International Application Published Under the Patent Cooperation Treaty (PCT)

International Patent Classification: G01N 27/30

International Publication Number: WO 87/01454
International Publication Date: 12 March 1987 (12.03.87)

(21) International Application Number: PCT/US86/01819
(22) International Filing Date: 4 September 1986 (04.09.86)
(31) Priority Application Number: 8522207
(32) Priority Date: 6 September 1985 (06.09.85)
(33) Priority Country: GB

(72) Inventors: PURBRICK, Malcolm, Donald; 84 Coldharbour Lane, Bushey, Hertfordshire WD2 3NX (GB). PETRAK, Karel, Ladislav; 73 Lincoln Road, North Harrow, Middlesex HA2 7RH (GB). THOMASON, Derek, Alan; Flat 9, Faircross House, The Parade, High Street, Watford, Hertfordshire WD1 2BA (GB).

(81) Designated States: CH (European patent), DE (European patent), FR (European patent), GB (European patent), JP.

Published
With international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

Title: ION-SENSITIVE ELECTROCHEMICAL SENSOR AND METHOD OF DETERMINING ION CONCENTRATIONS

Abstract
An ion-sensitive electrochemical sensor comprises an electrode body having an ion-sensitive polymeric membrane coated thereon. The membrane comprises a water-insoluble copolymer having ion exchange sites and has a glass transition temperature greater than about 80°C. The sensor is used to determine ion concentration by contacting it with a test solution and determining the ion concentration as a function of the potential of the electrode.

Diagram
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>HU</td>
<td>Hungary</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>IT</td>
<td>Italy</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ION-SENSITIVE ELECTROCHEMICAL SENSOR AND
METHOD OF DETERMINING ION CONCENTRATIONS

This invention relates to ion-sensitive electrochemical sensors and to methods of determining ion concentrations therewith. More particularly, the invention relates to electrochemical sensors comprising a solid-state electrode body having an ion-sensitive polymeric membrane coated thereon.

Electrochemical sensors comprising a self-supporting ion-sensitive polymeric membrane are well known in the art. In use, such membranes separate a solution being tested from an internal reference solution. Such sensors have membranes that are self-supporting, which need not be coated on a solid-state electrode body. For example, U.K. Patent 2,076,545 describes such a sensor in which the membrane comprises a copolymer having ion-exchange sites with the copolymer having a glass transition temperature (T_g) less than 20°C. Such a copolymer is very difficult to prepare, often resulting in a non-functioning sensor.

Electrochemical sensors comprising a solid-state electrode body having an ion-sensitive polymeric membrane coated on a surface thereof are also well-known. For example, U.S. Patent 4,020,830 describes a chemical sensitive field effect transistor transducer capable of selectively detecting and measuring chemical properties of substances to which the transducer is exposed. The transducer includes a semiconductor substrate material having a certain doping polarity, a pair of spaced apart diffusion regions located at the surface of the substrate material and having a
doping polarity opposite to that of the substrate material, electrical insulating material overlying the diffusion regions and the surface of the substrate material lying between the diffusion regions, and a chemical selective system overlying the insulator material. The chemical selective system may be an ion-sensitive polymeric membrane such as a membrane comprising a polyvinyl chloride matrix, having an ion-exchange material dispersed therein.

It is also known to use such an ion-sensitive polymeric membrane in an electrochemical sensor of the coated wire electrode type where the membrane is coated on the surface of a solid electron conductor, such as a metal wire. The membrane in such sensors allows a selective ion exchange to occur between the ion-exchange material and a solution to which the membrane is exposed. The potential difference generated electrochemically between the membrane and the solution may be used to measure the concentration of a particular ion in solution.

The present invention provides an electrochemical sensor having an alternative ion-sensitive polymeric membrane. The polymeric membrane is easily prepared, resulting in a properly functioning sensor. The polymer has favorable handling characteristics and is readily purified, which facilitates the production of a sensor having good reliability and reproducibility. Also, the ion-exchange material is not leached from the membrane when in use.

In accordance with the present invention there is provided an ion-sensitive electrochemical sensor comprising an electrode body having an ion-sensitive polymeric membrane coated thereon,
wherein the membrane comprises a water-insoluble
copolymer having ion-exchange sites. The copolymer
has a glass transition temperature (T_g) greater
than about 80°C. Preferably, the membrane also
comprises a plasticizer.

Figure 1 is a schematic view of an
ion-sensitive field effect transistor of the
invention (ISFET) in use.

Figure 2 is a graph showing the response
of an ISFET in accordance with the invention at
various concentrations of surfactant.

Figure 3 is a graph showing the response
of a coated wire electrode in accordance with the
invention at various concentrations of chloride.

Figure 4 is a graph showing the response
of a coated wire electrode in accordance with the
invention at various concentrations of chloride.

The copolymer of the invention contains
comonomer units having ion-exchange sites, which
units are referred to hereafter as ionic units.
The comonomer units having ion-exchange sites
preferably comprise from about 0.5% to 90% molar of
the copolymer, and more preferably from about 5% to
25% molar. The ionic units of the copolymer may
contain cationic groups such as a tertiary nitrogen
quaternized with, for example, methyl iodide, ethyl
chloride, methyl p-toluene sulphonate, benzyl
chloride, or benzhydryl chloride. Co-monomers
containing tertiary nitrogen groups can be
converted later into the corresponding quaternary
salt groups by reacting with a quaternizing agent
including vinyl substituted nitrogen-containing
heterocyclic compounds such as pyridine, imidazole,
quinoline, isoquinoline, pyrimidine,
phenanthroline, benzothiazole, purine, pyrazine,
acridine, or picoline.
Alternatively, the ionic units of the copolymer may contain anionic groups such as an acidic group, preferably a carbocyclic or sulphonic acid group. For example, an acrylic acid, vinyl phenol or vinyl phenyl sulphonic acid, or a salt or phenolate thereof may be employed as a comonomer.

A preferred copolymer of the invention comprises ionic units of the formula:

$$\begin{align*}
R^1 & \quad R^4 \\
(C_C) & \\
R^2 & \quad R^3 \quad X
\end{align*}$$

wherein: R^1 is H, alkyl, or aryl, R^2 and R^4 are each H, methyl, or ethyl, R^3 is an alkylene group, and X is a group containing a quaternary nitrogen atom or a ternary sulphur or oxygen atom.

A preferred X group is a quaternized $-\text{OCH}_2_\text{CH}_2_\text{N(\text{CH}_3)_2}$ group or nitrogen-containing heterocyclic group.

The other comonomer units of the copolymer can be derived from non-polar comonomers, which, when used in an appropriate amount, will give the copolymer a T_g preferably greater than about 80°C, and more preferably greater than about 100°C. The copolymer may comprise from about 10% to 99.5% molar, preferably about 75% to 95% molar, of non-polar comonomer units which may be derived from one or more monomers. The comonomer may be selected from the wide range of known free radical polymerizable monomers. In order to provide the sufficiently high T_g, the monomer must be capable of exhibiting a good packing density when polymerized and, accordingly, will generally be a relatively simple, unsubstituted monomer. Suitable comonomers may be selected from acrylates (e.g.
methyl methacrylates), olefins, styrenes, and vinyl ethers.

Crosslinkable monomers may also be employed. For example, divinyl benzene, chloromethylstyrene, or bis-acrylate could be used. Crosslinking can also be achieved by reacting a copolymer containing an imidazole or similar ring with a bis-epoxy compound.

It is to be understood that any of the above variants, singly or in combination, may be employed to give the copolymer the desired physical properties.

The copolymers may be prepared by known techniques, including copolymerization of the comonomers with subsequent introduction of ionic groups as required. For example, methyl methacrylate may be copolymerized with vinyl imidazole to produce a water-insoluble copolymer. The copolymer may be quaternized with a quaternizing agent, e.g. benzylchloride, to create immobilized ion-exchange sites in the copolymer. A membrane of this copolymer would be sensitive to chloride ions. Different counter ions may be introduced by an ion-exchange reaction, as is known in the art. Thus, for example, the chloride ion in the above copolymer could be exchanged for a surfactant anion, e.g. dodecyl sulphate, to render the membrane of the copolymer sensitive to an anionic surfactant.

A preferred copolymer comprises units derived from methyl methacrylate and N-vinyl imidazole in a ratio from about 10:1 to 25:1.

In order to form a membrane of the copolymer, a plasticizer may be employed in an amount which will impart desired sensing characteristics and/or film-forming properties to
the copolymer. The plasticizer is preferably present in an amount from about 5% to 70%, and more preferably from about 20% to 60% by weight based on the copolymer. Any conventional known plasticizer may be used, depending on the particular copolymer. Suitable plasticizers include phosphoric acid esters such as tricresyl phosphate, phthalic acid esters such as dipentyl phthalate, adipic acid esters and sebacic acid esters such as bis-(2-ethylhexyl) sebacate. Additional suitable plasticizers are disclosed in "Neutral Carrier based ISE's", Amman et al, ISE Reviews, 5, 1983, 3-92.

The membrane of the invention may be prepared by first forming a solution of the copolymer and, if desired, the plasticizer in a suitable solvent such as tetrahydrofuran. The solution is coated on a surface of the sensor by known techniques such as dipping or spraying, and the solvent is evaporated to form the membrane. Slow evaporation of the solvent is preferred to avoid the formation of pinholes in the membrane. Preferably, the membrane is made as thin as possible to provide the optimum response time. The thickness is preferably less than 0.5 mm. When preparing ion-sensitive field effect transistors (ISFETS), thicknesses of from 2 to 10 μm, preferably from 3 to 7 μm can be used.

The concentration of the ionic groups in the membrane may vary from 0.1 to 0.00001 M, while the concentration of the ion to which the membrane is sensitive will be the same or greater.

The electrode body of the invention may have a variety of different forms. For example, the electrode may be a solid-state electrode such as a conductor or a semiconductor device, or a
coated wire electrode. In a preferred embodiment of the invention, the sensor is an ion-sensitive field effect transistor or a coated wire electrode. Such electrodes are described in A. K. Covington, Ion Selective Electrode Methodologies (CRC Press).

The electrochemical sensors of the invention are useful to determine the concentration of ionic species in solution. For example, they may be used to determine the concentration of halide ions such as chloride or bromide. They are particularly useful for determining the concentration of ionic surfactants in solution. Such surfactants may be anionic, e.g. alkyl sulphates or alkaryl sulphonates such as n-alkyl sulphates where the alkyl group contains from 8 to 10 carbon atoms and alkyl naphthalene sulphonates such as tri-isopropynaphthalene sulphonates. For this purpose, a cationic copolymer is used for the membrane. Alternatively, the surfactant may be cationic, e.g. cetyl trimethylammonium bromide, and the copolymer will have anionic groups.

Potential specific uses for the present sensors include the determination of free surfactant, by direct potentiometry, in water samples such as waste water from industrial or domestic applications. Total surfactant may be determined by potentiometric titration.

The present invention also provides a method of determining the concentration of an ionic species in an aqueous solution using an electrochemical sensor of the invention. In this method, the sensor is contacted with the solution to be tested and the ion concentration determined as a function of the potential of the electrode.
The invention is further illustrated with reference to the accompanying drawings. Figure 1 shows in cross-section an ISFET device comprising a semiconductor substrate 10 made of silicon having a p-type doping polarity. Two separate diffusion regions 11 and 12 having an n-type doping polarity are located in the semiconductor substrate at the upper surface thereof. Diffusion region 12 is referred to as the source while diffusion region 11 is referred to as the drain. The diffusion regions are each about 1 or 2 μm in depth, have a length of about 400 μm and are spaced about 20 μm apart. When the device is in use, a conducting channel 21 exists between the two diffusion regions. The channel is a lightly-doped n-type to provide a depletion mode device.

The surface of the semiconductor substrate 10 between the two diffusion regions is known as the gate. An electrically-insulating layer 13 of silicon dioxide covers the surface of the substrate 10 and is itself covered by a layer 14 of silicon nitride. The insulator material between the two diffusion regions is known as the gate insulator.

Aluminum layers 15 and 16 are deposited on the source diffusion region 11 and the drain diffusion region 12, respectively, to provide electrical contacts therewith.

An ion-sensitive polymer membrane 17 is deposited over the insulating layers 13 and 14 above the gate region of the device. A layer 18 comprising an epoxy resin and polyimide mixture covers the electrical contacts to the source and the drain to shield them from a solution to be analyzed.

Figure 1 shows the ISFET in use. The ion-sensitive membrane 17 is in contact with a
solution 19 to be analyzed which contains ions to which the membrane 17 is sensitive. A reference electrode 20 coupled to a voltage source is provided in the solution. A voltage source is also provided between the source diffusion region 11 and the drain diffusion region 12 to establish a potential difference sufficient to cause current flow in the conducting channel 21 between the diffusion regions 11, 12.

Ions in the solution 19 interact with the ion-sensitive membrane 17 to produce a potential difference between the solution 19 and the membrane 17, thereby creating an electric field in the conducting channel 21. The strength of the electric field depends on the concentration of ions in solution 19 and controls the magnitude of the current flowing through the conducting channel 21, i.e., the drain current.

In order to determine the response of the ISFET to various concentrations of ions using the scheme illustrated in Figure 1, the drain current is set by applying a constant voltage, e.g. 12 volts to a variable resistor 22, e.g. 120k ohm, and held constant by the operational amplifier 23 while the concentration of ions in solution is varied. The operational amplifier 23, working in inversion, is used to apply a potential to the gate of the device via the reference electrode 20 and the solution 19 such that electrochemically induced potential changes are offset. The potential applied in order to offset the electrochemically induced voltage changes, and thus maintain the drain current, varies in accordance with the concentration of ions in solution and a plot of reference electrode potential against ion concentration provides a calibration curve for the ISFET.
The following Examples are included for a better understanding of the invention.

Preparation 1
Preparation of poly(methyl methacrylate-co-1-vinylimidazole)

The polymerization of methyl methacrylate (44 g) and 1-vinylimidazole (9.4 g) in the presence of azobisisobutyronitrile (0.055 g) was performed in bulk monomer, under a nitrogen blanket, in a 0.1 l, flask fitted with a condenser. The contents of the flask were stirred continuously throughout the two hour duration of the reaction, the temperature being maintained at 60°C by immersion in an oil bath. The copolymer was recovered by precipitation into an excess of diethyl ether, filtered and reprecipitated before final filtration and drying overnight in a vacuum oven at ambient temperature. An off-white, brittle polymer was obtained which was easily pulverized to a fine powder.

The elemental analysis of the product was as follows: C, 57.2; H, 7.7; N, 4.1%.
This corresponds to a methyl methacrylate: 1-vinylimidazole molar ratio of 5.92:1.

Preparation 2
Quaternization of poly(methyl methacrylate-co-1-vinylimidazole)

A 0.5 l flask, fitted with a condenser and a nitrogen inlet and immersed in an oil bath maintained at 100°C. was charged with poly(methyl methacrylate-co-1-vinylimidazole) (7.4 g) and dioxan (200 g) and the contents were stirred. When the polymer had dissolved, benzyl chloride (3.7 g; approximately 5-fold in excess) was added. The reaction mixture was allowed to reflux, with continuous stirring and nitrogen purging, for 20
hours. The product was recovered as in Example 1. Once again, the off-white product was easily pulverized to a fine powder.

The elemental analysis of the product was as follows: C, 58.0; H, 8.0; N, 1.6; Cl, 2.9%. This corresponds to a methyl methacrylate:1-vinylimidazole (quaternized) molar ratio of 14.82:1. The T_g of the quaternized copolymer was 113°C.

Preparation 3

Exchange of dodecyl sulphate anion for chloride counteranion of quaternized poly(methyl methacrylate-co-1-vinylimidazole)

The quaternized copolymer of Example 2 (0.8 g) was dissolved in methanol and the resultant solution was added dropwise to a solution of sodium dodecyl sulphate (0.3 mol/l; 50 ml). The white precipitate that formed was filtered off, washed with water, and dried in an oven at 60°C for 24 hours.

Example 1

Surfactant-sensitive coated wire electrode

The copolymer of Preparation 3 (0.46 g) and a plasticizer, tricresyl phosphate (0.23 g), were dissolved in the minimum amount of tetrahydrofuran required for dissolution to form a very pale brown transparent solution.

About 2.5 cm of the outer insulation was removed from the end of a length of coaxial cable. The inner copper core (0.9 mm diameter) so exposed was coated with the copolymer/plasticizer solution to form a membrane having a thickness less than 0.5 mm. The outer screen of the cable was protected by the use of heat-shrinkable tubing.

The response characteristics of the surfactant sensitive coated wire electrode were as follows:
linear range 0.000022 - 0.00416 mol/l
slope 60.5 mV/decade
limit of detection 0.0000044 mol/l

The equilibrium response time of less than 5 seconds was comparable with those of more conventional (liquid ion exchange) surfactant sensors. A calibration curve for the coated wire electrode is given in Figure 3, which plots the response of the electrode (in mV) at various 10 dodecyl sulphate concentrations (in mol). A double junction electrode was used as reference. The measurements were carried out at room temperature.

Example 2
Chloride sensitive coated wire electrode

A coated wire electrode was prepared in the same manner as in Example 1 except that the copolymer of Preparation 2 was used instead of the copolymer of Preparation 3.

The response of the electrode prepared to chloride is given in Figure 4 of the accompanying drawings, which plots the response of the electrode (in mV) at various chloride concentrations (in mol). A potassium chloride solution was used as the source of chloride ions. A double junction electrode was used as reference. The measurements were carried out at room temperature.

Example 3
Chloride sensitive coated wire electrode

A coated wire electrode was prepared in the same manner as in Example 1 except that a copolymer of methyl methacrylate and 4-vinylpyridine quaternized with benzyl chloride was used. The molar ratio of methyl methacrylate to 4-vinylpyridine was 9.6:1 and the T_g of the copolymer was 117°C.
The response characteristics of the chloride sensitive coated wire electrode were as follows:

- linear range: 0.000025 - 0.0091 mol/l

- slope: 39 mV/decade

- limit of detection: less than 0.000005 mol/l

Measurements were carried out at room temperature using a potassium chloride solution as the source of chloride ions and a double junction reference electrode as the reference.

Example 4

Surfactant sensitive ISFET

An ISFET of the type shown in Figure 1 was employed wherein the ion-sensitive polymeric membrane was composed of the copolymer of Preparation 3 and had a thickness of about 5 μm.

Using the method hereinbefore described with regard to Figure 1, the response of the ISFET to dodecyl sulphate anion was measured. Figure 2 plots the response of the ISFET (in mV) at various surfactant ion concentrations (in mol). Measurements were carried out at 25°C.

Comparative Example

Poly(ethyl acrylate)-co-(1-vinyl-imidazole) (10:1 molar) was prepared by a procedure identical to that of Example 1 of GB-A-2 076 545. This polymer was then quaternized with benzyl chloride to give poly(ethyl acrylate)-co-(3-benzyl-1-vinylimidazolium chloride) (10:1 molar) by a method identical to that of Example 2 of GB-A-2 076 545. The poly(ethyl acrylate)-co-(3-benzyl-1-vinyl-imidazolium chloride) was dissolved in methanol and coated to give a coated wire electrode in accordance with the procedure described in Example 1 of the '545 patent. Because of the low Tg of this polymer (less than 20°C),
no added plasticizer was necessary. The coated wire electrode did not function when titrated with a 1 molar sodium chloride solution, failing to come to equilibrium.
CLAIMS

1. An ion-sensitive electrochemical sensor comprising an electrode body having an ion-sensitive polymeric membrane coated thereon, wherein the membrane comprises a water-insoluble copolymer having ion-exchange sites, said copolymer having a glass transition temperature greater than 80°C.

2. A sensor according to claim 1 wherein the copolymer comprises from 0.5 to 90% molar of comonomer units having ion-exchange sites.

3. A sensor according to claim 1 or 2 wherein the copolymer comprises from 5 to 25% molar of comonomer units having ion-exchange sites.

4. An ion-sensitive electrochemical sensor as claimed in any of claims 1-3 in which the comonomer units having the ion-exchange sites have the general formula:

\[
\begin{align*}
R^1 & \quad \quad \quad R^4 \\
\big(C \quad C\big) & \\
R^2 & \quad R^3 - X \\
\end{align*}
\]

wherein: \(R^1 \) is H, alkyl, or aryl, \(R^2 \) and \(R^4 \) are each H, methyl, or ethyl, \(R^3 \) is an alkylene group, and \(X \) is a group containing a quaternary nitrogen atom or a ternary sulphur or oxygen atom.

5. A sensor according to any of claims 1 to 4 wherein the membrane further comprises a plasticizer.

6. A sensor according to any of claims 1 to 5 wherein the comonomer units having ion exchange sites comprise quaternary ammonium groups.

7. A sensor according to claim 6 wherein the nitrogen atoms of the quaternary ammonium groups form part of a heterocyclic ring.
8. A sensor according to claim 4 wherein the group X is a quaternized \(-\text{OCH}_2 \text{CH}_2 \text{N(CH}_3)_2\) group.

9. A sensor according to claim 6 wherein the nitrogen atom of the quaternary ammonium group forms part of a pyridine, imidazole, quinoline, isoquinoline, pyrimidine, phenanthroline, benzothiazole, purine, pyrazine, acridine, or picoline ring.

10. A sensor according to any one of claims 3 to 9 wherein the comonomer units having ion-exchange sites are derived from vinylimidazole or vinyl pyridine.

11. A sensor according to any one of claims 1 to 10 wherein the copolymer comprises comonomer units derived from methyl methacrylate, methyl acrylate, styrene, or methyl vinyl ether.

12. A sensor according to any one of claims 1 to 11 that is sensitive to surfactant ions.

13. A sensor according to any one of claims 1 to 11 that is sensitive to halide ions.

14. A method of determining the concentration of ions in an aqueous solution comprising the steps of:

 contacting the solution with an electrochemical sensor as described in any one of claims 1 to 12, and

 determining the concentration of said ions in said solution as a function of the potential of the electrode.
INTERNATIONAL SEARCH REPORT

International Application No: PCT/US 86/01819

I. CLASSIFICATION OF SUBJECT MATTER
According to International Patent Classification (IPC) or to both National Classification and IPC

IPC: G 01 N 27/30

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>G 01 N 27/00</td>
</tr>
</tbody>
</table>

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB, A, 2076545 (KODAK LIMITED) 2 December 1981, see the whole document cited in the application</td>
<td>1-4,6-12,14</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4020830 (JOHNSON et al.) 3 May 1977, see column 4, line 57 - column 6, line 37 cited in the application</td>
<td>1,14</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 2017400 (KURARAY CO. LTD) 3 October 1979, see page 2, line 54 - page 4, line 38</td>
<td>1</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 23rd January 1987

Date of Mailing of this International Search Report: 9 FEB. 1987

International Searching Authority: EUROPEAN PATENT OFFICE

Signature of Authorized Officer: M. VAN MOLE

Form PCT/ISA/210 (second sheet) (January 1985)
ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO. PCT/US 86/01819 (SA 14536)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 05/02/87.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB-A- 2076545</td>
<td>02/12/81</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A- 4020830</td>
<td>03/05/77</td>
<td>NL-A- 7602619</td>
<td>14/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A,B 2304083</td>
<td>08/10/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE-A- 839557</td>
<td>13/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 2610530</td>
<td>23/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 1193576</td>
<td>15/09/77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-A- 600334</td>
<td>15/06/78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1529743</td>
<td>25/10/78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 51139289</td>
<td>01/12/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 501668</td>
<td>28/06/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1059645</td>
<td>31/07/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 7603229</td>
<td>13/09/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-B- 428607</td>
<td>11/07/83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4269662</td>
<td>26/05/81</td>
</tr>
</tbody>
</table>

For more details about this annex:
see Official Journal of the European Patent Office, No. 12/82