
United States Patent (19) 
Johnson et al. 

54 

(75) 

73 

21 

22 

63 
(51) 
52 
58 

(56) 

HIGH SPEED INSTRUCTION ALIGNMENT 
UNIT FOR ALIGNING WARIABLE BYTE 
LENGTH INSTRUCTIONS ACCORDING TO 
PREDECODE INFORMATION INA 
SUPERSCALARMCROPROCESSOR 

Inventors: William M. Johnson; David B. Witt: 
Thang Tran, all of Austin, Tex. 

Assignee: Advanced Micro Devices, Inc. 
Sunnyvale, Calif. 

Appl. No.: 864,580 
Filed: May 28, 1997 

Related U.S. Application Data 

Continuation of Ser. No. 421,669, Apr. 12, 1995, abandoned. 
int. C. r. G06F 9/30 
U.S. Cl. ............. 395/380; 395/389 
Field of Search ................................... 395/380,389, 

395/381 382,386,391 

References Cited 

U.S. PATENT DOCUMENTS 

4,044,338 8/1977 Wolf.......................................... 365/49 
4,453,212 6/1984 Gaither et al. ... ... 395/402 
4,807,115 2/1989 Tong ............... ... 395/391 
4,858,105 8/1989 Kuriyama et al. ... 395/582 
5,113,515 5/1992 Fite et al.......... ... 395/452 
5,129,067 7/1992 Johnson ... ... 395,389 
5,214,763 5/1993 Blaner et al. ... ... 395/388 
5,226,126 7/1993 McFarland et al. ... 395/394 
5,226,130 7/1993 Favor et al. ..... ... 395/585 
5,433,668 8/1995 Coon et al. ....... ... 395/380 
5,463,748 10/1995 Schwendinger. ... 395/380 
5,513,330 4/1996 Stiles ....................................... 395/380 

FOREIGN PATENT DOCUMENTS 

0259095 3/1988 European Pat. Off.. 

From instruction 
Cache 204 

206 - 25OA 

instruction 
25f Channelling 

Unit 

253 instruction 
Channelling 

DEC3DEC2DEC DEco 
208D 208C 208E 208A 

Channelling 

III 
US005758114A 

Patent Number: 

Date of Patent: 
5,758,114 

May 26, 1998 
11) 

45 

O381471 
O459232 
2263985 
2263987 
228422 

8/1990 
12/1991 
8/993 

European Pat. Off. . 
European Pat. Off. . 
United Kingdom. 

8/1993 United Kingdom. 
3/1995 United Kingdom. 

OTHER PUBLICATIONS 

Intel, "Chapter 2: Microprocessor Architecture Overview." 
pp. 2-1 through 2-4. 
Michael Slater, "AMD's K5 Designed to Outrun Pentium." 
Microprocessor Report, vol. 8. No. 14, October 24, 1994, 7 
pages. 
Sebastian Rupley and John Clyman, "P6: The Next Step?." 
PC Magazine, Sep. 12, 1995, 16 pages. 
Tom R. Halfhill, "AMD K6 Takes On Intel P6,' BYTE, Jan. 
1996, 4 pages. 
Primary Examiner-Parshotams S. Lall 
Assistant Examiner-Viet Wu 
Attorney; Agent, or Firm-Conley, Rose & Tayon; B. Noel 
Kivlin 

57 ABSTRACT 

An instruction alignment unit is provided which transfers a 
fixed number of instructions from an instruction cache to 
each of a plurality of decode units. The instructions are 
selected from a quantity of bytes according to a predecode 
tag generated by a predecode unit. The predecode tag 
includes start-byte bits that indicate which bytes within the 
quantity of bytes are the first byte of an instruction. The 
instruction alignment unit independently scans a plurality of 
groups of instruction bytes, selecting start bytes and a 
plurality of contiguous bytes for each of a plurality of issue 
positions. Initially, the instruction alignment unit selects a 
group of issue positions for each of the plurality of groups 
of instructions. The instruction alignment unit then shifts 
and merges the independently produced issue positions to 
produce a final set of issue positions for transfer to a 
plurality of decode units. 

22 Claims, 5 Drawing Sheets 

From instruction 
Cache 204 

25OB 

Instruction 

255 Control 
Unit 

  



U.S. Patent May 26, 1998 Sheet 1 of 5 5,758,114 

1O 102 O4 1O6 108 f 112 

N--1N--1N--1N--N--1--1 
0-4 Bytes 1-2Bytes 0-1 Byte 0-1 Byte 0,1,2 or 4 Bytes 0,1,2 or 4 Bytes 
(optional) (optional) (optional) (optional) (optional) 

Generic X86 instruction Format 

Fic. 1 
ES Art) 



5,758,114 Sheet 2 of 5 May 26, 1998 U.S. Patent 

00320Z   

  
  
  
  
  

  

    

  

      

  

  

  

  

  

      

  

  



5,758,114 Sheet 3 of 5 May 26, 1998 U.S. Patent 

VE '61-I 
Z93 

992 

393 

8093 

\/802 8802 O803 C1803 Ø OBC] || OEC] | ? OEC|| 0 OBC] 

  

  

  

  

  



U.S. Patent May 26, 1998 Sheet 4 of 5 5,758,114 

C) S. S. S. 
Q Q O 
cy cy c 

r-------------------------------------- 

FEEEEEEEEEEEEEEEEE HE & S. 
C - 

HES s IIE s s 
Liz 
H S 

R. S. 

E. S TE: His 
J ELS 9. 

ES S all 

i al ity 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 



U.S. Patent May 26, 1998 Sheet 5 of 5 5,758,114 

EE E. ES RFE N |G: SES HESHES 
H i? E.I. It | He s EE H HE sh iEE : to I d. 9 FE H HES S 

a |HE |E |E N kill git II S S 5 st HE HE S 
5 2 ES IE to till t| HEHE IES I EQ is HES ES ES HES S till HES c w E 

-' Y O 

S s s 
w w Y. 



5,758,114 
1 

HIGH SPEED INSTRUCTIONALGNMENT 
UNIT FOR ALIGNING WARIABLE BYTE 
LENGTH INSTRUCTIONS ACCORDING TO 

PREDECODE INFORMATION N A 
SUPERSCALARMCROPROCESSOR 

This application is a continuation of application Ser. No. 
08/421,669, filed Apr. 12, 1995, abandoned. 

BACKGROUND OF THE INVENTION 
1. Field of the Invention 
This invention relates to superscalar microprocessors and 

more particularly to a high speed instruction alignment unit 
for dispatching variable byte length instructions to a plural 
ity of instruction decode units within a superscalar micro 
processor. 

2. Description of the Relevant Art 
Superscalar microprocessors are capable of attaining per 

formance characteristics which surpass those of conven 
tional scalar processors by allowing the concurrent execu 
tion of multiple instructions. Due to the widespread 
acceptance of the x86 family of microprocessors, efforts 
have been undertaken by microprocessor manufacturers to 
develop superscalar microprocessors which execute x86 
instructions. Such superscalar microprocessors achieve rela 
tively high performance characteristics while advanta 
geously maintaining backwards compatibility with the vast 
amount of existing software developed for previous micro 
processor generations such as the 8086, 80286, 80386, and 
80486. 
The x86 instruction set is relatively complex and is 

characterized by a plurality of variable byte length instruc 
tions. A generic format illustrative of the x86 instruction set 
is shown in FIG. 1. As illustrated in the figure, an x86 
instruction consists of from one to five optional prefix bytes 
102, followed by an operation code (opcode) field 104, an 
optional addressing mode (Mod RAM) byte 106, an optional 
scale-index-base (SIB) byte 108, an optional displacement 
field 110, and an optional immediate data field 112. 
The opcode field 104 defines the basic operation for a 

particular instruction. The default operation of a particular 
opcode may be modified by one or more prefix bytes. For 
example, a prefix byte may be used to change the address or 
operand size for an instruction, to override the default 
segment used in memory addressing, or to instruct the 
processor to repeat a string operation a number of times. The 
opcode field 104 follows the prefix bytes 102, if any, and 
may be one or two bytes in length. The addressing mode 
(Mod R/M) byte 106 specifies the registers used as well as 
memory addressing modes. The scale-index-base (SIB) byte 
108 is used only in 32-bit base-relative addressing using 
scale and index factors. Abase field of the SIB byte specifies 
which register contains the base value for the address 
calculation, and an index field specifies which register 
contains the index value. A scale field specifies the power of 
two by which the index value will be multiplied before being 
added, along with any displacement, to the base value. The 
next instruction field is the optional displacement field 110, 
which may be from one to four bytes in length. The 
displacement field 110 contains a constant used in address 
calculations. The optional immediate field 112, which may 
also be from one to four bytes in length, contains a constant 
used as an instruction operand. The shortest x86 instructions 
are only one byte long, and comprise a single opcode byte. 
The 80286 sets a maximum length for an instruction at 10 
bytes, while the 80386 and 80486 both allow instruction 
lengths of up to 15 bytes. 

O 

15 

25 

35 

45 

55 

65 

2 
The complexity of the x86 instruction set poses difficul 

ties in implementing high performance x86 compatible 
superscalar microprocessors. One difficulty arises from the 
fact that instructions must be aligned with respect to the 
parallel-coupled instruction decoders of such processors 
before proper decode can be effectuated. In contrast to most 
RISC instruction formats, since the x86 instruction set 
consists of variable byte length instructions, the start bytes 
of successive instructions within a line are not necessarily 
equally spaced, and the number of instructions per line is not 
fixed. As a result, employment of simple, fixed-length shift 
ing logic cannot in itself solve the problem of instruction 
alignment. Although scanning logic has been proposed to 
dynamically and sequentially find the boundaries of instruc 
tions during the decode pipeline stage (or stages) of the 
processor, such a solution typically requires that the decode 
pipeline stage of the processor be implemented with a 
relatively large number of cascaded levels of logic gates 
and/or the allocation of several clock cycles to perform the 
scanning operation. 
A further solution to instruction alignment and decode 

within x86 compatible superscalar microprocessors is 
described within the copending, commonly assigned patent 
application entitled "Superscalar Instruction Decoder". Ser. 
No. 08/146,383, filed Oct. 29, 1993 by Witt et al., 
abandoned, the disclosure of which is incorporated herein by 
reference in its entirety. Such a solution employs a prede 
code technique whereby predecode information for each 
variable byte length instruction is derived as the instructions 
are stored within an instruction cache. The predecode infor 
mation is indicative of the boundaries of each instruction, 
among other things. Prior to dispatch to the decode stage of 
the processor, an alignment mechanism (referred to as a byte 
queue) sequentially locates each instruction. Upon locating 
an instruction, the alignment mechanism translates the 
instruction into one or more fixed-length RISC-like instruc 
tions called "ROPs". The fixed-length ROPs are then pro 
vided to allocated instruction decoders. Subsequent instruc 
tions are handled similarly. While this solution has been 
quite successful, it too typically requires a relatively large 
number of cascaded levels of logic gates and/or pipeline 
stages. This correspondingly limits the maximum overall 
clock frequency and performance of the superscalar micro 
processor, 

SUMMARY OF THE INVENTION 
The problems outlined above are in large part solved by 

a superscalar microprocessor employing an instruction 
alignment unit and instruction alignment method in accor 
dance with the present invention. In one embodiment, an 
instruction alignment unit is provided which transfers a fixed 
number of bytes from an instruction cache to each of a 
plurality of decode units. The bytes are selected from 
predetermined groups of bytes according to predecode tags 
generated by a predecode unit. The predecode tags (a 
separate one of which is associated with each byte) indicate 
which bytes within the predetermined groups are the starting 
bytes for instructions. In one specific implementation, the 
instruction alignment unit concurrently and independently 
detects the start bytes among three different groups of eight 
bytes of contiguous instruction code. Upon independently 
finding a predetermined number of start bytes within each 
group of instruction code, the instruction alignment unit 
independently routes the start bytes, along with seven con 
tiguous bytes following each start byte, to respective "pre 
liminary" issue channels associated with each group. The 
preliminary issue channels are then shifted and/or merged 



5,758,114 
3 

into a set of "final" issue channels coupled to the plurality of 
decode units mentioned above. 

In another embodiment, groups of instruction bytes are 
transferred to a pair of instruction channelling units. The 
instruction channelling units independently select up to four 
start bytes from the instruction bytes and place the selected 
start bytes and a number of bytes contiguous to and follow 
ing the start bytes into preliminary issue positions. The 
instruction bytes channeled through the two sets of prelimi 
nary issue positions are then transferred to a third instruction 
channelling unit, along with an indication of the number of 
valid instructions contained within the issue positions of the 
first instruction channelling unit. The issue positions trans 
ferred by the second instruction channelling unit are then 
shifted by the number of valid instructions indicated by the 
first instruction channeling unit. Final issue positions are 
then selected from the corresponding valid instructions 
transferred in the issue positions from the first instruction 
channelling unit. Any remaining final issue positions are 
selected from the corresponding issue positions of the 
shifted set of issue positions from the second channeling 
unit. The final issue positions are coupled to a set of decode 
units which decode the instructions and dispatch them to 
functional units for execution. 

In another embodiment, the quantity of bytes that are 
selected from is 24: the last eight bytes of a previously 
fetched instruction cache line and sixteen bytes of the 
current instruction cache line. When a start byte is selected 
for dispatch, the corresponding start bit is invalidated. In this 
embodiment, up to 4 instructions can be dispatched per 
clock cycle. When the last eight bytes of the previously 
fetched cache line and the first eight bytes of the current 
cache line do not contain any valid start bytes, the current 
cache line is moved into the previously fetched instruction 
cache line position and the next instruction cache line is 
fetched. 

Each eight byte section is examined independently for 
start bytes, and the start bytes found plus the following seven 
bytes are assigned to an issue position. A first level of 
multiplexing is implemented to accomplish this. The three 
sets of issue groups (herein referred to as issue group one for 
the last eight bytes of the previous cache line, issue group 
two for the first eight bytes of the current cache line, and 
issue group three for the last eight bytes of the current cache 
line) are then directed to a second level of multiplexing. At 
this level, issue group one and issue group two are merged 
by shifting issue group two by the number of valid instruc 
tions contained in issue group one. The instructions in issue 
group three are also shifted by the number of valid instruc 
tions in issue group one at this level. The merged and shifted 
issue groups are then directed to a third level of multiplex 
ing. The previously shifted issue group three is further 
shifted by the number of valid instructions that are contained 
in issue group two. The double-shifted issue group three is 
then merged with the previously merged issue groups one 
and two. The resulting issue groups are transferred to the 
instruction decode units and the corresponding start bits for 
the instructions transferred are reset. Also included at the 
third multiplexing level are the inputs from the MROM unit 
and the predecode unit. 
A superscalar microprocessor employing an instruction 

alignment unit according to the present invention may be 
implemented with a low number of cascaded gates by 
scanning several small fields of bytes simultaneously for 
start bytes, then shifting the independently found instruc 
tions by the number of start bytes found within the small 
fields. No combining of the calculated values is necessary, 
further speeding the implementation. 

O 

15 

25 

30 

35 

45 

50 

55 

65 

4 
Broadly speaking, the invention contemplates an instruc 

tion alignment unit for a superscalar microprocessor includ 
ing a first, a second and a third instruction channelling units. 
The first and second instruction channelling units are 
coupled to an input port. The input port comprises a plurality 
of groups of instruction bytes. The first instruction channel 
ling unit selects a first plurality of instruction bytes and the 
second instruction channelling unit selects a second plurality 
of instruction bytes from the plurality of groups of instruc 
tions for dispatch. The first plurality of instruction bytes is 
then merged with the second plurality of instruction bytes by 
the third instruction channelling unit, forming a merged 
plurality of instruction bytes. This merged plurality of 
instruction bytes is then dispatched to the plurality of 
instruction decode units through an output port. 
The present invention further contemplates a method for 

selecting variable length instructions from a plurality of 
groups of instruction bytes comprising several steps. A first 
plurality of instruction bytes is selected from one of the 
plurality of groups of instructions. A second plurality of 
instruction bytes is selected from another of the plurality of 
instruction bytes. Both pluralities of instruction bytes com 
prise a start byte and a fixed number of contiguous bytes. 
Shifting and merging steps are applied to the first and second 
pluralities of instruction bytes. The second plurality of 
instruction bytes is shifted by the number of bytes within 
said first plurality of instruction bytes. Instruction bytes 
produced by the aforementioned shifting are then merged 
with the first plurality of instruction bytes creating a merged 
plurality of instruction bytes. The merged plurality of 
instruction bytes is formed such that the shifted plurality of 
instruction bytes follows the first plurality of instruction 
bytes. 

BRIEF DESCRIPTION OF THE DRAWTNGS 
Other objects and advantages of the invention will 

become apparent upon reading the following detailed 
description and upon reference to the accompanying draw 
ings in which: 

FIG. 1 is a block diagram of a generic x86 instruction 
format. 

FIG. 2 is a block diagram of a superscalar microprocessor 
including an instruction alignment unit in accordance with 
the present invention. 

FIG. 3A is a block diagram of one embodiment of the 
instruction alignment unit in accordance with the present 
invention. 

FIG. 3B is a diagram of another embodiment of the 
instruction alignment unit in accordance with the present 
invention, showing only the start bytes connection to the first 
level of multiplexing. 

FIG. 4 is a diagram showing 15 contiguous instruction 
bytes and the multiplexing connections necessary to select 8 
contiguous bytes within the set of 15 instruction bytes. 

While the invention is susceptible to various modifica 
tions and alternative forms, specific embodiments thereof 
are shown by way of example in the drawings and will 
herein be described in detail. It should be understood 
however, that the drawings and detailed description thereto 
are not intended to limit the invention to the particular form 
disclosed, but on the contrary, the intention is to cover all 
modifications, equivalents and alternatives falling within the 
spirit and scope of the present invention as defined by the 
appended claims. 

DETALED DESCRIPTION OF THE 
INVENTION 

Referring next to FIG. 2, a block diagram of a superscalar 
microprocessor 200 including an instruction alignment unit 



5,758,114 
5 

206 in accordance with the present invention is shown. As 
illustrated in the embodiment of FIG. 2, superscalar micro 
processor 200 includes a prefetch/predecode unit 202 and a 
branch prediction unit 220 coupled to an instruction cache 
204. Instruction alignment unit 206 is coupled between 
instruction cache 204 and a plurality of decode units. 
208A-208D (referred to collectively as decode units 208). 
Each decode unit 208A-208D is coupled to respective 
reservation station units 210A-210D (referred to collec 
tively as reservation stations 210), and each reservation 
station 210A-210D is coupled to a respective functional unit 
212A-212D (referred to collectively as functional units 
212). Decode units 208, reservation stations 210, and func 
tional units 212 are further coupled to a reorder buffer 216, 
a register file 218 and a load/store unit 222. A data cache 224 
is finally shown coupled to load/store unit 222, and an 
MROM unit 209 is shown coupled to instruction alignment 
unit 206. 

Generally speaking, instruction cache 204 is a high speed 
cache memory provided to temporarily store instructions 
prior to their dispatch to decode units 208. In one 
embodiment, instruction cache 204 is configured to cache up 
to 32 kilobytes of instruction code organized in lines of 16 
bytes each (where each byte consists of 8 bits). During 
operation, instruction code is provided to instruction cache 
204 by prefetching code from a main memory (not shown) 
through prefetch/predecode unit 202. It is noted that instruc 
tion cache 204 could be implemented in a set-associative, a 
fully-associative, or a direct-mapped configuration. 

Prefetch/predecode unit 202 is provided to prefetch 
instruction code from the main memory for storage within 
instruction cache 204. In one embodiment, prefetch/ 
predecode unit 202 is configured to burst 64-bit wide code 
from the main memory into instruction cache 204. It is 
understood that a variety of specific code prefetching tech 
niques and algorithms may be employed by prefetch/ 
predecode unit 202. 
As prefetch/predecode unit 202 fetches instructions from 

the main memory, it generates three predecode bits associ 
ated with each byte of instruction code: a start bit, an end bit, 
and a "functional" bit. The predecode bits form tags indica 
tive of the boundaries of each instruction. The predecode 
tags may also convey additional information such as 
whether a given instruction can be decoded directly by 
decode units 208 or whether the instruction must be 
executed by invoking a microcode procedure controlled by 
MROM unit 209, as will be described in greater detail 
below. 

Table 1 indicates one encoding of the predecode tags. As 
indicated within the table, if a given byte is the first byte of 
an instruction, the start bit for that byte is set. If the byte is 
the last byte of an instruction, the end bit for that byte is set. 
If a particular instruction cannot be directly decoded by the 
decode units 208, the functional bit associated with the first 
byte of the instruction is set. On the other hand, if the 
instruction can be directly decoded by the decode units 208, 
the functional bit associated with the first byte of the 
instruction is cleared. The functional bit for the second byte 
of a particular instruction is cleared if the opcode is the first 
byte, and is set if the opcode is the second byte. It is noted 
that in situations where the opcode is the second byte, the 
first byte is a prefix byte. The functional bit values for 
instruction byte numbers 3-8 indicate whether the byte is a 
MODRM or an SIB byte, or whether the byte contains 
displacement or immediate data. 

10 

15 

25 

35 

45 

50 

55 

65 

6 

TABLE 1. 

Encoding of Start, End and Functional Bits 

instr. Start End Functional 
Byte Bit Bit Bit 
Number Walue Walue Walue Meaning 

X O Fast decode 
1 1. X MROM instr. 
2 O X O Opcode is first 

byte 
2 O X 1 Qpcode is this 

byte, first 
byte is prefix 

3-8 O X O Mod RM or 
SB byte 

3-8 O X 1 Displacement or 
immediate data; 
the second 
functional bit 
set in bytes 
3-8 indicates 
immediate data 

1-8 X O X Not last byte 
of instruction 

1-8 X X Last byte of 
instruction 

As stated previously, in one embodiment certain instruc 
tions within the x86 instruction set may be directly decoded 
by decode unit 208. These instructions are referred to as 
"fast path" instructions. The remaining instructions of the 
x86 instruction set are referred to as "MROM instructions". 
MROM instructions are executed by invoking MROM unit 
209. More specifically, when an MROM instruction is 
encountered, MROM unit 209 parses and serializes the 
instruction into a subset of defined fast path instructions to 
effectuate a desired operation. A listing of exemplary x86 
instructions categorized as fast path instructions as well as a 
description of the manner of handling both fast path and 
MROM instructions will be provided further below. 

Instruction alignment unit 206 is provided to channel 
variable byte length instructions from instruction cache 204 
to fixed issue positions formed by decode units 208A-208D. 
As will be described in conjunction with FIGS. 2-4, instruc 
tion alignment unit 206 is configured to channel instruction 
bytes to designated decode units 208A-208D. Instruction 
alignment unit 206 independently and in parallel selects 
instructions from three groups of instruction bytes provided 
by instruction cache 204 and arranges these bytes into three 
groups of preliminary issue positions. Each group of issue 
positions is associated with one of the three groups of 
instruction bytes. The preliminary issue positions are then 
merged together to form the final issue positions, each of 
which is coupled to one of decode units 208. 

Before proceeding with a detailed description of the 
alignment of instructions from instruction cache 204 to 
decode units 208, general aspects regarding other sub 
systems employed within the exemplary superscalar micro 
processor 200 of FIG. 2 will be described. For the embodi 
ment of FIG. 2, each of the decode units 208 includes 
decoding circuitry for decoding the predetermined fast path 
instructions referred to above. In addition, each decode unit 
208A-208D routes displacement and immediate data to a 
corresponding reservation station unit 210A-210D. Output 
signals from the decode units 208 include bit-encoded 
execution instructions for the functional units 212 as well as 
operand address information, immediate data and/or dis 
placement data. 
The superscalar microprocessor of FIG. 2 supports out of 

order execution, and thus employs reorder buffer 216 to keep 



5,758,114 
7 

track of the original program sequence for register read and 
write operations, to implement register renaming, to allow 
for speculative instruction execution and branch mispredic 
tion recovery, and to facilitate precise exceptions. As will be 
appreciated by those of skill in the art, a temporary storage 
location within reorder buffer 216 is reserved upon decode 
of an instruction that involves the update of a register to 
thereby store speculative register states. Reorder buffer 216 
may be implemented in a first-in-first-out configuration 
wherein speculative results move to the “bottom" of the 
buffer as they are validated and written to the register file, 
thus making room for new entries at the “top” of the buffer. 
Other specific configurations of reorder buffer 216 are also 
possible, as will be described further below. If a branch 
prediction is incorrect, the results of speculatively-executed 
instructions along the mispredicted path can be invalidated 
in the buffer before they are written to register file 218. 
The bit-encoded execution instructions and immediate 

data provided at the outputs of decode units 208A-208D are 
routed directly to respective reservation station units 
210A-210D. In one embodiment, each reservation station 
unit 210A-210D is capable of holding instruction informa 
tion (i.e., bit encoded execution bits as well as operand 
values, operand tags and/or immediate data) for up to three 
pending instructions awaiting issue to the corresponding 
functional unit. It is noted that for the embodiment of FIG. 
2, each decode unit 208A-208D is associated with a dedi 
cated reservation station unit 210A-210D, and that each 
reservation station unit 210A-210D is similarly associated 
with a dedicated functional unit 212A-212D. Accordingly, 
four dedicated "issue positions" are formed by decode units 
208, reservation station units 210 and functional units 212. 
Instructions aligned and dispatched to issue position 0 
through decode unit 208A are passed to reservation station 
unit 210A and subsequently to functional unit 212A for 
execution. Similarly, instructions aligned and dispatched to 
decode unit 208B are passed to reservation station unit 210B 
and into functional unit 212B, and so on. 
Upon decode of a particular instruction, if a required 

operand is a register location, register address information is 
routed to reorder buffer 216 and register file 218 simulta 
neously. Those of skill in the art will appreciate that the x86 
register file includes eight 32 bit real registers (i.e., typically 
referred to as EAX, EBX, ECX, EDX, EBP, ESL, EDI and 
ESP). Reorder buffer 216 contains temporary storage loca 
tions for results which change the contents of these registers 
to thereby allow out of order execution. A temporary storage 
location of reorder buffer 216 is reserved for eachinstruction 
which, upon decode, is determined to modify the contents of 
one of the real registers. Therefore, at various points during 
execution of a particular program, reorder buffer 216 may 
have one or more locations which contain the speculatively 
executed contents of a given register. If following decode of 
a given instruction it is determined that reorder buffer 216 
has a previous location or locations assigned to a register 
used as an operand in the given instruction, the reorder 
buffer 216 forwards to the corresponding reservation station 
either: 1) the value in the most recently assigned location, or 
2) a tag for the most recently assigned location if the value 
has not yet been produced by the functional unit that will 
eventually execute the previous instruction. If the reorder 
buffer has a location reserved for a given register, the 
operand value (or tag) is provided from reorder buffer 216 
rather than from register file 218. If there is no location 
reserved for a required register in reorder buffer 216, the 
value is taken directly from register file 218. If the operand 
corresponds to a memory location, the operand value is 
provided to the reservation station unit through load/store 
unit 222. 

10 

15 

O 

25 

30 

35 

45 

50 

55 

65 

8 
Details regarding suitable reorder buffer implementations 

may be found within the publication "Superscalar Micro 
processor Design" by Mike Johnson, Prentice-Hall, Engle 
wood Cliffs, N.J., 1991, and within the co-pending, com 
monly assigned patent application entitled "High 
Performance Superscalar Microprocessor", Ser. No. 08/146. 
382, filed Oct. 29, 1993 by Witt, et al. These documents are 
incorporated herein by reference in their entirety. 

Reservation station units 210A-210D are provided to 
temporarily store instruction information to be speculatively 
executed by the corresponding functional units 212A-212D. 
As stated previously, each reservation station unit 
210A-210D may store instruction information for up to 
three pending instructions. Each of the four reservation 
stations 210A-210D contain locations to store bit-encoded 
execution instructions to be speculatively executed by the 
corresponding functional unit and the values of operands. If 
a particular operand is not available, a tag for that operand 
is provided from reorder buffer 216 and is stored within the 
corresponding reservation station until the result has been 
generated (i.e., by completion of the execution of a previous 
instruction). It is noted that when an instruction is executed 
by one of the functional units 212A-212D, the result of that 
instruction is passed directly to any reservation station units 
210A-210D that are waiting for that result at the same time 
the result is passed to update reorder buffer 216 (this 
technique is commonly referred to as "result forwarding”). 
Instructions are issued to functional units for execution after 
the values of any required operand(s) are made available. 
That is, if an operand associated with a pending instruction 
within one of the reservation station units 210A-210D has 
been tagged with a location of a previous result value within 
reorder buffer 216 which corresponds to an instruction 
which modifies the required operand, the instruction is not 
issued to the corresponding functional unit 212 until the 
operand result for the previous instruction has been 
obtained. Accordingly, the order in which instructions are 
executed may not be the same as the order of the original 
program instruction sequence. Reorder buffer 216 ensures 
that data coherency is maintained in situations where read 
after-write dependencies occur. 

In one embodiment, each of the functional units 212 is 
configured to perform integer arithmetic operations of addi 
tion and subtraction, as well as shifts, rotates, logical 
operations, and branch operations. It is noted that a floating 
point unit (not shown) may also be employed to accommo 
date floating point operations. 
Each of the functional units 212 also provides information 

regarding the execution of conditional branch instructions to 
the branch prediction unit 220. If a branch prediction was 
incorrect, branch prediction unit 220 flushes instructions 
subsequent to the mispredicted branch that have entered the 
instruction processing pipeline, and causes prefetch/ 
predecode unit 202 to fetch the required instructions from 
instruction cache 204 or main memory. It is noted that in 
such situations, results of instructions in the original pro 
gram sequence which occur after the mispredicted branch 
instruction are discarded, including those which were specu 
latively executed and temporarily stored in load/store unit 
222 and reorder buffer 216. Exemplary configurations of 
suitable branch prediction mechanisms are well known. 

Results produced by functional units 212 are sent to the 
reorder buffer 216 if a register value is being updated, and 
to the load/store unit 222 if the contents of a memory 
location is changed. If the result is to be stored in a register, 
the reorder buffer 216 stores the result in the location 
reserved for the value of the register when the instruction 



5,758,114 

was decoded. As stated previously, results are also broadcast 
to reservation station units 210A-210D where pending 
instructions may be waiting for the results of previous 
instruction executions to obtain the required operand values. 

Generally speaking, load/store unit 222 provides an inter 
face between functional units 212A-212D and data cache 
224. In one embodiment, load/store unit 222 is configured 
with a store buffer with eight storage locations for data and 
address information for pending loads or stores. Functional 
units 212 arbitrate for access to the load/store unit 222. 
When the buffer is full, a functional unit must wait until the 
load/store unit 222 has room for the pending load or store 
request information. The load/store unit 222 also performs 
dependency checking for load instructions against pending 
store instructions to ensure that data coherency is main 
tained. 

Data cache 224 is a high speed cache memory provided to 
temporarily store data being transferred between load/store 
unit 222 and the main memory subsystem. In one 
embodiment, data cache 224 has a capacity of storing up to 
eight kilobytes of data. It is understood that data cache 224 
may be implemented in a variety of specific memory 
configurations, including a set associative configuration. 

Details regarding the dispatch of instructions from 
instruction cache 204 through instruction alignment unit 206 
to decode units 208 will next be considered. FIG. 3A is a 
block diagram which depicts internal portions of one 
embodiment of instruction alignment unit 206 as well as 
input registers to decode units 208. This embodiment is 
configured with two instruction byte buses 250A and 250B 
(collectively referred to as instruction byte buses 250). 
Instruction bytes are placed on instruction byte buses 250 by 
instruction cache 204, and each instruction byte bus trans 
fers eight bytes. Instruction byte bus 250A is coupled to an 
instruction channelling unit 251 and instruction byte bus 
250B is coupled to an instruction channelling unit 252. Also 
shown in FIG. 3A is a control unit 255 which receives input 
information on a predecode tag bus 254 and has control 
output buses 256, 257, and 258. Control output bus 256 is 
coupled to instruction channelling unit 252. Similarly, con 
trol output bus 257 is coupled to instruction channelling unit 
251 and control output bus 258 is coupled to an instruction 
channelling unit 253. Instruction channelling unit 251 pro 
duces four preliminary issue positions: preliminary issue 
position A, preliminary issue position B, preliminary issue 
position C, and preliminary issue position D. Similarly, 
instruction channelling unit 252 produces preliminary issue 
position A. preliminary issue position B', preliminary issue 
position C", and preliminary issue position D'. Each of the 
preliminary issue positions A-D and A-D' are coupled to 
instruction channelling unit 253. Instruction channelling unit 
253 produces four final issue positions 267. 268. 269, and 
270 which are coupled to decode units 208A, 208B, 208C 
and 208D, respectively. In this embodiment, each prelimi 
nary or final issue position conveys at most one valid 
instruction, and conveys a fixed number of bytes that include 
the valid instruction. 

Generally speaking, instruction channelling units 251 and 
252 independently and in parallel select instructions from 
instruction byte busses 250A and 250B, respectively, 
Selected instructions fill preliminary issue positions con 
nected to instruction channeling units 251 and 252. Instruc 
tion channelling unit 253 shifts instructions conveyed in 
preliminary issue positions A-D' by the number of instruc 
tions conveyed in preliminary issue positions A-D. Instruc 
tion channelling unit 253 then merges the instructions from 
the two sets of preliminary issue positions into final issue 

O 

15 

25 

30 

35 

45 

50 

55 

65 

10 
positions 267-270. The instruction selection and shifting 
process is explained in more detail in the following para 
graphs. 

In this embodiment, control unit 255 receives (via bus 
254) the start byte bits associated with the instruction bytes 
transferred on instruction byte buses 250. Control unit 255 
scans the start byte information for instruction byte bus 
250A, searching for start byte bits that are set. When a start 
byte bit is set, the corresponding byte on instruction byte bus 
250A is the start of an instruction. Control unit 255 directs 
(via signals on control output bus 257) instruction channel 
ling unit 251 to select the corresponding byte and the 
following seven bytes on input instruction byte bus 250A. 
The bytes selected fill the next available preliminary issue 
position. Preliminary issue position A is filled first, then 
preliminary issue position B, etc. Control unit 255 continues 
scanning the start byte bits associated with instruction byte 
bus 250A until either the issue positions of instruction 
channelling unit 251 are filled or the start byte bits associ 
ated with instruction byte bus 250A are exhausted. Similarly 
and in parallel, control unit 255 processes start byte bits 
associated with instruction byte bus 250B and conveys issue 
position selection information to instruction channelling unit 
252 on control output bus 256. 

For the embodiment of FIG. 3A, the instructions trans 
ferred on instruction byte bus 250A are higher priority than 
instructions transferred on instruction byte bus 250B. 
Therefore, valid instructions conveyed in preliminary issue 
positions A-D are directed to final issue positions 267-270 
by instruction channelling unit 253 under the direction of 
control unit 255. Preliminary issue position A, when con 
veying a valid instruction, is directed to issue position 267. 
Similarly, preliminary issue position B. when conveying a 
valid instruction, is directed to issue position 268, etc. 
Additionally, instruction channelling unit 253 shifts prelimi 
nary issue positions A-D' by the number of valid instruc 
tions selected by instruction channelling unit 251 (i.e. the 
number of valid instructions conveyed in issue positions 
A-D). The shifted preliminary issue positions thereafter fill 
those final issue positions 267-270 which were not filled 
with instructions from preliminary issue positions A-D. 
Therefore, decode units 208 receive the maximum number 
of instructions (up to four) that could be located within 
instruction byte busses 250. 
The operation of this embodiment will be further illus 

trated by use of an example. Assume that instruction byte 
bus 250A transfers two valid instructions in a clock cycle, 
and instruction byte bus 250B also transfers two valid 
instructions in that same clock cycle. Instruction channelling 
unit 251, under the direction of control unit 255, selects the 
first start byte and the following seven bytes from instruction 
byte bus 250A and fills preliminary issue position A with the 
selected bytes. Control unit 255then detects the second start 
byte of instruction byte bus 250A, and directs instruction 
channelling unit 251 to cause the second start byte and the 
following seven bytes to occupy preliminary issue position 
B. Independently and in parallel with the above, control unit 
255 scans the start byte bits associated with the instruction 
bytes provided on instruction byte bus 250B, and detects the 
first start byte. The detected start byte and the following 
seven bytes fill preliminary issue position A. Continuing the 
scanning process, control unit 255 detects the second start 
byte conveyed on instruction byte bus 250B. The second 
start byte and the following seven bytes are selected by 
instruction channelling unit 252 into preliminary issue posi 
tion B'. It is noted that the scanning mechanism of control 
unit 255 may also find subsequent instructions on instruction 



5,758,114 
11 

byte bus 250B which are routed to preliminary issue posi 
tions C and D'. As will be evident from the following, 
however, issue positions C" and D' will be essentially 
ignored by instruction channeling unit 253. 

Next, control unit 255 directs instruction channelling unit 
253 via control output 258. Since two valid instructions 
reside in preliminary issue positions A-B, preliminary issue 
position A and preliminary issue position B fill final issue 
positions 267 and 268, respectively. Also, because two valid 
instructions were selected in instruction channelling unit 
251, preliminary issue positions A-D' are shifted by two 
positions. The shifting aligns the instruction conveyed in 
issue position A with final issue position 269. Similarly, 
issue position B' is aligned with final issue position 270. 
Therefore, the two valid instructions, originally in prelimi 
nary issue positions A and B', fill final issue positions 269 
and 270, respectively. Each of decode units 208 receive an 
instruction in this cycle. 

In another embodiment, the bytes selected to fill one 
preliminary issue position at the output of instruction chan 
nelling units 251 and 252 may overlap the bytes selected to 
fill another preliminary issue position. The number of bytes 
filling a preliminary or final issue position is fixed, and some 
instructions may not occupy the full number of bytes within 
the issue position. Therefore, the start byte and possibly 
other bytes of a following instruction occupy byte positions 
within the current issue position. Each of decode units 208 
receive the start byte and end byte bits associated with the 
instruction transferred to the decode unit. Decode units 208 
detect the start and end byte bits to determine which of the 
bytes transferred comprise a complete valid instruction. 

It is understood that other embodiments may employ 
different numbers of issue positions and decode units. The 
embodiment described in conjunction with F.G. 3A may be 
implemented with a small number of cascaded logic levels, 
thereby allowing the embodiment to operate at high speed. 
The embodiment can be implemented in a small number of 
cascaded logic levels for a variety of reasons. First, the large 
number of instructions transferred on instruction byte buses 
250 are processed in small groups independent of each other. 
Instead of scanning linearly through the start bit information 
associated with this large number of instructions, the Small 
groups can be processed in parallel. Second, the Small 
groups are combined together based on the number of valid 
instructions found in one of the small groups (instruction 
byte bus 250A, in this embodiment). 

Turning now to FIG. 3B, another embodiment of instruc 
tion alignment unit 206 is shown. The instruction channel 
ling units of this embodiment include multiplexors, and are 
controlled by output control unit 302 via multiplexor control 
buses 311, 312, and 313. Three instruction byte buses 300A. 
300B, and 300C (collectively referred to herein as instruc 
tion byte buses 300) are further shown. Instruction byte bus 
300A conveys the last eight instruction bytes from a "pre 
viously" fetched instruction cache line. Input instruction 
byte bus 300B conveys the first eight bytes of the "most 
current” instruction cache line, and input instruction byte 
bus 300C conveys the last eight bytes of the most current 
instruction cache line. When the instructions from the last 
eight bytes of the previously fetched cache line and the first 
eight bytes of the most current cache line have been trans 
ferred to decode units 208, the last eight bytes of the most 
current cache line are moved to the last eight bytes of the 
previously fetched instruction cache line (i.e., to instruction 
byte bus 300A), and a new cache line is fetched (and 
conveyed on instruction byte buses 300B and 300C). 

Referring to FIG.3B, signal paths between input instruc 
tion byte buses 300 and first level multiplexors 301A, 301B, 

10 

15 

20 

25 

30 

35 

45 

50 

55 

65 

12 
301C, 301D, 304A, 304B, 304C, 304D, 305A, 305B, 305C, 
and 305D (collectively referred to herein as multiplexors 
301, 304, and 305, respectively) are shown. As opposed to 
the previous embodiment which had two first level instruc 
tion channelling units, this embodiment has three first level 
instruction channelling units as represented by multiplexors 
301, 304, and 305, respectively. The first level instruction 
channelling units have issue positions 1A-1D, 1A-1D', and 
1A"-1D" associated with them, as indicated on F.G. 3B. 
FIG. 3B also depicts signal paths between first level multi 
plexors 301, 304 and 305 and second level multiplexors 
306A, 306B, 306C, 306D, 307A, 307B, 307C, and 307D 
(collectively referred to herein as multiplexors 306 and 307. 
respectively). Multiplexors 306 and 307 form two second 
level instruction channelling units. The second level instruc 
tion channelling units have issue positions 2A-2D and 
2A-2D' associated with them. Finally, signal paths between 
second level multiplexors 306 and 307 and third level 
multiplexors 308A, 308B, 308C, and 308D (collectively 
referred to herein as multiplexors 308) are shown. Multi 
plexors 308 form a third level instruction channelling unit. 
The third level instruction unit has issue positions 3A-3D 
associated with it. 

Broadly speaking, each of the first level instruction chan 
nelling units formed by multiplexors 301. 304, and 305 
independently and in parallel select instructions from their 
associated instruction byte bus 300A-300C into issue posi 
tions 1A-1D, 1A-1D', and 1A"-1D". respectively. The 
second level instruction channelling units formed by multi 
plexors 306 and 307 shift issue positions 1A-1D' and 
1A"-1D", respectively, by the number of valid instructions 
within issue positions 1A-1D. Additionally, multiplexors 
306 merge issue positions 1A-1D with the shifted issue 
positions associated with issue positions 1A-1D'. The third 
level instruction channelling unit formed by multiplexors 
308 shifts issue positions 2A-2D' by the number of instruc 
tions in issue positions 1A-1D'. Also, multiplexors 308 
merge issue positions 2A-2D with the shifted issue positions 
associated with issue positions 2A-2D. A more complete 
description of this embodiment is provided next. 

In FIG. 3B, only the signal paths for multiplexing of the 
start bytes are shown. However, as indicated by the slashes 
on the outputs of the first level multiplexors, multiple bytes 
are selected by each multiplexor. The multiplexing for the 
other bytes that are selected for a given multiplexor will be 
shown below with respect to FIG. 4. The first level multi 
plexors are grouped according to the instruction byte bus 
300 that they are coupled to. Accordingly, multiplexors 301 
are coupled to instruction byte bus 300A; multiplexors 304 
are coupled to instruction byte bus 300B; and multiplexors 
305 are coupled to instruction byte bus 300C. In one 
embodiment, multiplexor 301A is coupled to the eight 
instruction bytes of instruction byte bus 300A. This allows 
for a start byte to be selected from any byte conveyed within 
instruction byte bus 300A. Multiplexor 301B is coupled to 
each of the bytes of instruction byte bus 300A except for the 
first byte. Multiplexor 301B need not be coupled to the first 
byte; if that byte is a start byte then it will be selected by 
multiplexor 301A. Similarly, multiplexor 301C need not be 
coupled to the first two bytes. If both bytes are start bytes, 
the first byte will be selected by multiplexor 301A and the 
second byte will be selected by multiplexor 301B. Lastly, 
multiplexor 301D is shown coupled to each of the bytes 
instruction byte bus 300A except for the first three bytes. 
Thus, the combination of multiplexors 301A, 301B. 301C. 
and 301D and the corresponding signal paths from instruc 
tion byte bus 300A allow for up to four start bytes to be 
selected from instruction bus 300A. 



5,758,114 
13 

As FIG. 3B further illustrates, similar signal paths as 
outlined from instruction byte bus 300A to multiplexors 301 
are shown between input instruction byte bus 300B and 
multiplexors 304. These multiplexors are configured similar 
to multiplexors 301, wherein: multiplexor 304A is similar to 
301A:304B is similar to 301B:304C is similar to 301C, and 
304D is similar to 301D. Also, the operation of multiplexors 
304 is independent of and occurs in parallel with the 
operation of multiplexors 301. The signal paths between 
instruction byte bus 300C and multiplexors 305 are again 
similar to those between instruction byte bus 300A and 
multiplexors 301. 
A control unit 302 is coupled to multiplexors 301, 304, 

and 305 via multiplexor control bus 311. Control unit 302 is 
further configured with a predecode tag input port 303. Input 
port 303 conveys information that control unit 302 uses to 
direct the selection by multiplexors 301. 304, and 305 of 
instruction bytes from instruction byte buses 300. In one 
embodiment, the information conveyed on input port 303 
includes the start byte bits associated with the bytes being 
provided on instruction byte buses 300. The start byte 
information is scanned by control unit 302 and is used to 
create signals conveyed on multiplexor control bus 311. The 
first start byte detected by scanning the start byte bits 
associated with the instruction bytes conveyed on instruction 
byte bus 300A is selected by multiplexor 301A along with 
the following seven bytes. The bytes selected by multiplexor 
301A will extend to the instruction bytes conveyed on 
instruction byte bus 300B, if necessary. Similarly, the second 
start byte detected is selected by multiplexor 301B along 
with the following seven bytes. Again, the bytes selected by 
multiplexor 301 B will extend to the instruction bytes con 
veyed on instruction byte bus 300B, if necessary. Control 
unit 302 continues scanning until four start bytes have been 
detected, or until the start byte bits associated with the 
instruction bytes conveyed on instruction byte bus 300A are 
exhausted. 

Control unit 302 scans the start byte bits associated with 
the instruction bytes conveyed on instruction byte bus 300B 
and the start byte bits associated with the instruction bytes 
conveyed on instruction byte bus 300C in parallel with and 
independent of the aforementioned scanning. Similar pro 
cedures are followed for selecting bytes from instruction 
byte bus 300B and instruction byte bus 300C using multi 
plexors 304 and 305, respectively. 

Using the issue positions as defined above, the function of 
the second level multiplexors 306 and 307 can be described 
Broadly speaking, multiplexors 306 are configured to merge 
the issue positions 1A-1D with issue positions 1A-1D' to 
form issue positions 2A-2D under the direction of control 
unit 302. The merging function is performed by shifting 
issue positions 1A-1D' by the number of valid instructions 
in issue positions 1A-1D; and then filling issue positions 
2A-2D with any valid instructions from issue positions 
1A-1D and filling the remaining issue positions 2A-2D 
from the shifted issue positions created from issue positions 

'-1D'. Multiplexors 307 shift issue positions 1A"-1D" by 
the number of valid instructions in issue positions 1A-1D 
under the direction of control unit 302, thereby filling issue 
positions 2A-2D'. As discussed here, the multiplexor con 
trol bus 312 for multiplexors 306 and 307 depend on the 
number of valid instructions in issue positions 1A-1D. 

Multiplexors 308 are configured to merge issue positions 
2A-2D and 2A-2D' into issue positions 3A-3D under the 
direction of control unit 302. The merging function per 
formed by multiplexors 308 is accomplished by shifting 
issue positions 2A-2D' by the number of valid instructions 

10 

15 

25 

30 

35 

45 

50 

55 

65 

14 
in issue positions 1A-1D', then filling issue positions 
3A-3D with any valid instructions in issue positions 2A-2D 
and filling the remaining issue positions 3A-3D from the 
shifted issue positions created from issue positions 2A-2D. 
The instructions contained in issue positions 3A-3D are 
transferred to decode units 208. The start byte bits corre 
sponding to the instructions transferred to decode units 208 
are reset, so that further instructions may be processed in the 
next cycle. 

In another embodiment, the start bits of instructions 
following a branch instruction which is predicted taken are 
reset by branch prediction unit 220. Therefore, in one case 
the start bits associated with instruction bytes conveyed on 
instruction byte bus 300A are reset (because the instructions 
have been dispatched to decode units 208) and the start bits 
associated with instruction bytes conveyed on instruction 
byte bus 300C are reset (because the instructions bytes 
conveyed on instruction byte bus 300B contain a branch 
instruction which is predicted taken). In this case, the 
instruction bytes conveyed on instruction byte bus 300B are 
moved to instruction byte bus 300A and a new cache line is 
fetched from the target of the predicted branch instruction. 

In one embodiment, multiplexors 308 also have inputs 
from predecode unit 202 and the MROMunit 209. The input 
from predecode unit 202 is shown in FIG. 3B as 309. The 
inputs from MROM unit 209 are shown in FIG. 3B as 310, 
MROM inputs 310 are used to allow MROM unit 209 to 
transfer MROM instructions into decode units 208. Prede 
code input 309 is used when an instruction fetch misses 
instruction cache 204. In this case, instructions are read from 
main memory and predecoded by predecode unit 202 (one 
instruction per clock cycle). Instead of waiting until the 
instruction cache line completes predecode and is stored in 
the instruction cache, microprocessor 200 routes the prede 
code instructions to decode units 208 using predecode input 
309. 

Valid instructions fill issue positions in a fashion such 
that, within any group of issue positions, the position 
denoted as A is filled first, then the position denoted as B, 
etc. For example issue position 1B will not contain a valid 
instruction unless issue position 1A contains a valid instruc 
tion. Also, issue position 2B' will not contain a valid 
instruction if issue position 2A" does not contain a valid 
instruction. 
The merging and shifting operations performed by mul 

tiplexors 306. 307, and 308 will be further illuminated 
through an example. For this example, issue positions 1A 
and 1B convey valid instructions, and issue positions 1C and 
1D do not convey valid instructions. Further, issue position 
1A conveys a valid instruction, and issue positions 1B', 1C 
and 1D do not convey valid instructions. Lastly, issue 
position 1A" conveys a valid instruction, and issue positions 
1B", 1C", and 1D" do not convey valid instructions. 

In this example, issue positions 1A-1D and 1A"-1D" 
would be shifted by 2, which is the number of valid 
instructions in issue positions 1A-1D. The shifting for issue 
positions 1A-1D' and 1A"-1D" is performed by multiplex 
ors 306 and 307, respectively. Therefore, control unit 302 
directs, via multiplexor control bus 312, multiplexor 306Ato 
select the bytes from multiplexor 301A (issue position 1A); 
multiplexor 306B to select the bytes from multiplexor 301B 
(issue position 1B); and multiplexor 306C to select the bytes 
from multiplexor 304A (issue position 1A). Multiplexor 
306D does not select a valid instruction in this example. 
Thus, issue positions 1A-1D and 1A'-1D' have been 
merged. Three valid instructions exist in issue positions 



5,758,114 
15 

2A-2D. Furthermore, control unit 302 directs multiplexors 
307A, 307B and 307 D not to select valid instructions. 
Control unit 302 directs multiplexor 307C to select the bytes 
from multiplexor 305A (issue position 1A"). In this manner, 
issue positions 2A-2D' contain issue positions 1A"-1D" 
shifted by the number of valid instructions in issue positions 
1A-D. 

Continuing the example, control unit 302 further directs 
multiplexors 308A, 308B, 308C, and 308D to select bytes 
from multiplexors 306A (issue position 2A), 306B (issue 
position 2B), 306C (issue position 2C), and 307C (issue 
position 2C), respectively. In this manner, issue positions 
2A-2D, are shifted by the number of valid instructions in 
issue positions 1A-1D' (i.e. 1). A final set of decode 
positions 3A-3D has been created. As can be seen from this 
example, four valid instructions from three different sets of 
instruction bytes were selected for decoding this cycle. 
Advantageously, four decode positions were used. 

It is noted that the bytes selected by various multiplexors 
301, 304, and 305 may overlap. For example, multiplexor 
301A may be directed by control unit 302 to select the eight 
bytes conveyed on instruction byte bus 300A. However, the 
second byte of instruction byte bus 300A may also be a start 
byte. In this case, control unit 302 will direct multiplexor 
301B to select the second byte through the eighth byte of 
instruction byte bus 300A and the first byte of instruction 
byte bus 300B. Therefore, the second byte through the 
eighth byte of instruction byte bus 300A are selected by both 
multiplexor 301A and multiplexor 301B. Start-byte and 
end-byte information is conveyed to the decode units 208 so 
that they can determine which of the eight received bytes 
represents the instruction. The bytes contained between the 
start-byte and the end-byte, inclusive, will be decoded by the 
decode unit that receives the selected bytes. If no start-byte 
and/or no end-byte is detected by the decode units 208, then 
the bytes are transferred back to predecode unit 202 (shown 
in FIG. 2) for predecoding. If the functional bit, as defined 
above, indicates the instruction is an MROM instruction, 
then the bytes are transferred to the MROM unit 209 (shown 
in FIG. 2) for further processing. 

It is noted that the effect of shifting occurs due to the 
manner in which inputs are coupled to the groups of mul 
tiplexors and the manner in which the select signals con 
veyed on the multiplexor control buses are generated. For 
example, consider multiplexor 306B as shown in FIG. 3B. 
Multiplexor 306B is configured with three inputs: the out 
puts of multiplexors 301B, 304A, and 304B. Therefore, 
multiplexor 306B selects between issue positions 1B, 1A, 
and 1B'. In the case where one instruction is valid in issue 
positions 1A-1D, multiplexor 306B will be directed to 
selectissue position 1A. Therefore, the firstissue position of 
multiplexors 304 has been shifted to the second issue 
position of multiplexors 306. 
The embodiment of FIG. 3B selects valid instructions first 

from instruction byte bus 300A, then from instruction byte 
bus 300B, and finally from instruction byte bus 300C into 
final issue positions 3A-3D. This methodology is employed 
because the input instruction byte bus 300A contains the 
oldest pending instructions, and so it is generally advanta 
geous to decode (and later execute) these instructions first so 
that new instructions can become visible to the decoding 
mechanism. In other embodiments, the inputinstruction byte 
buses 300 might be configured differently, and so different 
mechanisms for selecting instructions might be employed. 
The number and size of groups of input instruction bytes 
may also vary from embodiment to embodiment, and are not 
necessarily related to instruction cache lines. In fact, unre 

10 

5 

25 

30 

35 

45 

55 

65 

16 
lated groups of instruction bytes could be presented on input 
instruction byte buses 300. It is understood that other 
embodiments may have differing numbers of instruction 
channelling units. It is further understood that the number of 
start bytes (and therefore the number of instructions) 
selected from an instruction byte bus may vary from 
embodiment to embodiment. 

Turning now to FIG. 4. signal paths to transfer a set of 
contiguous bytes from instruction byte buses 300 (shown in 
FIG. 4) to a decode unit is shown. As mentioned above, only 
the start byte signal paths were shown in FIG. 3B. As with 
FIG. 3B, three levels of multiplexors are shown in FIG. 4. 
A first level of multiplexors 400A, 400B, 400C, 400D, 400E, 
400F, 400G and 400H (collectively referred to herein as 
multiplexors 400) are coupled to a set of contiguous instruc 
tion bytes 401. Instruction bytes 401 originate on instruction 
buses 300. Multiplexor control bus 402 (a subset of control 
bus 311) is coupled to multiplexors 400. The start byte is 
selected in multiplexor 400A, the next contiguous byte in 
multiplexor 400B, etc. For example, if instruction byte one 
is a start byte, instruction byte one will be selected by 
multiplexor 400A, instruction byte two will be selected by 
multiplexor 400B, etc. 
A second level of multiplexors is shown in FIG. 4 as 

multiplexors 403A, 403B, 403C, 403D. 403E, 403F, 403G, 
and 403H (collectively referred to herein as multiplexors 
403). Coupled as inputs to multiplexors 403 are the outputs 
of multiplexors 400. Also coupled as inputs to multiplexors 
403 are inputs 405. Inputs 405 are coupled to multiplexor 
circuits (not shown) similar to multiplexors 400, which are 
coupled to different control buses similar to control bus 402 
but which select different bytes from instruction bus 300. 
For example, such select controls may be generated by 
finding a different start byte bit than the start byte bit which 
generates control bus 402. Multiplexors 403 are further 
coupled to multiplexor control bus 404, which is a subset of 
the control bus 312 shown in FIG. 3B. 
The outputs of multiplexors 403 are coupled as inputs to 

multiplexors 407A, 407B, 407C, 407D, 407E, 407F, 407G, 
and 407H (collectively referred to herein as multiplexors 
407). Also coupled as inputs to multiplexors 407 are inputs 
408. Inputs 408 are coupled to multiplexor circuits (not 
shown) similar to multiplexors 403 (which are coupled to 
different control buses which are similar to control bus 404). 
In one embodiment, inputs 408 also contain MROM inputs 
from MROM unit 209 (shown in FIG. 2) and inputs from 
predecode unit 202 (shown in FIG. 2). Also coupled to 
multiplexors 407 is multiplexor control bus 406, which is a 
subset of control bus 313 shown in FIG. 3B. The outputs of 
multiplexors 407 are coupled to the input bytes of one of the 
decode units 208. 

Further details regarding other aspects of a superscalar 
microprocessor may be found in the commonly assigned, 
co-pending patent application entitled "High Performance 
Superscalar Instruction Alignment Unit", Ser. No. 08/377, 
865, filed Jan. 25, 1995, by Tran, et al. This patent appli 
cation is incorporated herein by reference in its entirety, 

In accordance with the foregoing description, a high 
performance instruction alignment unit has been disclosed. 
The instruction alignment unit employs multiple indepen 
dent scan and shift units (instruction channelling units) to 
select instructions for dispatch. The method and apparatus 
described herein allows implementation in a small number 
of cascaded levels of logic gates, rendering the unit espe 
cially useful in high speed designs. Furthermore, the instruc 
tion alignment alignment unit achieves high performance by 
scanning a wide range of bytes for instructions to execute. 



5,758,114 
17 

Numerous variations and modifications will become 
apparent to those skilled in the art once the above disclosure 
is fully appreciated. It is intended that the following claims 
be interpreted to embrace all such variations and modifica 
tions. 
What is claimed is: 
1. An instruction alignment unit for transferring instruc 

tions from an instruction cache to a plurality of decode units, 
comprising: 

an input port configured to transfer a plurality of groups 
of instruction bytes; 

a first instruction channelling unit coupled to said input 
port wherein said first instruction channelling unit is 
configured to select a first plurality of instruction bytes 
from a first of said plurality of groups of instruction 
bytes transferred by said input port; 

a second instruction channelling unit coupled to said input 
port wherein said second instruction channelling unit is 
configured to select a second plurality of instruction 
bytes from a second of said plurality of groups of 
instruction bytes transferred by said input port, wherein 
said second instruction channelling unit is configured 
to select said second plurality of instruction bytes 
concurrently with and independently of said first 
instruction channelling unit selecting said first plurality 
of instruction bytes; 

a third instruction channelling unit coupled to said first 
instruction channelling unit and to said second instruc 
tion channelling unit wherein said third instruction 
channelling unit is configured to merge said first plu 
rality of instruction bytes and said second plurality of 
instruction bytes into a merged plurality of instruction 
bytes to form a merged set of variable byte length 
instructions; 

an output port coupled to said third instruction channel 
ling unit wherein said output port is configured to 
transfer a plurality of instruction bytes to said plurality 
of decode units; and 

a control unit coupled to said first, second and third 
instruction channelling units and configured to control 
said first second and third instruction channelling units 
in response to predecode information indicative of a 
starting position at said input port of each instruction 
forming said merged set of variable byte-length instruc 
tions; 

wherein said third instruction channelling unit is further 
configured to shift said second plurality of instruction 
bytes by a number of byte positions which is dependent 
upon a number of start bytes within said first of said 
plurality of groups of instruction bytes. 

2. The instruction alignment unit as recited in claim 1 
wherein said input port is further configured to transfer a 
plurality of groups of instruction bytes which are stored in 
a plurality of blocks of memory, and wherein said plurality 
of blocks of memory are stored in said instruction cache. 

3. The instruction alignment unit as recited in claim 2 
wherein said input port is further configured to transfer a 
plurality of groups of instruction bytes which are stored in 
a plurality of blocks of memory wherein a first of said 
plurality of blocks of memory and a second of said plurality 
of blocks of memory are contiguous. 

4. A method for selecting variable length instructions 
from a plurality of groups of instruction bytes comprising: 

detecting predecode information indicative of positions of 
starting bytes among said plurality of groups of instruc 
tion bytes; 

10 

15 

25 

30 

35 

45 

50 

55 

65 

18 
selecting, in response to said predecode information, a 

first plurality of instruction bytes comprising a first start 
byte and a fixed number of contiguous bytes from one 
of said plurality of groups of instructions; 

selecting, in response to said predecode information, a 
second plurality of instruction bytes comprising a sec 
ond start byte and said fixed number of contiguous 
bytes from another of said plurality of groups of 
instructions concurrently with and independently of 
said selecting said first plurality of instruction bytes; 

shifting said second plurality of instruction bytes by a 
number of bytes dependent upon a number of start 
bytes within said one of said plurality of groups of 
instructions, thereby creating a shifted plurality of 
instruction bytes; and 

merging said first plurality of instruction bytes with said 
shifted plurality of instruction bytes thereby creating a 
merged plurality of instruction bytes to form a merged 
set of instructions, wherein said merging is performed 
such that said shifted plurality of instruction bytes 
follow said first plurality of instruction bytes within 
said merged plurality of instruction bytes. 

5. The instruction alignment unit as recited in claim 1 
wherein said first instruction channelling unit, said second 
instruction channelling unit, and said third instruction chan 
nelling unit further comprise pluralities of multiplexors. 

6. The instruction alignment unit as recited in claim 5 
wherein said first plurality of instruction bytes, said second 
plurality of instruction bytes, and said plurality of instruc 
tion bytes transferred by said output port are equal in 
number. 

7. The instruction alignment unit as recited in claim 6 
wherein said merged plurality of instruction bytes comprises 
said first plurality of instruction bytes followed by said 
second plurality of instruction bytes, such that said second 
plurality of instruction bytes have been shifted by the 
number of bytes in said first plurality of instruction bytes. 

8. The instruction alignment unit as recited in claim 7 
wherein said plurality of instruction bytes transferred by said 
output port is said merged plurality of instruction bytes. 

9. The instruction alignment unit as recited in claim 8 
wherein said control unit is configured to direct said first 
instruction channelling unit to select said first plurality of 
instruction bytes. 

10. The instruction alignment unit as recited in claim 9 
wherein said control unit is further configured to direct said 
second instruction channelling unit to select said second 
plurality of instruction bytes. 

11. The instruction alignment unit as recited in claim 10 
wherein said control unit is further configured to direct said 
third instruction channelling unit to select said merged 
plurality of instruction bytes. 

12. The instruction alignment unit as recited in claim 11 
wherein said control unit further comprises a control input 
port, and wherein said control unit is further configured to 
direct said first instruction channelling unit, said second 
instruction channelling unit, and said third instruction chan 
nelling unit according to said predecode information pro 
vided on said control input port. 

13. The instruction alignment unit as recited in claim 12 
wherein said information provided on said predecode con 
trol input port is start byte and end byte bits identifying start 
instruction bytes and end instruction bytes within said 
plurality of groups of instruction bytes of said input port. 

14. The instruction alignment unit as recited in claim 13 
wherein said control unit is further configured to direct said 
first instruction channelling unit to select a byte within said 



5,758,114 
19 

first of said plurality of groups of instruction bytes to be 
included in said first plurality of instruction bytes, and 
wherein said byte is a start byte. 

15. The instruction alignment unit as recited in claim 14 
wherein said control unit is further configured to direct said 5 
first instruction channelling unit to select a plurality of bytes 
contiguous to said start byte to be included in said first 
plurality of instruction bytes. 

16. The instruction alignment unit as recited in claim 15 
wherein said output port is configured to transfer said byte 
and said contiguous bytes to one of said plurality of decode 
units. 

17. The instruction alignment unit as recited in claim 1 
further comprising a fourth instruction channelling unit 
coupled to said input port wherein said fourth instruction 
channelling unit is further configured to select a third 
plurality of instruction bytes from a third of said plurality of 
groups of instruction bytes transferred by said input port. 

18. The instruction alignment unit as recited in claim 17 
further comprising a fifth instruction channelling unit 
coupled to said fourth instruction channelling unit wherein 
said fifth instruction channelling unit is configured to shift 
said third plurality of instruction bytes by the number of 
bytes in said first plurality of instruction bytes, thereby 
forming a shifted plurality of instruction bytes. 

19. The instruction alignment unit as recited in claim 18 
further comprising a sixth instruction channelling unit 
coupled to said fifth instruction channelling unit and further 
coupled to said third instruction channelling unit wherein 
said sixth instruction channelling unit is configured to merge 
said merged plurality of instruction bytes and said shifted 
plurality of instruction bytes into a second merged plurality 
of instruction bytes, and wherein said second merged plu 
rality of instruction bytes is said merged plurality of instruc 
tion bytes followed by said third plurality of instruction 
bytes, such that said shifted plurality of instruction bytes is 
further shifted by the number of bytes in said second 
plurality of instruction bytes. 

20. The instruction alignment unit recited in claim 19 
wherein said plurality of instruction bytes transferred by said 
output port is said second merged plurality of instruction 
bytes. 

21. The method as recited in claim 4 further comprising 
transferring said merged plurality of instruction bytes to a 
plurality of decode units. 

O 

5 

25 

30 

35 

20 
22. An instruction alignment unit for transferring instruc 

tions from an instruction cache to a plurality of decode units, 
comprising: 

a first instruction channelling unit coupled to an input port 
wherein said first instruction channelling unit is con 
figured to select a first plurality of instruction bytes 
from a first of a plurality of groups of instruction bytes 
transferred by said input port; 

a second instruction channelling unit coupled to said input 
port wherein said second instruction channelling unit is 
configured to select a second plurality of instruction 
bytes from a second of said plurality of groups of 
instruction bytes transferred by said input port, wherein 
said second instruction channelling unit is configured 
to select said second plurality of instruction bytes 
concurrently with and independently of said first 
instruction channelling unit selecting said first plurality 
of instruction bytes; 

a third instruction channelling unit coupled to said first 
instruction channelling unit and to said second instruc 
tion channelling unit wherein said third instruction 
channelling unit is configured to merge said first plu 
rality of instruction bytes and said second plurality of 
instruction bytes into a merged plurality of instruction 
bytes to form a merged set of variable byte length 
instructions, and wherein said third instruction chan 
nelling unit is configured to transfer a plurality of 
instruction bytes to said plurality of decode units; and 

a control unit coupled to said first, second and third 
instruction channelling units and configured to control 
said first, second and third instruction channelling units 
in response to predecode information indicative of a 
starting position of each instruction forming said 
merged set of variable byte-length instructions; 

wherein said third instruction channelling unit is further 
configured to shift said second plurality of instruction 
bytes by a number of byte positions which is dependent 
upon a number of start bytes within said first of said 
plurality of groups of instruction bytes. 

k . . . . 


