
US 2008O134020A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0134020 A1

Adeeb (43) Pub. Date: Jun. 5, 2008

(54) METHOD AND SYSTEM FOR THE Publication Classification
GENERATION OF A VOICE EXTENSIBLE (51) Int. Cl
MARKUPLANGUAGE APPLICATION FOR A Go,F i700 (2006.01)
VOICE INTERFACE PROCESS GIOL I3/08 (2006.01)

(52) U.S. Cl. 715/239; 704/270.1: 704/E15.044
(76) Inventor: Ramy M. Adeeb, San Francisco,

CA (US) (57) ABSTRACT
A method and system for Extensible Markup Language

Correspondence Address: (XML) application transformation. Specifically, in one
PERKINS COE LLPFMSFT embodiment, a method is disclosed for the generation of
P. O. BOX 1247 markup language applications (e.g., a VXML application) for
SEATTLE, WA 98111-1247 a voice interface process. First, a call flow diagram is con

verted into a in an XML format. The call flow diagram
describes the voice interface process. Next, a lookup table of

(21) Appl. No.: 11/877,571 entries in XML is created by mapping a plurality of audio files
and their corresponding textual representations with audio

(22) Filed: Oct. 23, 2007 states in the. Then, an intermediate application is created in
the XML format from the by merging corresponding entries

Related U.S. Application Data in the lookup table with the audio states. Finally, the interme
diate application is transformed into a second application of a

(63) Continuation of application No. 10/285,894, filed on second markup language format that is a static representation
Oct. 31, 2002, now Pat. No. 7,287,248. of the call flow diagram.

Transfoll
E. preliminary VXML E. standard templates for each of the various SE of states

a plurality of states that comprises the
the plurality C states Correspond to a E. flow diagra

Expanding features eitbedded in the E. of states to
be induded frn the preliminary VX

59

S1)

g With an an application substantially corn

cation, wherein

that describes a voice interface process

Ciorts

optimizing the preliminary VXML Instructions

Patent Application Publication Jun. 5, 2008 Sheet 1 of 8 US 2008/0134020 A1

iO2 OS

12D 7 OS

TO NetWork

FIG. I.

Patent Application Publication Jun. 5, 2008 Sheet 2 of 8 US 2008/0134020 A1

Converting a caflow diagram describing a volce interface
process into a list of states in an extensible nerkup

language (XML) format
22)

Creating a lookup table of audio states in the XML fgrTThat by
happing a plurality of audio EE and eff

corresponding textuare ions with states in the list
of states that play the audio prompts

CE snintermediate application in the XML format by
merging the states in the list of states that play audio

prompts with corresponding audio states from the lookup
table of adio states

24
Transforming the InterTedate applicatign into a segond

application of a second format that is a detailed
representation of the control flow diagram

FIG 2

US 2008/0134020 A1 2008 Sheet 3 Of 8 Jun. 5, Patent Application Publication

Patent Application Publication Jun. 5, 2008 Sheet 4 of 8 US 2008/0134020 A1

CFL Doctagt

UST OF STATES

Module/ 410

State 1 (Start) ? 41
State 2 (input)
State 3 (Fork)
State 4 Audio

45
TE Document

340 49

MERGED STATES

Module

State 1 (Start) 25
State 2 (input) -

errrrrrrrrrrrrow

Audio State for
State 2. Inaamaa

SL current state 3 (Fork," 427
335 State 4 (Audio),

Ato State for
LOOK UP TABLE OF
AUDIOSCRIPT

Module 1410

AggieSat
ASSEfe?. Site

4

425

420

FG, 4.

Patent Application Publication Jun. 5, 2008 Sheet 5 of 8 US 2008/0134020 A1

51)

Transforning an application substantially gig With a
XML for patinopriminary WXML instructions E. standard tepates for each of the various types of states
a plurality of sales that comprises the application, wherein the pluratiyostates Correspond to a critrol flow diagram

that describes a voice interface process

52O

Expanding features eribedded in the P of states to
be induded in the preliminary VXML Ciorts

Optimizing the preliminary WXML structions

FIG, .5

US 2008/0134020 A1 Jun. 5, 2008 Sheet 6 of 8 Patent Application Publication

5?g"--~~~~-------------~--~~~~~-----------------------

Patent Application Publication Jun. 5, 2008 Sheet 7 of 8 US 2008/0134020 A1

C stan 705
710

Welcore to
Conster Services

To continue in English, "Espano
5by English.
"English Sorry, this demo doesn't support Spanish.

717 71
Okay then, pleage say
or enter your hone My mistake
phone number
50-428-0519

9 720

Ye ES. No
N 725 Yes'

AN logkup

N Registered? Sorry, not registered

Catl login? your account.

Y

As of Sty 5, your balances
S72.6), and gent ls due to

(M.

You can say Pa
My Billor Request a

CGIt
Pay My BI

Requesacredit MainMenu" Account Balance"
Maln Teru ...

Bitting Cuestions

"Pay My BEl-Request a Credit Calling Plans
73D

Billing Ouestions. S Firs. So Pynya Request a Credit signity isn't IE G
available for this demo. for this deno.

FIG 7

Patent Application Publication Jun. 5, 2008 Sheet 8 of 8 US 2008/0134020 A1

123 enoMainGathorne hone

810

Please say or enter your home phone
820 number, starting with the area code. Main prompt

Reprompt

I'm sorry, I didn't get that. Please say or enter Noratch 1 your horte t
B3D

I'm sorry, still didn't get that. Please enter Nolatch 2 your home phone A.
Irm SOfy, didn't hear you, Please say or Notnput 1 enter SG Of y

O -

B4 'm sorry, is didn't hear you, Please enter
your home phone nurnber
Please say of enter your home phone

850 number.

O R DTMF

650-428-0919

Action

Programming
Notes

FIG. 8

880

US 2008/0134020 A1

METHOD AND SYSTEM FOR THE
GENERATION OF A VOICE EXTENSIBLE
MARKUPLANGUAGE APPLICATION FORA

VOICE INTERFACE PROCESS

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 Embodiments of the present invention relate to the
field of data processing systems having an audio user inter
face and is applicable to electronic commerce. More particu
larly, embodiments of the present invention relate generally to
the generation of markup language applications for a voice
interface process.
0003 2. Related Art
0004 As computer systems and telephone networks mod
ernize, it has become commercially feasible to provide infor
mation to users or Subscribers over a Voice interface, e.g.,
telephone and other audio networks and systems. These ser
vices allow users, i.e., “callers to interface with a computer
system for receiving and entering information. As used
herein, "caller” refers generically to any user interacting over
an Voice interface, whether via telephone or otherwise.
0005. A number of these types of phone services utilize
computer implemented automatic Voice recognition tools
(e.g., automated speech recognition systems) to allow a com
puter system to understand and react to a caller's spoken
commands and information. This has proven to be an effec
tive mechanism for providing information since telephone
systems are ubiquitous, familiar to most people and relatively
easy to use, understand and operate. When connected, the
caller listens to information and prompts provided by the
service and can speak to the service giving it commands and
other information, thus forming a voice interface.
0006 Additionally, these phone services can be integrated
within the worldwide web (e.g., Internet) to move audio data
efficiently across the web to a telephonic user. More and more
web devices will be developed to take advantage of the inter
net infrastructure for providing information data. In particu
lar, voice can be used to interface with these phone services.
0007. The phone service via a voice interface performs
Some task as requested or commanded by the user of the Voice
interface (e.g., information retrieval, electronic commerce,
Voice dialing, etc.). Once the task is understood and an overall
process is outlined for accomplishing the task, a computer
implemented application is written that provides the instruc
tions necessary for allowing the user to interact with the Voice
interface to accomplish the task.
0008. In particular, instructions for implementing the pro
cess can be written in the Voice Extensible Markup Language
(VXML). The VXML language is a web-based markup lan
guage for representing human to computer dialogs, and is
analogous to the Hypertext Markup Language (HTML). The
VXML language interacts with a voice browser that outputs
audio that is either recorded or computer generated. Also, the
VXML language assumes that input through Voice or tele
phone pad is provided as audio input. Additionally, VXML as
a high-level, domain-specific markup language is currently
being proposed to the WorldWideWeb Consortium (W3C) as
the standard language for Voice applications over the Voice
web marketplace.
0009 Creating the particular VXML application for a par

ticular phone service can be particularly time consuming and
an inefficient use of human resources once the actual coding
process begins. To create the VXML application, the process

Jun. 5, 2008

includes creating the design documents that outline the over
all Voice interface process as envisioned by the customer and
the Voice application developer. Next, the Voice application is
coded by hand in VXML from the design documentation to
provide the instructions necessary for the user to interact with
a phone service using the Voice interface through a network.
0010 Typically, a software developer is assigned the task
of coding each of the various steps required in the Voice
interface process. At times, this becomes a redundant exercise
as many sequences of instructions and various parts of the
coded instructions are repeatedly used throughout the final
coded Voice application. Furthermore, as the Voice interface
process becomes more complex, the amount of repetition and
the chance for error in writing the code increases.
0011 Moreover, once the VXML application is com
pleted, additional documentation may be provided to the
phone service in Support of the Voice application. Usually this
additional documentation provides for further representa
tions of the VXML application in a coded format (e.g., a web
based representation of the voice interface process). How
ever, additional time and resources are necessary to generate
and code these further representations of the VXML applica
tion.

SUMMARY OF THE INVENTION

0012. Accordingly, various embodiments of the present
invention disclose a method and system for an extensible
framework from which a Voice Extensible Markup Language
(VXML) application can be automatically generated from
design documentation of a voice interface process, thus uti
lizing human resources more efficiently, and reducing the
chance for errors in writing the coded application. Moreover,
embodiments of the present inventionallow for the automatic
generation of various other representations of a Voice inter
face process, Such as, hypertext markup language (HTML)
documentation, or any other application based markup.
0013 Specifically, embodiments of the present invention
describe a method and system for Extensible Markup Lan
guage (XML) application transformation. Specifically, in one
embodiment, a method is disclosed for the automatic genera
tion of markup language applications (e.g., a VXML appli
cation) for a voice interface process.
0014. A call flow diagram is converted into a list of states
in an XML format. The call flow diagram is part of the design
documentation that describes the steps to the voice interface
process. Each of the steps in the call flow diagram is repre
sented by a state in the list of states. Descriptions relating to
the type of state and the next transition state are included in
the list of states. As such, the list of states is a high level and
intermediate representation of the call flow diagram.
0015 Next, a lookup table of entries in XML is created to
map audio prompts and their audio files with corresponding
audio states in the list of states. The lookup table of entries is
created from a textual format of a spreadsheet that displays a
plurality of audio prompts for audio files and their corre
sponding textual representations with their corresponding
states that play an audio file. More particularly, the lookup
table of entries comprises an audiopath to the location of each
of the particular audio files, or the particular audio file itself.
0016. Then, an intermediate application is created in the
XML format by starting from the list of states along with their
corresponding state and transition information, and in par
ticular, merging corresponding entries in the lookup table
with associated audio states. The intermediate application at

US 2008/0134020 A1

this point is still a high-level XML representation of the call
flow diagram and the voice interface process. The XML rep
resentation provides for a well defined and highly flexible
representation of the Voice interface process.
0017. The intermediate application is then transformed
into a second application of a second format that is a repre
sentation of the call flow diagram. Since the intermediate
application is in a structured and well defined extensible
XML format, transformation to other extensible and non
extensible markup languages is possible. In one embodiment,
the second application is in a VXML format. In another
embodiment, the second application is in an HTML format to
provide for web page documentation of the voice interface
process. In still another embodiment, the second application
is in a text format to provide for test case documentation in a
quality assurance capacity.
0018. The transformation operations used to generate the
VXML application from the intermediate XML representa
tion of the call flow diagram are described in a three stage
process, in one embodiment. First, each of the states and their
associated information in the intermediate XML representa
tion is transformed into preliminary VXML instructions. This
is accomplished using a standard template that corresponds to
the particular state that is being transformed. Second, features
that have not been implemented in the XML code for the
intermediate XML representation is fully expanded in the
VXML code format. This provides for a detailed coded
implementation of the Voice interface process. Third, optimi
zation of the VXML code is performed in order to streamline
and conform to the VXML format. In particular, redundant
states or steps are eliminated and various “if steps are com
bined.

BRIEF DESCRIPTION OF THE DRAWINGS

0019 FIG. 1 is a logical block diagram of a computer
system with Extensible Markup Language (XML) transfor
mation capabilities, in accordance with one embodiment of
the present invention.
0020 FIG. 2 is a flow chart of steps in a method for the
transformation of design documentation into a web based
application that is a detailed representation of the call flow of
the design documentation, in accordance with one embodi
ment of the present invention.
0021 FIG.3 is a data flow diagram illustrating the flow of
data through the application generator, in accordance with
one embodiment of the present invention.
0022 FIG. 4 is a data flow diagram illustrating the merg
ing of audio states including audio prompts from a look-up
table with corresponding states that play audio files corre
sponding to the audio prompts during the creation of the
intermediate XML application, in accordance with one
embodiment of the present invention.
0023 FIG. 5 is a flow chart of steps in a method for the
transformation of design documentation to a VXML applica
tion that is a detailed representation of the call flow from the
design documentation, in accordance with one embodiment
of the present invention.
0024 FIG. 6 is a data flow diagram illustrating the flow of
data to transform scripts of states in the intermediate XML
application into default preliminary VXML instructions, in
accordance with one embodiment of the present invention.
0025 FIG. 7 is an exemplary call flow diagram of steps in
a first module of states for services performed in connection

Jun. 5, 2008

with accessing account information via a voice interface pro
cess, in accordance with one embodiment of the present
invention.
0026 FIG. 8 is an diagram of an exemplary web page
illustrating the transformation of the intermediate application
into the hypertext markup language format, in accordance
with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0027. Reference will now be made in detail to the pre
ferred embodiments of the present invention, a method of
automatic generation of a Voice Extensible Markup Lan
guage (VXML) application from design documentation of a
Voice interface process, and a system for implementing the
method, examples of which are illustrated in the accompany
ing drawings. While the invention will be described in con
junction with the preferred embodiments, it will be under
stood that they are not intended to limit the invention to these
embodiments. On the contrary, the invention is intended to
cover alternatives, modifications and equivalents, which may
be included within the spirit and scope of the invention as
defined by the appended claims.
0028. Furthermore, in the following detailed description
of the present invention, numerous specific details are set
forth in order to provide a thorough understanding of the
present invention. However, it will be recognized by one of
ordinary skill in the art that the present invention may be
practiced without these specific details. In other instances,
well known methods, procedures, components, and circuits
have not been described in detail as not to unnecessarily
obscure aspects of the present invention.
0029. Notation and Nomenclature
0030 Some portions of the detailed descriptions which
follow are presented in terms of procedures, steps, logic
blocks, processing, and other symbolic representations of
operations on data bits that can be performed on computer
memory. These descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. A procedure, computer executed step, logic
block, process, etc., is here, and generally, conceived to be a
self-consistent sequence of steps or instructions leading to a
desired result. The steps are those requiring physical manipu
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated in a computer system. It has
proven convenient at times, principally for reasons of com
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.
0031. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing terms
Such as "creating.” “transforming.” “merging.” “expanding.”
“optimizing. "applying.” “combining. "eliminating.” or the
like, refer to the action and processes of a computer system, or
similar electronic computing device, including an embedded
system, that manipulates and transforms data represented as
physical (electronic) quantities within the computer system's
registers and memories into other data similarly represented

US 2008/0134020 A1

as physical quantities within the computer system memories
or registers or other Such information storage, transmission or
display devices.
0032 Referring to FIG. 1, embodiments of the present
invention are comprised of computer-readable and computer
executable instructions which reside, for example, in com
puter-readable media of a computer system, such as a VXML
generator. FIG. 1 is a block diagram of exemplary embedded
components of Such a computer system 100 upon which
embodiments of the present invention may be implemented.
0033 Exemplary computer system 100 includes an inter
nal address/data bus 120 for communicating information, a
central processor 101 coupled with the bus 120 for processing
information and instructions, a Volatile memory 102 (e.g.,
random access memory (RAM), static RAM dynamic RAM,
etc.) coupled with the bus 120 for storing information and
instructions for the central processor 101, and a non-volatile
memory 103 (e.g., read only memory (ROM), programmable
ROM, flash memory, EPROM, EEPROM, etc.) coupled to the
bus 120 for storing static information and instructions for the
processor 101. Computer system 100 may also include vari
ous forms of disc storage 104 for storing large amounts of
information.
0034. With reference still to FIG. 1, an optional signal
Input/Output device 108 is coupled to bus 120 for providing
a communication link between computer system 100 and a
network environment. As such, signal Input/Output (I/O)
device 108 enables the central processor unit 101 to commu
nicate with or monitor other electronic systems or analog
circuit blocks that are coupled to the computer system 100.
The computer system 100 is coupled to the network (e.g., the
Internet) using the network connection, I/O device 108, such
as an Ethernet adapter coupling the electronic system 100
through a fire wall and/or a local network to the Internet.
0035 An output mechanism may be provided in order to
present information at a display 105 or print output for the
computer system 100. Similarly, input devices 107 such as a
keyboard and a mouse may be provided for the input of
information to the computer system 100.
0036 Voice Extensible Markup Language Generator
0037 Accordingly, various embodiments of the present
invention disclose a method and system for an extensible
framework from which various markup language applica
tions can be automatically generated from design documen
tation of a Voice interface process, thus utilizing human
resources more efficiently. Moreover, embodiments of the
present invention allow for the automatic generation of Vari
ous other representations of a Voice interface process, such as,
HypertextMarkup Language (HTML) documentation, or any
other application based markup.
0038. In one embodiment, the extensible framework gen
erates a VXML application as a representation of a Voice
interface and is implemented via a gateway system running
Voice browsers that interpreta Voice dialog markup language
in order to deliver web content and services to telephone and
other wireless devices.
0039. The VXML language is a web-based markup lan
guage for representing human to computer dialogs, and is
analogous to HTML. The VXML language assumes a voice
browser with audio output that is either recorded or computer
generated. Also, the VXML language assumes that audio
input through voice or telephone pad is provided as audio
input. VXML is an XML application that defines a tree-like
structure that the user can traverse through using Voice com

Jun. 5, 2008

mands. A VXML Document Type Definition (DTD) defines
the structure and grammar of a particular VXML application
or related applications.
0040 FIG. 2 is a flow chart 200 of steps in a computer
implemented method for the generation of applications from
design documents describing a voice interface process, in
accordance with one embodiment of the present invention.
The method describes an extensible framework from which
the generation of markup language applications from design
documentation of a Voice interface process is possible. The
process disclosed in FIG. 2 is first discussed to provide a
general overview to the method of generating a VXML appli
cation from design documentation. The particularities of the
method is discussed in more detail with respect to the figures
following FIG. 2.
0041. The present embodiment begins by converting a call
flow diagram into a list of states in an XML format, in step 210
of FIG. 2. In effect, the list of states comprises a finite state
machine. The call flow diagram outlines each of the steps
implemented in a Voice interface process. As such, the list of
states describes each of the steps in a voice interface process
as outlined in the call flow diagram. The list of states provides
for a high level representation of the call flow diagram of the
Voice interface process.
0042. In step 220, the present embodiment creates a
lookup table of audio states in the XML format that maps
audio prompts to audio files to corresponding audio states in
the list of states. The lookup table of audio states comprises an
audio path that describes the web based path to the location of
the audio file, and a textual representation of the audio file. In
another embodiment, the lookup table of audio states com
prises the actual audio file itself along with the textual repre
sentation of the audio file.
0043. In step 230, the present embodiment creates an
intermediate application representing the Voice interface pro
cess in the aforementioned XML format. The intermediate
application is created by merging the lookup table of audio
states into the list of States. In particular, audio states in the
lookup table are merged into corresponding states in the list of
states playing an audio playback from an associated audio
file.
0044. In step 240, the present embodiment transforms the
intermediate application in the XML format into a second
application of a second markup language format. In one
embodiment, the second application is of a HTML format,
and wherein the second application is a source code for gen
erating a web page comprising a tabular representation of the
list of states including links between related states.
0045. In another embodiment, the present embodiment
transforms the intermediate application in the XML format
into a second application of a VXML format. The generated
VXML application is a static representation of the call flow
diagram describing the Voice interface, in one embodiment.
As such, the static nature of the VXML application of the
voice interface process allows the voice interface to be imple
mented in any browser environment using any supporting
electronic device.
0046 FIG. 3 is a data flow diagram 300 illustrating the
transformation of the design documentation describing a
Voice interface process into various applications representing
the Voice interface process through an markup application
generator 310, in accordance with one embodiment of the
present invention. A three stage process, as described in the
flow chart 200, is illustrated in the data flow diagram 300.

US 2008/0134020 A1

0047. In stage 1 of the data flow diagram 300, the user
interface design of the Voice interface process is documented
as a call flow diagram 320. The call flow diagram 320 is a flow
chart outlining the various steps and procedures necessary to
implement the Voice interface process. As such, the call flow
diagram 320 is a high-level representation of the voice inter
face process.
0048 Also, in stage 1 of the data flow diagram 300, the
user interface design of the Voice interface process is docu
mented as a master script 325. The master script 325 repre
sents a set of audio states with the audio prompts that are
associated with corresponding states in the list of States that
play an audio file. More particularly, the master script com
prises the audio path through a network to each of the loca
tions of audio files played by those states that play an audio
file. In addition, the corresponding textual representations of
the audio files are included within the master script 325. Also,
the actual audio file can be contained in the master script 325,
in one embodiment. As such, the audio path or audio files and
their corresponding textual representations can be cross-ref
erenced with the corresponding states that play an audio file.
0049. In one embodiment, the master script 325 is created
in a textual format, such as, the Excel spreadsheet format, and
can be saved as a tab delimited text file. Moreover, the master
Script is written in normal Script and not concatenated Script,
in one embodiment.

0050. Both the call flow diagram 320 and the master script
is inputted into the application generator 310 in stage 2 of
FIG. 3, in one embodiment. In the first half of stage 2 of the
data flow diagram 300, intermediate presentation 1, the call
flow diagram 320 is converted into the XML format that
conforms to a control flow language (CFL) outlined by a
document type definition (DTD), in one embodiment. The
conversion creates the list of states in the CFL language of the
XML format, and corresponds to step 210 of FIG. 2.
0051. The CFL document is an XML representation of an
application consisting of one or more modules. Each of the
modules is a collection of States, or more accurately, a finite
state machine. As such, the CFL document is a list of states
330. Each of the states include the type of state, the name of
the state, and the transitions between states. Embodiments of
the present invention enable the conversion to the CFL format
through a transformation script or through a web interface.
0052. In one embodiment, the call flow diagram 320 is
created using the Microsoft Visio application. By following a
predetermined set of rules for representing the user interface
design of a Voice interface process in Visio, the application
generator 310 through a transformation script can automati
cally transform the call flow diagram into the CFL format.
0053 A document type definition (DTD) for XML scripts
conforming to the CFL language is outlined below. It is appre
ciated that the CFL DTD is exemplary only, and that other
DTDs can be created to transform the call flow diagram 320
into a corresponding XML format for further transformation.
The exemplary CFL DTD is as follows in Table 1:

TABLE 1.

* Call flow Language DTD. CFL is an XML
* representation of the Call flow of a Voice
* Application. CFL represents a finite state
* machine with a type and a name for each state
* and the transitions between states. CFL does not

Jun. 5, 2008

TABLE 1-continued

* include any information on the inner components
* of the states or the associated output.

Describes an application as a finite state machine
of one or more states
-->

<!ELEMENT application (state--)>

Used to uniquely identify the state. Each state
has a type and unique name. Type can be one of six
different types:
start: start state, has one transition
fork, a state where a Boolean decision is evaluated

that determines the call flow. Has two
elements, Ontrue and onfalse

audio, A State where audio is queued, has one
transition

input: A State where user input is obtained. Can
have multiple transitions based on the user's
input, determined through the idresult
attribute of the transition tag

system: A State where system operation takes place
magicaudio: A State where audio is queued using the

magic audio property
module: A link to a different module altogether.
End: The last state, only one per application.

Has no child elements
-->

<!ELEMENT state transition*, Ontrue, onfalse,
module)>

&ATTLIST State

name ID #REQUIRED
type (start forklaudio inputSystem

magicaudio module end) #REQUIRED
>

Defines a transition from one state to another.
Either one transition exists determining the next
state, or multiple transitions exist based on the
result of the current state in which case the
ifresult tag is used
-->

&ELEMENT transition EMPTYs
<ATTLIST transition

leX CDATA #REQUIRED
ifresult CDATA HIMPLIED

>

Defines a transition for “fork” type states when
the result of the conditional is true
-->

&ELEMENT Ontre EMPTY
&ATTLIST ontrue

next CDATA #REQUIRED
>

Defines a transition for “fork” type states when
the result of the conditional is false
-->

&ELEMENT onfalse EMPTY
&ATTLIST onfalse

next CDATA #REQUIRED
>

Defines the module properties for “module' type
state name is the name of the module, while
location is the URI for the CFL representation of
the module
-->

&ELEMENT nodle EMPTY
&ATTLIST module

l8le CDATA #REQUIR)
location CDATA #REQUIR)

E D
E D

US 2008/0134020 A1

0054 FIG. 7 illustrates a call flow diagram 700 of an
exemplary voice interface process used as an example
throughout this Specification, in accordance with one
embodiment of the present invention. The call flow diagram
700 describes a voice interface allowing a user to interact with
the consumer services division of a company in order to
access an account balance.

0055 An exemplary set of rules as outlined in the CFL
DTD for representing the user interface design of a voice
interface process is outlined in the following paragraphs, and
as is shown in FIG. 7. It is appreciated that the predetermined
set of rules can vary depending on the various approaches that
can be implemented for transforming the call flow diagram
320 into the CFL language.
0056. The Visio call flow is comprised of one or more
modules that represent the call flow diagram 320. A module
consists of a finite set of states, wherein each of the states is a
represented block or step in the call flow diagram 320. For
example, in FIG. 7, block 710 represents a non-interactive
input state, where the Voice interface application is not
expecting a response from the user. More particularly, a mod
ule is specified using a set of states connected to each other via
state transitions. In addition, a module must have exactly one
start state. Module names must be unique throughout the
application generated from the call flow diagram 320. Also, a
module may reference other modules in the application via
module states.

0057. In one embodiment, modules may be internal (e.g.,
by copy) or external (e.g., by reference only). An internal
module is a module that is not a standalone application. A
Classic example is explicit confirmation. During implemen
tation, internal modules are implemented by replacing the call
to the module with the actual module code, hence the syn
onym “by copy.”
0.058. On the other hand, an external module is one that
can be a stand alone application. Examples of external mod
ules Include functions like Main Menu. Address Capture,
Package Tracking, and trading. An external module is imple
mented by referencing the module code, hence the synonym
“By Reference.”
0059. In one embodiment, a state in a module is repre
sented via a block shape in Visio. Each state may have Zero or
more state transitions depending on its type. A state transition
is represented by connecting between the various blocks in
the call flow diagram. A state transition may have associated
text, depending on the type of the predecessor State. The text
associated with state transitions is referred to as transition
text.

0060 A state must be one of the following types: start,
input, binary fork, multiple fork, non-interactive audio, sys
tem, magic word, module, and end state. The state type is
determined through the shape used to represent the state, as
will be discussed as follows:

0061. A start state is represented in the call flow diagram
320 using the shape of a circle. Block 705 of FIG. 7 is an
example of a start state. A start state must have no predeces
sor. A start state must have exactly one Successor. Transition
text coming out of the start state is not required and will be
ignored. A start state must have a state name that indicates the
name of the module. The name can be specified either through
the “State Name” property, or through the actual text inside
the state shape. In addition, a start state must have a “Module
Type' property indicating the type of the module.

Jun. 5, 2008

0062 An input state is represented using the “Input or
Form' square box. Block 715 of FIG. 7 is an example of an
input state. An input state is one where user is prompted for an
input that is then recognized againstagrammar. An input state
must have one or more predecessor. An input state must have
one or more Successors. Transitions to the next step or block
indicate the input result associated with the transition. At
most one transition out of an input state may have no associ
ated text, in which case it will be considered the default
transition. The Audio Path' custom property for an input
state must be specified. It must match a path in the associated
master script of the lookup table 325.
0063 A binary fork state is represented using the “Fork
Decision” diamondbox. Block 720 of FIG. 7 is an example of
a binary fork state. A binary fork state indicates the perfor
mance of a Boolean decision that is either true or false. A
binary fork State must have one or more predecessors. Also, a
binary fork State must have exactly two Successors. Transi
tions out of the binary fork states must have the associated text
“YES and “NO.

0064. A multiple fork state is represented using the “Fork
Decision” diamondbox. A multiple fork state indicates fork
ing the call flow into various paths depending on the value of
a certain variable or state. A multiple fork State must have one
or more predecessor. A multiple fork State must have at least
two Successors. Transitions out of the multiple fork State can
have associated text. At most one transition out of a multiple
fork state may have no associated text, in which case it will be
considered the default transition.

0065. A non-interactive audio state is represented using
the “non-interactive audio” box. Block 725 of FIG. 7 repre
sents a non-interactive audio block. A non-interactive audio
state must have one or more predecessor. A non-interactive
audio state must have exactly one Successor. Transition text
coming out of the non-interactive audio block is not neces
sary. The “audio path’ property for a non-interactive audio
state must be specified. It must match a path in the associated
lookup table in the master script 325.
0066. The non-interactive state has a required “Function'
property. The “function' can be either “Oueue Audio” or
“Queue and Play Audio'. "Queue Audio' is the default value
and means the audio will be queued but will not be played
until the next listen state. "Queue and Play Audio” means the
audio will be played in the current state. If the audio is played,
no special state grammar will be active but the user will be
allowed to utter any of universal commands recognized by the
application generated by the application generator 310.
0067. A system process state represents one of the various
system functions. Block 725 of FIG. 7 illustrates a system
state. A system process state must have one or more prede
cessor. A system process state may have 0 or 1 successors
depending on the system function. Functions include: Trans
fer, Record, Application Programming Interface (API) Call,
Data, and Disconnect. Transfer Function represents a call
transfer, and may or may not have a successor. Record repre
sents a recording state. A Record State must have one succes
sor. The API Call is a call to an external API through the data
tag. API Calls must have one successor. The data function is
where actual manipulation of data takes place. Data manipu
lation implies assigning values to variables that are used later
in the application. Data functions must have one successor.
Disconnect function ends the call by hanging up on the user.

US 2008/0134020 A1

A disconnect function may have no successors implying end
of the call, or may have one successor implying post hang up
processing.
0068 A magic-word content audio state is represented
using the “magic-word content box. The application imple
menting the call flow diagram 320 can be interrupted with a
particular “magic-word,” but otherwise in not interruptible. A
magic-word content state must have one or more predecessor.
A magic-word content state must have exactly one Successor.
Transition text on coming out of the magic-word State is not
necessary.

0069. A module state is represented using the “subroutine
or module box. Block 730 of FIG. 7 illustrates a module
block. A module state must have one or more predecessor. A
Module state may have either no or one successors. A module
is allowed to have a successor if and only if the actual called
module has a return state. The actual module to be called
needs to be specified either through the “Module' property of
the state. If the “Module' property is empty, the state text is
used instead.

0070 An end state is represented using the “End' circle
box. An end state is only allowed in internal modules. Exter
nal Modules may or may not have an end State. An end State
must have one or more predecessor. An end State can not have
a successor. An end state must be one of two types: “Return”
end state or “Reprompt' end state. The end state type is
specified through the state text. A “Return' state implies
returning from the current module. The transition to the return
state is replaced with a transition to the, then required, suc
cessor to the calling module state. A “Reprompt” state implies
transitioning to a previously visited prompt state. The transi
tion to the “Reprompt” state will be replaced with a transition
to the first input state that is a predecessor of the actual
module state.

0071. An exemplary example of the list of states 330 in the
CFL language is provided below. The example of the list of
states 330 in the CFL language corresponds to a portion of the
blocks in FIG. 7 (blocks 705, 710, 715, 717, 718, 719, 720,
and 725) as outlined below in Table 2. Corresponding blocks
are noted in enclosed brackets, such as, (block 705).

TABLE 2

</module>
<module name="Main' type ='external's

(block 705)
<state type='start name="Main's
<transition next= “DemoMainWelcomes
<states (block 710)

<state type="audio”
name="DemoMainWelcome
audiopath="0300 demo/main? welcome?'s

<transition next=
"DemoMainGetLanguage"'>

</states (block 715)
<state type="input"

name="DemoMainGetLanguage"
audiopath="0300 demo/main get-language''>

<transition next=
"DemoMainGetHomePhone" ifresult="English"/>

<transition next=
"DemoMainGetLanguageSpanish" ifresult="Espanol">

</states (block 717)
<state type="input"

name="DemoMainGetHomePhone" audiopath=
"0300 demo/main get home phone?">

<transition next="Used Voice"
ifresult="650-428-0919">

</states (block 725)
<state type="audio"

Jun. 5, 2008

TABLE 2-continued

name="DemoMainGetLanguageSpanish" audiopath="0300
demo/main get language? spanish.wav'>

<transition next=
"DemoMainGetHomePhone">

</states (block 720)
<state type="fork" name="Usedvoice">

<transition next=
"DemoCommonConfirmPhonenumber" ifcond="true">

<transition next="AniLookup"
ifcond="false">

<feature name="used voice">
</states (block 725)

<state type="system" name="AniLookup">
<transition next="Registered"/>
<property name="Function"

value="Data">

(0072 Returning back to FIG.3, the master script 325 text
document containing the audio prompts is converted into the
XML format that conforms to a master script language (MSL)
outlined by a document type definition (DTD), in one
embodiment. The MSL document is an XML representation
of the states that play an audio file. The MSL document
represents a look-up table of audio states 335 with the audio
prompts necessary for states in the list of states to play their
associated audio files. Conversion to the look-up table of
audio states 335 corresponds to step 220 of FIG. 2. Embodi
ments of the present invention enable the conversion to the
MSL language through a transformation Script or through a
web interface.
(0073. A document type definition (DTD) for XML scripts
conforming to the MSL language is outlined below. It is
appreciated that the MSL DTD is exemplary only, and that
other DTDs can be created to transform the master script 325
into a corresponding XML format for further transformation.
The exemplary MSL DTD is as follows in Table 3:

TABLE 3

<!--
* Master Script Language DTD. MSL is an XML
* representation of the Master Script submitted
* with a Voice Application. MSL represents a set
* of states with the audio prompts played in each
* state. MSL does not describe the transitions
* between the states or their relationship to each
* other.
-->

<!--
Describes an application as a set of one or more
States
-->

<!ELEMENT application (state--)>
<!--
Used to uniquely identify the state. Each state has
a name and an optional audiopath as attributes. A
state can have audio elements as direct children,
or can have audio elements grouped together under
some Sub-stat one of ni1. ni2, nm1, m2, m3, and
help.
-->

<!ELEMENT state (audio, feature, ni12, ni22,
nm12, nm22, nrn32, help?):

&ATTLIST State
name ID #REQUIRED
audiopath CDATA #IMPLIED

>

<!--
audio can be either a file, or the playback of some
variable, Such as on playing back a phone number

US 2008/0134020 A1

TABLE 3-continued

obtained at the state GetPhoneNumber. In this case
value will be GetPhoneNumber and type will be
phoneNumber. Value is used to determine the data
flow, while type is used to determine the
JavaScript function used to generate the audio
-->

&ELEMENT aldo EMPTY
&ATTLIST audio

SC CDATA #IMPLIED
tS CDATA #IMPLIED
value CDATA HIMPLIED
type CDATA #IMPLIED

>

<!--
Intrastate components
-->

<!ELEMENT ni1 (audio)>
<!ELEMENT ni2 (audio)>
<!ELEMENT nrn1 (audio)>
<!ELEMENT nrn2 (audio)>
<!ELEMENT nrn3 (audio)>
<!ELEMENT help (audio)>

&ELEMENT feature EMPTY
&ATTLIST feature

name CDATA #REQUIR)
id CDATA #REQUIR)

E D
E D

0.074 An exemplary example of the look-up table of audio
states 335 in the MSL language of the XML format is pro
vided below. The example of the look-up table of audio states
in the MSL language corresponds to block 717 of FIG. 7 as
outlined below in Table 4.

TABLE 4

</states
<state name="030ODemoMainGetHomePhone"

audiopath="0300 demo/main get home phone?'
type="input">

<audio src="prompt,wav"tts="Please say
or enter your home number, starting with the area
code.">

sorry, I didn't hear you. Please say or enter
your home phone number.">

<ni2>
<audio src="ni2.wav'tts="I'm

sorry, I still didn't hear you. Please enter
your home phone number.">

<nm1>
<audio src='nm1.wav'tts="I'm

sorry, I didn't get that. Please say or enter
your home phone number.">

<nm2>
<audio src='nm2.wav'tts="I'm

sorry, I still didn't get that. Please enter
your home phone number.">

Sorry, I'm having trouble understanding. Using
your telephone keypad, please enter your home phone
number.">

<helps

Jun. 5, 2008

TABLE 4-continued

<audio src="help.wav"tts="Please
say or enter your home phone numbers

</helps
</states

0075 Returning back to FIG. 3, in part 2 of stage 2, the
intermediate presentation II, the list of states 330, which
conforms to the CFL language, and the look-up table of audio
states 335, which conforms to the MSL language, are com
bined together into an XML representation of the entire user
interface design documents (e.g., the call flow diagram 320
and the master script 325). The combined XML representa
tion is referred to an intermediate XML application, and
corresponds to step 240 of FIG. 2.
0076. In one embodiment, the combined XML represen
tation is referred to as the Tellme User Interface Design Lan
guage, or TUIDL. The TUIDL document represents an appli
cation as a set of modules. Each module is a finite state
machine. The actual content of the state and the transition
between states is explicitly specified as a high level represen
tation of the Voice interface process.
(0077. A document type definition (DTD) for XML scripts
conforming to the TUIDL language is outlined below. It is
appreciated that the TUIDL DTD is exemplary only, and that
other DTDs can be created to merge the look-up table 335 of
audio states with the list of states 330 master script 325. The
exemplary TUIDL DTD is as follows in Table 5:

TABLE 5

<!--
* Tellme User Interface Design Language DTD. TUIDL
* is an XML representation of the complete design
* of the User Interface Voice Application. TUIDL
* represents an application as a set of modules.
* Each module is a finite state machine. The actual
* content of the state and the transition between
* states is explicitly specified.
* of each state
-->

<!--
Describes an application as a finite state machine
of one or more modules
-->

<!ELEMENT application (module+)>
<!--
Used to uniquely identify a module. Each module
has a type and unique name. Type can be either
internal or external
-->

<!ELEMENT module (state--)>
&ATTLIST module

name ID #REQUIRED
type (internal external) #IMPLIED

>

<!--
Used to uniquely identify the state.
Children include:
transition: transition to the next state
property: Set of state specific properties
feature: UI Features to be applied to the state
-->

<!ELEMENT state (property | feature transition |
audio | ni1 | ni2 |nm1 Inm2 |nm3| help)*>
<!--
Attributes for a state include:
name: Required ID
audiopath. Required for states where audio is
queued

US 2008/0134020 A1

TABLE 5-continued

type. Can be one of:
start: start state, has one transition
fork: a state where a Boolean decision is

evaluated that determines the call flow.
Has two elements, on true and onfalse

audio: A State where audio is queued. has one
transition

multiplefork: a state where a forking takes
place

input: A State where user input is obtained.
Can have multiple transitions based on the

user's input, determined through the
idresult attribute of the transition tag

system: A State where system operation takes
place. Can have anywhere between 0-2
transitions

magicaudio: A State where audio is queued
using the magic audio property module. A
ink to a different module.

return:
reprompt:
end: The last state in a module. Has no child

elements
-->

&ATTLIST State

name ID #REQUIRED
type (start | fork | multiplefork |

audio input system magicaudio l module
return reprompt | end) #REQUIRED

audiopath CDATA #IMPLIED
>

<!--

audio can be either a file, or the playback of some
variable, Such as on playing back a phone number.
value is used to determine the data flow, while
type is used to determine the JavaScript function
used to generate the audio
-->

&ELEMENT audio EMPTY
&ATTLIST audio

SC CDATA #IMPLIED

tS CDATA #IMPLIED
value CDATA HIMPLIED
type CDATA #IMPLIED

>

<1--
Intrastate components for input states
-->

<!ELEMENT ni1 (audio>
<!ELEMENT ni2 (audio)>
<!ELEMENT nm1 (audio)>
<!ELEMENT nm2 (audio)>
<!ELEMENT nm3 audio)>
<!ELEMENT help (audio):
<!--
Defines a transition from one state to another.
Either one transition exists determining the next
state, or multiple transitions exist based on the
result of the current state in which case the
ifresult tag is used
-->

&ELEMENT transition EMPTYs
<ATTLIST transition

next CDATA #REQUIRED
ifresult CDATA HIMPLIED

ifcond (true false) #IMPLIED
>

<!ELEMENT property EMPTYe
<! ATTLIST property

name CDATA #REQUIRED
value CDATA HIMPLIED

>

&ELEMENT feature EMPTY

Jun. 5, 2008

TABLE 5-continued

&ATTLIST feature
name CDATA #REQUIRED
value CDATA HIMPLIED

(0078. The merging of the list of state 330 in the CFL
language and the look-up table of audio states 335 in the MSL
language is accomplished through mapping the audiopath
properties of the various states of the CFL document 330 with
the audio path of the various states of the master script 335.
States in the CFL document 330 may maintain a many to one
relationship with states in the MSL document 335, e.g., more
than one state in the CFL document 330 may map to the same
audio state playing an audio file in the MSL document 335.
However, at most one audio state in the MSL document 335
may map into a state in the CFL document.
(0079. The merging of the look-up table of audio states 335
with the corresponding audiopath properties of states playing
an audio file in the list of states 330 corresponds to step 230 of
FIG. 2. As such, the merging of the audiopath properties into
corresponding States playing an audio file in the list of states
is a high level XML representation of the voice interface
process.
0080 FIG. 4 is a data flow diagram 400 illustrating the
merging of the audio prompts in the look-up table 335 of
audio states with corresponding states in the list of states 330
conforming to the CFL language. In the list of states 330, a
module 410 is presented in a state machine format. A collec
tion of states 415 comprises module 410 and includes a states
1, 2, 3, 4, etc. State 2 containing states 417 and state 4
containing state 419 are states that play an audio file.
I0081. In the look-up table 335, audio path properties are
contained in audio script for each of the states in the list of
states that play an audio file. A plurality of audio states 420
containing audio prompts for each of the States playing an
audio file comprises the look-up table 335 in the MSL lan
guage. The audio states refer to audiopath properties for the
playing of the audio files. For example, the audiopath prop
erties 425 for input state 2 and the audio path properties 427
for the audio state 4 are illustrated.
0082 To create the TUIDL document 340, the list of states
in the CFL language is merged with the look-up table 335
containing the audio path properties for audio files that are
played, in one embodiment of the present invention. In
essence, each of the audio path properties are incorporated
directly into corresponding states that play an audio file. For
example, the audio path properties 425 for state 2 are directly
incorporated into state 417 corresponding to input state 2.
Also, the audio path properties 427 for state 4 are directly
incorporated into the state 419 corresponding to input state 4.
I0083. An exemplary example of the intermediate XML
application 340 in the TUIDL language is provided below,
and corresponds to a portion of the blocks in FIG. 7 (blocks
717, 725, and 720) as outlined below in Table 6. Correspond
ing blocks are noted in enclosed brackets, such as, (block
717).

TABLE 6

</states (Block 717)
<state type="input'

name="DemoMainGetHomePhone

US 2008/0134020 A1

TABLE 6-continued

audiopath="0300 demo/main get homephone?'>
<transition next=''UsedVoice

ifresult="650-428-0919'>
<audio src="prompt,wav'tts="Please say

or enter your home number, starting with the area
code.>

<ni1>
<audio src="ni1.wav'tts="I'm sorry,

I didn't hear you. Please say or enter your home
phone numbers

</ni1>
<ni2>

<audio src="ni2.wav'tts="I'm sorry,
I still didn't hear you. Please say or enter your
home phone numbers

</ni2>
<nm1>

<audio src="nm1.wavtts="I'm sorry,
I didn't get that. Please enter your home phone
numbers

</nm1>
<nm2>

<audio src="nm2.wavtts="I'm sorry,
I still didn't get that. Please enter your
home phone numbers

</nm22
<nm3>

<audio src="nm3.wavtts="I'm sorry,
Im having trouble understanding. Using your
telephone keypad, please enter your home phone
numbers

</nm3>
<helps

<audio src="help.wav'tts="Please
say or enter your home phone numbers

</helps
</states (BLOCK 725)
<state type="audio”

name="DemoMainGetLangllageSpanish
audiopath="0300 demo/main get languages

<transition next=''DemoMainGetHomePhone's
<audio src="spanish.wav’tts="Sorry, this demo

doesn't Support Spanish. Now continuing in English.
f

</states (BLOCK 720)
<state type="fork” name="Used Voice's

<transition next=
“DemoCommonConfirm Phonenumber ifcond="true's

<transition next="AniLookup
ifcond=false's

<feature name="used voices

0084. In another embodiment, in the design phase, the
audio prompts are not separated from the call flow diagram
320. In that case, the CFL document 330 and the MSL docu
ment 335 would be unnecessary. Instead, two inputs are
directly used in part 2 of stage 2, the intermediate presentation
II. As inputs, the list of states, and corresponding audio paths
with their textual representations are used to create the inter
mediate XML application that represents the voice interface
process.

0085. As such, the application generator 310 establishes
an extensible framework allowing the generation of the vari
ous markup language application from the design documen
tation. The extensible manner of the application generator
200 allows for the generation of VXML application, HTML
applications, or any other application based markup applica
tions, as an output.
I0086 To implement the transformation, the intermediate
XML application 340 is transformed into applications of

Jun. 5, 2008

various formats, in one embodiment of the present invention.
The XML format is a general and highly flexible representa
tion of any type of data. As such, transformation to any
markup language based application can be systematically
performed in an extensible manner.
I0087 As shown in FIG. 3, the application generator 310
can transform the intermediate XML application 340 into a
VXML application 350 that is a static representation of the
call flow diagram 320, in one embodiment. As such, the static
nature of the VXML application 350 of the voice interface
process allows the Voice interface to be implemented in any
browser environment using any supporting electronic device.
I0088. The application generator 310 can also transform
the intermediate XML application 340 into an HTML appli
cation360, in one embodiment. As such, the HTML applica
tion360 is a source code for generating a web page compris
ing a tabular representation of the list of states with links
between related states.
I0089 FIG. 8 is a diagram illustrating the web page or the
HTML document 800 for block 717 of FIG. 7 which corre
sponds to the “DemoMainGetHomePhone” state. The HTML
document 800 corresponds to the voice interface process as
outlined in the call flow diagram 320. In the HTML document
800 is presented in tabular format in one embodiment, but
could easily be presented in other formats in other embodi
ment. The directory name for the state is presented in cell 810.
The various audio prompts and files that are played are dis
played in logical fashion to present an overall process view of
the Voice interface. For example, the main prompt is pre
sented in cell 820.
0090 The transition state is presented in cell 860. As an
added feature in the HTML document 800, links to other
states in the HTML document 800 can also be provided, in
one embodiment. As such, by clicking on the link to “Used
Voice.” the portion of the HTML document corresponding to
the “UsedVoice” state would be presented.
0091. The application generator 310 can also transform
the intermediate XML application 340 into any other appli
cation based markup, or any textual format, in one embodi
ment of the present invention. For example, the application
generator 310 can transform the XML application 340 into an
application of a text format, wherein the textual application is
a quality assurance (QA) application that is used for testing
performance of the VXML application 350.
0092. The application generator 310 is not limited to cre
ating certain functionalities of a voice interface application,
but is designed in an extensible fashion allowing the genera
tion of VXML coded applications that can perform any task,
as long as the task can be represented in a clear and well
defined set of VXML instructions.
(0093 FIG. 5 is a flow chart 500 of steps illustrating a
method for converting the intermediate XML application 340
in the TUIDL language into a VXML application 350, in
accordance with one embodiment of the present invention.
The conversion occurs in a three step process. In step 510, the
present embodiment transforming each state in the interme
diate XML application into preliminary VXML instructions.
Standard templates are used to convert each state in the inter
mediate XML application 340 into a default VXML instruc
tion or representation.
0094 FIG. 6 is a diagram illustrating the application of the
standard templates to convert states in the intermediate XML
application-into VXML instructions. FIG. 6 corresponds to
the process illustrated in step 510 of FIG.5. The script 610 for

US 2008/0134020 A1

state “x” in the intermediate XML application has a defined
state type. The standard template for the state type corre
sponding to state 'x' is applied to the script 610 in the con
version process to VXML instructions.
0095. A plurality of standard templates 610 can be applied

to the script 610 in order to convert the script for state “x’ into
VXML instructions. Embodiments of the present inventions
include numerous standard templates for converting Script for
states into default VXML instructions, including numerous
standard templates for a single type of State. The selected
standard templates are chosen according to design prefer
CCC.

0096. In FIG. 6, the plurality of standard templates
includes the start state template 612. Should the script 610 be
of the start type, the template 612 would be applied to the
script 610 to generate preliminary VXML instructions 620.
Should the script 610 be of the input state type, the template
614 would be applied to the script 610 to generate corre
sponding preliminary VXML instructions 620. Similarly,
should the script 610 be of the audio state type, the template
614 would be applied to the script 610 to generate corre
sponding preliminary VXML instructions 620. This process
would occur for every state in the intermediate XML appli
cation.
0097. An exemplary example of application of the plural

ity of standard templates 610 is provided below, and corre
sponds to the generation of VXML instructions for the blocks
surrounding block 717 of FIG. 7. The VXML instructions are
outlined below in Table 7:

TABLE 7

--: *
* State: DemoMainGetHomePhone
* *---
<form id="DemoMainGetHomePhone">

<field name="DemoMainGetHomePhone">
<grammar src='demomaingethomephone.gs">
<prompte

<audio expr="appsAudioRootPath +
0300 demo/main get home phone/prompt.wave

Please say or enter your home
number, starting with the area code.

</prompts
--: *

Nomatch Handlers
* *---
<nomatch count=1

<audio expr="appsAudioRootPath +
*0300 demo/main get home phone/nm1.wav's

I'm sorry, I didn't
get that. Please say or enter your home phone
number.

</audio>
</nomatch
<nomatch count="2">

<audio expr="appsAudioRootPath +
*0300 demo/main get home phone/nm2. wav's

I'm sorry, I didn't
get that. Please enter your home phone number.

</audio>
</nomatch
<nomatch count="3">

<audio expr="appsAudioRootPath +
*0300 demo/main get home phone/nm3.wav's

I'm sorry, I'm
having trouble understanding. Using your telephone
keypad, please enter your home phone number.

</audio>
</nomatch

Jun. 5, 2008

TABLE 7-continued

--: *
Noinput Handlers
* *---
<noinput count="1">

<audio expr="appsAudioRootPath +
*0300 demo/main get home phone?nil.wav'

I'm sorry, I didn't hear
you. Please say or enter your home phone number.

</audio>
</noinputs
<noinput count="2">

<audio expr="appsAudioRootPath +
*0300 demo/main get home phone?ni2.wav's

I'm sorry, I still
didn't hear you. Please enter your home phone
number.

</audio>
</noinputs
</helps

<audio expr="appsAudioRootPath +
*0300 demo/main get home phone/help.wav's

Please say or enter your home
phone number.

<filled
<goto next="#Used Voice">

</filled
<ffields

<f forms
<form id="DemoMainGetLanguageSpanish">

<blocki>
<audio expr="appsAudioRootPath +

0300 demo/main get languagespanish.wave
Sorry, this demo doesn't

Support Spanish. Now continuing in English.
</audio>
<goto next="#DemoMainGetHomePhone">

</blocki>
<f forms
&form id="UsedVoice">

<blocki>
<if cond="UsedVoice {)">

<goto
next="#DemoCommonConfirmPhonenumber">

<elsef>
<goto next="#AniLookup">

<fif>
</blocki>

<f forms
<form id="Ani Lookup">

<blocki>
<!-- TODO Please insert functionality for

system state AniLookup of Function: Data -->
<goto next="#Registered"/>

</blocki>
<f forms

(0098. Returning now back to flow chart 500 of FIG. 5, in
step 520, the present embodiment expands features embed
ded in the states in the intermediate XML application to be
included in the preliminary VXML instructions. As such, user
interface features are applied to the generated VXML instruc
tions implementing commonly used logic and functionality.
In other words, features are coded tasks that are used over and
over in various applications. The code is repeated in the
various applications. User interface features are applied
through the manipulation of the document object model that
are generated by the standard templates 610 of FIG. 6.
0099. With the use of features, the actual code need not be
entered until the last phase of the transformation process,
during the feature expansion phase. At that point, predeter
mined instructions can be substituted in the VXML instruc

US 2008/0134020 A1

tions that correspond to the features. This is done for each of
the features that are embedded in the preliminary VXML
instructions.
0100 Paying particular attention to Table 7, the script
pertaining to "-form id="UsedVoice'>” has not expanded
the feature named "UsedVoice.” However, Table 8 illustrates
how the feature named "Used Voice” as shown in Table 7 is
expanded with the appropriate code, as follows:

TABLE 8

<f forms
&form id="UsedVoice's

<blocki>
<if cond="application.lastresultSO).

Inputmode == "voice's
<goto

next="#DemoCommonConfirmPhonenumbers
<elsef>

<goto next="#AniLookup's
<fif>

</blocks
<f forms

0101 Returning now back to flow chart 500 of FIG. 5, in
step 530, the present embodiment optimizes the preliminary
VXML instructions. Optimization paths are then performed
to clean up the code. Optimizations include eliminating
redundant states, and combining various “if conditions
together.
0102. As an example of optimization, prior to optimiza

tion, the VXML instructions in Table 7 have separate instruc
tions for Form “Used Voice” and for Form Anilookup.” as is
illustrated below in Table 9:

TABLE 9

&form id="UsedVoice's
<blocki>

<if cond="UsedVoice() >
<goto

next="#DemoCommonConfirmPhonenumbers
<elsef>

<goto next="#AniLookup's
<fif>

</blocki>
<forms
<form id="AniLookup's

<blocki>
<!-- TODO Please insert functionality for

system state AniLookup of Function:
Data -->

<goto next="#Registered's
</blocki>

<forms

0103 However, after optimization, the VXML instruc
tions in Table 9 have been combined such that Form
Anilookup' is eliminated, and its content inserted into the

State Form “Used Voice as is illustrated below in Table 10:

TABLE 10

&form id="UsedVoice's
<blocki>

<if cond="UsedVoice() >
<goto

next="#DemoCommonConfirmPhonenumbers
<elsef>

<!-- TODO Please insert functionality
for system state AniLookup of Function:

Jun. 5, 2008

TABLE 10-continued

Data -->
<goto next="#Registered's

<fif>
</blocki>

<f forms

0104 Referring back to FIG. 5, each of the steps 510,520,
and 530 can be customized to meet certain output require
ments, in accordance with embodiments of the present inven
tion.

0105. In addition, the transformation into the VXML
application of the Voice interface process includes the gen
eration of necessary and accompanying code written in the
JavaScript language, in accordance with one embodiment of
the present invention. The VXML language integrates Java
Script in order to support operations that the VXML language
normally cannot support. As such, Supporting Java Script
code is integrated within the VXML application to support the
necessary and accompanying operations representing the
Voice interface process.
0106 Moreover, each of the steps in the flow charts of
FIGS. 2 and 5 are executed automatically, in accordance with
one embodiment of the present invention. As such, by input
ting the design documents (e.g., the call flow diagram 330 and
the master script 335) into the application generator 310, the
appropriate VXML instructions in the VXML application of
the Voice interface can be automatically generated. Corre
spondingly, HTML documentation of the voice interface pro
cess can be generated automatically. In addition, other
markup based language documents can be generated auto
matically, Such as quality assurance applications, and other
markup based language applications that are representations
of the Voice interface process.
01.07 While the methods of embodiments illustrated in
flow charts 200 and 500 show specific sequences and quantity
of steps, the present invention is suitable to alternative
embodiments. For example, not all the steps provided for in
the method are required for the present invention. Further
more, additional steps can be added to the steps presented in
the present embodiment. Likewise, the sequences of steps can
be modified depending upon the application.
0.108 Embodiments of the present invention, a method
and system for the generation of markup language applica
tions (e.g., a VXML application) for a Voice interface process,
are thus described. While the present invention has been
described in particularembodiments, it should be appreciated
that the present invention should not be construed as limited
by Such embodiments, but rather construed according to the
below claims.

What is claimed is:

1. A method of transformation comprising:
a) converting a call flow diagram describing a voice inter

face process into a list of states in an Extensible Markup
Language (XML) format;

b) creating a lookup table of audio states in said XML
format by mapping a plurality of audio prompts and their
corresponding textual representations with states of said
of States that play audio files associated with said plu
rality of audio prompts;

US 2008/0134020 A1

c) creating an intermediate application in said XML format
and from said list of States by merging audio prompts in
said lookup table with states of said list of states that play
said audio files; and

d) transforming said intermediate application into a second
application of a second format that is a representation of
said call flow diagram.

2. The method as described in claim 1, wherein said d)
comprises automatically transforming said intermediate
application into said second application of said second format
that is a static representation of said call flow diagram.

3. The method as described in claim 1, wherein said second
format is HyperText Markup Language (HTML), and
wherein said second application is a source code for generat
ing a web page comprising a tabular representation of said list
of states with links between related states in said list of states.

4. The method as described in claim 1, wherein said second
format is VXML.

5. The method as described in claim 4, wherein said d)
comprises:

d1) transforming each of said list of states in said interme
diate application into preliminary VXML instructions;

d2) expanding features embedded in said list of states to be
included in said preliminary VXML instructions; and

d3) optimizing said preliminary VXML instructions.
6. The method as described in claim 5, wherein said d1)

comprises:
applying standard templates for each of the various types of

states in said list of states to generate said preliminary
VXML instructions.

7. The method as described in claim 5, wherein said d3)
comprises:

eliminating redundant states; and
combining various “if conditions.
8. The method as described in claim 1, further comprising:
receiving said call flow diagram in a Microsoft VISIO

format before saida).
9. The method as described in claim 1, further comprising:
before said b), receiving a Microsoft Excel spreadsheet in

a text format comprising said plurality of audio prompts
and their corresponding textual representations that are
cross referenced with corresponding states in said list of
states that play said audio files.

10. A method of transformation comprising:
a) creating a call flow application by converting a call flow

diagram describing a voice interface process into a plu
rality of states substantially following an Extensible
Markup Language (XML) format;

b) creating a lookup table comprising a plurality of entries
in said XML format by associating audio prompts for
accessing a plurality of audio files and their correspond
ing textual representations with corresponding states of
said plurality of States that play said plurality of audio
files;

c) merging said call flow application and said lookup table
into an XML application that is a high level XML rep
resentation of said Voice interface process, by incorpo
rating each of said plurality of entries into corresponding
states in said call flow application that play audio files;
and

d) transforming said XML application into a second appli
cation of a VXML format that is a static representation of
said call flow diagram.

12
Jun. 5, 2008

11. The method of transformation as described in claim 10,
wherein said call flow application is comprised of at least one
module representing said plurality of States.

12. The method as described in claim 10, further compris
ing:

automatically transforming said XML application into said
second application of a HyperText Markup Language
(HTML) format, and wherein said second application is
a source code for generating a web page comprising a
tabular representation of said plurality of states with
links between related states in said plurality of states.

13. The method as described in claim 10, wherein said d)
comprises:

d1) applying standard templates for each of the various
types of states in said plurality of states to transform each
of said plurality of states as described in said XML
application into preliminary VXML instructions;

d2) expanding features included in said plurality of States
to be included in said preliminary VXML instructions;
and

d3) optimizing said preliminary VXML instructions.
14. The method as described in claim 10, further compris

ing:
automatically transforming said XML application into a

third application of a text format, and wherein said third
application is a quality assurance (QA) application that
is used for testing performance of said second applica
tion.

15. The method as described in claim 10, further compris
ing:

receiving said call flow diagram in a Microsoft VISIO
format before saida).

16. The method as described in claim 10, further compris
ing:

before said b), receiving a Microsoft Excel spreadsheet in
a text format comprising said audio prompts for access
ing said plurality of audio files and their corresponding
textual representations that are cross referenced with
corresponding States in said plurality of States that play
said audio files.

17. A method of Extensible Markup Language (XML)
transformation comprising:

a) accessing a first input of a plurality of States associated
with a voice interface process and complying Substan
tially with an XML format;

b) accessing a lookup table of entries in said XML format
that maps a plurality of audio files and their correspond
ing textual representations with audio states in said plu
rality of states that play said plurality of audio files:

c) creating an intermediate application in said XML format
by merging said audio states with corresponding entries
in said lookup table into said plurality of states in Saida);
and

d) transforming said intermediate application into a second
application of a second format that is a detailed low level
representation of said call flow diagram.

18. The method as described in claim 17, wherein said c)
and said d) comprises, respectively:

c1) automatically creating said intermediate application in
said XML format from said plurality of states in saida)
by merging said audio states with corresponding entries
in said lookup table; and

US 2008/0134020 A1

d1) automatically transforming said intermediate applica
tion into said second application of said second format
that is a detailed low level representation of said call flow
diagram.

19. The method as described in claim 17, wherein said
second format is HyperTextMarkup Language (HTML), and
wherein said second application is a source code for generat
ing a web page comprising a tabular representation of said
plurality of states with links between related states in said
plurality of states.

20. The method as described in claim 17, wherein said
second format is VXML.

21. The method as described in claim 17, wherein said
second application is of a text format, and wherein said sec
ond application is a quality assurance (QA) application.

22. A method of transforming from Extensible Markup
Language (XML) to VXML comprising:

a) transforming an application Substantially complying
with an XML format into preliminary VXML instruc
tions, said application comprising a plurality of states
corresponding to a call flow diagram that describes a
Voice interface process;

b) expanding features embedded in said plurality of states
to be included in said preliminary VXML instructions;
and

c) optimizing said preliminary VXML instructions.
23. The method as described in claim 22, wherein audio

states in said plurality of states comprise a plurality of audio
prompts to audio files and their corresponding textual repre
sentations.

24. The method as described in claim 22, wherein saida)
comprises:

generating said preliminary VXML instructions by apply
ing standard templates for each of the various types of
states of said plurality of states.

25. The method as described in claim 22, wherein said b)
comprises:

Substituting predetermined instructions corresponding to
said features for each of said features embedded in said
plurality of states.

26. The method as described in claim 22, wherein said c)
further comprises:

eliminating redundant states; and
combining various “if conditions.
27. A transformation generator comprising:
a processor; and
a computer readable memory coupled to said processor and

containing program instructions that, when executed,
implement a method of transformation comprising:

a) converting a call flow diagram describing a voice inter
face process into a in an Extensible Markup Language
(XML) format:

b) creating a lookup table of audio states in said XML
format by mapping a plurality of audio prompts and their

Jun. 5, 2008

corresponding textual representations with states of said
that play audio files associated with said plurality of
audio prompts;

c) creating an intermediate application in said XML format
and from said by merging audio prompts in said lookup
table with states of said that play said audio files; and

d) transforming said intermediate application into a second
application of a second format that is a representation of
said call flow diagram.

28. The transformation generator as described in claim 27,
wherein said d) comprises automatically transforming said
intermediate application into said second application of said
second format that is a static representation of said call flow
diagram.

29. The transformation generator as described in claim 27,
wherein said second format is HyperTextMarkup Language
(HTML), and wherein said second application is a source
code for generating a web page comprising a tabular repre
sentation of said with links between related states in said.

30. The transformation generator as described in claim 27,
wherein said second format is VXML.

31. The transformation generator as described in claim 30,
wherein said d) comprises:

d1) transforming each of said in said intermediate applica
tion into preliminary VXML instructions;

d2) expanding features embedded in said to be included in
said preliminary VXML instructions; and

d3) optimizing said preliminary VXML instructions.
32. The transformation generator as described in claim 31,

wherein said d1) comprises:
applying standard templates for each of the various types of

states in said to generate said preliminary VXML
instructions.

33. The transformation generator as described in claim 31,
wherein said d3) comprises:

eliminating redundant states; and
combining various “if conditions.
34. The transformation generator as described in claim 27,

further comprising:
receiving said call flow diagram in a Microsoft VISIO

format before saida).
35. The transformation generator as described in claim 27,

further comprising:
before said b), receiving a Microsoft Excel spreadsheet in

a text format comprising said plurality of audio prompts
and their corresponding textual representations that are
cross referenced with corresponding States in said that
play said audio files.

c c c c c

