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DESCRIPTION

METHOD AND APPARATUS FOR PERFORMING COMPUTATIONS
USING RESIDUE ARITHMETIC

The subject invention was made with government support under a research project
supported by the National Institutes Standards and Technology Cooperative Agreement No.
FONANB7H3021. The government may have certain rights in this invention.

Background of the Invention

The subject invention relates to a method and apparatus for performing computations
using residue arithmetic. The subject method and apparatus can utilize the Residue Number
System (RNS) to implement automatic computing machinery. The use of the RNS has been
proposed in Garner, H.L., “The Residue Number System,” IRE Transactions on Electronic
Computers, vol. EL-8, No. 6, June 1959, pp. 140-147, and Taylor, F.J., “Residue Arithmetic: A
Tutorial with Examples,” JEEE Computer, vol. 17, No. 5, May 1984, pp. 50-61. The RNS is
generally used to implement automatic computing machinery for digital signal processing.
Digital signal processing (DSP) is dominated by the repetitive computation of sums of products.
The RNS is well-suited to performing computations of this type, as demonstrated in Mellott,
J.D., Lewis, M.P., Taylor, F.J., “A 2D DFT VLSI Processor and Architecture,” Proceedings of
IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, 1996, and
Mellott, J.D., Smith, J.C., Taylor, F.J., “The Gauss Machine — A Galois-Enhanced Quadratic
Residue Number System Systolic Array,” Proceedings of IEEE 11th Symposium on Computer
Arithmetic, Windsor Ontario, 1993, pp. 156-162.

In the past, it has often been impractical to implement large-scale digital signal
processors using a single semiconductor device due to the limitations of the amount of logic that
can be placed on such a device. Instead, large-scale digital signal processors were typically
implemented using discrete logic. The RNS is well-suited to this implementation methodology
since its need for small adders and table lookup functions corresponds with the common
availability of discretely packaged small adders and small programmable read-only memories
(PROMs). An example of this implementation methodology is the Gauss Machine, discussed
in the aforementioned reference by Mellott, et al. As it became possible to integrate large-scale
digital signal processors onto a single semiconductor device, the methodology of using small

adders and memories was carried forward. An example of such a digital signal processor is given
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by Smith, J.C., Taylor, F.J., “The Design of a Fault Tolerant GEQRNS Processing Element for
Linear Systolic Array DSP Applications,” Proceedings of IEEE Great Lakes Symposium on
VLSI, Notre Dame, Indiana, 1994. Other examples of RNS digital signal processors can be found
in U.S. Patent No. 5,117,383 (Fujita et al.), issued May 26, 1992; U.S. Patent No. 5,008,668
(Takayama, et al.), issued April 16, 1991, U.S. Patent No. 4,949,294 (Wambergue), issued
August 14, 1990; and U.S. Patent No. 4,281,391 (Huang), issued July 28, 1981.

The aforementioned examples disclose the use of ROMs for implementation of table
lookup functions. For the small table lookup functions typically found in RNS digital signal
processor implementations, ROMs are attractive because they are easy to program and have
known speed, area, and power characteristics. In contrast, the manual design of a collection of
logic gates to realize a table lookup function can be a daunting task, and the speed, area, and
power characteristics are generally not fully known until the time that the circuit is designed.
Another feature associated with prior use of ROMs in integrated, as opposed to discrete, RNS
digital signal processor implementations is that the ROMs offer favorable die area compared to
other possible means of implementing small table lookups.

Prior techniques for performing computations using RNS suffer from one or more
disadvantages related to the use of memories, usually ROMs, to implement table lookup
functions. Some of these disadvantages include: memories with the required properties for use
in RNS computations are not available in sufficient quantity in all ASIC implementation
technologies; memories often contain analog circuitry that uses significant power even if there
is no switching activity in the circuit; the analog circuitry found in most meﬁlory devices does
not scale well into deep sub-micron semiconductor fabrication technologies; memories, since
they are dependent upon analog circuits (e.g., differential amplifiers), can be more difficult to
test than digital logic circuits, can require separate tests and test mechanisms than digital logic
circuits, and are not generally compatible with leakage current (Ippg) test methodologies; there
is little or no flexibility to optimize a memory with respect to one or more of speed, power, and
area; memories can be difficult to pipeline, and in many implementation technologies there is
no realistic option to pipeline memory; the size of the memory is typically fixed by the number
of inputs and outputs, and is essentially independent of the contents of the memory; for
reliability reasons, wires unrelated to a memory are not usually allowed to pass over a memory
on a semiconductor device, such that the presence of many small memories on a semiconductor
device, such as would be used in an apparatus to perform computations using the RNS, can

impair the ability to connect various functions, both memory and non-memory, on the device.
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Brief Summary of the Invention

The subject invention pertains to a method and apparatus for performing computations
using the Residue Number System (RNS). In a specific embodiment, a plurality of logic gates
can be utilized to implement computations using the RNS. In light of recent semiconductor
device scaling and design methodology changes, the subject invention can offer advantages over
the use of ROMs for small table lookup functions in integrated RNS digital signal processor
implementations. Some of these advantages include: logic gates can scale down in size or
power better than the analog portions of the ROM circuitry, for example the differential sense
amplifier; for integrated RNS implementations, small table lookup functions implemented with
gates require less die area than the same functions implemented with ROMs; in general, logic
gates are compatible with quiescent current test methodologies, while memory devices are not
compatible with quiescent, or leakage, current test methodologies (also known as Ippg testing);
logic gates are generally scan testable whereas memory devices can require special test
structures and are typically not directly compatible with scan test methodologies; and signal
wires may be routed over logic gates, whereas most design methodologies do not allow signal
wires to be routed over on-chip memories such that the presence of many small memories in a
design may congest wire routing, potentially leading to higher design costs, slower circuit
operation, greater power consumption, greater silicon die area consumption, and, thus, greater
manufacturing cost.

The present invention can provide one or more of the following advantages: provide a
means of implementing residue arithmetic computational circuitry with a reduced use of, or
entirely without the use of, memories for table lookup operations so that the circuitry can be
easily implemented using a variety of technologies, including, but not limited to, custom digital
logic, standard cell logic, cell-based arrays of logic, gate arrays, field programmable gate arrays,
and programmable logic devices; provide a means of implementing residue arithmetic
computational circuitry that does not consume significant power in the absence of switching
activity in the circuit; to provide a means of implementing residue arithmetic computational
circuitry that scales directly into deep sub-micron semiconductor fabrication technologies; to
provide a means of implementing residue arithmetic computational circuitry that is compatible
with standard logic test methodologies (e.g., scan, Ippg); provide a means of optimizing the
mathematical functions in the residue arithmetic computational circuitry for one or more of
speed, power, and area; provide a means of implementing the mathematical functions in residue
arithmetic computational circuitry that allows pipelining and is fully compatible with Electronic
Design Automation (EDA) methodologies for automatic pipelining; provide a means of

implementing the mathematical functions in residue arithmetic computational circuitry that takes
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advantage of the structure of the values resulting from a mathematical function to produce an
implementation that is smaller and faster than is possible with any memory-based
implementation; and provide a means of implementing mathematical functions in the residue
arithmetic computational circuitry that does not unduly interfere with the routing of wires on the
semiconductor device.

Brief Description of the Drawings

Figure 1 shows a block diagram of an apparatus, for digital signal processing, that uses
residue arithmetic to operate on real operands and produces real results.

Figure 2 shows a block diagram of an apparatus, for digital signal processing, that uses
residue arithmetic to operate on complex operands and produces complex results.

Figure 3 shows a block diagram of a modular product table lookup for a constant
multiplier.

Figure 4 shows a table for the product of two and a modulo 5 variable, modulo 5, the
minimization of the equations for the table using Karnaugh maps, a plurality of logic gates
implementing the reduced equations, and the resulting table.

Figure 5 shows a number theoretic logarithm lookup table.

Figure 6 shows a block diagram of a multiplier that computes products using the
number theoretic logarithms of the operands.

Figure 7 shows a structure to compute the residue of an N bit unsigned or two’s
complement number.

Figure 8 shows a block diagram of a multi-operand modular adder tree.

Figure 9 shows a structure to convert a value from RNS representation to binary
representation using the Chinese Remainder Theorem.

Figure 10 shows a structure to convert a value from RNS representation to binary
representation using the L-CRT algorithm.

Figure 11 shows a structure to convert a complex RNS value to a QRNS value.

Figure 12 shows a structure to convert a QRNS value to a complex RNS value.

Detailed Description of Invention

Enabling Mathematical Theory

The following subsections present the mathematics which are relevant to the operation
of the invention. While the mathematics are well-known, the theory is presented here so as to

provide a consistent framework of notation and symbols.
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" The Chinese Remainder Theorem

Let S={py, p1> D2> --+» P11}, Where ged(p;, p)=1 for all i,je{0, 1, 2, ..., L-1} and i#j,

! . L-1
wherein ged stands for greatest common denominator. Let M = | I o P »and
l =

let XeZ/MZ, where Z denotes the ring of integers. By the Chinese Remainder Theorem, there
exists an isomorphism

¢: ZIMZ « ZipyZ x ZipZ % ZIp,L % ... % Zlp, \Z.

The mapping ¢ is given by

QLX) = (X0, X1, Xy ooy Xp1)
where (%, X1, X5, .., X )ELIPL X ZIpZ X Zip,Z % ... x Z/p; | Z, and x, = X (mod p,) for all
i€{0,1,2,... L-1}. The inverse mapping is given by

O [(xgy X1p Xy -ees X )] > X
where

L-1
X = Zo m, (miqx)P’ (mod M),

m=M]p,, mm;'=1(mod p,), and (x), denotes the value in the set {0,1,2,...,p-1} that is congruent

to x modulo p.

Number Theoretic Logarithms
If p; is prime then there exists a generator a,cZ/p,Z, such that
{a¥| k=0, 1,2, ..., p~2}={1,2,3, ..., p-1}
in the ring Z/p,Z. If x,€ (Z/p,Z)\{0}, then there exists a unique lx, €Z/(p;-1)Z such that

Ix
x, = a " (mod p)
The value 1 is said to be the number theoretic logarithm of x; to the base o; modulo p;.

The number theoretic logarithm may be exploited to compute products in the ring Z/p.Z.
If x,.y,€(Z/p,Z)\{0}, then there exist unique I, ! €Z/(p;-1)Z such that

2y, = 1) (6 kmod »)

<lx + >--1
xy, =0 r P (mod r)
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xy, = f“x <l";+ly1>Pi"‘) (mod p)

If either or both of x,,y, is zero, then the product x;, is zero.

Complex Arithmetic

Let Z[;]/(7*+1) denote the ring of Gaussian integers under the usual operations of addition
and multiplication, numbers of the form a+jb where a,b€Z, and j*=-1. Then (Z[jV/(7+1))/p.Z
denotes the ring of Gaussian integers modulo p,, and if a+jbe Z[j}/(j*+1) then the mapping

o Z[/(P+) ~ (ZVG+1))/p,Z is given by

¢((atjb)) - aitjb;
where a;=a (mod p;) and b,=b (mod p,). The set (Z[j1/(7*+1))/p.Z is a ring under the usual complex
arithmetic operations of multiplication and addition. That is, if (a/+7b,),(c/+jd)e(Z[j1/(*+1))/p;Z,
then
(ayb) + (cHjd) = ((as+e) + j(bi+d)
(aitjby) % (c/Hjd) = ((ac-bd) + j(ad:vbc)).

Suppose p; is a prime and p=4k+1, where k, €Z. Then there exists an isomorphism
between the Gaussian integers modulo p; under the usual complex arithmetic operations as shown
above, and the Gaussian integers modulo p; under component-wise addition and multiplication,

YA(ZVG*+1)/p.Z -~ (ZIj)/(*+1))/p,Z, with the mapping
F((aitjby) - (@, 2
where z, = a, + .]Abi, Zi*___ a- jb, and j2 =-1(mod pi).

The inverse mapping is given by

¥U(z: z) ~ (aityb)

- * -1 * . -l=
where a, = 2 I(Zi > z, )’bi = 2 (Zi_zi ), and 22 =1(mod pi).

The Chinese Remainder Theorem (CRT) may be exploited to perform addition,
subtraction, and multiplication of values in the ring of integers modulo M, Z/MZ, by breaking the
computation into Z independent computations in Z/p,Z.for i€ {0,1,2,...,L-1}. If each p,cS is prime
then number theoretic logarithms may be exploited to reduce the complexity of multiplication.

Furthermore, if each p,eS is prime and p=4k~+1 where keZ, then it is possible to exploit the
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isomorphism ¥ to reduce the number of arithmetic operations required to implement complex

multiplication from four real multiplies and two real additions to two real multiplies.

Figure 1 shows a specific embodiment of the subject invention which can be used to
perform sums of products on real binary unsigned or two’s complement, one’s complement, sign-
magnitude, or other fixed-radix or floating-radix operands using residue arithmetic. The system
shown in Figure 1 can have a circuit 1 to convert data from a conventional representation such
as, but not limited to, one’s complement, sign-magnitude, unsigned binary or two’s complement
to a set of L residues. If multiplication is needed, the residues of the input operands can be
multiplied by one or more coefficients by a circuit 3. Circuit 3 can be removed if only addition
is to be achieved. These coefficients can be fixed and/or programmed coefficients. The modular
products produced by circuit 3 can then be added by a circuit 4 to produce modular sums of
products. The modular sums of products can then be converted to a conventional representation
by a circuit 6. The specific arrangement of the modular products and sums are dependent upon

the algorithm design and can be optimized as desired.

Referring to Figure 1, an embodiment which can process real operands is shosvn. Data
operands, for example, in a conventional format such as two’s complement, can be input to circuit
1 (the details of which are summarized in the discussion of Figure 7) to convert the operands into
RNS form. If the algorithm requires multiplication, the products can be computed next by a
circuit 3, which can comprise one or more elements from Figure 3, and/or Figure 5 and Figure
6. Any sums, if required, can be computed next by a circuit 4, which comprises two operand
modular adders and, optionally, one or more modular adder frees from Figure 8. The specific
arrangement of the arithmetic elements and intermediate storage elements, including, but not
limited to, registers, latches, and random access memory (RAM)s, can be varied depending on
the situation. For example, the arithmetic elements and intermediate storage elements may be
arranged to implement functions including, but not limited to, convolution, correlation, finite
impulse response filters, fast Fourier transforms, discrete cosine transforms, wavelet transforms,
filter banks, cascaded integrator comb filters, digital receivers, and digital transmitters. The
results of the computation can then be converted to a conventional format such as two’s
complement by a circuit 6, which can comprise, for example, a CRT conversion as shown in from

Figure 9 or an L-CRT conversion as shown in Figure 10.

Figure 2 shows another specific embodiment of the subject invention which can be used
to perform sums of products on complex binary unsigned or two’s complement operands using
residue arithmetic. The system shown in Figure 2 can have a circuit 1 to convert data from a

conventional representation such as, but not limited to, one’s complement, sign-magnitude,
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unsigned binary, or two’s complement to a set of L residues for each of the real and imaginary
components of each operand. The complex residues can then be converted to quadratic residue
representation by a circuit 2. The quadratic residues of the input operands can be multiplied by
one or more coefficients by a circuit 3. These coefficients can be fixed and/or programmed
coefficients. The modular products produced by circuit 3 can then be added by a circuit 4 to
produce modular sums of products. The quadratic modular sums of products can then be
converted to complex residues by a circuit 5. The complex sums of products can then be
converted to a conventional representation, such as complex unsigned binary or two’s
complement, by a circuit 6. The specific arrangement of the modular products and sums are
dependent upon the algorithm design and can be optimized as desired. In some instances, an
algorithm can be designed to accept real inputs as operands and produce complex results, or to
accept complex inputs and produce real results. In such case, the circuit 2 and/or the circuit 5 may

be removed, as desired.

Referring to the embodiment shown in Figure 2, the subject invention can process
complex operands. Data operands, for example, in a conventional form such as two’s
complement, can be input to circuit 1 (the details of which are summarized in the discussion of
Figure 7) to convert the operands into CRNS form. The CRNS operands can be passed to a circuit
2 to convert the operands to QRNS forrhat. An example of such a circuit 2 is shown in Figure 11.
If the algorithm requires multiplication, the products can be computed next by a circuit 3, which
can comprise one or more elements from Figure 3, and/or Figure 5 and Figure 6. Any sums, if
required, can be computed next by a circuit 4, which can comprise two operand modular adders
and, optionally, one or more modular adder trees as shown in Figure 8. The specific arrangement
of the arithmetic elements and intermediate storage elements, including, but not limited to,
registers, latches, and RAMs, can be varied depending on the situation. For example, the
arithmetic elements and intermediate storage elements may be arranged to implement functions
including, but not limited to, convolution, correlation, finite impulse response filters, fast Fourier
transforms, discrete cosine transforms, wavelet transforms, filter banks, cascaded integrator comb
filters, digital receivers, and digital transmitters. The QRNS results of the computation can then
be converted back to CRNS representation by a circuit 5, for example, as shown in Figure 12.
The CRNS results can then be converted to a conventional format such as two’s complement by
a circuit 6, which can comprise, for example, a CRT conversion as shown in Figure 9 or an L-

CRT conversion as shown in Figure 10.

An embodiment for computation of modular products of a constant and a modular data

operand is shown in Figure 3. The product can be generated by a circuit 7 that accepts an N, bit
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operand and produces the product of the operand and a constant ¢; modulo p, , producing an N,
bit result. Figure 3 shows a block diagram of an embodiment of a circuit 7 to produce the
modular product of an operand and a constant where such constant is fixed by the design of the
circuit. Circuit 7 can utilize a plurality of logic gates selected by first computing the value of a
multiply by a constant function for each possible modular data operand, then extracting the
logical equations representing the computed values of the multiply by a constant function. The
logical equations can then be mapped to a plurality of logic gates. If desired, prior to mapping
to a plurality of logic gates, the logical equations can be minimized by, for example, using well-
known logic minimization techniques which take advantage of the fact that for any invalid input
the value of the output is allowed to be any value. After the logic equations is reduced to a
minimized logical function, it can be mapped to an implementation utilizing a plurality of logic
gates. Mapping to a plurality of logic gates can be performed, for example, manually or using
software such as DESIGN COMPILER, available from Synopsys, Inc. of Mountain View,

California.

Figure 4 shows an example of a product lookup table for the constant multiplier 2 and a

modulo 5 value x (bits x,, x;, and x,, ordered from most significant to least significant). A truth

" table 33 shows all possible inputs to the table as well as the output of the table y (bits y,, y;, and

Yo, ordered from most significant to least significant). The “x” entries in the table indicate that the
value of the output can be anything. The table is reduced to a minimized set of logical equations
35A using Karnaugh maps 34A, 34B, and 34C. One example of a plurality of logic gate 35B
which can be used to implement the logical equations 35A are shown in Figure 4. For larger
moduli, and thus larger tables, minimization of the logical equations for the table by manual
means can be impractical, so a computer program can be employed to minimize the logical
equations. The results of the minimized logical equations, given all possible inputs are shown in

a truth table 36.

An ernbddiment for computation of number theoretic logarithms for a given base «; and
modulus p; is shown in Figure 5. To multiply two operands in the RNS, the logarithms of the
operands can be computed by a circuit 8 as shown in Figure 5. The logarithm can be generated
by a circuit 8 that accepts an N, bit operand and produces the N, bit logarithm of the operand. If
the input operand is zero then the output of the circuit 8 is a symbol that is not a valid number

theoretic logarithm.

Figure 5 shows a block diagram of an embodiment of a circuit 8 to produce the number
theoretic logarithm of a residue, or a special zero symbol if the input operand is zero. For a given

base o, and modulus p;, the number theoretic logarithm of a value in the set {1,2,3,..., p-1} will
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lie in the set {0,1,2,..., p-2}. In the preferred embodiment of circuit 8, the special symbol that
results when the input is zero is the binary word that is all ones. The table lookup function 8 can

be reduced to a circuit using the procedure discussed in the description of Figure 3.

Figure 6 shows a block diagram of an embodiment of a circuit to compute the product
of two residues, modulo p;, using the sum of the number theoretic logarithms of the operands. The
circuit of Figure 6 can accept two operands, the number theoretic logarithms of the residues to
be multiplied or the symbol for zero that is produced by a circuit 8 when presented with an input
of zero. The operands can be presented to a modular adder circuit 9, which produces the sum of
the operands modulo p-1, the output of which is valid only if neither of the operands is the zero
symbol. The operands can also be presented to a circuit 10 to detect the symbol for zero. The sum
of the logarithms produced by the circuit 9 can then be an input to a number theoretic
exponentiation table lookup circuit 11. The table lookup function 11 can be reduced to a circuit
using the procedure discussed in the description of Figure 3. The output of the zero detection
circuits 10 can then be logically ORed by, for example, an OR gate 12. If the output of the OR
gate 12 indicates that either of the input operands were the zero symbol, then the output of a
multiplexer 13 can be set to zero, otherwise the output of the exponentiation circuit 11 can then
be passed to the output of the multiplexer. In most implementations of the systems shown in
Figure 1 and Figure 2, the number theoretic exponentiation table lookup circuit 11 will be the
most common table lookup in the system. In general, for a specific (Z/p,Z)\0, there are many
possible generators. For any modulus p;, there may be as much as a twenty percent variation in
the size of the exponentiation circuit over the entire set of possible generators. Accordingly,
generators can be selected based on one or more factors. In a preferred embodiment of the
subject invention, for each modulus p,, an optimum generator o; can be selected based on one or
more criterion such as size, speed, power, or some other cost function. This optimum generation
can then be used to create the number theoretic exponentiation circuit 11 and/or the number

theoretic logarithm circuit 8.

In the embodiments shown in Figure 6, the logarithms of the operands are checked by a
zero detection circuit 10; if either of the logarithm inputs are the special symbol for zero, as
determined by a logical OR gate 12, then the product output is set to zero by a multiplexer 13.
Otherwise, the logarithms can be added modulo p -1 by a modular adder circuit 9, the output of
which can be input to an exponentiation circuit 11. The output of the exponentiation circuit 11,
can then be passed to the multiplexer 13, and if neither of the operands were the special zero
symbol, as determined by the output of the OR gate 12, then the output of the multiplexer 13 can

be set to the output of the exponentiation circuit 11.
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Figure 7 shows a block diagram of an embodiment for reduction of an N bit binary
operand to its residue modulo p;. This binary operand can be, for example, unsigned or two’s
complement. A zero extension 14 can take the least significant V-1 bits of the input operand and
produce its NV, bit residue modulo p;. The N bit conventional operand can be partitioned into ¢,+1
groups of bits. The N, -1 least significant bits are already reduced modulo p, but are zero
extended to N, bits by a zero extension 14. The remaining f\f-]\/}l bits of the input operand can
be partitioned into g; groups of bits which are inputs to ¢; table lookups 15A, 15B, and 15C. Each
partition of bits Q; for j€{0,1,2,..., g; -1} can be input to a table lookup circuit 15A, 15B, and 15C.
Table lookups 15A, 15B, and 15C can then produce the re_:sidues of the weighted inputs. The
mathematical functions performed by table lookups 15A, 15B, and 15C, can be reduced to
circuits using the procedure discussed in the description of Figure 3. The ¢;+1 residues can be
added by a g;+1 operand modular adder 16 to produce the residue of the original input operand
modulo p;. For example, the output of the splitter 14 and the table lookup circuits 15A, 15B, 15C
can be added by a ¢, + 1 operand modular adder circuit 16, the sum of which is the original N bit

operand reduced modulo p,.

Figure 8 shows a block diagram of an embodiment of a circuit to compute the sum of
L>2 operands (L residues) modulo p,. The L operands can be added by a binary adder tree 17 to
produce the full sum of the L operands. For example, binary adder 17 can produce the N, + [log,
L]bit unsigned sum of the input operands. The N;-1 least significant bits can be split from the
full sum by a splitter 20 and zero extended to N, bits by a zero extension 21. As shown, the
output of the binary adder 17 can be split by a bus splitter 20, and the most significant [log, L]
+ 1 bits passed to a modulo p;, table lookup circuit 18, while the least significant N-1 bits are
passed to a zero extension 21. The table lookup function 18 can be reduced to a circuit using the
procedure discussed with respect to the embodiment of Figure 3. The outputs of the modulo p;
table lookup circuit 18 and the zero extension 21 are combined by a modulo p, adder 19,

producing the sum of the L operands modulo p,.

An embodiment of the subject invention can be utilized for conversion of an L operand
RNS value to a conventional value using the Chinese remainder theorem. Figure 9 shows a block
diagram of an embodiment of a circuit to convert the L residue representation of a value to its
unsigned binary representation by the Chinese remainder theorem. The L residues, {x,, x,, X2, ...,
X,..} can be input to L separate CRT function table lookup circuits 22A, 22B, 22C, and 22D,
producing L results. The table lookup functions 22A, 22B, 22C, and 22D, can be reduced to
circuits using the procedure discussed in the description of Figure 3. These results modular adder

circuit 23 to produce, for example, the unsigned binary representation of the input value.
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An embodiment of the subject invention can be utilized for conversion of an L operand
RNS value to a conventional value using L-CRT. Figure 10 shows a block diagram of an
embodiment of a circuit to convert the L residue representation of a value to a scaled unsigned
binary or two’s complement representation using the L-CRT conversion. The L residues, {x,, x,,
X,, ..., X} can be input to L separate L-CRT function table lookup circuits 24A, 24B, 24C, and
24D, producing L scaled results. The table lookup functions 24A, 24B, 24C, and 24D, can be
reduced to circuits using the procedure discussed in the description of Figure 3. These results
produced by the table lookup circuits 24A, 24B, 24C, and 24D can then be added by a binary
adder circuit 25 to produce, for example, the scaled unsigned binary or two’s complement

representation of the input value.

An embodiment of the subject invention can be utilized for conversion of CRNS operands
to QRNS form. Figure 11 shows a block diagram of an embodiment of a circuit to convert a
complex residue number system (CRNS) value to a quadratic residue number system (QRNS)
value. The imaginary component of the CRNS input b, can be input to a constant multiplication
by JA circuit 26. For example, the imaginary residue operand, b,, can be input to a circuit 26 that
looks up the product of the operand with ; . The table lookup fﬁnction 26 can be reduced to a
circuit using the procedure discussed with respect to the embodiment of Figure 3. The output of
the table lookup circuit 26 and the real portion of the CRNS input, a,, can be added modulo p;, by
a modular adder circuit 27 to produce the QRNS component z, The output of the table lookup
circuit 26 can then be subtracted, modulo p;, from the real portion of the CRNS input by a

modular subtractor circuit 28 to produce the QRNS component z;".

An embodiment of the subject invention can be utilized for conversion of QRNS
operands to CRNS form. Figure 12 shows a block diagram of an embodiment of a circuit to
convert a quadratic residue number system value to a complex residue number system value. The
QRNS components z; and z;," can be added modulo p; by a modular adder circuit 29. The QRNS
component z;" can be subtracted, modulo p ,;from the component z by a modular subtractor
circuit 30. The output of the modular adder circuit 29 can be input to a constant multiplication
by 2 ! table lookup circuit 31, the output of which is the real component of the CRNS
representation of the data. The output of the modular adder 29 can be the input to a circuit 31 that
looks up the product of the sum with 27!, The output of the modular subtractor circuit 30 can be
input to a constant multiplication by }-12 "1 table lookup circuit 32, the output of which is the
imaginary component of the CRNS representation of the data. The output of the modular
subtractor 30 can be the input to circuit 32 that looks up the product of the sum with }_12 -1,
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The product table lookup functions 31 and 32 can be reduced to circuits using the procedure

discussed with respect to the embodiment of Figure 3.

The use of logic gates to implement various table lookup operations in accordance with
this invention can provide manifold advantages over the previous method of using memory
devices. The use of logic gates can allow RNS computational circuitry to be efficiently
implemented in a variety of technologies, some of which would not have been previously
amenable to the use of RNS techniques. Additionally, the use of logic gates rather than memories
for RNS computational circuitry can provide one or more of the following benefits: logic gates
implemented in complimentary metal oxide semiconductor (CMOS) static logic can consume
very low power in the absence of switching activity in the circuit; logic gates can scale directly
into deep sub-micron semiconductor fabrication technologies; logic gates can be compatible with
standard logic test methodologies; groups of logic gates can be optimized for speed, power, and
area; groups of logic gates can be easily pipelined through manual or automatic means; and logic
gates can reduce interference with the routing of wires on a semiconductor device as compared

with memories.

Unlike memories, which have a fixed area and speed for any given table lookup function
of a given input and output size, groups of logic gates can be minimized for the specific table
lookup function to be implemented. In many cases, the logic function to be minimized can have
some underlying structure that is not obvious from inspection of the table. This structure can lead
to significant area and speed advantages for groups of logic gates over memories. For example,
a table lookup for the product of an eight bit input modulo 241, and 2!, modulo 241, produced
in a read only memory (ROM) in a 0.2 micron standard cell application specific integrated circuit
(ASIC) process requires the equivalent area of 2,250 gates, and at 100 MHZ and has a power
dissipation of 3.6 mW, while the same table produced as gates requires only the area of 36 gates,
and at the same speed has a power dissipation of 0.23 mW. Another table of the same size, an
exponentiation table modulo 241, requires only an area of 675 gates, and at the same speed has

a power dissipation of 1.3 mW.

These results were obtained using the process previously described with respect to the
embodiment of Figure 3. The aforementioned ROM has a minimum clock period of 3.0 ns, while
the aforementioned product lookup implemented as gates has a maximum delay from input to
output of 1.0 ns, and the exponentiation lookup implemented as gates has a maximum delay of
3.0 ns. In the case of the exponentiation lookup, a delay of 1.2 ns can be achieved, although the
area of the function is increased to 957 gates. This example is a compelling demonstration of the

subject invention’s ability to allow the optimization of the balance between speed, area, and
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power, by implementing RNS table lookups using logic gates rather than memories such as
ROMs. For a given implementation technology, ROMs have the highest storage density of all
the types of memory. For example, a static RAM implemented in the same technology as the
aforementioned ROM, and with the same size and speed characteristics, requires the equivalent
area of 3,660 gates. This example also demonstrates that by using logic gates to implement table

lookup functions, area and speed may be traded to best suit the needs of a particular design.

It should be understood that the examples and embodiments described herein are for
illustrative purposes only and that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included within the spirit and purview of this

application and the scope of the appended claims.
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Claims

1. A method of performing mathematical computations using residue arithmetic,

comprising one or more of the following steps:
converting data in binary code to residues;
converting residues from CRNS to QRNS;
computing modular products of residues;
computing modular sums of residues;
converting residues from QRNS to CRNS; and
converting residues to data in binary code,

wherein at least one of said steps is implemented utilizing a corresponding at least one

plurality of logic gates.

2. The method according to claim 1, wherein said method comprises the steps of:
receiving input data in binary code; and

converting said input data in binary code to residues.

3. The method according to claim 2, wherein said method comprises the step of:

converting said residues from CRNS to QRNS.

4. The method according to claim 3, wherein said method comprises the step of:

computing modular products of the QRNS residues.

5. The method according to claim 4, wherein said method comprises the step of:

computing modular sums of the products of residues.

6. The method according to claim 5, wherein said method comprises the step of:

converting the modular sums from QRNS to CRNS.
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7. The method according to claim 6, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

8. The method according to claim 5, wherein said method comprises the step of:

converting the QRNS residues to data in binary code.

9. The method according to claim 4, wherein said method comprises the step of:

converting the modular products from QRNS to CRNS.

10. The method according to claim 9, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

11. The method according to claim 4, wherein said method comprises the step of:

converting the modular products to data in binary code.

12. The method according to claim 3, wherein said method comprises the step of:

computing modular sums of the QRNS residues.

13. The method according to claim 12, wherein said method comprises the step of:

converting the modular sums from QRNS to CRNS.

14. The method according to claim 13, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

15. The method according to claim 12, wherein said method comprises the step of:

converting the modular sums to data in binary code.
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16. The method according to claim 3, wherein said method comprises the step of:

converting the QRNS residues from QRNS to CRNS.

17. The method according to claim 16, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

18. The method according to claim 3, wherein said method comprises the step of:

converting the QRNS residues to data in binary code.

19. The method according to claim 2, wherein said method comprises the step of:

computing modular products of the residues.

20. The method according to claim 19, wherein said method comprises the step of:

computing modular sums of the modular products of residues.

21. The method according to claim 20, wherein said method comprises the step of:

converting the modular sums from QRNS to CRNS.

22. The method according to claim 21, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

23. The method according to claim 20, wherein said method comprises the step of:

converting the modular sums to data in binary code.

24. The method according to claim 19, wherein said method comprises the step of:

converting the modular products from QRNS to CRNS.
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25. The method according to claim 24, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

26. The method according to claim 19, wherein said method comprises the step of:

converting the modular products to data in binary code.

27. The method according to claim 2, wherein said method comprises the step of:

computing modular sums of the residues.

28. The method according to claim 27, wherein said method comprises the step of:

converting the modular sums from QRNS to CRNS.

29. The method according to claim 28, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

30. The method according to claim 27, wherein said method comprises the step of:

converting the modular sums to data in binary code.

31. The method according to claim 2, wherein said method comprises the step of:

" converting the residues from QRNS to CRNS.

32. The method according to claim 31, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

33. The method according to claim 2, wherein said method comprises the step of:

converting the residues to data in binary code.
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34. The method according to claim 1, wherein said method comprises the steps of:
receiving input data in residue format; and

converting the residues from CRNS to QRNS.

35. The method according to claim 34, wherein said method comprises the step of:

computing modular products of the QRNS residues.

36. The method according to claim 35, wherein said méthod comprises the step of:

computing modular sums of the products of residues.

37. The method according to claim 36, wherein said method comprises the step of:

converting the modular sums from QRNS to CRNS.

38. The method according to claim 37, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

39. The method according to claim 36, wherein said method comprises the step of:

converting the QRNS residues to data in binary code.

40. The method according to claim 35, wherein said method comprises the step of:

converting the modular products residues from QRNS to CRNS.

41. The method according to claim 40, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

42. The method according to claim 35, wherein said method comprises the step of:

converting the modular products to data in binary code.
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43, The method according to claim 34, wherein said method comprises the step of:

computing modular sums of the QRNS residues.

44. The method according to claim 43, wherein said method comprises the step of:

converting the modular sums from QRNS to CRNS.

45. The method according to claim 44, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

46. The method according to claim 43, wherein said method comprises the step of:
converting the modular sums to data in binary code.
47. The method according to claim 34, wherein said method comprises the step of:

converting the QRNS residues from QRNS to CRNS.

48. The method according to claim 47, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

49. The method according to claim 34, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

50. The method according to claim 1, wherein said method comprises the steps of:
receiving input data in residue format; and

computing modular products of the residues.

51. The method according to claim 50, wherein said method comprises the step of:

computing modular sums of the products of residues.
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52. The method according to claim 51, wherein said method comprises the step of:

converting the modular sums from QRNS to CRNS.

53. The method according to claim 52, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

54. The method according to claim 51, wherein said method comprises the step of:

converting the modular sums to data in binary code.

55. The method according to claim 50, wherein said method comprises the step of:

converting the modular products from QRNS to CRNS.

56. The method according to claim 55, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

57. The method according to claim 50, wherein said method comprises the step of:

converting the modular products to data in binary code.

58. The method according to claim 1, wherein said method comprises the steps of:

receiving input data in residue format; and

computing modular sums of the residues.

59. The method according to claim 58, wherein said method comprises the step of:

converting the residues from QRNS to CRNS.

60. The method according to claim 59, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.
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61. The method according to claim 58, wherein said method comprises the step of:

converting the residues to data in binary code.

62. The method according to claim 1, wherein said method comprises the steps of:
receiving input data in residue format; and

converting the residues from QRNS to CRNS.

63. The method according to claim 62, wherein said method comprises the step of:

converting the CRNS residues to data in binary code.

64. The method according to claim 1, wherein said method comprises the steps of:
receiving input data in residue format; and

converting the residues to data in binary code.

65. The method according to claim 1, wherein said plurality of logic gates are selected

from the group consisting of: custom digital logic, standard cell logic, cell-based arrays of logic,

gate arrays, field programmable gate arrays, and programmable logic devices.

66. The method according to claim 2, wherein said binary code is selected from the
group consisting of: one’s complement, sign-magnitude, unsigned binary, two’s complement,

fixed-radix, and floating-radix.

67. A method for implementing a computation of a product of a constant and a modular

data operand, comprising the following steps:

computing a value of a multiply by a constant function for each possible modular data

operand;

extracting logical equations representing computed values of the multiply by a constant

function; and
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mapping the logical equations to a plurality of logic gates,

wherein the plurality of logic gates receives a modular data operand and outputs a product

of a constant and the modular data operand.

68. The method according to claim 67, further comprising the step of minimizing the

ldgical equations prior to the step of mapping the logical equations to the plurality of logic gates.

69. A method for implementing computation of a number theoretic logarithm of a

residue for a given base o; and modulus p;, comprising the steps of:

computing a value of a number theoretic logarithm function for each possible residue

input;

extracting logical equations representing the computed values of the number theoretic

logarithm function; and
mapping the logical equations to a plurality of logic gates,

wherein the plurality of logic gates receives a residue input and outputs a number

theoretic logarithm of the residue input for a given base o; and modulus p;.

70. The method according to claim 69, further comprising the step of minimizing the

logical equations prior to the step of mapping the logical equations to the plurality of logic gates.

71. The method according to claim 69, further comprising the step of outputting a zero
symbol if the input operand is zero.

72. The method according to claim 71, wherein the zero symbol is a binary word having

all ones.

73. The method according to claim 69, further comprising the step of:

implementing the number theoretic logarithm function for each of a plurality of possible

generators; and

selecting an optimum generator,
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wherein the selection of the optimum generator is based on at least one criterion selected

from the group consisting of: speed, area, and power.

74. A method for implementing computation of a number theoretic exponentiation of a

residue for a given base o; and modulus p;, comprising the steps of:

computing a value of a number theoretic exponentiation function for each possible

residue input;

extracting logical equations representing the computed values of the number theoretic

exponentiation function; and
mapping the logical equations to a plurality of logic gates,

wherein the plurality of logic gates receives a residue input and outputs a number

theoretic exponentiation of the residue input for a given base «; and modulus p;.

75. The method according to claim 74, further comprising the step of minimizing the

logical equations prior to the step of mapping the logical equations to the plurality of logic gates.

76. The method according to claim 74, further comprising the step of outputting a zero

if the input operand is a zero symbol.

77. The method according to claim 74, further comprising the step of:

implementing the number theoretic exponentiation function for each of a plurality of

possible generators; and
selecting an optimum generator,

wherein the selection of the optimum generator is based on at least one criterion selected

from the group consisting of: speed, area, and power.

78. A method for computing the product of two residues, modulo p;, comprising the steps
of:

receiving a first number theoretic logarithm of a first residue corresponding to a first

input operand, wherein the first number theoretic is a zero symbol if the first residue is zero;
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receiving a second number theoretic logarithm of a second residue corresponding to a
second input operand, wherein the second number theoretic is the zero symbol if the second

residue is zero;

adding the first number theoretic logarithm and the second number theoretic logarithm,

modulo p;-1, to produce a sum of the first input operand and the second input operand, modulo
prl;

generating an exponentiation of the sum of the first input operand and the second input
operand, modulo p;-1, wherein the step of generating an exponentiation is accomplished by

inputting the sum, modulo p;-1, to a plurality of logic gates, wherein the plurality of logic gates
is selected by the steps of:

computing a value of a number theoretic exponentiation

function for each possible input;

extracting logical equations representing the computed values

of the number theoretic exponentiation function;
mapping the logical equation to a plurality of logic gates;

wherein the output of the plurality of logic gates is the product of the first residue and the

second residue, modulo p;.

79. The method according to claim 78, wherein the step of adding the first and second

number theoretic logarithms is accomplished utilizing a modular adder circuit.

80. The method according to claim 78,
further comprising the step of:

setting the output of the plurality of logic gates to zero when one or both of the first

number theoretic logarithm and the second number theoretic logarithm is a zero symbol.

81. A method for reduction of an N bit binary operand to a residue, modulo p,,

comprising the steps of:
receiving an N-bit operand which is partitioned into g, + 1 groups of bits;

zero extending the N-1 least significant bits;
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inputting each of the remaining g; partitions of bits O, for je{0,1,2,..., ¢, -1} to a
corresponding ¢; pluralities of logic gates, wherein each of the g; pluralities of logic gates produce

a residue of the input partition;

adding the zero-extended N;-1 least significant bits and the g; residues of the g; partitions,

modulo p,, to produce a residue, modulo p, of the N bit operand.

82. The method according to claim 81, wherein the g; pluralities of logic gates are

selected by the steps of:

computing a value of a modular reduction function for each possible input for each of the

remaining ¢, partitions;

extracting logical equations representing the computed values of the modular reduction

function; and

mapping the logical equations to g; pluralities of logic gates.

83. The method according to claim 82, further comprising the step of minimizing the

logical equations prior to the step of mapping the logical equations to the plurality of logic gates.

84. A method of performing the computation of the sum of L operands modulo p;,

comprising the steps of:
adding L operands to produce a N, + [log, L] bit unsigned sum;

inputting the [log,L }+1 most significant bits to a plurality of logic gates, wherein said
plurality of logic gates produces a residue of the [log,L +1 most significant bits;

zero extending the N-1 least significant bits; and

adding, modulo p,, the zero-extended N-1 least significant bits and the [log,LT+1 most

significant bits to produce the sum of the L operand modulo p;,
wherein the plurality of logic gates is selected by the steps of:
computing a value of a modular reduction function for each possible input;

extracting logical equations representing the computed values of the modular

reduction function;

mapping the logical equation to a plurality of logic gates;
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wherein the output of the plurality of logic gates is a residue of the [log,L+1 most
significant bits.

85. The method according to claim 84, further comprising the step of minimizing the

logical equations prior to the step of mapping the logical equations to the plurality of logic gates.

86. A method for converting an L operand RNS value to a binary representation using

the Chinese Remainder Theorem (CRT), comprising the steps of:
inputting L residues to a corresponding L pluralities of logic gates to produce L results;

adding the L results modulo M to produce a binary representation of an L operand RNS

value,
wherein the plurality of logic gates is selected by the steps of:
computing a value of a CRT function for each possible input;

extracting logical equations representing the computed values

of the CRT function; and

mapping the logical equation to a plurality of logic gates.

87. The method according to claim 86, further comprising the step of minimizing the

logical equations prior to the step of mapping the logical equations to the plurality of logic gates.

88. A method for converting an L operand RNS value to a binary representation,

comprising the steps of:

inputting L residues associated with an L operand RNS value to L pluralities of logic

gates to produce L scaled results;

adding the L scaled results, modulo 2¥, to produce a binary representation of an L operand

RNS value.
wherein the plurality of logic gates is selected by the steps of:

computing a value of a LCRT function for each possible input;
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extracting logical equations representing the computed values

of the LCRT function; and

mapping the logical equation to a plurality of logic gates.

89. The method according to claim 88, further comprising the step of minimizing the

logical equations prior to the step of mapping the logical equations to the plurality of logic gates.

90. A method for converting a complex residue number system (CRNS) value to a

quadratic residue number system (QRNS) value, comprising the steps of:

inputting an imaginary component of a CRNS value, b,, to a plurality of logic gates to

produce a product }b,- ;

adding, modulo p,, a real operand, a,, and the product ; b; to produce a first QRNS

component, z;;

subtracting the product }bi, modulo p;, from the real operand, a;, to produce a second

QRNS component, z;*,
wherein the plurality of logic gates is selected by the steps of:

computing a value of a multiply by ;function for each possible

input;

extracting logical equations representing the computed values

of the multiply by ; function;
mapping the logical equation to a plurality of logic gates;

wherein the output of the plurality of logic gates is the product of the imaginary

component of a CRNS value and ; .

91. The method according to claim 90, further comprising the step of minimizing the

logical equations prior to the step of mapping the logical equations to the plurality of logic gates.

92. The method according to claim 2, wherein the step of converting the residues from

CRNS to QRNS comprises the steps of:
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inputting an imaginary component of a CRNS value, b,, to a plurality of logic gates to

produce a product }bi ;

adding, modulo p,, a real operand, a ; and the product ; b to produce a first QRNS

component, z;;

subtracting the product ]A b;, modulo p;, from the real operand, a,, to produce a second

QRNS component, z;*,
wherein the plurality of logic gates is selected by the steps of:

computing a value of a multiply by JAﬁ,lnction for each possible

input;

extracting logical equations representing the computed values

of the multiply by ; function;
mapping the logical equation to a plurality of logic gates;

wherein the output of the plurality of logic gates is the product of an imaginary

component of a CRNS value and ;

93. The method according to claim 92, further comprising the step of minimizing the

logical equations prior to the step of mapping the logical equations to the plurality of logic gates.

94. A method for converting a quadratic residue number system (QRNS) value to a

complex residue number system (CRNS) representation, comprising the steps of:

adding a first QRNS component, z,, modulo p,, to a second QRNS component, z;*, to

produce a sum;

subtracting the second QRNS component, z*, modulo p, from the first QRNS

component, z;, to produce a difference;

inputting the sum to a first plurality of logic gates to produce a real component, @;, of a

CRNS representation; and

inputting the difference to a second plurality of logic gates to produce an imaginary

component, b;, of the CRNS representation,

wherein the first plurality of logic gates is selected by the steps of:
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computing a value of a multiply by 2! function for each possible

input;

extracting logical equations representing the computed values

of the multiply by 2" function;

mapping the logical equation to a plurality of logic gates;
wherein the output of the first plurality of logic gates is the product of the sum and 2,
wherein the second plurality of logic gates is selected by the steps of:

computing a value of a multiply by 2! function for each

possible input;

extracting logical equations representing the computed values

of the multiply by 2! function;
mapping the logical equation to a plurality of logic gates;

wherein the output of the second plurality of logic gates is the product of the difference

and 2! JA L

95. The method according to claim 94, further comprising the step of minimizing the
logical equations prior to the step of mapping the logical equations to the first plurality of logic

gates.

96. The method according to claim 94, further comprising the step of minimizing the
logical equations prior to the step of mapping the logical equations to the second plurality of logic

gates.

97. An apparatus for performing mathematical computations using residue arithmetic,

comprising one or more of the following:
a means for converting data in binary code to residues;
a means for converting residues from CRNS to QRNS;
a means for computing modular products of residues;
a means for computing modular sums of residues;

a means for converting residues from QRNS to CRNS; and
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8 a means for converting residues to data in binary code,
9 wherein at least one of said means comprises a corresponding at least one plurality of

10 logic gates.
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