4095255 A2 | I YO0 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
4 November 2004 (04.11.2004)

(10) International Publication Number

WO 2004/095255 A2

(51) International Patent Classification’: GOGF 3/06
(21) International Application Number:
PCT/US2004/012476

(22) International Filing Date: 21 April 2004 (21.04.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/464,892 21 April 2003 (21.04.2003) US
(71) Applicant (for all designated States except US): NET-
CELL CORP. [US/US]; 2150 Trade Zone Blvd., Suite

203, San Jose, CA 95131 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): STOLOWITZ,
Michael, C. [US/US]; 2390 Saddleback Drive, Danville,
CA 94506 (US).

(74) Agent: STOLOWITZ, Micah, D.; Stoel Rives LLP, 900
SW Fifth Avenue, Suite 2600, Portland, Oregon 97204-
1268 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FL, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: DISK ARRAY CONTROLLER WITH RECONFIGURABLE DATA PATH

LOGICAL
PORT #0

LOGICAL |
PORT #1 30

BUFFER l

LOGICAL
PORT #2

LOGICAL
PORT #3

] PHYSICAL
PORT #0

PHYSICAL
| PORT #1

PHYSICAL
PORT #2

PHYSICAL
| PORT #3

PHYSICAL

1 PORT #4

OHOO

(57) Abstract: A disk array controller apparatus (10) is disclosed having at least two logical ports (Logical Port #0-Logical Port
& #3) for interfacing with a host (12) and having one or more physical ports (Physical Port #0 - Physical Port #4), each physical port
& arranged for attaching at least one disk drive to the controller, and the controller including a switch (26), said switch providing
o dynamically configurable data paths (30) between the logical data ports and physical data ports, responsive to the contents of a
Mapping Register (24). The Mapping Register defines a desired array disk drive array by specifying an association of each logical
port to one of the physical ports. The mapping register can be organized as a logical mapping register, comprising a field for each
logical port of the controller, and includes provision for designating a redundant array for RAID operations.

WO 2004/095255 PCT/US2004/012476

DISK ARRAY CONTROLLER WITH RECONFIGURABLE DATA PATH

Related Applications

[0001] This is a continuation of and claims priority from U.S. Provisional
Application No. 60/464,892 filed April 21, 2003. Said provisional application is
incorporated herein by this reference.

Copyright Notice
[0002] © 2003-2004 Netcell Corporation. A portion of the disclosure of this patent

document contains material that is subject to copyright protection. The copyright

owner has no objection to the facsimile reproduction by anyone of the patent
document or the patent disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright rights whatsoever. 37 CFR
§ 1.71(d).

Technical Field

[0003] This invention pertains to digital data storage systems and, more
specifically, pertains to improvements in disk array controller technology for digital
data storage and retrieval.

Brief Description of the Drawings

[0004] FIG. 1 is a simplified block diagram of a disk array controller providing a
host interface for interaction with a host bus, and a drive interface for interaction with
a plurality of attached disk drives.

[0005] FIG. 2A is a conceptual diagram illustrating direct connections between
logical data ports and physical data ports; and it shows corresponding Mapping
Register contents.

[0006] FIG. 2B is a conceptual diagram illustrating one example of assignments
of four logical ports to the available five physical data ports; and it shows

corresponding Mapping Register contents.

WO 2004/095255 PCT/US2004/012476

[0007] FIG. 2C is a conceptual diagram illustrating a two-drive array where each
of the drives is assigned to one of the five available physical data ports; and it shows
corresponding Mapping Register contents.

[0008] FIG. 2D is a conceptual diagram illustrating a single-drive system where
logical ports 0-3 transfer data on successive cycles to physical port #3; and it shows
corresponding Mapping Register contents.

[0009] FIG. 3A illustrates XOR logic in the disk write direction in the drive
configuration of figure 2A; and it shows corresponding Mapping Register contents.
[0010] FIG. 3B illustrates the XOR logic in the Disk Read direction for the same
data path as Figures 2A and 3A except that the drive attached to physical port 2 has
now failed; and again the Mapping Register contents are shown.

[0011] FIG. 4 is one example of a Mapping Register structure; the Mapping
Register controls the configuration of the data paths between the logical and physical
data ports in one embodiment of the array controller.

[0012] FIG. 5A is a conceptual diagram of multiplexer circuitry in the logical port
#1 read data path.

[0013] FIG. 5B illustrates disk read XOR logic in one embodiment of the array
controller.

[0014] FIG. 6 illustrates decoder logic for the Logical Port #1 (PP_L1) field of the
‘Mapping Register in one embodiment of the array controller.

[0015] FIG. 7A logical port to physical port data path logic in one embodiment of
the array controller (illustrated for physical port #2 only).

[0016] FIG. 7B illustrates disk write XOR logic in one embodiment of the array
controller.

[0017] FIG. 8 illustrates disk address, strobe and chip select logic to enable
global access commands to a currently selected array.

[0018] FIG. 9 illustrates interrupt signal logic for associating with logical drives.
[0019] FIG. 10 illustrates a hardware implementation of logical addressing.

Detailed Description of Preferred Embodiments

Mapping Register

[0020] The typical RAID controller for a small computer system includes an

interface to a host system and an interface to a drive array. FIG. 1 is a simplified

2

WO 2004/095255 PCT/US2004/012476

block diagram of a disk array controller 10 providing a host interface 16 for
interaction with a host bus 12, and a drive interface 22 for interaction with a plurality
of attached disk drives 14. The controller preferably includes a control processor 20
and a buffer memory 18 for temporary storage of data moving between the host bus
and the drives.

[0021] A physical port is required for the attachment of a mass storage device
such as a disk drive to a system. While some interfaces are capable of supporting
concurrent data transfers to multiple devices, the physical ports tend to become a
bottleneck. For this reason, a high performance RAID controller may have a
physical port per mass storage device as shown in Figure 2A. Figure 2A also shows
the corresponding contents of a Mapping Register 24, further described below with
reference to FIG. 4.

[0022] One of the performance benefits of RAID comes from the striping of data
across the drives of the array. For example, reading data from four drives at once
yields a four times improvement over the transfer rate of a single drive. For the
example shown in FIG. 2A, the sixteen bit data arriving from four drives is merged in
logical drive order into sixty-four bit data that is sent to the buffer (18 in FIG. 1). User
data was striped, ie. it was distributed a segment at a time (e.g. 16-bit word) across
an array of drives in a predetermined sequence. We identify that sequence as
starting with Logical Drive #0 and proceeding through Logical Drive #n-1, where n is
the number of drives in the array. This stripe sequence is repeated so that the kth
segment of the user data corresponds to logical drive (K mod n). In this way, we use
the logical drive numbering to reflect the striping order. Accordingly, in the drawing,
the stack of four “Logical Ports” simply indicates an ordered set of four segments of a
stripe. Each “Logical Port” corresponds to a single segment of the stripe, and the
whole stack corresponds to an ordered set of four segments.

[0023] The 100 MBPS transfer rate from each of the drives becomes a 400
MBPS transfer rate to the buffer. Dashed box 26 conceptually represents a data
path switch described later in detail. The data path switch 26 provides dynamically
configurable data paths between logical data ports and physical data ports.

[0024] Figure 2A, with its direct connection between logical data ports and
physical data ports, is only a conceptual diagram. In real applications, the number of
available physical data ports will be greater than the number of logical data ports.

There may be ports that are reserved as “hot spares” or the physical ports may be
3

WO 2004/095255 PCT/US2004/012476

grouped into different sub-arrays that are accessed independently. Figure 2B is an
example of one of the possible assignments of four logical data ports (Logical Port
#0 to Logical Port #3) to the available five physical data ports, Physical Port #0 to
Physical Port #4). For example, the large arrow 30 simply indicates the assignment
of Logical Port #1 to Physical Port #2. Figure 2B also shows the corresponding
contents of a Mapping Register 24. Here, the second field from the right in the
register corresponds to Logical Port #1, and it contains the value “2” indicating the
Physical Port #2, as indicated by arrow 30. The data path switch 26 implements
logical to physical port assignments as fully described later.

[0025] Figure 2C shows an example of a two-drive array where each of the drives
is assigned to one of the five available physical ports, namely Physical Port #1 and
Physical Port #2. In order to assemble a 64-bit word for the buffer, each of the 16-bit
drives must be read twice. On the first read, the data for Logical Ports #0 and #1 are
obtained from Physical Ports #2 and #1, respectively. On the second read, Logical
Ports #2 and #3 obtain data from Physical Ports #2 and #1 respectively. These
operations are orchestrated by the processor 20. Again, the Mapping Register
shows the assignments to Physical Ports #1 and #2.

[0026] Figure 2D shows an example of an array with a single drive connected to
physical port #3. For this configuration, the data for logical ports #0 through #3 is
obtained by reading the same physical port four times.

[0027] One of the features of the Synchronous Redundant Data Transfers
described in U.S. Pat. No. 6,018,778 is that it allows redundant data to be
processed “On-The-Fly” as described in U.S. Pat. No. 6,237,052. Figure 3A shows
the four-drive array of Figure 2A with the addition of logic 36 to compute a redundant
data pattern that is stored on the drive attached to physical port #4. While various
arithmetic and logical operations might be used to produce a redundant pattern, the
logical XOR between the corresponding bits of the data from the logical data ports
has the advantage over an arithmetic operation in that the XOR operation does not
have to propagate a carry. Due to the use of the XOR, the fifth drive is often referred
to as either the “redundant” drive or the “parity” drive.

[0028] The 16-bit wide Bus XOR shown in the figure is equivalent to sixteen XOR
gates, each with four inputs. The use of the XOR function is also very symmetrical
between the disk read and disk write operations as can be seen in Figure 3B. FIG.

3B shows the same four-drive array as defined in FIG. 3B, with the data paths 40, 42
4

WO 2004/095255 PCT/US2004/012476

etc. shown for the disk read direction. In this case, the drive attached to physical
port #2 has failed. Accordingly, the corresponding data path 44, which does not
function, is shown in dashed lines. The XOR function is computed across the data
from the remaining data drives (Physical Ports #0, #1 and #3) and from the
redundant drive, Physical Port #4. This computation reconstructs the data that was
stored on the failed drive and the result is directed to logical port #2 via data path 46
in place of the now unavailable data from the failed drive.

[0029] The preceding paragraphs demonstrate some examples of the various
relationships that might exist between a set of logical ports and a set of physical
device ports in a RAID Controller. In general, a high performance RAID controller is
forced to deal with multiple arrays made up of various sub-groups of the mass
storage devices connected to its physical ports. One aspect of the present invention
employs a novel mapping register and associated logic to enable software
configuration of storage device arrays, and improve performance as further
explained below.

[0030] In accordance with one embodiment of the invention, a Mapping Register
24, the structure of which is shown in Figure 4, controls the configuration of the data
paths between the logical and physical data ports. (The Mapping Register also
provides other features and advantages discussed later.) In this embodiment, the
Mapping Register consists of five fields, one for each of five logical data ports, LO-L4
in this example. Each logical data port’s corresponding field in the register is loaded
with the number of the physical data port to which it is connected. The data in the
field for logical data port 0, is represented symbolically as PP_LO indicating that it is
the Physical Port associated with Logical Port 0. The values in the next four fields
are identified as PP_L1, PP_L2, PP_L3, and PP_L4 respectively. The fifth logical
data port is a pseudo port. The PP_L4 value is used to assign a physical data port
for the Parity drive.

[0031] The Mapping Register fields can be of almost any size. An eight-bit field,
for example, would support an array of up to 256 physical ports. In the illustrative
embodiment, with only five physical ports, a three bit field is sufficient. The five fields

(19 1)

pack nicely into a sixteen bit register with a bit to spare noted by an “r" in the Figures
for “reserved”. Any type of non-volatile memory can be used to store the mapping

register information.

WO 2004/095255 PCT/US2004/012476

[0032] To demonstrate the use of the Mapping Register, we will briefly revisit
each of the configurations described so far. In Figure 2A, note that a Mapping
Register 24 is shown. The value of PP_LO is O indicating the logical data port #0 is
connected to physical port #0. The next three values are 1, 2, and 3 indicating that
the next three logical data ports are connected to the next three physical data ports.
The value of PP_L4 is 7. This is not a legal physical port number in this example.
The value “7” is used to indicate that there is no parity drive in this configuration.
The specific value chosen is not critical, as long as it is not an actual physical port
number.

' [0033] Referring again to Figure 2B, the values stored in the Mapping Register
indicate that physical data ports 1, 2, 4, and 0 support the logical ports 0 through 3
respectively. Once again, the “7” indicates that a parity drive is not used.

[0034] Figure 2C shows the Mapping Register configured for a two-drive array.
Note that logical data ports #2 and #3 are associated with the same physical ports as
logical ports #0 and #1. The first two logical ports transfer data on the first physical
port cycle while the second two logical ports transfer data on the second physical
port cycle.

[0035] Figure 2D shows the Mapping Register configured for the singe drive
case. Logical ports #0 through #3 transfer data on successive cycles to physical port
#3. All of the variations of Figure 2 are different data path configurations shown
independent of the redundant data logic.

[0036] Figure 3A shows the XOR logic in the Disk Write direction for the same
data drive configuration as Figure 2A. The XOR is computed over the data from all
four of the logical data ports. The result is stored on the drive attached to the
physical port specified in logical port #4 field of the Mapping Register. In this
example, PP_L4 has a value of “4” instead of “7” indicating that there is a parity drive
and that it is attached to port #4.

[0037] Figure 3B shows the XOR logic in the Disk Read direction for the same
data path as Figures 2A and 3A, except that the drive attached to physical port #2
has now failed. The contents of the Logical Data Port 2 field, PP_L2, has been
replaced with a “6”. The legal physical port numbers are 0 through 4. The “5” is a
reserved value used to indicate that a drive has failed. Any logical data port
accessing the pseudo physical port number 5 will take its data from the output of the
XOR.

WO 2004/095255 PCT/US2004/012476

Data Path Switch

[0038] In the preceding discussion, we have demonstrated that four values
loaded into the fields of a Mapping Register may be used to represent all of the
possible configurations between four logical data ports, and 1, 2, or 4 drive arrays
attached to five physical ports, with or without a redundant drive; and for the arrays
with redundant drives, with or without a failed drive. The following will describe how
the contents of the Mapping Register is used to configure the hardware blocks and
the data paths. The following discussion, in other words, presents the details of a
presently preferred implementation of the data path switch 26, and how it is
configured by the mapping register contents.

[0039] Referring now to Figure 5A, each of the four logical data ports must be
able to receive data from any of the five physical data ports or, in the case of a failed
drive, from the Disk Read XOR. With the six possible data sources, each of the
physical data ports has a corresponding six-to-one multiplexor 50, sixteen bits wide.
The multiplexor 50 for logical port 1 is shown in the Figure 5A, but the others (for
Logical Ports #0, #2 and #3) are identical. The selector or “S” input of the
muitiplexor is connected to Logical Port #1 field of the Mapping Register —‘PP_L1".
The PP_L1 values of 0 through 4 select data from physical ports #0 through #4
respectively while a the value “5” selects the output of the Disk Read XOR.

[0040] Figure 5B shows the Disk Read XOR logic 52. The Disk Read XOR 52 is
a five-input XOR circuit, sixteen bits wide in the preferred embodiment
(corresponding to the attached disk drive data paths). (This is equivalent to sixteen
XORs, each with five inputs.) Each of the five inputs is logically qualified or “gated”
by a corresponding AND gate, also sixteen bits wide, for example AND gate 54.
(This is equivalent to sixteen NAND gates, each with two inputs.) The five NAND
gates are qualified by the corresponding five physical port select signals, PP0_SEL
through PP4_SEL. The generation of these signals will be described below.

[0041] The data path to each of the physical ports may come from any of the four
logical data ports, or from the Disk Write XOR. Examples were shown with
reference to FIGS. 2A-2D. While a field of the Mapping Register identifies the data
source for each of the logical data ports, we do not have a field that provides the
corresponding data for each of the physical ports. This information can be derived

from the fields that we do have. Each of the three bit binary encoded fields of the
7

WO 2004/095255 PCT/US2004/012476

Mapping register is decoded with a “one of eight” decoder. Figure 6 shows such a
decoder 66 for the Logical Port #1 field. The value PP_L1 is decoded into L1_PQ0,
L1_P1,L1_P2 ... L1_P7 where the names indicate a path from a source to a
destination. L1_P2, for example, indicates a path from Logical Port #1 to Physical
Port #2.

[0042] Referring now to Figure 7A, sample circuitry is shown for multiplexing of
the data paths 70 from the logical data ports to the physical data ports (#0-#4). The
multiplexor 72 for physical port #2 is shown in the figure, but the multiplexors for the
other four ports (not shown) are identical. Each of the multiplexors 72 consists of an
AND / OR array with five AND gates 74, all sixteen bits wide, and a corresponding
OR gate 76. (Each of the AND gates is equivalent of sixteen AND gates, each with
two inputs. The OR gates is equivalent to sixteen OR gates, each with five inputs.)
For the physical port #2 multiplexor, the AND gates from the logical data ports are
qualified by the corresponding outputs of the five decoders, i.e. LO_P2, L1_P2,
L2_P2,L3_P2, and L4_P2 as shown.

[0043] At this point, there are two open issues to resolve. In a two-drive array, a
given physical port received data from two different logical ports, though on different
cycles. Referring back to Figure 6, each of the decoders 66 has an enable input
“EN” that qualifies all of its outputs. For the two-drive configuration, only the
decoders for logical data ports #0 and #1 are enabled on a first cycle, and only the
decoders for logical data ports #2 and #3 are enabled on a second cycle. For this
reason, only one of the AND gates in Figure 7A will be qualified at a time. In other
words, only the data from the assigned logical port (according to the mapping
register) is input to the corresponding physical port.

[0044] In a single-drive array where a single physical port receives data from all
four logical ports (See FIG. 2D), only one decoder 66 is enabled at a time so that
only one AND gate 74 will be enabled at a time selecting a unique data source
(Logical Port). The other open issue was the source for the “PPn_SEL" signals of
Figure 5B. Figure 6 show the use of a five-input OR gate 68 that will assert the
PPn_SEL signal for a physical port “n” if there is a data path between the subject
physical port and any of the logical ports. This provides an indication that the
physical port is active and may participate in the Disk Read XOR in Figure 5B.

WO 2004/095255 PCT/US2004/012476

Global Read & Writes

[0045] In accordance with the ATA/ATAPI specifications, sending commands to
the drives requires the use of Programmed |0 or PIO mode that may be as slow as
600nS per access for devices that support only PIO Mode 0 and no better than
120nS per access for devices supporting Mode 4. A single command requires eight
or more accesses. If all of the drives have to be commanded sequentially, this time
is multiplied by the number of drives and adds considerable latency to the entire
process. The commands could be issued concurrently by an independent controller
per port, but this adds considerably to the complexity and cost.

[0046] When data is striped over an array of drives, portions of a given stripe will
be located at the same relative position on each of the drives. This makes the
address of the data, the Logical Buffer Address or LBA, the same for each of the
drives. As a result, the commands to read a given stripe are identical for all of the
drives of the array. And the commands to write a given stripe would be identical as
well. This makes it possible for the local processor (e.g. 20 in FIG. 1) to “broadcast”
common commands in no more time than would otherwise be required to send a
command to a single drive.

[0047] As noted earlier, a drive array may consist of a subset of the attached
drives. (One of the advantages of the present invention is the ability to easily
configure, or reconfigure, the organization of attached drives into defined arrays
simply by storing appropriate configuration bytes into the mapping register.) In the
case where an array consists of a subset of the attached drives, commands (such as
read and write) may only be “broadcast” to the selected subset. Either the drives
must be commanded one at a time, or some means must be provided to “mask” the
physical data ports not participating in the current array. Figure 8 shows one
implementation to address this issue.

[0048] Referring to Figure 8, the address, strobe, and chip select signals CS0,
CS1, DAO, DA1, DA2, DIOW and DIOR are shown for the first two of the five
physical ports (PO and P1). Note that these address and strobe signals are common
to all five ports. They are buffered individually so that a failure of a given drive
cannot block the propagation of these signals to the other drives. See buffers 80,82.
The output drivers for the two chip select signals CSO0#, CS1# of a given port are
qualified by the Pn_SEL signal for that port; see gates 84, 86. Any port not selected

9

WO 2004/095255 PCT/US2004/012476

by the current contents of the Mapping Register will not have either of its chip selects
asserted and therefore will ignore the read and write strobes .

[0049] It may seem that a “global read” does not make any sense as it implies
that potentially conflicting data values are returned on a common bus. In the current
embodiment, a “global read” causes a read strobe, Figure 8 Pn_DIOR#, to be
“broadcast” to all of the physical data ports. Those attached storage devices
qualified by a chip select (Pn_CSO0#, Pn_CS1#) will return data to the physical port
where it is latched at the trailing edge of the Pn_DIOR# strobe. No attempt is made
to return a data value to the local processor as a result of this read cycle.

[0050] The local processor will then read each of the ports one at a time using a
different address which does not cause a repeat of the Pn_DIOR# strobe cycle and
without changing any of the latched data. These cycles do allow the local processor
to fetch the potentially unique values stored in each of the data latches. The
Pn_DIOR# cycle which may require up to 600 nS is only executed once. The values
latched in each of the ports may be fetched in 15 ns each for a significant time
savings over repeating the Pn_DIOR# cycle five times.

[0051] The “global read” and “global write” apparatus allows the local processor
to send commands to and receive control status from the currently selected array in
the minimum possible amount of time. When a different sub-array is selected by
loading a new value in the Mapping Register, the control interface updates

automatically without other code changes.

Status Ordering

[0052] The preceding discussion dealt with generating many of the physical port
outputs and showed how they were steered by the Mapping Register. Each of these
ports has a number of input signals as well. Once again, associating these signals
with logical drives can minimize the software overhead. For example, each of the
drives has an interrupt output used to signal the need for service from the controller.
Figure 9 shows the use of a multiplexor 90 controlled by PP_LO value from the
Mapping Register to select the interrupt of the physical port associated with logical
data port zero. Each of the other logical data ports has an identical multiplexor (not
shown) that uses the corresponding PP_Ln value to locate its interrupt. In Figure 9,
the buffer 92 takes the selected interrupts from each of the logical data port

multiplexors (90 etc.). When the local processor (20 in Fig. 1) reads the interrupt
10

WO 2004/095255 PCT/US2004/012476

status through this buffer, the interrupts appear in logical data port order starting with
logical data port zero in the bit zero position. The same technique can be used to
sort both internal and external signals from the physical data ports including drive
cable ID signals and internal FIFO status signals. This feature enables the local
firmware to use a common sequence of code for multiple arrays with different
numbers of physical ports. Once the interrupt buffer 92 is loaded, the required status
bits are always the least significant bits of the "sorted" register for any array selected.
The number of bits may be masked down to the actual number of ports.

Interrupts ANY and ALL

[0053] The selected interrupts from the logical data ports can be logically ANDed
94 and ORed 96 as shown in Figure 9 to provide signals “Interrupt ALL” and Interrupt
ANY”. When the local processor has issued a command, and before any data has
been transferred, it might want to know about an interrupt from ANY of the drives as
one or more drives may have rejected the command or had some other error. Once
the drives have begun to transfer data, the local processor will want to know when
ALL of the drives have asserted their interrupt signals as this indicates the
completion of the command. Note that this type of implementation makes the
software independent of the number of drives. (For a two-drive array, the interrupt
signal from each device appears twice while in a single drive array, the same drive

appears four times. The AND and ALL signals still function correctly.)

Logical Address Mapping

[0054] While the bulk of the run-time software takes advantage of global
commands and status described above there is still the requirement to access
individual devices for initialization and for handling errors within specific devices. For
this purpose, each of the physical data ports appears at unique location within the
local processor address space. When an access to any of these locations is
decoded, the decoded output if remapped according to the contents of the Mapping
Register. During initialization, the Mapping Register is loaded with an “identity”
pattern, i.e. logical device 0 points to physical port 0, logical device 1 points to
physical port 1, etc. This makes the physical ports appear in order starting with first
physical port location in the processor’s address space. In normal operation the

Mapping Register will be loaded with a logical to physical drive map. If an interrupt is
11

WO 2004/095255 PCT/US2004/012476

then received from logical port 2, the local processor may access the interrupting
drive through the unique address space that accessed physical port 2 when the
identity map is loaded. This makes the servicing of logical drives independent of the
physical data port to which they are attached.

[0055] One hardware implementation of the logical addressing feature is shown in
Figure 10. When the processor accesses the address region for the device port
space, the one of eight decoder 100 decodes processor address lines five through
seven defining thirty-two byte spaces for each of the devices. The decoding of each
space asserts the corresponding port N decode signal, Pn_DEC. The decoding of
the virtual port number seven is the signal for a global access. The P7_DEC signal
or ORed with each of the other decode signals 102 so that the resulting port select
signals Pn_SEL (n=0-4) are asserted both for a specific access of that port and for a
global access.

[0056] Each of the port select signals is then steered by the PP_Ln values from
the Mapping Register. The one-of-eight decoder 104 takes the P2_SEL signals and
routes it according to the PP_L2 value from the Mapping Register producing a set of
signals of the form L2_P0_CS indicating a chip select from physical port zero from
logical port two. The one-of-eight decoders for the other four logical ports are
identical (not shown).

[0057] Each physical port has a five-input OR gate, for example 106. The OR
gate 106 for physical port #2 is shown. It ORs together the five different sources for
a chip select to physical port #2. Note that for a single-drive sub-array, the chip
select will be asserted by all four logical devices and for a dual drive sub-array, the
chip select is asserted by two of the logical devices.

[0058] In the foregoing description and in the drawings we illustrated several
examples of one type of mapping register; it can be called a logical mapping register.
As explained, it provides a field for each logical drive in a defined array, and in that
field, a value indicates a corresponding physical port number. In an alternative
embodiment, called a physical mapping, a register provides a field for each physical
port or attached drive, and in each field, a value indicates a corresponding logical
port number. This alternative mapping register is illustrated in the following example.
[0059] Assume an array is to be defined for striped data over four drives. Blocks
of the stripe width are stored on each of the available drives in a specific sequence.

This process is then repeated. For example, the first block of data (as well as the
12

WO 2004/095255 PCT/US2004/012476

5th, 9th, etc) is stored on the drive connected to physical port #1. The second block
(as well as 6th, 10th, etc) is stored on the drive connected to physical port #2. The
third block of data (as well as 7th, 11th, etc) is stored on the drive connected to
physical port #4. The first block of data goes on logical drive 0, the second on logical
drive 1, the third on logical drive two and the fourth on logical drive 3. The two

alternative types of mapping registers for this case are as follows:

Logical Mapping:

Logical Port # 3 2 1 0
Value (Physical 0 4 2
Port)

Physical Mapping:

Physical Port # 4 3 2 1 0
Value (Logical 2 - 1 0
Port #)

[0060] It will be obvious to those having skill in the art that many changes may be
made to the details of the above-described embodiments without departing from the
underlying principles of the invention. The scope of the present invention should,

therefore, be determined only by the following claims.

13

WO 2004/095255 PCT/US2004/012476

CLAIMS

1. A disk array controller comprising:

a host interface for connection to a host system;

a buffer for storing read and write data; and

a disk interface; the disk interface including a plurality of physicall ports for
attaching disk drives;

the disk interface further including a switch that implements selectable data
paths between the physical ports and the buffer; and

a mapping register for storing mapping data, wherein the switch is
configurable in response to the mapping data stored in the mapping register for
accessing an array of physical ports defined by the mapping data.

2. Adisk array controller according to claim 1 wherein the mapping data
reflects a striping order among the physical ports and the switch sorts data segments
from the physical ports into logical port order.

3. Adisk array controller according to claim 2 wherein the mapping data
defines the striping order in terms of a specified sequence of physical ports.

4. A disk array controller according to claim 4 wherein:

the disk interface includes a series of logical ports, each logical port for
transferring a corresponding segment of data between the disk interface and the
buffer;

and the mapping data comprises a plurality of fields that define a desired disk
array and striping scheme by specifying an association of each logical port to one of
the physical ports.

5. A disk array controller according to claim 3 wherein the mapping data are
stored in a memory in the controller.

6. A disk array controller according to claim 4 wherein the mapping data is
organized as a logical mapping register, comprising a field for each logical port, and
a value stored in that field indicating the corresponding physical port.

7. A disk array controller according to claim 4 wherein the mapping data is
organized as a physical mapping register, comprising a field for each physical port of
the controller, and a value stored in that field indicating the corresponding logical

port.

14

WO 2004/095255 PCT/US2004/012476

8. Adisk array controller according to claim 4 wherein the desired disk array
is defined by association of the logical ports to é sub-set of the available physical
ports.

9. Adisk array controller according to claim 4 wherein the mapping register
includes a field for indicating whether or not a redundant drive is used in the array to
store redundant data.

10. A disk array controller according to claim 4 wherein:

the mapping data defines a disk array that includes a number of physical ports
equal to one-half the number of logical ports used in data transfer between the disk
interface and the buffer; and

the switch is dynamically reconfigurable to provide first data paths between a
first half of the logical ports and the assigned physical ports for a first disk access,
and then provide second data paths between the other half of the logical ports and
the assigned physical ports for a second disk access to complete a buffer transfer.

11. A disk array controller according to claim 10 wherein the mapping data
defines an association of four logical ports to a disk array of two physical ports.

12. A disk array controller according to claim 4 wherein:

the mapping data defines a disk array that includes a number of physical ports
that is less than the number of logical ports used in data transfer between the disk
interface and the buffer; and

the switch is dynamically reconfigurable to provide first data paths between a
first subset of the logical ports and the assigned physical ports, and then provide
second data paths between a second subset of the logical ports and the assigned
physical ports.

13. A disk array controller according to claim 4 wherein the switch directs
disk write data segments from the buffer to the physical ports so as to stripe the data
across the defined array as specified in the mapping data.

14. A method of broadcasting a command to an array of disk drives, the
method comprising the steps of:

storing indicia in a mapping register that define a disk array by identifying a
plurality of physical ports;

asserting a byte of the command onto the data bus of each of the identified
physical ports;

asserting a global write strobe to all of the identified physical ports; and
15

WO 2004/095255 PCT/US2004/012476

responsive to the mapping register contents, selecting only the physical ports
included in the defined array, so that only the selected ports respond to the global

write strobe by accepting the asserted byte of the command?

15. A method of globally reading control status from a disk array comprising:

storing indicia in a mapping register that define a disk array by identifying a
plurality of physical ports;

broadcasting a single global read strobe to all of the identified physical ports;

responsive to the mapping register contents, selecting only the physical ports
included in the defined array, so that only the selected ports respond to the global
read strobe by returning the requested control status;

latching the returned control status in the physical port; and then

separately accessing each of the physical ports to obtain the respective

control status.

16

PCT/US2004/012476

WO 2004/095255

1716

L ainbi4

HOSS3I00Ud
5 JOHLNOD .
Ze 91
30V4Y3LNI
3AING
1 JOV4NILNI
LSOH
AHV ¥344n9
0L

4%

SN LSOH

PCT/US2004/012476

WO 2004/095255

2/16

FEERY

¥t L90d
IYOISAHd

€# Ld0d
IVYOISAHd

vZ 24nbiy

4

€

193s1b6ay Buiddepy

¢# 110d
IVOISAHd

7
J\

€9

€# 1H0d
vIOI901

8y

< =

I# 140d
VYOISAHd

~N

VA4

Z# 140d
IvoI901

ce

ve

0# 140d
IVYOISAHd

(3

L# LH0d
WOIO01

ol

A/\

—
&l

‘L“)7 NZ

Gl

O# 1LJ0d
vIOI01

¢c

8l
d344N4g

PCT/US2004/012476

WO 2004/095255

3/16

PR

H# 140d
IVYOISAHd

£# 140d
IVYOISAHd

¢# 1d0d
IVYOISAHd

M# 1°0d
IVYOISAHd

O# LJOd
IVYOISAHd

gz ainbi4

ve

v

0

J9)s16ay Buiddey

€# 140d
, WYIID01

Z# 140d
WII001

L# 140d
TvOI1901

0# 140d
21901

d344N9

PCT/US2004/012476

WO 2004/095255

4/16

PREPE %

¥t LHO0d
TVOISAHd

€# 140d
IVOISAHd

Z# Ld0d
TYOISAHd

oz aunbil4

4

I

J19)s16ay buiddepy

€# 140d
WII00T

L# 1d0d
IVOISAHd

N~

Z# 1d0d
IWIID01

0# 1Ld0d
VOISAHd

~

L# 1d0d
WwIoI001

0# 1H40d
IVII001

y344ndg

PCT/US2004/012476

WO 2004/095255

5/16

PRRR

¥# 140d
TYOISAHd

€# LH0d
ITVYIISAHd

I

¢# 1H0d
IVIISAHd

L# 140d
IVOISAHd

0# LY40d
IVOISAHd

aez a4nbi4

€

€

1918169y Buiddepy

€# 1d0d
vIOI001

Zi#t 1H0d
VYIIO01

1d0d
WoI001

O# LHOd
vOI1901

d344N4g

PCT/US2004/012476

WO 2004/095255

6/16

PP9Y %

ve a.nbi4

9¢

¥# LH0d
IVOISAHd

4

€

€# 180d \ _

J9)s160y buiddey

IVOISAHd /

€# 140d
2001

¢# 1¥0d
VOISAHd

c#t 140d
IWIID01

IVYOISAHd

M LHOd A —

L# 160d
IVOI001

0# Ld0Od
IVYOISAHd

—
&
N

0# 140d
WII001

d344N8

PCT/US2004/012476

WO 2004/095255

7116

PREY ¢

g¢ ainbi4

0 S € 1
Joysibay Buiddep
v# 140d
TVOISAHd 4%
K
\
14
— |
£# 1¥0d _ 7 £# 140d
TVOISAHd _ \ IVoI901
| ob
L] 1 /

Z# 140d Z# 140d
IVIISAHd _—— \ Vo190
_ // b _

H# Ld0d _ / 1# 140d
IVOISAHd // \ W90
_ v
0# 180d _ . JV 0# 140d
IVOISAHd IVIIO01

1
_. 9c

d344N9

PCT/US2004/012476

WO 2004/095255

8/16

p 94nbi14
0 [{EYVELTH] Sl
uod |edisAyd pajoauuod jo # ¥ Mod |eaibo YA 4!
uod jesisAyd pajoauuod jo # ¢ Jod jeaibon 6L
Hod jesisAyd pajoauuod jo # Z Hod [ea1bo 9:8
pod jeoisAyd pajosuuod jo # | Hod |esibo €5
pod jesisAyd pajoauuod jo # 0 Hod [eodibo 0:Z
SIN3INOD aiaid slig
uonduosa(J9ysibay buiddepy
07 dd 1T dd 27 dd €71 dd ¥1 dd

19)s1bay Buiddepy

ve

PCT/US2004/012476

WO 2004/095255

9/16

dOX peay ¥sig
wol4 ejeq

t# Hod [edisAyd

¢# Hod |edisAyd

Hod [edisAyd

L# Lod |eoisAyd

0# Hod {edisAyd

v ainbi4

17 dd

€# 1380d
TWIIO01

Z# 140d
WIIO01

N
—/

I# 140d
IVIIO01

0

L

0# LH0d
VIOI0071

(¥ 3O 1eandA))
O9PIMA S)g 9LX
Jdoxaidiinpy 1 031 9

¥334ng

PCT/US2004/012476

WO 2004/095255

10/16

13S fdd ——»
it Hod |edisAyd
wol4 ejeq

73S €dd — >
¢# Hod [edisAud
wol4 eyeq

73S 2dd ————»
Z# Hod |eoisAyd
wol4 eyeq

73S ldd ——— >
L# Hod [ed1sAyd
wol4 eyeq

73S 0dd ——— >

O# Hod [edisAyd
wol4 ejeq

g6 aunbi4

N

(0g '69)
sloxa|dinpy eleq

Hod |ediBoj o)

12°]

3PIM sig 91X
dOX / ANV induj g

PCT/US2004/012476

WO 2004/095255

11/16

J13sTzd

wm-/

9 aunbi4

Zd 1
Zd €1
Zd 21

(s jo e01dfy)
do induj g

Zd L1
zZd 01

Zd 11
9d 11
Gd 11
vd 11
£€d 11
Zd 11
bd 11
od 11

\mm

LA N3 pP—
9A

SA

YA

€A

ZA o

LA 2]

OA v

(g j0 [ea1dfy)
19po2aQg

gjo

1T N3

11 dd

PCT/US2004/012476

WO 2004/095255

12/16

PRYY ¥

Ld0d
IVOISAHd

v. ainbi4

£# 1H40d
IVOISAH

Z# 1"0d
TVIISAHd

L# 180d
IVIISAHd

(g Jo [eaidfy)

9PIM sHg 91X

O# 140d
TWOISAHd

dO/anNvindul g

Zd v1
HOX WM XsIg
wol4 ejeq
—7Zd €1

€# Hod [eolbon
(e
—72d ¢1

C# Hod [ed1607
Q— A
———2d L1

L# Uod [eo1607
(— A

——2d 0]

0# Hod |eodiboq
wol4 ejeq

J

¢l

~N

J

VO\.

PCT/US2004/012476

13/16

WO 2004/095255

g/ a4nbi14

nm— ' N
S— ATl
wol4 ejeqg
<+——— VN3 21
(— At
wou4 eeq

————— YN3 L7

S— At
wol4 ejeq

——————— V¥YN3 07

0# Hod |eaibon
— o ereq

.

N

SHO/ ANV

Hod |eaisAyd o1 dOX 3HIA XSId

.

SP!IM s)ig 91X
¥OX / ANV indu; ¢

Al

PCT/US2004/012476

WO 2004/095255

14/16

#4010 1d
#WOIa Ld
Zva id
lva 1d
ova id

#.SO Ld

#0SO Ld

#4010 od
#WOIQ 0d
Zva od
lva od
ova od

#1SO 0d

#0SO 0d

g aunbi4

T~
\)
//

401d

re—

'y
AA

MOId

¢vda

iva

00000

AVAVAY

— e e —

ovda

1SO

o e | —t - o

0SO

13S Ld

13S 0d

PCT/US2004/012476

WO 2004/095255

15/16

ANV LdNYHILNI

TIV LdNYYALNI

vg —
€0 —
g ——
1qQ —
0gq —

4

¥6

Joyng

AINITF
INIT€
INIT27
AN
ANIT01

AN
AN €1
INITZ1
AN
AINIT0T

N3 1NI

AN
AINITE
INITZ
AN
INITO1

6 94nbi4

06

——

IA 4

Y
sY
v
ANIT07 ——] 0x ey p———
v
W
ov

(s 1eadAy)
Joxaidniniy
Lo18

01 dd

AN vd
iNIed
INI"zZd
AINITId
1INIT0d

PCT/US2004/012476

WO 2004/095255

16/16

13S 2d

0L 24nbi4

901
$0"zd 21
S0 zd Z1
S0 2d Z1
S0 zd 11
$27Zd 01
(5 jo |eaidfy)
¥Oo Induj g
- — 030 2d
138 ¥d |ﬁ| 530 vd
13s7ed Iﬂﬂl —
138 ed Iﬁl 03072d
138 id Iﬁl 0307 1d
13s™od 030704

B

N
o
-~

S0 vd 21
S0 ed 21
SO zd 21
SO Id 21
$0 0d721

LA N3 73S ¢d
— A
— GA
— VA
—_—1 €A
ZA be]
LA g
0A v
(s Jo jeaidhy) T
Japooaq
g8joi
030 /d — A N3 |—
—1 QA
_ —— A
03Q vd — vA
030_€d — &A
030 _¢d — A o
030 _Id — 1A a p—
034d 0d —/ oA v p—
J13pooaQg
gjo |

dd

30VdS 1d0d

24av
¥av
syav

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

