
JP 4662657 B2 2011.3.30

10

20

(57)【特許請求の範囲】
【請求項１】
　異なるプログラム記述言語で記述された複数のソースコードファイルを、システム上に
実装されたコンパイラを用いて出力コードに変換して実行するコンピューティングデバイ
スであって、
　前記デバイスは、前記デバイスに接続されたコンピュータ読み取り可能な記憶媒体から
、一のソースコードファイルを読み出し、
　前記コンピューティングデバイスは、読み出したソースコードファイルを、前記コンパ
イラに受け渡し、
　前記コンパイラは、前記ソースコードファイルを分析し、
　前記ソースコードファイル中で定義されている値型を、前記コンピュータ読み取り可能
な記憶媒体に記憶された、型ルールを用いて識別し、
　前記ソースコードファイル中で定義されている値型がアンボックス化値型表現である場
合、型ルールに含まれるメタデータを前記アンボックス化値型表現に追加してボックス化
値型表現を生成し、前記値型がボックス化値型表現の場合、前記ボックス化値型表現から
メタデータを取り除いて、アンボックス化値型表現を生成し、
　前記ソースコードファイルを、前記アンボックス化値型表現と前記ボックス化値型表現
の両方を含む出力コードに変換して出力し、
　前記出力コードを実行することを特徴とするコンピューティングデバイス。
【請求項２】

(2) JP 4662657 B2 2011.3.30

10

20

30

40

50

　異なるプログラム記述言語で記述された複数のソースコードファイルを、システム上に
実装されたコンパイラを用いて出力コードに変換して実行するコンピューティングデバイ
スにおいて実行される方法であって、
　前記デバイスが、前記デバイスに接続されたコンピュータ読み取り可能な記憶媒体から
、一のソースコードファイルを読み出すステップと、
　読み出したソースコードファイルを、前記コンピューティングデバイスから前記コンパ
イラに受け渡すステップと、
　前記コンパイラが、前記ソースコードファイルを分析するステップと、
　前記コンパイラが、前記ソースコードファイル中で定義されている値型を、前記コンピ
ュータ読み取り可能な記憶媒体に記憶された、型ルールを用いて識別するステップと、
　前記コンパイラが、前記ソースコードファイル中で定義されている値型がアンボックス
化値型表現である場合、型ルールに含まれるメタデータを用いてボックス化値表現を生成
し、前記値型がボックス化値型表現の場合、前記ボックス化値型表現からメタデータを取
り除いてアンボックス化値型表現を生成するステップと、
　前記コンパイラが、前記ソースコードファイルを、前記アンボックス化値型表現と前記
ボックス化値型表現の両方を含む出力コードに変換して出力するステップと、
　前記コンピューティングデバイスが、前記出力コードを実行するステップと
　を含むことを特徴とする方法。
【請求項３】
　請求項２に記載の方法であって、前記メタデータは前記ボックス化値型のインタフェー
スのリストを含むことを特徴とする方法。
【請求項４】
　請求項３に記載の方法であって、前記コンピューティングデバイスは入力デバイスをさ
らに備え、前記メタデータは、前記入力デバイスからの信号によって定義されることを特
徴とする方法。
【請求項５】
　請求項４に記載の方法であって、前記コンピュータ読み取り可能な記憶媒体は、複数の
オブジェクトクラスを含むオブジェクトクラス階層をさらに有し、前記ボックス化値型表
現は、前記オブジェクトクラス階層の基本オブジェクトクラスから一つまたはそれ以上の
インタフェースを継承することを特徴とする方法。
【請求項６】
　請求項２に記載の方法であって、前記方法はランタイムに実行されることを特徴とする
方法。
【発明の詳細な説明】
【０００１】
【発明の属する技術分野】
本発明は、データ型を定義し、処理するためのシステムおよび方法に関し、さらに具体的
には、コンパイラおよび/またはランタイム（実行時）環境で使用される型システムに関
する。
【０００２】
【従来の技術】
ほとんど当初から、コンピュータプログラミング言語には、データ型 (data type) の考
え方が具現化されていた。データ型には、文字、ストリング（文字列）、整数、浮動 (fl
oat) などのような基本的概念が取り入れられている。その最も低いレベルでは、コンピ
ュータにストアされたデータは、特定サイズのロケーション（例えば、32ビットのメモリ
ロケーション）にストアされた単純ビットパターンになっている。データ型は、このビッ
トパターンがどのように解釈されるかという考え方を定義したものである。例えば、特定
サイズのストレージロケーション（記憶位置）に置かれた特定のビットパターンは、スト
レージロケーションに文字が置かれているとした場合と、ストレージロケーションに「整
数」が置かれているとした場合とでは、解釈の仕方が異なっている。

(3) JP 4662657 B2 2011.3.30

10

20

30

40

50

【０００３】
いくつかのコンピュータ言語では、データ型の考え方は存在していても、異なるデータ型
をコンピュータプログラムの式の中に混在させるためにコンパイラまたはいずれかの関連
ランタイムによって適用されるルールは、ほとんど存在していない。そのために、例えば
、Cプログラミング言語では、整数値が浮動小数点数値で乗算されることがあっても、コ
ンパイラエラーが引き起こされることがない。種々タイプのエラーを最小限にするために
、この種の言語の多くでは、型ルールが組み込まれていて (built-in type rules)、ある
種のデータ型を黙示的に変換することを可能にしている。他の場合には、あるデータ型を
別のデータ型に「強制変換」または変換するための明示的構文 (construct) が組み込ま
れている言語もある。言うまでもなく、この種の言語にはかなりの柔軟性があるが、種々
のプログラミング式の中でデータ型を混在させるときに配慮を欠くと、ある種のプログラ
ミングエラーが引き起こされることがある。
【０００４】
強く型付けされた言語 (strongly typed language) では、厳格な型付けルール (strict
typing rules) を提供することによって、プログラミングエラーの発生を低減化すること
が試みられている。強く型付けされた言語では、データ型の不一致が検出されると、コン
パイラエラーが引き起こされるようになっている。例えば、Pascalでは、プログラマが文
字値を整数変数に割り当てようすると、コンパイラエラーが引き起こされるようになって
いる。このようにすると、ある種のプログラミングエラーを低減化する効果があるが、ル
ールが余りに限定的になっている。
【０００５】
オブジェクト指向プログラミング言語の出現に伴い、データ型の考え方は別の意味をもつ
ようになった。オブジェクト指向言語では、オブジェクトは、オブジェクトクラス階層 (
object class hierarchy) で表現されるのが代表的であり、そこでは、あるオブジェクト
は、他の「基底クラス(base class)」のオブジェクトからのフィールド（プロパティとも
呼ばれる）とメソッドから派生されている（またはこれらを継承している）。これらの言
語におけるオブジェクトは、フィールド（特定データ型の変数で表されているのが代表的
）と、これらのフィールドの操作を可能にする、あるいはある種の機能性をもつメソッド
 (method) または関数 (function) とが混在することが可能になっている。さらに、オブ
ジェクト指向言語には、浮動 (float)、整数 (integer)、文字 (character)、ストリング
 (string) といったような、いくつかの組み込みデータ型 (built-in data types) が用
意されており、これらは、オブジェクトの中で基本変数としても、フィールドとしても使
用できるのが代表的になっている。従って、例えば、Java(登録商標)では、プログラマは
、整数型の変数を定義し、その１つが「整数」データ型になっているフィールドをもつオ
ブジェクトを定義することが可能になっている。
【０００６】
オブジェクト指向プログラミング言語では、オブジェクトと基本データ型は、異なった扱
い方をすることが可能になっている。例えば、単一プロパティが整数型であるオブジェク
トと整数型の変数は、実際には、どちらも整数を表しているのにすぎないのに、多くのオ
ブジェクト指向言語では、同じデータ型でないものと扱われることになる。整数型の変数
は、特定ストレージロケーションにビットパターンとして存在しているのにすぎず、追加
情報が置かれていないのに対し、オブジェクトは、同じサイズのストレージロケーション
と、そのストレージロケーションに置かれた値がどのように解釈されるかを記述している
追加情報（つまり、メタデータ(metadata)）をもっている。
【０００７】
オブジェクト表現と基本データ型表現の間にある種の等価性をもたせるために、「ボック
ス化(boxing)」という考え方が考案された。基本データ型表現にメタデータを追加してオ
ブジェクト表現を得るためのプロセスは、「ボックス化」と呼ばれている。同様に、オブ
ジェクト表現からメタデータを取り除いて基本データ型表現を得るためのプロセスは「ア
ンボックス化(unboxing)」と呼ばれている。しかし、ボックス化とアンボックス化が開発

(4) JP 4662657 B2 2011.3.30

10

20

30

40

50

されたとしても、現存のコンパイラおよび/またはランタイムシステムはデータ型を分割
した考え方を採用し、オブジェクトの考え方と基本データ型表現の考え方が厳格に区別さ
れている。この区別には多くの意味合いがあるが、その意味合いが叙述に現れている１つ
の分野は、これらの言語がユーザ定義型 (user-defined types) をどのように扱うか、と
いう点にある。
【０００８】
オブジェクト指向プログラミング以前であっても、大部分ではないが、多くのプログラミ
ング言語は、ユーザ定義データ型の考え方を取り入れていた。これらのプログラミング言
語によれば、プログラマは、その言語の基本組み込み型から新しい「データ型」を作るこ
とを可能にしていた。例えば、プログラマは、新しい型である"data_point"（データポイ
ント）を、浮動型のx座標値と浮動型のy座標値からなるものとして定義することが可能で
あった。しかし、Java(登録商標)のような、ある種のオブジェクト指向プログラミング言
語では、基本組み込み型を上記のように拡張することを許していない。この種の、いくつ
かの実装 (implementation) では、ユーザ定義型が許されているのは、オブジェクトの形
体にあるときだけである。ランタイム時に適用可能な統一データ型システム (unified da
ta type system) が要望されているにもかかわらず、既存の解決方法はこの要望に十分に
応えていない。
【０００９】
【発明が解決しようとする課題】
本発明は、なかんずく、データ型を分割するという、現在の見方を避けるメカニズムを取
り扱うことを課題にしている。また、本発明は、オブジェクト型の方が効率的であるよう
な場合に基本データ型を使用し、基本データ型の方が効率的であるような場合にオブジェ
クト型を使用すると起こる非効率性を解決することも課題にしている。
【００１０】
【課題を解決するための手段】
本発明によれば、上記およびその他の課題は、ユーザ定義のデータ型を効率的に処理する
システムおよび方法を提供することによって解決されている。本発明によれば、プログラ
ミング言語、特にオブジェクト指向プログラミング言語の型システムがより統一化された
見方で提供されている。本発明の型システムでは、基本データ型には２つの表現（二重表
現(dual representation)）が用意されている。一方の表現は、基本組み込みデータ型に
共通する基本データ型表現である。本明細書では、この表現は、値型 (value type) 表現
、もっと簡単には、値型と呼ぶことにする。しかし、他の型システムと異なり、基本デー
タ型の各々には、型システム自身のオブジェクト階層に存在するボックス化表現 (boxed
representation) も用意されている。この二重表現は、ユーザ定義型 (user-defined typ
es) にも拡張できるので、ユーザ定義型は、型システムのオブジェクト階層内に値型とし
ても、オブジェクトとしても存在することが可能になっている。そのため、コンパイラお
よび/またはランタイムは、コンパイル（ランタイム）時の特定の要求に応じて、最も効
果的で、最も効率的なデータ型の表現を選択することが可能になっている。
【００１１】
データ型の二重表現のほかに、本発明の別の形態によれば、あるデータ型のボックス化表
現をいつ使用するか、そのデータ型の値型（またはアンボックス化）表現をいつ使用する
かを判断するためのルールの適用が可能になっている。これらのルールは、例えば、コン
パイラによって適用できるので、なかんずく、ある特定データ型のボックス化表現とアン
ボックス化表現の間で黙示的に変換することが可能になっている。
【００１２】
本発明の別の形態によれば、統一化された型システムの見方は、オブジェクトの仮想メソ
ッド (virtual method) の振る舞い（behavior　作用ともいう）に反映されている。オブ
ジェクトの基本的特徴の１つは、「親」オブジェクトからメソッドを継承できることであ
る。そのようなメソッドとして、オブジェクトを引数 (argument) として受け取るメソッ
ドがある。値型が、階層内に値型としても、オブジェクトとしても表現できること（二重

(5) JP 4662657 B2 2011.3.30

10

20

30

40

50

表現）は、値型がメソッドをもつことができ、ある場合にはオブジェクトとして、他の場
合には値型として振る舞うことができることを意味している。詳細は、以下でもっと詳し
く議論するが、その実用的効果は、値型がボックス化表現になっているとき、他のオブジ
ェクトと同じように型情報をもつことができることである。さらに、値型がアンボックス
化表現になっているとき、メソッドがオブジェクト型（ボックス化表現など）を予想して
いるときでも、値型がそのメソッドに対して有効な引数となることができることである。
このアプローチによると、完全に新規で、強力なプログラミングパラダイムが開発者に提
供されることになる。さらに、ボックス化表現とアンボックス化表現の両方が用意されて
いるので、どちらのバージョンの値型（つまり、ボックス化表現かアンボックス化表現か
）を使用するか、あるいは一方の型から他方の型に変換することを、開発者がソースコー
ドの中で明示的に指定しなくても、この機能のすべてが利用可能になっている。
【００１３】
本発明の一実現形態では、統一型システムは、ランタイム環境で提供されている。ソース
コードファイルには、アンボックス化値型表現が含まれている。アンボックス化値型表現
には、アンボックス化値表現をボックス化値型表現に変換するためのメタデータが関連付
けられている。出力コードは、ランタイムオペレーション時に異なる型が検出されると、
コンパイラがアンボックス化値型表現とボックス化値型表現の間で変換を行うことにより
生成される。
【００１４】
本発明の別の実現形態では、少なくとも１つのアンボックス化値型表現を含んでいるソー
スファイルを変換するための方法が提供されている。この方法によれば、ソースファイル
がアンボックス化値型表現を含んでいるかが判断される。この判断オペレーションに応じ
て、メタデータがアンボックス化値型表現に関連付けられている。異なる型をもつオペラ
ンドのあるオペレーションは、ソースファイルの中に指定されている。一方のオペランド
はアンボックス化値型表現に、他方のオペランドはボックス化値型表現になっている。出
力コードは、オペランドの一方が他方のオペランドの型と一致するようにコンパイラが変
換することによって得られる。
【００１５】
本発明のその他の実現形態では、製造物品がコンピュータプログラムプロダクトとして提
供されている。コンピュータプログラムプロダクトの一実施形態では、コンピュータシス
テムによって読み取り可能であるコンピュータプログラム記憶媒体が提供され、そこには
、少なくとも１つのアンボックス化値型表現を収めているソースファイルをコンパイルす
るためのコンピュータプログラムがコーディングされている。コンピュータプログラムプ
ロダクトの別の実施形態はコンピュータデータシグナルの形で提供され、このシグナルは
、コンピューティングシステムによって搬送波で具現化され、少なくとも１つのアンボッ
クス化値型表現を収めているソースファイルをコンパイルするためのコンピュータプログ
ラムがコーディングされている。コンピュータプログラムプロダクトは、少なくとも１つ
のアンボックス化値型表現を収めているソースファイルをコンパイルするためのコンピュ
ータプロセスを、コンピュータシステム上で実行するためのコンピュータプログラムをコ
ーディングしている。ソースファイルがアンボックス化値型表現を含んでいるかどうかが
判断される。この判断オペレーションに応じて、メタデータがアンボックス化値型表現に
関連付けられている。異なる型をもつオペランドのあるオペレーションは、ソースファイ
ルの中に指定されている。一方のオペランドはアンボックス化値型表現に、他方のオペラ
ンドはボックス化値型表現になっている。出力コードは、オペランドの一方が他方のオペ
ランドの型と一致するようにコンパイラが変換することによって得られる。
【００１６】
本発明のさらに別の形態では、上記考え方はランタイムまたは実行環境と結合され、値型
、オブジェクトクラス、およびインタフェースをサポートするユニークなランタイム環境
が得られるようにしている。
【００１７】

(6) JP 4662657 B2 2011.3.30

10

20

30

40

50

本発明を特徴付けている、上記およびその他の種々特徴と利点を分かりやすくするために
、添付図面を参照して以下で詳しく説明する。
【００１８】
【発明の実施の形態】
本発明の例示実施形態によれば、プログラミング言語、特にオブジェクト指向プログラミ
ング言語の型システムが、より統一化された見方で提供されている。例示の型システムで
は、基本データ型には２つの表現（二重表現）が用意されている。一方の表現は、アンボ
ックス化値型、単純には値型と呼ばれる基本データ型表現である。アンボックス化値型に
は、コンパイラから出力される出力コードの中で型情報が付いていないのが一般的である
。しかるに、本発明の実施形態では、基本データ型の各々はボックス化表現ももち、これ
は型システムのオブジェクト階層に置かれ、コンパイラから出力された出力コードの中で
型情報が付けられている（例えば、メタデータで指定されている）。この二重表現はユー
ザ定義型にも拡張可能であるので、ユーザ定義型は、型システムのオブジェクト階層内に
アンボックス化値型としても、オブジェクト（つまり、ボックス化値型）としても存在す
ることが可能になっている。そのため、コンパイラおよび/またはランタイムは、コンパ
イル（ランタイム）時の特定要求に応じて、最も効果的で、最も効率的な値型表現を選択
することが可能になっている。
【００１９】
図１は、本発明の実施形態において型システムを統一化された見方で提供するように動作
するコンパイラの論理的表現を示す図である。ソースファイル１００は、ある特定のプロ
グラミング言語規格に準拠するように作成されたソースプログラムを表しており、この中
には、C言語やC++言語、その他の高水準プログラム言語または中間言語に関する規格も含
まれるが、これらに限定されないことは勿論である。ソースファイル１００は、ランタイ
ム環境で１つまたは２つ以上のオペレーション（演算、操作など）を実行するための命令
とデータを含むことも可能である。図示の実施形態では、ソースファイル１００はコンパ
イラ１０４によって受け取られ、そこでソースコードは出力コード（例えば、オブジェク
トコードまたは実行可能コード）に変換される。本発明の代替実施形態では、当然に理解
されるように、コンパイラ１０４は、図６に示すようにライタイム環境１０２（例えば、
Just-In-Time (JIT) コンパイラとして）に組み込んでおくことも可能である。
【００２０】
本発明の代替実施形態では、ソースファイル１００のソースコードは、中間言語コードフ
ァイル１０６で示すように、中間言語に変換されてからコンパイラ１０４に渡されるよう
にすることも可能になっている。以下の説明で扱っている実施形態では、ソースファイル
１００がコンパイラ１０４に入力されるようになっているが、当然に理解されるように、
本発明の実施形態では、ソースコードでも、中間コードでもコンパイラ１０４に入力でき
ことを目的としている。同様に、ソースコードと中間コードは、データおよび関連データ
型を定義するための構造と構文に互換性をもたせることが可能であり、これは本発明の範
囲に属するものである。
【００２１】
一般的に、コンパイラは、ソースコード（または中間言語コード）をオブジェクトコード
または実行可能コードに変換するプログラムである。コンパイラという名前の由来はその
働き方にある。すなわち、コンパイラはソースコードの断片全体を調べていき、そこに含
まれる命令とデータを収集し、再編成する。ある実装では、第２のステージには、コンパ
イルされたオブジェクトコードを他のオブジェクトコードとリンクして、実行可能プログ
ラムを生成するリンカが含まれている。他の実装では、このリンキングプログラムは、ラ
ンタイム直前またはランタイム時に実行されるので、これは「実行時バインディング (la
te binding)」とも、「ランタイムバインディング (runtime binding)」とも呼ばれてい
る。
【００２２】
上述したように、プログラミング言語は、データ型の考え方を採用しているのが代表的で

(7) JP 4662657 B2 2011.3.30

10

20

30

40

50

ある。ソースコード１００内のデータは、一般的に、２つのデータ型からなっている。(1
) 値型 (value type) １１０と (2) オブジェクト１１２である。理解しやすくするため
に、以下に説明するクラスとオブジェクト名は、大文字の名前で示され、値型と値型変数
名は小文字の名前が付けられている。データは、変数名および関連の型インジケータを使
用して「値型」としてソースファイルに定義することが可能である。例えば、インデック
ス（指標）を表すデータは、"int index" として定義することができる。ここで、"int"
はデータ型インジケータ、"index" は変数名である。別の方法として、データは、オブジ
ェクト名、クラスインジケータ、およびクラス定義を使用して「オブジェクト」としてソ
ースファイルに定義することも可能である。例えば、下に記述されている例示のソースコ
ードは、Rectと名付けたクラスを定義しており、そこには、矩形の４隅を定義している４
つのデカルト座標 (Cartesian coordinate) が含まれている。
【００２３】
【数１】

【００２４】
ステートメント"Rect RectObject"は、クラス"Rect"（クラスインジケータ）のオブジェ
クト"RectObject"（オブジェクト名）を定義している。なお、RectObjectは、オブジェク
ト"UpperLeft"、"UpperRight"、"LowerLeft"、および"LowerRight"のように、クラスCart
esian（これのクラス定義は示されていない）の他のオブジェクトと値型、およびデータ
型"float"の値型"area"を含むことも可能である。また、当然に理解されるように、上記
説明は、ソースファイル内のデータの定義例を示したものにすぎず、データ定義の他のデ
ータ構造と構文も本発明の範囲に含まれるものである。
【００２５】
組み込みデータ型１１４と基本オブジェクトクラス階層を含む、種々の組み込みデータ型
の１つまたは２つ以上、および種々データ型相互間で変換し、データ型相互間の関係を定
義するための型ルール (type rules) １１８を、コンパイラ１０４に組み入れておくこと
もできるが、コンパイラにこれらにアクセスさせるようにすることも可能である。一般的
に、組み込み値型とは、整数を表す"int"、文字を表す"char"、浮動小数点数を表す"floa
t"のように、プログラミング言語に基本的なものであり、プログラムによって共通に使用
されると考えられている値型のことである。
【００２６】
同様に、基本オブジェクトクラス階層１１６には、基本的で、共通に使用されるクラスが
継承階層に用意されている。例えば、階層内のルート (root) クラスは、"BasicObject"
を定義することが可能であり、そこには、プログラミング言語における基本オブジェクト
の基本的特性（例えば、データと関数）が含まれている。ルートクラスの子供は、その用
途をさらに具体化するためにBasicObjectクラスを「継承」または「拡張」するように定

(8) JP 4662657 B2 2011.3.30

10

20

30

40

50

義することができる。例えば、"Shape"クラスと"Point"クラスはBasicObjectクラスから
継承することができ、"Rect"クラスと"Circle"クラスは"Shape"クラスから継承すること
ができる。基本クラスを結合したものが、オブジェクトクラス階層を構成している。オブ
ジェクトクラス階層の別の例は図４に示されているが、これについては以下で説明する。
【００２７】
多くのプログラミング言語では、組み込み値型と基本クラスは共に拡張可能またはカスト
マイズ可能になっている。例えば、C言語では、開発者はキーワード"typedef"を使用して
、新しい値型を定義することができる。例えば、値型"coordinate"は、以下に示すように
、デカルト平面 (Cartesian plane) 上のX-Y座標を表している、２つの浮動小数点数を含
んでいる構造として定義することができる。
【００２８】
【数２】

【００２９】
同様に、ソースコードは、基本クラスの１つまたは２つ以上を継承または拡張することに
よって基本オブジェクトクラス階層を拡張することができる。例えば、ユーザ定義のオブ
ジェクトは、"CustomShape"クラスを定義するように基本Shapeクラスを拡張することがで
きる。図１に戻って説明すると、組み込み値型とユーザ定義の値型は共に、値型１１０に
よってソースコードに表すことが可能であり、基本オブジェクトとユーザ定義のオブジェ
クトは共に、オブジェクト１１２によってソースコードに表すことが可能である。
【００３０】
本発明の実施形態では、コンパイラ１０４は、異なる値型間の変換を正しく行うための命
令をコンパイラに与える型ルール１１８を備えることが可能である。例えば、C言語では
、ソースコード命令は整数値を浮動小数点変数に割り当てることが可能になっている（例
えば、"float amount = total;"。ここで、"total"は整数型のデータ値であり、"amount"
は浮動小数点数変数である）。Cコンパイラは、型ルール１１８を適用して、整数"total"
を浮動小数点数値に自動変換してから値を変数"amount"に割り当てる命令を生成するよう
にしている。これとは別に、値型とオペレーションの組み合わせが与えられているとき、
該当の型ルールがコンパイラ１０４に用意されていない場合もある（例えば、"integer"
値を"coordinate"変数に割り当てる）。このような場合には、コンパイラはコンパイラエ
ラーを出すか、あるいはランタイム例外を引き起こしてエラーを通知することになる。
【００３１】
本発明の実施形態では、オペランドの一方または両方をボックス化および/またはアンボ
ックス化することによって値型とオブジェクトの間でオペレーションを実行するためのソ
ースコード命令は、開発者から見えないようにコンパイルされ、実行されることが可能に
なっている。第１の例では、ソースコード命令は、値型をもつ値が、オブジェクトに割り
当てられることを示している（例えば、"integer"値型をもつ値は"Integer"クラスのオブ
ジェクトに割り当てられる）。ボックス化なしでこの割り当てを行うと、オペランドの型
が等価でないのでコンパイラエラーになるのが代表的である（つまり、この割り当ては型
ルールに従っていない）。ボックス化/アンボックス化していないと、コンパイラが割り
当てを行わないのは、"integer"値型が、Integerオブジェクトのメタデータ部分に移植 (
populate) するために必要なメタデータと関連付けられていないからである（図５を参照
）。

(9) JP 4662657 B2 2011.3.30

10

20

30

40

50

【００３２】
その代わりに、コンパイラ１０４は型間に不一致があることを検出し、メタデータと、"i
nteger"値を「ボックス化」するためのコンパイラコードを生成することにより、値型を
オブジェクトに変換し、ボックス化値型がIntegerオブジェクトに割り当てられるように
する。型に組み込み値型が含まれている場合は、その値型をボックス化するために必要な
メタデータでコンパイラを構成し直すことが可能である。型にユーザ定義の値型が含まれ
ている場合は、ユーザは必要とされるメタデータを用意し、ボックス化オペレーションで
コンパイラに使用させることができる。ユーザ定義の型を定義するメタデータは、ビット
列（つまり、値）を記述することができ、その中には、型名、型に含まれるすべてのフィ
ールドのフィールド名、すべてのフィールドのフィールドタイプ、およびその型に関連し
て実行できるオペレーション（例えば、メソッド）が含まれている。ユーザ定義の型を定
義するメタデータには、その型がボックス化形式で実装しているインタフェースのリスト
を含めることも可能である。最後に、メタデータには、値型のボックス化バージョンが、
オブジェクトクラス階層１１６内のどこに収まるかを示す標識を含めることができる。な
お、これについては、図４を参照して以下で説明する。そのあと、コンパイラ１０４は、
「ボックス化値型」（またはオブジェクト）をIntegerオブジェクトに割り当てるための
オブジェクトコードを生成する。
【００３３】
値型をボックス化し、アンボックス化するコードをコンパイラで生成するのではなく、他
の実施形態によれば、二重表現の考え方をいくつかの異なる方法で実現することも可能で
ある。例えば、コードのターゲットであるランタイム環境（例えば、ランタイム環境１０
２など）が値型をボックス化し、アンボックス化できる場合には、コンパイラは、ボック
ス化またはアンボックス化コマンドのうち該当する方を出力するだけで済むので、ランタ
イムは実際の作業を行うことができる。他の実現形態では、ボックス化表現とアンボック
ス化表現は同時に存在できるので、値型をボックス化またはアンボックス化するコードを
コンパイラにも、ランタイム環境にも生成させる必要がなくなる。また、他の実現形態で
は、アンボックス化バージョンが望ましいときメタデータ部分をバイパスまたは無視する
メカニズムを使用することで、ボックス化表現だけを生成させることができる。
【００３４】
コンパイラ１０４によって生成される出力コード１０８は、コンパイルされたオブジェク
ト１２０と、ソースファイル１００の中で定義された値型のボックス化表現とアンボック
ス化表現（１２２と１２４）の両方を論理的に含んでいる。ある実施形態では、すべての
値型は、ボックス化表現とアンボックス化表現の両方を論理的に生成するようにコンパイ
ルされる。値型の二重表現自体は、事実上同じストレージロケーションに置いておくこと
ができるが、代替実施形態では、別々のストレージロケーションに置いておくことも可能
になっている。別の実施形態では、オブジェクトと作用し合う値型だけがボックス化され
るので、出力コードのサイズが低減されることになる（つまり、不要なメタデータが省か
れることになる）。さらに、本発明の別の実施形態では、一度に値型の１つのバージョン
（つまり、ボックス化またはアンボックス化）を残しておくことができるので、２バージ
ョン間の変換を必要時に動的に行うことができる。従って、値型の１つのバージョンだけ
を、いつでも残しておけばよいので、値型バージョンは、ある特定オペレーション（例え
ば、割り当て、オブジェクトパラメータを使用した関数コールなど）に従ってコンパイラ
によって生成されたコードで動的に変換されることになる。
【００３５】
さらに、出力コード１０８は、値型と関連付けられたメタデータを含むことが可能である
。別の方法として、ボックス化オペレーションで作成されたオブジェクトのマシンまたは
実行可能コード表現を出力１０８に含めておくことも可能である。さらに別の代替方法で
は、マシンまたは実行可能コード表現は、以下で説明するように、ランタイム時に生成す
ることも可能である。
【００３６】

(10) JP 4662657 B2 2011.3.30

10

20

30

40

50

ボックス化および/またはアンボックス化によって値型とオブジェクト間のオペレーショ
ンを実行するソースコード命令の別の例に示すケースでは、ボックス化値型が、アンボッ
クス化値型をもつ値に割り当てられるようになっている（例えば、Integerクラスのオブ
ジェクトはinteger値型をもつ値に割り当てられる）。この種の割り当てをアンボックス
化なしで行うと、オペランドの型が等価でないのでコンパイラエラーになる。しかるに、
本発明の実施形態では、コンパイラ１０４は型間が不一致であることを検出し、ボックス
化値型と関連付けられたメタデータを削除または無視することによってオブジェクトをア
ンボックス化値型に変換するコードを生成して、アンボックス化値型が"integer"値型に
割り当てられるようにする。
【００３７】
図２と以下の説明は、本発明を実現するのに適しているコンピューティング環境の概要を
要約して説明することを目的としている。本発明は、パーソナルコンピュータと併用して
オペレーティングシステム上で実行されるアプリケーションプログラムを中心に説明され
ているが、この分野の精通者ならば当然に理解されるように、本発明は他のプログラムモ
ジュールと組み合わせて実現することも可能である。一般的に、プログラムモジュールに
は、特定のタスクを実行する、または特定の抽象データ型を実装しているルーチン、プロ
グラム、コンポーネント、データ構造などが含まれている。さらに、この分野の精通者な
らば理解されるように、本発明は、他のコンピュータシステム構成で実施することも可能
であり、その中には、ハンドヘルドデバイス、マイクロプロセッサシステム、マイクロプ
ロセッサベースのコンシューマエレクトロニックスやプログラマブルコンシューマエレク
トロニックス、ミニコンピュータ、メインフレームコンピュータなどが含まれている。本
発明は、コミュニケーションネットワークを通してリンクされたリモートの処理デバイス
によってタスクが実行されるような、分散コンピューティング環境で実施することも可能
である。分散コンピューティング環境では、プログラムモジュールはローカルとリモート
の両方のメモリストレージデバイスに置いておくことが可能である。
【００３８】
図２を参照して説明すると、本発明を実現するための例示のシステムは従来のパーソナル
コンピュータ２０を含み、パーソナルコンピュータには、処理ユニット２１、システムメ
モリ２２、およびシステムメモリを処理ユニット２１に結合するシステムバス２３が搭載
されている。システムメモリ２２には、リードオンリメモリ (read only memory (ROM))
２４とランダムアクセスメモリ (random access memory (RAM)) ２５が含まれている。ス
タートアップ時のように、パーソナルコンピュータ２０内のエレメント間で情報を転送す
るのを支援する基本ルーチンを収めている基本入出力システム (basic input/output sys
tem (BIOS)) ２６は、ROM２４に格納されている。パーソナルコンピュータ２０は、さら
に、ハードディスクドライブ２７、例えば、取り外し可能ディスク２９との間で読み書き
を行う磁気ディスクドライブ２８、および例えば、CD-ROMディスク３１を読み取ったり、
他の光媒体との間で読み書きを行ったりする光ディスクドライブ３０を搭載している。ハ
ードディスクドライブ２７、磁気ディスクドライブ２８、および光ディスクドライブ３０
は、それぞれハードディスクドライブインタフェース３２、磁気ディスクドライブインタ
フェース３３、および光ディスクドライブインタフェース３４を通してシステムバス２３
に接続されている。これらのドライブとそれぞれに関連するコンピュータ読み取り可能媒
体は、不揮発性ストレージとしてパーソナルコンピュータ２０に利用されている。上記の
コンピュータ読み取り可能媒体の説明では、ハードディスク、取り外し可能磁気ディスク
およびCD-ROMディスクが挙げられているが、この分野の精通者ならば理解されるように、
磁気カセット、フラッシュメモリカード、デジタルビデオディスク、ベルヌーイ (Bernou
illi) カートリッジなどのように、コンピュータによって読み取り可能である他のタイプ
の媒体を、例示の動作環境で使用することも可能である。
【００３９】
複数のプログラムモジュールをドライブとRAM２５に格納しておくことができる。その中
には、オペレーティングシステム３５、ソースファイル１００、ランタイムシステム１０

(11) JP 4662657 B2 2011.3.30

10

20

30

40

50

２、およびコンパイラ１０４が含まれる。ユーザは、キーボード４０およびマウス４２な
どのポインティングデバイスを通して、コマンドと情報をパーソナルコンピュータ２０に
入力することができる。その他の入力デバイス（図示せず）としては、マイクロホン、ジ
ョイスティック、ゲームパッド、サテライトディッシュ、スキャナなどがある。上記およ
び他の入力デバイスは、システムバスに結合されたシリアルポートインタフェース４６を
通して処理ユニット２１に接続されていることが多いが、ゲームポートやユニバーサルシ
リアルバス (universal serial bus (USB)) などの、他のインタフェースを通して接続す
ることも可能である。モニタ４７や他のタイプのディスプレイデバイスも、ビデオアダプ
タ４８などのインタフェースを通してシステムバス２３に接続されている。モニタのほか
に、パーソナルコンピュータは、スピーカやプリンタのような、他の周辺出力デバイス（
図示せず）を装備しているのが代表的である。
【００４０】
パーソナルコンピュータ２０は、リモートコンピュータ４９などの、１つまたは２つ以上
のリモートコンピュータとの論理的コネクションを使用して、ネットワーキング環境で動
作することができる。リモートコンピュータ４９は、サーバ、ルータ、ピアデバイスまた
は他の共通ネットワークノードである場合があり、図２にはメモリストレージデバイス５
０だけが示されているが、パーソナルコンピュータ２０に関連して上述したエレメントの
多くまたは全部を搭載しているのが代表的である。図２に示す論理的コネクションには、
ローカルエリアネットワーク (local area network (LAN)) ５１と広域ネットワーク (wi
de area network (WAN)) ５２が含まれている。この種のネットワーキング環境は、オフ
ィス、企業内 (enterprise-wide) コンピュータネットワーク、イントラネットおよびイ
ンターネット (the Internet) では日常的になっている。
【００４１】
LANネットワーキング環境で使用されるときは、パーソナルコンピュータ２０は、ネット
ワークインタフェース５３を通してLAN５１に接続されている。WANネットワーキング環境
で使用されるときは、パーソナルコンピュータ２０は、インターネットのような、WAN５
２上のコミュニケーションを確立するためのモデムや他の手段を搭載しているのが代表的
である。モデム５４は内蔵されている場合と、外付けの場合があるが、シリアルポートイ
ンタフェース４６を介してシステムバス２３に接続されている。ネットワーキング環境で
は、パーソナルコンピュータ２０に関連して説明したプログラムモジュールまたはその一
部は、リモートメモリストレージデバイスに格納しておくことができる。当然に理解され
るように、図示のネットワークコネクションは例示であり、コンピュータ間の通信リンク
を確立する他の手段を使用することも可能である。
【００４２】
パーソナルコンピュータ２０のようなコンピューティングデバイスは、少なくともなんら
かの形のコンピュータ読み取り可能媒体を具備しているのが代表的である。コンピュータ
読み取り可能媒体としては、パーソナルコンピュータ２０がアクセスできる、利用可能な
媒体ならば、どの媒体でも可能である。一例として、コンピュータ読み取り可能媒体とし
ては、コンピュータ記憶媒体と通信媒体があるが、これに限定されるものではない。コン
ピュータ記憶媒体には、コンピュータ読み取り可能命令やデータ構造、プログラムモジュ
ール、その他のデータなどの情報を格納しておくために、なんらかの方法またはテクノロ
ジで実現されている揮発性、不揮発性、取り外し可能および取り外し不能（固定）媒体が
ある。コンピュータ記憶媒体としては、RAM、ROM、EEPROM、フラッシュメモリや他のメモ
リテクノロジ、CD-ROM、デジタルバーサタイルディスク (digital versatile disk (DVD)
)や他の光ストレージ、磁気カセット、磁気テープ、磁気ディスクストレージや他の磁気
ストレージデバイス、あるいは必要とする情報を格納しておくために利用でき、パーソナ
ルコンピュータ２０がアクセスできる他の媒体があるが、これらに限定されるものではな
い。通信媒体は、コンピュータ読み取り可能命令、データ構造、プログラムモジュールま
たは他のデータを、搬送波や他のトランスポートメカニズムなどの変調データ信号で具現
化しているのが代表的であり、その中には、すべての情報伝達媒体が含まれている。ここ

(12) JP 4662657 B2 2011.3.30

10

20

30

40

50

で、「変調データ信号(modulated data signal)」という用語は、信号に含まれる情報を
エンコード（符号化）するような形で設定または変更された特性の１つまたは２つ以上を
もつ信号を意味している。一例を挙げると、通信媒体には、有線ネットワーク (wired ne
twork) や直接有線コネクション (direct-wired connection) などの有線媒体 (wired me
dia)、および音響やRF、赤外線、その他のワイヤレス（無線）媒体などのワイヤレス（無
線）媒体があるが、これらに限定されない。上記に挙げたものを任意に組み合わせたもの
も、当然にコンピュータ読み取り可能媒体の範囲に含まれている。コンピュータ読み取り
可能媒体は、コンピュータプログラムプロダクトと呼ばれることもある。
【００４３】
図１に関連して上述したように、コンパイラ１０４は、ランタイム環境１０２または他の
任意の実行環境用に書かれたソースファイル１００を受け取り、コンパイルする。図３は
、その言語でソースファイル１００が書かれているコンピュータ言語に対する値型分類シ
ステム (value type classification system) ３００の例を示す図である。ソースファイ
ル１００は、組み込み値型３０２とユーザ定義の値型３０４の両方を利用することができ
る。一般的に、値型は、コンピュータにストアされたデータのビットパターンがどのよう
に解釈されるかという考え方を定義したものである。例えば、値は、整数または浮動小数
点数を表した単純なビットパターンである場合がある。各値は、値が占有しているストレ
ージのサイズだけでなく、値表現内のビットの意味も記述している型をもっている。例え
ば、"2"の値は"int16"という型にすることができる。型"int16"は、値が整数であること
を値表現のビットが意味していることを示している。さらに、型"int16"は、値が符号付
き16ビット整数をストアするために必要なストレージを占有することを示している。また
、型は、値表現に対して実行できるオペレーションを、コンパイラに対して記述している
。一般的に、アンボックス化値型については、型情報は出力コードに出力されない。型"i
nt16"は、本発明の実施形態における組み込み値型の例である。値型に関する既述の説明
はユーザ定義の値型にも、組み込み型にも適用できるので、ランタイム時に効率的に処理
することができる。コンパイラが、ある特定の値型、特にユーザ定義の値型のメタデータ
にアクセスできるようになっていなければ、ユーザはソースコードファイルまたはコンフ
ィギュレーション（構成）ファイルの中でメタデータを与えることができる。
【００４４】
データ型のリスト例は図３に示されている。このリストには、組み込み値型のグループ３
０２とユーザ定義値型のグループ３０４が含まれている。ユーザ定義値型３０４には、ほ
とんどすべて種類のデータ構造を含めることができる。ほとんどのソース言語では、ユー
ザは、組み込み型の組み合わせを利用することによってユーザ定義の値型を作成すること
ができる。この作成は、例えば、型名、その型に含まれる各フィールドのフィールド名、
および各フィールドのフィールドタイプを定義することによって行われている。この図示
の例では、pointデータ型３０６は２値データ型であり、２次元空間の点 (point) のデカ
ルト座標を定義している。circleデータ型３０８は２値データ型であり、円の中心点を定
義するpointデータ型の値と、円の半径の大きさを定義するintegerデータ型の別の値を含
んでいる。rectangleデータ型は４値データ型であり、矩形の４隅の各々に対するpointデ
ータ型の値を含んでいる。特に、circleデータ型３０８とrectangleデータ型３１０はpoi
ntデータ型３０６を利用できる。従って、circleデータ型３０８とrectangleデータ型３
１０はpointデータ型３０６から「継承」していると言うことができる。これが真の継承
であるとする実装もあれば、ある値型は他の値型を作るために利用されるにすぎないとす
る実装もある。
【００４５】
ユーザは、ボックス化形式の値型を記述するためにメタデータを作成することができる。
例えば、ユーザ定義の値型を作成するプロセスには、値型をボックス化するために必要と
される、その型のメタデータを指定するステップを含めることができる。代表例として、
ユーザ定義の型３０４を定義するメタデータはビット列（つまり、値）を記述しており、
その中には、型名、その型に含まれるすべてのフィールドのフィールド名、すべてのフィ

(13) JP 4662657 B2 2011.3.30

10

20

30

40

50

ールドのフィールドタイプ、およびその型に関連して実行できるオペレーション（つまり
、メソッド）が含まれている。ユーザ定義の型を定義するメタデータには、その型がボッ
クス化形式で実装しているインタフェースのリストを含めることもできる。最後に、メタ
データは、その型のボックス化バージョンがオブジェクトクラス階層１１６内のどこに収
められるかを示す標識を含むことができる。これについては、図４を参照して以下で説明
する。このメタデータは、型の安全性を検証し、値型のボックス化バージョンを管理する
ためにコンパイラ、ローダおよび/またはランタイム環境によって使用することができる
。
【００４６】
図４は、オブジェクトクラス階層３５０の例を示す図である。一般的に、クラス階層３５
０のオブジェクトは値型３００よりも複雑なデータ型である。各オブジェクトは、各オブ
ジェクトの型が出力コードの中にその表現で明示的にストアされるという意味で、自己型
付け (self-typing) である。オブジェクトは、そのオブジェクトを他のすべてのオブジ
ェクトと区別するID（例えば、オブジェクト名、クラス名）をもっている。また、各オブ
ジェクトは、値（関連の値型をもつ）とそのオブジェクトに関連するメソッドを含む、他
のデータをストアするために使用できるフィールド（またはデータメンバ）をもっている
。当然のことであるが、オブジェクト内のフィールドは、それ自身がオブジェクトになる
ことができる。オブジェクトは、ロケーション情報（例えば、ポインタ）とインタフェー
ス情報を含むこともできる。クラス階層３５０のような、クラス階層のオブジェクトは、
基底ルートオブジェクト (base root object) から派生しているのが代表的である。図４
に示すように、この基底ルートオブジェクトはBaseObject３２０で示されている。従って
、他のオブジェクトはオブジェクトクラス階層３５０内のBaseObject３２０の下に示され
ているので、BaseObject３２０から継承している。
【００４７】
図４のオブジェクトクラス階層は、本発明の一形態では値型の二重表現を示している。図
４は代表的なクラス階層を示し、そこには、図３に示す値型のボックス化表現が含まれて
いる。オブジェクトクラス階層３５０では、組み込み値型３５２（例えば、integer３２
５、floats３２６、およびBoolean３２８）およびユーザ定義の値型３５４（例えば、poi
nt３３０、rectangle３３２、circle３３４）は、オブジェクトクラス階層内に他の任意
のオブジェクトしてストアされている。図４に示す組み込み値型３５２とユーザ定義の値
型３５４はボックス化値型である。従って、組み込み値型３５２とユーザ定義の値型３５
４は、階層内の、他の任意のオブジェクトと同じ基準でランタイム時に処理することがで
きる。上述したように、ボックス化値型は、アンボックス化値型をメタデータと関連付け
、オブジェクトライクの属性をもつボックス化値型を得ることによって、アンボックス化
値型から作成される。メタデータは、図５を参照して以下に詳しく説明されている。
【００４８】
　特に、Object yのような、「子(child)」オブジェクトは、Object xのような、「親(pa
rent)」の属性を継承している。例えば、メソッドがObject xに関連付けられていれば、
そのメソッドは継承によってObject yにも関連付けられる。図４に示す一形態では、値型
のボックス化表現は、値型に親子関係の考え方がない場合でも、親子関係を含むことが可
能になっている。例えば、図４において、circleとrectangleは共にpointから派生してい
る。同様に、子のボックス化値型（例えば、circle値型３３４）は、親のボックス化値型
（例えば、point値型３３０）からメソッドと他の属性を継承している。このように継承
されたメソッドは仮想メソッド(virtual method) と呼ばれている。本発明では、値型と
オブジェクト型の二重表現になっているので、開発者は、どちらの形体がメソッドに渡さ
れるかについて気にする必要がない。従って、アンボックス化値型を、ボックス化表現が
期待されているオブジェクトメソッドに渡す場合があり、その逆の場合も同じである。コ
ンパイラおよび/またはランタイムは、特定の実装に該当するものとしてコンパイル時に
も、ランタイム時にも、該当する表現を選択することができる。
【００４９】

(14) JP 4662657 B2 2011.3.30

10

20

30

40

50

値型をオブジェクトクラス階層の中でアンボックス化値型とボックス化値型として二重表
現するということは、値型がメソッドをもつことができ、ある場合にはオブジェクトとし
て振る舞い、他の場合にはアンボックス化値型として振る舞うことができることを意味し
ている。実際には、値型がボックス化表現にあるとき、値型は他のオブジェクトと同じよ
うにメソッドをもつことができるという効果が得られる。値型がアンボックス化表現にあ
るときは、メソッドがオブジェクト型（例えば、ボックス化表現）を予想している場合で
も、有効な引数としてメソッドに渡すことができるという効果が得られる。ボックス化値
型表現とアンボックス化値型表現の両方が利用できるので、開発者は、どちらのバージョ
ンを使用するか、一方の形体から他方の形体への変換といったことを明示的に指定しなく
ても、この機能を得ることができる。
【００５０】
データ型による値の記述は、その値の表現と、その値に対して実行できるオペレーション
が完全に定義されている場合に行われる。データ型では、値の表現の定義は、その値の表
現を構成するビット列を記述することによって行われる。データ型に対して実行できるオ
ペレーション群の定義は、オペレーションごとに名前付きメソッド (named method) を指
定することによって行われる。名前付きメソッドは、データ型に関連して実行できるオペ
レーションを記述している。
【００５１】
オブジェクトについては、オブジェクトの表現の定義は、そのオブジェクトのロケーショ
ンと、オブジェクトの表現を構成するビット列を記述することによって行われる。従って
、オブジェクトには、オブジェクトのコンテンツ（内容）の定義と、そのオブジェクトに
対して実行できるオペレーションが含まれている。あるオブジェクトが値を含んでいると
き、その定義には、その値の表現と、その値に関連して有効に実行できるオペレーション
（例えば、メソッド）が含まれている。オブジェクトの定義は、値の表現を構成するビッ
ト列（自己記述データ (self-describing data)）、オブジェクトのロケーション（ポイ
ンタデータ）、およびオブジェクトに対する少なくとも１つの名前付きメソッド（インタ
フェースデータ）を記述することによって行われる。
【００５２】
従って、オブジェクトとアンボックス化データ型の違いは、オブジェクトが生データ（つ
まり、値表現）だけでなく、オブジェクトのロケーションを含む他のデータも含んでいる
点にある。上記の他のデータは、メタデータとしてオブジェクトにストアされている。メ
タデータは、どの特定プログラミング言語からも独立した形でストアできるという利点が
ある。従って、メタデータは、オブジェクトを操作するツール（例えば、コンパイラやデ
バッガ）の間で共通にやりとりするメカニズムとして利用することができる。
【００５３】
次に図５を参照して説明すると、アンボックス化値型４００は、図示のように、生の値デ
ータ４０１（つまり、値表現）だけを含んでいる。ボックス化値型４０２は、図示のよう
に、生の値データ４０１だけでなく、メタデータ４０４も含んでいる。値型（組み込みま
たはユーザ定義）ごとに、対応するボックス化値型を作成することができる。ボックス化
データ型が、上述したようにオブジェクトの特性をもっているのは、ボックス化データ型
は、メタデータを通して値記述データ、ロケーションデータ、およびメソッドデータと関
連付けられるからである。従って、メタデータはボックス化値型と関連付けられているの
で、ボックス化値型は図４のオブジェクトクラス階層３２０にストアしておくことができ
る。本発明の例示の実施形態では、図５に示すボックス化値型とアンボックス化値型は、
出力コード１０８（図１）にストアすることができる。当然に理解されるように、図５は
ボックス化値型の論理的表現を示し、メタデータが値型のストレージロケーション（記憶
場所）と関連付けられていることを示している。
【００５４】
本発明の形態を取り入れている別のシステム５００の機能ソフトウェアコンポーネントは
図６に示されている。システム５００には、コンパイラ５０２、５０４および５０６のよ

(15) JP 4662657 B2 2011.3.30

10

20

30

40

50

うに、少なくとも１つのフロントエンドコンパイラが組み入れられているが、これは本発
明の要求条件を示すのではなく、複数のまたは結合されたフロントエンドシステムに適用
される本発明の考え方を示すことだけを目的としている。フロントエンドコンパイラ５０
２、５０４および５０６は、ソースファイル５０８、５１０および５１２のように、異種
タイプのソース言語ファイルを、それぞれ構文解析 (parse) し、分析する機能を備えて
いる。これらのソースファイル５０８、５１０および５１２には、組み込み値型、ユーザ
定義の値型、およびオブジェクトを含めることができる。この実施形態では、フロントエ
ンドコンパイラ５０２、５０４および５０６は、各々が共通言語出力ファイル５１４、５
１６および５１８を生成する。一般的に、コンパイラ５０２、５０４および５０６は、図
１を参照して上述したコンパイラ１０４と機能的に類似している。
【００５５】
本発明の例示の実施形態では、共通言語出力ファイル５１４、５１６および５１８は、異
種タイプの、複数のソース言語、例えば、手続き型、機能型およびオブジェクト指向プロ
グラミングの概念を表現するのに適している「共通」（汎用的であるという意味である）
中間言語の実行可能命令をもっているので、どのソース言語が使用されるかに関係なく、
１つのタイプの中間言語を使用するだけで済むことになる。共通言語出力ファイル５１４
、５１６および５１８内の実行可能命令は、プロセッサによって直接に実行可能な命令（
例えば、オブジェクトまたはネイティブマシンコード）にすることも、あるタイプの実行
環境内で実行される「中間」型命令（例えば、Java(登録商標)のバイトコード、pコード
、その他の中間言語）にすることも可能である。
【００５６】
フロントエンドコンパイラ５０２、５０４および５０６は、それぞれのソースファイル５
０８、５１０および５１２を読み取って、解析する機能を備えているほかに、共通言語で
表されたファイルを読み取って、解析する機能も備えている。さらに、共通言語で表され
た関数のライブラリ宣言ファイル５２０が用意されているので、フロントエンドコンパイ
ラ５０２、５０４および５０６で利用可能になっている。
【００５７】
共通言語ファイル５１４、５１６および５１８は、コンパイルされたあと、実行環境また
はランタイム環境５２２に送ることができる。本明細書では、実行環境とランタイム環境
は同じ意味で使用されている。実行環境は、直接実行環境にすることも、管理されたラン
タイム環境にすることも、管理されていないランタイム環境にすることもできる。アンボ
ックス化値型をボックス化値型に変換する（またはその逆に）必要があるとき、その変換
をコンパイルステージで行うと、ランタイム環境の状況が管理されているか、管理されて
いないかに関係なく、変換された値型を使用できるという利点があるが、ランタイム環境
で行うことも可能である。実際には、環境は、コンパイルされたファイルを読み取り、実
行できる環境ならば、どのタイプの環境であっても構わない。図６に示すランタイム環境
５２２は、以下で説明するように、複数の特徴、関数およびサービスをもつ、管理された
環境を示している。
【００５８】
ランタイム環境５２２に渡される前に、各出力ファイル５１４、５１６および５１８は、
図示のようにオプションの独立処理セクション５２４またはオプションの内蔵処理セクシ
ョン５２６でオプションの処理を行っておくことも可能である。一般的に、オプションの
処理では、検証、型チェック、および/または共通言語をランタイム環境５２２で使用す
るのに適した形に変換することが行われる。従って、オプションの処理は、受け取った共
通出力ファイル５１４、５１６および５１８を翻訳（変換）し、解釈し、さもなければ、
実行環境５２２で実行可能な出力コードに変換するために使用できる。
【００５９】
　実行環境５２２が、図６に示すように管理されたランタイム環境である場合には、ラン
タイム環境自身がファイルを実行のためにロードするローダ５３０をもっている。ローダ
５３０は実行可能ファイルを受け取り、必要な参照を解決した後、コードをロードする。

(16) JP 4662657 B2 2011.3.30

10

20

30

40

50

この環境には、スタックウォーカ (stack walker) ５３４、すなわち、メソッドコールを
管理し、任意の時点にスタックに置かれているメソッドコールのシーケンスを特定できる
ようにするコード部分が用意されていることがある。レイアウトエンジン (layout engin
e) ５３２が用意されていることもあり、これは、種々のオブジェクトと他のエレメント
の、メモリ内のレイアウトを実行されるアプリケーションの一部として設定する。さらに
、実行環境には、あるコードがあるシステムリソースにアクセスする許可（あるいは、い
やしくも実行する許可）をもっているかどうかを判断することによって、リソースの無許
可使用を防止するセキュリティモジュール５３８が用意されていることもある。ランタイ
ム環境は、ガーベッジコレクタ (garbage collector) ５３６のようなメモリ管理サービ
スと、デバッガとプロファイリング (profiling) のような、他の開発サービス５４０を
備えていることもある。管理された実行環境によって提供できる、他のタイプのサービス
としては、特に、コードを検証してから実行されるようにするサービスがある。
【００６０】
実行環境５２２は、さらに、共通ライブラリプログラムファイル５２８を利用することが
可能であるが、そこには、共通ライブラリ宣言５２０の機能を実行するための実際の実装
情報が入っている。
【００６１】
ランタイム時に、出力ファイル５１４、５１６および５１８はランタイム環境５２２にロ
ードされる。重要なことは、図５に示すボックス化またはアンボックス化値型のように、
ランタイム環境に渡される情報は、ランタイムに先立ってオブジェクトを形成するために
ランタイム環境によって使用されることである。レイアウトエンジンは、該当のメソッド
とフィールド情報を含んでいるデータ構造を、クラスのタイプ別に作成するためにこの情
報を使用するのが一般である。
【００６２】
図７は、本発明の例示の実施形態において個々の値型をボックス化し、アンボックス化す
るときのオペレーションの流れ（フロー）を示す図である。ボックス化とアンボックス化
は自動的に行うことができるので、特定データ型のどちらのバージョンも、ランタイム時
に常に利用可能にしておくことができる。従って、状況（例えば、アンボックス化値型を
オブジェクトに割り当てる）に応じて、最も効率的な形体の値型を選択的に使用すること
ができる。当然のことであるが、コンパイラ１０４が、変換された形体の値型は不要であ
ると判断した場合には、変換を回避することも可能である。
【００６３】
図７の論理的オペレーションは、(1) コンピュータシステム上で実行されるコンピュータ
実装ステップのシーケンスまたはプログラムモジュールとして、および/または (2) コン
ピュータシステム内の相互接続ロジック回路またはマシンロジックモジュールとして実装
されている。どのような実装にするかは選択の問題であり、本発明を実現するコンピュー
タシステムに要求されるパフォーマンスによって決まる。従って、本明細書で説明してい
る本発明の実施形態を構成する論理的オペレーションは、オペレーションとも、ステップ
とも、モジュールとも呼ばれる。この分野の精通者ならば理解されるように、これらのオ
ペレーション、ステップおよびモジュールは、特許請求の範囲に記載されている本発明の
精神と範囲から逸脱しない限り、ソフトウェアでも、ファームウェアでも、特殊目的デジ
タルロジックでも、あるいはこれらの任意の組み合わせでも、実現することが可能である
。
【００６４】
本発明の一実施形態では、図７のオペレーションはステップ６００からスタートし、アン
ボックス化テストオペレーション６０２に進む。テストオペレーション６０２は、アンボ
ックス化からボックス化への変換を要求するトリガが、ソースファイルに含まれているか
どうかを検出する。アンボックス化からボックス化への変換トリガ (unboxed to boxed c
onversion trigger) は、ソースファイル内のエンティティで、アンボックス化からボッ
クス化への変換が必要であると示しているものがトリガとなる。アンボックス化からボッ

(17) JP 4662657 B2 2011.3.30

10

20

30

40

50

クス化への変換の例としては、アンボックス化値型がボックス化値型に割り当てられる場
合や、ボックス化値型または別のオブジェクトを予想しているオブジェクトにアンボック
ス化値型が渡される場合がある。どちらの例の場合も、アンボックス化からボックス化へ
の変換が必要になる。アンボックス化からボックス化への変換を要求するトリガが、ソー
スファイルに含まれていることがテストオペレーション６０２で検出されると、オペレー
ションフローはYESにブランチして、アンボックス化値型出力オペレーション６０４に移
る。アンボックス化値型出力オペレーション６０４は、アンボックス化からボックス化へ
の変換を実行するためのコンパイラからのコード、アンボックス化値型、およびアンボッ
クス化値型に関連するメタデータを、出力コードを通してランタイム環境に出力する。次
に、オペレーションフローは変換オペレーション６０８に移り、そこで、出力コード、ア
ンボックス化値型、およびそのアンボックス化値型に関連するメタデータから、ボックス
化値型がランタイム時に変換または構築される。オペレーションフローはオペレーション
６１９に進み、変換された値型に対して終了する。
【００６５】
ボックス化値型は、型名の定義、フィールド名、フィールドタイプ、およびボックス化値
型に関連して実行できるオペレーション（例えば、メソッド）を含むことが可能である。
ボックス化値型の作成には、ボックス化値型がオブジェクトクラス階層に置かれている該
当位置および他のボックス化値型との関係を表しているメタデータの作成を含めることも
できる。
【００６６】
　特に注目すべきことは、アンボックス化からボックス化への変換を要求するトリガがソ
ースファイルに含まれていないと、アンボックス化テストオペレーション６０２で判断さ
れた場合にも、ボックス化テストオペレーション６１０に移ることである。ボックス化テ
ストオペレーション６１０は、ボックス化からアンボックス化への変換を要求する変換ト
リガがソースファイルに含まれているかどうかを検出する。ボックス化からアンボックス
化への変換を要求する変換トリガがソースファイルに含まれていなければ、オペレーショ
ンフローはNOにブランチしてステップ６１２に移り、変換された値型に対して終了する。
【００６７】
　他方、ボックス化からアンボックス化への変換を要求する変換トリガがソースファイル
に含まれているとボックス化テストオペレーション６１０で検出されると、オペレーショ
ンフローはYESにブランチしてボックス化値型出力オペレーション６１４に移る。ボック
ス化値型出力オペレーション６１４は、ボックス化からアンボックス化への変換を行うコ
ード、ボックス化値型、およびそのボックス化値型に関連するメタデータを、出力コード
を通してランタイム環境に出力する。そのあと、オペレーションフローは変換オペレーシ
ョン６１６に進み、出力コードに入っている、ボックス化からアンボックス化への変換を
実行するコード、ボックス化値型、およびそのボックス化値型に関連するメタデータから
アンボックス化値型を変換または作成する。
【００６８】
ボックス化からアンボックス化への変換トリガは、ソースファイル内にあって、変換が必
要であることを示しているエンティティならば、どのエンティティであっても構わない。
変換トリガの例としては、ボックス化値型がアンボックス化値型に割り当てられる場合お
よびアンボックス化値型を予想しているオブジェクトにボックス化値型が渡される場合が
ある。どちらの例の場合も、ボックス化からアンボックス化への変換が必要になる。オペ
レーションフローはステップ６１８に進み、変換された値型に対して終了する。
【００６９】
以上から理解されるように、図７のオペレーションは、ソースファイルの中で見つかった
各々の値型に対して、必ずしも変換が行われないように変更することができる。変換が適
切かどうかの判断は、予備段階で行われるようにすることもできる。例えば、ボックス化
組み込み値型は、ソースファイルではアンボックス化フォーマットで書かれることはない
とコンパイラが認識する場合がある。そのような場合には、変換は、不要であるものとし

(18) JP 4662657 B2 2011.3.30

10

20

30

40

50

て回避されることになる。
【００７０】
上述したように、図７に関連して説明したプロセスは、個別的値型を論理的に処理するこ
とに関係している。しかし、代表例としては、複数の値型がソースファイルに含まれてい
るので、ボックス化かアンボックス化のどちらかが必要になる場合がある。本発明の一実
施形態では、検出オペレーション６０２と６１０および出力オペレーション６０４と６１
４は、コンパイルステージで複数の値型に対して実行されてから、ランタイム時の変換オ
ペレーション６０８と６１６に移るようになっているのが一般である。このようにすると
、必要とされる変換コードは、その大部分（または全部）が出力コードに出力され、ラン
タイム時に実行されることになる。
【００７１】
　しかるに、本発明の代替実施形態では、検出オペレーション６０２と６１０および出力
オペレーション６０４と６１４は、ランタイム時にも実行されるようになっている。「出
力」オペレーションは、ランタイム時のボックス化またはアンボックス化コードへのコー
ルによって実現されている。このような実施形態としては、例えば、図８と図９に示すも
のがある。
【００７２】
オブジェクトコード１０６（図１）の実行時に、ランタイム環境５２２（図６）のような
ランタイム環境は、仮想メソッドの実装の場合と同じように、特定データ型のボックス化
バージョンを使用するか、アンボックス化バージョンを使用するかを判断することができ
る。一実施形態では、フロー７００はある特定の場合を示し、そこでは、コンパイラとは
対照的に、ランタイム環境が選択オペレーションを実行するようになっている。初期には
、フローは、定義オペレーション７０２からスタートするのが一般であり、そこで、関数
コールの中で使用される特定の値型が定義される。値型の定義は、その値型がボックス化
であるか、アンボックス化であるかといった、ある種の情報を与えることによって行われ
るのが一般である。一実施形態では、値型にビットを関連付けることが可能であり、その
ビットは、値型がボックス化であるか、アンボックス化であるかに応じてセットまたはク
リアされるようになっている。
【００７３】
　値型が定義されると、パス（引き渡し）オペレーション７０４は、定義された値型を特
定の関数に引き渡す。基本的には、コンパイル時に、コンパイラは、ランタイム時に値型
を関数に渡せるようにする出力コードを出力している。この種のパラメータを関数に渡す
ことは直接的であり、パラメータを渡すことにより、必要な値型情報が関数に与えられて
オペレーションが行われることになる。
【００７４】
定義された値型を受け取る特定の関数は、ボックス化かアンボックス化のどちらかの値型
を予想している。従って、パスオペレーション７０４に続いて、判断オペレーション７０
６は、渡された値型が、予想の値型と同じであるかどうかを判断する。この判断は、値型
に関連するビットを単純にテストするだけにすることも、関数に渡されたデータの型を別
のオペレーションで評価するようにすることも可能である。
【００７５】
渡された値型が予想の値型と同じでないと判断オペレーション７０６で判断されると、フ
ローはNOにブランチして変更 (modify) オペレーション７０８に移る。変更オペレーショ
ンは渡された値型をボックス化するか、アンボックス化し、新しい値型を関数に引き渡す
。関数がボックス化値型を予想していたが、受け取った値型がアンボックス化であるよう
な実施形態では、ステップ７０８は値型をボックス化する。他方、関数がアンボックス化
値型を予想していたが、受け取った値型がボックス化であれば、オペレーション７０８は
値型をアンボックス化することになる。ボックスオペレーション７０８の結果は、アンボ
ックス化値型を記述しているオブジェクトを指しているポインタである。変更オペレーシ
ョン７０８に続いて、フローはコールオペレーション７１０へ進む。このオペレーション

(19) JP 4662657 B2 2011.3.30

10

20

30

40

50

は以下で説明する。
【００７６】
渡された値型が予想の値型と同じであると判断ステップ７０６で判断されたときは、フロ
ーはYESにブランチしてコールオペレーション７１０に移る。基本的には、関数が受け取
った値型が予想していた通りであれば、変更オペレーション７０８のような変更は不要に
なる。従って、フローはコールオペレーション７１０を続ける。
【００７７】
　コールオペレーション７１０は、定義された関数に関連付けられたメンバメソッドをコ
ールする。例えば、ス－パクラスの場合や、関数がボックス化とアンボックス化の両バー
ジョンの値型を受け取る可能性のある場合のように、コンパイラがコンパイル時にどのメ
ソッドをコールすべきか判断できず、従って、複数のバージョンが実装されている場合に
は、メソッドを仮想メソッドにすることができる。メンバメソッドは、渡された値型に対
してオペレーションを行う、ユーザ定義のメソッドと関係付けられている。コンパイル時
に、コンパイラは関数内で種々のメソッドを実行するためのコードを出力する。しかし、
関数は異なる型を受け取ることがあるので、コンパイラは、各々の型ごとに特定のコード
を関数内に挿入することはしない。その代わり、コンパイラは仮想メソッドテーブル (vi
rtual method table) を作成する。仮想メソッドテーブルには、関数が受け取る可能性の
ある、特定の値型の各々に対してメソッドを実行するために必要な情報が収められている
。
【００７８】
従って、メソッドが７１０でコールされると、ランタイム環境は、仮想メソッドテーブル
内にある該当メソッドへの参照を使用してメソッドコールを実行する。さらに具体的には
、ルックアップオペレーション７１２は、渡された値型に関係する特定メソッドを探し出
す。その型に対する特定メソッドが見つかると、実行オペレーション７１４はその値型に
対するメソッドを実行する。
【００７９】
すでに述べたように、上述したオペレーションのフローは、ボックス化とアンボックス化
のどちらのパラメータでも処理することができる。重要な特徴は、特定の関数に渡すこと
ができる、異種の値型に対するメソッドを得るために仮想テーブルを使用していることで
ある。関数は異種の型を受け取ることがあるため、またコンパイラは関数がどの型を受け
取るかを知らないので、ランタイム環境は必要な解析を実行し、値型の間に不一致があれ
ばそれを解決する。
【００８０】
図８に代わる代替実施形態のオペレーションフロー８００は図９に示されている。フロー
８００の最初の２オペレーションである、定義オペレーション８０２とパスオペレーショ
ン８０４は、図８を参照して説明したオペレーション７０２および７０４に類似している
。つまり、定義オペレーション８０２は値型をボックス化またはアンボックス化として定
義し、パスオペレーション８０４はその値を関数に渡している。
【００８１】
値が渡されると、コールオペレーション８０６はメンバ関数をコールする。このオペレー
ションは上述したコールオペレーション７１０に類似し、実際のメソッドがコールされる
。コールオペレーション８０６に続いて、ルックアップオペレーション８０８は、渡され
た値型に対する、コールされたメソッドを仮想メソッドテーブルから探し出す。ルックア
ップオペレーション８０８は、上述したオペレーション７１２に類似している。
【００８２】
コールオペレーション８０６とルックアップオペレーション８０８に続いて、判断オペレ
ーション８１０は、渡された値型が予想の値型と同じであるかどうかを判断する。判断オ
ペレーション８１０は、渡された値型が予想の値型形式と突き合わせて解析される点で、
上述した判断オペレーション７０６に類似している。ただし、１つの違いは、判断オペレ
ーションを実行するコードが、実際には、以下で説明するように、コールされたメソッド

(20) JP 4662657 B2 2011.3.30

10

20

30

40

50

コードの先頭部分に置かれていることである。
【００８３】
渡された値型が予想形式と異なっていると判断オペレーション８１０で判断されると、フ
ローはNOにブランチして変更オペレーション８１２に移る。変更オペレーション８１２は
、図８を参照して上述した変更オペレーション７０８に類似している。基本的に、変更が
必要であれば、変更オペレーション８１２は、値型を必要に応じてボックス化またはアン
ボックス化するために必要なオペレーションを実行する（例えば、該当するボックス化ま
たはアンボックス化コードをコールする）。変更が行われると、実行オペレーション８１
４は、変更された値型を使用してメソッドを実行する。
【００８４】
他方、渡された値型が予想形式と同じであると判断オペレーション８１０で判断されると
、実行オペレーション８１４は、渡された値型を使用してメソッドを実行する。渡された
値型は予想の値型と同じであったので、オペレーション８１２のような変更オペレーショ
ンは、実行前に必要でない。
【００８５】
図９に示す実施形態によれば、コーラ（呼び出し側）オブジェクトは、メソッドをコール
し、そのメソッドを実行する関数に値型を渡すだけで済むことになる。コーラは、値型が
正しいかどうかの判断を行わないで済むことになる。このようなコーラオブジェクトはス
トリームライン化されているので、実行するオペレーションは少なくなっている。しかし
、判断オペレーションはメソッドまたは他のなんらかのモジュールに実行させる必要があ
るとのトレードオフがある。基本的には、プラミング (plumbing) は、メソッドの実行に
先立って実行されるコードの小さな部分として置いておくことができる。コーラの数がコ
ールされるメソッドの数より多いときは、コーラオブジェクトのストリームライン化を利
用すると、便利である。
【００８６】
以上のように、本発明は、種々のプログラミング言語のオブジェクトを処理し、ユーザ定
義のデータ型をボックス化し、アンボックス化するために、メソッドとしても、装置とし
ても、あるいはコンピュータプログラムを収容しているコンピュータ読み取り可能媒体や
プログラムプロダクトのような製造物品としても実現することが可能である。本発明の好
ましい実施形態に関連して、本発明を具体的に示し、説明してきたが、この分野の精通者
ならば理解されるように、本発明の精神と範囲から逸脱しない限り、その形体と細部にお
いて種々態様に変更することが可能である。
【図面の簡単な説明】
【図１】本発明の実施形態による型システムを統一化された見方で提供するように動作す
る、例示コンパイラの論理的表現を示す図である。
【図２】本発明の例示実施形態のための動作環境を提供するコンピュータシステムを示す
図である。
【図３】データ型をカテゴリ化するために本発明の例示実施形態で使用される例示データ
型を示す図である。
【図４】オブジェクトを編成するために本発明の例示実施形態で使用される例示オブジェ
クトクラス階層を示す図である。
【図５】ボックス化データ型とアンボックス化データ型のセットを示す図である。
【図６】図１の例示コンパイラシステムの論理的表現を示す詳細図である。
【図７】本発明の例示実施形態において値型をボックス化し、アンボックス化するための
方法を示す図である。
【図８】本発明の実施形態においてランタイムに値型のボックス化とアンボックス化を実
現するための方法を示す図である。
【図９】本発明の他の実施形態においてランタイムに値型のボックス化とアンボックス化
を実現するための方法を示す図である。
【符号の説明】

(21) JP 4662657 B2 2011.3.30

10

１００　ソースファイル
１０２　ランタイム環境
１０４　コンパイラ
１０６　中間言語コードファイル
１０８　出力コード
１１０　値型
１１２　オブジェクト
１１４　組み込み値型
１１６　基本オブジェクトクラス階層
１１８　型ルール
１２０　オブジェクト
１２２　ボックス化値型
１２４　値型
３０２　組み込み型
３０４　ユーザ定義の型

【図１】 【図２】

(22) JP 4662657 B2 2011.3.30

【図３】 【図４】

【図５】 【図６】

(23) JP 4662657 B2 2011.3.30

【図７】 【図８】

【図９】

(24) JP 4662657 B2 2011.3.30

10

フロントページの続き

(72)発明者 ジョージ　エイチ．ボスワース
 アメリカ合衆国　９８０７２　ワシントン州　ウッディンビル　ノースイースト　１２３　コート
 　１９８３０
(72)発明者 パトリック　エイチ．ダサッド
 アメリカ合衆国　９８００６　ワシントン州　ベルビュー　１４２　コート　サウスイースト　６
 ００８
(72)発明者 ジェームズ　エス．ミラー
 アメリカ合衆国　９８００８　ワシントン州　ベルビュー　ノースイースト　４　プレイス　１７
 ２１３
(72)発明者 ダリル　ビー．オーランダー
 アメリカ合衆国　８０３０４　コロラド州　ボールダー　ジュニパー　アベニュー　７２０

 合議体
 審判長 吉岡　浩
 審判官 石井　茂和
 審判官 清木　泰

	biblio-graphic-data
	claims
	description
	drawings
	overflow

