PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7

HO04L 12/26, 29/06 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/08806

17 February 2000 (17.02.00)

(21) International Application Number: PCT/US99/17531

(22) International Filing Date: 3 August 1999 (03.08.99)

(30) Priority Data:
60/095,142
60/137,121

Us
us

3 August 1998 (03.08.98)
2 June 1999 (02.06.99)

(71) Applicant: FIRSTSENSE SOFTWARE, INC. [US/US]; 21 B
Street, Burlington, MA 01803 (US).

(72) Inventors: WILSON, James; Needham, MA (US). AGAR-
WAL, Neeraj; Bedford, NH (US). FERNANDEZ, Gary,
Concord, MA (US). DOCTOR, Murtaza; Andover,
MA (US). KANE, Ken; Acton, MA (US). BRINER,
Albert; Hollis, NH (US). MUDDANA, Sehkar; Waltham,
MA (US). DEGROOT, Pieter; Maynard, MA (US).
LYON-SMITH, John;, Wesford, MA (US). MENDEL,
Scott; Lowell, MA (US).

(74) Agents: SHAIR, Karoline, K., M. et al.; Foley, Hoag & Eliot,
LLP, One Post Office Square, Boston, MA 02109 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SYSTEMS AND METHODS FOR MONITORING DISTRIBUTED APPLICATIONS USING DIAGNOSTIC INFORMATION

(57) Abstract

Systems and methods
for automated monitoring and
management of distributed
applications, client/server

databases, networks and systems
across heterogeneous environments.
Distributed, automated intelligent
monitoring agents use embedded
sensing technology which s
knowledgeable of application
protocols, to monitor continuously
the network environment in real
time. To this end, the monitoring
agent can be located on each
client and server in the network.
The monitoring agent can couple
to the communications stack for
monitoring the data that is being
passed between the client and
the network, of a server in the
network. The data can be collected
and employed for trouble shooting
trend analysis, resource planning,
security auditing, and accounting
as well as other applications. Also
included is a controller for remotely
coordinating the data gathering

2

process from the various clients
and servers. Data gathering can

be performed in accordance with trigger events or on a periodic basis. Data may also be associated with a transaction and gathered in

accordance with business transaction rules.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

ITceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
T
™
TR
T
UA
uG
Us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/08806 PCT/US99/17531

SYSTEMS AND METHODS FOR
MONITORING DISTRIBUTED APPLICATIONS USING
DIAGNOSTIC INFORMATION

References to Related Applications

This application claims priority from U.S. provisional patent application No.
60/095,142, filed August 3, 1998, U.S. provisional patent application No. 60/137,121, filed
June 2, 1999, and is a continuation in part of U.S. application No.08/821,698, filed March 20,

1997 (pending).

FIELD OF THE INVENTION

The invention generally relates to systems and methods for monitoring and managing
distributed computing environments, and more particularly, to systems and methods for

monitoring enterprise wide operation of a distributed computing system.

BACKGROUND OF THE INVENTION

A distributed computing architecture provides physical and logical distribution
computing functions across many computers connected by a network system. Typically, the
client initiates a service request to a server across the network. The server responds to the
client's request by performing one or more database, file, printing, or other services. During
the operation, the client and the server exchange data and individually perform data

processing functions necessary for completing the operation. Complexity can arise because a

10

15

20

25

WO 00/08806 PCT/US99/17531
single server can service multiple clients simultaneously, while a client can concurrently
access the services of multiple servers. Moreover, servers can act as clients to other servers.
Accordingly, distributed computer systems can have complex, multiple tiered distributed

architectures.

Despite its complexity, distributed computing architectures have been successful in
providing users with sophisticated and powerful systems for efficiently processing large
amounts of data and providing rapid digital communication between multiple stations. The
power of these systems has lead to the wide-spread proliferation of distributed computing
architectures and has further resulted in the development of a plethora of distributed
computing
services such as client/server databases, distributed applications and networks across
heterogeneous environments. Moreover, new technologies continue to fuel the growth of
distributed systems. For example, the development of internet and intranet systems suitable
for the commercial environment has created a burst of growth in the distributed computing

field.

Although distributed computing architectures provide users with efficient and
powerful tools, the complexity and sophistication of the architecture make the
implementation, deployment, and operation of the actual systems difficult. For example, a
typical relational client/server database system will include a database server for providing a
number of database services to a plurality of clients. The distributed architecture generally
requires that each client is capable of properly communicating with the server, and that the
server is capable of coordinating the multiple service requests received from the clients and

maintaining data coherency for a data repository that could be distributed among several

2-

10

15

20

25

WO 00/08806 PCT/US99/17531

network memory devices. Loading such a system onto a computer network is a difficult task,
made complex because electronic communications occurring between clients elements and
servers occurs asynchronously, intermittently and quite rapidly. Accordingly, complex
diagnostic and management tools are used to implement these distributed systems and to

analyze and improve performance.

The complexity of a distributed computing architecture makes diagnosing system
failures and performance analysis a difficult task. The asynchronous and rapid nature of
communications between the distributed network components complicates the task
significantly. Accordingly, a diagnostic technician may have a difficult time in monitoring
system operation in order to detect the events which cause system failure, or performance

issues, such as performance bottlenecks, for example.

Responsive to this need for diagnostic and development tools, computer engineers
have developed network monitoring systems which couple into the communication channels
of the network to monitor transactions between clients and servers. These systems are often
hardware devices that couple into the physical layer of the network system to monitor
communications. Accordingly, this requires that each physical connection between a client
and a server include an interconnected hardware device. These devices monitor the data
transactions that occur. By generating records of these data transactions, a system technician
can attempt to identify the events which lead to the system failure and performance

degradation.

Although these systems work, they require that the hardware devices are capable of

detecting and recording each data transaction that occurs between the client and the server.

3.

WO 00/08806 PCT/US99/17531

This requires that the hardware device read each packet of data being transferred across the
network to determine if the data being sent is associated with the client or the server being
monitored. However, the asynchronous and rapid nature of the data transactions that occur
between clients and servers renders these devices susceptible to error for failure to detect

5 every transaction that occurs. The technician may have only a partial record of the
transactions which occurred between the client and the server, and therefore, an incomplete
record that is unreliable for purposes of determining the cause of the system failure and

performance problems.

10 Other management tools exist that map a centralized system management model onto
a distributed environment by implementing an agent-console architecture. In this architecture,
agents continuously poll the servers and log files for the system, the network, or the
applications to collect usage data and to determine if any "exception” has occurred. The
console is a central management station through which the command and control functions

15 are implemented. This architecture has several shortcomings. First, the continuous polling
function employs valuable resources and degrades server performance. This is particularly
true for metrics that require fine grain analysis of system activity and require constant polling.
Second, the agents are at the server component level. Thus, usage, performance and exception
statistics are only available at the component level and no measure is provided for end-to-end

20 resource utilization, and no measure of the other participating components is made. Also,

data gathering provisions may not be performed in real-time.

An alternative approach proposed by certain framework vendors has included an
application program interface (API) to a set of resources that management tools can employ

25 to monitor system performance. This approach requires that existing distributed applications

-4-

10

15

20

25

WO 00/08806 PCT/US99/17531

operating on the system be edited and re-compiled to include API calls to the various system
monitoring resources. Accordingly, this is a generally as highly intrusive approach to system
monitoring that is dependent upon the cooperation of every vendor providing an application

program running on the distributed system.

SUMMARY OF THE INVENTION

In accordance with principles of the invention is a method of monitoring a distributed
computer system. Trigger events and associated data to be collected are defined. The
occurrence of one of the trigger events at a client is detected while monitoring a connection
between a client and a first server. Client data is collected in accordance with the one trigger
event at the client. A controller is notified of the detecting of the occurrence of the one
trigger event. The first server is notified of the occurrence of the trigger event. First server

data is gathered by the first server, and the first server data is sent to the controller.

In accordance with anther aspect of the invention is a system for monitoring a
distributed computer system. Machine executable code defines trigger events and associated
data to be collected. Machine executable code detects occurrence of one of the trigger events
at a client while monitoring a connection between a client and a first server. Machine
executable code collects client data in accordance with the one trigger event at the client. M
achine executable code notifies a controller of the detecting of the occurrence of the one
trigger event. Machine executable code notifies the first server of the occurrence of the
trigger event. Machine executable code gathers first server data by the first server, and

machine executable code send s the first server data to the controller.

10

15

20

25

WO 00/08806 PCT/US99/17531

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will become more apparent from
the following detailed description of exemplary embodiments thereof, taken in conjunction
with the accompanying drawings, in which:

Figure 1 is an example of an embodiment of a system according to the invention for
providing automated monitoring and management of distributed applications;

Figure 2 is an example of an embodiment of a block diagram of a monitoring agent
suitable for practice with a system depicted in Figure 1; and

Figure 3 is an example of an embodiment of a module for collecting details of a
distributed process.

Figure 4 is a more detailed example of an embodiment of the operational details of a
module.

Figure 5 is another example of an embodiment of a module for collecting details of a
distributed process;

Figure 6 is an example of an embodiment of a system that may be used in monitoring
distributed applications;

Figure 7 is an example of an embodiment of steps of a method for gathering
performance data;

Figure 8 is an example of an embodiment of detailed steps of data collection in
accordance with a defined event on a client;

Figure 9 is an example of an embodiment of detailed steps for determining how a
controller receives client data and establishes server connections;

Figure 10 is an example of an embodiment of a method of detailed steps for how

server data may be gathered,

WO 00/08806 PCT/US99/17531

Figure 11 is an example of an embodiment of a table that may be included in the data
repository of the system of Figure 6;

Figure 12 is an example of an embodiment of a table of cached data values;

Figure 13 is an example of an embodiment of a business transaction system;

5 Figure 14 is an example of an embodiment of a flowchart depicting method steps of

basic operation of the transaction engine;

Figure 15 is an example of an embodiment of a flowchart depicting detailed steps for
determining if data fits a rule of the business transaction specification;

Figure 16 is an example of an embodiment of a schematic diagram of the relationship

10 between the business transaction system and an agent; and
Figure 17 is an example of an embodiment of a block diagram of system components

for maintaining the business transaction specification.

DETAILED DESCRIPTION
15
Figure 1 is an embodiment of a system 10 according to the invention for monitoring
and managing a distributed application that includes multiple workstations, and servers. It
will be understood that the system 10 may further include network devices such as printers
and network memory devices, which are not shown in the drawing. In particular, Figure 1
20 depicts workstations 12, 14, 16, and 18, server 20, server 22, Mission Universal Monitor
(MUM) agents 30-40, MUM console module 42, MUM database 44, and monitoring station

24.

In the system 10, illustrated in Figure 1, each of the workstations 12-18 is

25 representative of a computer system coupled to a network suitable for carrying computer

WO 00/08806 PCT/US99/17531

readable information. Each of the network nodes can communicate with either of the servers,
20 or 22 and request services therefrom. Accordingly, the system depicted in Figure 1 has a
distributed computing architecture that represents physical and logical distribution of

computing functions across the different workstations, devices and servers.

Figure 1 provides a general overview of the structure and operation of systems

according to the invention that monitor this -distributed processing environment. The system
10 includes the MUM agents 30-40 and the MUM console 42 with the interconnected MUM
database 44. Each of the MUM agents 30-40 is associated with the respective one of the

10 workstations or server elements. Moreover, a monitoring agent is associated with each
component of the network to provide for enterprise wide monitoring, as all the processes,
including those that are distributed, on the clients and the servers can be monitored. Each
MUM agent can physically reside on its associated workstations or server to monitor, inter
alia, the data that is being exchanged between a program operating on the workstation and a

15 selected one or more of the servers 20 or 22.

Consequently, the processing of every device on the network can be monitored, and
each of the depicted agents 30-40 can couple to the MUM console module 42 to pass
information representative of the collected data to the MUM console 42. The MUM console

20 42 can store this information within the central database 44 for analysis by an operator (e.g., a
system technician or system administrator). Alternatively, the agents can provide information
directly to the MUM database. An application program running on the console 42, or any
other system, can view the collected data to show at the component level and at the enterprise
level, system performance of any process or component of the enterprise. Moreover, the

25 system administrator can develop enterprise level usage statistics and response times, develop

-8-

10

15

20

25

WO 00/08806 PCT/US99/17531

charts and reports and perform any other relevant data analysis for determining user-defined

statistics relevant to the operation of the enterprise.

Accordingly, it is the function of the MUM agents 30-40 to collect data. To this end,
each of the depicted MUM agents 30-40 can be an intelligent monitoring agent that is located
on the managed nodes in the enterprise, wherein any node having an agent is deemed to be a
managed node. In the system 10 depicted in Figure 1, each of the nodes on the enterprise has
a respective MUM agent, however, it should be apparent to one of ordinary skill in the art of
computer engineering, that the number of MUM agents deployed across the enterprise is
variable and can be selected according to the character of the application. The MUM agents
can be software modules, such as C++ generated computer programs, that execute on the
depicted workstations and servers to configure the servers, workstations and network into
systems according to the invention. However, it will be apparent to those of ordinary skill in
the art that the MUM agents can be hardware devices, such as electronic circuit card
assemblies coupled into the backplane of the individual managed nodes, that monitor
operations of the local system, or can be a combination of hardware and software devices.
Any of these embodiments can be practiced with the present invention without departing

from the scope thereof.

Each of the MUM agents 30-40 can operate autonomously to monitor multiple
components including local processor performance, local processor resources, local processor
configuration, the operation of the distributed application, the operation of the network, the
operation of the various network devices including disks, file systems devices and tape, and
other such information. Accordingly, it is a realization of the invention that diagnostic

analysis can employ more than a measure of server CPU performance. Each of the

-9-

10

15

20

WO 00/08806 PCT/US99/17531

monitoring agents 30-40 can be a single, multi-threaded process that can contain information
to avoid constant polling by the enterprise monitor console 42. Each of the agents can
continuously monitor in real time business transactions, databases, systems and networks
detecting and correlating events, initiating corrective actions, and providing event
notifications. The MUM agents are capable of understanding business transactions and can
collect details of events, resource usage and response times and can pass this information to

the MUM console 42 and store it in the MUM database 44.

Each of the agents 30-40 can also monitor loop back operations. As shown, loop back
23, 25 occurs when a server and a distributed application are located on the same client. Loop
back information passes between the server and the application via the communication stack
without ever going out onto the network. Because each agent 38, 40 is coupled into the client
communications stack, it can monitor the loop back data that passes only through the

communications stack.

Figure 2 depicts in functional block diagram form the architecture of one MUM agent
50 suitable for use with the system 10 depicted in Figure 1. The agent 50 can be a software
module that executes as a background process on the managed node. In particular, the agent
50 can be an agent residing on a network node that is capable of acting as a SYBASETM
client. The agent 50 includes an external event interface 52, a communications interface 54, a
tools interface 58, and MUM console interface 60, and event correlation processor 64, a
system monitor 70, a network monitor 72, a SYBASE TM client monitor 74, and a

SYBASE™ gerver monitor 76.

-10-

10

15

20

25

WO 00/08806 PCT/US99/17531

The overall architecture of the agent 50 shows that the agent includes a set of monitor
elements 70-76 and an external events interface 52 that provide event information about
various components of the enterprise to the correlation processor 64. The correlation
processor 64 correlates the events to generate data that can be passed to the MUM console 42,
or passed to other tools, including other management tools or instrumentation code for setting
off alarms, activating a beeper, sending a fax via modem, sending e-mail to system
administrators or taking corrective action. Accordingly, the agent 50 collects details of events
and processes these details in the correlation processor 64 to generate information

representative, among other things, of business transactions.

To this end the external events interface 52 and the monitor elements 70-76 can
collect details about events. The external events interface 52 can be comprised of a set of
program modules operating on the local system for detecting certain events. These external
events can be Simple Network Management Protocol (SNMP) traps from other devices,

events from user and system processes.

The monitor elements 70-76 can include code modules that operate on the node for
collecting information about certain events and can also include a programming interface for
receiving calls from those code modules to pass the notification of the detected event on to
the monitor elements. The monitor elements 70-76 can receive event notifications from code
that is monitoring any of the enterprise components relevant to the local system, which for
the agent 50, can include system events, network events, and SYBASE client/server events.
The programming interface of the monitor elements 70-76 can be an exported C-++ based API
that receives calls from this code upon detection of certain events. For example, the node can

be running code for trapping the general protection fault, which can be defined as a system

11-

10

15

20

25

WO 00/08806 PCT/US99/17531

event. The code Will make an API call to the agent 50 to notify the system monitor element
70 of the detected failure, and the system monitor element 70 can pass notification to the
correlation processor 64. The API can encapsulate the code's service protocol to remove the
operating characteristics of the code from the operation of the other agent components. This
allows the detection code to act as plug-in modules that the user can select for configuring
which events are to be monitored. Moreover, the user can define events of interest, for
monitoring by the agent. Any code suitable for passing event details to any of the monitor
elements within the agent 50 can be practiced with the present invention, without departing

from the scope thereof.

In particular, the system monitor 70 can collect information about the operation of the
local system. To this end, the system monitor 70 can include code modules for collecting
information regarding processor load, memory usage, available memory space, and other
similar information that is descriptive of the operation of the local workstation or server. The
development of such code is well known in the art, and any suitable code can be practiced
with the invention without departing from the scope thereof. Also, each agent can take action
on the local system such as setting off alarms, activating a beeper, sending a fax via modem,

sending e-mail to system administrators or taking corrective action.

In contrast to the system monitor 70, the monitors 72-76 are to monitor events
associated with distributed processes. Accordingly, the details relevant to the monitored
events require information about the distributed processing operations that are occurring. A
realization of the present invention is that the monitors 72-76 can passively collect
information about the distributed process by monitoring the network communications that

occur during the distributed process. To this end, each monitor element can include an

-12-

10

15

20

WO 00/08806 PCT/US99/17531

interface to the network communications stack to passively monitor communications between

the distributed process elements.

Figure 3 depicts one example of a module 80 for collecting details of a distributed
process, and suitable for use on a SUN SOLARISTM platform. The module 80 monitors the
network communications between database software 51 disposed on the local client and a
selected group of servers and pass copies of the communications to the agent 50 for
processing and for determining which events, if any, have occurred. In particular, the module
80 can enable monitoring by the agent 50 of the local client's database software 51 (e.g.,
SYBASE, CORBA, ORACLE) or other distributed process applications 53 having traffic that

passes through the TCP stack of the managed node.

The module 80 is comprised of an agent 50 and STREAMS modules 55. The agent 50
includes a TAP API 57 and a socket library 59. The STREAMS modules 55, which include a
TAP module 61 and a TCP STREAMS driver 63, can be constructed according to well
known principles in the art of computer engineering, including those set forth in text Unix
Network Programming, by W. Richard Stevens. The STREAMS module 55 may execute in
kernel mode, as shown in Figure 3.. The TAP module 61 autopushes on top of the TCP
STREAMS stack 65 so that all TCP traffic in and out of the managed node passes through the
module 80. The module 80 is aware of the communications protocol for the distributed
process or processes being monitored, such as ORACLE or SYBASE. In this way, the
module 80 can filter from the traffic those portions that are relevant to the agent 50 and pass

copies of this traffic to the agent 50.

-13-

5

10

15

20

WO 00/08806 PCT/US99/17531

Figure 4 is a detailed illustration of operational details of the module 80 (as shown in
Figure 3) on the SUN SOLARISTM platform. The module 80 maintains a list 84 of the
servers to be monitored. In one embodiment, the list of servers is provided to the module 80
by the agent 50, which can receive the list from the MUM console 42. All inbound and

outbound traffic on connections to the listed servers is passed by module 80 to the agent 50.

In operation, for each connected stream, the module 80 creates a context data structure
for storing information. The context is then linked, as shown, to the corresponding
STREAMS queues, read and write. The context stores information about the connected
stream that describes the type of connection. The module 80 also opens a context data
structure 94 for communicating to the agent 50. The module 80 can store data about event
details within this context 94, and the agent 50 can read the data out, and pass the information
to the correlation processor 64. The tap table 82 stores a list of the connected streams context
data structures, the list of all servers being monitored, and the context data structure for

communicating with the agent 50.

Each time a connection is established the module creates a context. The module then
determines the server address for the connection by generating a sequence of M_IOCTL
requests
that are sent downstream. Response from the TCP stack is captured and prevented from being
sent upstream, and the server IP address is resolved. If the address matches one of the
addresses in the list 84, the connection is marked as being monitored, and the module 80
begins monitoring. During monitoring, copies of all traffic sent or received under the context

of a monitored connection is passed to the upstream queue of the agent communication

-14-

10

15

20

25

WO 00/08806 PCT/US99/17531

context 94, for being passed upstream to the agent 50. In this way the agent 50 receives

copies of all traffic for any connection to any of the selected servers.

The information passed upstream by module 80 to the agent 50 is sent to the event
correlation processor 58. The event correlation processor is a software module that can
process event detail information to determine certain transaction level information. For
example, the module 80 can pass a SYBASE logon request to the agent 50. The event
correlation processor can receive the logon request and monitor the connection until a logon
acknowledge is sent by the SYBASE server. By comparing the time difference between these
two events, the event correlation processor 58 can determine a measure of the response time
of the distributed process. Other similar metrics that can also be generated to provide

end-to-end level analysis of system performance.

Figure 5 depicts another example of a module 180 for collecting details of a
distributed process, and suitable for use on a WINDOWS NTTM platform. The module 180
employs a different architecture than the module 80, but performs the same functions. That is,
the module 180 can enable monitoring by the agent 150 of the local client's database software
151 or other distributed process applications 153, 155 having traffic that passes via system

services 176 through the TCP stack of the managed node.

The module 180 includes an agent 150 and a TAP driver 163. The agent 150 includes
a TAP API 157, and the TAP driver 163 includes a Tap device 161 and a TapFilter device
162. The Tap device 161 communicates with the TAP API 157 to set up monitoring
parameters and to supply monitoring data. The TapFilter device 162 attaches on top of the

TCP device 167 of the TCP/IP driver 165 to monitor all TCP traffic in and out of the

-15-

10

15

20

WO 00/08806 PCT/US99/17531

managed node. The TapFilter device 162 uses a feature of the Windows NTTM driver
layering architecture to attach itself to the TCP device 167. In particular, the TapFilter device
162 uses an operating system call (i.e., loAttachDevice) to insert itself into the data stream
for the TCP device. Thus, any data to or from the TCP device passes transparently through
the TapFilter device 162. The System Services 176, the TAP driver 163, and the TCP/IP

driver may execute in kernel mode, as shown in Figure 5.

The TCP/IP driver 165 also includes a UDP device 169 and an IP device 171 that
support other sub-protocols in the TCP/IP family of protocols. Although not shown, the
TapFilter device 162 could attach on top of the UDP device 169 and/or the IP device 171 to

monitor all data traffic for such devices.

It will be understood that the depicted modules 80 and 180 are only illustrative
embodiments of a module for interfacing to the network communication stack. Other
modules can be practiced with the invention. For example, referring again to Figure 1, it can
be seen that different types of workstations are depicted in system 10 to show that system 10
is a distributed system having heterogeneous operating environments. The workstations can
be of different architectures, both hardware and software, and the servers 20 and 22 can
similarly be of different hardware or software architecture. For example, the workstation 12
can be a SUN workstation having a module as depicted in Figure 2. Moreover, the network
system that interconnects the workstations and the servers can be a local area network, a wide
area network, a metropolitan area network, or a combination of either. The point is that in a
distributed computing architecture the processing that occurs to implement a particular

service, whether it is e-mail, a database, a word processing program, or any other service or

-16-

10

15

20

25

WO 00/08806 PCT/US99/17531

computer applications, it is distributed across multiple processors that are somehow

interconnected for exchanging data.

Data collection activities will now be described. Previous paragraphs set forth a
description of the agent, as may be included in a server and client. In paragraphs that follow,

the process of monitoring and data gathering in a distributed computer system are described.

Referring now to Figure 6, shown is an example of an embodiment of a system that
may be used in monitoring distributed applications. The embodiment of Figure 6 includes a
system 210 with clients 212a - 212n and servers 214a-214n. Also shown is a controller 216
which interacts with the clients 212a-212n and the servers 214a-214n to monitor distributed
applications running on the various client and server systems of Figure 6. The controller 216
reads and writes to a data depository 220. Similarly, the console 218 may read and write data
from the data repository 220. Generally, the controller 216, as will be described in
paragraphs that follow, is the driver for the data gathering process for monitoring applications
executing in the system of Figure 6. The data is read and written from the data repository
220. The console 218 serves as an interface, for example, for a user wishing to read an
interpretation of the data stored in the data repository, such as a new report, or for making

changes to various parameters stored in the data repository 220.

It should be noted that the system of Figure 6 contains elements which are similar to
those previously described in conjunction with the system 10 of Figure 1. For example, the
clients 212a-214n may be a workstation or personal computer as shown in the system of
Figure 1. Similarly, the servers 214a-214n may each be one of a database server, such as the

Sybase SQL server shown in Figure 1.

-17-

10

15

20

25

WO 00/08806 PCT/US99/17531

Each of the clients 212a-212n, each of the servers 214a-214n, and the controller 216,
for example, represent conceptual functional boxes rather than dedicated hardware
processors. In other words, an embodiment in accordance with principles of the invention
may have a controller and one or more servers reside on a single system, as well as multiple
clients or controller on a single system. In one embodiment, the controller 216 may execute
on a dedicated processor due to the amount of traffic and management function that the
controller provides. The dedicated processor power is needed for controlling and
coordinating the data collection and management process. In other embodiments, the
assignment of functions as associated with a client or server and the controller to particular
hardware may vary in accordance with the amount of network traffic and client-server

transaction, as well as varying processor speeds of the different hardware in the system 210.

In the embodiment of Figure 6, each of the clients and servers are associated with an
agent. For example, associated with client 1 212a is agent 1 215a. Generally, each of the
agents is a process executing on a computer system which hosts either the client or associated
server application. The agent is the software or the process which detects exception
conditions, as will be described in paragraphs which follow. Similarly, the controller 216 1s a
process or program that is a coordinator for passing information between one of the agents
and the console 218. The controller 216 stores and accesses information from the data

repository 220.

It should also be noted that another embodiment of the system 210 of Figure 6 may
not include an agent on each server. In other words, in another preferred embodiment, the
agent may be optionally included with each server as needed in accordance with each

embodiment. The determination of whether an agent is included in each server or as an

-18-

10

15

20

WO 00/08806 PCT/US99/17531

optional element associated with a server is in accordance with the data gathering

requirements of each embodiment.

The data repository 220 in this embodiment is a database created and maintained to
store various types of data, such as configuration and usage information in accordance with
client- server application activities in the system 210 of Figure 6. It should be noted that the
data repository 220 may also include trigger event data and conditions and thresholds that are
described in more detail in paragraphs that follow. Also, in one embodiment, the data
repository 220 is a persistent data storage area. Generally, in this embodiment the data stored
in a data repository 220 includes monitoring data from monitoring activities between the
various client-server connections in the distributed computing environment of the system
210. The data is generally derived from monitoring connections referring to the logical
communication medium between a client and the server. What is monitored is the request-
response traffic that is transmitted over the connections such as between various clients and
servers being monitored. For example, if there is a connection between client 1 and server n,
that connection may be monitored and corresponding data collected as events concerning
network traffic occurs between client 1 and server n. This data may be collected by the
controller and stored in the data repository 220 for various uses, such as reporting out to the
user at console 218 activity related to a particular business transaction or connection. More

detailed examples and explanation are given in paragraphs to follow with related figures.

What is described in paragraphs that follow is distributed data collection with

exception or event triggering in accordance with predefined events and threshold information.

-19-

10

15

20

25

WO 00/08806 PCT/US99/17531

Referring now to Figure 7, shown is a flowchart of the steps of a method for gathering
performance data in the system 210 of Figure 6. At step 230, trigger events or exception
conditions are defined. Additionally, specific data is identified and associated with various
trigger events. In this embodiment, the data associated with specific trigger events may
generally be described as diagnostic information and actions. The diagnostic information
describes the data collected when trigger events occur, as will be described in paragraphs that
follow in conjunction with the processing steps of Figure 7. The actions generally describe
what steps are taken in accordance with the detection of event triggers. Actions may include,
for example, sending e-mail, and causing a "beeping"or other multi-media event to occur.
Additionally, actions specified may be corrective actions to correct or alleviate some
condition in accordance with the defined trigger event. Corrective actions may include, for

example, interactions with other computer systems.

It should be noted that the data gathered may generally be described as forming two
categories of data with respect to how the data is gathered. Data gathered, from clients and
servers for example, may come from an agent or non-agent source. Generally, data that is
gathered by the agent is referred to as having an agent data source. All other data that is not
gathered by the agent is referred to as having a non-agent data source. Both agent and non-

agent data may specified and associated with trigger events in following processing steps.

At step 232, referring to the flowchart of Figure 7, shown is a wait-loop, or event
evaluation loop, where there is test for detecting a trigger event, as defined in step 230. At
step 232, if no trigger event is detected control returns back to the top of the loop where there
is a constant monitoring until a trigger event occurs. It should be noted that this monitoring

may be implemented in different embodiments in a variety of ways known to those skilled in

-20-

10

15

20

25

WO 00/08806 PCT/US99/17531

the art. For example, one embodiment may monitor a trigger event by executing a busy wait
loop in machine executable code that checks for the occurrence of a trigger event at
predetermined time intervals. Another embodiment may monitor and detect trigger events
through use of operating system functionality, such as by using asynchronous event and

exception condition detection.

It should also be noted that the processing of step 230 may be done at various points
in time prior to the event evaluation loop of step 232. In other words, the definition of trigger
events may be described as loosely coupled from the detection of trigger events, as performed
by step 232 event evaluation loop. The trigger events may be defined "off-line" as a separate
task. For example, trigger events may be defined at some previous time on another computer

system. The trigger events and associated data may be updated at later time.

Once a trigger event that has been detected in step 232, control proceeds to step 234
where data collection occurs in accordance with the defined event on the client. In other
words, in this particular embodiment, the agents as may reside on a client such as client 1 has
access to data stored in a client-local data file defining the various trigger events and
associated data. This data may be stored in a local copy in each of the client and servers in
this embodiment. The agent on the client executes the monitoring activity performed at step
232 and waits for one of the trigger events to occur. When the agent on the client has
detected that a trigger event has occurred, it collects data in accordance with the defined

events as stored in the data file locally on the client site.

The data file may be stored in both the data repository and locally on each of the

client and server sites. Generally, this data describes what particular events are to be

21-

10

15

20

25

WO 00/08806 PCT/US99/17531

monitored and the associated connections as between the various client and servers. For each
of the trigger events, the agent as located on each of the clients monitors the activity of the
various client-server connections using the monitoring system as previously described in

conjunction with earlier figures.

In one embodiment, it should be noted that when there is a modification or update to
the data file stored in the data repository, the controller synchronizes the various copies of the
data as used by the clients and servers. In other words, if there is an update or modification to
the data file, for example, adding new trigger events as with an off-line editing process, the
various copies of the data as used by the clients and servers are synchronized with the copy in
the data repository. The controller is responsible for detecting this update and ensuring that

each client or server is accessing a common version of the data file.

For each of these requests being monitored by the agent, tasks attached to the
monitored connection are evaluated using evaluation context information. The evaluation
context generally includes information related to the connection being monitored. The
evaluation context may include, for example, the command being executed by an application
along with information regarding the user, the server and other information related to an
application request. When a trigger event or exception condition occurs, data collection
occurs on the client, as in step 234. Data gathered at step 234 may be included as evaluation
context information. Generally, the type of data gathered at this point by the agent on a client
has to do with those parameters or variables that can be computed by the client. These are
typically items such as resource metrics regarding CPU and memory usage for the system
upon which the client executes, as well as network parameters, such as latency which may be

relevant to the client-server connection.

22-

10

15

20

25

WO 00/08806 PCT/US99/17531

It should be noted that in addition to running the agent on each of the client systems, a
user specified program may additionally, or alternatively be executed, and interact with the
client process to gather state information, for example, for other products and processes that

may be executing within the system 210 of Figure 6.

At step 236, data, including the evaluation context information, is sent from the client
to the controller 216. At step 238, the controller 216 receives the client data and connects to
the server of the particular monitored client-server connection about which data has just been
reported from an agent executing on a client system. For example, if there is a connection
being monitored between client 1 and server 1, and an alarm condition or trigger event is
detected by agent 1 215a executing within the process of client 1 212a, the controller 216 is
notified of the occurrence of this alarm condition. Subsequently, the controller 216 receives
the data as reported from client 1 212a and connects to server n, 214n in step 238. At
step 240, server data is gathered from the server of the particular monitored client-server
connection. This contact and control is initiated by the controller 216. In this capacity, the
controller 216 acts as a coordinator or a driver of the data gathering process once it is notified
of the occurrence of a trigger event or exception condition by one of the clients known as

client 1 212a.

At step 238, the controller uses various pieces of information as communicated by the
client to decide what server is to be contacted at step 238. At step 240, the controller 216
gathers server data from the server of the monitored client-server connection. This data may
include, for example, number and type of current open transactions, the number of requests
being serviced by the server, and various usage statistics similar to those previously collected

on behalf of a client. It should also be noted that similar to that previously described with a

23

10

15

20

WO 00/08806 PCT/US99/17531

client, a user-specified program or process may also be executed on a controller machine and
associated with a controller process 216 to gather state information maintained by products

and software other than those identified in the system 210 of Figure 6.

At step 240, server data is gathered from the server of the monitored client-server
connection. The data gathered from the server includes variables or parameters that may be
defined in a file or other data repository for which a local copy exists on each of the servers
and clients in the system 210 of Figure 6. Similar to the previous description associated with
the client, the server contacted may access data from a local file to determine what variables
or parameters it computes, and subsequently transmits back to the controller 216. At step
242, the controller additionally connects to, notifies, and receives data from any other server
involved in the monitored client-server connection. These other servers, for example, at
step 242 may include servers that assist or handle transactions related to the monitored client

server connection.

It should be noted that similar to that previously described with a client and a
controller, a user-specified program or process may also be executed and associated with a
server process to gather state information. The process, for example, may be other software

not identified in the system 210 of Figure 6.

Referring now to Figure 8, shown are more detailed steps in a flowchart of one
embodiment of data collection in accordance with a defined event on a client. At step 234a,
the client gathers client state information as defined in accordance with the particular trigger

event. At step 234b, network state information related to the monitored client server

24-

WO 00/08806 PCT/US99/17531

connection is also gathered. As previously described, this may include information such as

network latency time in processing the monitor client-server connection.

Referring now to Figure 9, shown are more detailed steps in a flowchart for
5 determining how the controller receives client data and establishes connections with the

server or servers. At step 250, the controller uses client context information to access other
information in the data repository 220. This client context information may include data,
such as a exception identifier, sent from one of the client systems whose agent is monitoring
a client server connection. Using this identifier, the controller indexes into information

10 stored in a data repository to determine, as at step 252, what information is to be gathered
from the client. The controller determines using the data repository, for example, what
servers or other processes in the system of Figure 6 it needs to contact to obtain data in the

monitoring or data gathering process.

15 Referring now to Figure 10, shown is a flowchart with more detailed steps for how
server data may be gathered from the server of the monitored client-server connection as
previously described in conjunction with step 240 of Figure 7. At step 240a, server state
information is gathered. Server state information may include, for example, as previously
described, non-agent data from the server such as the number of open transactions and the

20 number of requests currently being serviced by a particular server. Generally, this non-agent
data and other server state information may be gathered by the agent process executing and
associated with a particular server, such as 214n. At step 240b, the server computes any
variables or parameters that must be computed on the server in accordance with those defined
in the local copy of the event data file stored on the particular server. At step 240c, the

25 controller gathers the state information from the server related to the request that caused the

-25-

10

15

20

WO 00/08806 PCT/US99/17531

occurrence of the trigger event originally established by or detected by the client of the client

server connection being monitored.

Referring now to Figure 11, shown is an example of an embodiment of a table as
stored in the data repository 220 and locally on each of the clients and servers in this
embodiment defining conditions related to various trigger events or exceptions. Generally,
this table includes data that is an example of configuration data, as may be entered at step 230
of Figure 7, as previously described. This table may be used, for example, in determining
what variables are to be collected by each of the clients and servers in the various processing
steps previously described in conjunction with Figure 7. This embodiment of the table 260
includes an exception identifier 262, an associated threshold 264, data identifiers and
component types for data collection 266, and the system components 268 that are contacted

for performing a data gathering related to the monitoring process.

The exception identifier 262 is an identifier which uniquely identifies an exception or
a trigger event in the system 210 of Figure 6. Associated with each of the exception
conditions is a threshold value 264. In the table of Figure 11, the threshold may be a time
value or other threshold established associated with the exception identifier. For example, if
an exception identifier is associated with the amount of time required to service a request, the
threshold value, such as five seconds, may specify a maximum time period above which an
alarm condition or trigger event is detected by the agent executing as a client process.
Column 266 specifies various data identifiers identifying data items to be collected in the
different component types which compute or are responsible for reporting these various data

identifiers. For example, a data identifier "A" may be computed by each of the servers or

-26-

10

15

20

25

WO 00/08806 PCT/US99/17531

server processes associated with this particular exception. Data identifiers "B" and "C" may

be reported or gathered from each of the clients involved in this client server connection.

The system components for data gathering are defined in column 268. For example,
each of the client systems identified in column 268 are contact to produce and provide the
corresponding data identifier parameter in column 266. For example, if in column 268 both
server 4 and server 5 are identified, both of these servers are contacted to supply values for
the parameter "A", as identified in column 266. Similarly, in column 268 if client 1 is
identified, and parameters "B" and "C" are identified in column 266, client 1 is contacted for
values for parameters "B" and "C". The controller may use the information stored in
table 260, for example, in determining which client and server systems to be contacted for
what parameter values. The controller, for example, may examine column 268 of the table to
determine from what client and server systems to contact to gather data for the particular
connection being monitored. The data stored in column 266 identifies what data parameters
or variables the controller expects to receive from each of the client-server systems as

identified in column 268.

Referring now to Figure 12, shown is an example of an embodiment of a table of
various cached values for the different data parameters collected in monitoring a distributed
application executing in the system of Figure 6. The cache values of the table 280 include the
data collection identifier 282, a description of the data being collected 284, and a cached
value and component of the system which is associated with that data value 286. For
example, the data collection identifier A describes client CPU time. Inrow 1 of table 280, a
cached value of three seconds is associated with client 1 for the parameter A. A similar

statistic is kept regarding client CPU time for client 2 in row 2.

27-

10

15

20

WO 00/08806 PCT/US99/17531

In one embodiment, this caching of the values is only stored for controller variables or
statistics which are monitored by the controller. In another embodiment, the statistics which
are cached include those as stored in table 280 of Figure 12 for the client and servers as well.
Statistics such as these may be kept by the controller 216. These values may be stored in a
data repository 220 and accessed and maintained by the controller 216 to minimize traffic in
the system of Figure 6. In another embodiment, each of the clients as well as the servers may
access and update information in the data repository regarding various variables or data
collection parameters rather than just the controller. However, in this embodiment, it may be
desirable that only the controller access and maintain the data in the data repository 220
related to the caching information as stored in table 280 to minimize the amount of traffic on
the network to enable more efficient data collection in monitoring of applications executing
in the computer system 210 of Figure 6. It should be noted that statistics such as these
included in the table 280 of Figure 12 may be used in reporting information such as by the

console 218.

It should generally be noted that the thresholds as specified in conjunction with
field 264 of Figure 11 may be time-based or other data quantities in accordance with the type
of data being collected. Additionally, the various data values and parameters stored in the
data repository 220 are propagated to the clients and servers if their existed change in the
data. As previously described, each of the clients and servers as well have access to the data
and parameters it needs. The data set may include a complete set of data, as stored in the
tables of Figures 11 and 12, or it may include portions thereof as related to the various client

and server parameters.

-08-

10

15

20

25

WO 00/08806 PCT/US99/17531

The data contained in table 260 of Figure 11 includes configuration information
relating to the physical layout of the computer system 210 of Figure 6. Data such as this
configuration information is generally only required to be read by the controller process 216.
Other data such as those parameters related to data gathering on a server or client may be
conceptually separated from the data such as the configuration information and stored in

different places in accordance with the needs of the client and server processes.

Generally, the system 210 of Figure 6 describes a process for remotely gathering
server data from an agent. This remote data collection facility, such as by executing the agent
software on a client and a server in a system of Figure 6, may alternatively be provided
through other software on the various clients and servers. For example, within a particular
database, certain data gathering capabilities may be included in an application programming
interface (API) of the database. Equivalently, if such capabilities regarding transaction
information for the database are not provided by the database, such as through an AP], these
capabilities may be alternatively provided by agent processes, such as 215a-215n and 217a-

217n ot clients and servers to obtain and gather the data needed by the controller.

It should also be noted that the embodiment of the agent process, as on client and
servers, previously described in conjunction with Figure 7 provides for data gathering and
performance monitoring upon the occurrence of trigger event or exception conditions.
Additionally, data gathering may be performed on a periodic basis rather than upon the
occurrence of certain trigger events. In other words, for example, referring back to Figure 7,
rather than have event triggering and detection being performed at steps 232 and forming a
wait loop, the defined trigger events and data may be corrected, for example, in a periodic

basis such as in accordance with a predetermined time increment. Data gathering on a

229-

10

15

20

25

WO 00/08806 PCT/US99/17531

periodic basis, for example, may be used to gather usage statistics in accordance with a

"snapshot" of various aspects of the system 210 of Figure 6 at particular time increments.

In one particular embodiment, the system of Figure 6 may have one or more client
processes, such as 212a through 212n, which execute on a computer system having an
operating system that is one of Windows 95, 98 or Window NT by Microsoft™. The
controller may also execute on a computer system that hosts the Windows NT operating
system. Similarly, one of the servers 214a - 214n may execute on a computer system having
a Unix or Windows NT operating system. In the embodiment described in conjunction with
Figure 6, each of the computer systems upon which the client and server processes, and the

controller process execute are able to communicate using the TCP protocol.

The techniques and embodiments just described present a method for monitoring and
managing the performance of distributed applications in the computer system. This
technique is based on triggering event initiation when a condition occurs or upon a period
basis upon which data is collected from one or more distributed application components in
the computer system 210 of Figure 6. As previously described, components may include
client and server
computer systems, as well as a dedicated processor for each of the controller component and

a database server.

The monitoring data may be collected in a remote fashion and may be used to
diagnose problems as well as analyze system performance. The foregoing system includes a
controller as the main coordinator in an attempt to minimize the overhead required to collect

data from the various client server components. The controller coordinates requests for data

-30-

10

15

20

WO 00/08806 PCT/US99/17531

collection items from the different components in the computer system 210. The data
statistics and information gathered and stored in the data repository 220 of Figure 6 may be
analyzed and reported to a user such as through the console 218 to help identify causes and
display information regarding system performance. This real-time event in data collection
capability present a technique which is flexible for monitoring the performance of distributed
applications executing in the computer system 210 of Figure 6. It should generally be noted
that these remote data gathering capabilities may be applied to other areas in addition to those

for a distributed computing system environment.

In one embodiment, different threads may execute in the context of an agent process
to perform different tasks previously described in conjunction with Figure 7. For example, a
resource gathering thread may compute the values for all the resource variables or parameters
on a client. A periodic evaluation thread may evaluate client tasks as specified in accordance
with a predetermined time period. A non-periodic evaluation thread may evaluate application
tasks when there is activity on a client server connection being monitored. The use of threads
in the foregoing description is in accordance with the function provided by the operating
system and other software executing on each of the different processors included in the

computer system 210 of Figure 6.

In one embodiment, the clients and servers to be monitored, as well as type version,
login and password information for each server to be evaluated, are included in the
configuration information, as may be stored in the data repository 220. A user, for example,

may specify this configuration information through the console 218.

31-

10

15

20

WO 00/08806 PCT/US99/17531

A task or application may be "attached" or associated with a client and/or server if it
is to be evaluated for the client and/or server and the connection between them. Generally,
for an application, a name, various exceptions, conditions and one or more actions and state
variables may be specified. The application is attached or associated with a particular
connection by specifying which machines and/or servers and connections it is to be evaluated
for. A client application may be attached to a client machine in which the agent executing on
that client evaluates that application. An application may be attached to a client and a server,
for example, in which an agent or a non-periodic evaluation thread of that agent evaluates that
application when there is activity associated with a particular client-server connection. A
server application may be attached to a server in which the agent executing on the various

server processor evaluates that application periodically.

It should be noted that in an embodiment of the console 218 provides for automatic
data collection as well as provides different facilities for user interface, such as to modify
parameters and allow for user specified options, such as specifiying time periods associated

with periodic evaluation, and creation and maintenance of a business transaction file.

In some embodiments, it is possible to associate the triggering data and the data that is
collected by the system with various applications or operations performed by the

applications, deemed “transactions.”

Referring to Figure 13, a business transaction system 300, for facilitating monitoring

such application business transactions, includes a business transaction specification 302 that

contains data indicating definitions and rules for associating specific network information

-32-

WO 00/08806 PCT/US99/17531

with particular application business transactions. The business transaction specification 302

is described in more detail hereinafter.

The business transaction specification data 302 is provided to a transaction engine 304
5 which uses the business transaction specification 302 and the monitored network and other
activity to produce usage data, transaction data and exceptions. As described in more detail
hereinafter, the transaction engine 304 can recognize portions of the monitored activity from
the network that are associated with business transaction set forth in the business transaction
specification 302. Based on the association and the rules provided therewith in the business
10 transaction specification 302, the transaction engine 304 generates application transaction

specific usage, transaction data, and exceptions, that are stored in the data repository 220.

It should be noted that activity that is monitored generally includes network and other
activity, such as user interface activity, remote system activity and system process activity.
15 The user interface activity may include, for example, user initiated activity associated with a
user interface, such as selection of a button with a mouse device. Remote system activity
may include, for example, activity relating to other computer systems remotely connected to
the system 210 of Figure 6. System process information may include, for example, CPU
usage information.
20
Referring to Figure 14, a flowchart 320 illustrates basic operation of the transaction
engine 304 of Figure 13. At a first step 322, the transaction engine collects data
corresponding to the monitored activity from the network. Following the step 322 is a test
step 324 which determines if the collected data fits a rule of the business transaction

25 specification 302. The rules of the business transaction specification 302 may be defined on

-33-

10

15

20

25

WO 00/08806 PCT/US99/17531

a per application basis and listed in a particular order such that the collected data is matched
against each rule in succession. Once the application is determined, the collected data may be
matched with rules in the business transaction specification 302 by looking for a portion

thereof that matches the application which is associated with the network data.

Note that the data can be associated with a particular application by examining the
port number and the IP address of the destination that is contained in the network packet
information. Each time a new port is created, the network information indicating the
application, port, and IP address is entered in a table. Using the table, network data can be
matched with a particular application by looking up the port number and the IP address in the
table. Note also that the process ID can be used to distinguish between different users
accessing the same application using the same port. Thus, if user one and user two both
access application A using port B, then transactions for user one can be tracked separately
from transaction for user two by distinguishing between the process ID’s for network data.
Note that, as described elsewhere herein, the process ID’s, port ID’s, and IP addresses of data

is obtained and provided by the agents.

It should be noted that the data collection that occurs at step 322 is performed in
conjunction with the occurrence of a trigger event. In one instance, the data associated with a
trigger event may be collected when a transaction completes and exceeds a threshold, such as
a predetermined amount of time. In another instance, the data associated with a trigger event
may be collected when the transaction does not complete. In this other instance, data
collection occurs and the transaction is treated in an manner analogous to that of the first

nstance.

-34-

10

15

20

25

WO 00/08806 PCT/US99/17531

If it is determined at the test step 324 that the data does not fit a particular rule,
control passes back to the step 322 where more data is collected. Otherwise, ifit is
determined at the step 324 that the data does correspond to a particular rule, then control
passes from the step 324 to a step 326 where the transaction engine 304 generates and stores

business transaction information.

Following step 326 is a test step 328 which determines if a threshold in the business
transaction specification 302 is exceeded. Besides associating the data with particular
applications, the business transaction specification 302 contains information indicating
particular thresholds for various transactions. For example, the business transaction
specification 302 may indicate that, following a first operation, a second operation should be
performed within a predetermined amount of time. If the first operation occurs but the
second operation is delayed, then a threshold will be exceeded. Examples of these types of
operations include a request for data and receipt of data or a request to open a first window

followed by a request to open a second window.

If it is determined at the step 328 that a threshold has not been exceeded, then control
passes from the step 328 back to the step 322 to collect additional network data. Otherwise,
if it is determined at the step 328 that a threshold has been exceeded, then control passes from
the step 328 to a step 330 where the fact that the threshold has been exceed is reported to the

console and to the controller to take appropriate action, as set forth elsewhere herein.

Referring to Figure 15, a flowchart 350 shows in more detail the step 324 of Figure 14
where it is determined if data fits a rule of the business transaction specification 302. Ata

first step 352, a rule is read and processed. Note that rules may be specified in any one of a

-35-

10

15

20

25

WO 00/08806 PCT/US99/17531

variety of conventional fashions, including providing a text file that has a particular syntax

indicating each rule and the operations and tests thereof.

Following with step 352 is a test step 354 where it is determined if the rule matches
the data being processed. If so, then control passes from the step 354 to a step 356 where the
routine exits. Otherwise, if it is determined at the test step 354 that the data does not match
the particular rule being processed (i.e., the rule fetched at the step 352), then control passes
from the step 354 to a test step 358 to determine if a default rule is to be applied. If it is
determined at the test step 358 that the default rule is be applied, then control passes from the
step 358 to a step 360 where the routine is exited. Otherwise, if it is determined at the
step 358 that the default rule does not apply, then control passes from the step 358 back to the
step 352 to process the next rule. In one embodiment, the default rule may be the last rule in

the business transaction specification 302.

Referring to Figure 16, a schematic diagram shows the relationship between the
business transaction system 300 and the agent 215a. As the agent 215a is monitoring data,
that data is passed to the business transaction engine 304 which, as described above, uses the
business transaction specification 302 to provide usage, transaction data, and exceptions to
the data repository 220 as well as providing exceptions to the console and the controller of

the system, as described elsewhere herein.

Referring to Figure 17, a work station 364 includes a user interface 366 that is used to
edit and create the business transaction specification 302. The business transaction
specification 302 may be implemented as a conventional text file. In that case, the work

station 364 and the interface 366 are provided by a conventional computer and word

-36-

10

15

20

25

WO 00/08806 PCT/US99/17531

processor. Alternatively, the business transaction specification 302 may be specified using

other conventional means.

In embodiments where the business transaction specification 302 is implemented as a
text file, it is possible, in some instances, for the transaction engine 304 to read the business
transaction specification 302 upon initialization and then create a run-time dynamic data
structure that may be accessed more efficiently in connection with providing the functionality

described herein.

It should also be noted that in one embodiment the business transaction specification

302 may be stored in the data repository 220 of Figure 6.

A possible syntax for providing the business transaction specification 302 is provided

below:
<BTSpecification> -> <BTLangVersion> <BTApplicationSpec>+
<BTLangVersion> -> Version <number>.<number>

<BTApplicationSpec> -> Application <string-literal> <HeaderInfo> <BTRule>+

<ProcessRule>*

<Headerinfo> -> [<HeaderEntry>+]
<BTRule> -> BT <string-literal> <RuleClauses> END_BT
<ProcessRule> -> PROCESS <ProcClause>+ END_PROCESS
<ProcClause> -> BT <string-expr>
<HeaderEntry> -> (<NumericEntry> <number>)* (<StringEntry> <string-literal>)*
<NumericEntry> -> NoiseThreshold |
MaxTransactionTime |
GuiProcess |
DiscardTimedOutTransaction |
<StringEntry> -> WindowsTolgnore |
ClassesTolgnore
<RuleClause> -> <WindowClause>* <CommandClause>* <GeneralClause>*

-37-

10

15

20

25

30

35

WO 00/08806

<WindowClause>

<WindowClause>

<CommandClause>

<CommandClause>

<command>

<GeneralClause>

<string-expr>
<string-expr>
<string-expr>
<string-list>
<string-literal>

<params>

->

->

->
->
->
->

->

PCT/US99/17531

WindowStart |
WindowEnd |
WindowEndNew |
WindowPrevious |
WindowContains |
StatusText I
MenuCommand |
WindowFilter I
ButtonClick

<string-expr>
Windowlignore

Windowlist

<string-list>

CommandStart |
CommandEnd |
CommandContains
<command> <params>
CommandList
<command-list>

Select |
Update |
Delete |
Execute |
URL |
insert |
BeginTransaction |
EndTransaction

Max (BytesSent | BytesReceived | roundTrips |

Operations) (<number>) |
Min (BytesSent | BytesReceived | roundTrips |

Operations) (<number>) |
SetName <string-literal>

<string-expr> OR <string-expr>

NOT (<string-expr>)

<string-literal>

<string-list> , <string-literal> | <string-literal>
‘string’ |

‘string’ (<params>)

<params>, <param> | ‘string’

40 A comment is any line whose first character is ‘#’.

-38-

WO 00/08806 PCT/US99/17531

It will thus be seen that the invention efficiently achieves the objects set forth above.
Moreover, it will be understood that various substitutions, additions and modifications can be
made to the invention without departing therefrom and that embodiments depicted and
described are merely illustrative of the invention and are not to be read in a limiting sense;

5 with the scope of the invention defined by the following claims to the fullest extent allowed

by the terms therein.

-39.

WO 00/08806 PCT/US99/17531

Claims
1. A method of monitoring a distributed computer system comprising:
defining trigger events and associated data to be collected;
detecting occurrence of one of said trigger events at a client while monitoring a
5 connection between a client and a first server;
collecting client data in accordance with said one trigger event at said client;
notifying a controller of said detecting of said occurrence of said one trigger event;
notifying said first server of said occurrence of said trigger event,
gathering first server data by said first server; and

10 sending said first server data to said controller.

2. The method of Claim 1, further including:
sending to said controller client context information; and
determining, using said client context information, data to be obtained from said

15 client.

3. The method of Claim 2, further including:
said controller using data included in a data repository to determine what data is to be
obtained from said client.
20
4. The method of Claim 3, wherein said client context information includes a server

identifier uniquely identifying said first server.

5. The method of Claim 1 further comprising:

-40-

WO 00/08806 PCT/US99/17531

gathering a client portion of said associated data by said client that can be computed

by said client.

6. The method of Claim 5, wherein said client portion includes information relevant

5 to said connection between said client and said first server.

7. The method of Claim 6, wherein said client portion includes resource metrics.

8. The method of Claim 7, wherein said resource metrics include processor and

10 memory usage information.

9. The method of Claim 6, wherein said client portion includes network latency

information relevant to said connection.

15 10. The method of Claim 1, wherein said collecting data on said client includes:
specifying a machine executable program to perform said collecting data on said
client; and

executing said machine executable program to collect said data on said client.

20 11. The method of Claim 1 further comprising;:
notifying one or more other servers of said occurrence of said trigger event;
gathering other server data by said one or more other servers; and
sending said other server data to said controller.
12. The method of Claim 1 further comprising:

25 sending said client data to said controller.

-41-

WO 00/08806 PCT/US99/17531

13. The method of Claim 1, wherein said first server data includes information about

current open transactions being processed by said first server.

14. The method of Claim 1, wherein said first server data includes information about

5 requests being serviced by said first server.

15. The method of Claim 1, wherein said first server data includes usage information

about said first server.

10 16. The method of Claim 1 further comprising:
gathering, by said controller, information about the trigger event that caused the

exception.

17. The method of Claim 1, wherein said collecting client data is done remotely by

15 said controller.

18. The method of Claim 1, wherein said distributed computer system includes one or
more clients and one or more servers, each of said one or more clients and said one or more
servers being associated with a different computer processor and being a process executing

20 on said computer processor.

19. The method of Claim 18, wherein said controller is a process executing on a

dedicated computer processor.

-42-

WO 00/08806 PCT/US99/17531

20. The method of Claim 1, wherein said distributed computer system includes one or
more clients and one or more servers, and a computer processor is associated with at least two

clients, each of said two clients being a process executing on said computer processor.

5 21. The method of Claim 1, wherein said client and said first server are each

associated with an agent process that gathers data.

22. The method of Claim 1, wherein said controller is a coordinator for gathering
client and first server data.
10
23. A system for monitoring a distributed computer system comprising:
machine executable code for defining trigger events and associated data to be
collected;
machine executable code for detecting occurrence of one of said trigger events at a
15 client while monitoring a connection between a client and a first server;,
machine executable code for collecting client data in accordance with said one trigger
event at said client;
machine executable code for notifying a controller of said detecting of said occurrence
of said one trigger event;
20 machine executable code for notifying said first server of said occurrence of said
trigger event;
machine executable code for gathering first server data by said first server; and

machine executable code for sending said first server data to said controller.

25 24. The system of Claim 23, further including:

-43-

WO 00/08806 PCT/US99/17531
machine executable code for sending to said controller client context information; and
machine executable code for determining, using said client context information, data

to be obtained from said client.

5 25. The system of Claim 24, further including:
said controller including machine executable code for accessing data included in a

data repository to determine what data is to be obtained from said client.

26. The system of Claim 25 wherein said client context information includes a server

10 identifier uniquely identifying said first server.

27. The system of Claim 23 further comprising:
machine executable code for gathering a client portion of said associated data by said
client that can be computed by said client..
15
28. The system of Claim 27, wherein said client portion includes information relevant

to said connection between said client and said first server.

29. The system of Claim 28, wherein said client portion includes resource metrics.
20
30. The system of Claim 29, wherein said resource metrics include processor and

memory usage information.

31. The system of Claim 28, wherein said client portion includes network latency

25 information relevant to said connection.

-44-

WO 00/08806 PCT/US99/17531

32. The system of Claim 23, wherein said machine executable code for collecting
data on said client includes:
machine executable code for specifying a machine executable program to perform

said collecting data on said client.

33. The system of Claim 23 further comprising:
machine executable code for notifying one or more other servers of said occurrence of
said trigger event;
machine executable code for gathering other server data by said one or more other
10 servers; and

machine executable code for sending said other server data to said controller.

34. The system of Claim 23 further comprising:
machine executable code for sending said client data to said controller.
15
35. The system of Claim 23, wherein said first server data includes information about

current open transactions being processed by said first server.

36. The system of Claim 23, wherein said first server data includes information about

20 requests being serviced by said first server.

37. The system of Claim 23, wherein said first server data includes usage information

about said first server.

25 38. The system of Claim 23 further comprising:

-45-

10

15

20

WO 00/08806 PCT/US99/17531

machine executable code for gathering, by said controller, information about the

trigger event that caused the exception.

39. The system of Claim 23, wherein said machine executable code for collecting

client data performs remote data gathering by said controller.

40. The system of Claim 23, wherein said distributed computer system includes one
or more clients and one or more servers, each of said one or more clients and said one or
more servers being associated with a different computer processor and being a process

executing on said computer processor.

41. The system of Claim 40, wherein said controller is a process executing on a

dedicated computer processor.

42. The system of Claim 23, wherein said distributed computer system includes one

or more clients and one or more servers, and a computer processor is associated with at least

two clients, each of said two clients being a process executing on said computer processor.

43. The system of Claim 23, wherein said client and said first server are each

associated with an agent process that gathers data.

44. The system of Claim 23, wherein said controller is a coordinator for gathering

client and first server data.

-46-

PCT/US99/17531

WO 00/08806

1/17

WO 00/08806

i

COMMUNICATIONS INTERFACE

"”fﬁ‘l‘.‘;
Pt R s R SO L

S

SIR4 .

INTERFAC
Ch RS

TO OTHER T

o
WP

O e,
7
N

/'04

(A%]

JFJ%

EVENT CORRELATION -

2/17

LS

:
ey

{5
it

TR,
S

SYBASE.
SERVER
MONITOR

o v"l P} n
.,’Mur.}g% .
L
g

SYBASE
CUENT
MONITOR

%

4

TS

T
GG

MONITOR

NETWORK

~N

Wi] it
&

SYSTEM
MONITOR

O,

-
74
D A T

=

T X

. oS
04
/

T

RN

PR

PCT/US99/17531

WO 00/08806 PCT/US99/17531

3/17

A’ SO
| s

A\
= |<|B|: |
p‘h
) <[22 \
s kL v
o E-'§ \/)
. /5] /\j\/\
8 | ;i §
T = -.I‘:n"[;- >
g *&'ﬁ =
8 2 o s
L2 0o) R (-9 %}
" 3 L — O3
5 oo : — 32
< > 2 < > g
= =
oy n
<3
=~ E
I
[e
RO
-
0% : M
S‘% : 3 N
J\
Vv

User mode
Kernel mode

o et

PCT/US99/17531

WO 00/08806

4/17

woosf—" |
SIX3U0O swieals
P3109uu00 jo P | \

AN uoI9uN0
N s usdy (2191 20175)
’ ﬁ—s

~
~

e

% L4

pRionuouw jo 1]

PCT/US99/17531

WO 00/08806

5/17

o3

= sionbas gy pus

Lys

= R 59/
2WMop [EE womop |1 201A%p [X
dl &g dan 5] 400 K
oL Py
g
—

_ 6

201A9p

widey, [

]

y s ~N 901
]

7ep 3unonuopy

omoE Jouloy

: suoneondde ;-
: Bunyiomiou

1dV dvL LS
rbmua__ Joosui
a1emyos
udy Wy U2l aseqeie(

: ! suoneoydde ©

Posum 1 ggy

o

WO 00/08806
6/17

212_a/ Client 1

2153

212n/ Clientn

21&

Controller

PCT/US99/17531

21

Console

220,

Y

gent'ﬂ \N
215n
21424 Server 1
gent-sl
217a

21 4n/ Servern

217n‘/

FIGURE 6

Y

Data
Repository

WO 00/08806 PCT/US99/17531
717

23 Define trigger events and
associated data to be collected.

Data collection occurs in

234 accordance with defined event at client.

4 :
23 6'/ Send data from the client to the controller.

\
Controller receives client data and connects to
238 the server of the monitored client-server connection.

Y
240 Gather server data from the server of the monitored
client-server connection.

Y
Controller connects to, notifies, and receives data from
24 other servers.

FIGURE 7

WO 00/08806 PCT/US99/17531
8/17

Gather client state information.

Y

234b__J Gather network state information related to
the monitored client-server connection.

FIGURE 8

WO 00/08806 PCT/US99/17531
9/17

250— Controiler uses client context information to access information in
the data repository.

238 A

\ 252 Controller determines, using the data repository,
what information is to be gathered.

FIGURE 9

240

WO 00/08806

2

2

PCT/US99/17531

10/17

Gather server state information.

Y

405/

Server computes any variables
that must be computed on the
server.

Y.

\

Controller gathers state information from the server related
to the request that caused the occurrence of the trigger event.

FIGURE 10

WO 00/08806

262\

264\

1/17

266\

268\

PCT/US99/17531

Exception | Threshold Data Id to System Components
Id collect and for Data Gathering
component type
Al123 A, server Client 1
5 d ’
seconcs B, client Server 4
Server 5

C, client

FIGURE 11

280

WO 00/08806

2

12/17

M

PCT/US99/17531

286\

Data
Collection Description Cached Value, Component
D

A Client CPU time 3 seconds, Client 1

A Client CPU time 2 seconds, Client 2

B No. of Requests being serviced 5, Server 1

B No. af Requests being serviced 34, Server 2

FIGURE 12

WO 00/08806

302

Business
Transaction
Specification

PCT/US99/17531
13/17

Monitored Network and
Other Activity

304

Transaction
Engine

220

Data

Usage, transaction | Repository
data and exceptions

Exception to Console
and Controller

FIGURE 13

WO 00/08806 PCT/US99/17531

14/17

!

Collect data

|~ 322

YVYYyY

Generate and store
business transaction

information.

NO

Is threshold
exceeded?

Report exéeption to
Console and Controller.

FIGURE 14

)

WO 00/08806

15/17

»

v

PCT/US99/17531

352

Read and process
arule.

Default
Rule?

A

)36

Exit.

3 30

Exit.

FIGURE 15

WO 00/08806 PCT/US99/17531
16/17
215a Agent -1
———-_\'\
BT system 300
Application
2122 = A
Client 1 ,
Client/server connection
being monitored
\ 4
Server n
214n

FIGURE 16

WO 00/08806
364
—
Workstation | User J
Interface

N\
1

366

1717

Y

FIGURE 17

PCT/US99/17531

Business
Transaction
ecificatio

302

INTERNATIONAL SEARCH REPORT

Inte. onal Application No

PCT/US 99/17531

CLASSIFICATION OF SUBJECT MATTER

A
IPC 7 HO4L12/26 H04L29/06

According to Intemnational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 HO4L GO6F

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Elsctronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relavant passages Relevant to claim No.

A VASSILA A ET AL: "INTRODUCING ACTIVE 1,23
MANAGED OBJECTS FOR EFFECTIVE AND
AUTONOMOUS DISTRIBUTED MANAGEMENT"
PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON INTELLIGENCE IN BROADBAND
SERVICES AND NETWORKS,DE,BERLIN, SPRINGER,
vol. CONF. 3, page 415-429 XP000593492
ISBN: 3-540-60479-0

abstract
page 417, line 12 -page 421, line 18
figure 2
A US 5 101 402 A (CHIU DAH-MING ET AL) 1,23
31 March 1992 (1992-03-31)
abstract
column 1, line 1 —-column 7, line 62
figure 16
- / —
Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :) . . .

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" eqnier document but published on or after the international "X" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to

"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "y document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the interational filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual compietion of the international search Date of mailing of the international search report
7 January 2000 27/01/2000
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, s
Fax: (+31-70) 340-3016 Lievens, K

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

inter. ‘nal Application No

PCT/US 99/17531

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

US 5 648 966 A (KONDO KENJI ET AL)
15 July 1997 (1997-07-15)

abstract

column 1, line 9 -column 3, line 2
column 5, line 19-32

US 5 430 709 A (GALLOWAY JAMES R)

4 July 1995 (1995-07-04)

abstract

column 1, line 6 -column 2, line 22
column 4, Tine 16 -column 6, line 40

1,23

1,23

Form PCT/ISA/210 (continuation of second sheet) (July 1892)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Inter >nai Application No
information on patent family members PCT/US 99/17531
Patent document Publication Patent family Publication
cited in search report date member(s) date
UsS 5101402 A 31-03-1992 NONE
US 5648966 A 15-07-1997 JP 8097818 A 12-04-1996
US 5430709 A 04-07-1995 Wo 9326111 A 23-12-1993
DE 69226436 D 03-09-1998
DE 69226436 T 03-12-1998
EP 0598739 A 01-06-1994
JP 6509927 T 02-11-1994

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

