PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/44132
GOGF 9/46 Al . -

(43) International Publication Date: 2 September 1999 (02.09.99)

(21) International Application Number: PCT/US99/03944 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,

(22) International Filing Date: 24 February 1999 (24.02.99) GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,

KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
(30) Priority Data: SI, SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU, ZW,
60/076,048 26 February 1998 (26.02.98) Us ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
09/044,790 20 March 1998 (20.03.98) UsS Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
Antonio Road, MS UPAL01-521, Palo Alto, CA 94303 TD, TG).
(US).
(72) Inventors: WOLLRATH, Ann, M.; 9 Northwoods Road, | Published
Groton, MA 01450 (US). JONES, Peter, C.; 85 Bacon With international search report.
Street, Winchester, MA 018900 (US). Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(74) Agents: GARRETT, Arthur, S.; Finnegan, Henderson, amendments.

Farrabow, Garrett & Dunner, L.L.P., 1300 I Street, NW,,
Washington, DC 20005-3315 (US) et al.

(54) Title: METHOD AND APPARATUS FOR DETERMINING STATUS OF REMOTE OBJECTS IN A DISTRIBUTED SYSTEM

o~ 305 [~ 345
310 ™~ 350
Process Object
Registration Notification Monitor
ko~ 320
DWERP Ping: DWERP
I~ 380
[H
Strong | Weak |
Reference ! Reference |
[9 P
330 340

(57) Abstract

Systems consistent with the present invention, a method and apparatus are provided for selectively supplying a state change associated
with remote objects in a distributed system. The method involves registering a request from a computational entity to receive notification
as to a state change associated with a remote object. Registration of a notification request causes the creation of a remote weak reference
to the remote object including an identifier of a location of the remote object. Periodically, a request is sent to a location based on the
identifier of the remote weak reference. When it is determined that a state change associated with the remote object has occurred, the

registered computational entity is notified accordingly.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cate d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
uG
Us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/44132 PCT/US99/03944

METHOD AND APPARATUS FOR DETERMINING
STATUS OF REMOTE OBJECTS IN A DISTRIBUTED SYSTEM

RELATED APPLICATIONS

The following identified U.S. patent applications are relied upon and are
incorporated by reference in this application.

Provisional U.S. Patent Application No. 60/076,048, entitled "Distributed
Computing System," filed on February 26, 1998.

U.S. Patent Application No. 09/044,923, entitled "Method and System for
Leasing Storage," bearing attorney docket no. 06502.0011-01000, and filed on the
same date herewith.

U.S. Patent Application No. 09/044,838, entitled "Method, Apparatus, and
Product for Leasing of Delegation Certificates in a Distributed System," bearing
attorney docket no. 06502.0011-02000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,834, entitled "Method, Apparatus and
Product for Leasing of Group Membership in a Distributed System," bearing attorney
docket no. 06502.0011-03000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,916, entitled "Leasing for Failure
Detection," bearing attorney docket no. 06502.0011-04000, and filed on the same date
herewith.

U.S. Patent Application No. 09/044,933, entitled "Method for Transporting
Behavior in Event Based System," bearing attorney docket no. 06502.0054-00000,

and filed on the same date herewith.

WO 99/44132 PCT/US99/03944
2-

U.S. Patent Application No. 09/044,919, entitled "Deferred Reconstruction of
Objects and Remote Loading for Event Notification in a Distributed System," bearing
attorney docket no. 06502.0062-01000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,938, entitled "Methods and Apparatus for
Remote Method Invocation," bearing attorney docket no. 06502.0102-00000, and
filed on the same date herewith.

U.S. Patent Application No. 09/045,652, entitled "Method and System for
Deterministic Hashes to Identify Remote Methods," bearing attorney docket no.
06502.0103-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,930, entitled "Downloadable Smart
Proxies for Performing Processing Associated with a Remote Procedure Call in a
Distributed System," bearing attorney docket no. 06502.0105-00000, and filed on the
same date herewith.

U.S. Patent Application No. 09/044,917, entitled "Suspension and
Continuation of Remote Methods," bearing attorney docket no. 06502.0106-00000,
and filed on the same date herewith.

U.S. Patent Application No. 09/044,835, entitled "Method and System for
Multi-Entry and Multi-Template Matching in a Database," bearing attorney docket no.
06502.0107-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,839, entitled "Method and System for In-
Place Modifications in a Database," bearing attorney docket no. 06502.0108, and filed

on the same date herewith.

WO 99/44132 PCT/US99/03944

3.

U.S. Patent Application No. 09/044,945, entitled "Method and System for
Typesafe Attribute Matching in a Database," bearing attorney docket no. 06502.0109-
00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,931, entitled "Dynamic Lookup Service in
a Distributed System," bearing attorney docket no. 06502.0110-00000, and filed on
the same date herewith.

U.S. Patent Application No. 09/044,939, entitled "Apparatus and Method for
Providing Downloadable Code for Use in Communicating with a Device in a
Distributed System," bearing attorney docket no. 06502.0112-00000, and filed on the
same date herewith.

U.S. Patent Application No. 09/044,826, entitled "Method and System for
Facilitating Access to a Lookup Service," bearing attorney docket no. 06502.0113-
00000, and filed on the same date herewith.

U.S. Patent Application No. 09/044,932, entitled "Apparatus and Method for
Dynamically Verifying Information in a Distributed System," bearing attorney docket
no. 06502.0114-00000, and filed on the same date herewith.

U.S. Patent Application No. 09/030,840, entitled "Method and Apparatus for
Dynamic Distributed Computing Over a Network," and filed on February 26, 1998.

U.S. Patent Application No. 09/044,936, entitled "An Interactive Design Tool
for Persistent Shared Memory Spaces," bearing attorney docket no. 06502.0116-

00000, and filed on the same date herewith.

WO 99/44132 PCT/US99/03944
-4-

U.S. Patent Application No. 09/044,934, entitled "Polymorphic Token-Based
Control," bearing attorney docket no. 06502.0117-00000, and filed on the same date
herewith.

U.S. Patent Application No. 09/044,915, entitled "Stack-Based Access
Control," bearing attorney docket no. 06502.0118-00000, and filed on the same date
herewith.

U.S. Patent Application No. 09/044,944, entitled "Stack-Based Security
Requirements," bearing attorney docket no. 06502.0119-00000, and filed on the same
date herewith.

U.S. Patent Application No. 09/044,837, entitled "Per-Method Designation of
Security Requirements," bearing attorney docket no. 06502.0120-00000, and filed on
the same date herewith.

BACKGROUND OF THE INVENTION

A. Field of the Invention
This invention generally relates to distributed systems and, more particularly,
to a method and apparatus for determining a state of remote objects in a distributed

system.

B. Description of the Related Art

Distributed systems typically comprise multiple machines, such as computers
and related peripheral devices, connected in a network, for example, a Local Area
Network (LAN), Wide Area Network (WAN), or the Internet. Distributed systems

generally require that computational entities (e.g., applications, programs, applets,

WO 99/44132 PCT/US99/03944
-5-
etc.) running in different address spaces, potentially on different machines, be able to
communicate.

For a basic communication mechanism, distributed object-oriented systems
utilize Remote Method Invocation (RMI), which is more generally known as Remote
Procedure Call (RPC). RMI facilitates application-level communication between
"objects" residing in different address spaces.

In object-oriented systems, a "class" provides a "template" for the creation of
"objects" (which represent items or instances manipulated by the system) having
characteristics of that class. The term "template" denotes that the objects (i.e., data
items) in each class, share certain characteristics or attributes determined by the class.
Objects are typically created dynamically during system operation. Methods
associated with a class are generally invoked (i.e., caused to operate) on the objects of
the same class.

RMI is the action of invoking a method of a remote object. In response to the
invocation of a method on a remote object using RMI, a lower level communications
process causes the invoked method to be executed on the remote object.

The Java™ runtime system, which is designed to implement applications
written in the Java™ object-oriented programming language, supports a specific
Java™ RMI Application Program Interface (API). This API is explained in, for
example, a document entitled "Remote Method Invocation Specification,”" Sun
Microsystems, Inc. (1997), which is available via universal resource locator (URL)
http://java.sun.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html, and is

incorporated herein by reference. The Java language is described in many texts,

WO 99/44132 PCT/US99/03944

-6-
including one that is entitled "The Java Language Specification" by James Gosling,
Bill Joy, and Guy Steele, Addison-Wesley, 1996. Java and all Java-based trademarks
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

Java RMI assumes a homogeneous environment of the Java runtime system,
and therefore Java RMI takes advantage of the object model for the Java language
whenever possible. In the Java™ distributed object model, a remote object is one
whose methods can be invoked from another Java runtime system, potentially on a
different machine. A remote object is defined by one or more remote interfaces
written in the Java language that specify the methods of the remote object. For
example, interfaces enable entities invoking methods on remote objects to define the
methods supported by the remote objects without specifying the implementation of
those methods.

"Garbage collection" is the term used in technical literature and the relevant
arts to refer to a class of algorithms utilized to carry out storage management,
specifically automatic memory reclamation. There are many known garbage
collection algorithms, including reference counting, mark-sweep, and generational
garbage collection algorithms. These, and other garbage collection techniques, are
described in detail in a book entitled "Garbage Collection, Algorithms For Automatic
Dynamic Memory Management" by Richard Jones and Raphael Lins, John Wiley &
Sons, 1996.

Distributed garbage collection extends the notion of garbage collection to the

realm of distributed computing systems, reclaiming resources when no application on

WO 99/44132 PCT/US99/03944
.7-

any computer in a distributed system refers to them. An automated distributed
garbage collection process frees the programmer from determining when it is safe to
delete a remote object. In the absence of a distributed garbage collector (DGC), a
remote object would need to keep track of all clients that refer to the object and the
object storage can be reclaimed when all clients no longer reference that object. For
this function, Java RMI's DGC relies on a reference-counting garbage collection
algorithm similar to Modula-3's Network Objects. See "Network Objects" by Birrell,
Nelson, and Owicki, Digital Equipment Corporation Systems Research Center
Technical Report 115, 1994.

To accomplish reference-counting garbage collection, the Java RMI runtime
system, which is an implementation of Java RMI on top of the Java runtime system,
keeps track of all remote objects referenced by computational entities (i.e., clients)
executing through a local virtual machine (VM). The Java™ VM (JVM) is an abstract
computing machine of the runtime system that receives instructions from programs in
the form of bytecodes and that interprets these bytecodes by dynamically converting
them into a form for execution, such as object code, and executing them. The JVM is
described in detail in a text entitled "The Java Virtual Machine Specification", by Tim
Lindholm and Frank Yellin, Addison Wesley, 1996.

When a computational entity references a remote object, the local RMI
runtime for the computational entity increments a corresponding reference count.
Such a reference is typically referred to as a "strong" reference, and the computational
entity is said to "hold" a strong reference to the remote object. A strong reference is

one that will prevent the (remote) object from being collected. The first reference to a

WO 99/44132 PCT/US99/03944

-8-
remote object causes the runtime system to send a "referenced" message to the RMI
runtime for that object (e.g., another machine in the distributed system holding the
referenced object). As remote objects are found to be unreferenced in the local VM,
the local RMI runtime decrements the corresponding reference count.

When the local VM discards the last reference to a remote object, an
"unreferenced" message is sent to the RMI runtime corresponding to that object.
When a remote object is not referenced by any client, the RMI runtime system for the
remote object refers to its "local" object (which was considered a remote object for the
client) using a weak reference. The weak reference allows the remote object's garbage
collector to discard the object, provided no other local "strong" references to the
object exist. As in the normal object life-cycle, a finalization process is called after
the garbage collector determines that no more strong references to the object exist.
One type of finalization process causes the memory allocated for an object to be
returned to a memory heap for reuse. As long as a local "strong" reference to a remote
object exists, it cannot be reclaimed in this way by a garbage collector and it can be
passed in remote calls or returned to clients. Passing a remote object adds the
identifier for the VM to which it was passed to the referenced set. As a result of the
"referenced" call from the receiving VM, the RMI runtime will keep a "strong"
reference to the remote object to prevent collection.

A remote object needing "unreferenced" notification, i.e., a notification that no
more clients hold references, must implement a special interface referred to as the
"java.rmi.server.Unreferenced" interface. In this manner, when all references to the

object from remote entities (e.g., former clients of the object) no longer exist, a

WO 99/44132 PCT/US99/03944

9.
method named "unreferenced" of the object will be invoked. The unreferenced
method is called when the set of references for the object becomes empty.

Note that if a network partition exists between a client and a remote object, it
is possible that premature collection of the remote object will occur since the transport
might believe that the client crashed. Because of the possibility of premature
collection, remote references cannot guarantee referential integrity; in other words, it
is always possible that a remote reference may in fact not refer to an existing object.
An attempt to use such a reference will generate a RemoteException error which must
be handled by the computational entity making use of the reference.

Accordingly, there is a need for a system that enables computational entities to
determine the state of remote objects. By obtaining such state information,
computational entities can better manage references to remote objects and avoid
unwanted RemoteExceptions without preventing the remote objects from being
garbage collected.

SUMMARY OF THE INVENTION

Systems consistent with the present invention, as embodied and broadly
described herein, a method is provided for selectively supplying a state change
associated with remote objects in a distributed system. The method involves
registering a request from a computational entity to receive notification as to a state
change associated with a remote object. Registration of a notification request causes
the creation of a remote weak reference to the remote object including an identifier of

a location of the remote object.

WO 99/44132 PCT/US99/03944

-10-
Periodically, a request is sent to a location based on the identifier of the remote
weak reference. When it is determined that a state change associated with the remote
object has occurred, the registered computational entity is notified accordingly.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part
of this specification, illustrate an implementation of the invention and, together with
the description, serve to explain the advantages and principles of the invention. In the
drawings,

FIG. 1. illustrates an exemplary network architecture in which systems
consistent with the present invention may be implemented;

FIG. 2 is block diagram of an exemplary system architecture for a computer
system with which the invention may be implemented;

FIG. 3 is a block diagram illustrating a data flow for handling remote objects
in a distributed system consistent with the present invention;

FIGs. 4A and 4B are a flow chart illustrating acts performed by a client-side
function of a distributed weak reference process consistent with an implementation of
the present invention; and

FIG. 5 is a flow chart illustrating acts performed by a server-side function of a
distributed weak reference process consistent with an implementation of the present

invention.

WO 99/44132 PCT/US99/03944
-11-

DETAILED DESCRIPTION

Reference will now be made in detail to an implementation consistent with the
present invention as illustrated in the accompanying drawings. Wherever possible,
the same reference numbers will be used throughout the drawings and the following
description to refer to the same or like parts.

Introduction

Systems consistent with the present invention address shortcomings of the
prior art and provide a method and apparatus for selectively supplying a state change
associated with remote objects in a distributed system. The term "remote" is used
herein to distinguish between an object located in an address space designated for a
machine (such as a VM) operating in connection with a computational entity and an
object located in an address space that is different from the address space designated
for a machine operating in connection with the computational entity, the latter
situation presenting a "remote" object. Consequently, an object located on the same
physical machine as a computational entity can be considered a "remote" object with
respect to that entity provided the computational entity uses an address space different
from the space holding the object.

In general, a method and apparatus consistent with the present invention
registers requests from computational entities to receive notification as to a "liveness"
associated with remote objects. The term "liveness" is used herein to refer to whether
a remote object is accessible at a specific time. A remote object is determined to be
inaccessible when, for example, either a network partition prevents a computational

entity from accessing the remote object or the remote object has been garbage

WO 99/44132 PCT/US99/03944
-12-
collected. Such a partition can occur as a result of a communication problem with the
computational entity's machine that prevents it from accessing the machine associated
with the remote object or a communication problem associated with the remote
object's machine.

More specifically, when a computational entity references a remote object, the
entity maintains a strong reference to the remote object. The computational entity
may also register with the RMI runtime system to receive notification as to a change
in the "liveness" of the remote object. Such a registration involves a registration-
notification process of the RMI runtime system and causes the creation of a "remote
weak reference,” which is a reference to the remote object derived from the strong
reference. The remote weak reference for the remote object will not prevent the
remote object from being collected.

Based on a set of remote weak references, the RMI runtime system
periodically sends status requests to machines associated with the corresponding
remote objects. One or more of the responses to the requests are then provided to
registered computational entities based on a change (if any) to the state of the remote
object, i.e., the "liveness" of the remote object.

The Distributed System

Methods and systems consistent with the present invention operate in
distributed systems comprised of, for example, multiple homogenous or heterogenous
machines. An exemplary distributed system is shown in Fig. 1. This distributed
system is generally comprised of various components, including both hardware and

software. The exemplary distributed system (1) allows users of the system to share

WO 99/44132 PCT/US99/03944

-13-
services and resources over a network of many devices; (2) provides programmers
with tools and programming patterns that allow development of robust, secured
distributed systems; and (3) simplifies the task of administering the distributed
system. To accomplish these goals, the distributed system utilizes the Java™
programming environment to allow both code and data to be moved from device to
device in a seamless manner. Accordingly, the distributed system is layered on top of
the Java™ programming environment and exploits the characteristics of this
environment, including the security offered by it and the strong typing provided by it.
The programming environment is described more fully in Jaworski, Java 1.1

Developers Guide, Sams.net (1997), which is incorporated herein by reference.

In the exemplary distributed system, different computers and devices are
federated into what appears to the user to be a single system. By appearing as a single
system, the distributed system provides the simplicity of access and the power of
sharing that can be provided by a single system without giving up the flexibility and
personalized response of a personal computer or workstation. The distributed system
may contain thousands of devices operated by users who are geographically disperse,
but who agree on basic notions of trust, administration, and policy.

Within the exemplary distributed system are various logical groupings of
services provided by one or more devices, and each such logical grouping is known as
a Djinn. A "service" refers to resource, data, or functionality that can be accessed by a
user, program, device, or another service and that can be computational, storage
related, communication related, or related to providing access to another user.

Examples of services provided as part of a Djinn include devices, such as printers,

WO 99/44132 PCT/US99/03944

-14-
displays, and disks; software, such as applications or utilities; information, such as
databases and files; and users of the system.

Both users and devices may join a Djinn. When joining a Djinn, the user or
device adds zero or more services to the Djinn and may access any one of the services
it contains. Thus, devices and users federate into a Djinn to share access to its
services. The services of the Djinn appear programmatically as objects of the Java
programming environment, which may include other objects, software components
written in different programming languages, or hardware devices. A service has an
interface defining the operations that can be requested of that service, and the type of
the service determines the interfaces that make up that service.

Distributed system 100 shown in Fig. 1 is comprised of computer 102,
computer 104, and device 106 interconnected by a network 108. Device 106 may be
any of a number of devices, such as a printer, fax machine, storage device, or other
devices. Network 108 may be a LAN, WAN, or the Internet. Although only two
computers and one device are depicted as comprising distributed system 100, one
skilled in the art will appreciate that distributed system 100 may include additional
computers and devices or even computers alone without any devices.

Fig. 2 depicts computer 102 in greater detail to show a number of the software
components of the distributed system 100. Computer 102 includes a memory 202, a
secondary storage device 204, a central processing unit (CPU) 206, an input device
208, and a video display 210. Memory 202 includes a lookup service 212, a discovery

server 214, an RMI 218, and a Java runtime system 216. Runtime system 216

WO 99/44132 PCT/US99/03944
-15-
includes a Java VM 220, and a garbage collector (GC) 224. Secondary storage device
204 includes a Java™ space 222.

As mentioned above, distributed system 100 is based on the Java
programming environment and thus makes use of Java runtime system 216. Java
runtime system 216 includes a Java™ API (not specifically shown), allowing
programs running on top of Java runtime system 216 to access, in a platform-
independent manner, various system functions, including windowing capabilities and
networking capabilities of an operating system (not shown) associated with computer
102. Since the Java API provides a single common API across all operating systems
to which the Java programming environment is ported, the programs running on top of
a Java runtime system run in a platform-independent manner, regardless of the
operating system or hardware configuration of the host platform. Java runtime system
216 is provided as part of the Java™ software development kit (JDK) available from
Sun Microsystems of Mountain View, CA.

The Java virtual machine 220 also facilitates platform independence. The Java
virtual machine 220 acts like an abstract computing machine, receiving instructions
from programs in the form of bytecodes and interpreting these byte codes by
dynamically converting them into a form for execution, such as object code, and
executing them. Garbage collector (GC) 224 implements a garbage collection process
to manage memory resources. GC 224 generally determines when an object is no
longer referenced and initiates a process to reclaim the associated memory resources

based upon the result of this determination.

WO 99/44132 PCT/US99/03944

-16-

RMI 218 facilitates remote method invocation by allowing objects executing
on one computer or device to invoke methods of an object on another computer or
device. Both RMI and the Java virtual machine are also provided as part of the Java
software development kit. RMI 218 includes a distributed garbage collector (DGC)
226, which implements a reference-counting garbage collection algorithm similar to
Modula-3's Network Objects.

Lookup service 212 defines the services that are available for a particular
Djinn. That is, there may be more than one Djinn and, consequently, more than one
lookup service within distributed system 100. Lookup service 212 contains one object
for each service within the Djinn, and each object contains various methods that
facilitate access to the corresponding service. Lookup service 212 is described in
greater detail in co-pending U.S. Patent Application No. 09/044,826, entitled "Method
and System for Facilitating Access to a Lookup Service," which has been previously
incorporated herein by reference.

Discovery server 214 detects when a new device is added to distributed system
100, during a process known as boot and join or discovery, and when such a new
device is detected, the discovery server passes a reference to lookup service 212 to the
new device so that the new device may register its services with lookup service 212
and become a member of the Djinn. After registration, the new device becomes a
member of the Djinn, and as a result, it may access all the services contained in
lookup service 212. The process of boot and join is described in greater detail in co-

pending U.S. Patent Application No. 09/044,939, entitled "Apparatus and Method for

WO 99/44132 PCT/US99/03944

-17-
providing Downloadable Code for Use in Communicating with a Device in a
Distributed System," which has been previously incorporated herein by reference.

Java space 222 is an object repository used by programs within distributed
system 100 to store objects. Programs use Java space 222 to store objects persistently
as well as to make them accessible to other devices within the distributed system.
Java spaces are described in greater detail in co-pending U.S. Patent Application No.
08/971,529, entitled "Database System Employing Polymorphic Entry and Entry
Matching," assigned to a common assignee, filed on November 17, 1997, which is
incorporated herein by reference. One skilled in the art will appreciate that distributed
system 100 may contain more than one lookup service, discovery server, and Java
spaces.
Framework for Distributed Weak References

Referring now to Fig. 3, a framework for using remote weak references in a
distributed system to implement a registration-notification process for remote objects
consistent with the present invention will be explained. Fig. 3 shows two computers
305 and 345, which may correspond to computers 102 and 104 shown in distributed
system 100. Each computer, 305 and 345, includes a Distributed WEak Reference
Process (DWERP) 320 and 360, respectively, to implement the registration-
notification process for remote objects. DWERP 320 and 360 may be implemented in
program code written in, for example, the Java programming language, and stored in
memory 202 as part of RMI 218.

For purposes of this explanation, computer 305 will be referred to as a client

because it comprises a computational entity, shown as process 310, that references a

WO 99/44132 PCT/US99/03944
-18-

remote object. In contrast. computer 345 will be referred to as a server because it
comprises object 350, which constitutes a remote object with respect to process 310,
which seeks status information on object 350 in this example. (The remote object
may be located in Java space 222 of a distributed system conforming with the
architecture shown in Figs. 1 and 2.) Although this description refers to the client and
server as corresponding to different physical computers, it is also possible to
configure a single computer operate as both a client and server. For example, a
physical machine can be partitioned to support separate virtual machines and
corresponding address spaces for the client and server.

Process 310 is said to hold a "strong" reference 330 to object 350 when
process 310 receives a reference to object 350. A "strong" reference may be used to
invoke methods on or pass as a parameter or return value in an RMI call. Although
process 310 holds a "strong" reference to object 350 in this example, it is also possible
that another computational entity in the distributed system holds a "strong" reference
to object 350, yet process 310 seeks notification as to a status associated with object
350. In either case, process 310 registers a request with DWERP 320 to receive
notification of a change in the "liveness" of object 350.

DWERP 320 monitors for the occurrence of events that affect the "liveness" of
object 350, and notifies the registered process 310 accordingly. In one
implementation, process 310 is only notified when an event affecting the "liveness" of
remote object 350 is detected, although other implementations may permit process

310 to receive periodic updates on a status of the remote object.

WO 99/44132 PCT/US99/03944
-19-

If a network partition prevents process 310 from accessing object 350,
DWERP 320 provides an event notification to process 310 because process 310
registered to receive such a notification. Such a partition can occur as a result of
either a loss of connectivity between client 305 and the distributed system or a loss of
connectivity between server 345 and the distributed system. In the event of a partition
on the client side, DWERP 320 simply detects the event and notifies process 310 of
the event. In the case of a network partition on the server side or a change in the
"liveness" of object 350 resulting from its reclamation during a garbage collection
cycle on server 345, DWERP 320 must communicate with DWERP 360 of server 345
to obtain information concerning these types of events affecting the "liveness" of
object 350.

To that end, DWERP 320 periodically sends a "ping" or status request to
DWERP 360 of computer 345. As shown in Fig. 3, DWERP 360 receives the ping
from DWERP 320. In this example, remote weak reference 340 is used to determine
the location of DWERP 360 and object 350 on server 345. Note that the process of
pinging computers associated with remote objects is done asynchronously with
respect to the registration process.

DWERP 360 of server 345 monitors resident or local objects, including object
350. Note that the DGC of the RMI for server 345 maintains the list of references to
"local" objects designated as remote objects for RMI calls. DWERP 360 uses this
information to monitor the local objects.

Based on the status of a selected object(s) identified by a ping, the server's

DWERP 360 returns an appropriate response. In this example, DWERP 360 returns a

WO 99/44132 PCT/US99/03944
-20-

response to the ping from DWERP 320 indicating no change in the "liveness"
associated with object 350. Since object 350 has not been garbage collected, and no
network partition has occurred, the response from DWERP 360 in this example
indicates that object 350 is still accessible. If, however, object 350 had been garbage
collected by virtue of the fact that no more remote or local strong references to the
object exist, the response from DWERP 360 would indicate such a status for object
350 in response to the ping from DWERP 320. In this case, DWERP 320 would
notify process 310 of a change in the "liveness" of object 350 based on the response
received from DWERP 360 of server 345. Thus, if the response indicates no change
in the "liveness" of remote object 350, process 310 receives no event notification. In
general, event notifications are provided only upon the occurrence and detection of an
event changing the "liveness" of object 350.

As can be seen from the above discussion, the Distributed WEak Reference
Process is comprised of two component functions. The first is a function performed
on the client-side of a transaction and the second is a function performed on the
server-side of a transaction. The client-side function of DWERP will be explained
below with reference to the flow chart in Fig. 4 and the server-side function will be
explained below with reference to the flow chart in Fig. 5.

Client-Side Function

As shown in Figs. 4A and 4B, the client-side function includes two aspects:
registration and notification. The steps involved in registration are shown in Fig. 4A.
First, the client-side DWERP receives a registration request from a computational

entity that indicates that the entity wishes to receive a notification as to the status of a

WO 99/44132 PCT/US99/03944
21-
selected remote object (step 410). The request includes either a strong reference to the
selected remote object or a pointer to a location where the strong reference is located.
Client-side DWERP then registers the request by creating a remote weak reference to
the selected remote object (step 412).

The notification aspect of the client-side DWERP is shown in Fig. 4B.
Periodically, and not necessarily in sync with the registration aspect, the client-side
DWERP accesses a set of remote weak references for remote objects to identify the
location of any remote objects with corresponding notification requests from
computational entities, i.e., the server for the remote object (step 420), and sends a
ping to each identified server with information on the remote object for which a
liveness update has been requested (step 430).

The client-side DWERP then determines whether there has been a change in
the "liveness" of each remote object with a registered remote weak reference (step
445) and notifies the corresponding registered computational entity when such a
change has occurred (step 450). If there has been no change in the liveness of a
remote object (step 445), client-side DWERP returns to a wait state (step 460) where
it remains until it is time for another ping cycle. In one cycle the client-side DWERP
may simultaneously send pings to servers for all remote objects with registered remote
weak references or it may use each cycle to send a ping to only one or a limited
number of servers.

If, however, an event affecting the "liveness" of a remote object is detected,
then the corresponding registered computational entity is provided a notification of

the event (step 450). For example, if a network partition preventing the client from

WO 99/44132 PCT/US99/03944

22

sending pings or receiving responses to pings has occurred, the client-side DWERP
provides an event notification to one or more computational entities with registered
requests to receive an event notification when an event affecting the "liveness" of a
remote object has occurred. Similarly, the DWERP notifies computational entities
when the DWERP does not receive a response to a ping (which indicates a
communication problem with the server for a remote object), or when the server's
DWERP responds with an indication that the remote object has been garbage
collected.

In this manner, the client-side function handles the registration by
computational entities for status on remote objects and the notification of those
registered computational entities upon receipt of information on the status of selected
remote objects.

Server-Side Function

As shown in Fig. 5, the server-side function of the DWERP involves receiving
each ping from a client machine (step 510). determining whether there has been a
change in the "liveness" of an identified local object for the server, e.g.. has the object
been garbage collected (step 520), and sending a response, including any change in
the "liveness" that object, to the client machine (step 530).

Although this description describes the client and server functions of a
DWERP separately, those skilled in the art will recognize that both functions of a
DWERP would likely be present on each machine in a distributed system to take full

advantage of the concepts of the present invention.

WO 99/44132 PCT/US99/03944
23-
Conclusion

Systems consistent with the present invention thus implement a methodology
for determining a change in the liveness of remote objects in a distributed system. In
summary, computational entities register requests to receive notification as to a
change in the liveness of selected remote objects. Status requests on the remote object
are periodically sent to the server where the remote object resides. The remote object
is located using a remote weak reference to the remote object. Responses to the status
requests are then provided to the registered computational entity based on the
occurrence of an event that changes the liveness of the remote object. In this manner,
computational entities can receive a notification as to a state change of remote objects.

The foregoing description of an implementation of the invention has been
presented for purposes of illustration and description. It is not exhaustive and does
not limit the invention to the precise form disclosed. Modifications and variations are
possible in light of the above teachings or may be acquired from practicing of the
invention. For example, the described implementation includes software but the
present invention may be implemented as a combination of hardware and software or
in hardware alone. The invention may be implemented with both object-oriented and
non-object-oriented programming systems.

Although systems and methods consistent with the present invention are
described as operating in the exemplary distributed system and the Java programming
environment, one skilled in the art will appreciate that the present invention can be
practiced in other systems and programming environments. Additionally, although

aspects of the present invention are described as being stored in memory, one skilled

WO 99/44132 PCT/US99/03944
24
in the art will appreciate that these aspects can also be stored on other types of
computer-readable media, such as secondary storage devices, like hard disks, floppy

disks, or CD-ROM; a carrier wave from the Internet; or other forms of RAM or ROM.

The scope of the invention is defined by the claims and their equivalents.

WO 99/44132 PCT/US99/03944
5.

WHAT IS CLAIMED IS:

1. A method for supplying a state change associated with remote objects
in a distributed system comprised of multiple platforms, the method comprising:

providing an object resident on one of the platforms;

registering a request from a computational entity located on one of the
platforms remote with respect to the one of the platforms upon which the object
resides to receive an indication as to a state change associated with the object;

determining whether an event has occurred changing the state associated with
the object; and

providing a notification to the computational entity based on the

determination.

2. The method of claim 1, wherein the step of providing a notification to
the computational entity based on the determination includes
supplying the notification only when it is determined that the event has

occurred.

3. The method of claim 1, wherein the step of determining whether an
event has occurred changing the state associated with the object includes
sending a status request to the one of the platforms upon which the object

resides.

WO 99/44132 PCT/US99/03944
226-
4. The method of claim 1, wherein the step of determining whether an
event has occurred changing the state associated with the object includes
ascertaining whether a network partition separates the platform associated with

the computational entity and the platform associated with the object.

5. The method of claim 1, wherein objects have corresponding references
indicating the location of objects within the distributed system, and wherein the step
of determining whether an event has occurred changing the state associated with the
object includes

locating the one of the platforms upon which the object resides based on a
reference corresponding to the object; and

sending a status request to the located platform.

6. The method of claim 1, wherein the step of determining whether an
event has occurred changing the state associated with the object includes
receiving a status indicator from the one of the platforms upon which the

object resides.

7. The method of claim 1, wherein the step of providing a notification to
the computational entity based on the determination includes
returning a notification as to a liveness of the object to the computational

entity.

WO 99/44132 PCT/US99/03944
27-

8. The method of claim 1, wherein computational entities maintain
references indicating the location of objects within the distributed system, and
wherein the registering step includes

receiving a reference to the object from the computational entity, and

creating a remote weak reference corresponding to the object based on the
received reference; and

wherein the step of determining whether an event has occurred changing the
state associated with the object includes

locating the one of the platforms upon which the object resides based on the
remote weak reference corresponding to the object; and

sending a status request to the located platform.

9. A method for determining a state change associated with objects in a
distributed object-oriented system comprised of multiple address spaces, wherein
computational entities operate in connection with the address spaces, the method
performed by a processor comprising:

providing a computational entity operating in connection with one of the
address spaces;

providing a reference to an object associated with an address space that is
remote with respect to the address space associated with the computational entity;

registering a request from the computational entity for ﬁotiﬁcation of a state

change associated with the object; and

WO 99/44132 PCT/US99/03944
08-
determining whether an event has occurred altering a state associated with the

object.

10. The method of claim 9 wherein the determining step includes
receiving an indication that the state associated with the object has been

altered.

11. The method of claim 9, further comprising
supplying a notification to the computational entity only when it is determined

the state associated with the object has been altered.

12. The method of claim 9, wherein the step of determining whether an
event has occurred altering a state associated with the object includes

accessing the address space associated with the object.

13. The method of claim 9, wherein the step of determining whether an
event has occurred altering a state associated with the object includes

ascertaining whether a network partition separates the address space
associated with the computational entity and the address space associated with the

object.

14. The method of claim 9, wherein objects have corresponding references

indicating their address space within the distributed system, and wherein the step of

WO 99/44132 PCT/US99/03944
9.
determining whether an event has occurred altering a state associated with the object
includes
locating the address space associated with the object based on a reference
corresponding to the object; and

accessing the address space associated with the object.

15. The method of claim 9, further comprising
returning a liveness notification to the computational entity when it is

determined the state associated with the object has been altered.

16. A method for supplying a state change associated with objects in a
distributed system comprised of multiple platforms, the method performed by one of
the platforms comprising:

receiving a status request from a remote platform having a reference to an
object;

determining whether an event has occurred altering a state associated with the
object; and

returning a notification to the remote platform based on the determination.

17. A method for supplying a state change associated with objects in a
distributed system, the method comprising:

providing a remote object;

WO 99/44132 PCT/US99/03944
-30-

creating a reference to the remote object including an identifier of a location of
the remote object;

registering a request to receive notification when a remote object has been
collected;

periodically sending a status request based on the identifier of the location of
the remote object;

determining whether the remote object is queued for collection or has been
collected in response to receipt of one of the status requests; and

providing a notification when it is determined that the remote object is queued

for collection or has been collected in response to the registered request.

18. A method for determining a state change of remote objects in a
distributed system comprised of multiple address spaces, the method comprising:

providing a remote object resident on a first address space;

creating a reference to the remote object on a second address space including
an identifier for the first address space;

registering a request from a process resident on the second address space to
receive notification when the remote object has been garbage collected;

periodically sending a status request to the first address space to determine the
status of the remote object;

determining whether the remote object has been garbage collected in response

to receipt by the first address space of one of the status requests; and

WO 99/44132 PCT/US99/03944
31-
providing a notification that the remote object has been garbage collected to

the process in response to the registered request.

19. A system for supplying a state change associated with remote objects
in a distributed environment comprised of multiple platforms, the system comprising:
a first platform, comprising
a memory having an object; and
a second platform remote with respect to the first platform, comprising
a memory having program instructions, and
a processor configured touse the program instructions to
register a request from a computational entity to receive an
indication as to a state change associated with the object,
determine whether an event has occurred changing the state
associated with the object, and
provide a notification to the computational entity based on the

determination.

20. The system of claim 19, wherein the processor is further configured to
to use the program instructions to supply the notification only when it is determined

that the event has occurred.

WO 99/44132 PCT/US99/03944
-32-
21. The system of claim 19 wherein the processor is further configured to

touse the program instructions to ascertain whether a network partition separates the

platform associated with the computational entity and the memory.

22. An apparatus for determining a state change associated with objects in
a distributed object-oriented system comprised of multiple address spaces, wherein a
computational entity operates in connection with one of the address spaces, and
wherein a reference is provided to an object associated with an address space that is
remote with respect to the address space associated with the computational entity, the
apparatus comprising:

a registration component configured to register a request from the
computational entity for notification of a state change associated with the object; and

a processor configured to determine whether an event has occurred altering a

state associated with the object.

23. The apparatus of claim 22 wherein the processor includes
a receiver configured to receive an indication that the state associated with the

object has been altered.

24. The apparatus of claim 22, further comprising
a notification component configured to supply a notification to the
computational entity only when it is determined the state associated with the object

has been altered.

WO 99/44132 PCT/US99/03944
-33-
25. The apparatus of claim 22, wherein the processor includes

a component configured to access the address space associated with the object.

26. The apparatus of claim 22, wherein the processor includes
a component configured to ascertain whether a network partition separates the
address space associated with the computational entity and the address space

associated with the object.

27. The apparatus of claim 22, wherein objects have corresponding
references indicating their address space within the distributed system, and wherein
the processor includes

a component configured to locate the address space associated with the object
based on a reference corresponding to the object; and

a component configured to access the address space associated with the object.

28. The apparatus of claim 22, further comprising
a notification component configured to return a liveness notification to the
computational entity when it is determined the state associated with the object has

been altered.

29. A system for supplying a state change associated with objects in a
distributed system comprised of multiple platforms, the system comprising:

a memory having program instructions; and

WO 99/44132 PCT/US99/03944

-34-
a processor configured to use the program instructions to
receive a status request from a remote platform having a reference to an
object;
determine whether an event has occurred altering a state associated
with the object; and

return a notification based on the determination.

30. A computer-readable medium containing instructions for supplying a
state change associated with remote objects in a distributed system comprised of
multiple platforms, by:

providing an object resident on one of the platforms;

registering a request from a computational entity located on one of the
platforms remote with respect to the one of the platforms upon which the object
resides to receive an indication as to a state change associated with the object;

determining whether an event has occurred changing the state associated with
the object; and

providing a notification to the computational entity based on the

determination.

31. The computer-readable medium of claim 30, wherein the step of
providing a notification to the computational entity based on the determination

includes

WO 99/44132 PCT/US99/03944
-35-
supplying the notification only when it is determined that the event has

occurred.

32. The computer-readable medium of claim 30, wherein the step of
determining whether an event has occurred changing the state associated with the
object includes sending a status request to the one of the platforms upon which the

object resides.

33. The computer-readable medium of claim 30, wherein the step of
determining whether an event has occurred changing the state associated with the
object includes

ascertaining whether a network partition separates the platform associated with

the computational entity and the platform associated with the object.

34, The computer-readable medium of claim 30, wherein objects have
corresponding references indicating the location of objects within the distributed
system, and wherein the step of determining whether an event has occurred changing
the state associated with the object includes

locating the one of the platforms upon which the object resides based on a
reference corresponding to the object; and

sending a status request to the located platform.

WO 99/44132 PCT/US99/03944
-36-

35. The computer-readable medium of claim 30, wherein the step of
determining whether an event has occurred changing the state associated with the
object includes

receiving a status indicator from the one of the platforms upon which the

object resides.

36. The computer-readable medium of claim 30, wherein the step of
providing a notification to the computational entity based on the determination
includes

returning a notification as to a liveness of the object to the computational

entity.

37. The computer-readable medium of claim 30, wherein computational
entities maintain references indicating the location of objects within the distributed
system, and wherein the registering step includes

receiving a reference to the object from the computational entity, and

creating a remote weak reference corresponding to the object based on the
received reference; and
wherein the step of determining whether an event has occurred changing the state

associated with the object includes

WO 99/44132 PCT/US99/03944
-37-
locating the one of the platforms upon which the object resides based on the

remote weak reference corresponding to the object; and

sending a status request to the located platform.

38. A computer-readable medium containing instructions for determining a
state change associated with objects in a distributed object-oriented system comprised
of multiple address spaces, wherein computational entities operate in connection with
the address spaces, by:

providing a computational entity operating in connection with one of the
address spaces;

providing a reference to an object associated with an address space that is
remote with respect to the address space associated with the computational entity;

registering a request from the computational entity for notification of a state
change associated with the object; and

determining whether an event has occurred altering a state associated with the

object.

'39. The computer-readable medium of claim 38 wherein the determining
step includes receiving an indication that the state associated with the object has been

altered.

WO 99/44132 PCT/US99/03944
-38-
40. The computer-readable medium of claim 38, further comprising

supplying a notification to the computational entity only when it is determined

the state associated with the object has been altered.

41. The computer-readable medium of claim 38, wherein the step of
determining whether an event has occurred altering a state associated with the object
includes

accessing the address space associated with the object.

42. The computer-readable medium of claim 38, wherein the step of
determining whether an event has occurred altering a state associated with the object
includes ascertaining whether a network partition separates the address space
associated with the computational entity and the address space associated with the

object.

43. The computer-readable medium of claim 38, wherein objects have
corresponding references indicating their address space within the distributed system,
and wherein the step of determining whether an event has occurred altering a state
associated with the object includes

locating the address space associated with the object based on a reference
corresponding to the object; and

accessing the address space associated with the object.

WO 99/44132 PCT/US99/03944
-39-
44, The computer-readable medium of claim 38, further comprising

returning a liveness notification to the computational entity when it is

determined the state associated with the object has been altered.

45. An apparatus for supplying a state change associated with objects in a
distributed system comprised of multiple platforms, comprising:

means for receiving a status request from a remote platform having a reference
to an object;

means for determining whether an event has occurred altering a state
associated with the object; and

means for returning a notification based on the determination.

46. A memory for storing data for access by a computational entity being
executed by a processor, wherein

an object residing in a location remote with respect to the computational
entity, and

the object becomes reclaimable when a set of references to the object is empty,
the memory comprising:

a remote weak reference to the object distinct from any reference in the set of
references to the object, wherein

the remote weak reference enables the computational entity to obtain

information corresponding to an event associated with the object without

WO 99/44132 PCT/US99/03944
-40-
preventing the object from being reclaimed when the set of references to the

object is empty.

PCT/US99/03944

WO 99/44132

00l

901~

J9ndwion

volL

I

"Old

ao1ne(]

801

YJomieN

Jaindwio)

col

1/5

PCT/US99/03944

WO 99/44132

80C~

80¢~—

¢ '9Old

aoIne Induyj

NdOo

¢ee-

aoedg eaer

col

a0Ine(
abelo)g Alepuoosg

0ce -

9¢ce~

Aejdsiqg ospIA

[4074

(
/

yoc

Aows
WA 09 |.-¥ee
wa)shs Jooke
awinuny eaep
09d INY 812
Jameg Alenoosiq o pie
9OIBS Y00 |~ 2LT

~~0l¢

2/5

PCT/US99/03944

WO 99/44132

SPE -~

€ Old ove oee
b
“ CLIIETETEN _ aouals)ey
[Neap _ buong
e j
asuodsay >
09€ ~
d¥3Ima < Buid dY¥3ama
02€ ~/ ™
lojuopy UOoI}eollJON uonelsjsiboy
1038[q0 $S99001d
0S€ — 0LE ~ ™
G0E ~ ™

3/5

PCT/US99/03944

WO 99/44132

0es —~s

026 ~ ™

snjejs
109[q0 yum Buid
0} asuodsay puag

A

18lqQ jo
snjejs aulwiseq

A

0IS ™

109[q0
0] 90UBalv}ay
Upm Buld aneoay

G 'Old

[422Ng:

Oy ~

aoualaley espn
ajowiay sjeal)

A

aoualaey buong
UM 1sanbay
uonedsibay
SAIB09Y

Vv "Old

4/5

PCT/US99/03944

WO 99/44132

1IVM

uoneulLIBle(g

gy "Old

0] uQ peseg
sv UOIEOLIION pUSS

%

SOA

Fs 23lqo sjows
———_ }JO .SssuanI,

~.

T~ upebueyn

mvv\/V/

sy 102[qO sjoway
N o) @ouslepey

yium Janiag buly

A

aouals)ey

0ZF -~ AESM Sjowdy
10} 103[qO sjoway
Jo 190193 Ajusp)

5/5

INTERNATIONAL SEARCH REPORT | ’ 1ational Appiication No

PCT/US 99/03944

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Y column 9, line 34 -~ column

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 109 486 A (SEYMOUR LESLIE G) 1,2,6,7,
28 April 1992 (1992-04-28) 9-12,14,
15,19,

20,
22-25,
27,28,
30,31,
35,36,
38-41,
43,44
12, line 19 3,5,32,
34
8,17,18,
37

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the intemational filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
meﬂts. such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
21 July 1999 09/08/1999
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, B P K
Fax: (+31-70) 340-3016 1Jn,

Form PCT/SA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

] rational Application No

PCT/US 99/03944

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
X US 5 390 328 A (FREY JEFFREY A ET AL) 1,2,6,7,
14 February 1995 (1995-02-14) 9-11,15,
19,20,
22-24,
28,30,
31,35,
36,
38-40,44
A column 4, line 43 - column 6, line 11 3,5,8,
16-18,
29,32,
34,37,45
column 8, line 8 - column 10, line 34
column 13, line 52 - column 14, line 13
X EP 0 697 655 A (CANON KK) 16,29,45
21 February 1996 (1996-02-21)
A column 6, line 6 - column 8, line 45 1,6-10,
15,
17-19,
22,23,
28,30,
35-39,44
Y 3,5,32,
34
column 11, line 18 - column 12, line 14
X WALDO J ET AL: "Events in an RPC based 1,9,19,
distributed system" 22,30,38
PROCEEDINGS OF THE 1995 USENIX TECHNICAL
CONFERENCE, PROCEEDINGS USENIX WINTER 1995
TECHNICAL CONFERENCE, NEW ORLEANS, LA,
USA, 16-20 JAN. 1995, pages 131-142,
XP002109939
1995, Berkeley, CA, USA, USENIX Assoc, USA
A page 133, right-hand column, Tine 32 - 2,10,11,
page 135, left-hand column, Tast last 17,18,
20,23,
24,31,
39,40
X EP 0 767 432 A (SUN MICROSYSTEMS INC) 46
9 April 1997 (1997-04-09)
A column 7, line 51 - column 9, line 27 1,8,9,
17-19,
22,30,
37,38

Fom PCT/iSA/210 (continuation of second shest) (July 1992)

page 2 of 2

INTERNATIONAL SEA.RCH REPORT Ii iational Application No

Information on patent family members

PCT/US 99/03944

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5109486 A 28-04-1992 NONE

US 5390328 A 14-02-1995 NONE

EP 0697655 A 21-02-1996 JP 8123715 A 17-05-1996

EP 0767432 A 09-04-1997 us 5765174 A 09-06-1998
AU 6425296 A 10-04-1997
JP 9185552 A 15-07-1997

Form PCTASA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

