Abstract: The present disclosure provides aromatic-cationic peptides and methods of using the same. The methods comprise the use of the aromatic-cationic peptides in reducing the effects of toxic beta amyloid (Aβ) peptides including blocking the accumulation of extracellular Aβ oligomers, inhibiting Aβ-mediated endo-}

FIG. 1A

<table>
<thead>
<tr>
<th>Concentration</th>
<th>% Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100%</td>
</tr>
<tr>
<td>10 μM FeCl₃</td>
<td>80%</td>
</tr>
<tr>
<td>10 μM ZnCl₂</td>
<td>60%</td>
</tr>
<tr>
<td>10 μM CuCl₂</td>
<td>40%</td>
</tr>
</tbody>
</table>
Published: — with international search report (Art. 21(3))
CARDIOLIPIN-TARGETED PEPTIDES INHIBIT BETA-AMYLOID OLIGOMER TOXICITY

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of and priority to U.S. Application No. 61/884,722, filed on September 30, 2013, which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present technology relates generally to aromatic-cationic peptide compositions and methods of use in treating, preventing or ameliorating the effects of beta-amyloid peptide (Aβ) oligomer toxicity.

BACKGROUND

[0003] The following description is provided to assist the understanding of the reader. None of the information provided or references cited is admitted to be prior art.

[0004] Aβ is derived from amyloid precursor protein (APP). APP is an integral glycoprotein that is involved in many important neuronal functions such as neural plasticity and synapse formation. Processing of APP is executed through two pathways, the α pathway and the β pathway. Typically, APP is cleared through the α pathway, which does not produce Aβ.

[0005] The β pathway is an amyloidogenic pathway. APP that enters the β pathway is cleaved with β-secretase and γ-secretase to produce an Aβ. The Aβ produced can range in size from 36-43 amino acids. The most common isoforms of Aβ are Aβ40 and Aβ42. Of these two, Aβ42 is more hydrophobic, more prone to aggregation, and more toxic than Aβ40. Aβ42 is also the form most commonly found in amyloid plaques.

SUMMARY

[0006] In one aspect, the present technology provides a method for treating or preventing symptoms of conditions, or diseases associated with beta-amyloid peptide (Aβ) toxicity.
comprising administering a therapeutically effective amount of an aromatic-cationic peptide or a pharmaceutically acceptable salt thereof to a subject in need thereof.

[0007] In some embodiments of the method, the aromatic cationic peptide comprises one or more peptides selected from the group consisting of 2',6'-Dmt-D-Arg-Phe-Lys-NH₂ (SS-02), Phe-D-Arg-Phe-Lys-NH₂ (SS-20), D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-31), and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31).

[0008] In some embodiments of the method, the salt is an acetate salt, tartrate salt or trifluoroacetate salt.

[0009] In some embodiments of the method, the disease is selected from the group consisting of Alzheimer's Disease, Dementia with Lewy Bodies, Inclusion Body Myositis and Cerebral Amyloid Angiopathy.

[0010] In some embodiments of the method, treatment comprises reducing or ameliorating one or more symptoms of Alzheimer's Disease selected from the group consisting of memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished communication skills, repetitive speech or actions, difficulties with visual or spatial relationships, withdrawal, depression, loss of recognition, loss of motor skills and sense of touch, delusions, paranoia, verbal or physical aggression, and sleep disorders.

[0011] In some embodiments of the method, the aromatic-cationic peptide is administered orally, parenterally, intravenously, subcutaneously, transdermally, topically or by inhalation.

[0012] In another aspect, the present technology provides a method for reducing beta-amyloid (AP)-induced oxygenase activity in a subject suffering from a disease associated with Aβ toxicity comprising administering a therapeutically effective amount of an aromatic-cationic peptide or a pharmaceutically acceptable salt thereof to the subject.

[0013] In some embodiments of the method, the aromatic cationic peptide comprises one or more peptides selected from the group consisting of 2',6'-Dmt-D-Arg-Phe-Lys-NH₂ (SS-02), Phe-D-Arg-Phe-Lys-NH₂ (SS-20), D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-31), and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31).
In some embodiments of the method, the salt is an acetate salt, tartrate salt or trifluoroacetate salt.

In some embodiments of the method, the disease is selected from the group consisting of Alzheimer's Disease, Dementia with Lewy Bodies, Inclusion Body Myositis and Cerebral Amyloid Angiopathy.

In some embodiments of the method, treatment comprises reducing or ameliorating one or more symptoms of Alzheimer's Disease selected from the group consisting of memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished communication skills, repetitive speech or actions, difficulties with visual or spatial relationships, withdrawal, depression, loss of recognition, loss of motor skills and sense of touch, delusions, paranoia, verbal or physical aggression, and sleep disorders.

In some embodiments of the method, the aromatic-cationic peptide is administered orally, parenterally, intravenously, subcutaneously, transdermally, topically or by inhalation.

In another aspect, the present technology provides a method for reducing extracellular beta-amyloid (Aβ) oligomers in a subject suffering from a disease associated with Aβ toxicity comprising administering a therapeutically effective amount of an aromatic-cationic peptide or a pharmaceutically acceptable salt thereof to the subject.

In some embodiments of the method, the aromatic cationic peptide comprises one or more peptides selected from the group consisting of 2',6'-Dmt-D-Arg-Phe-Lys-NH$_2$ (SS-02), Phe-D-Arg-Phe-Lys-NH$_2$ (SS-20), and D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31).

In some embodiments of the method, the salt is an acetate salt, tartrate salt, or trifluoroacetate salt.

In some embodiments of the method, the aromatic-cationic peptide is administered orally, parenterally, intravenously, subcutaneously, transdermally, topically or by inhalation.
In some embodiments of the method, the disease is selected from the group consisting of Alzheimer's Disease, Dementia with Lewy Bodies, Inclusion Body Myositis and Cerebral Amyloid Angiopathy.

In some embodiments of the method, treatment comprises reducing or ameliorating one or more symptoms of Alzheimer's Disease selected from the group consisting of memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished communication skills, repetitive speech or actions, difficulties with visual or spatial relationships, withdrawal, depression, loss of recognition, loss of motor skills and sense of touch, delusions, paranoia, verbal or physical aggression, and sleep disorders.

In one aspect, the present technology provides a method for treating Alzheimer's Disease in a subject in need thereof comprising administering a therapeutically effective amount of D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31) or a pharmaceutically acceptable salt thereof to a subject in need thereof. In some embodiments of the method, the salt is an acetate salt, tartrate salt or trifluoroacetate salt.

In some embodiments of the method, treatment comprises reducing or ameliorating one or more symptoms of Alzheimer's Disease selected from the group consisting of memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished communication skills, repetitive speech or actions, difficulties with visual or spatial relationships, withdrawal, depression, loss of recognition, loss of motor skills and sense of touch, delusions, paranoia, verbal or physical aggression, and sleep disorders.

In some embodiments of the method, D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31) is administered orally, parenterally, intravenously, subcutaneously, transdermally, topically or by inhalation.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 demonstrates that incubation of cardiolipin and Aβ1-42 oligomers in the presence of Cu²⁺ ions promotes Aβ1-42-mediated oxygenase activity. Each sample contained 200 µL 1x PBS pH 7.4, 50 µM Amplex Red, 800 nM Aβ oligomers, and 30 µM 1', 2', 2'-tetralinoleoyl cardiolipin (TLCL). Oxygenase activity, expressed as Relative Fluorescence
Units (RFU)/minute, was assayed by monitoring the fluorescence of 50 µM Amplex Red Reagent in the absence of H2O2. The % increase in oxygenase activity relative to the control group as well as the continuous time course data for each experimental run are displayed. FIG. 1A demonstrates that CuCl₂ actively stimulates Aβ²⁻mediated oxygenase activity. FIG. 1B demonstrates that Cu²⁺ ions (as exemplified by Cu(N0₃)₂ and CuCl₂) are necessary for the stimulation of Aβi₄₂-mediated oxygenase activity. FIG. 1C demonstrates that Cu²⁺ ions dose-dependently increase APi₄₂-mediated oxygenase activity.

[0028] FIG. 2 demonstrates that the cardiolipin isoform 1, 1’, 2, 2’-tetralinoleoyl cardiolipin (TLCL) is required for the Cu²⁺-dependent stimulation of Aβi₄₂-mediated oxygenase activity. FIG. 2A displays the structures of the different cardiolipin (CL) isoforms. Cardiolipin isoforms exhibit different degrees of saturation in their fatty acid tails: 1, 1’, 2, 2’-tetramyristoyl cardiolipin (TMCL) contains saturated fatty acid tails, 1, 1’, 2, 2’-tetraeoleoyl cardiolipin (TOCL) contains unsaturated fatty acid tails with one double bond in each tail and 1, 1’, 2, 2’-tetralinoleoyl cardiolipin (TLCL) contains unsaturated fatty acid tails with two double bonds in each tail. In FIGS. 2B and 2C, each sample contained 200 µL 1x PBS pH 7.4, 50 µM Amplex Red, 800 nM Aβ oligomers, and 30 µM CuCl₂. Oxygenase activity, expressed as Relative Fluorescence Units (RFU)/minute, was assayed by monitoring the fluorescence of 50 µM Amplex Red Reagent in the absence of H₂O₂. The % increase in oxygenase activity relative to the control group as well as the continuous time course data for each experimental run are displayed. FIG. 2B demonstrates that phospholipids other than TLCL, are incapable of stimulating Aβi₄₂-mediated oxygenase activity in the presence of Cu²⁺ ions. FIG. 2C demonstrates that TLCL is the only cardiolipin isoform that is capable of stimulating Aβi₄₂-mediated oxygenase activity in the presence of Cu²⁺ ions.

[0029] FIG. 3 demonstrates that TLCL and Aβ oligomers increase APi₄₂-mediated oxygenase activity in a dose-dependent manner. Oxygenase activity, expressed as Relative Fluorescence Units (RFU)/minute, was assayed by monitoring the fluorescence of 50 µM Amplex Red Reagent in the absence of H₂O₂. The % increase in oxygenase activity relative to the control group as well as the continuous time course data for each experimental run are displayed. In FIG. 3A, each sample contained 200 µL 1x PBS pH 7.4, 50 µM Amplex Red, 800 nM Aβ oligomers, and 30 µM CuCl₂. In FIG. 3B, each sample contained 200 µL, 1x...
PBS pH 7.4, 50 µM Amplex Red, 30 µM TLCL, and 30 µM CuCl₂. The dose-dependent responses of TLCL and Aβ oligomers are shown in FIG. 3A and FIG. 3B respectively.

FIG. 4A shows the chemical structures of D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-3 1) and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-31). FIG. 4B demonstrates that D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-3 1) (represented by the dashed bars) and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-31) (represented by the solid bars) inhibit Cu²⁺-dependent stimulation of Aβ₁₄₂-mediated oxygenase activity in a dose dependent manner. Oxygenase activity, expressed as Relative Fluorescence Units (RFU)/minute, was assayed by monitoring the fluorescence of 50 µM Amplex Red Reagent in the absence of H₂O₂. The % increase in oxygenase activity relative to the control group as well as the continuous time course data for each experimental run involving D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-31) are displayed. Each sample contained 200 µL 1x PBS pH 7.4, 50 µM Amplex Red, 800 nM Aβ oligomers, 30 µM TLCL and 30 µM CuCl₂.

FIG. 5 shows a fluorescence emission spectra of aladan and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-3 1) (1 µM, λex=360 nm) in the presence or absence of 1 µM Aβ. FIG. 5 shows a shift in emission maximum (λmax) and an increase in fluorescence intensity when Aβ is added to D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-31).

FIG. 6 shows the turbidity data of aladan, D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-3 1) and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-31) in the presence of 40 µM Aβ. A sample containing Aβ oligomers alone was used as a reference. FIG. 6 shows an increase in the intensity of scattered light, an indicator of higher turbidity, when Aβ is added to D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-3 1).

FIG. 7A is an electron micrograph of Aβ oligomers. FIG. 7B shows the different stages of Aβ fibril formation when Aβ oligomers are contacted with D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-3 1). FIG. 7C is an electron micrograph of the Aβ fibrils that are produced when Aβ oligomers are contacted with D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([αd]SS-31). FIG. 7D is an electron micrograph of naturally formed Aβ fibrils.

DETAILED DESCRIPTION

It is to be appreciated that certain aspects, modes, embodiments, variations and features of the present technology are described below in various levels of detail in order to
provide a substantial understanding of the present technology. The definitions of certain
terms as used in this specification are provided below. Unless defined otherwise, all
technical and scientific terms used herein generally have the same meaning as commonly
understood by one of ordinary skill in the art to which this present technology belongs.

[0035] In practicing the present disclosure, many conventional techniques of cell biology,
molecular biology, protein biochemistry, immunology, and bacteriology are used. These
techniques are well-known in the art and are provided in any number of available
(1997); Sambrook et al, Molecular Cloning: A Laboratory Manual, Second Ed. (Cold

[0036] As used in this specification and the appended claims, the singular forms "a", "an"
and "the" include plural referents unless the content clearly dictates otherwise. For
example, reference to "a cell" includes a combination of two or more cells, and the like.

[0037] As used herein, the "administration" of an agent, drug, or peptide to a subject
includes any route of introducing or delivering to a subject a compound to perform its
intended function. Administration can be carried out by any suitable route, including orally,
nasally, parenterally (intravenously, intramuscularly, intraperitoneally, or subcutaneously),
topically, epicutaneously, rectally, intradermally, transdermally, inhalation, intraarterially,
intracerebrally, interosseously, intrathecally, iontophoretically, ocularly, intravaginaly, etc.
Administration includes self-administration and the administration by another.

[0038] As used herein, the term "amino acid" includes naturally-occurring amino acids
and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that
function in a manner similar to the naturally-occurring amino acids. Naturally-occurring
amino acids are those encoded by the genetic code, as well as those amino acids that are
later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino
acid analogs refers to compounds that have the same basic chemical structure as a naturally-
occurring amino acid, i.e., an a-carbon that is bound to a hydrogen, a carboxyl group, an
amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide,
methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or
modified peptide backbones, but retain the same basic chemical structure as a naturally-
occurring amino acid. Amino acid mimetics refers to chemical compounds that have a
structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally-occurring amino acid. Amino acids can be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.

[0039] As used herein, the term "effective amount" refers to a quantity sufficient to achieve a desired therapeutic and/or prophylactic effect. In the context of therapeutic or prophylactic applications, the amount of a composition administered to the subject will depend on the type and severity of the disease and on the characteristics of the individual, such as general health, age, sex, body weight and tolerance to drugs. It will also depend on the degree, severity and type of disease. The skilled artisan will be able to determine appropriate dosages depending on these and other factors. The compositions can also be administered in combination with one or more additional therapeutic compounds.

[0040] An "isolated" or "purified" polypeptide or peptide is substantially free of cellular material or other contaminating polypeptides from the cell or tissue source from which the agent is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. For example, an isolated aromatic-cationic peptide or an isolated cytochrome c protein would be free of materials that would interfere with diagnostic or therapeutic uses of the agent or would interfere with conductance, or electric properties of the peptide. Such interfering materials may include enzymes, hormones and other proteinaceous and nonproteinaceous solutes.

[0041] As used herein, the terms "polypeptide", "peptide", and "protein" are used interchangeably herein to mean a polymer comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. Polypeptide refers to both short chains, commonly referred to as peptides, glycopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. Polypeptides include amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques that are well known in the art.

[0042] As used herein, the term "separate" therapeutic use refers to an administration of at least two active ingredients at the same time or at substantially the same time by different routes.
As used herein, the term "sequential" therapeutic use refers to administration of at least two active ingredients at different times, the administration route being identical or different. More particularly, sequential use refers to the whole administration of one of the active ingredients before administration of the other or others commences. It is thus possible to administer one of the active ingredients over several minutes, hours, or days before administering the other active ingredient or ingredients. There is no simultaneous treatment in this case.

As used herein, the term "simultaneous" therapeutic use refers to the administration of at least two active ingredients by the same route and at the same time or at substantially the same time.

As used herein, the terms "subject," "individual," or "patient" can be an individual organism, a vertebrate, a mammal, or a human.

As used herein, a "synergistic therapeutic effect" refers to a greater-than-additive therapeutic effect which is produced by a combination of at least two therapeutic agents, and which exceeds that which would otherwise result from the sole administration of the at least two therapeutic agents. One advantage may include, but is not limited to, lower doses of one or more therapeutic agents in treating a medical disease or condition, resulting in increased therapeutic efficacy and decreased side-effects.

As used herein, a "therapeutically effective amount" of a compound refers to compound levels in which the physiological effects of a disease or disorder are, at a minimum, ameliorated. A therapeutically effective amount can be given in one or more administrations. The amount of a compound which constitutes a therapeutically effective amount will vary depending on the compound, the disorder and its severity, and the general health, age, sex, body weight and tolerance to drugs of the subject to be treated, but can be determined routinely by one of ordinary skill in the art.

As used herein, the terms "treating" or "treatment" or "amelioration" covers the treatment of a disease or disorder described herein, in a subject, such as a human, and includes: (i) inhibiting a disease or disorder, i.e., arresting its development; (ii) relieving a disease or disorder, i.e., causing regression of the disorder; (iii) slowing progression of the disorder; and/or (iv) inhibiting, relieving, or slowing progression of one or more symptoms of the disease or disorder.
As used herein, "prevention" or "preventing" of a disorder or condition refers to a compound that reduces the occurrence of the disorder or condition in the treated sample relative to an untreated control sample, or delays the onset of one or more symptoms of the disorder or condition relative to the untreated control sample.

It is also to be appreciated that the various modes of treatment or prevention of medical conditions as described are intended to mean "substantial", which includes total but also less than total treatment or prevention, and wherein some biologically or medically relevant result is achieved.

Aromatic-cationic Peptides

The present technology relates to the use of aromatic-cationic peptides. In some embodiments, at least one aromatic-cationic peptide is useful in aspects related to treating or ameliorating symptoms, conditions or diseases characterized by the over expression of beta amyloid peptide (Aβ). Additionally, or alternatively, in some embodiments, at least one aromatic-cationic peptide is useful in aspects related to treating or ameliorating symptoms, conditions or diseases characterized by the accumulation or overexpression of Aβ and/or Aβ plaque in the brain. Additionally, or alternatively, in some embodiments, at least one aromatic-cationic peptide is useful in aspects related to treating or ameliorating symptoms, conditions or diseases characterized by the accumulation or overexpression of Aβ oligomers.

The aromatic-cationic peptides are water-soluble and highly polar. Despite these properties, the peptides can readily penetrate cell membranes. The aromatic-cationic peptides typically include a minimum of three amino acids or a minimum of four amino acids, covalently joined by peptide bonds. The maximum number of amino acids present in the aromatic-cationic peptides is about twenty amino acids covalently joined by peptide bonds. Suitably, the maximum number of amino acids is about twelve, about nine, or about six.

The amino acids of the aromatic-cationic peptides can be any amino acid. As used herein, the term "amino acid" is used to refer to any organic molecule that contains at least one amino group and at least one carboxyl group. Typically, at least one amino group is at the a position relative to a carboxyl group. The amino acids may be naturally occurring. Naturally occurring amino acids include, for example, the twenty most common
levorotatory (L) amino acids normally found in mammalian proteins, i.e., alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Gln), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, (Trp), tyrosine (Tyr), and valine (Val). Other naturally occurring amino acids include, for example, amino acids that are synthesized in metabolic processes not associated with protein synthesis. For example, the amino acids ornithine and citrulline are synthesized in mammalian metabolism during the production of urea. Another example of a naturally occurring amino acid includes hydroxyproline (Hyp).

[0054] The peptides optionally contain one or more non-naturally occurring amino acids. Optimally, the peptide has no amino acids that are naturally occurring. The non-naturally occurring amino acids may be levorotary (L-), dextrorotatory (D-), or mixtures thereof. Non-naturally occurring amino acids are those amino acids that typically are not synthesized in normal metabolic processes in living organisms, and do not naturally occur in proteins. In addition, the non-naturally occurring amino acids suitably are also not recognized by common proteases. The non-naturally occurring amino acid can be present at any position in the peptide. For example, the non-naturally occurring amino acid can be at the N-terminus, the C-terminus, or at any position between the N-terminus and the C-terminus.

[0055] The non-natural amino acids may, for example, comprise alkyl, aryl, or alkylaryl groups not found in natural amino acids. Some examples of non-natural alkyl amino acids include a-aminobutyric acid, β-aminobutyric acid, γ-aminobutyric acid, δ-aminovaleric acid, and ε-aminocaproic acid. Some examples of non-natural aryl amino acids include ortho-, meta, and para-aminobenzoic acid. Some examples of non-natural alkylaryl amino acids include ortho-, meta-, and para-aminophenylacetic acid, and Y-phenyl-P-aminobutyric acid. Non-naturally occurring amino acids include derivatives of naturally occurring amino acids. The derivatives of naturally occurring amino acids may, for example, include the addition of one or more chemical groups to the naturally occurring amino acid.

[0056] For example, one or more chemical groups can be added to one or more of the 2', 3', A', 5', or 6' position of the aromatic ring of a phenylalanine or tyrosine residue, or the 4', 5', 6', or T position of the benzo ring of a tryptophan residue. The group can be any chemical group that can be added to an aromatic ring. Some examples of such groups...
include branched or unbranched C1-C4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl, C1-C4 alkyl oxy (i.e., alkoxy), amino, C1-C4 alkylamino and C1-C4 dialkylamino (e.g., methylamino, dimethylamino), nitro, hydroxyl, halo (i.e., fluoro, chloro, bromo, or iodo). Some specific examples of non-naturally occurring derivatives of naturally occurring amino acids include norvaline (Nva) and norleucine (Nle).

[0057] Another example of a modification of an amino acid in a peptide is the derivatization of a carboxyl group of an aspartic acid or a glutamic acid residue of the peptide. One example of derivatization is amidation with ammonia or with a primary or secondary amine, e.g., methylamine, ethylamine, dimethylamine or diethylamine. Another example of derivatization includes esterification with, for example, methyl or ethyl alcohol. Another such modification includes derivatization of an amino group of a lysine, arginine, or histidine residue. For example, such amino groups can be acylated. Some suitable acyl groups include, for example, a benzoyl group or an alkanoyl group comprising any of the C1-C4 alkyl groups mentioned above, such as an acetyl or propionyl group.

[0058] The non-naturally occurring amino acids are suitably resistant or insensitive, to common proteases. Examples of non-naturally occurring amino acids that are resistant or insensitive to proteases include the dextrorotatory (D-) form of any of the above-mentioned naturally occurring L-amino acids, as well as L- and/or D- non-naturally occurring amino acids. The D-amino acids do not normally occur in proteins, although they are found in certain peptide antibiotics that are synthesized by means other than the normal ribosomal protein synthetic machinery of the cell. As used herein, the D-amino acids are considered to be non-naturally occurring amino acids.

[0059] In order to minimize protease sensitivity, the peptides should have less than five, less than four, less than three, or less than two contiguous L-amino acids recognized by common proteases, irrespective of whether the amino acids are naturally or non-naturally occurring. In one embodiment, the peptide has only D-amino acids, and no L-amino acids. If the peptide contains protease sensitive sequences of amino acids, at least one of the amino acids is preferably a non-naturally-occurring D-amino acid, thereby conferring protease resistance. An example of a protease sensitive sequence includes two or more contiguous basic amino acids that are readily cleaved by common proteases, such as endopeptidases and trypsin. Examples of basic amino acids include arginine, lysine and histidine.
The aromatic-cationic peptides should have a minimum number of net positive charges at physiological pH in comparison to the total number of amino acid residues in the peptide. The minimum number of net positive charges at physiological pH will be referred to below as \(p_m \). The total number of amino acid residues in the peptide will be referred to below as \(r \). The minimum number of net positive charges discussed below is all at physiological pH. The term "physiological pH" as used herein refers to the normal pH in the cells of the tissues and organs of the mammalian body. For instance, the physiological pH of a human is normally approximately 7.4, but normal physiological pH in mammals may be any pH from about 7.0 to about 7.8.

"Net charge" as used herein refers to the balance of the number of positive charges and the number of negative charges carried by the amino acids present in the peptide. In this specification, it is understood that net charges are measured at physiological pH. The naturally occurring amino acids that are positively charged at physiological pH include \(L \)-lysine, \(L \)-arginine, and \(L \)-histidine. The naturally occurring amino acids that are negatively charged at physiological pH include \(L \)-aspartic acid and \(L \)-glutamic acid.

Typically, a peptide has a positively charged N-terminal amino group and a negatively charged C-terminal carboxyl group. The charges cancel each other out at physiological pH. As an example of calculating net charge, the peptide Tyr-Arg-Phe-Lys-Glu-His-Trp-D-Arg has one negatively charged amino acid (\(i.e. \) Glu) and four positively charged amino acids (\(i.e. \) two Arg residues, one Lys, and one His). Therefore, the above peptide has a net positive charge of three.

In one embodiment, the aromatic-cationic peptides have a relationship between the minimum number of net positive charges at physiological pH \((p_m) \) and the total number of amino acid residues \((r) \) wherein \(3p_m \) is the largest number that is less than or equal to \(r + 1 \).

In this embodiment, the relationship between the minimum number of net positive charges \((p_m) \) and the total number of amino acid residues \((r) \) is as follows:

<table>
<thead>
<tr>
<th>(r)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_m)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

TABLE 1. Amino acid number and net positive charges \((3p_m \leq p+1) \)
In another embodiment, the aromatic-cationic peptides have a relationship between the minimum number of net positive charges (p_m) and the total number of amino acid residues (r) wherein $2p_m$ is the largest number that is less than or equal to $r + 1$. In this embodiment, the relationship between the minimum number of net positive charges (p_m) and the total number of amino acid residues (r) is as follows:

TABLE 2. Amino acid number and net positive charges ($2p_m \leq p+1$)

<table>
<thead>
<tr>
<th>(r)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_m)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

In one embodiment, the minimum number of net positive charges (p_m) and the total number of amino acid residues (r) are equal. In another embodiment, the peptides have three or four amino acid residues and a minimum of one net positive charge, suitably, a minimum of two net positive charges and more preferably a minimum of three net positive charges.

It is also important that the aromatic-cationic peptides have a minimum number of aromatic groups in comparison to the total number of net positive charges (p_i). The minimum number of aromatic groups will be referred to below as (a). Naturally occurring amino acids that have an aromatic group include the amino acids histidine, tryptophan, tyrosine, and phenylalanine. For example, the hexapeptide Lys-Gln-Tyr-D-Arg-Phe-Trp has a net positive charge of two (contributed by the lysine and arginine residues) and three aromatic groups (contributed by tyrosine, phenylalanine and tryptophan residues).

The aromatic-cationic peptides should also have a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges at physiological pH (p_i) wherein 3a is the largest number that is less than or equal to $p_i + 1$, except that when p_i is 1, a may also be 1. In this embodiment, the relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (p_i) is as follows:

TABLE 3. Aromatic groups and net positive charges ($3a \leq p_i+1$ or $a= pt=1$)

| (p_i) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| (a) | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 | 7 |
In another embodiment, the aromatic-cationic peptides have a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (pₐ) wherein 2a is the largest number that is less than or equal to pₐ + 1. In this embodiment, the relationship between the minimum number of aromatic amino acid residues (a) and the total number of net positive charges (pₐ) is as follows:

<table>
<thead>
<tr>
<th>(pₐ)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

In another embodiment, the number of aromatic groups (a) and the total number of net positive charges (pₐ) are equal.

Carboxyl groups, especially the terminal carboxyl group of a C-terminal amino acid, are suitably amidated with, for example, ammonia to form the C-terminal amide. Alternatively, the terminal carboxyl group of the C-terminal amino acid may be amidated with any primary or secondary amine. The primary or secondary amine may, for example, be an alkyl, especially a branched or unbranched C₄alkyl, or an aryl amine.

Accordingly, the amino acid at the C-terminus of the peptide may be converted to an amido, N-methylamido, N-ethylamido, N,N-dimethylamido, N,N-diethylamido, N-methyl-N-ethylamido, N-phenylamido or N-phenyl-N-ethylamido group. The free carboxylate groups of the asparagine, glutamine, aspartic acid, and glutamic acid residues not occurring at the C-terminus of the aromatic-cationic peptides may also be amidated wherever they occur within the peptide. The amidation at these internal positions may be with ammonia or any of the primary or secondary amines described above.

In one embodiment, the aromatic-cationic peptide is a tripeptide having two net positive charges and at least one aromatic amino acid. In a particular embodiment, the aromatic-cationic peptide is a tripeptide having two net positive charges and two aromatic amino acids.

In yet another aspect, the present technology provides an aromatic-cationic peptide or a pharmaceutically acceptable salt thereof such as acetate, tartrate, or trifluoroacetate salt. In some embodiments, the peptide comprises:

1. at least one net positive charge;
2. a minimum of three amino acids;
3. a maximum of about twenty amino acids;
4. a relationship between the minimum number of net positive charges \((p_m)\) and the total number of amino acid residues \((r)\) wherein \(3p_m\) is the largest number that is less than or equal to \(r + 1\); and
5. a relationship between the minimum number of aromatic groups \((a)\) and the total number of net positive charges \((p_t)\) wherein \(2a\) is the largest number that is less than or equal to \(p_t + 1\), except that when \(a\) is 1, \(p_t\) may also be 1.

[0073] In some embodiments, the peptide comprises the amino acid sequence Tyr-D-Arg-Phe-Lys-NH\(_2\) (SS-01), 2',6'-Dmt-D-Arg-Phe-Lys-NH\(_2\) (SS-02), Phe-D-Arg-Phe-Lys-NH\(_2\) (SS-20) or D-Arg-2',6'-Dmt-Lys-Phe-NH\(_2\) (SS-31). In some embodiments, the peptide comprises one or more of:

- D-Arg-Dmt-Lys-Trp-NH\(_2\);
- D-Arg-Trp-Lys-Trp-NH\(_2\);
- D-Arg-2',6'-Dmt-Lys-Phe-Met-NH\(_2\);
- H-D-Arg-Dmt-Lys(\(^N Me\))Phe-NH\(_2\);
- H-D-Arg-Dmt-Lys-Phe(\(^N Me\))NH\(_2\);
- H-D-Arg-Dmt-Lys(A^Me)-Phe(AMe)-NH\(_2\);
- H-D-Arg(\(^N Me\))-Dmt(\(^N Me\))-Lys(\(^N Me\))-Phe(\(^N Me\))-NH\(_2\);
- D-Arg-Dmt-Lys-Phe-Lys-Trp-NH\(_2\);
- D-Arg-Dmt-Lys-Dmt-Lys-Trp-NH\(_2\);
- D-Arg-Dmt-Lys-Phe-Lys-Met-NH\(_2\);
- D-Arg-Dmt-Lys-Dmt-Lys-Met-NH\(_2\);
- H-D-Arg-Dmt-Lys-Phe-Sar-Gly-Cys-NH\(_2\);
- H-D-Arg\(^{[CH_2-NH]}\)Dmt-Lys-Phe-NH\(_2\);
- H-D-Arg-Dmt\(^{[CH_2-NH]}\)Lys-Phe-NH\(_2\);
- H-D-Arg-Dmt-Lys \(^{\Psi}[CH_2-NH]\)Phe-NH\(_2\).
H-D-Arg-Dmt^([CH_2-NH]Lys^[CH_2-NH]Phe-NH_2);
Lys-D-Arg-Tyr-NH_2;
Tyr-D-Arg-Phe-Lys-NH_2;
2',6'-Dmt-D-Arg-Phe-Lys-NH_2;
Phe-D-Arg-Phe-Lys-NH_2;
Phe-D-Arg-Dmt-Lys-NH_2;
D-Arg-2'6'Dmt-Lys-Phe-NH_2;
H-Phe-D-Arg-Phe-Lys-Cys-NH_2;
Lys-D-Arg-Tyr-NH_2;
D-Tyr-Trp-Lys-NH_2;
Trp-D-Lys-Tyr-Arg-NH_2;
Tyr-His-D-Gly-Met;
Tyr-D-Arg-Phe-Lys-Glu-NH_2;
Met-Tyr-D-Lys-Phe-Arg;
D-His-Glu-Lys-Tyr-D-Phe-Arg;
Lys-D-Gln-Tyr-Arg-D-Phe-Trp-NH_2;
Phe-D-Arg-Lys-Trp-Tyr-D-Arg-His;
Gly-D-Phe-Lys-Tyr-His-D-Arg-Tyr-NH_2;
Val-D-Lys-His-Tyr-D-Phe-Ser-Tyr-Arg-NH_2;
Trp-Lys-Phe-D-Asp-Arg-Tyr-D-His-Lys;
Lys-Trp-D-Tyr-Arg-Asn-Phe-Tyr-D-His-NH_2;
Thr-Gly-Tyr-Arg-D-His-Phe-Trp-D-His-Lys;
Asp-D-Trp-Lys-Tyr-D-His-Phe-Arg-D-Gly-Lys-NH_2;
D-His-Lys-Tyr-D-Phe-Glu-D-Asp-D-His-D-Lys-Arg-Trp-NH_2;
Ala-D-Phe-D-Arg-Tyr-Lys-D-Trp-His-D-Tyr-Gly-Phe;
Tyr-D-His-Phe-D-Arg-Asp-Lys-D-Arg-His-Trp-D-His-Phe;
Phe-Phe-D-Tyr-Arg-Glu-Asp-D-Lys-Arg-D-Arg-His-Phe-NH$_2$;
Phe-Tyr-Lys-D-Arg-Trp-His-D-Lys-D-Lys-Glu-Arg-D-Tyr-Thr;
Tyr-Asp-D-Lys-Tyr-Phe-D-Lys-D-Arg-Phe-Pro-D-Tyr-Asp-Arg-Phe-)
His-Lys;
Glu-Arg-D-Lys-Tyr-D-Val-Phe-D-His-Trp-Arg-D-Gly-Tyr-Arg-D-Met-NH$_2$;
D-Glu-Asp-Lys-D-Arg-D-His-Phe-Phe-D-Val-Tyr-Arg-Tyr-D-Tyr-Arg-His-Phe-NH$_2$;
Asp-Arg-D-Phe-Cys-Phe-D-Arg-D-Lys-Tyr-Arg-D-Tyr-Arg-D-Arg-Asp-Tyr-Trp-D-His-Tyr-D-Phe-Lys-Phe;
Dmt-D-Arg-Phe-(atn)Dap-NH$_2$, where (atn)Dap is β-anthraniloyl-L-α,β-diaminopropionic acid;
L-a,p-diaminopropionic acid;
D-Arg-Tyr-Lys-Phe-NH₂; and
D-Arg-Tyr-Lys-Phe-NH₂.

[0074] In some embodiments, "Dmt" refers to 2',6'-dimethyltyrosine (2',6'-Dmt) or 3',5'-dimethyltyrosine (3'5'Dmt).

[0075] In some embodiments, the peptide is defined by formula I:

\[
\text{wherein } R^1 \text{ and } R^2 \text{ are each independently selected from }
\]

(i) hydrogen;

(ii) linear or branched C₁-C₆ alkyl;

(iii) \[
\begin{align*}
\text{where } m = 1-3;
\end{align*}
\]

(iv) \[
\]

(v) \[
\]

R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹ and R¹² are each independently selected from
(i) hydrogen;
(ii) linear or branched C₁-C₆ alkyl;
(iii) C₅-C₆ alkoxy;
(iv) amino;
(v) C₁-C₄ alkylamino;
(vi) C₁-C₄ dialkylamino;
(vii) nitro;
(viii) hydroxyl;
(ix) halogen, where "halogen" encompasses chloro, fluoro, bromo, and iodo; and
n is an integer from 1 to 5.

[0076] In some embodiments, R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, and R₁₂ are all hydrogen; and n is 4. In another embodiment, R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, and R₁₁ are all hydrogen; R₈ and R₁₂ are methyl; R₁₀ is hydroxyl; and n is 4.

[0077] In some embodiments, the peptide is defined by formula II:

\[
\text{II:}
\]

wherein R¹ and R² are each independently selected from
(i) hydrogen;
(ii) linear or branched C₁-C₆ alkyl;
(iii) \(\begin{array}{c}
\text{CH}_2 \\
\text{CH}_2 \\
\text{CH}_2 \\
\end{array}\) \(\text{CH} \), where m = 1-3;
R₁ and R₄ are each independently selected from

(i) hydrogen;
(ii) linear or branched C₁-Cₑ alkyl;
(iii) C₁-C₆ alkoxy;
(iv) amino;
(v) C₁-C₄ alkylamino;
(vi) C₁-C₄ dialkylamino;
(vii) nitro;
(viii) hydroxyl;
(ix) halogen, where "halogen" encompasses chloro, fluoro, bromo, and iodo;

R₅, R₆, R₇, R₈, and R₉ are each independently selected from

(i) hydrogen;
(ii) linear or branched Cᵦ-Cₑ alkyl;
(iii) Cᵦ-C₆ alkoxy;
(iv) amino;
(v) C₁-C₄ alkylamino;
(vi) C₁-C₄ dialkylamino;
(vii) nitro;
(viii) hydroxyl;
(ix) halogen, where "halogen" encompasses chloro, fluoro, bromo, and iodo; and

n is an integer from 1 to 5.

[0078] In some embodiments, the peptide is defined by the formula:
also represented as 2',6'-Dmt-D-Arg-Phe-(dns)Dap-NH₂, where (dns)Dap is β-dansyl-L-α,β-diaminopropionic acid (SS-17).

[0079] In some embodiments, the peptide is defined by the formula:

also represented as 2',6'-Dmt-D-Arg-Phe-(atn)Dap-NH₂ where (atn)Dap is β-anthraniloyl-L-α,β-diaminopropionic acid (SS-19). SS-19 is also referred to as [atn]SS-02.
In a particular embodiment, \(R_1 \) and \(R_2 \) are hydrogen; \(R_3 \) and \(R_4 \) are methyl; \(R_5, R_6, R_7, R_8, \) and \(R_9 \) are all hydrogen; and \(n \) is 4.

In one embodiment, the aromatic-cationic peptides have a core structural motif of alternating aromatic and cationic amino acids. For example, the peptide may be a tetrapeptide defined by any of formulas III to VI set forth below:

- Aromatic - Cationic - Aromatic - Cationic (Formula III)
- Cationic - Aromatic - Cationic - Aromatic (Formula IV)
- Aromatic - Aromatic - Cationic - Cationic (Formula V)
- Cationic - Cationic - Aromatic - Aromatic (Formula VI)

wherein, Aromatic is a residue selected from the group consisting of: Phe (F), Tyr (Y), Trp (W), and Cyclohexylalanine (Cha); and Cationic is a residue selected from the group consisting of: Arg (R), Lys (K), Norleucine (Nle), and 2-amino-heptanoic acid (Ahe).

In some embodiments, the aromatic-cationic peptides described herein comprise all levorotatory (L) amino acids.

In one embodiment, the aromatic-cationic peptide has

1. at least one net positive charge;
2. a minimum of three amino acids;
3. a maximum of about twenty amino acids;
4. a relationship between the minimum number of net positive charges (\(p_m \)) and the total number of amino acid residues (\(r \)) wherein \(3p_m \) is the largest number that is less than or equal to \(r + 1 \); and
5. a relationship between the minimum number of aromatic groups (\(a \)) and the total number of net positive charges (\(p_t \)) wherein \(2a \) is the largest number that is less than or equal to \(p_t + 1 \), except that when \(a \) is 1, \(p_t \) may also be 1.

In another embodiment, the present technology provides a method for reducing the number of mitochondria undergoing a mitochondrial permeability transition (MPT), or preventing mitochondrial permeability transitioning in a removed organ of a mammal or treating or ameliorating symptoms, conditions or diseases characterized by \(\text{A} \beta \)-induced
mitochondrial dysfunction. The method comprises administering to the removed organ an effective amount of an aromatic-cationic peptide having:

- at least one net positive charge;
- a minimum of three amino acids;
- a maximum of about twenty amino acids;
- a relationship between the minimum number of net positive charges \((p_m) \) and the total number of amino acid residues \((r) \) wherein \(3p_m \) is the largest number that is less than or equal to \(r + 1 \); and
- a relationship between the minimum number of aromatic groups \((a) \) and the total number of net positive charges \((p_t) \) wherein \(2a \) is the largest number that is less than or equal to \(p_t + 1 \), except that when \(a = 1 \), \(p_t \) may also be 1.

[0085] In yet another embodiment, the present technology provides a method of reducing the number of mitochondria undergoing mitochondrial permeability transition (MPT), or preventing mitochondria permeability transitioning in a mammal in need thereof, or treating or ameliorating symptoms, conditions or diseases characterized by \(\text{A} \beta \)-induced mitochondrial dysfunction. The method comprises administering to the mammal an effective amount of an aromatic-cationic peptide having:

- at least one net positive charge;
- a minimum of three amino acids;
- a maximum of about twenty amino acids;
- a relationship between the minimum number of net positive charges \((p_m) \) and the total number of amino acid residues \((r) \) wherein \(3p_m \) is the largest number that is less than or equal to \(r + 1 \); and
- a relationship between the minimum number of aromatic groups \((a) \) and the total number of net positive charges \((p_t) \) wherein \(3a \) is the largest number that is less than or equal to \(p_t + 1 \), except that when \(a = 1 \), \(p_t \) may also be 1.

[0086] Aromatic-cationic peptides include, but are not limited to, the following illustrative peptides:
H-Phe-D-Arg Phe-Lys-Cys-NH$_2$
D-Arg-Dmt-Lys-Trp-NH$_2$;
D-Arg-Trp-Lys-Trp-NH$_2$;
D-Arg-Dmt-Lys-Phe-Met-NH$_2$;
H-D-Arg-Dmt-Lys(N°Me)-Phe-NH$_2$;
H-D-Arg-Dmt-Lys(NMe)-NH$_2$;
H-D-Arg-Dmt-Lys(A°Me)-Phe(NMe)-NH$_2$;
H-D-Arg(A°Me)-Dmt/(NMe)-Lys(iV°Me)-Phe(NMe)-NH$_2$;
D-Arg-Dmt-Lys-Phe-Lys-Trp-NH$_2$;
D-Arg-Dmt-Lys-Dmt-Lys-Trp-NH$_2$;
D-Arg-Dmt-Lys-Phe-Lys-Met-NH$_2$;
D-Arg-Dmt-Lys-Dmt-Lys-Met-NH$_2$;
H-D-Arg-Dmt-Lys-Phe-Sar-Gly-Cys-NH$_2$;
H-D-Arg®[CH$_2$-NH]Dmt-Lys-Phe-NH$_2$;
H-D-Arg-Dmt®[CH$_2$-NH]Lys-Phe-NH$_2$;
H-D-Arg-DmtΨ[CH$_2$-NH]Phe-NH$_2$; and
H-D-Arg-Dmt®[CH$_2$-NH]Lys®[CH$_2$-NH]Phe-NH$_2$;
Tyr-D-Arg-Phe-Lys-NH$_2$;
2',6'-Dmt-D-Arg-Phe-Lys-NH$_2$;
Phe-D-Arg-Phe-Lys-NH$_2$;
Phe-D-Arg-Dmt-Lys-NH$_2$,
D-Arg-2'6'Dmt-Lys-Phe-NH$_2$,
H-Phe-D-Arg-Phe-Lys-Cys-NH$_2$,
Lys-D-Arg-Tyr-NH$_2$;
D-Tyr-Trp-Lys-NH$_2$;
Trp-D-Lys-Tyr-Arg-NH$_2$;
Tyr-His-D-Gly-Met,
Tyr-D-Arg-Phe-Lys-Glu-NH$_2$;
Met-Tyr-D-Lys-Phe-Arg,
D-His-Glu-Lys-Tyr-D-Phe-Arg,
Lys-D-Gln-Tyr-Arg-D-Phe-Trp-NH$_2$;
Phe-D-Arg-Lys-Trp-Tyr-D-Arg-His,
Gly-D-Phe-Lys-Tyr-His-D-Arg-Tyr-NH$_2$.

25
Val-D-Lys-His-Tyr-D-Phe-Ser-Tyr-Arg-NH$_2$,
Trp-Lys-Phe-D-Asp-Arg-Tyr-D-His-Lys,
Lys-Trp-D-Tyr-Arg-Asn-Phe-Tyr-D-His-NH$_2$,
Thr-Gly-Tyr-Arg-D-His-Phe-Trp-D-His-Lys,
Asp-D-Trp-Lys-Tyr-D-His-Phe-Arg- D-Gly-Lys-NH$_2$,
D-His-Lys-Tyr- D-Phe-Glu- D-Asp- D-His- D-Lys-Arg-
Trp-NH$_2$,
Ala-D-Phe-D-Arg-Tyr-Lys-D-Trp-His-D-Tyr-Gly-Phe,
Tyr-D-His-Phe- D-Arg-Asp-Lys- D-Arg-His-Trp-D-His-
Phe,
Phe-Phe-D-Tyr-Arg-Glu-Asp-D-Lys-Arg-D-Arg-His-Phe-
NH$_3$,
Phe-Tyr-Lys-D-Arg-Trp-His-D-Lys-D-Lys-Glu-Arg-D-Tyr-
Thr,
Tyr-Asp-D-Lys-Tyr-Phe- D-Lys- D-Arg-Phe-Pro-D-Tyr-
His-Lys,
Glu-Arg-D-Lys-Tyr- D-Val-Phe- D-His-Trp-Arg-D-Gly-
Tyr-Arg-D-Met-NH$_2$,
Arg-D-Leu-D-Tyr-Phe-Lys-Glu- D-Lys-Arg-D-Trp-Lys- D-
Phe-Tyr-D-Arg-Gly,
D-Glu-Asp-Lys-D-Arg-D-His-Phe-Phe-D-Val-Tyr-Arg-Tyr-
D-Tyr-Arg-His-Phe-NH$_2$,
Asp-Arg-D-Phe-Cys-Phe-D-Arg-D-Lys-Tyr-Arg-D-Tyr-
Trp-D-Arg-D-Phe-Lys-Phe,
His-Tyr-D-Arg-Trp-Lys-Phe-D-Asp-Ala-Arg-Cys-D-Tyr-
His-Phe-D-Lys-Tyr-His-Ser-NH$_2$,
Gly-Ala-Lys-Phe-D-Lys-Glu-Arg-Tyr-His-D-Arg-D-Arg-
Asp-Tyr-Trp-D-Arg-D-His-D-Lys-Asp, and
Thr-Tyr-Arg-D-Lys-Trp-Tyr-Glu-Asp-D-Lys-D-Arg-His-
Phe-D-Tyr-Gly-Val-Ile-D-His-Arg-Tyr-Lys-NH$_2$;
Dmt-D-Arg-Phe-(atn)Dap-NH$_2$ where (atn)Dap is β-
anthraniloyl-L-α,β-diaminopropionic acid;
Dmt-D-Arg-Phe-(dns)Dap-NH$_2$ where (dns)Dap is β-dansyl-
L-a,p-diaminopropionic acid;
Dmt-D-Arg-Ald-Lys-NH₂, where Aid is β-(6'-dimethylamino-2'-naphthoyl)alanine;
Dmt-D-Arg-Phe-Ald-NH₂, where Aid is β-(6'-dimethylamino-2'-naphthoyl)alanine and D-Arg-Tyr-Lys-Phe-NH₂; and
D-Arg-Tyr-Lys-Phe-NH₂.

[0087] In some embodiments, peptides useful in the methods of the present technology are those peptides which have a tyrosine residue or a tyrosine derivative. In some embodiments, derivatives of tyrosine include 2’-methyltyrosine (Mmt); 2’,6’-dimethyltyrosine (2’6’Dmt); 3’,5’-dimethyltyrosine (3’5’Dmt); N,2’,6’-trimethyltyrosine (Tmt); and 2’-hydroxy-6’-methyltyrosine (Hmt).

[0088] In one embodiment, the peptide has the formula Tyr-D-Arg-Phe-Lys-NH₂ (referred to herein as SS-01). SS-01 has a net positive charge of three, contributed by the amino acids tyrosine, arginine, and lysine and has two aromatic groups contributed by the amino acids phenylalanine and tyrosine. The tyrosine of SS-01 can be a modified derivative of tyrosine such as in 2’,6’-dimethyltyrosine to produce the compound having the formula 2’,6’-Dmt-D-Arg-Phe-Lys-NH₂ (referred to herein as SS-02).

[0089] In a suitable embodiment, the amino acid residue at the N-terminus is arginine. An example of such a peptide is D-Arg-2’,6’ Dmt-Lys-Phe-NH₂ (referred to herein as SS-31).

[0090] In another embodiment, the amino acid at the N-terminus is phenylalanine or its derivative. In some embodiments, derivatives of phenylalanine include 2’-methylphenylalanine (Mmp), 2’,6’-dimethylphenylalanine (Dmp), N,2’,6’-trimethylphenylalanine (Tmp), and 2’-hydroxy-6’-methylphenylalanine (Hmp). An example of such a peptide is Phe-D-Arg-Phe-Lys-NH₂ (referred to herein as SS-20). In one embodiment, the amino acid sequence of SS-02 is rearranged such that Dmt is not at the N-terminus. An example of such an aromatic-cationic peptide has the formula D-Arg-2’,6’-Dmt-Lys-Phe-NH₂ (SS-31).

[0091] In yet another embodiment, the aromatic-cationic peptide has the formula Phe-D-Arg-Dmt-Lys-NH₂ (referred to herein as SS-30). Alternatively, the N-terminal phenylalanine can be a derivative of phenylalanine such as 2’,6’-dimethylphenylalanine.
(2'6'Dmp). SS-01 containing 2',6'-dimethylphenylalanine at amino acid position one has the formula 2',6'-Dmp-D-Arg-Dmt-Lys-NH₂.

[0092] In some embodiments, the aromatic cationic peptide comprises 2',6'-Dmt-D-Arg-Phe-(atn)Dap-NH₂ (SS-19), where (atn)Dap is P-anthraniloyl-L-a,P-diaminopropionic acid, 2',6'-Dmt-D-Arg-Ald-Lys-NH₂ (SS-36), where Ald is P-(6'-dimethylamino-2'-naphthoyl)alanine, 2',6'-Dmt-D-Arg-Phe-Lys-Ald-NH₂ (SS-37), where Ald is β-(6'-dimethylamino-2'-naphthoyl)alanine, D-Arg-Tyr-Lys-Phe-NH₂ (SPI-231), and 2',6'-Dmt-D-Arg-Phe-(dns)Dap-NH₂ where (dns)Dap is P-dansyl-L-a,P-diaminopropionic acid (SS-17).

[0093] The peptides mentioned herein and their derivatives can further include functional analogs. A peptide is considered a functional analog if the analog has the same function as the stated peptide. The analog may, for example, be a substitution variant of a peptide, wherein one or more amino acids are substituted by another amino acid. Suitable substitution variants of the peptides include conservative amino acid substitutions. Amino acids may be grouped according to their physicochemical characteristics as follows:

(a) Non-polar amino acids: Ala(A) Ser(S) Thr(T) Pro(P) Gly(G) Cys(C);
(b) Acidic amino acids: Asn(N) Asp(D) Glu(E) Gln(Q);
(c) Basic amino acids: His(H) Arg(R) Lys(K);
(d) Hydrophobic amino acids: Met(M) Leu(L) Ile(I) Val(V); and
(e) Aromatic amino acids: Phe(F) Tyr(Y) Trp(W) His(H).

[0094] Substitutions of an amino acid in a peptide by another amino acid in the same group is referred to as a conservative substitution and may preserve the physicochemical characteristics of the original peptide. In contrast, substitutions of an amino acid in a peptide by another amino acid in a different group are generally more likely to alter the characteristics of the original peptide. Non-limiting examples of analogs useful in the practice of the present technology include, but are not limited to, the aromatic-cationic peptides shown in Table 5.

TABLE 5. Examples of Peptide Analogs

<table>
<thead>
<tr>
<th>Amino Acid Position 1</th>
<th>Amino Acid Position 2</th>
<th>Amino Acid Position 3</th>
<th>Amino Acid Position 4</th>
<th>Amino Acid Position 5</th>
<th>Amino Acid Position 6</th>
<th>Amino Acid Position 7</th>
<th>C-Terminal Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Phe</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Amino Acid Position 1</td>
<td>Amino Acid Position 2</td>
<td>Amino Acid Position 3</td>
<td>Amino Acid Position 4</td>
<td>Amino Acid Position 5</td>
<td>Amino Acid Position 6</td>
<td>Amino Acid Position 7</td>
<td>C-Terminal Modification</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Dmt</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>Dmt</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Phe</td>
<td>Dmt</td>
<td>Lys</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Lys</td>
<td>Dmt</td>
<td>Phe</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Lys</td>
<td>Phe</td>
<td>Dmt</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Phe</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Phe</td>
<td>Glu</td>
<td>Cys</td>
<td>Gly</td>
<td>NH₂</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Phe</td>
<td>Ser</td>
<td>Cys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Phe</td>
<td>Gly</td>
<td>Cys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>Lys</td>
<td>Dmt</td>
<td>D-Arg</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>Lys</td>
<td>D-Arg</td>
<td>Dmt</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>Cys</td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>Glu</td>
<td>Cys</td>
<td>Gly</td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>Ser</td>
<td>Cys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>Gly</td>
<td>Cys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Cys</td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Glu</td>
<td>Cys</td>
<td>Gly</td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Ser</td>
<td>Cys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Dmt</td>
<td>Lys</td>
<td>Gly</td>
<td>Cys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>D-Arg</td>
<td>Lys</td>
<td>Dmt</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>Dmt</td>
<td>D-Arg</td>
<td>Lys</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Phe</td>
<td>Dmt</td>
<td>Lys</td>
<td>D-Arg</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Lys</td>
<td>Phe</td>
<td>D-Arg</td>
<td>Dmt</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Lys</td>
<td>Phe</td>
<td>Dmt</td>
<td>D-Arg</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Lys</td>
<td>Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Lys</td>
<td>Dmt</td>
<td>Phe</td>
<td>D-Arg</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Lys</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dmt</td>
<td></td>
<td></td>
<td></td>
<td>NH₂</td>
</tr>
</tbody>
</table>
Cha = cyclohexylalanine

[0095] Under certain circumstances, it may be advantageous to use a peptide that also has opioid receptor agonist activity. Examples of analogs useful in the practice of the present technology include, but are not limited to, the aromatic-cationic peptides shown in Table 6.

TABLE 6. Peptide Analogs with Opioid Receptor Agonist Activity

<table>
<thead>
<tr>
<th>Amino Acid Position 1</th>
<th>Amino Acid Position 2</th>
<th>Amino Acid Position 3</th>
<th>Amino Acid Position 4</th>
<th>Amino Acid Position 5 (if present)</th>
<th>C-Terminal Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Amino Acid</td>
<td>Amino Acid</td>
<td>Amino Acid</td>
<td>Amino Acid</td>
<td>Amino Acid</td>
<td>C-Terminal</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Position 1</td>
<td>Position 2</td>
<td>Position 3</td>
<td>Position 4</td>
<td>Position 5</td>
<td>Modification</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>Cys</td>
<td>NH₂</td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>Cys</td>
<td>NH₂</td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>Cys</td>
<td>NH₂</td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys-NH(CH₂)₂-NH-dns</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys-NH(CH₂)₂-NH-atn</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>dnsLys</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Cit</td>
<td>Phe</td>
<td>Lys</td>
<td>Cys</td>
<td>NH₂</td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Cit</td>
<td>Phe</td>
<td>Lys</td>
<td>Cys</td>
<td>NH₂</td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Orn</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dab</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dap</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Ahp(2-aminoheptanoic acid)</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>Bio-2’6’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>3’5’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>3’5’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Orn</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>3’5’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dab</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>3’5’Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dap</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Tyr</td>
<td>Lys</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Tyr</td>
<td>Orn</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Tyr</td>
<td>Dab</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Arg</td>
<td>Tyr</td>
<td>Dap</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Tyr</td>
<td>Lys</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Tyr</td>
<td>Orn</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Tyr</td>
<td>Dab</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>Tyr</td>
<td>Dap</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>2’6’Dmt</td>
<td>Lys</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>2’6’Dmt</td>
<td>Orn</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>2’6’Dmt</td>
<td>Dab</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>2’6’Dmt</td>
<td>D-Arg</td>
<td>2’6’Dmt</td>
<td>Dap</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>3’5’Dmt</td>
<td>D-Arg</td>
<td>3’5’Dmt</td>
<td>Arg</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>3’5’Dmt</td>
<td>D-Arg</td>
<td>3’5’Dmt</td>
<td>Lys</td>
<td>NH₂</td>
<td></td>
</tr>
<tr>
<td>Amino Acid Position 1</td>
<td>Amino Acid Position 2</td>
<td>Amino Acid Position 3</td>
<td>Amino Acid Position 4</td>
<td>Amino Acid Position 5 (if present)</td>
<td>C-Terminal Modification</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Arg</td>
<td>3'5'Dmt</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Arg</td>
<td>3'5'Dmt</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Arg</td>
<td>2'6'Dmt</td>
<td>Lys</td>
<td>Cys</td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td>Cys</td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td>Cys</td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>2'6'Dmt</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>2'6'Dmt</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>2'6'Dmt</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>2'6'Dmt</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>dnsDap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>atnDap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>3'5'Dmt</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>3'5'Dmt</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>3'5'Dmt</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>3'5'Dmt</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Amino Acid Position 1</td>
<td>Amino Acid Position 2</td>
<td>Amino Acid Position 3</td>
<td>Amino Acid Position 4</td>
<td>Amino Acid Position 5 (if present)</td>
<td>C-Terminal Modification</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Orn</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Dab</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Dap</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Orn</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Dab</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Dap</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Orn</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Lys</td>
<td>Tyr</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Orn</td>
<td>Tyr</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Dap</td>
<td>Tyr</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tyr</td>
<td>D-Dap</td>
<td>Tyr</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Arg</td>
<td>2'6'Dmt</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Lys</td>
<td>2'6'Dmt</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Orn</td>
<td>2'6'Dmt</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>2'6'Dmt</td>
<td>D-Dab</td>
<td>2'6'Dmt</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Dap</td>
<td>3'5'Dmt</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Arg</td>
<td>3'5'Dmt</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Lys</td>
<td>3'5'Dmt</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>3'5'Dmt</td>
<td>D-Orn</td>
<td>3'5'Dmt</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Amino Acid</td>
<td>Amino Acid</td>
<td>Amino Acid</td>
<td>Amino Acid</td>
<td>Amino Acid</td>
<td>C-Terminal</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Position 1</td>
<td>Position 2</td>
<td>Position 3</td>
<td>Position 4</td>
<td>Position 5</td>
<td></td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Lys</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Orn</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dab</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Dap</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Mmt</td>
<td>D-Dap</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Orn</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Dab</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Dap</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Tmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Lys</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Orn</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Dab</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Dap</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td>Hmt</td>
<td>D-Arg</td>
<td>Phe</td>
<td>Arg</td>
<td></td>
<td>NH₂</td>
</tr>
</tbody>
</table>

Dab = diaminobutyric
Dap = diaminopropionic acid
Dmt = dimethyltyrosine
Mmt = 2'-methylyrosine
Tmt = N', 2',6'-trimethyltyrosine
Hmt = 2'-hydroxy,6'-methylyrosine
dnsDap = P-dansyl-L-a,P-diaminopropionic acid
atnDap = P-anthramloyl-L-a,p-diaminopropionic acid
Bio = biotin

[0096] Additional peptides having opioid receptor agonist activity include
2',6'-Dmt-D-Arg-Ald-Lys-NH₂ (SS-36), where Aid is P-(6'-dimethylamino-2'-naphthoyl)alanine, and
2',6'-Dmt-D-Arg-Phe-Lys-Ald-NH₂ (SS-37), where Aid is P-(6'-dimethylamino-2'-naphthoyl)alanine.

[0097] Peptides which have mu-opioid receptor agonist activity are typically those
peptides which have a tyrosine residue or a tyrosine derivative at the N-terminus (i.e.,
the first amino acid position). Suitable derivatives of tyrosine include 2'-methyltyrosine (Mmt);
2',6'-dimethyltyrosine (2',6'-Dmt); 3',5'-dimethyltyrosine (3',5'-Dmt); N,2',6'-
trimethyltyrosine (Tmt); and 2'-hydroxy-6'-methyltryosine (Hmt).

[0098] Peptides that do not have mu-opioid receptor agonist activity generally do not have
a tyrosine residue or a derivative of tyrosine at the N-terminus (i.e., amino acid position 1).
The amino acid at the N-terminus can be any naturally occurring or non-naturally occurring
amino acid other than tyrosine. In one embodiment, the amino acid at the N-terminus is
phenylalanine or its derivative. Exemplary derivatives of phenylalanine include 2'-
methylphenylalanine (Mmp), 2',6'-dimethylphenylalanine (2',6'-Dmp), N,2',6'-
trimethylphenylalanine (Tmp), and 2'-hydroxy-6'-methylphenylalanine (Hmp).

[0099] The amino acids of the peptides shown in Tables 5 and 6 may be in either the L- or
the D- configuration.

[0100] In some embodiments, the aromatic-cationic peptides include at least one arginine
and/or at least one lysine residue. In some embodiments, the arginine and/or lysine residue
serves as an electron acceptor and participates in proton coupled electron transport.
Additionally or alternatively, in some embodiments, the aromatic-cationic peptide
comprises a sequence resulting in a "charge-ring-charge-ring" configuration such as exists
in SS-31. Additionally or alternatively, in some embodiments the aromatic-cationic
peptides include thiol-containing residues, such as cysteine and methionine. In some
embodiments, peptides including thiol-containing residues directly donate electrons and
reduce cytochrome c. In some embodiments, the aromatic-cationic peptides include a
cysteine at the N- and/or at the C-terminus of the peptide.
In some embodiments, peptide multimers are provided. For example in some embodiments, dimers are provided, such as an SS-20 dimer: Phe-D-Arg-Phe-Lys-Phe-D-Arg-Phe-Lys. In some embodiments, the dimer is an SS-31 dimer: D-Arg-2',6'-Dmt-Lys-Phe-D-Arg-2',6'-Dmt-Lys-Phe-NH₂. In some embodiments, the multimers are trimers, tetramers and/or pentamers. In some embodiments, the multimers include combinations of different monomer peptides (e.g., an SS-20 peptide linked to an SS-31 peptide). In some embodiments, these longer analogs are useful as therapeutic molecules.

In some embodiments, the aromatic-cationic peptides described herein comprise all levorotatory (L) amino acids.

In some embodiments, the aromatic-cationic peptides described herein are synthesized with aladan, e.g., D-Arg-2′,6′-Dmt-Lys-Ald-NH₂ ([ald]SS-31).

Peptide Synthesis

The peptides may be synthesized by any of the methods well known in the art. Suitable methods for chemically synthesizing the protein include, for example, those described by Stuart and Young in *Solid Phase Peptide Synthesis*, Second Edition, Pierce Chemical Company (1984), and in *Methods Enzymol.*, 289, Academic Press, Inc, New York (1997).

One way of stabilizing peptides against enzymatic degradation is the replacement of an L-amino acid with a D-amino acid at the peptide bond undergoing cleavage. Aromatic cationic peptide analogs are prepared containing one or more D-amino acid residues in addition to the D-Arg residue already present. Another way to prevent enzymatic degradation is N-methylation of the α-amino group at one or more amino acid residues of the peptides. This will prevent peptide bond cleavage by any peptidase. Examples include: H-D-Arg-Dmt-Lys (N°Me)-Phe-NH₂; H-D-Arg-Dmt-Lys-Phe (NMe)-NH₂; H-D-Arg-Dmt-Lys (N°Me)-Phe (NMe)-NH₂; and H-D-Arg(N°Me)-Dmt(NMe)-Lys(N°Me)-Phe (NMe)-NH₂. N°-methylated analogues have lower hydrogen bonding capacity and can be expected to have improved intestinal permeability.

An alternative way to stabilize a peptide amide bond (-CO-NH-) against enzymatic degradation is its replacement with a reduced amide bond (Ψ[CH₂-NH]). This can be achieved with a reductive alkylation reaction between a Boc-amino acid-aldehyde and the...
amino group of the N-terminal amino acid residue of the growing peptide chain in solid-phase peptide synthesis. The reduced peptide bond is predicted to result in improved cellular permeability because of reduced hydrogen-bonding capacity. Examples include: H-D-Arg⁴[CH₂-NH]Dmt-Lys-Phe-NH₂, H-D-Arg-Dmt⁴[CH₂-NH]Lys-Phe-NH₂, H-D-Arg-Dmt-Lys i[CH₂-NH]Phe-NH₂, H-D-Arg-Dmt-Ψ[CH₂-NH]Lys-Ψ[CH₂-NH]Phe-NH₂, etc.

Beta-amyloid Peptide (Aβ)

[0107] Beta-amyloid peptide (Aβ) is derived from amyloid precursor protein (APP). APP is an integral glycoprotein that is involved in many neuronal functions such as neural plasticity and synapse formation. Processing of APP is executed through two pathways, the α pathway and the β pathway. Typically, APP is cleared through the α pathway, which does not produce Aβ.

[0108] The β pathway is an amyloidogenic pathway. APP that enters the β pathway is cleaved with β-secretase and γ-secretase to produce an Aβ. The Aβ produced can range in size from 36-43 amino acids. The most common isoforms of Aβ are Aβ1-40 and Aβ1-42. Of these two, Aβ1-42 is more hydrophobic, more prone to aggregation, and more toxic than Aβ1-40. Aβ1-42 is also the form most commonly found in amyloid plaques.

[0109] There are three core structures related to Aβ: monomers, oligomers, and fibrils. Aβ monomers are released extracellularly. High concentrations of extracellular Aβ monomers lead to oligomerization of the Aβ monomers to form various Aβ oligomers, e.g., dimers, trimmers, etc. When there are large numbers of Aβ oligomers aggregated together, an Aβ fibril is formed. Aβ fibrils are the main component of amyloid plaques.

[0110] Some studies indicate that Alzheimer’s disease is caused in part by the accumulation of Aβ in the brain. The accumulation of Aβ is due to a change in the equilibrium of the Aβ peptide. Typically, as Aβ is produced, various molecules, enzymes, are clearing it from the brain. When the rate of clearance cannot match the rate of production, an excess of Aβ is created. The excess Aβ allows for a magnified amyloid cascade that can lead to disease states associated with Aβ plaques.

[0111] Though amyloid plaques are associated with advanced Alzheimer’s disease, there is evidence that the Aβ oligomers are the primary toxic species. In cell cultures, Aβ1-42
oligomers are ten times more toxic than Α β fibrils of the same composition. Without wishing to be beyond by theory, the greater toxic effect of Α β oligomers as compared to Α β fibrils can be attributed to the fact that the smaller extracellular Α β oligomers can more easily penetrate cell membranes than the large extracellular Α β fibrils.

[0112] Studies have shown that the interaction of Α β with mitochondria leads to a loss of ATP, disruption of the electron transport chain (especially at Complex IV, which contains Cu²⁺), and activation of apoptotic factors that result in neuronal cell death. Α β has been found to accumulate in the mitochondria, where it localizes to the inner mitochondrial membrane.

[0113] Α β also has toxic oxidative properties, e.g., peroxidase activity (an enzymatic activity that uses hydrogen peroxide to catalyze oxidation reactions). In mitochondria peroxidase activity disrupts the electron transport chain and drives the formation of reactive oxygen species (ROS).

Lipids

[0114] Cardiolipin, an anionic phospholipid, is an important component of the inner mitochondrial membrane, where it constitutes about 20% of the total lipid composition. In mammalian cells, cardiolipin is found almost exclusively in the inner mitochondrial membrane where it is essential for the optimal function of enzymes involved in mitochondrial metabolism.

[0115] Cardiolipin is a species of diphosphatidylglycerol lipid comprising two phosphatidylglycerols connected with a glycerol backbone to form a dimeric structure. It has four alkyl groups and potentially carries two negative charges. As there are four distinct alkyl chains in cardiolipin, the molecule has the potential for great complexity. However, in most animal tissues, cardiolipin contains 18-carbon fatty alkyl chains with 2 unsaturated bonds on each of them. It has been proposed that the (18:2)₄ acyl chain configuration is an important structural requirement for the high affinity of cardiolipin to inner membrane proteins in mammalian mitochondria. However, studies with isolated enzyme preparations indicate that its importance may vary depending on the protein examined.

[0116] Each of the two phosphates in the molecule can capture one proton. Although it has a symmetric structure, ionization of one phosphate happens at different levels of acidity.
than ionizing both, with $pK_1 = 3$ and $pK_2 > 7.5$. Hence, under normal physiological conditions (a pH of approximately 7.0), the molecule may carry only one negative charge. Hydroxyl groups (-OH and -0-) on the phosphate form stable intramolecular hydrogen bonds, forming a bicyclic resonance structure. This structure traps one proton, which is conducive to oxidative phosphorylation.

[0117] During the oxidative phosphorylation process catalyzed by Complex IV, large quantities of protons are transferred from one side of the membrane to another side causing a large pH change. Without wishing to be bound by theory, it has been suggested that cardiolipin functions as a proton trap within the mitochondrial membranes, strictly localizing the proton pool and minimizing pH in the mitochondrial intermembrane space. This function is thought to be due to the unique structure of cardiolipin, which, as described above, can trap a proton within the bicyclic structure while carrying a negative charge. Thus, cardiolipin can serve as an electron buffer pool to release or absorb protons to maintain the pH near the mitochondrial membranes.

[0118] In addition, cardiolipin has been shown to play a role in apoptosis. An early event in the apoptosis cascade involves cardiolipin. A cardiolipin-specific oxygenase produces cardiolipin-hydroperoxides which causes the lipid to undergo a conformational change. The oxidized cardiolipin then translocates from the inner mitochondrial membrane to the outer mitochondrial membrane where it is thought to form a pore through which cytochrome c is released into the cytosol. Cytochrome c can bind to the IP3 receptor stimulating calcium release, which further promotes the release of cytochrome c. When the cytoplasmic calcium concentration reaches a toxic level, the cell dies. In addition, extra-mitochondrial cytochrome c interacts with apoptotic activating factors, causing the formation of apoptosomes complexes and activation of the proteolytic caspase cascade.

[0119] Another consequence is that cytochrome c interacts with cardiolipin on the inner mitochondrial membrane with high affinity and forms a complex with cardiolipin that is non-productive in transporting electrons, but which acts as a cardiolipin-specific oxygenase/peroxidase. Indeed, interaction of cardiolipin with cytochrome c yields a complex whose normal redox potential is about minus (-) 400 mV more negative than that of intact cytochrome c. As a result, the cytochrome c/cardiolipin complex cannot accept electrons from mitochondrial complex III, leading to enhanced production of superoxide whose dismutation yields H2O2. The cytochrome c/cardiolipin complex also cannot accept
electrons from superoxide. In addition, the high affinity interaction of cardiolipin with cytochrome c results in the activation of cytochrome c into a cardiolipin-specific peroxidase with selective catalytic activity toward peroxidation of polyunsaturated molecular cardiolipin. The peroxidase reaction of the cytochrome c/cardiolipin complex is driven by H2O2 as a source of oxidizing equivalents. Ultimately, this activity results in the accumulation of cardiolipin oxidation products, mainly cardiolipin-OOH and their reduction products, cardiolipin-OH. As noted above, it has been shown that oxygenated cardiolipin species play a role in mitochondrial membrane permeabilization and release of pro-apoptotic factors (including cytochrome c itself) into the cytosol. See e.g., Kagan et al, Advanced Drug Delivery Reviews, 61 (2009) 1375-1385; Kagan et al., Mol. Nutr. Food Res. 2009 January; 53(1): 104-114, both of which are incorporated herein by reference.

[0120] Cytochrome c is a globular protein whose major function is to serve as electron carrier from complex III (cytochrome c reductase) to complex IV (cytochrome c oxidase) in the mitochondrial electron transport chain. The prosthetic heme group is attached to the cytochrome c at Cys14 and Cys17, and is additionally bound by two coordinate axial ligands, His18 and Met80. The 6th coordinate binding to Met80 prevents the interaction of the Fe with other ligands such as O2, H2O2, NO, etc.

[0121] A pool of cytochrome c is distributed in the intermembrane space, with the rest being associated with the IMM via both electrostatic and hydrophobic interactions. Cytochrome c is a highly cationic protein (8+ net charge at neutral pH) that can bind loosely to the anionic phospholipid cardiolipin on the IMM via electrostatic interaction. And, as noted above, cytochrome c can also bind tightly to cardiolipin via hydrophobic interaction. This tight binding of cytochrome c to cardiolipin results from the extension of an acyl chain of cardiolipin out of the lipid membrane and extending into a hydrophobic channel in the interior of cytochrome c (Tuominen et al., 2001; Kalanxhi & Wallace, 2007; Sinabaldi et al., 2010). This leads to the rupture of the Fe-Met80 bond in the cytochrome c heme pocket and results in a change in the heme environment, as shown by the loss of the negative Cotton peak in the Soret band region (Sinabaldi et al., 2008). It also leads to exposure of the heme Fe to H2O2 and NO.

[0122] Native cytochrome c has poor peroxidase activity because of its 6th coordination. However, upon hydrophobic binding to cardiolipin, cytochrome c undergoes structural changes that breaks the Fe-Met80 coordination and increases the exposure of the heme Fe to
H2O2, and cytochrome c switches from an electron carrier to a peroxidase, with cardiolipin being the primary substrate (Vladimirov et al., 2006; Basova et al., 2007). As described above, cardiolipin peroxidation results in altered mitochondrial membrane structure, and the release of cytochrome c from the IMM to initiate caspase-mediated cell death.

Prophylactic and Therapeutic Uses of Aromatic-cationic Peptides

[0123] The present technology relates to the use of aromatic-cationic peptides. In some embodiments, at least one aromatic-cationic peptide is useful in aspects related to treating or ameliorating symptoms, conditions or diseases caused (at least in part) by beta amyloid peptide (Aβ). In some embodiments, the condition or disease related to Aβ is characterized by the overexpression of Aβ, Aβ plaque, or Aβ induced mitochondrial dysfunction.

[0124] Additionally, or alternatively, in some embodiments, at least one aromatic-cationic peptide is useful in aspects related to treating or ameliorating symptoms, conditions or diseases characterized by the accumulation or overexpression of Aβ and/or Aβ plaque in the brain.

[0125] Additionally, or alternatively, in some embodiments, at least one aromatic-cationic peptide is useful in aspects related to treating or ameliorating symptoms, conditions or diseases characterized by the overexpression or accumulation of Aβ monomers (e.g., Aβ1-40 and Aβ1-42) and/or Aβ oligomers. In some embodiments, the Aβ oligomers include one or more subspecies of Aβ. By way of example, but not by way of limitation, in some embodiments, the Aβ oligomers include Aβ1-40, Aβ1-42, or a combination thereof. In some embodiments, the Aβ oligomers include only a single subspecies of Aβ, e.g., Aβ1-42.

[0126] In another aspect, the present technology relates to the use of aromatic-cationic peptides to reduce extracellular Aβ oligomers. Additionally, or alternatively, in some embodiments, aromatic-cationic peptides are used to reduce Aβ toxicity (e.g., mitotoxicity). Without wishing to be bound by theory, it is thought that interaction of aromatic-cationic peptides with Aβ oligomers leads to the formation of Aβ fibrils, thus reducing the amount of Aβ oligomers available to translocate into a cell and preventing Aβ from translocating into a cell.

[0127] Determination of the Biological Effect of the Aromatic-Cationic Peptide-Based Therapeutic. In various embodiments, suitable in vitro or in vivo assays are performed to
determine the effect of a specific aromatic-cationic peptide-based therapeutic and whether its administration is indicated for treatment. In various embodiments, in vitro assays can be performed with representative animal models, to determine if a given aromatic-cationic peptide-based therapeutic exerts the desired effect in preventing or treating disease. Compounds for use in therapy can be tested in suitable animal model systems including, but not limited to rats, mice, chicken, pigs, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model systems known in the art can be used prior to administration to human subjects.

[0128] **Prophylactic Methods.** In one aspect, the present technology provides a method for preventing an Aβ-induced disease or condition in a subject by administering to the subject an aromatic-cationic peptide that prevents the initiation or progression of the disease or condition. In prophylactic applications, pharmaceutical compositions or medicaments of aromatic-cationic peptides are administered to a subject susceptible to, or otherwise at risk of a disease or condition in an amount sufficient to eliminate or reduce the risk, or delay the onset of the disease, including biochemical, histologic and/or behavioral symptoms of the disease, its complications and intermediate pathological phenotypes presenting during development of the disease. Administration of a prophylactic aromatic-cationic can occur prior to the manifestation of symptoms characteristic of the aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. The appropriate compound can be determined based on screening assays described above.

[0129] **Therapeutic Methods.** Another aspect of the technology includes methods of treating disease in a subject for therapeutic purposes. In therapeutic applications, compositions or medicaments are administered to a subject suspected of, or already suffering from such a disease in an amount sufficient to cure, reduce the severity or at least partially arrest, the symptoms of the disease, including its complications and intermediate pathological phenotypes in development of the disease.

[0130] In one aspect, the disclosure provides a method of reducing the number of mitochondria undergoing Aβ-induced mitochondrial permeability transition (MPT), or preventing Aβ-induced mitochondrial permeability transitioning in a mammal in need thereof, the method comprising administering to the mammal an effective amount of one or more aromatic-cationic peptides described herein.
In yet another aspect, the disclosure provides a method for reducing Aβ-induced oxidative damage in a subject in need thereof, the method comprising administering to the mammal an effective amount of one or more aromatic-cationic peptides described herein. In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for reducing Aβ-induced ROS production in a subject in need thereof.

In one aspect, the disclosure provides a method for treating, preventing or ameliorating Aβ-induced mitochondrial dysfunction in a subject in need thereof, the method comprising administering to the mammal an effective amount of one or more aromatic-cationic peptides described herein.

In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for inhibiting Aβ-induced loss of membrane potential in a subject in need thereof.

In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for inhibiting the interaction between Aβ peptides and mitochondria in a subject in need thereof.

In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for inhibiting Aβ-induced decrease in cellular respiration in a subject in need thereof.

In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for inhibiting Aβ-induced decrease in ATP synthesis rate in a subject in need thereof.

In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for treating, ameliorating or reversing Aβ-induced mitochondrial damage, e.g., loss of cristae formation, in a subject in need thereof.

In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for inhibiting Aβ-induced cytochrome c peroxidase activity in a subject in need thereof.
[0139] In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for inhibiting or reversing Aβ-induced damage to cytochrome c in a subject in need thereof.

[0140] In some embodiments, the aromatic-cationic peptides of the present technology are useful in methods for inhibiting Aβ-induced cardiolipin peroxidation in a subject in need thereof.

[0141] Thus, in some embodiments, aromatic-cationic peptides as disclosed herein (such as D-Arg-2',6'-Dmt-Lys-Phe-NH₂, Phe-D-Arg-Phe-Lys-NH₂, D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31), or a pharmaceutically acceptable salt thereof, such as acetate, tartrate or trifluoroacetate salt) are administered to a subject in need thereof. Without wishing to be bound by theory, it is thought that the aromatic-cationic peptides contact (e.g., target) cytochrome c, cardiolipin or both, hinder the Aβ-induced cardiolipin-cytochrome c interaction, inhibit the Aβ-induced oxygenase/peroxidase activity of the cardiolipin/cytochrome c complex, inhibit Aβ-induced cardiolipin-hydroperoxide formation, inhibit Aβ-induced translocation of cardiolipin to the outer membrane and/or inhibit the Aβ-induced release of cytochrome c from the IMM. Additionally or alternatively, in some embodiments, the aromatic-cationic peptides disclosed herein include one or more of the following characteristics or functions: (1) are cell permeable and target the inner mitochondrial membrane; (2) selectively bind to cardiolipin via electrostatic interactions which facilitates the interaction of the peptide with cytochrome c; (3) interact with cytochrome c that is free and either loosely-bound or tightly-bound to cardiolipin; (4) protect the hydrophobic heme pocket of cytochrome c and/or inhibit cardiolipin from disrupting the Fe-Met80 bond; (5) promote π-π* interactions with the heme porphyrin; (6) inhibit cytochrome c peroxidase activity; (7) promote kinetics of cytochrome c reduction; (8) prevent inhibition of cytochrome c reduction caused by cardiolipin; (9) promote electron flux in the mitochondrial electron transport chain and ATP synthesis. In some embodiments, the ability of the peptide to promote electron transport is not correlated with the ability of the peptide to inhibit Aβ-induced peroxidase activity of the cytochrome c/cardiolipin complex. Thus, in some embodiments, the administered peptides inhibit, delay or reduce the Aβ-induced interaction between cardiolipin and cytochrome c. Additionally or alternatively, in some embodiments, the administered peptides inhibit, delay or reduce the Aβ-induced formation of cytochrome c/cardiolipin complexes. Additionally or
alternatively, in some embodiments, the administered peptides inhibit, delay or reduce the Aβ-induced oxygenase/peroxidase activity of the cytochrome c/cardiolipin complexes. Additionally or alternatively, in some embodiments, the administered peptides inhibit, delay or reduce the Aβ-induced increase in cardiolipin peroxidation. Additionally or alternatively, in some embodiments, the administered peptides inhibit, delay or reduce Aβ-induced increase in apoptosis.

[0142] The aromatic-cationic peptides described herein are useful to prevent or treat disease. Specifically, the disclosure provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disease characterized by Aβ-induced mitochondrial dysfunction, overexpression of Aβ, or Aβ plaque by administering the aromatic-cationic peptides described herein. Accordingly, the present methods provide for the prevention and/or treatment of a disease characterized by Aβ-induced mitochondrial dysfunction, overexpression of Aβ, or Aβ plaque in a subject by administering an effective amount of an aromatic-cationic peptide to a subject in need thereof.

[0143] Oxidative Damage. The peptides disclosed herein are useful in reducing oxidative damage in a mammal in need thereof. Mammals in need of reducing oxidative damage are those mammals suffering from a disease, condition or treatment associated with oxidative damage. Typically, the oxidative damage is caused by free radicals, such as reactive oxygen species (ROS) and/or reactive nitrogen species (RNS). Examples of ROS and RNS include hydroxyl radical, superoxide anion radical, nitric oxide, hydrogen, hypochlorous acid (HOCl) and peroxynitrite anion. Oxidative damage is considered to be "reduced" if the amount of oxidative damage in a subject, a removed organ, or a cell is decreased after administration of an effective amount of the aromatic cationic peptides described above. Typically, the oxidative damage is considered to be reduced if the oxidative damage is decreased by at least about 10%, at least about 25%, at least about 50%, at least about 75%, or at least about 90%, compared to a control subject not treated with the peptide.

[0144] In some embodiments, a subject to be treated can be a mammal with a disease or condition associated with oxidative damage. The oxidative damage can occur in any cell, tissue or organ of the mammal. In humans, oxidative stress is involved in many diseases such as Alzheimer's disease etc.
The methods can also be used in reducing oxidative damage associated with any neurodegenerative disease or condition. The neurodegenerative disease can affect any cell, tissue or organ of the central and peripheral nervous system. Examples of such cells, tissues and organs include, the brain, spinal cord, neurons, ganglia, Schwann cells, astrocytes, oligodendrocytes and microglia. The neurodegenerative condition can be an acute condition, such as a stroke or a traumatic brain or spinal cord injury. In another embodiment, the neurodegenerative disease or condition can be a chronic neurodegenerative condition. In a chronic neurodegenerative condition, the free radicals can, for example, cause damage to a protein. Examples of chronic neurodegenerative diseases associated with damage by free radicals include Alzheimer's disease.

Mitochondrial Permeability Transitioning. The peptides disclosed herein are useful in treating any disease or condition that is associated with mitochondria permeability transitioning (MPT). Such diseases and conditions include, but are not limited to, ischemia and/or reperfusion of a tissue or organ, hypoxia and any of a number of neurodegenerative diseases. Mammals in need of inhibiting or preventing of MPT are those mammals suffering from these diseases or conditions.

Cardiolipin oxidation. The peptides disclosed herein are useful to prevent, inhibit or diminish cardiolipin oxidation. Cardiolipin is a unique phospholipid that is almost exclusively found on the inner mitochondrial membrane and at contact sites connecting the outer membrane and inner membrane. Cardiolipin domains are required for proper cristae formation and they are involved in the organization of respiratory complexes into higher-order supercomplexes to facilitate electron transfer. Cardiolipin is also required to keep cytochrome c in close proximity to the respiratory complexes for efficient electron transfer. The positively-charged cytochrome c interacts with the highly anionic cardiolipin via electrostatic interactions.

This cardiolipin-cytochrome c interaction is weakened by cardiolipin peroxidation, and the loss of this free cytochrome c into the cytosol initiates caspase-dependent apoptosis (Shidoji et al., 1999, Biochem Biophys Res Commun 264, 343-347). A remodeling of lipid membranes occurs during apoptosis, and phosphatidylserine moves from the inner leaflet of the plasma membrane to the outer leaflet. In a similar fashion, cardiolipin and its metabolites can relocate from the mitochondria to other intracellular organelles and to the cell surface (Sorice et al, 2004, Cell Death Differ 11, 1133-1145).
Aromatic-cationic peptides disclosed herein (such as but not limited to 2',6'-Dmt-D-Arg-Phe-Lys-NH₂ (SS-02), Phe-D-Arg-Phe-Lys-NH₂ (SS-20) and D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-31), D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31), or pharmaceutically acceptable salts thereof, such as acetate, tartrate and trifluoroacetate salt), are useful to prevent cardiolipin peroxidation. Cardiolipin peroxidation is primarily mediated by the peroxidase activity of cytochrome c. About 15-20% of mitochondrial cytochrome c is tightly bound in a complex with cardiolipin via hydrophobic interaction whereby one or more acyl chains of cardiolipin is inserted into the hydrophobic channel of cytochrome c. The insertion of the acyl chain into cytochrome c disrupts the coordinate bond between Met80 and the heme Fe and exposes the sixth coordinate of heme Fe to H₂O₂, thus converting this enzyme into a peroxidase that can selectively catalyze the oxidation of cardiolipin.

The aromatic-cationic peptides disclosed herein, (such as but not limited to 2',6'-Dmt-D-Arg-Phe-Lys-NH₂ (SS-02), Phe-D-Arg-Phe-Lys-NH₂ (SS-20) and D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-31), D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31), or pharmaceutically acceptable salts thereof, such as acetate, tartrate and trifluoroacetate salt, are cell-permeable and can selectively target and concentrate in the inner mitochondrial membrane. The aromatic-cationic peptides selectively target anionic phospholipids such as cardiolipin, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with cardiolipin having the highest affinity with some peptides. In some embodiments, the aromatic-cationic peptides interact with cytochrome c and the interaction is enhanced in the presence of cardiolipin. In some embodiments, the peptides can penetrate within the cytochrome c protein in close proximity of the heme, and this penetration is enhanced in the presence of cardiolipin.

Without wishing to be bound by theory, by penetrating into the heme environment of cytochrome c, it is likely that the aromatic-cationic peptides interfere with the structural interaction between cardiolipin and cytochrome c, and prevent the rupture of the Met80-Fe coordinate and prevent cytochrome c from becoming a peroxidase. These aromatic-cationic peptides also increase π-π* interaction in the heme region and promote cytochrome c reduction.

The aromatic-cationic peptides disclosed herein can also enhance mitochondrial respiration, increase oxidative phosphorylation capacity, and reduce mitochondrial reactive
oxygen species. As a result, they can protect mitochondrial function, reduce cardiolipin peroxidation, and/or inhibit apoptosis.

Alzheimer's Disease

[0153] The peptides disclosed herein are useful in treating diseases or conditions characterized by Aβ-induced mitochondrial dysfunction, overexpression of Aβ, or the presence of Aβ plaques, such as, for example, but not limited to, Alzheimer's disease.

[0154] Cardiolipin peroxidation and increased oxidative stress, may be an important process in the pathology of Alzheimer's Disease. In some embodiments, oxygenase activity in the mitochondria is increased by the oxidation of cardiolipin (e.g., 1',2',2'-tetralinoleoyl cardiolipin (TLCL)) by Aβ (e.g., Aβ₁₋₄₂ or Aβ₁₋₄₂ oligomers) in the presence of Cu²⁺.

Accordingly, the aromatic-cationic peptides of the present disclosure (e.g., 2',6'-Dmt-D-Arg-Phe-Lys-NH₃ (SS-02), Phe-D-Arg-Phe-Lys-NH₂ (SS-20) and D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-31), D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31), or pharmaceutically acceptable salts thereof, such as acetate, tartrate and trifluoroacetate salt) can be used to treat Alzheimer's disease by preventing Aβ-induced cardiolipin oxidation, Aβ-induced oxidative stress, Aβ-induced oxygenase activity, and cellular apoptosis, in a subject.

[0155] In another embodiment, aromatic-cationic peptides of the present disclosure (e.g., D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31), or pharmaceutically acceptable salts thereof, such as acetate, tartrate and trifluoroacetate salt) can be used to treat Alzheimer's disease by reducing entry of Aβ (e.g., Aβ or Aβ oligomers) from entering cells. Symptoms of Alzheimer's Disease include memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished communication skills, repetitive speech or actions, difficulties with visual or spatial relationships, withdrawal, depression, loss of recognition, loss of motor skills and sense of touch, delusions, paranoia, verbal or physical aggression, and sleep disorders.

Dementia with Lewy bodies

[0156] Dementia with Lewy bodies (DLB), also known under a variety of other names including Lewy body dementia, diffuse Lewy body disease, cortical Lewy body disease, and senile dementia of Lewy type, is a type of dementia closely associated with Parkinson's
disease. DLB is characterized by the development of abnormal proteinaceous (alpha-synuclein) cytoplasmic inclusions, called Lewy bodies, throughout the brain.

[0157] Autopsy series have revealed the pathology of DLB is often concomitant with the pathology of Alzheimer's disease. That is, when Lewy body inclusions are found in the cortex, they often co-occur with Alzheimer's disease pathology found primarily in the hippocampus, including senile plaques (deposited Aβ peptides), and granulovacuolar degeneration (grainy deposits within and a clear zone around hippocampal neurons).

[0158] Core symptoms of DLB are: fluctuating cognition with great variations in attention and alertness from day to day and hour to hour, recurrent visual hallucinations, double vision, shuffling gait, reduced arm-swing during walking, reduced range of facial expression, stiffness of movements, ratchet-like cogwheeling movements, low speech volume, sialorrhea and difficulty swallowing. Suggestive symptoms are rapid eye movement (REM)-sleep behavior disorder and abnormalities detected in PET or SPECT scans. DLB patients also often experience problems with orthostatic hypotension, including repeated falls, syncope (fainting), and transient loss of consciousness.

Cerebral Amyloid Angiopathy

[0159] Cerebral amyloid angiopathy (CAA), also known as congophilic angiopathy, is a form of angiopathy in which amyloid deposits form in the walls of the blood vessels of the central nervous system. The term congophilic is used because the presence of the abnormal aggregations of amyloid can be demonstrated by microscopic examination of brain tissue after application of a special stain called Congo red. The amyloid material is only found in the brain and as such the disease is not related to other forms of amyloidosis.

[0160] Sporadic forms of CAA have been further characterized into two types based on deposition of amyloid β-protein (Aβ) in cortical capillaries. In all cases, it is defined by the deposition of Aβ in the leptomeningal and cerebral vessel walls. Amyloid deposition predisposes these blood vessels to failure, increasing the risk of a hemorrhagic stroke. The blood that leaks out of a vessel damaged by CAA can cause the surrounding region of the brain to suddenly stop working properly, resulting in symptoms like weakness or paralysis of the limbs, difficulty speaking, loss of sensation or balance, or coma. If blood leaks out to the sensitive tissue around the brain, it can cause a sudden and severe headache. Other symptoms sometimes caused by irritation of the surrounding brain are seizures.
(convulsions) or short spells of temporary neurologic symptoms such as tingling or weakness in the limbs or face.

Inclusion Body Myositis

[0161] Inclusion body myositis (IBM) is an inflammatory muscle disease, characterized by slowly progressive weakness and wasting of both distal and proximal muscles, most apparent in the muscles of the arms and legs. There are two types: sporadic inclusion body myositis (sIBM) and hereditary inclusion body myopathy (hIBM).

[0162] The pathogenic mechanism of IBM may involve an amyloid-beta-related degenerative process. An intriguing feature of IBM is the accumulation of amyloid-beta (Aβ), and phosphorylated tau protein, within sIBM muscle fibers. The hypothesis that beta amyloid protein is critical to IBM pathogenesis has been supported in a mouse model using an Aβ vaccine that was found to be effective against IBM in mouse models.

[0163] Common early symptoms include frequent tripping and falling, weakness going up stairs and difficulty manipulating the fingers. Foot drop in one or both feet is also a symptom of IBM and advanced stages of polymyositis (PM). During the course of the illness, the patient's mobility becomes progressively restricted. Many patients may experience balance problems. Because sIBM makes the leg muscles weak and unstable, patients are very vulnerable to serious injury from tripping or falling down. Many patients report severe muscle pain, especially in the thighs. When present, dysphagia is a progressive condition in patients with IBM and often leads to death from aspiration pneumonia. Dysphagia is present in from 40 to 85% of IBM cases. IBM can result in diminished aerobic capacity. This decline is most likely a consequence of the sedentary lifestyle that is often associated with the symptoms of IBM (i.e., progressive muscle weakness, decreased mobility, and increased level of fatigue).

Aromatic-cationic Peptides in Electron Transfer

[0164] Mitochondrial ATP synthesis is driven by electron flow through the electron transport chain (ETC) of the IMM. Electron flow through the chain can be described as a series of oxidation/reduction processes. Electrons pass from electron donors (NADH or QH2), through a series of electron acceptors (Complexes I-IV), and ultimately to the terminal electron acceptor, molecular oxygen. Cytochrome c, which is loosely associated with the IMM, transfers electrons between Complexes III and IV.
Rapid shunting of electrons through the ETC is important for preventing short-circuiting that would lead to electron escape and generation of free radical intermediates. The rate of electron transfer (ET) between an electron donor and electron acceptor decreases exponentially with the distance between them, and superexchange ET is limited to 20Å. Long-range ET can be achieved in a multi-step electron hopping process, where the overall distance between donor and acceptor is split into a series of shorter, and therefore faster, ET steps. In the ETC, efficient ET over long distances is assisted by cofactors that are strategically localized along the IMM, including FMN, FeS clusters, and hemes. Aromatic amino acids such as Phe, Tyr and Trp can also facilitate electron transfer to heme through overlapping π clouds. Amino acids with suitable oxidation potential (Tyr, Trp, Cys, Met) can act as stepping stones by serving as intermediate electron carriers. In addition, the hydroxyl group of Tyr can lose a proton when it conveys an electron, and the presence of a basic group nearby, such as Lys, can result in proton-coupled ET which is even more efficient.

Overexpression of catalase targeted to mitochondria (mCAT) has been shown to improve aging (e.g., reduce the symptoms) and prolong lifespan in mice. Such examples identify "druggable" chemical compounds that can reduce mitochondrial oxidative stress and protect mitochondrial function. As mitochondria are the major source of intracellular reactive oxygen species (ROS), the antioxidant must be delivered to mitochondria in order to limit oxidative damage to mitochondrial DNA, proteins of the electron transport chain (ETC), and the mitochondrial lipid membranes. In some embodiments, aromatic-cationic peptides selectively target and concentrate in the IMM. Some of these peptides contain redox-active amino acids that can undergo one-electron oxidation and behave as mitochondria-targeted antioxidants. The peptides disclosed herein, such as the peptide D-Arg-2′6′-Dmt-Tyr-Lys-Phe-NH2 reduces mitochondrial ROS and protect mitochondrial function in cellular and animal studies. Recent studies show that this peptide can confer protection against mitochondrial oxidative stress comparable to that observed with mitochondrial catalase overexpression. Although radical scavenging is the most commonly used approach to reduce oxidative stress, there are other potential mechanisms that can be used, including facilitation of electron transfer to reduce electron leak and improved mitochondrial reduction potential.
Abundant circumstantial evidence indicates that oxidative stress contributes to many consequences of normal aging and several major diseases, including cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Oxidative stress is generally defined as an imbalance of prooxidants and antioxidants. However, despite a wealth of scientific evidence to support increased oxidative tissue damage, large-scale clinical studies with antioxidants have not demonstrated significant health benefits in these diseases. One of the reasons may be due to the inability of the available antioxidants to reach the site of prooxidant production.

The mitochondrial electron transport chain (ETC) is the primary intracellular producer of ROS, and mitochondria themselves are most vulnerable to oxidative stress. Protecting mitochondrial function would therefore be a prerequisite to preventing cell death caused by mitochondrial oxidative stress. The benefits of overexpressing catalase targeted to mitochondria (mCAT), but not peroxisomes (pCAT), provided proof-of-concept that mitochondria-targeted antioxidants would be necessary to overcome the detrimental effects of aging. However, adequate delivery of chemical antioxidants to the IMM remains a challenge.

One peptide analog, D-Arg-2',6'-Dmt-Tyr-Lys-Phe-NH₂, possesses intrinsic antioxidant ability because the modified tyrosine residue is redox-active and can undergo one-electron oxidation. This peptide can neutralize \(\cdot \mathrm{O}_2 \) hydroxyl radical, and peroxynitrite, and inhibit lipid peroxidation. The peptide has demonstrated remarkable efficacy in animal models of ischemia-reperfusion injury, neurodegenerative diseases, and metabolic syndrome.

The design of the mitochondria-targeted peptides incorporates and enhances one or more of the following modes of action: (i) scavenging excess ROS, (ii) reducing ROS production by facilitating electron transfer, or (iii) increasing mitochondrial reductive capacity. The advantage of peptide molecules is that it is possible to incorporate natural or unnatural amino acids that can serve as redox centers, facilitate electron transfer, or increase sulfhydryl groups while retaining the aromatic-cationic motif required for mitochondria targeting.
Modes of Administration and Effective Dosages

[0171] Any method known to those in the art for contacting a cell, organ or tissue with an aromatic-cationic peptide may be employed. Suitable methods include in vitro, ex vivo, or in vivo methods. In vitro methods typically include cultured samples. For example, a cell can be placed in a reservoir (e.g., tissue culture plate), and incubated with an aromatic-cationic peptide under appropriate conditions suitable for obtaining the desired result. Suitable incubation conditions can be readily determined by those skilled in the art.

[0172] Ex vivo methods typically include cells, organs or tissues removed from a mammal, such as a human. The cells, organs or tissues can, for example, be incubated with the aromatic-cationic peptide under appropriate conditions. The contacted cells, organs or tissues are typically returned to the donor, placed in a recipient, or stored for future use. Thus, the aromatic-cationic peptide is generally in a pharmaceutically acceptable carrier.

[0173] In vivo methods typically include the administration of an aromatic-cationic peptide, such as those described above, to a mammal, suitably a human. When used in vivo for therapy, the aromatic-cationic peptides are administered to the subject in effective amounts (i.e., amounts that have desired therapeutic effect). The dose and dosage regimen will depend upon the degree of the injury in the subject, the characteristics of the particular aromatic-cationic peptide used, e.g., its therapeutic index, the subject, and the subject's history. The effective amount may be determined during pre-clinical trials and clinical trials by methods familiar to physicians and clinicians.

[0174] An effective amount of an aromatic-cationic peptide useful in the methods may be administered to a mammal in need thereof by any of a number of well-known methods for administering pharmaceutical compounds. The aromatic-cationic peptide may be administered systemically or locally.

[0175] The aromatic-cationic peptide may be formulated as a pharmaceutically acceptable salt. The term "pharmaceutically acceptable salt" means a salt prepared from a base or an acid which is acceptable for administration to a patient, such as a mammal (e.g., salts having acceptable mammalian safety for a given dosage regime). However, it is understood that the salts are not required to be pharmaceutically acceptable salts, such as salts of intermediate compounds that are not intended for administration to a patient. Pharmaceutically acceptable salts can be derived from pharmaceutically acceptable...
inorganic or organic bases and from pharmaceutically acceptable inorganic or organic acids. In addition, when a peptide contains both a basic moiety, such as an amine, pyridine or imidazole, and an acidic moiety such as a carboxylic acid or tetrazole, zwitterions may be formed and are included within the term "salt" as used herein. Salts derived from pharmaceutically acceptable inorganic bases include ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium, and zinc salts, and the like. Salts derived from pharmaceutically acceptable organic bases include salts of primary, secondary and tertiary amines, including substituted amines, cyclic amines, naturally-occurring amines and the like, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethlenediamine, diethyamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, pipradine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like. Salts derived from pharmaceutically acceptable inorganic acids include salts of boric, carbonic, hydrohalic (hydrobromic, hydrochloric, hydrofluoric or hydroiodic), nitric, phosphoric, sulfamic and sulfuric acids. Salts derived from pharmaceutically acceptable organic acids include salts of aliphatic hydroxyl acids (e.g., citric, gluconic, glycolic, lactic, lactobionic, malic, and tartaric acids), aliphatic monocarboxylic acids (e.g., acetic, butyric, formic, propionic and trifluoroacetic acids), amino acids (e.g., aspartic and glutamic acids), aromatic carboxylic acids (e.g., benzoic, p-chlorobenzoic, diphenylacetic, gentisic, hippuric, and triphenylacetic acids), aromatic hydroxyl acids (e.g., o-hydroxybenzoic, p-hydroxybenzoic, L-hydroxynaphthalene-2-carboxylic and 3-hydroxynaphthalene-2-carboxylic acids), ascorbic, dicarboxylic acids (e.g., fumaric, maleic, oxalic and succinic acids), glucoronic, mandelic, mucic, nicotinic, orotic, pamoic, pantotenic, sulfonic acids (e.g., benzenesulfonic, camphosulfonic, edisylic, ethanesulfonic, isethionic, methanesulfonic, naphthalenesulfonic, naphthalene-1,5-disulfonic, naphthalene-2,6-disulfonic and p-toluenesulfonic acids), xinafoic acid, and the like. In some embodiments, the salt is an acetate salt. In some embodiments, the salt is a tartrate salt. Additionally or alternatively, in other embodiments, the salt is a trifluoroacetate salt.

[0176] The aromatic-cationic peptides described herein can be incorporated into pharmaceutical compositions for administration, singly or in combination, to a subject for the treatment or prevention of a disorder described herein. Such compositions typically
include the active agent and a pharmaceutically acceptable carrier. As used herein the term "pharmaceutically acceptable carrier" includes saline, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.

[0177] Pharmaceutical compositions are typically formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral (e.g., intravenous, intradermal, intraperitoneal or subcutaneous), oral, inhalation, transdermal (topical), intraocular, iontophoretic, and transmucosal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. For convenience of the patient or treating physician, the dosing formulation can be provided in a kit containing all necessary equipment (e.g., vials of drug, vials of diluent, syringes and needles) for a treatment course (e.g., 7 days of treatment).

[0178] Pharmaceutical compositions suitable for injectable use can include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, a composition for parenteral administration must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.

[0179] In one embodiment, the aromatic-cationic peptides of the present technology are administered intravenously. For example, an aromatic-cationic peptide may be
administered via rapid intravenous bolus injection. In some embodiments, the aromatic-cationic peptide is administered as a constant-rate intravenous infusion.

[0180] The aromatic-cationic peptide may also be administered orally, topically, intranasally, intramuscularly, subcutaneously, or transdermally. In one embodiment, transdermal administration is by iontophoresis, in which the charged composition is delivered across the skin by an electric current.

[0181] Other routes of administration include intracerebroventricularly or intrathecally. Intracerebroventricularly refers to administration into the ventricular system of the brain. Intrathecally refers to administration into the space under the arachnoid membrane of the spinal cord. Thus, in some embodiments, intracerebroventricular or intrathecal administration is used for those diseases and conditions which affect the organs or tissues of the central nervous system.

[0182] The aromatic-cationic peptide may also be administered to mammals by sustained release, as is known in the art. Sustained release administration is a method of drug delivery to achieve a certain level of the drug over a particular period of time. The level is typically measured by serum or plasma concentration. A description of methods for delivering a compound by controlled release can be found in international PCT Application No. WO 02/083 106, which is incorporated herein by reference in its entirety.

[0183] Any formulation known in the art of pharmacy is suitable for administration of the aromatic-cationic peptide. For oral administration, liquid or solid formulations may be used. Examples of formulations include tablets, gelatin capsules, pills, troches, elixirs, suspensions, syrups, wafers, chewing gum and the like. The aromatic-cationic peptides can be mixed with a suitable pharmaceutical carrier (vehicle) or excipient as understood by practitioners in the art. Examples of carriers and excipients include starch, milk, sugar, certain types of clay, gelatin, lactic acid, stearic acid or salts thereof, including magnesium or calcium stearate, talc, vegetable fats or oils, gums and glycols.

[0184] For systemic, intracerebroventricular, intrathecal, topical, intranasal, subcutaneous, or transdermal administration, formulations of the aromatic-cationic peptides may utilize conventional diluents, carriers, or excipients etc., such as those known in the art to deliver the aromatic-cationic peptides. For example, the formulations may comprise one or more of the following: a stabilizer, a surfactant, preferably a nonionic surfactant, and optionally a
salt and/or a buffering agent. The aromatic-cationic peptide may be delivered in the form of an aqueous solution, or in a lyophilized form.

[0185] The stabilizer may comprise, for example, an amino acid, such as for instance, glycine; an oligosaccharide, such as, sucrose, tetralose, lactose; or a dextran. Alternatively, the stabilizer may comprise a sugar alcohol, such as, mannitol. In some embodiments, the stabilizer or combination of stabilizers constitutes from about 0.1% to about 10% weight for weight of the formulated composition.

[0186] In some embodiments, the surfactant is a nonionic surfactant, such as a polysorbate. Examples of suitable surfactants include Tween 20, Tween 80; a polyethylene glycol or a polyoxyethylene polyoxypropylene glycol, such as Pluronic F-68 at from about 0.001% (w/v) to about 10% (w/v).

[0187] The salt or buffering agent may be any salt or buffering agent, such as for example, sodium chloride, or sodium/potassium phosphate, respectively. In some embodiments, the buffering agent maintains the pH of the pharmaceutical composition in the range of about 5.5 to about 7.5. The salt and/or buffering agent is also useful to maintain the osmolality at a level suitable for administration to a human or an animal. In some embodiments, the salt or buffering agent is present at a roughly isotonic concentration of about 150 mM to about 300 mM.

[0188] Formulations of aromatic-cationic peptides may additionally contain one or more conventional additives. Examples of such additives include a solubilizer such as, for example, glycerol; an antioxidant such as for example, benzalkonium chloride (a mixture of quaternary ammonium compounds, known as "quats"); benzyl alcohol, chloretone or chlorobutanol; an anesthetic agent such as for example a morphine derivative; and an isotonic agent etc., such as described herein. As a further precaution against oxidation or other spoilage, the pharmaceutical compositions may be stored under nitrogen gas in vials sealed with impermeable stoppers.

[0189] The mammal treated in accordance with the present technology may be any mammal, including, for example, farm animals, such as sheep, pigs, cows, and horses; pet animals, such as dogs and cats; and laboratory animals, such as rats, mice and rabbits. In one embodiment, the mammal is a human.
In some embodiments, aromatic-cationic peptides are administered to a mammal in an amount effective in reducing the number of mitochondria undergoing, or preventing, MPT. The effective amount is determined during pre-clinical trials and clinical trials by methods familiar to physicians and clinicians.

The aromatic-cationic peptide may be administered systemically or locally. In one embodiment, the aromatic-cationic peptides are administered intravenously. For example, aromatic-cationic peptides may be administered via rapid intravenous bolus injection. In one embodiment, the aromatic-cationic peptide is administered as a constant-rate intravenous infusion.

The aromatic-cationic peptide can be injected directly into a coronary artery during, for example, angioplasty or coronary bypass surgery, or applied onto coronary stents.

The aromatic-cationic peptide compositions can include a carrier, which can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thiomerasol, and the like. Glutathione and other antioxidants can be included to prevent oxidation. In some embodiments, isotonic agents, e.g., sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride are included in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle, which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, typical methods of
preparation include vacuum drying and freeze drying, which can yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0195] Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

[0196] For administration by inhalation, the compounds can be delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer. Such methods include those described in U.S. Pat. No. 6,468,798.

[0197] Systemic administration of a therapeutic compound as described herein can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. In one embodiment, transdermal administration may be performed by iontophoresis.

[0198] A therapeutic protein or peptide can be formulated in a carrier system. The carrier can be a colloidal system. The colloidal system can be a liposome, a phospholipid bilayer vehicle. In one embodiment, the therapeutic peptide is encapsulated in a liposome while
maintaining peptide integrity. As one skilled in the art would appreciate, there are a variety of methods to prepare liposomes. (See Lichtenberg et al, Methods Biochem. Anal., 33:337-462 (1988); Anselem et al, Liposome Technology, CRC Press (1993)). Liposomal formulations can delay clearance and increase cellular uptake (See Reddy, Ann. Pharmacother., 34(7-8):915-923 (2000)). An active agent can also be loaded into a particle prepared from pharmaceutically acceptable ingredients including, but not limited to, soluble, insoluble, permeable, impermeable, biodegradable or gastroretentive polymers or liposomes. Such particles include, but are not limited to, nanoparticles, biodegradable nanoparticles, microparticles, biodegradable microparticles, nanospheres, biodegradable nanospheres, microspheres, biodegradable microspheres, capsules, emulsions, liposomes, micelles and viral vector systems.

[0199] The carrier can also be a polymer, e.g., a biodegradable, biocompatible polymer matrix. In one embodiment, the therapeutic peptide can be embedded in the polymer matrix, while maintaining protein integrity. The polymer may be natural, such as polypeptides, proteins or polysaccharides, or synthetic, such as poly α-hydroxy acids. Examples include carriers made of, e.g., collagen, fibronectin, elastin, cellulose acetate, cellulose nitrate, polysaccharide, fibrin, gelatin, and combinations thereof. In one embodiment, the polymer is poly-lactic acid (PLA) or copoly lactic/glycolic acid (PGLA). The polymeric matrices can be prepared and isolated in a variety of forms and sizes, including microspheres and nanospheres. Polymer formulations can lead to prolonged duration of therapeutic effect. (See Reddy, Ann. Pharmacother., 34(7-8):915-923 (2000)). A polymer formulation for human growth hormone (hGH) has been used in clinical trials. (See Kozarich and Rich, Chemical Biology, 2:548-552 (1998)).

[0200] Examples of polymer microsphere sustained release formulations are described in PCT publication WO 99/15154 (Tracy et al.), U.S. Pat. Nos. 5,674,534 and 5,716,644 (both to Zale et al), PCT publication WO 96/40073 (Zale et al), and PCT publication WO 00/38651 (Shah et al). U.S. Pat. Nos. 5,674,534 and 5,716,644 and PCT publication WO 96/40073 describe a polymeric matrix containing particles of erythropoietin that are stabilized against aggregation with a salt.

[0201] In some embodiments, the therapeutic compounds are prepared with carriers that will protect the therapeutic compounds against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylacetic acid. Such formulations can be prepared using known techniques. The materials can also be obtained commercially, e.g., from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to specific cells with monoclonal antibodies to cell-specific antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.

[0203] Dosage, toxicity and therapeutic efficacy of the therapeutic agents can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

[0204] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods, the therapeutically effective dose can be estimated initially from cell culture assays. A dose
can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

[0205] Typically, an effective amount of the aromatic-cationic peptides, sufficient for achieving a therapeutic or prophylactic effect, range from about 0.000001 mg per kilogram body weight per day to about 10,000 mg per kilogram body weight per day. Suitably, the dosage ranges are from about 0.0001 mg per kilogram body weight per day to about 100 mg per kilogram body weight per day. For example dosages can be 1 mg/kg body weight or 10 mg/kg body weight every day, every two days or every three days or within the range of 1-10 mg/kg every week, every two weeks or every three weeks. In one embodiment, a single dosage of peptide ranges from 0.1-10,000 micrograms per kg body weight. In one embodiment, aromatic-cationic peptide concentrations in a carrier range from 0.2 to 2000 micrograms per delivered milliliter. An exemplary treatment regime entails administration once per day or once a week. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably until the subject shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime.

[0206] In some embodiments, a therapeutically effective amount of an aromatic-cationic peptide may be defined as a concentration of peptide at the target tissue of 10^{-12} to 10^{-6} molar, e.g., approximately 10^{-7} molar. This concentration may be delivered by systemic doses of 0.01 to 100 mg/kg or equivalent dose by body surface area. The schedule of doses would be optimized to maintain the therapeutic concentration at the target tissue, most preferably by single daily or weekly administration, but also including continuous administration (e.g., parenteral infusion or transdermal application).

[0207] In some embodiments, the dosage of the aromatic-cationic peptide is provided at about 0.001 to about 0.5 mg/kg/h, suitably from about 0.01 to about 0.1 mg/kg/h. In one embodiment, the dose of the aromatic-cationic peptide is provided from about 0.1 to about 1.0 mg/kg/h, suitably from about 0.1 to about 0.5 mg/kg/h. In one embodiment, the dose is provided from about 0.5 to about 10 mg/kg/h, suitably from about 0.5 to about 2 mg/kg/h.
The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to, the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of the therapeutic compositions described herein can include a single treatment or a series of treatments.

The mammal treated in accordance present methods can be any mammal, including, for example, farm animals, such as sheep, pigs, cows, and horses; pet animals, such as dogs and cats; laboratory animals, such as rats, mice and rabbits. In one embodiment, the mammal is a human.

Combination Therapy

In some embodiments, aromatic-cationic peptides may be combined with one or more additional therapeutic agents for the prevention, amelioration or treatment of a medical disease or condition. By way of example, but not by way of limitation, the treatment for mitochondrial diseases or disorders typically involves taking vitamins and cofactors. In addition, antibiotics, hormones, antineoplastic agents, steroids, immunomodulators, dermatologic drugs, antithrombotic, antianemic, Aβ-specific antibodies and cardiovascular agents (e.g., statins), by way of non-limiting example, may also be administered.

In one embodiment, aromatic-cationic peptides are combined with one or more cofactors, vitamins, iron chelators, antioxidants, frataxin level modifiers, ACE inhibitors and β-blockers. By way of example, but not by way of limitation, such compounds may include one or more of CoQ10, Levocarnitine, riboflavin, acetyl-L-carnitine, thiamine, nicotinamide, vitamin E, vitamin C, lipoic acid, selenium, β-carotene, biotin, folic acid, calcium, magnesium, phosphorous, succinate, selenium, creatine, uridine, citratesm prednisone, vitamin K, deferoxamine, deferiprone, idebenone, erythropoietin, 17P-estradiol, methylene blue, and histone deacetylase inhibitors such as BML-210 and compound 106.

In one embodiment, aromatic-cationic peptides are combined with one or more cholinesterase inhibitors, NMDA antagonists, antidepressants, anxiolytics, antipsychotics, tricyclic antidepressants, benzodiazepines and medications related to sleep disorders. By way of example, but not by way of limitation, such compounds may include one or more of
donepezil (Aricept®), rivastigmine (Exelon®), galantamine (Razadyne®), Tacrine (Cognex®), memantine (Namenda®), citalopram (Celexa®), fluoxetine (Prozac®), paroxetine (Paxil®), sertraline (Zoloft®), trazodone (Desyrel®), lorazepam (Ativan®), oxazepam (Serax®), temazepam, aripiprazole (Abilify®), clozapine (Clozaril®), haloperidol (Haldol®), olanzapine (Zyprexa®), quetiapine (Seroquel®), risperidone (Risperdal®), ziprasidone (Geodon®), carbamazepine (Tegretol®), nortriptyline, trazodone, Zolpidem, zaleplon, chloral hydrate, risperidone, onlazapine, quetiapine, and haloperidol.

In one embodiment, an additional therapeutic agent is administered to a subject in combination with an aromatic-cationic peptide, such that a synergistic therapeutic effect is produced. A "synergistic therapeutic effect" refers to a greater-than-additive therapeutic effect which is produced by a combination of at least two therapeutic agents, and which exceeds that which would otherwise result from the sole administration of the at least two therapeutic agents. One advantage may include, but is not limited to, lower doses of one or more therapeutic agents in treating a medical disease or condition, resulting in increased therapeutic efficacy and decreased side-effects.

The multiple therapeutic agents (including aromatic-cationic peptides) may be administered in any order or even simultaneously. If simultaneously, the multiple therapeutic agents may be provided in a single, unified form, or in multiple forms (by way of example only, either as a single pill or as two separate pills). One of the therapeutic agents may be given in multiple doses, or both may be given as multiple doses. If not simultaneous, the timing between the multiple doses may vary from more than zero weeks to less than four weeks. In addition, the combination methods, compositions and formulations are not to be limited to the use of only two agents.

EXAMPLES

The present technology is further illustrated by the following examples, which should not be construed as limiting in any way.

General Methods

Reagents: D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-31) was supplied by Stealth Peptides Inc., Newton Centre, MA. D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31) was synthesized using standard solid-phase peptide synthesis (Dalton Pharma Services, Toronto, Ontario,
Canada). Aqueous stock solutions of D-Arg-2',6'-Dmt-Lys-Phe-NH$_2$ (SS-31) and D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) were prepared. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), tetramyristoyl cardiolipin (TMCL), tetraoleoyl cardiolipin (TOCL), and tetradecanoylcardiolipin (TLCL) were obtained from Avanti Polar Lipids Inc. (Alabaster, AL). Bovine heart cardiolipin, which primarily consists of TLCL, was purchased from Sigma (St. Louis, MO). Anhydrous copper (II) nitrate hydrate, anhydrous iron (III) chloride, and anhydrous zinc chloride were also obtained from Sigma. Anhydrous copper (II) chloride was obtained from Avantor Performance Materials (Center Valley, PA). A\beta_1-42 peptides corresponding to the human sequence were obtained from Life Technologies, (Carlsbad, CA).

[0217] Oligomerization of A\beta_1-42 Peptide: A\beta_1-42 peptide was dissolved in 1.5 mL of a 1:1 water/acetonitrile solution. 500 µL aliquots were frozen in a methanol/dry ice cooling bath and then lyophilized. Once lyophilized, each aliquot was dissolved in 20 µL DMSO. The aliquots were then vortexed, centrifuged, and sonicated in a water bath at room temperature. 200 µL of filtered 1X PBS and 20 µL of 2% SDS were subsequently added. The A\beta_1-42 peptide solution was incubated at 37°C for 6 hours. 580 µL of water was subsequently added to the A\beta_1-42 peptide solution, followed by a 16 hour incubation at 37°C prior to being stored at 4°C.

[0218] Measurement of A\beta_1-42-Cardiolipin-Cu$^{2+}$ Complex Oxygenase Activity: A\beta_1-42-Cardiolipin-Cu$^{2+}$ oxygenase activity was measured using the Amplex Red kit. Amplex Red is a dye that reacts with H$_2$O$_2$ in a 1:1 stoichiometric ratio to produce a highly fluorescent derivative called resorufin ($\lambda_{ex}/\lambda_{em}$=570/585 nm). The presence of peroxidase activity in an Amplex reaction lacking H$_2$O$_2$ is an indicator of oxygenase activity resulting from the reaction between the Amplex Red reagent and oxygen in the solution. All experiments were conducted in the absence of H$_2$O$_2$. A measurement was immediately taken after the introduction of Amplex Red, the last reagent that was added to the reaction. The reaction was allowed to proceed for an additional 10 minutes. Continuous time course data over the 10-minute period was obtained using a microplate spectrofluorometer (Molecular Devices, Sunnyvale, CA).

[0219] Interaction of Aromatic-cationic Peptides with A\beta_1-42 Oligomers: D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) is an aladan (aid) containing derivative of D-Arg-2',6'-Dmt-
Lys-Phe-NH₂ (SS-31). See Birk et al., *J Am Soc Nephrol.* 24(8): 1250-1261 (2013). Aid, a polarity-sensitive fluorescent amino acid, exhibits an increase in emission intensity as the polarity of its environment decreases, and its emission maximum (λ_{max}) undergoes a blue shift. Thus, interaction between D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31) and phospholipids causes an observable shift in the fluorescence spectra of the peptide. See Birk et al., *J Am Soc Nephrol.* 24(8): 1250-1261 (2013). The fluorescence spectra of D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31) was analyzed (Hitachi F-4500 fluorescence spectrophotometer) to assess the interaction between the peptide and Aβ₁₋₄₂ oligomers. The fluorophore aladan was used as a control. All experiments were conducted in 20 mM Hepes (pH 7.4) so as to replicate an environment with physiological pH.

0220 Turbidity Measurements of Aromatic-cationic Peptides Complexed with Aβ₁₋₄₂ Oligomers: The turbidity of solutions containing aromatic-cationic peptides and/or Aβ₁₋₄₂ oligomers was measured via right-angle scattering at λ=633 nm (Hitachi F-4500 Fluorescent Spectrophotometer). All experiments were conducted in Hepes (pH 7.4) and scanned immediately.

0221 Transmission Electron Microscopy (TEM): TEM was performed to visualize the structures that were produced when Aβ₁₋₄₂ oligomers were contacted with D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31). Samples were prepared about 1 hour prior to staining. Samples were prepared by adding Aβ₁₋₄₂ and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31) to 50 µL of Hepes (pH 7.4) for a final concentration of 30 µM Aβ₁₋₄₂ and 30 µM D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31). The samples were then centrifuged at 10,000 rpm for 7 minutes. The supernatants were subsequently removed and the pellets were resuspended in 20 µL of Hepes (pH 7.4). After resuspension, the samples were sonicated for 10 minutes in room temperature water. Next, 10 µL of each sample solution was placed onto 400 mesh copper grids (Electron Microscopy Sciences, Hatfield, PA) that were coated with formvar. The samples were stained with 1.5% uranyl acetate (aqueous). The uranyl acetate was incubated for 1 minute and then wicked by Whatman No. 1 (Qualitative) filter paper. This staining procedure was repeated twice before examining the specimens using a digital electron microscope (JEOL USA JEM-1400).
Example 1: Aβ oligomers Interact with Cardiolipin in the Presence of Cu\(^{2+}\) Ions to Stimulate Aβ\(_{1-47}\)-mediated oxygenase activity.

Amplex Red assays with Aβ\(_{1-42}\) oligomers, cardiolipin and cytochrome c exhibited no oxygenase activity. Likewise, Amplex Red assays involving Aβ\(_{1-42}\) oligomers, cardiolipin, cytochrome c and cuprous chloride (CuCl\(_2\)) failed to show oxygenase activity. However, as shown in FIG. 1, incubation of cardiolipin and Aβ\(_{1-42}\) oligomers in the presence of CuCl\(_2\) promotes Aβ\(_{1-42}\)-mediated oxygenase activity.

Copper, zinc and iron levels are elevated in the brains of aging humans. Thus, FeCl\(_3\), ZnCl\(_2\), and CuCl\(_2\) were incubated with Aβ\(_{1-42}\) and cardiolipin to determine which of these metals were capable of stimulating Aβ\(_{1-42}\)-mediated oxygenase activity. As demonstrated by FIG. 1A, CuCl\(_2\) robustly stimulated Aβ\(_{1-42}\)-mediated oxygenase activity. For instance, incubation of cardiolipin and Aβ\(_{1-42}\) oligomers with 10 μM CuCl\(_2\) resulted in more than a 500% increase in Aβ\(_{1-42}\)-mediated oxygenase activity compared to the non-metal treated control. See FIG. 1A.

Similar levels of Aβ\(_{1-42}\)-mediated oxygenase activity were observed with Cu(NO\(_3\))\(_2\). According to FIG. 1B, incubation of cardiolipin and Aβ\(_{1-42}\) oligomers with 10 μM Cu(NO\(_3\))\(_2\) also resulted in a 500% increase in Aβ\(_{1-42}\)-mediated oxygenase activity compared to the non-metal treated control. This suggests that Cu\(^{2+}\) ions (as exemplified by Cu(NO\(_3\))\(_2\) and CuCl\(_2\)) are necessary for the stimulation of Aβ\(_{1-42}\)-mediated oxygenase activity. Additionally, FIG. 1C demonstrates that Cu\(^{2+}\) ions stimulate Aβ\(_{1-42}\)-mediated oxygenase activity in a dose-dependent manner.

These results demonstrate that Aβ oligomers interact with cardiolipin in the presence of Cu\(^{2+}\) ions to stimulate Aβ\(_{1-42}\)-mediated oxygenase activity.

Example 2: Cardiolipin Isoform 1, \(1', 2, 2':\)tetralinoleoyl cardiolipin (TLCL) is Required for the Cu\(^{2+}\)-dependent stimulation of Aβ\(_{1-47}\)-mediated oxygenase activity.

Aβ oligomers were incubated with Amplex Red, 30 μM CuCl\(_2\) and one of four different types of phospholipids: POPA, POPC, POPS or TLCL. As shown in FIG. 2B, phospholipids other than TLCL, are incapable of stimulating Aβ\(_{1-42}\)-mediated oxygenase activity in the presence of Cu\(^{2+}\) ions. This result demonstrates that the Aβ\(_{1-42}\)-mediated oxygenase reaction is not solely driven by the anionic charge of the TLCL phospholipid.
Cardiolipin exists in three structural forms, with TLCL being the most unsaturated. See FIG. 2A. Aβ oligomers were incubated with Amplex Red, 30 μM CuCl₂ and one of the three cardiolipin isoforms: TLCL, TOCL and TMCL. FIG. 2C demonstrates that TLCL is the only cardiolipin isoform that is capable of stimulating Aβι₁,42-mediated oxygenase activity in the presence of Cu²⁺ ions. Further, FIG. 3A demonstrates that TLCL increases APι₁,42-mediated oxygenase activity in a dose-dependent manner. Likewise, FIG. 3B demonstrates that the concentration of Aβ oligomers directly correlates with the level of APι₁,42-mediated oxygenase activity.

These results demonstrate that both TLCL and Aβ oligomers are necessary for the Cu²⁺-dependent stimulation of Aβι₁,42-mediated oxygenase activity.

Example 3: Aromatic-cationic Peptides Inhibit Aβι₁,42-mediated Oxygenase Activity in a Dose Dependent Manner.

Aβ oligomers incubated with Amplex Red, 30 μM CuCl₂ and TLCL were exposed to varying concentrations of D-Arg-2',6'-Dmt-Lys-Phe-NH₂(SS-31) and D-Arg-2',6'-Dmt-Lys-Ald-NH₂([ald]SS-31). As shown in FIG. 4B, the aromatic-cationic peptides inhibited Aβι₁,42-mediated oxygenase activity in a dose-dependent manner. Treatment with 10 μM D-Arg-2',6'-Dmt-Lys-Phe-NH₂(SS-31) or 10 μM D-Arg-2',6'-Dmt-Lys-Ald-NH₂([ald]SS-31) showed a 90% reduction in Aβι₁,42-mediated oxygenase activity compared to untreated controls. Further, exposure to 100 μM D-Arg-2',6'-Dmt-Lys-Phe-NH₂(SS-31) or 100 μM D-Arg-2',6'-Dmt-Lys-Ald-NH₂([ald]SS-31) resulted in the complete inhibition of Aβι₁,42-mediated oxygenase activity compared to untreated controls.

These results demonstrate that aromatic-cationic peptides, such as D-Arg-2',6'-Dmt-Lys-Phe-NH₂(SS-31) and D-Arg-2',6'-Dmt-Lys-Ald-NH₂([ald]SS-31) which are capable of crossing the blood brain barrier, can inhibit toxic Aβι₁,42-mediated oxygenase activity. As such, these results demonstrate that the aromatic-cationic peptides of the present technology are useful in methods for reducing Aβι₁,42-mediated oxygenase activity and preventing neuronal apoptosis or mitochondrial dysfunction in a subject suffering from a disease associated with beta-amyloid peptide (Aβ) toxicity.

Example 4: Interaction between Aromatic-cationic Peptides and Aβ Oligomers

The interaction between the aromatic-cationic peptide D-Arg-2',6'-Dmt-Lys-Ald-NH₂([ald]SS-31) and Aβ oligomers was investigated using emission spectral techniques.
described in Birk et al., 2013. Aladan (Aid) was used as a negative control. As shown in FIG. 5, D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) exhibited a blue shift when it encountered 1 µM Aβ oligomers, i.e., the λ_{ex} shifted from 535 nm to 465 nm. This blue shift and increased intensity in fluorescence suggest that the aladan portion of the peptide is embedded in the hydrophobic environment of the Aβ oligomers. By contrast, Aid exhibited no shift when it contacted 1 µM Aβ oligomers, i.e., the λ_{ex} remained at 535 nm.

[0232] These results demonstrate that D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) specifically interacts with Aβ oligomers and is not an artifact of the Aid residue.

Example 5: Aromatic-cationic Peptides Drive Aβ Equilibrium Towards Fibril Formation

[0233] To further investigate the biological relevance of the interaction described in Example 4, turbidity tests were performed to determine the effect of D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) on the overall structure of Aβ oligomers. As shown in FIG. 6, addition of D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) to Aβ$_{1-42}$ oligomers resulted in a six-fold increase in light scattering compared to that observed in the Aβ$_{1-42}$ oligomer control sample. This observable increase in turbidity signifies a change in the aggregation of Aβ oligomers. However, the addition of D-Arg-2',6'-Dmt-Lys-Phe-NH$_2$ (SS-31) or Aid to Aβ$_{1-42}$ oligomers caused no change in turbidity and resembled the light scattering observed in the Aβ$_{1-42}$ oligomer control sample, i.e., about 180 RFUs.

[0234] The aggregation pattern of Aβ oligomers was analyzed using electron microscopy. Aβ oligomers and Aβ fibrils were used as controls. See FIG. 7A and FIG. 7D respectively. FIG. 7B shows the progression of D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31)-induced Aβ fibrillation. In the top portion of FIG. 7B, there is an increased density of Aβ oligomers in one area. Such oligomer aggregation is a prerequisite for fibril formation. Additionally, protofibrils are present in the lower right section of FIG. 7B. Protofibrils represent the intermediate stage between Aβ oligomers and Aβ fibrils. Finally, a more dense patch of protofibrils is present in the lower left section of FIG. 7B, which signifies the ability of these structures to proceed to the fibril stage shown in FIG. 7C.

[0235] Furthermore, incubation of Aβ oligomers with D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) altered the kinetics of the fibrillation process. Specifically, it usually takes at least seven days for Aβ oligomers to undergo natural fibrillation. Incubation of Aβ oligomers with D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) for 25 minutes resulted in the
formation of Aβ fibrils that were identical to those found in the fibril control sample. See FIG. 7C and FIG. 7D respectively. Thus, treatment with D-Arg-2′,6′-Dmt-Lys-Ald-NH2 ([ald]SS-31) increased the rate of fibril formation by 400-fold.

[0236] These results demonstrate that aromatic-cationic peptides of the present technology can reduce the extracellular concentration of toxic Aβ oligomers by stimulating the formation of nontoxic Aβ fibrils. As such, these results demonstrate that the aromatic-cationic peptides of the present technology are useful in methods for preventing the entry of toxic Aβ oligomers into cells and reducing existing Aβ oligomer concentrations in a subject suffering from a disease associated with beta-amyloid peptide (Aβ) toxicity.

EQUIVALENTS

[0237] The present technology is not to be limited in terms of the particular embodiments described in this application, which are intended as single illustrations of individual aspects of the present technology. Many modifications and variations of this present technology can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the present technology, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present technology is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this present technology is not limited to particular methods, reagents, compounds compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.

[0238] In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.

[0239] As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range
being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as "up to," "at least," "greater than," "less than," and the like, include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

[0240] All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.

[0241] Other embodiments are set forth within the following claims.
CLAIMS

What is claimed is:

1. A method for reducing beta-amyloid (Ap)-induced oxygenase activity in a subject suffering from a disease associated with Aβ toxicity comprising administering a therapeutically effective amount of an aromatic-cationic peptide or a pharmaceutically acceptable salt thereof to the subject.

2. The method of claim 1, wherein the aromatic cationic peptide comprises one or more peptides selected from the group consisting of 2',6'-Dmt-D-Arg-Phe-Lys-NH₂ (SS-02), Phe-D-Arg-Phe-Lys-NH₂ (SS-20), D-Arg-2',6'-Dmt-Lys-Phe-NH₂ (SS-31), and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31).

3. The method of claim 1, wherein the salt is an acetate salt, tartrate salt, or trifluoroacetate salt.

4. The method of claim 1, wherein the aromatic-cationic peptide is administered orally, parenterally, intravenously, subcutaneously, transdermally, topically or by inhalation.

5. The method of claim 1, wherein the disease is selected from the group consisting of Alzheimer's Disease, Dementia with Lewy Bodies, Inclusion Body Myositis and Cerebral Amyloid Angiopathy.

6. The method of claim 5, wherein treatment comprises reducing or ameliorating one or more symptoms of Alzheimer's Disease selected from the group consisting of memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished communication skills, repetitive speech or actions, difficulties with visual or spatial relationships, withdrawal, depression, loss of recognition, loss of motor skills and sense of touch, delusions, paranoia, verbal or physical aggression, and sleep disorders.

7. A method for reducing extracellular beta-amyloid (Aβ) oligomers in a subject suffering from a disease associated with Aβ toxicity comprising administering a therapeutically effective amount of an aromatic-cationic peptide or a pharmaceutically acceptable salt thereof to the subject.

8. The method of claim 7, wherein the aromatic cationic peptide comprises one or more peptides selected from the group consisting of 2',6'-Dmt-D-Arg-Phe-Lys-NH₂ (SS-02), Phe-D-Arg-Phe-Lys-NH₂ (SS-20), and D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31).
9. The method of claim 7, wherein the salt is an acetate salt, tartrate salt, or trifluoroacetate salt.

10. The method of claim 7, wherein the aromatic-cationic peptide is administered orally, parenterally, intravenously, subcutaneously, transdermally, topically or by inhalation.

11. The method of claim 7, wherein the disease is selected from the group consisting of Alzheimer's Disease, Dementia with Lewy Bodies, Inclusion Body Myositis and Cerebral Amyloid Angiopathy.

12. The method of claim 11, wherein treatment comprises reducing or ameliorating one or more symptoms of Alzheimer's Disease selected from the group consisting of memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished communication skills, repetitive speech or actions, difficulties with visual or spatial relationships, withdrawal, depression, loss of recognition, loss of motor skills and sense of touch, delusions, paranoia, verbal or physical aggression, and sleep disorders.

14. The method of claim 13, wherein treatment comprises reducing or ameliorating one or more symptoms of Alzheimer's Disease selected from the group consisting of memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished communication skills, repetitive speech or actions, difficulties with visual or spatial relationships, withdrawal, depression, loss of recognition, loss of motor skills and sense of touch, delusions, paranoia, verbal or physical aggression, and sleep disorders.

15. The method of claim 13, wherein D-Arg-2',6'-Dmt-Lys-Ald-NH$_2$ ([ald]SS-31) is administered orally, parenterally, intravenously, subcutaneously, transdermally, topically or by inhalation.

16. The method of claim 13, wherein the salt is an acetate salt, tartrate salt, or trifluoroacetate salt.
FIG. 1A (cont.)

![Graph showing the effect of different compounds on Relative Fluorescence Unit (RFU) over time.]

- 10 μM CuCl₂
- 10 μM FeCl₃
- 10 μM ZnCl₂
- Control
FIG. 1B

% Increase (RFU/min)

Control 10 μM CuCl₂ 10 μM Cu(NO₃)₂·3H₂O
FIG. 1B (cont.)

- 10 μM CuCl₂
- 10 μM Cu(NO₃)₂·3H₂O
- Control

Relative Fluorescence Unit (RFU) vs. Time (m:s)
FIG. 1C (cont.)

The graph shows the relative fluorescence unit (RFU) over time for different concentrations of CuCl₂. The concentrations include:
- 100 μM CuCl₂
- 30 μM CuCl₂
- 10 μM CuCl₂
- 3 μM CuCl₂
- Control

The x-axis represents time in minutes and seconds (m:s), while the y-axis represents the relative fluorescence unit (RFU) ranging from 0 to 500.
FIG. 2C

![Graph showing % Increase (RFU/min) for Control, 30 μM TMCL, 30 μM TOCL, and 30 μM TLCL.](image-url)
FIG. 2C (cont.)

![Graph showing fluorescence over time with different treatments (30 μM TLCL, 30 μM TMCL, Control, 30 μM TOCL) with relative fluorescence units (RFU) on the y-axis and time in minutes on the x-axis.](image-url)
FIG. 3A (cont.)

Graph showing relative fluorescence units (RFU) over time. The graph includes lines for different concentrations of TLCL: 100 µM TLCL, 30 µM TLCL, 10 µM TLCL, and 3 µM TLCL, as well as a control line. The x-axis represents time (m:s) and the y-axis represents RFU.
FIG. 3B (cont.)

![Graph showing fluorescence units over time for different concentrations of Aβ.](image-url)
FIG. 4A

SS-31

[ald]SS-31
Peptide = D-Arg-2',6'-Dmt-Lys-Ald-NH₂ ([ald]SS-31)
FIG. 5

![Graph showing fluorescence units vs. wavelength for different samples.](Image)
FIG. 6

- 40μM D-Arg-Dmt-Lys-Ald-NH₂ + 40μM Aβ
- 40μM aladan + 40μM Aβ
- 40μM D-Arg-Dmt-Lys-Phe-NH₂ + 40μM Aβ
- 40μM Aβ
FIG. 7B

Microscope	Accelerating Voltage	Magnification	SPI-3
JEM-1400 | 120 kV | 120000 x | 200 nm
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 14/58049

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - A61K 38/00, A61K 38/04 (2014.01)
CPC - A61K 38/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8): A61K 38/00, A61K 38/04 (2014.01)
CPC: A61K 38/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 514/21 9, 514/17.8 514/17.7 (text search, term limited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase, PubWest, Google Scholar, Google Patents: Beta, amyloid, Aβ, oxygenase, aromatic, cationic, peptide, pharmaceutical*, acetate, tartrate, trifluoroacetate, memory loss, agitation, mood swings, impaired judgment, dementia, difficulty with abstract thinking, difficulty with familiar tasks, cognitive difficulties, disorientation, diminished co

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2013/0244957 A1 (SZETO et al.) 19 September 2013 (19.09.2013); abstract; para [0091], [0109], [0119]</td>
<td>1-2, 4-5, 7-8, 10-11, 13, 15</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2012/1741 17 A1 (WILSON) 20 December 2012 (20.12.2012); para [0018]</td>
<td>3, 6, 9, 12, 14, 16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "Z" document member of the same patent family

Date of the actual completion of the international search
17 November 2014 (17.11.2014)

Date of mailing of the international search report
16 DEC. 2014

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Lee W. Young
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/2 10 (second sheet) (July 2009)