(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number

6 November 2003 (06.11.2003) PCT WO 03/091829 A2

(51) International Patent Classification”: GO6F (74) Agent: LITHERLAND, David, Peter; IBM United
Kingdom Limited, Intellectual Property Law, Hursley
(21) International Application Number: PCT/GB03/01674 Park, Winchester, Hampshire SO21 2JN (GB).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: 17 April 2003 (17.04.2003) AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(25) Filing Language: English GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(26) Publication Language: English MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
(30) Priority Data: VC, VN, YU, ZA, ZM, ZW.
10/131,984 25 April 2002 (25.04.2002) US (g4) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
(71) Applicant: INTERNATIONAL BUSINESS MA- Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
CHINES CORPORATION [US/US]; New Orchard European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
Road, Armonk, NY 10504 (US). ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
(71) Applicant (for MG only): IBM UNITED KINGDOM GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

LIMITED [GB/GB]; PO Box 41, North Harbour,

Portsmouth, Hampshire PO6 3AU (GB). Published:

— without international search report and to be republished

upon receipt o, thatre ort
(72) Tnventors: DETTINGER, Richard, Dean; 5305 Kens- P ipt of that rep

ington Lane NW, Rochester, MN 55901 (US). STEVENS, For two-letter codes and other abbreviations, refer to the "Guid-
Richard, Joseph; 61432 252nd Avenue, Mantorville, MN ance Notes on Codes and Abbreviations” appearing at the begin-
55955 (US). ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD, COMPUTER PROGRAM AND COMPUTER FOR ACCESSING DATA IN AN ENVIRONMENT OF
MULTIPLE DATA REPOSITORIES

APLICATION 142 T e T
APLICATION GQUERY 1| LOGICAL / ABSTRACT | PHYSICAL RUNTIME s, <fiie>
SPECIFICATION REPRESENTATION ; REPRESENTATION <first-name>Mary<ffirst-name>

<last-name>McGoon</last-name>

140 <strest>1401 Main Street</street>

2141777 <city>Anylown></city>
<state>NC</state>
TR aERy <zipcode>34829</zipcode>
03 ! </Address>
XML DATA REPRESENTATION
[XML QUERY |

title| f_name| |_name {street|city | age

2145 —

QUERY
EXECUTION
RUNTIME

Mrs{ Mary [McGoon| 1401 Any | 67

150 Main

RELATIONAL DATA
REPRESENTATION

OTHER QUERY]
LANGUAGE

214N~ Q

OTHER DATA REPRESENTATION

DATA REPOSITORY
ABSTRACTION

148

(57) Abstract: The present invention generally is directed to a system, method and article of manufacture for accessing data in-
dependent of the particular manner in which the data is physically represented. In one embodiment, a data repository abstraction
layer provides a logical view of the underlying data repository that is independent of the particular manner of data representation.
In one embodiment, the data repository abstraction layer specifies a location of data in a repository and a method for accessing the
data. A query abstraction layer is also provided and is based on the data repository abstraction layer. A runtime component performs
translation of an abstract query into a form that can be used against a particular physical data representation.

03/091829 A2

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

A METHOD, COMPUTER PROGRAM AND COMPUTER FOR ACCESSING
DATA IN AN ENVIRONMENT OF MULTIPLE DATA REPOSITORIES

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a method, computer program and.
computer for accessing data in an environment of multiple data

repositories.
Description of the Related Art

Databases are computerized information storage and retrieval
systems. A relational database management system is a computer database
management system (DBMS) that uses relational techniques for storing and
retrieving data. The most prevalent type of database is the relational
database, a tabular database in which data is defined so that it can be

reorganized and accessed in a number of different ways.

Regardless of the particular architecture, in a DBMS, a requesting
entity (e.g., an application, the operating system or a user) demands
access to a specified database by issuing a database access request. Such
requests may include, for instance, simple catalog lookup requests or
transactions and combinations of transactions that operate to read, change
and add specified records in the database. These requests are made using
high-level query languages such as the Structured Query Language (SQL) .
Illustratively, SOL is used to make interactive queries for getting
information from and updating a database such as International Business
Machines’ (IBM) DB2, Microsoft's SQL Server, and database products from
Oracle, Sybase, and Computer Associates. The term "query" denominates a
set of commands for retrieving data from a stored database. Queries take
the form of a command language that lets programmers and programs select,

insert, update, find out the location of data, and so forth.

One of the issues faced by data mining and database query
applications, in general, is their close relationship with a given
database schema (e.g., a relational database schema). This relationship
makes it difficult to support an application as changes are made to the
corresponding underlying database schema. Further, the migration of the
application to alternative underlying data representations is inhibited.

In today's environment, the foregoing disadvantages are largely due to the

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

reliance applications have on SQL, which presumes that a relational model
is used to represent information being queried. Furthermore, a given SQL
query is dependent upon a particular relational schema since specific
database tab}es, columns and relationships are referenced within the SQL
query representation. As a result of these limitations, a number of

difficulties arise.

One difficulty is that changes in the underlying relational data
model require changes to the SQL foundation that the corresponding
application is built upon. Therefore, an application designer must either
forego changing the underlying data model to avoid application maintenance
or must change the application to reflect changes in the underlying
relational model. Another difficulty is that extending an application to
work with multiple relational data models requires separate versions of
the application to reflect the unique SQL requirements driven by each
unique relational schema. Yet another difficulty is evolution of the
application to work with alternate data representations because SQL is
designed for use with relational systems. Extending the application to
support alternative data representations, such as XML, requires rewriting
the application’s data management layer to use non-SQL data access

methods.

A typical approach used to address the foregoing problems is
software encapsulation. Software encapsulation involves using a software
interface or component to eﬁcapsulate access methods to a particular
underlying data representation. An example is found in the Enterprise
JavaBean™ (EJB) specification that is a component of the Java™ 2
Enterprise Edition (J2EE) suite of technologies. In the case of EJB,
entity beans serve to encapsulate a given set of data, exposing a set of
Application Program Interfaces (APIs) that can be used to access this
information. This is a highly specialized approach requiring the software
to be written (in the form of new entity EJBs) whenever a new set of data
is to be accessed or when a new pattern of data access is desired. The
EJB model also requires a code update, application build and deployment
cycle to react to reorganization of the underlying physical data model or
to support alternative data representations. EJB programming also
requires specialized skills, since more advanced Java programming
techniques are involved. Accordingly, the EJB approach and other similar
approaches are rather inflexible and costly to maintain for
general-purpose query applications accessing an evolving physical data
model. (Java and all Java based trademarks are trademarks of Sun

Microsystems Inc. in the United States, other countries, or both).

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

In addition to the difficulties of accessing heterogeneous data
representations, today’s environment is complicated by the fact that data
is often highly distributed. Pervasive infrastructures like the Internet
include a host of data sources which must be made accessible to users in
order to be of value. Conventional solutions dealing with localized,
homogenized data are no longer viable and developing solutions to deal
with distributed and heterogeneous data is problematic because such
solutions must have knowledge of the location of each data source and must
provide unigue logic (software) to deal with each different type of data
representation. As a result, typical solutions (such as the provision of
data warehouses containing all of the information required by applications
using the warehouse) do not easily adapt to changes in the location or
representation of the data being consumed and cannot easily be redeployed
to work with a different data topology. The data warehouse also presents
problems when there is a need to expand the contént of the warehouse with
additional, publicly available information. In some cases, the external
data source may be very large and subject to change. It can be very
costly to maintain a local copy of such data within a given data ‘

warehouse.

Therefore, there is a need for an improved and more flexible method
for accessing data which is not limited to the particular manner in which

the underlying physical data is represented.
SUMMARY OF THE INVENTION

According to one aspect, the invention provides a method of
accessing data in an environment of multiple data repositories,
comprising: receiving from a requesting entity, an abstract query
according to a query specification of the requesting entity; wherein the
query specification provides a definition for a plurality of logical
fields of the abstract query; and transforming the abstract query into a
query consistent with a particular physical data representation of the
data according to access methods which map the logical fields to physical
entities of the databby defining a method for accessing each of the

physical entities and a location for each of the physical entities.
The method can of course be performed using computer software.
Preferably there is provided a method, computer program and computer

for remote data access and integration of distributed data sources through

data scheme and query abstraction.

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

The present invention is preferably directed to a method, computer
and computer program for accessing data independent of the particular
manner in which the data is physically represented. Preferably,
abstraction layers are provided to represent various distributed data
sources available for use by an application and to describe a query used
by the application to access and/or update information contained in these
data sources. A runtimé component is preferably responsible for resolving
an abstract query into concrete data access requests to one or more data
repositories using information contained in a data repository abstraction

component (one of the abstraction layers).

One embodiment provides a method of providing access to data having
a particular physical data representation. The method comprises
providing, for a requesting entity, a query specification comprising a
plurality of logical fields for defining an abstract query; and providing
a data repository abstraction which maps the plurality of logical fields
to physical entities of the data. In one embodiment, the data repository
abstraction comprises, for each logical field, at least one locator which
defines a location of a physical entity of the data and an access method

which defines a mechanism for accessing the physical entity of the data.

One embodiment provides a computer, comprising: a processor and a
memory containing at least (i) a requesting entity comprising a query
specification providing a definition for an abstract query comprising a
plurality of logical fields, (ii) a data repository abstraction component
comprising mapping rules which map the logical fields to physical entities
of data, wherein the mapping rules comprise location specifications for
each of at least a portion of the logical fields of the abstract query,
and wherein each of the location specifications specify a location of a
data source containing a physical entity to be accessed; and (iii) a
runtime component for transforming the abstract query into a-query
consistent with the physical entities of data according to the mapping

rules.

According to another aspect, there is provided a computer,
comprising: a memory containing at least (i) a query specification
providing a definition for an abstract query comprising a plurality of
logical fields, (ii) a data repository abstraction component comprising
mapping rules which map the logical fields ﬁo physical entities of data,
wherein the mapping rules comprise location specifiéations for each of at
least a portion of the logical fields of the abstract query, and wherein

each of the location specifications specify a location of a data source

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

containing a physical entity to be accessed; and (iii) a runtime component
for transforming the abstract query into a query consistent with the
physical entities of data according to the mapping rules; and a processor

adapted to execute contents of the memory.

According to one embodiment, there is provided a method of providing
access to data in an environment of multiple data repositories,
comprising: providing, for a requesting entity, a query specification
comprising a plurality of logical fields for defining an abstract query;
and for each of the plurality of logical fields, providing an access
method which specifies at least a method for accessing the data and a

location of the data.

Preferably the method further comprises issuing the abstract query
by the requesting entity according to the query specification;
transforming the abstract query into a query consistent with a particular
physical data representation of the data; and accessing a data repository
specified by the location in the access method for the physical entity of
the data for a particular logical field of the plurality of logical
fields. ’

Preferably the query consistent with the particular physical data
representation is one of a SQL query, an XML query and a procedural

request.

Preferably transforming the abstract query into the query consistent
with the particular physical data representation comprises partitioning
the abstract query into sub-gueries grouped according to access method

types.

Preferably the access method types are selected from a group
comprising an SQL query type, an XML guery type and a procedural request
type.

According to a preferred embodiment, there is provided a method of
accessing data in an environment of multiple data repositories,
comprising: issuing, by a requesting entity, an abstract query according
to a query specification of the requesting entity; wherein the query
specification provides a definition for a plurality of logical fields of
the abstract query; and transforming the abstract query into a query
consistent with a particular physical data representation of the data
according to access methods which map the logical fields to physical

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

entities of the data by defining a method for accessing each of the
physical entities and a location for each of the physical entities.

Preferably a data repository, specified by the location for a
physical entity of the data for a particular logical field of the

plurality of logical fields, can be accessed.

Preferably the abstract query comprises at least one selection

criterion and a result specification.

Preferably the method comprises for a physical entity of the data
for a particular logical field of the plurality of logical fields,

" determining whether the physical entity of the data is located in a local

cache; and if not, accessing a data repository specified by the location

in the access method for the physical entity of the data.

Preferably transformation of the abstract query into the query
consistent with the particular physical data representation comprises
partitioning the abstract query into sub-queries grouped according to

access method types.

Preferably the access method types are selected from a group
comprising an SQL query type, an XML query type and a procedural request

type.

According to a preferred embodiment, there is provided a
computer-readable mediu@fpontaining a program which, when executed by a
processor, performs an operation of providing access to data in an
environment of multiple data repositories, the program comprising: a
query specification for a requesting entity, the query specification
comprising a plurality of logical fields for defining an abstract query;
and an access method for each logical field each of which defines a method
for accessing a physical entity of the data and a plurality of parameters
to be passed to the method for accessing the physical entity, wherein at
least one parameter is a location parameter specifying a location of a

data source containing the physical entity.
The requesting entity may, for example, be an application.
Preferably each of the plurality of access methods define a

particular physical representation and a location of the respective

physical entity of the data.

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

Preferably the opeération comprises: issuing the abstract query by
the requesting entity according to the query specification; transforming
the abstract query into a query consistent with the particular physical
data representation; and accessing a data repository specified by the
location for the physical entity of the data for a particular logical

field of the plurality of logical fields.

According to a preferred embodiment, there is provided a
computer-readable medium containing a program which, when executed by a
processor, performs an operation of accessing data having a particular
physical data representation, the operation comprising: issuing, by a
requesting entity, an abstract query according to a query specification
of the requesting entity; wherein the query specification provides a
definition for logical fields of the abstract query; and transforming the
abstract query into a query consistent with a particular physical data
representation of the data according to access methods which map the
logical fields to physical entities of the data by defining, for each of
the physical entities, at least a method for accessing the physical entity

and a location of the physical entity.

According to a preferred embodiment, there is provided a computer,
comprising: a memory containing at least (i) a requesting entity
comprising a query specification providing a definition for an abstract
query comprising a plurality of logical fields, (ii) a data repository
abstraction component comprising mapping rules which map the logical
fields to physical entities of data, wherein the mapping rules comprise
location specifications for each of at least a portion of the logical
fields of the abstract query, and wherein each of the location
specifications specify a location of a data source containing a physical

entity to be accessed; and (iii) a runtime component for transforming the

-abstract query into a query consistent with the physical entities of data

according to the mapping rules; and a processor adapted to execute

contents of the memory.

Preferably a first portion of the data sources specified by the
respective location specification are local and a second portion are

remote.

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now be
described, by way of example only, and with reference to the following

drawings:

FIG. 1 is a computer system illustratively utilized in accordance

with preferred embodiments of the invention;

FIG. 2A is an illustrative relational view of software components;

FIG. 2B is one embodiment of an abstract query and a data repository

abstraction for a relational data access;

FIG. 3 is a flow chart illustrating the operation of a runtime

component in accordance with one embodiment of the present invention;

FIG. 4 is a flow chart illustrating the operation of a runtime

component in accordance with one embodiment of the present invention;

FIG. 5 is an illustrative relational view of software components in

which multiple sources of data are accessible;

FIG. 6 shows an illustrative abstract query 602 comprising a

plurality of logical fields;

FIG. 7 is an illustrative field specification of a data repository

abstraction component configured with a relational access method; and

FIG. 8 is an illustrative field specification of a data repository

abstraction component configured with a procedural access method.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

INTRODUCTION

The present invention generally is directed to a system, method and
article of manufacture for accessing data independent of the particular
manner in which the data is physically represented. The data may comprise

a plurality of different data sources.

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674

In one embodiment, a data repository‘abstraction layer provides a
logical view of one or more underlying data repositories that is
independent of the particular manner of data representation. Where
multiple data sources are provided, an instance of the data repository
abstraction layer is configured with a location specification identifying
the location of the data to be accessed. A query abstraction layer is
also provided and is based on the data repository abstraction layer. A
runtime component performs translation of an abstract query (constructed
according to the query abstraction layer) into a form that can be used

against a particular physical data representation.

One embodiment of the invention is implemented as a program product
for use with a computer system such as, for example, the computer system
100 shown in FIG. 1 and described below. The program(s) of the program
product defines functions of the embodiments (including the methods
described herein) and can be contained on a variety of signal-bearing
media. Illustrative signal-bearing media include, but are not limited to:
(i) information permanently stored on non-writable storage media (e.g.,
read-only memory devices within a computer such as CD-ROM disks readable
by a CD-ROM drive); (ii) alterable information stored on writable storage
media (e.g., floppy disks within a diskette drive or hard-disk drive); or
(iii) information conveyed to a computer by a communications medium, such
as through a computer or telephone network, including wireless
communications. The latter embodiment includes information downloaded

from the Internet and other networks.

In general, the routines executed to implement the embodiments of
the invention, may be part of an operating system or a specific
application, component, program, module, object, or sequence of
instructions. The software of the preferred embodiment typically is
comprised of a multitude of instructions that will be translated by the
native computer into a machine-readable format and hence executable
instructions. Also, programs are comprised of variables and data
structures that either reside locally to the program or are found in
memory or on storage devices. However, it should be appreciated that any
particular nomenclature that follows is used merely for convenience, and
thus the invention should not be limited to use solely in any specific

application identified and/or implied by such nomenclature.

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
10

PHYSICAL VIEW OF ENVIRONMENT

FIG. 1 depicts a block diagram of a networked system 100 in which
embodiments of the present invention may be implemented. In general, the
networked system 100 includes a client (e.g., user's) computer 102 (three
such client computers 102 are shown) and at least one server 104 (one such
server 104). The client computer 102 and the server computer 104 are
connected via a network 126. In general, the network 126 may be a local
area network (LAN) and/or a wide area network (WAN). In a particular

embodiment, the network 126 is the Internet.

The client computer 102 includes a Central Processing Unit (CPU) 110
connected via a bus 126 to a memory 112, storage 114, an input device 116,
an output device 119, and a network interface device 118. The input
device 116 can be any device to give input to the client computer 102.

For example, a keyboard, keypad, light-pen, touch-screen, track-ball, or
speech recognition unit, audio/video player, and the like could be used.
The output device 119 can be any device to give output to the user, e.g.,
any conventional display screen. Although shown separately from the input
device 116, the output device 119 and input device 116 could be combined.
For example, a display screen with an integrated touch-screen, a display
with an integrated keyboard, or a speech récognition unit combined with a

text speech converter could be used.

The network interface device 118 may be any entry/exit device
configured to allow network communications between the client computer 102
and the server computer 104 via the network 126. For example, the network
interface device 118 may be a network adapter or other network interface

card (NIC).

Storage 114 is preferably a Direct Access Storage Device (DASD).
Although it is shown as a single unit, it could be a combination of fixed
and/or removable storage devices, such as fixed disc drives, floppy disc
drives, tape drives, removable memory cards, or optical storage. The
memory 112 and storage 114 could be part of one virtual address space

spanning multiple primary and secondary storage devices.

The memory 112 is preferably a random access memory sufficiently
large to hold programming and data structures of a preferred embodiment of
the invention. While the memory 112 is shown as a single entity, it
should be understood that the memory 112 may in fact comprise a plurality

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
11

of modules, and that the memory 112 may exist at multiple levels, from

high speed registers and caches to lower speed but larger DRAM chips.

Tllustratively, the memory 112 contains an operating system 124.
Illustrative operating systems, which may be used to advantage, include
Linux and Microsoft’s Windows®. More generally, any operating system

supporting the functions disclosed herein may be used.

The memory 112 is also shown containing a browser program 122 that,
when executed on CPU 110, provides support for navigating between the
various servers 104 and locating network addresses at one or more of the
servers 104. In one embodiment, the browser program 122 includes a
web-based Graphical User Interface (GUI), which allows the user to display
Hyper Text Markup Language (HTML) information. More generally, however,
the browser program 122 may be any GUI-based program capable of rendering

the information transmitted from the server computer 104.

The server computer 104 may be physically arranged in a manner
similar to the client computer 102. Accordingly, the server computer 104
is shown generally comprising a CPU 130, a memory 132, and a storage
device 134, coupled to cne another by a bus 136. Memory 132 may be a
random access memory sufficiently large to hold the programming and data
structures, of a preferred embodiment of the present invention, that are

located on the server computer 104.

The server computer 104 is generally under the control of an
operating system 138 shown residing in memory 132. ﬁxamples of the
operating system 138 include IBM® 0S/400®, UNIX®, Microsoft® Windows®, and
the like. More generally, any operating system capable of supporting the
functions described herein may be used. (IBM and 0S/400 are trademarks of
International Business Machines in the United States, other countries, or
both; UNIX is a registered trademark of the Open Group in the United
States and other countries; Microsoft and Windows are trademarks of
Microsoft Corporation in the United States, other countries, or both).

The memory 132 further includes one or more applications 140 and an
abstract query interface 146. The applications 140 and the abstract query
interface 146 are software products comprising a plurality of instructions
that are resident at various times in various memory and storage devices
in the computer system 100. When read and executed by one or more
processors 130 in the server 104, the applications 140 and the abstract

query interface 146 cause the computer system 100 to perform the steps

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
12

necessary to execute steps or elements embodying the various aspects of a
preferred embodiment of the invention. The applications 140 (and more
generally, any requesting entity, including the operating system 138 and,
at the highest level, users) issue queries against a database. Queries
may, for example, be issued include local databases 156,..156y, and remote
databases 157,..157,, collectively referred to as database(s) 156-157).
Illustratively, the databases 156 are shown as part of a database
management system (DBMS) 154 in storage 134. More generally, as used
herein, the term “databases” refers to any collection of data regardless
of the particular physical representation. By way of illustration, the
databases 156-157 may be organized according to a relational schema
(accessible by SQL queries) or according to an XML schema (accessible by
XML queries). However, the invention is not limited to a particular
schema and contemplates extension to schemas presently unknown. As used
herein, the term "schema" generically refers to a particular arrangement

of data.

In one embodiment, the queries issued by the applications 140 are
defined according to an application query specification 142 included with
each application 140. The queries issued by the applications 140 may be
predefined (i.e., hard coded as part of the applications 140) or may be
generated in response to input (e.g., user input). In either case, the
queries (referred to herein as "abstract queries") are composed using
logical fields defined by the abstract query interface 146. In
particular, the logical fields used in the abstract queries are defined by
a data repository abstraction component 148 of the abstract query
interface 146. The abstract queries are executed by a runtime component
150 which transforms the abstract queries into a form consistent with the
physical representation of the data contained in one or more of the
databases 156-157. The application query specification 142 and the
abstract query interface 146 are further described with reference to FIGS.

2A-B.

In one embodiment, elements of a query are specified by a user
through a graphical user interface (GUI). The content of the GUIs is
generated by the application(s) 140. 1In a particular embodiment, the GUI
content is hypertext markup language (HTML) content which may be rendered
on the client computer systems 102 with the browser program 122.
Accordingly, the memory 132 includes a Hypertext Transfer Protocol (http)
server process 138 (e.g., a web server) adapted to service requests from
the client computer 102. For example, the process 138 may respond to
requests to access a database(s) 156, which illustratively resides on the

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
13

server 104. Incoming client requests for data from a database 156-157
invoke an application 140. When executed by the processor 130, the
applica;ion 140 causes the server computef 104 to perform the steps or
elements embodying the various aspects of a preferred embodiment of the
present invention, including accessing the database(s) 156-157. In one
embodiment, the application 140 comprises a plurality of servlets
configured to build GUI elements, which are then rendered by the browser
program 122. Where the remote databases 157 are accessed via the
application 140, the data repository abstraction component 148 is
configured with a location specification identifying the database
containing the data to be retrieved. This latter embodiment will be

described in more detail below.

FIG. 1 is merely one hardware/software configuration for the
networked client computer 102 and server computer 104. Embodiments of the
present invention can apply to any comparable hardware configuration,
regardless of whether the computer systems are complicated, multi-user
computing apparatus, single-user workstations, or network appliances that
do not have non-volatile storage of their own. Further, it is understood
that while reference is made to particular markup languages, including
HTML, the invention is not limited to a particular language, standard or
version. Accordingly, persons skilled in the art will recognize that the
invention is adaptable to other markup languages as well as non-markup
languages and that the invention is also adaptable future changes in a
particular markup language as well as to other languages presently
unknown. Likewise, the http server process 138 shown in FIG. 1 is merely
illustrative and other embodiments adapted to support any known and

unknown protocols are contemplated.

LOGICAL/RUNTIME VIEW OF ENVIRONMENT

FIGS. 2A-B show a plurality of interrelated components of the
invention in accordance with a preferred embodiment. The requesting
entity (e.g., one of the applications 140) issues a query 202 as defined
by the respective application query specification 142 of the requesting
entity. The resulting query 202 is generally referred to herein as an
sabstract query” because the query is composed according to abstract
(i.e., logical) fields rather than by direct reference to the underlying
physical data entities in the databases 156-157. As a result, abstract
queries may be defined that are independent of the particular underlying
data representation used. In one embodiment, the application query

specification 142 includes both criteria used for data selection

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
14

(selection criteria 204) and an explicit specification of the fields to be

returned (return data specification 206) based on the selection criteria

204.

The logical fields specified by the application query specification
142 and used to compose the abstract query 202 are defined by the data
repository abstraction component 148. In general, the data repository
abstraction component 148 exposes information as a set of logical fields
that may be used within a query (e.g., the abstract query 202} issued by
the application 140 to specify criteria for data selection and specify the
form of result data returned from a query operation. The logical fields
are defined independently of the underlying data representation being used
in the databases 156-157, thereby allowing queries to be formed that are

loosely coupled tc the underlying data representation.

In general, the data repository abstraction component 148 comprises
a plurality of field specifications 208,, 208,, 208,, 208, and 208s (five
shown by way of example), collectively referred to as the field
specifications 208. Specifically, a field specification is provided for
each logical field available for composition of an abstract query. Each
field specification comprises a logical field name 210;, 210,, 2103, 2104,
2105 (collectively, field name 210) and an associated access method 212,
212,, 212,, 2f12,, 212; (collectively, access method 212). The access
methods associate (i.e., map) the logical field names to a particular
physical data representation 214,, 214,.214y in a database (e.g., one of
the databases 156). By way of illustration, two data representations are
shown, an XML, data representation 214, and a relational data representation
214,. However, the physical data representation 214, indicates that any

other data representation, known or unknown, is contemplated.

Any number of access methods are contemplated depending upon the
number of differént types of logical fields to be supported. In one
embodiment, access methods for simple fields, filtered fields and composed
fields are provided. The field specifications 208,, 208; and 208s
exemplify simple field access methods 212;, 212,, and 2125, respectively.
Simple fields are mapped directly to a particular entity in the underlying
physical data representation (e.g., a field mapped to a given database
table and column). By way of illustration, the simple field access method
212, shown in FIG. 2B maps the logical field name 210, (“FirstName”) to a
column named “f_name” in a table named “contact”. The field specification
208; exemplifies a filtered field access method 212;. Filtered fields

identify an associated physical entity and provide rules used to define a

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
15

particular subset of items within the physical data representation. An
example is provided in FIG. 2B in which the filtered field access method
212, maps the logical field name 210; (“AnytownLastName”) to a physical
entity in a column named “1_name” in a table named “contact” and defines a
filter for individuals in the city of Anytown. Another example of a
filtered field is a New York ZIP code field that maps to the physical
representation of ZIP codes and restricts the data only to those ZIP codes
defined for the state of New York. The field specification 208,
exemplifies a composed field access method 212,. Composed access methods
compute a logical field from one or morelphysical fields using an
expression supplied as part of the access method definition. 1In this way,
information which does not exist in the underlying data representation may
computed. In the example illustrated in FIG. 2B the composed field access
method 212, maps the logical field name 210; “AgeInDecades” to
vAgeInYears/10”. Another example is a sales tax field that is composed by

multiplying a sales price field by a sales tax rate.

It is contemplated that the formats for any given data type (e.g.,
dates, decimal numbers, etc.) of the underlying data may vary.
Accordingly, in one embodiment, the field specifications 208 include a
type attribute which reflects the format of the underlying data. However,
in another embodiment, the data format of the field specifications 208 is
different from the associated underlying physical data, in which case an
access method is responsible for returning data in the proper format
assumed by the requesting entity. Thus, the access method should
preferably know what format of data is assumed (i.e., according to the
logical field) as well as the actual format of the underlying physical
data. The access method can then convert the underlying physical data

into the format of the logical field.

By way of example, the field specifications 208 of the data
repository abstraction component 148 shown in FIG. 2 are representative of
logical fields mapped to data represented in the relational data
representation 214,. However, other instances of the data repository
abstraction component 148 map logical fields to other physical data
representations, such as XML. Further, in one embodiment, a data
repository abstraction component 148 is configured with access methods for
procedural data representations. One embodiment of such a data repository

abstraction component 148 is described below with respect to FIG. 8.

An illustrative abstract query corresponding to the abstract query
202 shown in FIG. 2 is shown in Table I below. By way of illustration,

10

15

20

25

30

35

40

45

50

WO 03/091829 PCT/GB03/01674
16

the data repository abstraction 148 is defined using XML. However, any

other language may be used to advantage

TABLE I - QUERY EXAMPLE

001 <?xml version="1.0"?>
002 <!l--Query string representation: (FirstName = "Mary" AND LastName =
003 "McGoon") OR State = "NC"-->

" 004 <QueryAbstraction>

005 <Selection>

006 ~ <Condition internallD="4">

007 <Condition field="FirstName" operator="EQ" value="Mary"

008 internallD="1"/>

009 <Condition field="LastName" operator="EQ" value="McGoon"
010 internallD="3" relOperator="AND"></Condition>

011 </Condition>

012 <Condition field="State" operator="EQ" value="NC" internallD="2"

013 relOperator="0OR"></Condition>
014 </Selection>
015 <Resuits>

016 <Field name="FirstName"/>
017 <Field name="LastName"/>
018 <Field name="State"/>

019 </Results>
020 </QueryAbstraction>

Illustratively, the abstract query shown in Table I includes a
selection specification (lines 005-014) containing selection criteria and
a results specification (lines 015-019). In one embodiment, a selection
criterion consists of a field name (for a logical field), a comparison
operator (=, >, <, etc) and a value expression (what is the field being
compared to). In one embodiment, result specification is a list of
abstract fields that are to be returned as a result of query exécution. A
result specification in the abstract query may consist of a field name and

sort criteria.

An illustrative instance of a data repository abstraction component
148 corresponding to the abstract query in Table I is shown in Table II
below. By way of illustration, the data repository abstraction component
148 is defined using XML. However, any other language may be used to

advantage.

TABLE II - DATA REPOSITORY ABSTRACTION EXAMPLE

001 <?xmi version="1.0"7>
002 <DataRepository>

003 <Category name="Demographic">

004 <Field queryable="Yes" name="FirstName" displayable="Yes">

005 <AccessMethod>

006 <Simple columnName="f_name" tableName="contact"></Simple>

007 </AccessMethod>

10

15

20

25

30

35

40

45

WO 03/091829 PCT/GB03/01674

17
008 <Type baseType="char"></Type>
009 </Field> ‘
010 <Field queryable="Yes" name="LastName" displayable="Yes">
o011 <AccessMethod>
012 * <Simple columnName="[_name" tableName="contact"></Simple>
013 </AccessMethod>
014 <Type baseType="char'></Type>
015 </Field>
016 <Field queryable="Yes" name="State" displayable="Yes">
017 <AccessMethod>
018 <Simple columnName="state" tableName="contact"></Simple>
019 </AccessMethod>
020 <Type baseType="char'></Type>
021 </Field>

022 </Category>
023 </DataRepository>

FIG. 3 shows an illustrative runtime method 300 exemplifying one
embodiment of the operation of the runtime component 150. The method 300
is entered at step 302 when the runtime component 150 receives as input an
instance of an abstract query (such as the abstract query 202 shown in
FIG. 2). At step 304, the runtime component 150 reads and parses the
instance of the abstract query and locates individual selection criteria
and desired result fields. At step 306, the runtime component 150 enters
a loop (comprising steps 306, 308, 310 and 312) for processing each query
selection criteria statement present in the abstract query, thereby
building a data selection portion of a Concrete Query. In one embodiment,
a selection criterion consists of a field name (for a logical field), a
comparison operator (=, >, <, etc) and a value expression (what is the
field being compared to). At step 308, the runtime component 150 uses the
field name from a selection criterion of the abstract query to look up the
definition of the field in the data repository abstraction 148. As noted
above, the field definition includes a definition of the access method
used to access the physical data associated with the field. The runtime
component 150 then builds (step 310) a Concrete Query Contribution for the
logical field being processed. As defined herein, a Concrete Query
Contribution is a portion of a concrete query that is used to perform data
selection based on the current logical field. A concrete query is a query
represented in languages like SQL and XML Query and is consistent with the
data of a given physical data repository (e.g., a relational database or
XMI, repository). Accordingly, the concrete query is used to locate and
retrieve data from a physical data repository, represented by the
databases 156-157 shown in FIG. 1. The Concrete Query Contribution
generated for the current field is then added to a Concrete Query
Statement. The method 300 then returns to step 306 to begin processing
for the next field of the abstract query. Accordingly, the process

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
18

entered at step 306 is iterated for each data selection field in the
abstract query, thereby contributing additional content to the eventual
query to be performed.

After building the data selection portion of the concrete query, the
runtime component 150 identifies the information to be returned as a
result of query execution. As described above, in one embodiment, the
abstract query defines a list of abstract fields that are to be returned
as a result of query execution, referred to herein as a result
specification. A result specification in the abstract query may consist
of a field name and sort criteria. Accordingly, the method 300 enters a
loop at step 314 (defined by steps 314, 316, 318 and 320) to add result
field definitions to the concrete query being generated. At step 316, the
runtime component 150 looks up a result field name (from the result
specification of the abstract query) in the data repository abstraction
148 and then retrieves a Result Field Definition from the data repository
abstraction 148 to identify the physical location of data to be returned
for the current logical result field. The runtime component 150 then
builds (as step 318) a Concrete Query Contribution (of the concrete query
that identifies physical location of data to be returned) for the logical
result field. At step 320, Concrete Query Contribution is then added to
the Concrete Query Statement. Once each of the result specifications in

the abstract query has been processed, the query is executed at step 322.

One embodiment of a method 400 for building a Concrete Query
Contribution for a logical field according to steps 310 and 318 is
described with reference to FIG. 4. At step 402, the method 400 queries
whether the access method associated with the current logical field is a
simple access method. If so, the Concrete Query Contribution is built
(step 404) based on physical data location information and processing then
continues according to method 300 described above. Otherwise, processing
continues to step 406 to query whether the access method associated with
the current logical field is a filtered access method. If so, the
Concrete Query Contribution is built (step 408) based on physical data
location information for some physical data entity. At step 410, the
Concrete Query Contribution is extended with additional logic (filter
selection) used to subset data associated with the physical data entity.

Processing then continues according to method 300 described above.

Tf the access method is not a filtered access method, processing
proceeds from step 406 to step 412 where the method 400 queries whether

the access method is a composed access method. If the access method is a

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
19

composed access method, the physical data location for each sub-field
reference in the composed field expression is located and retrieved at
step 414. At step 416, the physical field location information of the
composed field expression is substituted for the logical field references
of the composed field expression, whereby the Concrete Query Contribution
is generated. Processing then continues according to method 300 described

above.

If the access method is not a composed access method, processing
proceeds from step 412 to step 418. Step 418 is representative of any
other access methods types contemplated as embodiments of the present
invention. However, it should be understood that embodiments are
contemplated in which less then-all the available access methods are
implemented. For example, in a particular embodiment only simple access
methods are used. In another embodiment, only simple access methods and

filtered access methods are used.

As described above, it may be necessary to perform a data conversion
if a logical field specifies a data format different from the underlying
physical data. In one embodiment, an initial conversion is performed for
each respective access method whén building a Concrete Query Contribution
for a logical field according to the method 400. For example, the
conversion may be performed as part of, or immediately following, the
steps 404, 408 and 416. A subsequent conversion from the format of the
physical data to the format of the logical field is performed after the
query is executed at step 322. Of course, if the format of the logical
field definition is the same as the underlying physical data, no

conversion is necessary.

OTHER EMBODIMENTS OF DATA REPOSITORY ABSTRACTION COMPONENTS

In one embodiment, a different single data repository abstraction
component 148 is provided for each separate physical data representation
214 (as in FIGS. 2B and 2C). 1In an alternative embodiment, a single data
repository abstraction component 148 contains field specifications (with
associated access methods) for two or more physical data representations
214. In yet another embodiment, multiple data repository abstraction
components 148 are provided, where each data repository abstraction
component 148 exposes different portions of the same underlying physical
data (which may comprise one or more physical data representations 214).
In this manner, a single application 140 may be used simultaneously by

multiple users to access the same underlying data where the particular

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
20

portions of the underlying data exposed to the application are determined
by the respective data repository abstractien component 148. This latter
embodiment is described in more detail in co-pending United States Patent
Application (Attorney Docket R0C920020088), entitled “DYNAMIC END USER
SPECIFIC CUSTOMIZATION OF AN APPLICATION’S PHYSICAL, DATA LAYER THROUGH A
DATA REPOSITORY ABSTRACTION LAYER” and assigned to International Business

Machines Inc.

In any case, a data repository abstraction component 148 contains
(or refers to) at least one access method which maps a logical field to
physical data. To this end, as illustrated in the foregoing embodiments,
the access methods describe a means to locate and manipulate the physical

representation of data that corresponds to a logical field.

In one embodiment, the data repository abstraction component 148 is
extended to include description of a multiplicity of data sources that can
be local and/or distributed across a network environment. The data
sources can be using a multitude of different data representations and
data access techniques. In one embodiment, this is accomplished by
configuring the access methods of the data repository abstraction
component 148 with a location specification defining a location of the
data associated with the logical field, in addition to the method used to

access the data.

Referring now to FIG. 5, a logical/runtime view of an environment
500 having a plurality of data sources (repositories) 502 is shown and
illustrates one embodiment of the operation of a data repository
abstraction component 148 in such an environment. The data sources 502 to
be accessed via the data repository abstraction component 148 may be
local, remote or both. In one embodiment, the data sources 502 are
representative of the databases 156-157 shown in FIG. 1. 1In general, the
data repository abstraction component 148 is similarly configured to those
embodiments described above. As such, the data repository abstraction
component 148 has logical field definitions and an associated access
method for each logical field definition. However, in contrast to other
embodiments in which only a single data source is accessed, the access
methods are now configured with location specifications in additiom to
physical representation specifications. The location specifications
describe the location (i.e., the data source) in which the data to be
accessed (i.e., the data associated with the logical field definitions) is

located. However, in one embodiment, it is contemplated that some access

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
21

methods may be configured without location specifications, indicating a

default to a local data source.

In general, FIG. 5 shows the application 140, the abstract query
specification 142 (also referred to herein as the application query.
specification), the data repository abstraction component 148 (used to map
logical fields to access methods) and the runtime component 150
responsible for converting an abstract query into one or more data access
requests supported by the data repositories 502 containing the physical
information being queried. In contrast to some embodiments described
above, the data repository abstraction component 148 and runtime component
150 of FIG. 5 are configured to support the definition and query of
logical fields having associated data that may be distributed across
multiple local and/or remote physical data repositories 502 (also referred
to herein as local/remote data sources 502) and which may be accessed via

a multitude of query-based and procedural based interfaces.

To this end, the application 140 defines its data requirements in
terms of the abstract query specification 142 which contains query
selection and/or update logic based on logical fields, not the physical
location or representation of the actual data involved. The data
repository abstraction component 148 comprises logical field definitions
504 and an access method 506 for each logical field. The logical field
definitions 504 describe the logical fields available for use by the
application 140. In one aspect, the data repository abstraction component
148 governs the information available for use by the application 140.
Addition of new logical fields, presented in a new local or remote data
source, are thereby made available for use by applications. Each of the
access methods 506 define the mapping between a logical field and its
physical representation in a local/remote data source 502. This

relationship may be understood with reference to FIG. 6.

FIG. 6 shows an illustrative abstract query 602 comprising a
plurality of logical fields 604,..604, (collectively the logical fields
604). Each of the logical fields 604 are related (represented by lines
606) to an access method 608:..608y (collectively the access methods 608) by
the definition of the particular data repository abstraction component
148. Physical representation information in the access methods 608
includes the name of the access method to be used (here represented as
vaccess method for Fl1”, “access method for F2”, etc.) and a plurality of
parameters to be passed to the named access method and which describe how

to access the physical data associated with the logical field. 1In

10

15

20

25

30

35

40

WO 03/091829 . PCT/GB03/01674
22

general, such parameters include a locator parameter 610,..610y
(collectively the locator parameters 610; also referred to herein as a
loéation specification) and other access parameters needed to access the
data. A given data repository abstraction component instance may
represent information that is managed by multiple local and remote

physical data repositories.

Illustrative embodiments in which a data repository abstraction
component instance may be configured with a location specification .and
other access parameters needed to access the data are shown in FIGS. 7-8.
Referring first to FIG. 7, a field specification 700 of a data repository
abstraction component configured with a relational access method is shown.
The field specification 700 is specific to a particular logical field
identified by a field name 702 “CreditRatingDescription” and having an
associated access method. The associated access method name 704 is
sgsimple-remote” indicating that the access method is a simple field access
method in which the logical fields are mapped directly to a particular
entity in the underlying physical data representation and that the data is
remotely located. In this case, the logical field is mapped to a given
database table “credit_t” and column “desc”. The “URL” is the location
specification (locator parameter) which specifies the location of the
physical data. 1In éhis case, the “URL” includes an identifier of a JDBC
driver to use, a remote system name holding the data
(remotesystem.abc.com) and a database schema containing the data
(creditschema). “JDBC Driver” is the name of the Java class that

implements SQL access to this type of remote database.

Referring now to FIG. 8, a field specification 800 of a data
repository abstraction component configured with a procedural access
method is shown. The field specification 800 is specific to a particular
logical field identified by a field name 802 “CreditRating” and having an
associated access method. The associated access method name 804 is
sprocedural” indicating that the access method is a procedural access
method. “Service Spec” identifies the Web Services Description Language
(WSDL) definition for the web service to access. WSDL is a standard
interface definition language for Web Services. Web Services is a
standard method used to invoke software applications using the established
Web infrastructure for communication and using standard data
representation technologies such as XML to represent information passed
between a calling application and the Web Service that is invoked.
“Service Name” identifies the name of the web service to be accessed out

of the set of possible services defined within the “Service Spec”. “Port

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
23

Name” identifies the port name for the service to be accessed out of the
set of possible port names defined within “Service Name”. The named port
defines the network address for the service. “Operation” is the name of
the operation to invoke. Web Services can support more than one function
referred to as "operations". “Input” identifies input required when
invoking a web service. In this case, a last name value is provided as
input to the service. ®Output” identifies the output data item that is
associated with this logical field. Services may return several pieces of
output when they are called. Accordingly “Qutput” identifies defines the
piece of output data that is associated with the current logical field.

Note that in the case of procedural access methods, the field
specification of a data repository abstraction component for local data
may look substantially identical to the field specification 800 shown in
FIG. 8 for accessing remote data. The only difference would be that in
the local case the referenced WSDL document would have a URL pointing back

to the local server the service is running on.

Referring again to FIG. 5, one embodiment of the operation of the
runtime component 150 is now described. In general, the runtime component
is responsible for building and executing an executable query based on an
abstract query. To this end, at block 510, the runtime component 150
parses the abstract query and uses the data repository abstraction
component 148 to map references to one or more logical fields to their
corresponding physical location and method of access (collectively
referred to herein as the access methods 506). In one embodiment, the
runtime component 150 partitions (block 512) overall physical data query
requirements into groups (referred to as “sub-queries” 514) representing
access to the same physical resource using the same method of access. The
sgub-queries” are then executed (block 516). Results from each of the
sub-queries 514 are combined and normalized (block 518) before the
collective query results 520 are returned to the application 140. In one
aspect, this query partitioning approach allows the runtime component 150
to run multiple sub-queries in parallel, taking advantage of multi-CPU

hardware architectures.

In one embodiment, the runtime component 150 also manages.a local
data cache 522. The local data cache 522 contains data retrieved for
certain logical fields and is used during subsequent queries as a first
choice for lookup of logical fields that were identified in the data
repository abstraction component as being cache enabled. Logical fields

that are advantageously managed in a cached fashion are those whose values

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
24

are relatively static and/or which incur significant overhead to access
(where overhead is measured in either time required to fetch the data or
monetary expense of accessing the data, assuming some information is

managed in a pay-per-use model) .

In various embodiments, numerous advantages over the prior art are
preferably provided. 1In one aspect, advantages are preferably achieved by
defining a loose coupling between the application query specification and
the underlying data representation. Rather than encoding an application
with specific table, column and relationship information, as is the case
where SQL is used, the application defines data query requirements in a
more abstract fashion that are then bound to a particular physical data
representation at runtime. The loose query-data coupling preferably
enables requesting entities (e.g., applications) to function even if the
underlying data representation is modified or if the requesting entity is
to be used with a completely new physical data representation than that
used when the requesting entity was developed. In the case with a given
physical data representation is modified or restructured, the
corresponding data repository abstraction is preferably updated to reflect
changes made to the underlying physical data model. The same set of
logical fields are available for use by queries, and have merely been
bound to different entities or locations in physical data model. As a
result, requesting entities written to the abstract query interface
continue to function unchanged, even though the corresponding physical
data model may have undergone significaht change. In the event a
requesting entity is to be used with a completely new physical data
representation than that used when the requesting entity was developed,
the new physical data model may be implemented using the same technology
(e.g., relational database) but following a different strategy for naming
and organizing information (e.g., a different schema). The new schema
will contain information that may be mapped to the set of logical fields
required by the application using simple, filtered and composed field
access method techniques. Alternatively, the new physical representation
may use an alternate technology for representing similar information
(e.g., use of an XML based data repository versus a relational database
system). In either case, existing requesting entities written to use the
abstract query interface can easily migrate to use the new physical data
representation with the provision of an alternate data repository
abstraction which maps fields referenced in the query with the location

and physical representation in the new physical data model.

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
25

In another aspect, the ease-of-use for the application builder and
the end-user is facilitated. Use of an abstraction layer to represent
logical fields in an underlying data repository enables an application
developer to focus on key application data requirements without concern
for the details of the underlying data representation. As a result,
higher productivity and reduced error rates are achieved during
application development. With regard to the end user, the data repository
abstraction preferably provides a data filtering mechanism, exposing
pertinent data and hiding nonessential content that is not needed by a

particular class end-user developing the given query.

Further, the presence of muitiple data sources can be used
advantageously. By configuring thé data repository abstraction components
with location specifications, multiple data sources can preferably be
accessed, whether the data sources are local or remote. In this manner,
an infrastructure is provided which is capable of capitalizing on the

distributed environments prevalent today.

Solutions implementing this model use the provided abstract query
specification to describe its information requirements, without regard for
the location or representation of the data involved. Queries are
submitted to the runtime component which uses the data repository
abstraction component to determine the location and method used to access
each logical piece of information represented in the query. In one
embodiment, the runtime component also includes the aforementioned data

caching function to access the data cache.

This model preferably allows solutions to be developed, independent
of the physical location or representation of the data used by the
solution, making it possible to easily deploy the solution to a number of
different data topologies and allowing the solution to function in cases
where data is relocated or reorganized over time. Preferably this
approach also simplifies the task of extending a solution to take
advantage of additional information. Extensions are made at the abstract
query level and do not require addition of software that is unique for the
location or representation of the new data being accessed. This method
preferably provides a common data access method for software applications
that is independent of the particular method used to access data and of
the location of each item of data that is referenced. The physical data
accessed via an abstract query may be represented relationally (in an
existing relational database system), hierarchically (as XML) or in some

other physical data representation model. A multitude of data access

10

15

WO 03/091829 PCT/GB03/01674
26

methods are also supperted, including those based on existing data query
methods such as SQL and XQuery and methods involving programmatic access
to information such as retrieval of data through a Web Service invocation

(e.g., using SOAP) or HTTP request.

It should be noted that any reference herein to particular values,
definitions, programming languages and examples is merely for purposes of
illustration. Accordingly, the invention is not limited by any particular
illustrations and examples. Further, while aspects of the invention are
described with reference to SELECTION operations, other input/output
operation are preferably contemplated, including well-known operations
such as ADD, MODIFY, INSERT, DELETE and the like. Of course, certain
access methods may place restrictions on the type of abstract query
functions that can be defined using fields that utilize that particular
access method. For example, fields involving composed access methods are

not viable targets of MODIFY, INSERT and DELETE.

10

15

20

25

30

35

40

WO 03/091829 PCT/GB03/01674
217

CLAIMS

1. A method of accessing data in an environment of multiple data

repositories, comprising:

receiving from a requesting entity, an abstract query according to a
query specification of the requesting entity; wherein the query
specification provides a definition for a plurality of logical fields of

the abstract query; and

transforming the abstract query into a query consistent with a
particular physical data representation of the data according to access
methods which map the logical fields to.physical entities of the data by
defining a method for accessing each of the physical entities and a

location for each of the physical entities.

2. The method of claim 1, wherein transforming the abstract query into
the query consistent with the particular physical data representation
comprises partitioning the abstract query into sub-queries grouped

according to access method types.

3. The method of claim 1 or 2, wherein the access method types are
selected from a group comprising an SQL query type, an XML query type and

a procedural request type.

4. The method of any preceding claim, further comprising accessing a
data repository specified by the location for a physical entity of the
data for a particular logical field of the plurality of logical fields.

5. The method of any preceding claim, wherein the abstract query

comprises at least one selection criterion and a result specification.
6. The method of any preceding claim, further comprising:

for a physical entity of the data for a particular logical field of
the plurality of logical fields, determining whether the physical entity

of the data is located in a local cache; and

if not, accessing a data repository specified by the location in the

access method for the physical entity of the data.

10

15

20

25

WO 03/091829 PCT/GB03/01674
28

7. A computer program comprising program code means adapted to perform

the method of any of claims 1 to 6 when said program is run on a computer.

8. A computer, comprising:

a memory containing at least (i) a query specification providing a
definition for an abstract query comprising a plurality of logical fields,
(ii) a data repository abstraction component comprising mapping rules
which map the logical fields to physical entities of data, wherein the
mapping rules comprise location specifications for each of at least a
portion of the logical fields of the abstract query, and wherein each of
the location specifications specify a location of a data source containing
a physical entity to be accessed; and (iii) a runtime component for
transforming the abstract query into a query consistent with the physical

entities of data according to the mapping rules; and
a processor adapted to execute contents of the memory.

9. The computer of claim 8, wherein a first portion of the data sources
specified by the respective location specification are local and a second

portion are remote.

10. The computer of claim 8 or 9, wherein transforming the abstract
query into the query consistent with the particular physical data
representation comprises partitioning the abstract query into sub-queries

grouped according to access method types.

PCT/GB03/01674

WO 03/091829

1/8

pET —
NOoST T9gT
Ty gu W3LSAS ONILYYILO
zv1 —| NOILYDIHI03dS AHIND NOILYIITddV
ovl -+
NOILYDITddY
0ST — LNINOJWOD INILNNY
LNINOJINOD NOILOVYLSaY
AHOLISOd3y Vivd
- gpl
4/1 A¥3ND 1OVH1S8Y
ZST— Y3IAMIS dLLH
el AHOWIN NIVIN
NdO — o€l

NzeT LisT

aol 4

]] —001

— p01

4N XHOMIIN

817

30IA3a 1Nd1NO

611

JOIA3A LNdNI

911

3OVd01S

1401

-~ Cll

W3LSAS ONILVY3IdO

— 9C1

| INVHOO¥d
cel — ¥ISMONE

AJOW3N

0l —

Ndd

~—O0I1

PCT/GB03/01674

WO 03/091829

2/8

NOILVLINISIHAIY V1VA HIHLO \v44 '3 I
— i | NOILOVYLSEY
| AHO11SOd3Y V1va
m [
JOVNONYT “
AYINO ¥IHLO “
NOILVINISIHJIY _
v1iva IVYNOILY13Y _
ANILNNY
1 uen <~ OS NOILNO3X3 0s1
L9 |Auy | L0p) jucoopy | Aep ['siy AYIND
—pIz _
abe | Ao [yeays| sweu | joweuT} lapn | “
|
AHIND TNX !
NOILVLNISIH4IY VIVa TNX m
<SSaIppy/> ! Weniiid
| AMIND LOVHLSEY
<9poadiz/>gzeic<epoadiz> i \
<3JeIS/>DN<8}e)S> “
<Ro/><umojhuy<Ajio> | 117 ! obl
<}8811S/>199.1G UIBY | O | <}88AS> _ ya
<9WEU-]SE}/>U005J)\<sWeu-ise|> - “ -
<sweu-isly/>Ale\<aWru-jsily> | NOILVYDI41D3dS
. NOILVLNISIYJIY NOILVIN3ISIHLIY
| <SHb/>"SIN <eqi> IWLLNNY TYOISAHA | 1OVM1SaY /o101 | | AYIND NOLLYOIdY
sSsalppe
<ssaippe> 00z —* NOLLYOIdY

WO 03/091829 : PCT/GB03/01674
3/8

ABSTRACT QUERY +-202

Selection:— 204
FirstName="Mary" AND
LastName="McGoon"OR
State=NC

Result:— 206
FirstName,
LastName,
Street

:)
DATA REPOSITORY ABSTRACTION 1~ 148

Field
Name="First Name" — 210
Access Method="Simple” —212; 1~2081
Table="contact"
Column="f_name"

Field

F j g . ZB Name="Last Name" — 210,
Access Method="Simple" —212, 1208,

Table="contact"
Column="|_name"

Field
Name="AnytownLastName"—2103
Access Method="Filtered"— 21234 1— 2083

Table="contact"
Column="l_name"
Filter="contact.city=Anytown"

Field
Name="AgelnDecades" — 2104 1—2084
Access Method="Composed" — 2124

Expression="AgelnYears / 10"

Field
Name="AgelnYears"— 2105
Access Method="Simple" — 2125 1~208s

Table="contact"
Column="age"

WO 03/091829 PCT/GB03/01674

4/8

302 START 300
Y
304 —| READ ABSTRACT

QUERY DEFINITION

322 — EXECUTE QUERY

\i

o

) -

FOR EACH DONE MORE
QUERY \ - - RESULTS
SELECTION / FIE%DS
YES -
308~ y o
GET QUERY FIELD
DEFINITION FROM GET RESULT FIELD
REPOSITORY ‘ DEFINITION FROM
ABSTRACTION /ng?%?rﬁ{oyu
310 ; |
318 Y
BUILD CONCRETE QUERY
CONTRIBUTION FOR FIELD BUILD CONCRETE QUERY
CONTRIBUTION FOR FIELD
312~y
320
ADD TO CONCRETE - ~ 1 |
QUERY STATEMENT (A)ng\? SCTOAI\TIE;?AIELET
 J
- B y

PCT/GB03/01674 -

WO 03/091829

5/8

(__3nNiNoD)
4

(_3nNiNoD)
| I

91y —

NOISS3ddX3
NOILISOdINOD aONV
NOILVOO1 TVIISAHd ONISN

NOILNGIMLINOD ILVHINTD

[}

NOILISOdWOD NI

SA73i4 40 NOILYDO1
TVOISAHd ALY

— pIv

QOHL13IN
SS302V
d3SOdNOD

ONISS300¥d QOHL3N

SS30IV ¥3IHIO

— 81

NOILOITIS ¥3LTid HLIM

NOILNEI¥LNOD aN3LX3 [— 017

A

NOILYJ01
Q1314 TVOISAHd
NO g3asvs
NOILNGIMINQD [— 80F
A¥3NOD alng

¢
QOH13N
SS302V
a3xy3aLd

(anNiNoD)
)

NOILVYOO1
a13id TVOISAHd
NO d3sve
NOLLNBI™LNOD
AY3ND aling

— POV

¢
AOHL3IN
SS300V
- IIdNIS

aor

d7131d ¥O4 NOILNEIMINOD
AYIND 3134INOI aing

PCT/GB03/01674

WO 03/091829

6/8

S1INS3H AY3ND

51 00S =
s ol N ozs
IHOVO |
776 — ViVa o0 SLINS3Y IZIVWHON / INIGINOD |— 8IS
208
3OHNOS N
V1iVa 3LOWIN 9IS — 91§ 91§ 1918
¥0 V00T AY3INO 34NA300Yd AY3ND AH3IND
-gNS ¥3HLO TIv0 -ans NNy -ans NNA
SS300V
QOHLIN $S300V v.Lvd SS300V
S38i¥Is3d . §S300V | ... V.iva WX / v.LVQ
| Y1Va ¥3H1O0 Tv¥NA300Nd WIHONYNEIIH | | TVNOILY13Y
90§ ~\ Np1g— =i S-2plg
SAOHLIW SS3DDV
V1VQ TVIISAHd .
NOILVOO1 aANY QOHLIW Ag
ININOdNOD L zIS
NOLLOYHL SEY SS300V <h_<o NOILILYVd
AMOLISOd3Y V1va ,
v — SQOHLINW SSIOIV
— Q1314 VIID0T dNMOOT ‘A¥IND ISHVYd | LNINOJWOD
b0OS JWILNNY
i\ \
srl 051 ZrT — ol

OL-3ONIUIAIH —*

NOILYDI4I103dS AHIND LOvHisay

A

NOLLVOIddY

y

PCT/GB03/01674

WO 03/091829

7/8

602

b e e e

~ ~ ~ ~ - o ~ ~ Z b4
=> = = = S 2 > = = =
%) ©) © o) ") ¥ 0 %)
o e L] -
w (72] nNu 2] m 2 m) nNu)
= o = o = o = 14 = 14
z< Hl |z Hl 1z< Hl lz< = z< =
o9 SH o9 SH oL S_._._u oL SH ..nnvmm SH
FElrnsS R lxnsS FLlxn= FLlxans FLirans
< 0O EEM < QO EEM < Q EEM < Q EEM < Q EEM
o |FO%| |SE|E3%! |SRIEQL| QY |ESE SWIEZ%
a0 {0 40N |0O<a J0n|{0<a a40nio<a a0 | 0<a
L4 04 24 ¥o4 €4 404 ¥4 HO4 N4 ¥o4
JOH13IN QOHL13IN QOHL3N AOH13N AOHL3N
S$S30IV SS3DJV SS30JV SS3JJV SS302V
a — “ r
~ &N ™ <+
S0 co °Q 0 0
NS 3 3 3 3 m
T T T T T T T T A e N\
M\\l./l ll ._
- ~ e > Z
3 g 3 3 g
| 1 [L |
- ' ~ .) ' <~ ! z .
Q 0 ()] 0 o
— — — | —
m w m m wm
T T ™ o (T
~ AH3ND LOovyLisay

Fig. 6

WO 03/091829 PCT/GB03/01674
8/8

Field
702 — Name = "CreditRatingDescription”
704 — Access Method = "Simple-Remote”
URL = "jdbc:driverid://remotesystem.abc.com/creditschema”
JDBC Driver = "com.xyz.com.driverclass”
Table = "credit_t"
Column = "desc"

Fig. 7

Field
802 —Name = "CreditRating"
804 — Access Method = "Procedural® ’
Service Spec = http://www.mysite.org/services/CreditService.wsdl”
Service Name = "Credit" :
Port Name = "CreditPort"
Operation = "getCreditRating"
Input
Parm ,
Name = "LastName"
Value = "LastName"
Output
Name = "CreditRating"

Fig. 8

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

