述的再生点可通过试验得出。由于过滤陶瓷中的颗粒积累量不能直接测量，所以现有技术对再生点的判断一般通过对内燃机机转速、排气温度及陶瓷过滤器的压力等参数的测量然后计算得出，由于内燃机的工况和内燃机机自身的磨损情况不同，对不同的内燃机按照同一计算公式计算得出的颗粒积累量与实际的颗粒积累量有很大的误差，不能精确地判断出再生点。

[0003] 为排除内燃机的工况、磨损以及内燃机个体差异等因素带来的再生点计算误差，精确地测量出过滤陶瓷中颗粒积累量是否达到再生点。专利号为2011101664792的发明专利提供了一种柴油机尾气过滤器再生点的测量方法，该方法是：与柴油机相连接的进气管分别并联连接有尾气过滤器和一压力参比管，在尾气过滤器前端装置一电动阀，在压力参比管的前端设有另一电动阀，在进气管上装有一压力传感器，所述的压力参比管具有一个固定的阻力系数；柴油机运行过程中尾气过滤器的阻力系数会逐渐增大，通过控制所述的电动阀，让尾气分别从尾气过滤器和压力参比管中流出，用压力传感器可分别测量尾气过滤器和压力参比管上的压力，比较两者压力可判断出尾气过滤器的再生点。

[0004] 该发明的不足之处是：1、先要判断柴油机运行工况是否稳定（即柴油机转速有一稳定时间段），仅当柴油机工况稳定时才能判断出再生点，使得再生点的判断不及时；当柴油机工况不稳定时，判断再生点需多次反复切换电动阀，影响电动阀的使用寿命；2、在判断再生点时，会有未过滤的尾气进入大气。

发明内容
[0005] 针对现有技术不足之处本发明提供一种内燃机尾气过滤器再生点的测量方法，要解决的技术问题是在排除内燃机机的工况、磨损以及内燃机个体差异等因素带来的再生点计算误差的基础上，同时使再生点判断及时，在判断再生点时未过滤的尾气排放。

[0006] 本测量方法所用的装置结构包括：连接在进气管上的尾气过滤器2、具有一定阻力系数的压力参比管4，其特征是，在尾气过滤器的排气管3上连接有电动阀5，在排气管和电动阀之间的排气管上装有第一压力传感器61，在压力参比管的进口位置上装有第二压力传感器62；测量步骤为：

压力采样：令电动阀关闭，通过第一压力传感器测量排气管中的压力值P0；通过第二压力传感器测量压力参比管上压力值P2；
比值计算：计算尾气过滤器的压力值 P1 与压力参比管的压力值 P2 的比值 K，尾气过滤器的压力值 P1 为进气管的压力值 P0 与压力参比管的压力值 P2 之差，

\[P1 = P0 - P2; \]

\[K = P1/P2; \]

再生点判断：即将比值 K 与一设定值 K' 比较，如果 K ≥ K' 表明尾气过滤器达再生点；发出需要再生的提示信号；如果 K < K' 则打开电动阀，隔一段等待时间从压力采样步骤开始继续重复上述方法过程。

[0007] 所述的压力参比管的阻力系数为所述的尾气过滤器达再生点时的阻力系数的 10%至 100%。

[0008] 本发明与现有技术相比，其有益效果是：在再生点测量过程中电动阀处于关闭状态，尾气从过滤器和压力参比管中顺序流过，流过过滤器和压力参比管的尾气为内燃机在同一工况下的尾气，省去判断工况是否相同的步骤，可及时判断再生点；同时也避免了电动阀反复动作的现象发生，延长了电动阀的使用寿命；由于压力参比管设置在尾气过滤器的排气管上，在再生点判断过程中无未经过滤的尾气进入大气。

附图说明

[0009] 图 1 为本发明所用装置的结构示意图。

[0010] 图 2 为本发明的检测仪的电气原理方框图。

[0011] 图 3 为单片机系统中的程序流程图。

[0012] 图 4 为程序 g’的流程图。

具体实施方式

[0013] 现参照附图说明本发明的具体实施方式。

[0014] 本测量方法所用装置结构为：尾气过滤器 2 通过进气管 1 引进内燃机排放的尾气，所述的尾气过滤器的滤芯为壁流式陶瓷过滤器，尾气过滤器的排气管 3 上连接有电动阀 5，在排气管和电动阀之间的排气管和前连通有具有一定阻力系数的压力参比管 4，在进气管上装有第一压力传感器 61，在靠近压力参比管的进口位置的排气管和后连通有第二压力传感器 62。

[0015] 所述的压力参比管的阻力系数为所述的尾气过滤器达再生点时的阻力系数的 10%至 100%。所述的压力参比管的阻力系数可通过改变压力参比管的直径或长度来调整获得。

[0016] 对尾气过滤时电动阀打开，尾气从陶瓷过滤器流出后，经电动阀和压力参比管中进入大气，电动阀的口径足够大其阻力系数可视为 0；测量再生点时，电动阀关闭，尾气从陶瓷过滤器和压力参比管中顺序流出进入大气，流经陶瓷过滤器和压力参比管的尾气的流量相同，在陶瓷过滤器上产生的压力与在压力参比管上产生的压力成一比例关系。

[0017] 本装置的测量步骤是：

压力采样：即关闭电动阀，通过第一压力传感器测量进气管中的压力值 P0；通过第二压力传感器测量压力参比管上压力值 P2；

比值计算：即计算尾气过滤器的压力值 P1 与压力参比管的压力值 P2 的比值 K，尾气过滤器的压力值 P1 为进气管的压力值 P0 与压力参比管的压力值 P2 之差，
P1 = P0 − P2；
K = P1/P2；

再生点判断：即将比值 K 与一设定值 K’ 比较，如果 K ≅ K’ 表明尾气过滤器达再生点；发出需要再生的提示信号，再生点测量过程结束；如果 K < K’ 则等待一段时间继续过滤，然后从压力采样步骤开始继续重复上述方法过程；在所述的过滤时间内尾气过滤器中的颗粒会不断增多，压力值 P1 也相应地增大。

[0018] 所述的过滤时间可人为设定为 2～5 分钟，也可自动设定。

[0019] 上述步骤结束后，打开电动阀，尾气从电动阀和压力参比管中流出，以减小内燃机的排气阻力。

[0020] 试验表明当所述的压力参比管的阻力系数为所述的尾气过滤器达再生点时的阻力系数的 80% 至 100%，再生点的测量误差可小于 5%，但在测量过程中消耗的燃油较大；当所述的压力参比管的阻力系数为所述的尾气过滤器达再生点时的阻力系数的 10% 至 20%，在测量过程中消耗的燃油较少，但再生点的测量误差可达 10%；总之当所述的压力参比管的阻力系数为所述的尾气过滤器达再生点时的阻力系数的 10% 至 100% 时都能够满足过滤器可靠再生的要求。

[0021] 上述的压力测量与再生点的判断由一压力检测仪 8 自动完成。图 2 为压力检测仪 8 的结构方框图，压力检测仪 8 主要包括单片机系统、驱动电动阀的功放器，第一压力传感器、第二压力传感器、第一温度传感器、第二温度传感器的输出端分别与单片机系统中对应的输入端相连，单片机系统的输出端与功放器的输入端连接，功放器的输出端接电动阀；单片机系统中设有程序，该程序流程图见图 3 所示，现说明如下：

a. 关闭电动阀；
b. 测量进气管中的压力值 P0、压力参比管上压力值 P2；
c. 计算尾气过滤器上压力值 P1，P1 = P0 − P2；
d. 计算比值 K，K = P1/P2；
e. 再生点判断，如果比值 K < 设定值 K’ 则执行 f 步骤即打开电动阀、执行 g 步骤即等待一段过滤时间，然后继续重复 a、b、c、d、e 步骤；如果比值 K ≅ 设定值 K’ 说明尾气过滤器达再生点则发出再生信号、打开电动阀，再生点测量判断过程结束。

[0022] 在 g 步骤中所述的等待一段过滤时间，可预设为 2～5 分钟，也可调用一段子程序 g’来自动调整时间段长，图 4 为子程序 g’的流程图，现说明如下：

a’. 定时 0.1 秒～1 秒测量进气管的压力值 P’；
b’. 对压力值 P’ 做累加运算；
c’. 如果压力 P’ 的累加值 ≥ 设定值 Σ P，表明所等待的时间到，该子程序结束；如果压力 P’ 的累加值 < 设定值 Σ P 则转 a’ 步骤。

[0023] 其原理是，所述的压力值 P’ 在过滤初期较小，其累加值达设定值 Σ P 所需的时间较长；随过滤时间的增加过滤器中的颗粒积累增多，压力值 P’ 也相应地增大，其累加值达设定值 Σ P 所需的时间较短；这样过滤初期可以将再生点测量的间隔时间放长，以便及时地判断出再生点。
图 3

图 4