wo 20137109451 A 1[I I 000000 R 00O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

25 July 2013 (25.07.2013)

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2013/109451 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
GO6F 9/06 (2006.01) GO6F 9/30 (2006.01)
GO6F 9/44 (2006.01) GO6T 15/00 (2006.01)

International Application Number:
PCT/US2013/020916

International Filing Date:
10 January 2013 (10.01.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/352,121 17 January 2012 (17.01.2012) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: MALAKAPALLI, Meher Prasad; c/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
ZHANG, Hao; c¢/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsott Way, Redmond, Washington
98052-6399 (US). TAN, Lin; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: PARA-VIRTUALIZED HIGH-PERFORMANCE COMPUTING AND GDI ACCELERATION

Child Partition 104

Guest Software 105

Graphics Runtime 1082

vGPU
108

Graphics
AR

Compute Shader
DDIs 107

User-Mode Driver
(UMD) 108a Legacy

User-Mode

i
|
User-Made |
Driver 1065 |
i

Command
Buffer 118

Kemel-Mede Driver (KMD) 109

Compute Shader Component 170

Kemel-Mode

Hypervisor 102

1008

T

Root Partition 103 |

i

i

|

i

i

i

|

i

i

i

|

Render Component 112 }

i

Compute Compute }
Shader Shader i

Component Commands | |

113 8 Data 117 |

i

-

i

i

i

i

i

|

i

i

|

i

|

Physical Physical
Hardware 101 GPU 102

Figure 1A

(57) Abstract: The present invention extends to methods, systems, and computer program products for para-virtualized GPGPU
computation and GDI acceleration. Some embodiments provide a compute shader to a guest application within a para-virtualized en -
vironment. A vGPU in a child partition presents compute shader DDIs for performing GPGPU computations to a guest application.
A render component in a root partition receives compute shader commands from the vGPU and schedules the commands for execu-
tion at the physical GPU. Other embodiments provide GPU-accelerated GDI rendering capabilities to a guest application within a
para-virtualized environment. A vGPU in a child partition provides an API for receiving GDI commands, and sends GDI commands
and data to a render component in a root partition. The render component schedules the GDI commands on a 3D rendering device.
The 3D rendering device executes the GDI commands at the physical GPU using a sharable GDI surface.

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

PARA-VIRTUALIZED HIGH-PERFORMANCE

COMPUTING AND GDI ACCELERATION
BACKGROUND
1. Background and Relevant Art

[0001] Computer systems and related technology affect many aspects of society.

Indeed, the computer system’s ability to process information has transformed the way we
live and work. Computer systems now commonly perform a host of tasks (e.g., word
processing, scheduling, accounting, etc.) that prior to the advent of the computer system
were performed manually. More recently, computer systems have been coupled to one
another and to other electronic devices to form both wired and wireless computer networks
over which the computer systems and other electronic devices can transfer electronic data.
Accordingly, the performance of many computing tasks is distributed across a number of
different computer systems and/or a number of different computing environments.

[0002] Some computer systems are configured to provide para-virtualized execution
environments, which allow guest software to share hardware devices of a single computer
system in an isolated manner. Generally, para-virtualized execution environments provide
a plurality of partitions, supported by a hypervisor. The partitions provide isolation
between different guest software. The partitions generally include a root partition and one
or more child partitions. The root partition runs a host operating system and manages a
virtualization stack. The root partition may gain access to physical devices. Each child
partition hosts guest software (e.g., guest operating systems and guest applications). Child
partitions are provided access to physical devices through virtual devices and software
interfaces of the hypervisor.

[0003] Some para-virtualized execution environments provide child partitions (and guest
software executing therein) with para-virtualized access to one or more physical graphics
processing units (“GPUs”). Generally, each implementation of para-virtualized access to
physical GPUs supports particular three-dimensional rendering framework(s). As such,
guest software may be unable to access capabilities of a physical GPU if that guest
software is executing within a para-virtualized execution environment that does not
support those capabilities. In some cases, the guest software may rely on using a
virtualized CPU to perform tasks not supported para-virtualized access to a physical GPU,

incurring a potentially significant performance penalty.

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

BRIEF SUMMARY

[0004] The present invention extends to methods, systems, and computer program
products for providing high-performance computing and graphics device interface
(“GDI”) acceleration in a para-virtualized environment.

[0005] Some embodiments include a method for providing graphics processing unit
(“GPU”) accelerated computing functionality to a guest application executing in a child
partition of a para-virtualized execution environment. A virtual machine session is
instantiated. A hypervisor in the virtual machine session provides (i) a root partition
(which has access to a physical GPU), and (ii) the child partition (which executes the guest
application).

[0006] A virtualized graphics processing unit (“vGPU”) executing within the child
partition is presented to the guest application. A user-mode driver (“UMD”) of the vGPU
presents compute shader device driver interfaces (“DDIs”) to the guest application. The
compute shader DDIs provide an application programming interface (“‘API”) that enables
the guest application to send compute shader commands to the vGPU. The compute
shader commands are used to perform general-purpose graphics processing unit
(“GPGPU”) computations at the physical GPU using a compute shader. A render
component executing within the root partition receives a physical GPU-specific compute
shader command from the vGPU, and schedules the command for execution at the
physical GPU.

[0007] Additional embodiments include a method for providing GPU-accelerated GDI
functionality to a guest application executing in a child partition of a para-virtualized
execution environment. A virtual machine session is instantiated. A hypervisor in the
virtual machine session provides (1) a root partition having access to a physical GPU, and
(1) the child partition which executes the guest application.

[0008] A vGPU, which executes within the child partition, is presented to the guest
application. An API of a kernel-mode driver (“KMD”) of the vGPU enables the guest
operating system to accelerate GDI rendering commands submitted by a guest application.
These commands are then processed by the KMD of the vGPU.

[0009] A render component executing within the root partition receives a GDI
acceleration rendering command from the vGPU. In response, the render component
schedules the GDI acceleration rendering command on a GDI composition device within
the root partition. The GDI composition device is configured to execute the GDI

acceleration rendering command at the physical GPU. The GDI composition device

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

marks a GDI surface corresponding for the GDI command as sharable for composition by
the desktop.

[0010] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.
[0011] Additional features and advantages of the invention will be set forth in the
description which follows, and in part will be obvious from the description, or may be
learned by the practice of the invention. The features and advantages of the invention may
be realized and obtained by means of the instruments and combinations particularly
pointed out in the appended claims. These and other features of the present invention will
become more fully apparent from the following description and appended claims, or may
be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] In order to describe the manner in which the above-recited and other advantages
and features of the invention can be obtained, a more particular description of the
invention briefly described above will be rendered by reference to specific embodiments
thereof which are illustrated in the appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not therefore to be considered to
be limiting of its scope, the invention will be described and explained with additional
specificity and detail through the use of the accompanying drawings in which:

[0013] Figure 1A illustrates an example computer architecture that enables para-
virtualized access to compute shader functionality of physical graphics processing unit
(“GPU”) hardware.

[0014] Figure 1B illustrates an example computer architecture that enables para-
virtualized graphics device interface (“GDI”) acceleration by physical GPU hardware.
[0015] Figure 1C illustrates an example computer architecture that enables para-
virtualized access to compute shader functionality and para-virtualized GDI acceleration
by physical GPU hardware.

[0016] Figure 2A illustrates a flow chart of an example method for providing GPU-
accelerated computing functionality to a guest application executing in a child partition of

a para-virtualized execution environment.

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

[0017] Figure 2B illustrates a flow chart of an example method for providing GPU-
accelerated GDI functionality to a guest application executing in a child partition of a
para-virtualized execution environment.

DETAILED DESCRIPTION

[0018] The present invention extends to methods, systems, and computer program
products for providing high-performance computing and graphics device interface
(“GDI”) acceleration in a para-virtualized environment.

[0019] Some embodiments include a method for providing graphics processing unit
(“GPU”) accelerated computing functionality to a guest application executing in a child
partition of a para-virtualized execution environment. A virtual machine session is
instantiated. A hypervisor in the virtual machine session provides (i) a root partition
(which has access to a physical GPU), and (ii) the child partition (which executes the guest
application).

[0020] A virtualized graphics processing unit (“vGPU”) executing within the child
partition is presented to the guest application. A user-mode driver (“UMD”) of the vGPU
presents compute shader device driver interfaces (“DDIs”) to the guest application. The
compute shader DDIs provide an application programming interface (“‘API”) that enables
the guest application to send compute shader commands to the vGPU. The compute
shader commands are used to perform general-purpose graphics processing unit
(“GPGPU”) computations at the physical GPU using a compute shader. A render
component executing within the root partition receives a physical GPU-specific compute
shader command from the vGPU, and schedules the command for execution at the
physical GPU.

[0021] Additional embodiments include a method for providing GPU-accelerated GDI
functionality to a guest application executing in a child partition of a para-virtualized
execution environment. A virtual machine session is instantiated. A hypervisor in the
virtual machine session provides (1) a root partition having access to a physical GPU, and
(1) the child partition which executes the guest application.

[0022] A vGPU, which executes within the child partition, is presented to the guest
application. An API of a kernel-mode driver (“KMD”) of the vGPU enables the guest
operating system to accelerate GDI rendering commands submitted by a guest application.
These commands are then processed by the KMD of the vGPU.

[0023] A render component executing within the root partition receives a GDI

acceleration rendering command from the vGPU. In response, the render component

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

schedules the GDI acceleration rendering command on a GDI composition device within
the root partition. The GDI composition device is configured to execute the GDI
acceleration rendering command at the physical GPU. The GDI composition device
marks a GDI surface corresponding for the GDI command as sharable for composition by
the desktop.

[0024] Embodiments of the present invention may comprise or utilize a special purpose
or general-purpose computer including computer hardware, such as, for example, one or
more processors and system memory, as discussed in greater detail below. Embodiments
within the scope of the present invention also include physical and other computer-
readable media for carrying or storing computer-executable instructions and/or data
structures. Such computer-readable media can be any available media that can be
accessed by a general purpose or special purpose computer system. Computer-readable
media that store computer-executable instructions are computer storage media (devices).
Computer-readable media that carry computer-executable instructions are transmission
media. Thus, by way of example, and not limitation, embodiments of the invention can
comprise at least two distinctly different kinds of computer-readable media: computer
storage media (devices) and transmission media.

[0025] Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM,
solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory
(“PCM?), other types of memory, other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store desired
program code means in the form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special purpose computer.

[0026] A “network” is defined as one or more data links that enable the transport of
electronic data between computer systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.
Transmissions media can include a network and/or data links which can be used to carry
desired program code means in the form of computer-executable instructions or data
structures and which can be accessed by a general purpose or special purpose computer.
Combinations of the above should also be included within the scope of computer-readable

media.

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

[0027] Further, upon reaching various computer system components, program code
means in the form of computer-executable instructions or data structures can be
transferred automatically from transmission media to computer storage media (devices)
(or vice versa). For example, computer-executable instructions or data structures received
over a network or data link can be buffered in RAM within a network interface module
(e.g., a “NIC”), and then eventually transferred to computer system RAM and/or to less
volatile computer storage media (devices) at a computer system. Thus, it should be
understood that computer storage media (devices) can be included in computer system
components that also (or even primarily) utilize transmission media.

[0028] Computer-executable instructions comprise, for example, instructions and data
which, when executed at a processor, cause a general purpose computer, special purpose
computer, or special purpose processing device to perform a certain function or group of
functions. The computer executable instructions may be, for example, binaries,
intermediate format instructions such as assembly language, or even source code.
Although the subject matter has been described in language specific to structural features
and/or methodological acts, it is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described features or acts described
above. Rather, the described features and acts are disclosed as example forms of
implementing the claims.

[0029] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including, personal computers, desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, mainframe computers, mobile
telephones, PDAs, tablets, pagers, routers, switches, and the like. The invention may also
be practiced in distributed system environments where local and remote computer
systems, which are linked (either by hardwired data links, wireless data links, or by a
combination of hardwired and wireless data links) through a network, both perform tasks.
In a distributed system environment, program modules may be located in both local and
remote memory storage devices.

Para-Virtualized Compute Shader (GPGPU) Functionality

[0030] Figure 1A illustrates an example computer architecture 100a that enables para-
virtualized access to compute shader functionality of physical GPU hardware. Referring

to Figure 1A, computer architecture 100a includes physical hardware 101. Physical

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

hardware 101 can include any appropriate hardware devices, such as one or more general
purpose processors, system memory, and the like. As depicted, physical hardware
includes at least one physical GPU 101a.

[0031] Physical GPU 101ais a processing device configured to perform parallel
processing tasks, such as graphics rendering. Physical GPU 101a includes support for
executing a compute shader, which enables physical GPU 101a to perform general-
purpose (i.e., non-graphics rendering) calculations. In other words, physical GPU 101a
supports GPGPU computation on a compute shader device.

[0032] Computer architecture 100a also includes hypervisor 102. Hypervisor 102
executes on top of physical hardware 101 and supports a virtualization platform. The
virtualization platform provides a plurality of partitions. Each partition provides a logical
unit of isolation, in which guest software can be executed. For example, computer
architecture 100a includes root partition 103 and child partition 104.

[0033] Root partition 103 executes a host operating system, and has direct access to
physical hardware 101 (as depicted by root partition 103 appearing over physical hardware
101). Each child partition provides an execution environment for executing guest software
(e.g., operating systems and/or applications) and may access physical hardware 101
indirectly in a para-virtualized manner. That is, through hypervisor 102, each child
partition provides one or more software interfaces (e.g., virtualized hardware) to guest
software. The guest software, in turn, uses the software interface(s) to access physical
hardware 101. Hypervisor 102 can provide support for a plurality of child partitions.
[0034] As depicted, guest software 105 executes within child partition 104. Guest
software 105 comprises any appropriate guest software, such as an operating system
and/or an application program executing within an operating system. Guest software 105
includes or uses graphics runtime 105a. Graphics runtime 105a provides a framework
(e.g., APIs) for rendering graphics and/or performing GPGPU computation.

[0035] Child partition 104 provides guest software 105 access to vGPU 106. vGPU 105
virtualizes physical GPU 101a, enabling guest software 105 to indirectly access physical
GPU 101a. As such, vGPU 106 is configured to expose all, or a subset, of the
functionality of at least one rendering framework (corresponding to graphics runtime
105a) to guest software 105, along with any corresponding functionality of physical GPU
101a.

[0036] In particular, vGPU 106 is configured to expose one or more software interfaces

that enable guest software 105 to call vGPU 106 to access compute shader functionality of

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

physical GPU 101a for performing GPGPU computation at physical GPU 101a. vGPU
106, in turn, works in conjunction with a render component in root partition 103 to
perform compute shader functionality on physical GPU 101a. As depicted, for example,
root partition 103 includes render component 112. Render component 112, in turn,
includes compute shader component 113 for handing compute shader commands and data.
vGPU 106 remotes compute shader commands and data 117 to render component 112 to
perform the rendering on physical GPU 101a.

[0037] Render component 112 schedules any graphics commands received from vGPU
106 for execution on physical GPU 101a. Render component 112 also creates proper
context for executing those commands. As such, render component 112 is configured to
use compute shader component 113 to schedule execution of compute shader-related
commands that are received from vGPU 106 in child partition 104 on physical GPU 101a.
[0038] As depicted, vGPU 106 includes user-mode driver 106a executing in a user-
mode of child partition 104 and kernel-mode driver 109 executing in a kernel-mode of
child partition 104. User-mode driver 106a exposes device driver interfaces (“DDIs”) of
at least one rendering framework, including DDIs related to compute shader (GPGPU)
functionality, depicted as compute shader DDIs 107. Compute shader DDIs 107 enable
guest software 105 to make calls to vGPU 106 for performance of GPGPU computations.
[0039] In some embodiments, user-mode driver 106b exposes DDIs of a rendering
framework that supports compute shader functionality (e.g., DirectX® versions 10 and/or
11 from Microsoft® Corporation). For example, in embodiments when user-mode driver
106a exposes compute shader functionality of DirectX® versions 10 and 11, user-mode
driver 106a may expose the one or more of the following DDIs as part of compute shader

DDIs 107:

PFND3D11DDI_SETSHADER_WITH_IFACES pfnCsSetShaderWithIfaces
PFND3D16DDI_SETSHADER pfnCsSetShader
PFND3D16DDI_SETSHADERRESOURCES pfnCsSetShaderResources
PFND3D16DDI_SETSAMPLERS pfnCsSetSamplers
PFND3D16DDI_SETCONSTANTBUFFERS pfnCsSetConstantBuffers
PFND3D11DDI_SETUNORDEREDACCESSVIEWS pfnCsSetUnorderedAccessViews

In some embodiments, user-mode driver 106b presents all DDIs of a rendering framework
that supports compute shader functionality (e.g., DirectX® version 11), such as DDIs

related to one or more of a domain shader, a hull shader, or a geometry shader. However,

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

user-mode driver 106b may expose any set of DDIs from any rendering framework
supporting compute shader functionality.

[0040] In some embodiments, vGPU 106 may also include legacy user-mode driver
106b executing in user-mode of child partition 104. Legacy user-mode driver 106b may
expose DDIs of a legacy version of one or more rendering frameworks. For example,
legacy user-mode driver 106b may support a legacy version of DirectX® (e.g., DirectX®
version 9), or a legacy version any other rendering framework (e.g., OpenGL® from
Silicon Graphics, Inc.).

[0041] Generally, user-mode driver 106a is configured to construct hardware contexts
and command buffers. In particular, user-mode driver 106a converts graphic commands
issued by guest software 105 (or graphics runtime 105a of guest software 105) into
hardware-specific commands. For example, user-mode driver 106a may receive graphics
commands 115 relating to GPGPU computations using a compute shader from guest
software 105. User-mode driver 106a is configured to convert graphics commands 115
into hardware-specific commands (i.e., commands that are specific to physical GPU 101a).
As part of the conversion, user-mode driver 106a maintains proper hardware context for
physical GPU 101a. For example, user-mode driver 106a translates logical values for
settings affecting a graphics pipeline into values and corresponding physical settings.
User-mode driver 106a is also configured to store converted hardware-specific commands
in command buffer 116 and send command buffer 115 to kernel-mode driver 109.

[0042] In addition, vGPU 106 includes kernel-mode driver 109 executing in kernel-
mode of child partition 104, which includes compute shader component 110. Kernel-
mode driver 109 is configured to receive command buffers (e.g., command buffer 116)
and to construct corresponding direct memory access (“DMA”) buffers. When it is time
for a DMA buffer to be processed, a GPU scheduler calls kernel-mode driver 109. Kernel-
mode driver 109 then handles the specifics of actually submitting the DMA buffer to
physical GPU 101a.

[0043] Figure 2A illustrates a flow chart of an example method 200a for providing
GPU-accelerated computing functionality to a guest application executing in a child
partition of a para-virtualized execution environment. Method 200a will be described with
respect to the components and data of computer architecture 100a.

[0044] Method 200a includes an act of instantiating a virtual machine session, including
instantiating a hypervisor that provides (i) a root partition having access to the physical

GPU, and (i1) the child partition which executes the guest application (act 201). For

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

example, computing environment 100a can instantiate hypervisor 102 as part of
instantiating a virtual machine session. Hypervisor 102 provides root partition 103 and
child partition 104. Root partition 103 has access to physical GPU 101a. Child partition
104 executes one or more guest applications, including guest application 105, and has
indirect access to physical GPU 101a.

[0045] Method 200a also includes an act of presenting a vGPU to the guest application,
the vGPU executing within the child partition, including presenting a plurality of compute
shader DDIs to the guest application as part of a UMD of the vGPU, the plurality of
compute shader DDIs providing an API that enables the guest application to send compute
shader commands to the vGPU for performing GPGPU computations at the physical GPU
using a compute shader (act 202). For example, child partition 104 can present vGPU 106
to guest software 105. vGPU 106 includes user-mode driver 106a. User-mode driver
106a presents compute shader DDIs 107, which enable guest software 105 to call vGPU
106 to perform compute shader GPGPU calculations at physical GPU 101a. For example,
guest software 105 (or graphics runtime 105a) can send graphics commands 115 to vGPU
106 for performance of GPGPU calculations at physical GPU 101a.

[0046] User-mode driver 106a converts received graphics commands 115 to physical-
hardware specific commands (e.g., as part of command buffer 116). vGPU 106 then
remotes compute shader commands and data 117 (including physical-hardware specific
commands) to render component 112.

[0047] Method 200a also includes an act of a render component executing within the
root partition receiving a physical GPU-specific compute shader command from the vGPU
(act 203). For example, render component 112, which executes in root partition 103, can
receive compute shader commands and data 117, including a physical GPU-specific
compute shader command, from vGPU 106.

[0048] Method 200a also includes an act of the render component scheduling the
physical GPU-specific compute shader command for execution at the physical GPU (act
204). For example, compute shader component 113 can schedule the received physical
GPU-specific compute shader command for execution on a compute shader device at
physical GPU 101a. In doing so, compute shader component 113 can configure and
maintain appropriate context for execution of the physical GPU-specific compute shader

command.

10

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

Para-Virtualized GDI Acceleration

[0049] In addition to providing guest software para-virtualized compute shader access to
physical GPU 101a (i.e., GPGPU computational ability), embodiments extend to
providing guest software para-virtualized GDI acceleration at a physical GPU. Figure 1B
illustrates an alternate computer architecture 100b that enables para-virtualized GDI
acceleration by physical GPU hardware. Thus, computer architecture 100b enables guest
software to request GDI command acceleration using a physical GPU, as opposed to
handling GDI commands with a physical or virtual central processing unit.

[0050] Within child partition 104°, computer architecture 100b provides components
that enable accelerated rendering of GDI commands on physical GPU 101a’ when those
commands are issued by guest software 105°. As depicted, for example, child partition
104’ includes GDI interface 108, which is configured to communicate with graphics
runtime 1052’ (e.g., a graphics runtime that is part of a guest operating system).
Furthermore, vGPU 106’ is configured to process GDI acceleration commands 120
received from GDI interface 108 at GDI component 111 of kernel-mode driver 109°.
[0051] GDI interface 108 is configured to expose one or more GDI command interfaces
to graphics runtime 105a’, and to forward GDI accelerated commands received from
graphics runtime 105a’ to kernel-mode driver 109’ of vGPU’. Thus, at the request of
guest software 105°, graphics runtime 105a’ is enabled to send GDI accelerated graphics
commands 120 to kernel-mode driver 109° of vGPU 106’ via GDI interface 108 to
accelerate GDI command execution at physical GPU 101a’.

[0052] GDI component 111 of kernel-mode driver 109’ is configured to implement one
or more GDI command interfaces, along with corresponding hardware rendering
operation(s). In some embodiments, vGPU 106’ implements and exposes GDI commands
corresponding to a particular version of DirectX® (e.g., DirectX® versions 10 and/or 11).
For example, GDI component 111 may expose and implement a ‘DxgkDdiRenderKm’
interface, along with corresponding hardware rendering operations. While GDI
component 111 may implement any appropriate GDI operations, in some embodiments

GDI component 111 implements the following operations:
typdef struct _DXGK_RENDERKM_COMMAND

{
DXGK_RENDERKM_OPERATION Opcode;

UINT CommandSize;

union

11

10

15

20

25

30

35

WO 2013/109451 PCT/US2013/020916

{
DXGK_GDIARG_BITBLT BitBlt;
DXGK_GDIARG_COLORFILL ColorFill;
DXGK_GDIARG_ALPHABLEND Alpha Bend;
DXGK_GDIARG_STRETCHBLT StretchBlt;
DXGK_GDIARG_TRANSPARENTBLT TransparentBlt;
DXGK_GDIARG_CLEARTYPEBLEND ClearTypeBlend;

} Command;

} DXGK_RENDERKM_COMMAND ;
[0053] Kernel-mode driver 109’ is configured to send GDI commands and data 118 to
render component 112” within root partition 103’. GDI commands and data 118 include
information relating to 3D rendering devices and contexts for executing GDI acceleration
commands. Render component 112’ includes GDI component 114, which is configured to
receive GDI commands and data 118 and to execute received GDI acceleration commands
at physical GPU 101a’.
[0054] In particular, GDI component 114 is configured to create a GDI surface and a
corresponding 3D rendering (or composition) device (e.g., a D3D device). The 3D
rendering device is configured to provide appropriate context for executing GDI
accelerated commands. The GDI surface can comprise any appropriate GDI surface, such
as any of the following GDI surface types:

D3DKMDT GDISURFACE TEXTURE

D3DKMDT_ GDISURFACE STAGING CPUVISIBLE

D3DKMDT_ GDISURFACE STAGING

D3DKMDT GDISURFACE LOOKUPTABLE

D3DKMDT GDISURFACE EXISTINGSYSMEM

3DKMDT GDISURFACE TEXTURE CPUVISIBLE
GDI component 114 marks any created GDI surface as a sharable surface. This enables
composition to a desktop to succeed.
[0055] Figure 2B illustrates a flow chart of an example method 200b for providing
GPU-accelerated GDI functionality to a guest application executing in a child partition of
a para-virtualized execution environment. Method 200b will be described with respect to
the components and data of computer architecture 100b.
[0056] Method 200b includes an act of instantiating a virtual machine session, including
instantiating a hypervisor that provides (i) a root partition having access to the physical

GPU, and (ii) the child partition which executes the guest application (act 205). For

12

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

example, computing environment 100b can instantiate hypervisor 102’ as part of
instantiating a virtual machine session. Hypervisor 102’ provides root partition 103’ and
child partition 104°. Root partition 103’ has access to physical GPU 101a’. Child
partition 104’ executes one or more guest applications, including guest application 105,
and has indirect access to physical GPU 101a’.

[0057] Method 200b also includes an act of presenting a vGPU to the guest application,
the vGPU executing within the child partition, including presenting an API of a KMD of
the vGPU that enables a guest operating system to accelerate GDI rendering commands
used by the guest application to the vGPU for processing by the KMD of the vGPU (act
206). For example, child partition 104’ presents vGPU 106’ and GDI interface 108 to
guest software 105°. GDI interface 108 enables graphics runtime 1052’ (e.g., a graphics
runtime of an operating system) to accelerate GDI rendering commands used by guest
software 105’ to vGPU 106’ for processing by kernel-mode driver 109° and for
acceleration by physical GPU 101a’. For example, graphics runtime 105a’ can send
graphics commands 120 to kernel-mode driver 109 through GDI interface 108 for
performance of GDI acceleration commands. vGPU 106’ uses GDI component 111 of
kernel-mode driver 109’ to process received GDI commands and to send GDI commands
and data 118 to render component 112’ in root partition 103’.

[0058] Method 200b also includes an act of a render component executing within the
root partition receiving a GDI acceleration rendering command from the vGPU (act 207).
For example, render component 112°, which executes in root partition 103’, can receive
GDI commands and data 118 from vGPU 106°.

[0059] Method 200b also includes an act of the render component scheduling the GDI
acceleration rendering command on a GDI composition device within the root partition,
the GDI composition device being configured to execute the at least one GDI acceleration
rendering command at the physical GPU, the GDI composition device also being
configured to mark a GDI surface corresponding to the at least one GDI acceleration
rendering command as sharable for composition by a desktop (act 208). For example,
GDI component 114 can create a 3D rendering (composition) device and a GDI surface
for execution of GDI acceleration commands and can schedule the GDI acceleration
commands for execution on the 3D rendering (composition) device. The GDI surface can

be marked as sharable for composition at the desktop.

13

10

15

20

WO 2013/109451 PCT/US2013/020916

Para-Virtualized Compute Shader (GPGPU) Functionality and Para-Virtualized GDI

Acceleration

[0060] In some embodiments, a single computer architecture can provide both compute
shader (GPGPU) functionality and para-virtualized GDI acceleration. Figure 1C
illustrates an example computer architecture 100c that enables para-virtualized access to
compute shader functionality and para-virtualized GDI acceleration by physical GPU
hardware. For example, computer architecture 100c includes GDI interface 108 and
vGPU 106”°. vGPU 106’ contains user-mode driver 106a’’, which includes compute
shader DDIs 107 . vGPU 106’ also contains kernel-mode driver 109’ that includes both
compute shader component 110a and GDI component 111.

[0061] vGPU 106 (executing in child partition 104°’), can communicate both compute
shader commands and data and GDI commands and data to render component 112”’
executing in root partition 103°’. Render component 112’ includes both compute shader
component 113 and GDI component 114 for executing compute shader and GDI
commands at GPU 101a”’. It will be appreciated that computer architecture 100c, by
including both compute shader and GDI functionality, can provide increased functionality
and greater compatibility with particular rendering frameworks.

[0062] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the
invention is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and range of equivalency of the

claims are to be embraced within their scope.

14

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

CLAIMS

1. At a computer system including one or more processors and system memory, the
computer system also including a physical graphics processing unit (“GPU”), a method for
providing GPU-accelerated computing functionality to a guest application executing in a
child partition of a para-virtualized execution environment, the method comprising:

an act of instantiating a virtual machine session, including instantiating a
hypervisor that provides (1) a root partition having access to the physical GPU, and (ii) the
child partition which executes the guest application;

an act of presenting a virtualized graphics processing unit (“vGPU”) to the guest
application, the vGPU executing within the child partition, including presenting a plurality
of compute shader device driver interfaces (“DDIs”) to the guest application as part of a
user-mode driver (“UMD?”) of the vGPU, the plurality of compute shader DDIs providing
an application programming interface that enables the guest application to send compute
shader commands to the vGPU for performing general-purpose graphics processing unit
(“GPGPU”) computations at the physical GPU using a compute shader; and

an act of a render component executing within the root partition receiving a
physical GPU-specific compute shader command from the vGPU; and

an act of the render component scheduling the physical GPU-specific compute
shader command for execution at the physical GPU.
2. The method as recited in claim 1, wherein the UMD converts any compute shader
commands received from the guest application into corresponding physical GPU-specific
compute shader commands and stores the corresponding physical GPU-specific compute
shader commands in a command buffer.
3. The method as recited in claim 1, wherein the act of presenting a vGPU to the
guest application comprises an act of presenting a vGPU that includes a kernel-mode
driver (“KMD?”), the KMD being configured to construct a direct memory access buffer
from the command buffer.
4. The method as recited in claim 3, wherein the KMD is configured to implement
support for graphics device interface (“GDI”) acceleration rendering commands.
5. The method as recited in claim 4, wherein support for GDI acceleration rendering
commands by the KMD enables the creation of a compute shader composition device.
6. The method as recited in claim 1, wherein the render component uses a compute
shader composition device within the root partition to execute the physical GPU-specific

compute shader command.

15

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

7. At a computer system including one or more processors and system memory, the
computer system also including a physical graphics processing unit (“GPU”), a method for
providing GPU-accelerated graphics device interface (“GDI”) functionality to a guest
application executing in a child partition of a para-virtualized execution environment, the
method comprising:

an act of instantiating a virtual machine session, including instantiating a
hypervisor that provides (1) a root partition having access to the physical GPU, and (ii) the
child partition which executes the guest application;

an act of presenting a virtualized graphics processing unit (“vGPU”) to the guest
application, the vGPU executing within the child partition, including presenting an
application programming interface of a kernel-mode driver (“KMD”) of the vGPU that
enables a guest operating system to accelerate graphics device interface (“GDI”) rendering
commands used by the guest application to the vGPU for processing by the KMD of the
vGPU;

an act of a render component executing within the root partition receiving a GDI
acceleration rendering command from the vGPU; and

an act of the render component scheduling the GDI acceleration rendering
command on a GDI composition device within the root partition, the GDI composition
device being configured to execute the GDI acceleration rendering command at the
physical GPU, the GDI composition device also being configured to mark a GDI surface
corresponding to the GDI acceleration rendering command as sharable for composition by
a desktop.
8. The method as recited in claim 7, wherein a user-mode driver (“UMD?”) of the
vGPU is configured to provide the guest application access to a plurality of device driver
interfaces (“DDIs”), at least some of the plurality of DDIs being usable to provide the at
least one application access to functionality of a compute shader at the physical GPU.
9. The method as recited in claim 8, wherein the GDI acceleration rendering
commands are usable as part of use of the compute shader at the physical GPU.
10. The method as recited in claim 8, wherein the UMD executes in a user-mode of
child partition.
11. The method as recited in claim 8, wherein the KMD executes in a kernel-mode of
child partition.
12. The method as recited in claim 8§, wherein the UMD converts graphics commands

received from the guest application into corresponding hardware-specific compute shader

16

10

15

20

25

30

WO 2013/109451 PCT/US2013/020916

commands and stores the corresponding hardware-specific compute shader commands in a
command buffer.
13. The method as recited in claim 8, wherein the KMD constructs a direct memory
access buffer from the command buffer.
14. The method as recited in claim 8, wherein the UMD comprises a new UMD that is
enabled to present all DDIs corresponding to a rendering framework that includes a
compute shader, including a rendering framework that also includes one or more of a
domain shader, a hull shader, or a geometry shader.
15. A computer program product for use at a computer system, the computer program
product for implementing a method for providing GPU-accelerated computing
functionality to a guest application executing in a child partition of a para-virtualized
execution environment, the computer program product comprising one or more computer
storage media having stored thereon computer-executable instructions that, when executed
at a processor, cause the computer system to perform the method, including the following:
instantiate a virtual machine session, including instantiating a hypervisor that
provides (i) a root partition having access to a physical GPU, and (i1) the child partition
which executes the guest application;
present a virtualized graphics processing unit (“vGPU”) to the guest application,
the vGPU executing within the child partition, including:
presenting a plurality of compute shader device driver interfaces (“DDIs”)
to the guest application as part of a user-mode driver (“UMD?”) of the vGPU, the
plurality of compute shader DDIs providing an application programming interface
that enables the guest application to send compute shader commands to the vGPU
for performing general-purpose graphics processing unit (“GPGPU”’) computations
at the physical GPU using a compute shader; and
presenting an application programming interface of a kernel-mode driver
(“KMD”) of the vGPU that enables a guest operating system to accelerate graphics
device interface (“GDI”) rendering commands used by the guest application to the
vGPU for processing by at least the KMD of the vGPU;
receive one or both of at least one physical GPU-specific compute shader
command and/or at least one GDI acceleration rendering command from the vGPU at a
render component executing within the root partition;
schedule a physical GPU-specific compute shader command for execution at the

physical GPU; and

17

WO 2013/109451 PCT/US2013/020916

schedule a GDI acceleration rendering command on a GDI composition device
within the root partition, the GDI composition device being configured to execute the GDI
acceleration rendering command at the physical GPU, the GDI composition device also
being configured to mark a GDI surface corresponding to the GDI acceleration rendering

command as sharable for composition by a desktop.

18

PCT/US2013/020916

WO 2013/109451

115

(577 spuewwop(NdOA

v swdery)

v

BGOJ awnuny salydein

G0 °Jem)jOS 1sancg)

v0I uoniued pliyo

ei0l NdO 10} dIempieH
[easAyd [e1sAud
20} JosiniedAH
|
_
07T 1wauodwon Japeyg aindwon I
SpOJ\-|auIey . ™~
— _
OF (QW) JoAlQ apoj-fouley _
_
_
— _
9i1 J8ng |
PUBLIWIOY “
1
[| |
I — |
[[707 s|aq I [Z)) Elea R gLl
! 9904 48niQ Japeyg anduion I\ spuewwo) Jusuodwo)
9pop-tesn | | epo-lesn | il Jopeys Japeys
| foeBeq | 2907 (amn) I | gndwon a;ndwon
“ ._ JaAlIg BpoN-1asn “
Y + 90T “ ZLF Juauodwo) Japusy
_

0} uoniled jooy

o
S
~—|

V| ainbi4

PCT/US2013/020916

215

g} ainbi4

LL0L NdD 107 siempieH
[eaishyd leaishud

Z07 JosiniedAH

8lr
Eled ¥
SpUBWIWIOD

|
apO\-{ouIay “
TIT wauodwon |9 I

F07 uoniled piuo €0} uopijed jooy

_
07T 607 (QINM) JoAuQ SPO-[awIa) | 109
SPUBLIWOY _
pajelsjesoy “
_
_
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII i4
_
“||| -=-- _ N
I —_
| 9907 Jonug | | 7
| 9pOW-Jesn ! < - jusuodwio)
| foeboq | 2907 (awn) _ 109
207 “ | JOAUQ BPON-IaS() “
ERETEN (I — — | -
149 907 _ ZFF Jusuodwog Japuay
ndor i |
_
_
_
_
BCOL awnuny solydeis “
|||||||||||||||||||||||||| _
BpON-1as GOL SIeM}jos 1seno “
_
_
_

WO 2013/109451

PCT/US2013/020916

WO 2013/109451

3/5

«EL0L NdD .J0F @Jempiey
[eaisAyd eaisAyd
201 JosinadAH
|
_
SPON-[BUISY TIT 0LF lusuodwo) “
> Jusuodwo) |09 Jopeys andwo) | lagi—yt
_
2607 (M) JoALQ pojp-fausey |
_
_
_
_
_
||||||||||||||||||||||||||||||||||| _
ro T i _ >
_ [—
[[201 s _ —_ €Ll
I .q90} 48Nld ‘_mvmmm E_:@m:oo | e jusuodwo)
v “ apOP-JasN “ < “ »| [Jusuodwon JoDELS
— | Aoefe1 <B90F (ann) _ 1a9 andwo?)
801 _ [JanuQ apo-1asn |
a0BpAU| L __1 1 —
109 O0F § +CFF Juauoduwo Japuay
NdOA “
_
_
_
.BG0} awnpuny solydel |
IIIIIIIIIIIIIIIIIIIIIIIIII |
_
9PON-Ias Ol ©Jem)jog 1senc) “
| —_—
F0L uonided piyo I «£01 UONEd JO0Y
_
|
|
2007

0} 2Inbi

WO 2013/109451 PCT/US2013/020916

4/5

200a

PO

201~

Instantiating A Virtual Machine Session, Including Instantiating A Hypervisor That
Provides (i) A Root Partition Having Access To The Physical GPU, And (ii) The
Child Partition Which Executes The Guest Application

202~

Presenting A vGPU To The Guest Application, The vGPU Executing Within The
Child Partition, Including Presenting A Plurality Of Compute Shader DDIs To The
Guest Application As Part Of A UMD Of The vGPU, The Plurality Of Compute
Shader DDlIs Providing API That Enables The Guest Application To Send
Compute Shader Commands To The vGPU For Performing
GPGPU Computations At The Physical GPU Using A Compute Shader

203 —~

A Render Component Executing Within The Root Partition Receiving A Physical
GPU-Specific Compute Shader Command From The vGPU

204~

The Render Component Scheduling The Physical GPU-Specific Compute
Shader Command For Execution At The Physical GPU

Figure 2A

WO 2013/109451 PCT/US2013/020916

5/5

200b

Pod

205 —~

Instantiating A Virtual Machine Session, Including Instantiating A Hypervisor That
Provides (i) A Root Partition Having Access To The Physical GPU, And (ii) The Child
Partition Which Executes The Guest Application

206 —~

Presenting A vGPU To The Guest Application, The vGPU Executing Within The Child
Partition, Including Presenting An APl of A KMD Of The vGPU That Enables A Guest
Operating System To Accelerate GDI Rendering Commands Used By The Guest
Application To The vGPU For Processing By The KMD Of The vGPU

207 —~

A Render Component Executing Within The Root Partition Receiving
A GDI Acceleration Rendering Command From The vGPU

208 —~

The Render Component Scheduling The GDI Acceleration Rendering Command On
A GDI Composition Device Within The Root Partition, The GDI Composition Device
Being Configured To Execute The At Least One GDI Acceleration Rendering
Command At The Physical GPU, The GDI Composition Device Also Being
Configured To Mark A GDI Surface Corresponding To The At Least One GDI
Acceleration Rendering Command As Sharable For Composition By A Desktop

Figure 2B

International application No.

PCT/US2013/020916

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/06(2006.01)i, GO6F 9/44(2006.01)i, GO6F 9/30(2006.01)i, GO6T 15/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 9/06; HO4N 7/173; GO6T 1/20; GO9G 5/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: “GPU” , “VIRTUAL MACHINE” , “SHADER” , “PARTITION”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See abstract, paragraphs [0030] — [0126] and figure 2C.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2007-0091102 Al (JOHN BROTHERS et al.) 26 April 2007 1-15
See abstract, paragraphs [0044] — [0067] and figure 3.
A US 2009-0322784 Al (SARTORI GABRIELE) 31 December 2009 1-15
See abstract, paragraphs [0018] — [0064] and figure 1.
A US 2011-0084973 Al (MASOOD TARIQ) 14 April 2011 1-15
See abstract, paragraphs [0016] — [0036] and figure 4.
A US 2006-0146057 Al (DAVID BLYTHE) 06 July 2006 1-15

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of citation or other

special reason (as specified)

document referring to an oral disclosure, use, exhibition or other

means

"P" document published prior to the international filing date but later
than the priority date claimed

Q"

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 April 2013 (26.04.2013)

Date of mailing of the international search report

29 April 2013 (29.04.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan
City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

YUN, Byeong Soo

Telephone No. 82-42-481-8530

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2013/020916

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2007-0091102 A1 26.04.2007 CN 100538737 G 09.09.2009
CN 100590655 G 17.02.2010
CN 101034469 A0 12.09.2007
CN 101034469 B 12.05.2010
CN 101034470 A0 12.09.2007
CN 1983326 A 20.06.2007
CN 1983326 CO 20.06.2007
CN 1991905 A 04.07.2007
CN 1991905 B 12.05.2010
CN 1991905 CO 04.07.2007
W 1326852A 01.07.2010
™ 13268528 01.07.2010
W 1331299A 01.10.2010
W 13312998 01.10.2010
US 2007-0091101 A1 26.04.2007
US 2007-0115292 A1 24.05.2007
US 7737983 B2 15.06.2010
US 7755632 B2 13.07.2010
US 8004533 B2 23.08.2011

US 2009-0322784 A1l 31.12.2009 TW 200948088 A 16.11.2009
WO 2009-108354 A1 03.09.2009

US 2011-0084973 Al 14.04.2011 None

US 2006-0146057 A1l 06.07.2006 AU 2005-232324 A1 20.07.2006
AU 2005-232324 B2 09.12.2010
BR PI0505081A 12.09.2006
CA 2528116 Al 30.06.2006
CN 1797345 A 05.07.2006
CN 1797345 B 13.07.2011
CN 1797345 CO 05.07.2006
EP 1677190 A2 05.07.2006
JP 2006-190281 A 20.07.2006
KR 10-1220072 B1 08.01.2013
KR20060079088A 05.07.2006
MX PAOS012972A 29.06.2006
RU 2005136419 A 27.05.2007
US 8274518 B2 25.09.2012

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report

