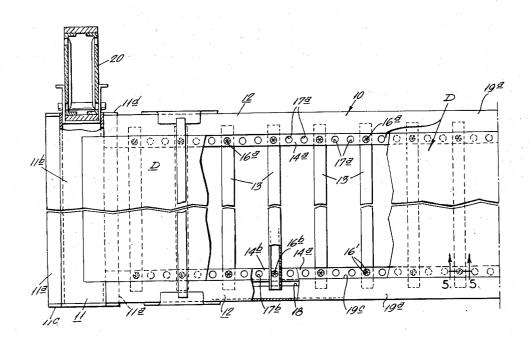
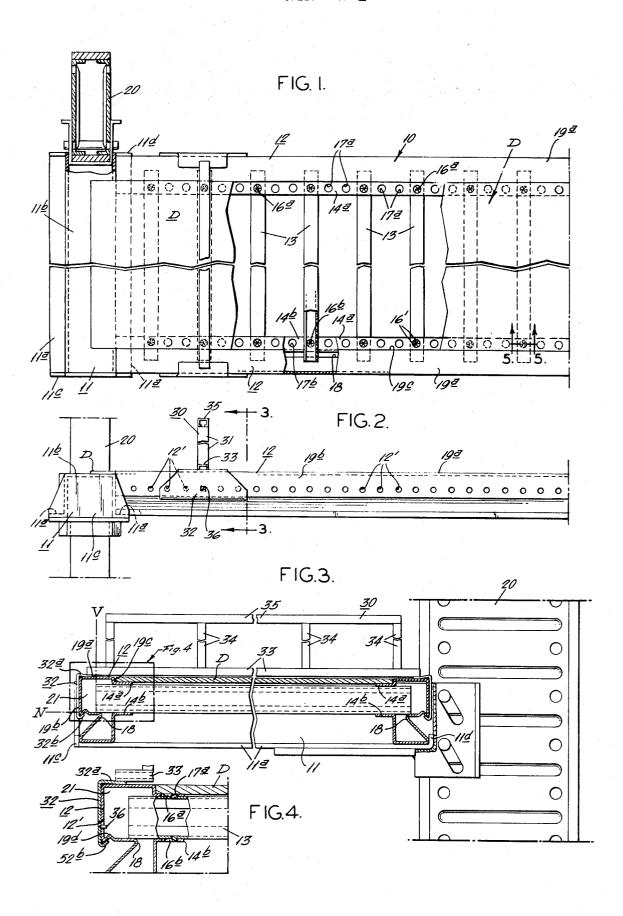
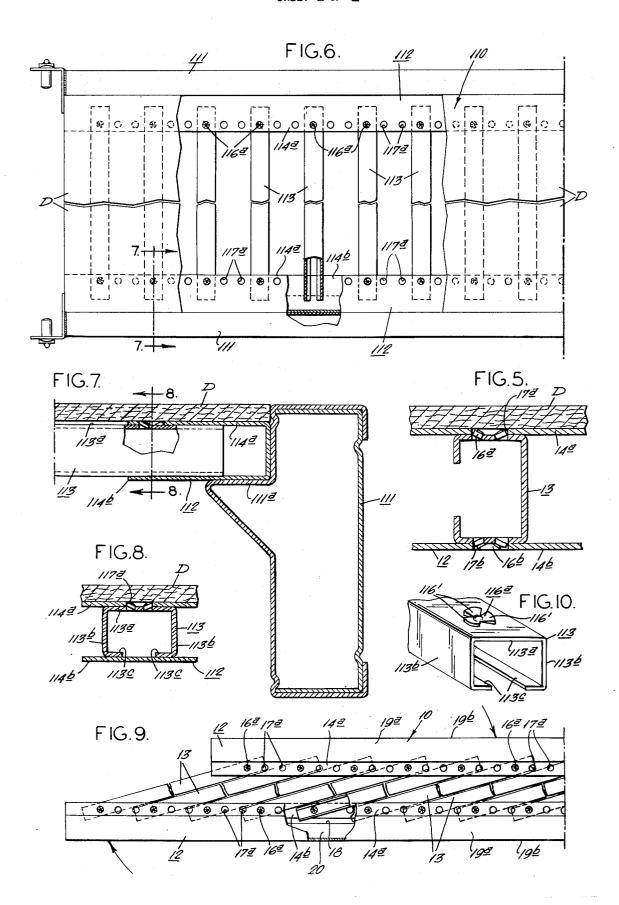
[54]	FOLDING	BED FOR A STORAGE RACK
[76]	Inventor:	Edward A. Seiz, 136 E. Third St., Lansdale, Pa.
[22]	Filed:	Apr. 27, 1972
[21]	Appl. No.	248,085
[52] [51]	Int. Cl	
[58]	211/148	earch

[56]	References Cited				
	UNITED	STATES PATENTS			
593,758	11/1897	Alden	211/43		
3.173,708	3/1965	Machielse et al	211/184 X		
3,298,538	1/1967	Ganz et al	211/184		
3,463,325	8/1969	Zagotta et al	211/148		
3,465,893	9/1969	Kinney	211/149 X		
3,501,019	3/1970	Armstrong et al	211/184		
3,545,626	12/1970	Seiz	211/176		
3,550,785	12/1970	Seiz	211/176		
3 587 483	6/1971	Konstant	211/177 X		


3,703,9	964	11/1972	Field	211/184
3,703,9	964	11/1972	riela	211/1


Primary Examiner—Ramon S. Britts Attorney—Dexter N. Shaw et al.

[57] ABSTRACT


A folding bed is provided for use in supporting load materials between parallel horizontal load-bearing elements in a storage rack. The bed comprises a pair of elongated beams which are disposed in spaced parallel relation, and a series of support members span in spaced parallel relation between the beams. The support members are pivotally fastened at their ends to the beams so that the bed may be folded into a compact parallelogram-like configuration for shipment. In one embodiment, the ends of the beams are supported on arms extending outwardly from spaced upstanding columns in a cantilever rack; in another embodiment, the beams are supported along their lengths by underlying load-bearing elements. An upstanding divider which is capable of being releasably mounted onto the load beams by means of clips is also provided.

16 Claims, 10 Drawing Figures

SHEET 2 OF 2

FOLDING BED FOR A STORAGE RACK

The present invention relates to storage structures, and more particularly, the present invention relates to beds for supporing load materials in storage racks and to dividers for separating load materials stored in the 5 racks.

At present, the load beds in some conventional storage structures are provided by means of a series of support members which span in parallel relation between bers are usually fastened at their ends to the beams by means of bolts or the like to prevent them from disengaging the beams, or from becoming disarrayed thereon. Because the amount of labor required to bolt beams, conventional storage structures are not as readily and inexpensively erected as desired.

If assembled at the factory to avoid the extra cost and inconvenience of assembly at the site, the cost to ship the structures from the factory to the place of erection 20 is an important factor in determining the ultimate cost of the rack to the purchaser. The use of integrated boxshaped elements provides structures having relatively high strength to weight ratios, resulting in relatively low manufacturing costs. However, because such structural 25 elements have greater volume to weight ratios, it is possible for a truck in which the elements are shipped to be at its volumetric capacity while being well below its weight capacity. Thus, more trucks, or a greater volumetric portion of a single truck, is required to ship the 30 integrated structural elements, and the cost advantages realized by the use of shaped structural elements tends to be offset, if not diminished, by increased shipping

In warehousing planar articles such as card tables and 35 the like, it is desirable for the articles to be stacked on edge in storage racks in order to facilitate loading and unloading of the articles. In addition, it is desirable for the articles to be inclined between the dividers. Although there may be in existence racks having welded or otherwise permanently secured dividers, there is no known divider which is capable of being readily mounted onto and dismounted from a storage rack with a minimum of skilled labor and special tools. Accordingly, a divider which possesses these features and 45 which is economical to manufacture, yet rugged in construction, is highly desirable.

With the foregoing in mind, it is a primary object of the present invention to provide a novel bed for use in supporting load materials in a storage rack.

It is another object of the present invention to provide for a storage rack an improved load bed which may be erected in an expeditious manner with a minimum of labor.

As another object, the present invention provides a unique load bed which is capable of being folded into a compact configuration for shipment and unfolded into a rigid and strong structure for use as a support in a storage rack.

It is a still further object of the present invention to provide a divider which is capable of being readily mounted onto and dismounted from a storage rack with a minimum of skilled labor and special tools.

More specifically, in the present invention, a folding 65 bed is provided for supporting load materials in a storage rack. The bed comprises a pair of parallel load beams of one-piece rolled-metal construction and a se-

ries of load-supporting members spanning in parallel relation between the beams. Each load beam has longitudinally-extending flange means which receives the ends of the support members, and interengaging pairs of bosses and apertures are provided in the flange means and the support members to mount the ends of the members to pivot relative to the beams. Each beam is shaped to provide an interior recess spaced from the flange means for receiving the ends of the support major load beams in the structures. The support mem- 10 members, and each beam is shaped to have ledge means which underlies and engages the undersides of the support members in the recess to support the ends of the members inside the beams. With this structure, the bed may be folded into a compact shipping configuthe usually large number of support members to the 15 ration and may be unfolded readily for mounting in a rack at the erection site.

A divider which is capable of being mounted onto the load beams includes an upstanding partition and a pair of clips carried in spaced relation at the base of the partition for releasably engaging the load beams. The clips are elastically mounted onto the partition and have latches which engage in bight portions on the beams. The clip latches extend in opposite directions away from the partition to enable the partition to resist loads normal to its plane. In addition, there is provided tongue means on the clips engaging in apertures in the beams to prevent displacement of the clips along the beams.

These and other objects, features and advantages of the present invention should become apparent from the following description when taken in conjunction with the accompanying drawings in which:

FIG. 1 is a fragmentary, plan view of a cantilevertype storage rack having a support bed embodying the present invention and a divider associated with the support bed;

FIG. 2 is a fragmentary, front elevational view of the rack of FIG. 1;

FIG. 3 is an enlarged sectional view taken along line -3 of FIG. 2;

FIG. 4 is an enlarged fragmentary view of the portion enclosed by broken lines of the structure illustrated in

FIG. 5 is an enlarged sectional view taken along line 5-5 of FIG. 1;

FIG. 6 is a fragmentary plan view of another type of storage rack in which a modified embodiment of the support bed of FIG. 1 is mounted;

FIG. 7 is an enlarged sectional view taken along line 7-7 of FIG. 6;

FIG. 8 is a sectional view taken along line 8-8 of

FIG. 9 is a plan view similar to the view of FIG. 6 but illustrating the support bed of FIG. 1 in its folded, shipping configuration; and

FIG. 10 is a fragmentary perspective view of one of the bosses providing a pivot connection between elements of the disclosed support bed.

Referring now to the drawings, there is illustrated in FIG. 1 a folding bed 10 embodying the present invention. As seen therein, the bed 10 is in its unfolded configuration, and a deck D such as a layer of plywood or the like rests on the bed 10 for supporting load materials. In the present instance, the bed 10 is rectangular and spans between parallel horizontally-disposed loadbearing arm-like elements, such as the element 11 which extends widthwise of the bed 10 at one end. The

4

element 11 extends outwardly in cantilever fashion from an upstanding column 20 in a storage structure such as disclosed in my U.S. Pat. Nos. 3,545,626 and 3,550,785. In these patented racks, a series of arms extend outwardly at vertically-spaced intervals from their support column, and adjacent columns in the storage structure are connected by bracing. Although the present invention has particular utility in conjunction with my patented cantilever racks, it should be apparent that it is equally useful in other types of rack structures 10 where a flat bed is desired for supporting load materials, such as in racks having parallel load-bearing elements spanning between uprights.

According to the present invention, the bed 10 is capable of being folded into a compact configuration 15 (FIG. 9) for shipment from a factory and is capable of being unfolded and mounted in a rack at an erection site in an expeditious manner and with a minimum of labor. To this end, the bed 10 comprises a pair of elongated load beams 12,12 disposed in spaced parallel re- 20 lation and a series of channel-shaped support members 13,13 (FIG. 5) spanning in spaced parallel relation transversely to and between the load beams 12,12. As illustrated in FIG. 1, the ends of the load beams 12.12 are supported on the cantilever element 11, and the el- 25 ement 11 is shaped to securely fasten the bed 10 in the rack without the necessity of employing separate fastening means. In the present instance, the element 11 has an inverted U-shaped cross section with outturned bottom flanges 11a,11a on which the ends of the beams 30 12,12 rest. The flanges 11a,11a are spaced below the top 11b of the element 11 a sufficient distance to cause a widthwise margin of the decking D to rest on the top 11b of the element 11. The bed 10 is secured against outward lateral movement by means of a verticallydisposed trapezoidal-shaped end plate 11c (FIGS. 2 and 3) fastened to the outer end of the element 11 and disposed transversely to the flanges 11a,11a. The bed 10 is secured against inward lateral movement by means of an upturned tongue 11d on the inner ends of 40each outturned flange 11a. With this structure, the bed 10 is securely fastened in the rack structure without the necessity of separate fasteners.

In order to enable the bed 10 to be folded into its compact shipping configuration, each support member 13 is pivotally connected adjacent its ends to the load beams 12,12. In the present instance, the pivotal connections are provided by means of a pair of horizontally-extending upper and lower flanges 14a and 14b respectively, which extend longitudinally on each beam 12 in vertically-spaced relation and which engage the support members 13,13 therebetween. As best seen in FIGS. 4 and 5, a pair of vertically-aligned apertures 17a and 17b are provided in the flanges 14a and 14b, respectively, and the apertures are engaged by similarly-aligned bosses or so-called "rose-buds" 16a and 16b located adjacent the ends of the support members 13,13. In the illustrated embodiment, each boss, such as the upper boss 16a, (FIG. 4) has ears struck upwardly from the support member 13 with curved edges mating with the curved edges of the circular aperture 17a in the upper flange 14a. The boss 16a is identical to the boss 116a illustrated in FIG. 10, and as may be seen therein, each boss has three ears 116' providing 65 the curved edges. With this structure, interengagement of the curved edges prevents lateral movement of the support members 13,13 relative to the load beams

12,12 while providing a relatively low-friction pivot connection.

The bed 10 is of strong but lightweight construction. To this end, each load beam 12 is of hollow, one-piece, rolled-metal construction and mounts the ends of the support members 13,13 in its interior. The beam 12 is shaped in such a manner as to be loaded in a zone at substantially its vertical median V and at substantially its neutral bending axis N. As best seen in FIGS. 3 and 4, the beam 12 has an inwardly-extending indentation 18 which forms an interior ledge for supporting the ends of the support members 13,13. The indentation 18 extends leftward toward the flanges 14a and 14b and slightly beyond the vertical median V of the beam 12, and the indentation 18 is located in a horizontal plane extending substantially through the neutral bending axis N of the beam 12. The ends of the support members 13,13 extend into the beam 12 from the flanges 14a and 14b to terminate at about the vertical median V. Thus, when the bed 10 is being folded into or unfolded from its shipping configuration the ends of the support members 13,13 engage the ledge 18 through only the last few degrees of relative pivotal movement. In this manner, frictional resistance to folding and unfolding is reduced to a minimum. Moreover, the ledge provided by the indentation 18 accepts substantially the entire load carried by the support members 13,13 so that the flanges 14a and 14b are virtually unstressed, and the beams 12,12 are not torqued on their longitudinal axes when the bed 10 is loaded.

In order to ensure positive interengagement of the bosses 16a and 16b in the apertures 17a and 17b, each beam 12 has an inverted L-shaped web with horizontally and vertically extending portions 19a and 19b, respectively. In the illustrated embodiment, the portions 19a and 19b form a recess 21 for receiving the ends of the support members 13,13 thereby protecting the ends from possible damage both during shipment and when installed in a rack. The horizontal portion 19a has a downward offset 19c, and the upper flange 14a is turned outwardly from the offset 19c. The depth of the offset is dimensioned to dispose the upper surface of the decking D substantially coplanar with the horizontal portion 19a of the beam-web. With this structure, the edge of the decking D is protected against possible damage, for example, during loading and unloading of the load materials by means of lift trucks.

The bed 10 is capable of being tailored to accept various load materials and to suit various load conditions. To this end, the bed 10 is constructed in a manner which permits a greater or lesser number of support members 13,13 to be mounted readily to the load beams 12,12 depending on the desired load capacity of the bed 10. For this purpose, as best seen in FIG. 1, the upper and lower flanges 14a and 14b are provided with a series of apertures 17a and 17b, respectively, located at spaced intervals along the length of the beam 12. Preferably, the apertures are spaced relatively-closely at intervals of 3 to 6 inches. The support members are of one-piece, rolled metal construction and have Cshaped transverse cross-sections, and the bosses 16a and 16b are punched therein. During manufacture, the load beams 12,12 are supported in fixtures, and the flanges 14a and 14b are spread apart for accepting the ends of the support members 13,13 and effecting the required pivotal connections. However, should it be de-

sirable to increase the load capacity of the bed 10 at the erection site, the flanges 14a and 14b may be spread apart and the support members 13,13 may be slipped between the flanges 14a and 14b for mounting the additional support members.

A modified embodiment of the load-bed may be installed satisfactorily in another type of rack, such as the rack illustrated in FIG. 6 and 7. As best seen therein, the rack has a pair of horizontally-disposed rackelements 111,111, each of which has a lip 111a,111a 10 for supporting a load beam 112 along its entire length. Preferably, the lip 111a is located below the top of the rack element 111 a distance sufficient to cause the top of the deck D to be disposed at or slightly below the top of the rack-element 111. Thus, each rack-element 111 15 projects above the lip 111a to engage an unconnected side of the load beam 112 to provide a means for preventing inadvertent disengagement of the bed 10 from the rack.

In the illustrated embodiment, the load beam 112 in- 20 cludes a U-shaped member having horizontally disposed legs defining upper and lower flanges 114a and 114b, respectively. As in the aforedescribed embodiment, the support members 113, 113 (FIG. 6) extend widthwise of the bed 110, and engage at their ends be- 25 tween the flanges 114a and 114b. As best seen in FIG. 8, the support members are of one-piece, rolled-metal construction and have a C-shaped cross-section with a horizontally-extending portion 113a of a dimension greater than the dimension of its portions 113b,113b 30 extending vertically between the flanges 114a and 114b. The bottom of the support member 113 has inturned flanges 113c,113c which are coextensive in with its horizontal portion 113a engaging the underside of the upper flange 114a. As in the aforedescribed embodiment, pivotal mounting is provided by means of a boss 116a (see FIG. 10) located in the horizontal portion 113a and engaging in an aperture 117a in the upper flange 114a. It is noted that in this embodiment, pairs of aligned bosses and apertures are unnecessary since the horizontal orientation of the support member 113 between the flanges 114a and 114b affords adequate resistance of the member to torquing on its longitudinal axis.

As noted heretofore, it is desirable for planar articles such as boxed card tables and the like to be stored on edge in a storage rack. In order to maintain the articles in an upright position, it is desirable to provide dividers against which the articles may be inclined, and to provide storage flexibility, it is desirable for the dividers to be readily moved into different positions on the racks and to be readily mounted onto and dismounted from the storage racks with a minimum of special tools or skilled labor.

In accordance with the present invention, there is provided a divider 30 which possesses all of the aforementioned advantages. As best seen in FIGS. 1 and 3, the divider 30 comprises upstanding planar partition or barrier means 31 which intersects the bed at a right angle, and clip means 32,32 carried in spaced relation on the base of the partition 31 for releasably mounting the divider onto the bed 10 of the illustrated storage rack. In the present instance, the partition 31 includes a base member 33 extending transversely to the load beams 12,12 and a series of upstanding posts 34,34 welded or

otherwise secured at their bottoms to the base member 33. A rail 35 is secured across the tops of the posts. For purposes of illustration, the posts 34,34 are vertically foreshortened, it being understood that the posts can be of any desired length commensurate with the spacing between adjacent support beds in the rack. Thus, a relatively lightweight but strong partition is provided.

The clips 32,32 securely fasten the partition 31 to the support bed 12 in a manner which enables the partition 31 to resist loads applied normal to its plane. For this purpose, as best seen in FIGS. 3 and 4, each load beam 12 is provided with a bight portion 19d which is located below the horizontal portion 19a of the beam-web and inwardly of the plane of the vertical portion 19b of the beam-web. The bight 19d is coextensive in length with the beam 12 and is formed by a downward concavity therein. Each clip 32 is fabricated from a trapezoidal plate of spring-like material (FIG. 2) which has an inturned hook portion 32a overlying the horizontal web 19a of the beam and an upturned latch portion 32b projecting into the concavity provided by the bight 19c of the beam 12. The hook 32a of the clip 32 is securely fastened to the underside of the base member 33 as by welding, in a manner which provides an elastic pivot connection to enable the spring clips 32,32 to be spread apart for mounting and dismounting the divider 30. It is noted that the latch 32b of each clip 32 extends in opposite directions away from the partition 31, and the hook 32a of each clip 32 extends similarly but to a lesser extent than the latch 32b. The interaction of the hook 32a and the latch 32b with their respectively engaged portions of each load beam causes the partition 31 to resist firmly loads applied normal to its plane by tion. Preferably, the support member 113 is installed 35 providing reacting moments. As a result, relatively vider with complete safety.

In order to prevent the divider 30 from sliding along the load beams when heavy articles are inclined against 40 it, there is provided means on each clip and means for preventing relative movement therebetween. To this end, each load beam 12 is provided with a series of apertures 12',12' extending in its vertical web 19b and along substantially the entire length of the beam. A 45 tongue 36 is struck inwardly from the clip 32, and the tongue 36 extends into a selected one of the apertures 12'. With this structure, the tongue 36 engages the edge of the beam 12 around the aperture 12' when a horizontal load is applied to the partition 31, thereby preventing relative movement between the divider 30 and the support bed. Moreover, it is noted that a clamping action is created by the reaction of the hook 32a and latch 32b portions of the clip 32 on each beam when a load is applied normal to the plane of the partition. Thus, the divider 30 is securely fastened to the load support without requiring bolts, rivets or like fasteners.

In order to mount the divider 30 onto the support bed, the divider 30 is positioned at approximately the desired location on the support bed 10. The divider 30 is then displaced downwardly relative to the bed 10, causing the clips 32,32 to spread apart. When the hooks 32a,32a of the clips 32,32 bottom against the tops of the load beams 12,12 the latches 32b,32b snap into engagement with the bight portions 19d,19d of the beams 12,12. Simultaneously, the tongues 36,36 engage in the apertures 12',12' in the beams.

It should be apparent that if it were desired to remove the divider 30 from the bed 10 or to move the divider 30 to a new position on the bed 10, the lower portion of the clips 32,32 would be spread apart, as by a screwdriver, to disengage the latches 32b,32b and tongues 5 36,36, thereby affording ready movement of the divider 30 with respect to the support bed 10. Although the divider 30 has particular utility with respect to the foldable support bed disclosed herein, it should be apparent that the divider 30 may be employed satisfacto- 10 rily with any rack structure having a pair of horizontally-disposed load beams.

In view of the foregoing, it should be apparent that there has now been provided an improved load-bed for use in a storage structure, which load-bed is capable of 15 being folded into a compact configuration for shipment and is capable of being unfolded for installation in a storage rack with a minimum of labor. A divider has also been provided for use in conjunction with a load bed in a storage structure to separate planar articles 20 in said load-carrying configuration. stacked on edge of the load bed.

While a preferred embodiment of the present invention has been described in detail, various modifications, alterations and changes may be made without departing from the spirit and scope of the present invention 25 as defined in the appended claims.

I claim:

1. A foldable support, comprising:

a pair of hollow elongated load beams disposed horizontally in spaced parallel relation,

flange means extending longitudinally on each beam, a series of support members spanning in spaced parallel relation between said load beams with the end portions of each member engaging the flange means of said beams,

means on said flange means and said end portions of said support members pivotally mounting said members to pivot about vertical axes relative to the

ledge means extending longitudinally on said beams 40 including indentations extending into said beams from locations outboard of the ends of said support members and terminating adjacent the vertical medians of said beams to engage and support the end portions of said support members in the zone of the 45 vertical medians of said load beams when said support members are disposed transversely to said load beams.

said flange means including upper and lower flanges spaced vertically from one another with said lower flange being separate from said indentation and substantially coplanar therewith,

whereby the beams and support members may be folded into nested relation with one another for shipment in a compact configuration and may be disposed in a load-carrying configuration when the support members are disposed at right angles to the load beams with their end portions engaged with the ledge means so that loads carried by the support members are transferred to the ledge means, whereby torquing of the load beams about their longitudinal axes is avoided.

2. Apparatus according to claim 1 wherein said beam has a web with horizontally and vertically disposed portions connecting said upper flange and said indentation and defining a recess for receiving the ends of said support members, said web having a downward offset from

its horizontal portion and said upper flange being turned from said offset to dispose said upper flange below the horizontal portion of said web.

3. Apparatus according to claim 1 wherein each of said support members has a substantially C-shaped transverse cross-section with vertically-spaced flanges engaging the flanges of said load beams and said pivot means including an aligned pair of bosses and apertures connecting said support and load beam flanges.

4. Apparatus according to claim 3 wherein said apertures are aligned with one another and are formed in said flange means and each of said bosses comprises curved ears struck from said support members and having edges engaging in said apertures to prevent substantial displacement of the support members relative to their associated load beams while permitting relative pivotal movement therebetween.

5. Apparatus according to claim 1 including storage rack means for supporting said foldable support when

6. A storage structure comprising: a foldable support and rack means for supporting said foldable support, said foldable support including a pair of elongated load beams disposed in spaced parallel relation, flange means extending longitudinally in spaced parallel relation on each beam, a series of support members spanning in spaced parallel relation between said load beams with the and portions of each member engaging between the flange means of said beams, means on said flange means mounting said end portions of said support members to pivot relative to the beams, a layer of decking having an edge and carried on said support members, said load beams each having a verticallydisposed portion projecting upwardly beyond said edge to protect said edge against damage, and including means to prevent inadvertent disengagement of said support from said rack means, whereby the beams and support members may be folded into nested relation with one another for shipment in a compact configuration and may be disposed in a load-carrying configuration when the support members are disposed at right angles to the load beams.

7. A storage structure comprising: a foldable support and rack means for supporting said foldable support, said foldable support including a pair of elongated load beams disposed in spaced parallel relation, flange means extending longitudinally in spaced parallel relation on each beam, a series of support members spanning in spaced parallel relation between said load beams with the end portions of each member engaging between the flange means of said beams, means on said flange means mounting said end portions of said support members to pivot relative to the beams, said rack means including a pair of arms each having an outturned flange engaging and supporting the ends of said load beams and extending transversely thereto, and means to prevent disengagement of said support from said rack means, including an end plate mounted on one end of each arm and disposed transversely to said flange and an upturned tongue on said outturned flange at the other end of said arm, whereby the support is secured against movement in the rack means.

8. A storage structure comprising: a foldable support and rack means for supporting said foldable support, said foldable support including a pair of elongated load beams disposed in spaced parallel relation, flange means extending longitudinally in spaced parallel rela-

10

tion on each beam, a series of support members spanning in spaced parallel relation between said load beams with the end portions of each member engaging between the flange means of said beams, means on said flange means mounting said end portions of said sup- 5 port members to pivot relative to the beams, said rack means including a pair of rack-elements underlying said load beams to support said load beams along their lengths, means to prevent disengagement of said support from said rack means including a lip on each rack 10 horizontally-disposed legs defining said flange means. element engaging the bottom of its associated load beam with said rack element projecting above said lip and engaging an unconnected side of said associated beam, whereby the support is secured against movement in the rack means.

9. A foldable support, comprising

a pair of elongated load beams disposed horizontally in spaced parallel relation,

flange means providing upper and lower flanges exeach beam.

a series of support members spanning in spaced parallel relation between said load beams with each member having an end portion with a flange engaging one of the flanges of said beam,

integral means struck from one of said flanges and an aperture in the other flange engaged therewith receiving said integral means, said integral means and aperture pivotally mounting said support member to the beam,

each of said load beams having web means connecting said upper and lower flanges and cooperating therewith to form a recess interiorly of each beam for receiving the end portions of the support members and protecting them from damage,

whereby the beams and support members may be folded into nested relation with one another for shipment in a compact configuration and may be disposed in a load-carrying configuration when the support members are disposed at right angles to the 40 load beams.

10. Apparatus according to claim 9 wherein said integral means is struck from said support member and said aperture is in one of said beam flanges.

11. Apparatus according to claim 9 wherein said inte- 45 gral member-mounting means includes a series of apertures spaced apart in said beam flanges with the aper-

tures in the upper beam flange being in vertical alignment with the apertures in the lower beam flange, said integral means including a pair of vertically-aligned bosses in the end portions of each of said support members, said bosses engaging in selected ones of said apertures, whereby said support members may be readily engaged with and disengaged from said load beams.

12. Apparatus according to claim 9 wherein each of said load beams include U-shaped members having

13. Apparatus according to claim 12 wherein each support member has a cross-section with a horizontally-extending portion of a dimension greater than the dimension of its portion extending vertically between 15 the flange means.

15. Apparatus according to claim 13 wherein said support member has a C-shaped cross-section with longitudinally-extending inturned flanges terminating in spaced relation, and said pivot mounting means intending longitudinally in spaced parallel relation on 20 cludes an aperture in one of said flange means and a boss in the horizontally-extending portion of the support member pivotally engaging in said aperture.

15. In combination with a folding support having a pair of load beams disposed in spaced parallel relation and a series of support members spanning between said load beams and pivotally connected thereto to permit said support to be collapsed into a compact shipping configuration, a separate elongated base member extending transversely to said beams, clip means rigidly 30 connected adjacent the ends of said base member and extending in opposite directions from said base member along said beams, each of said beams having a portion with at least one aperture and each of said clips having at least one tongue engaging in said aperture 35 when said clips are operatively engaged with said beams, whereby said base member prevents said beams from moving relative to one another.

16. Apparatus according to claim 15 wherein each of said beams has a vertically-disposed portion with a bight located therebelow and said base member overlies said beams, each of said clips includes a latch projecting upwardly to engage in said bight portion, and including partition means carried on said base member and projecting upwardly therefrom, whereby planar articles may be stacked on edge on the support and leaned against the partition.

50

55