Method and system for monitoring the condition of livestock

(21) Application No: 0607657.4
(22) Date of Filing: 18.04.2006
(43) Date of A Publication: 24.10.2007

Inventor(s):
- Toby Mottram
- Paul Edward George Devlin

Proprietor(s):
- ITI Scotland Ltd
  (Incorporated in the United Kingdom)
  5th Floor, 191 West George Street, GLASGOW,
  G2 2LB, United Kingdom

Agent and/or Address for Service:
- Haseltine Lake
  Redcliff Quay, 120 Redcliff Street, Bristol, BS1 6HU,
  United Kingdom

Documents Cited:
- GB 2347503 A
- EP 0805657 A1
- US 5322034 A
- EP 0941655 A1
- WO 2005/115242 A
- US 6402692 B1

Field of Search:
As for published application 2437250 A viz:
- INT CL: A01K, A61B, A61G, G01S, G06F
- Other: Online: EPDOC, WPI
  updated as appropriate

Amendments overleaf - 15.08.2012
The Patents Act 1977

Specification No. GB (UK) 2437250 C

The following amendment was allowed under Section 27 on 07 August 2012.

The amendments take the form of an amended pages of description & claims.

Intellectual Property Office
15 August 2012
Figure 2
Figure 3

Figure 4
METHOD AND SYSTEM FOR MONITORING THE CONDITION OF LIVESTOCK

TECHNICAL FIELD

The present invention relates to a method and system for monitoring the condition of livestock. In particular, it relates to remotely monitoring the behavioural and physiological states of livestock to determine their welfare, health and fertility condition.

BACKGROUND OF THE INVENTION

With increasing awareness of health related issues concerning livestock and the significant losses that arise from poor fertility management, the farming industry has been forced to adapt in maintaining accurate records of livestock. As the size of farms increase, the ability of a stockman to keep records and track individual animals becomes increasingly difficult. There are many known systems for electronically tagging animals for identification purposes etc. Identification data is held in a unit worn by the animal in a neck collar or ear tag or the like. The data can be extracted as required at fixed or mobile locations.

It is also known to utilise such tags to collect data relating to activities of the animal, for example US 5857434. US 5857434 discloses detection of oestrus in dairy cattle. A transponder unit worn in a collar around the animal’s neck detects the movement of the animal. During oestrus, the animal becomes agitated and moves around more frequently. This increased activity is detected and transmitted, along with identification data for the animal, to a central processor. The data is then processed and analysed to establish whether oestrus is detected and this is indicated to the stockman. The transponder merely collects the movement data of the animal. This data is then transmitted and centrally processed. The transponder does not detect oestrus. Further only a single condition, oestrus, is monitored and the system does not provide data concerning other health related matters.

Further some existing systems require sensors to be attached invasively which is distressing to the animal and requires the skill of a veterinary surgeon. Further such forms of attachment to the animal have limited ability to transmit information from the animal for use by the stockman.
Further, in monitoring the condition of livestock, a key period for health monitoring in cattle, sheep, horses and pigs is in the period immediately before and after parturition. None of the existing systems disclose specific monitoring during such periods.

At present there is no system that can do any of the condition based monitoring of cattle necessary to improve both the health and fertility monitoring of animals. Monitoring is still by human visual observation as it has been since the first domestication of animals. However, it has become increasingly desirable for better management of livestock, in particular health monitoring in livestock in the period immediately before and after parturition and to reduce losses from dystokia, hypocalcaemia and other diseases.

It has also become increasingly desirable to reduce time lost moving animals unnecessarily for veterinary examination. Further, it is desirable to provide earlier intervention in cases of metritis and lameness and thus improve welfare and possibly productivity of animals such as dairy cattle as well as provide improved oestrus detection.

**SUMMARY OF THE INVENTION**

The invention seeks to provide remote, continuous monitoring of various parameters relating to the condition of livestock, such as cattle, sheep, pigs, horses and the like.

This is achieved according to an aspect of the present invention by a method for monitoring the condition of livestock, the method comprising the steps of: sensing a plurality of orientation and movement parameters of an animal's head; deriving a plurality of different behavioural parameters of the animal from the sensed plurality of orientation and movement parameters, the plurality of different behavioural parameters including at least one of walking activities of the animal, standing activities of the animal and lying activities of the animal; determining a plurality of status conditions of the animal from the derived behavioural parameters, the status conditions including at least one of fertility, oestrus and prediction of onset of parturition, and transmitting data, wirelessly, to a central computer.

The monitor worn by the animal collates and processes the data in respect of the detected parameters of the livestock. The monitor transmits the data; say for example, via a local area network to a processor which may in turn be linked via wireless communication to a
central data processor and storage device. The data may be contained in a local database for use by the stockman and may also be contained in a national or veterinary health information database for wider reference and analysis. On the basis of the detected parameters, a plurality of status conditions, such as for example, oestrus, onset of parturition, lameness, disease, can be derived as the indication of the overall condition of the animal.

In a preferred embodiment of the present invention, the system comprises a network of sensors attached to the animal. The sensors may be included in a neck collar, head collar or eartag, adhered to the skin of the animal or any combination thereof. The sensors are therefore fitted in a non-invasive manner. Preferably, the sensors are connected in a bus-like architecture to allow easy addition and removable of sensors as required. More preferably, the sensors are reusable.
The sensors may measure location, movement, sound and optical change. The monitor worn by the animal may also include a processor to collect and process information and control communication, software embedded on the processor, a transceiver and a memory store for recording sensor data.

The monitor worn by the animal communicates with an external antenna. The external antenna may comprise a distributed network of antennae provided at different locations. The antennae may download data wirelessly to a local computer system containing a stock management database to be analysed and provide output of prediction and current behaviour/condition of the animals. The analysis is based upon physiological models which can be updated remotely.
The system of the present invention therefore provides effective livestock management and veterinary assistance to predict and react to the onset of conditions such as parturition and to detect, at an early stage, lameness of the animals.

The system may be easily extended to predict the onset of disease and predict its epidemiological spread by its links to national or other level databases.

The system may be supplied with various methods of supplying the livestock manager with predictions of conditions; these could include mobile telephone messages, computer screens and milking parlour displays.

The data may be downloaded from the monitor units worn by the animal to the distributed network of external antennae utilising radio protocols such as Bluetooth or Zigbee. Preferably the antennae are placed near congregation points for the livestock, such as feed area, watering troughs, etc. The data may be transferred to a local processor where data analysis is carried out providing information to the stockman and/or uploading a data summary to a regional or national database, where the data is correlated.

The system of the present invention can be utilised to detect the onset of parturition, illness such as lameness and fertility status. The aim is that a network of physical sensors is used to determine behavioural and physiological indicators of condition status and an indication of time of onset of a subsequent condition. Various parameters of the animal are recorded electronically by the monitor unit worn by the animal that can be communicated with any suitably equipped vehicle, market reception, and abattoir to monitor the health and welfare of an animal as it moves through the food chain. The monitor unit is worn permanently by the animal in that it is attached for the life of the animal. The monitor unit may record a health status record of the animal. This record stored within the monitor unit is then permanently attached to the animal. The data stored may include, for example, birth, birth location, subsequent lactations, date of parturition, past or predicted health incidents etc.

The monitor unit is a "smart" unit incorporating multiple sensors, a versatile communications infrastructure and multiple behavioural models. The unit of the present invention may incorporate multi-modal sensors incorporating behavioural and physiological analysis to monitor specific conditions in livestock allowing multiple conditions to be monitored simultaneously.
BRIEF DESCRIPTION OF THE DRAWINGS

For a complete understanding of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawings, wherein:

Figure 1 is a schematic diagram of the system according to an embodiment of the present invention;

Figure 2 is a schematic block diagram of the device worn by the animal according to an embodiment of the present invention;

Figure 3 is a flow chart of the method according to an embodiment of the present invention;
Figure 4 is a flow chart of the sensory step of the method according to an embodiment of the present invention; and

Figures 5a, 5b and 5c are a graphical representation of an example of a condition monitored according to the embodiment of the present invention.

**DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS**

With reference to Figures 1 and 2, the system according to an embodiment of the present invention comprises a collar 101 fitted around the neck of an animal. A monitor unit 115 is attached to the neck collar 101. Although, in this embodiment the unit 115 is fitted to a neck collar, it can be appreciated that the unit can be fitted to any convenient fixture device such as for example an ear tag 103, head collar 105, leg attachment 107 or belt (not shown here), transdermal patches 109, 111, ingested bolus 113 or any one of these in addition or in place of the collar 101. The unit 115 is intended to be attached permanently to the animal for continuous monitoring. Although the collar is shown fitted around the neck of a cow, it can be appreciated that the apparatus can be attached to any animal such as for example dairy cow, beef cow, buffalo, sheep, goat, pig, horse and the like.

The collar 101 is fitted to make a snug fit so that it is not slideably moveable along the neck of the animal as the animal head moves up and down extensively such as when the animal is feeding or drinking. The fitting of the collar 101 must be secure to prevent accidental lose during normal activities of the animal such as rubbing against a post and knocking against the bars of a grill on a feeding trough etc. The fixture of the collar 101 may be by means of a buckle, sliding clip etc. The fixture may include a self-tensioning device to maintain a predetermined tension to ensure accurate fitting of the collar.

The unit 115 may be mounted onto the collar 101 or may be formed integral with the collar 101. The collar 101 further comprises an antenna (not shown here) which may be contained in the unit 115 or within the collar 101. The unit 115 comprises a plurality of sensors 201, 203, 205 as shown, for example, in Figure 2. Figure 2 illustrates 3 sensors, a 3-D accelerometer 201, a locator (such as GPS) 203 and a microphone 205. However, any number of sensors may be envisaged such as hall effect sensors.
The apparatus may further include a plurality of remote sensors 207 positioned elsewhere on the animal outside of the housing of the unit 115 such as sensors for measuring body temperature, humidity, pH of biological fluids, electrical potentials from physiological processes, hall effects, optical sensors of blood flow or blood oxygenation, vocalisation and respiration, breath and saliva contents, environment temperature and humidity. These remote sensors may be found in an ingested bolus 113, or patches 109, 111. Additional remote sensors may be included in the eartags 103, head collar 105 and/or leg attachment 107. In an alternative arrangement, the unit 115 may be mounted in the eartag 103, head collar 105 or leg attachment 107 etc.

The unit 115 further comprises a local processor 209 which is connected to the sensors 201, 203, 205 via, respective, analogue to digital converters 211_1, 211_2 and 211_3. The plurality of remote sensors 207 is connected to the processor 209 via a wireless link such as short wave radio. The outputs of the remote sensors 207 are digitised via respective analogue to digital converters (not shown here).

Each remote sensor 207 has a unique identifier associated with a particular animal to prevent remote sensors attached to a neighbouring beast being received and processed by the local processor.

The unit 115 further comprises a local memory store 213, a power source 215 and a transceiver device 217 connected to the processor 209. The power source 215 may comprise replaceable or rechargeable batteries. The unit 115 includes convenient access to a battery housing for replacement etc. of the batteries of the power source 215.

The sensors 201, 203, 205 and 207 are connected via a bus architecture so that additional sensors can be added or removed as required. Preferably the sensors are reusable so that they can be reprogrammed and fitted to another animal etc.

The system further comprises at least one fixed antenna 117. The antenna 117 is provided in a location on the farm where the animal is expected to be in the vicinity of at least once a day so that data collected by the unit 115 can be downloaded. The antenna 117 may be located at the entrance or exit of a milking parlour or at a drinking or feeding trough for example. The antenna may form part of a distributed network of antennae located at various locations such as drinking troughs, sheds, milking parlour
etc. The data downloads may be required at more or less frequent intervals. For example, if the output sensory data indicates that the animal is in distress, the system can request via the antenna 117 more frequent downloads. Further, as the predicted parturition date approaches, the downloads could be made more frequently, at say, 3 hour intervals. This is possible as many animals are housed in pens as parturition approach and could therefore be housed in the vicinity at least one antenna for convenient, frequent downloads.

The system further comprises a local computer (PC) 119 having a display and printer connected thereto. The local computer 119 is remotely connected to a national database 121 via, say, the internet. The local computer 119 may also provide output to a hand-held electronic device 123 such as a mobile telephone or palmtop. The local computer 119 provides 2-way communication with the antenna 117 such that a unit 115 can be reprogrammed or reset by the stockman or reprogrammed automatically to request more frequent downloads for example. Further the two-way communication between the computer 119, antenna 117 and unit 115 allows other data to be transferred to the unit 115.

With reference to Figures 3 and 4, operation of the apparatus will be described in more detail.

The sensors 201, 203 205, 207 continuously monitor a variety of parameters of the animal. The digitised output of the sensors 201, 203, 205 and 207 are collated by the processor 209 and are stored in the local memory 213. At predetermined time interval or upon detected of the unit 115 in the vicinity of an antenna 105, the collated data for that time interval is transmitted by the transceiver 217 to the antenna 117. This data is then transferred to the local, farm computer 119. The farm computer 119 stores records for each animal by virtue of the animal's unique identifier which may be stored in its ear tag 103. This identifier may be virtually linked to the animal's unique electronic legislative identity. As data is downloaded from the antenna 117 on, say, a daily basis. The farm records can be updated automatically providing the stockman with an updated status of each animal. The updated status of the animal may also be communicated for storage in the local store 213 of the unit 115 such that this data can be downloaded from the unit 115 in the event that the animal leaves the farm. The data stored in the farm computer 119 and/or local store 213 of the unit 115 may include the animal's unique identifier, current condition, for example maiden, pregnant,
lactation, number of lactations, days in milk, lame, predicted parturition date, predicted next oestrus, suspected illness, of last update where the data is analysed.

The various sensor outputs indicating the behavioural status 301 of the animal is received by the computer system 119 via the antenna 117. This data is compared to a reference physiological data model of the sensory outputs and the behavioural status 301. The 3-D accelerometer 201 records the spatial orientation and movement of the animal's head. This data is analysed by the farm computer 119 to indicate behavioural patterns such as time spent lying, standing; walking 401 and time spent feeding or drinking 403. The microphone 205 records noises made by the animal which can be analysed to indicate time spent eating, ruminating (in the case of a ruminant) and vocalisation 403 and in addition respiration rate and heart rate. The locator 205 provides the location of the animal 405. The relative location 407 may also be monitored. The location data can be analysed to indicate whether the animal is with the herd or keeping up with the herd which may indicate health problems. These are examples only and a number of additional sensory inputs may be analysed to provide additional inputs to the behavioural status 301 of the animal. For example, the additional remote sensors 207 may include monitoring Electro Hystero Gram (EHG), foetal heart rate, body temperature and blood oxygenation.

In a particular example, the output of the accelerator 201 indicates movement of the animal's head and in combination with the output of the locator 203 indicate when the animal's head is down feeding or drinking. Erratic eating or drinking patterns could indicate that the animal is ill and/or distressed. If the head movement is vigorous during feeding, this would indicate that the animal is healthy. Thresholds of the frequencies of head movement can be set whilst taking into consideration the food type and texture and the age of the animal such that frequency of head movement above the threshold indicates the animal is healthy and below the threshold indicates the animal is ill.

The output date of the sensors 201, 203, 205 can also be used to predict oestrus. It is observed that many animals change their behavioural pattern at this time. They generally become more active, fidget and more agitated. The accelerometer and locator indicate increased walking activity in the animal. Its relative location to the other animals may also provide an indication of oestrus.
The behavioural status 301 of the animal can also be utilised to indicate the general health 303, such for example prediction of the onset of parturition and subsequent lactation, the foetal heart rate indicating health of the unborn, the detection of deviations from a pattern indicating wellness, detection of hypocalcaemia, detection of dystokia, parturition, metritis, lameness, acidosis and ketosis and fertility status 305 such as oestrus. Additional input via the farm computer 119 may be provided by manual input 307 by the stockman and/or milk sensors 309 monitoring milk production etc. Other inputs may be considered such as environment sensed data such as temperature and humidity, weather conditions provided from other sources. The output of the health status 303, fertility status 305 is provided to the stockman via a display or printer for action 311 such as insemination, inspection etc. In this way the system provides an effective way of informing the stockman of various condition status of each animal so that the stockman has better knowledge of the condition of his livestock to enable him to manage feeding, location, bedding, mineral offerings, drug requirements. The predictions provided by the system also enable the stockman to manage more easily farm resources etc. The system may provide an alarm system to indicate an urgent condition status such as difficulties in parturition or indication of serious illnesses such as hypocalcaemia and hypomagnesae mia which require immediate attention.

As illustrated in Figure 5, an example of a condition monitored by the embodiment of the present invention is illustrated, lameness. Lameness, in particular in dairy cattle, is problematic and therefore it is highly desirable to monitor such a condition in dairy cattle.

As illustrated in Figure 5a, the normal gait of an animal is represented generally as a smooth, rhythmic head movement which is detected by the accelerometer sensor 201. However, in a lame animal the movement is more erratic with jerky movements as illustrated in Figure 5b. This output is analysed by the farm computer, for example by counting novel singularities or measuring the change of slope or integrating area under an RMS or by FFT of the frequency data to detect anomalies as illustrated in Figure 5c. Numerous mathematical techniques are available and can be overlaid to extract features from the data.

Although a preferred embodiment of the method and system has been illustrated in the accompanying drawings and described in the foregoing detailed description, it will be understood that the invention is not limited to the embodiment disclosed, but is capable
of numerous variations, modifications without departing from the scope of the invention as set out in the following claims.
CLAIMS

1. A method for monitoring the condition of livestock, the method comprising the steps of:
   sensing a plurality of orientation and movement parameters of an animal’s head;
   deriving a plurality of different behavioural parameters of said animal from said sensed plurality of orientation and movement parameters, said plurality of different behavioural parameters including at least one of walking activities of said animal, standing activities of said animal and lying activities of said animal;
   determining a plurality of status conditions of said animal from said derived behavioural parameters, said status conditions including at least one of fertility, oestrus and prediction of onset of parturition; and
   transmitting data, wirelessly, to a central computer.

2. A method according to claim 1, wherein said plurality of different behavioural parameters further include at least one of:
   absolute location of said animal;
   relative location of said animal to another animal;
   feeding activities of said animal; and
   drinking activities of said animal.

3. A method according to claim 1 or 2 wherein, the method further comprises the steps of:
   sensing at least one physiological parameter of said animal; and wherein said plurality of status conditions are determined on the basis of said derived behavioural parameters and said at least one sensed physiological parameter.

4. A method according to claim 3, wherein said at least one physiological parameter comprises one of:
   breathing rate;
   heart rate variability;
   body temperature;
   breath contents;
   saliva contents;
   electro-myograph.
5. A method according to claim 1 or 2, wherein said determined status conditions further includes:
   lameness;
   infection; and
   nutritional disorders.

6. A method according to anyone of the preceding claims wherein the method further comprises:
   storing said determined status condition data of said animal in a unit, permanently, attached to said animal.

7. A method for monitoring the condition of livestock, the method substantially as hereinbefore described with reference to any one of the accompanying drawings.