wo 2015/116078 A1 [N 0000 OO0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

6 August 2015 (06.08.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/116078 A1l

(51

eay)

(22)

(25)
(26)
1

(72

74

31

International Patent Classification:
GO6F 12/00 (2006.01) GO6F 9/06 (2006.01)

International Application Number:
PCT/US2014/013735

International Filing Date:

30 January 2014 (30.01.2014)
Filing Language: English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; 11445 Compaq Center Drive
W., Houston, Texas 77070 (US).

Inventor: KRAUSE, Michael R.; 3000 Hanover Street,
San Cruz, California 94304-1112 (US).

Agents: JAKOBSEN, Kraig A. et al.; HEWLETT-PACK-
ARD COMPANY, Intellectual Property Administration,
Mail Stop 35 3404 E. Harmony Road, Fort Collins, Color-
ado 80528 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(34

Title: MEMORY DATA VERSIONING

(MEMORY VERSION ACCESS)

RECEIVE A TRANSACTION REQUEST TO PERFORM AN OPERATION
WITH RESPECT TO DATA IN MEMORY, THE TRANSACTION
REQUEST INCLUDING CONTROL INFORMATION

—202

{

IDENTIFY, BASED ON THE CONTROL INFORMATION, ONE OF
MULTIPLE VERSIONS OF MEMORY DATA, WHERE THE MULTIPLE
VERSIONS OF THE MEMORY DATA INCLUDE A FIRST VERSION OF

204
THE MEMORY DATA AND A SECOND VERSION OF THE MEMORY
DATA THAT IS MODIFIED FROM THE FIRST VERSION
)
ACCESS THE IDENTIFIED VERSION OF THE MEMORY DATA
IN RESPONSE TO THE TRANSACTION REQUEST 206

FIG.

2

(57) Abstract: A memory management unit receives a transaction request to perform an operation with respect to data in memory,
the transaction request including control information. The memory management unit identifies, based on the control information,
one of a plurality of versions of a given memory data, where the plurality of versions of the given memory data include a first version
of the given memory data and a second version of the given memory data that is modified from the first version. The memory man-
agement unit accesses the identified version of the given memory data in response to the transaction request.

WO 2015/116078 PCT/US2014/013735

MEMORY DATA VERSIONING

Background
[0001] Memory can be used in a system for storing data. A memory controller

can be used to manage the access (read or write) of the data in the memory. In
some examples, a processor or other requestor can generate a request for data. In
response to the request, the memory controller can issue respective command(s) to

the memory to perform the requested operation.

Brief Description Of The Drawings

[0002] Some implementations are described with respect to the following figures.

[0003] Fig. 1 is a block diagram of an example system including a memory

management unit, according to some implementations.
[0004] Fig. 2 is a flow diagram of a process, according to some implementations.

[0005] Fig. 3 is a schematic diagram illustrating access of different versions of

data by different requestors, according to some implementations.

[0006] Fig. 4 is a block diagram of an arrangement including a requestor that is
associated with a memory controller, and a memory management unit that is

associated with a media controller, in accordance with some implementations.

[0007] Fig. 5 is a schematic diagram of accessing multiple logs using memory

data versioning, according to some implementations.

[0008] Fig. 6 is a schematic diagram of an example system including nodes and
a memory module that stores checkpointed data, according to some

implementations.

WO 2015/116078 PCT/US2014/013735

2

[0009] Fig. 7 is a schematic diagram of an example system including a node, a
memory module, a network controller, and a network storage to store checkpointed
data, according to further implementations.

[0010] Fig 8 is a schematic diagram of accessing multiple data versions in
parallel by multiple requestors, according to additional implementations.

[0011] Fig. 9 is a schematic diagram of an accelerator performing computations

with respect to different memory data versions, according to further implementations.

Detailed Description

[0012] Different versions of a given unit of data can be stored in memory for
various purposes. As used here, “memory” can refer to a memory device, an array
of storage cells in a memory device, a memory module that can include multiple
memory devices, or a memory subsystem that can include multiple memory
modules. A memory can be implemented using memory according to any or some
combination of the following different types: a dynamic random access memory
(DRAM), a static random access memory (SRAM), a flash memory, a torque spin
memory, a phase change memory, a memristor memory, a magnetic disk-based
memory, an optical disk-based memory, and so forth.

[0013] In some examples, multiple versions of a given unit of data can be
produced by performing checkpointing. Checkpointing refers to storing a known
good state of data to memory at respective time points. A data checkpoint can refer
to a version of data at a respective time point. If an unrecoverable error is
experienced in a system, a requestor can use checkpointed data to recover to the

last known good state of the data.

[0014] In further examples, multiple versions of a given unit of data can be
produced by creating multiple logs that contain transactions that modify data. As an
example, an application may log a certain number of updates of data in memory.
After logging the certain number of updates in a log, a new version of the log can be
created to log further updates. In such examples, the multiple logs constitute the

WO 2015/116078 PCT/US2014/013735

3

different versions of data. In case of an unrecoverable error, data can be rolled back
to an earlier state, and the updates in a respective log can be replayed to perform
the updates reflected in the log.

[0015] Other examples of employing multiple versions of a given unit of data are
described further below.

[0016] Maintaining multiple versions of data may be associated with increased
complexity in the control logic that is used for tracking the multiple versions and to
determine which of the multiple versions to select for use. In accordance with some
implementations, techniques or mechanisms are provided to allow more efficient use
of multiple versions of data in memory. In some implementations, selection of one of
the multiple versions of data in memory can be accomplished based on control
information in a transaction request. Different values of the control information in the
transaction request would cause selection of different ones of the multiple versions

of data in memory.

[0017] A transaction request can specify performance of a transaction with
respect to data in memory. A transaction can refer to a unit of operation that is
performed between endpoints (e.g. between a requestor and a memory).

[0018] Fig. 1 is a block diagram of an example system 100 that includes a
memory 102, a memory management unit 104, and a requestor 106. As noted
above, the memory 102 can be implemented as a memory device, an array of
storage cells in a memory device, a memory module including multiple memory
devices, or a memory subsystem including multiple memory modules. In some
examples, the memory management unit 104 can be integrated with a memory
device or memory module. The memory management unit 104 is used to manage

access of the memory 102.

[0019] As depicted in Fig. 1, a requestor 106 (e.g. a processor, an input/output
device, etc.) in the system 100 can issue a transaction request 107 that involves
access of data in the memory 102. The transaction request 107 can be a read

WO 2015/116078 PCT/US2014/013735

4

request to read data, a write request to write data, a rollback request (to rollback
data to a previous version), a request for data recovery, a request to perform a
computation, or another type of request. The transaction request 107 can be issued
by a memory controller (not shown in Fig. 1) associated with the requestor 106, and
is received by the memory management unit 104, which includes a media controller
that issues corresponding command(s) to the memory 102 to access data of the
memory 102. A further discussion of a memory controller and a media controller is
provided in connection with Fig. 4 below.

[0020] The transaction request 107 can include control information, which can
include a memory address, and other information. Such other information of the
control information in the transaction request 107 can include a switching identifier
that identifies an endpoint (source or destination) of a transaction over a
communication fabric 110 (between the requestor 106 and the memory management
unit 104) that can include one or multiple switches. A switch can refer to a relay
engine to relay transactions between interfaces. The communication fabric 110 may
provide point-to-point communication between endpoints (e.g. the requestor 106 and
the memory management unit 104) or can provide switched communications

accomplished using one or multiple switches.

[0021] Note that the communication fabric 110 can connect the requestor 106 to
multiple memory management units 104. Also, although just one requestor 106 is
depicted in Fig. 1, there may be multiple requestors connected to the communication
fabric 110. Also, although just one communication fabric 110 is depicted in Fig. 1,
there can be additional communication fabrics to interconnect other requestors and

memory management units.

[0022] A switching identifier can include a source switching identifier (SSID),
which is used to identify a source of a transaction, or a destination switching
identifier (DSID), which is used to identify a destination of a transaction. For each
instance of a communication fabric (e.g. 110 in Fig. 1), an SSID can uniquely identify
a given source, and a DSID can uniquely identify a given destination.

WO 2015/116078 PCT/US2014/013735

5

[0023] An address translator 108 in the memory management unit 104 can
produce, based on the control information in the transaction request 107, a
corresponding physical resource address that identifies a location in the memory
102. For example, the address translator 108 can produce a physical resource
address from one or some combination of the following control information: a
memory address in an address field in the transaction request, an SSID in an SSID
field in the transaction request, a DSID in a DSID field in the transaction request, or

other information in some other field in the transaction request.

[0024] Different values of the control information can be mapped by the address
translator 108 to different physical resource addresses (which identify different
locations in the memory 102). The different locations in the memory contain different
versions 112-1 to 112-n of a given unit of data in the memory 102. By using the
address translator 108 to translate control information of the transaction request 107
to one of multiple data versions 112-1 to 112-n, a convenient and relatively simple
technique or mechanism is provided to selectively access one of multiple data
versions for the transaction request 107.

[0025] In some implementations, the memory management unit 104 and the
memory 102 can be part of respective separate modules. In other implementations,
the memory management unit 104 and the memory 102 can be part of the same
memory module. In such latter implementations, the memory management unit 104
can be implemented in the memory module’s control address space, while the
memory 102 is implemented in the memory module’s data address space. A control
address space can refer to an address space in which control data (e.g. control data
associated with management of the memory 102) is stored. A data address space
can refer to an address space in which user data or application data is stored.

[0026] Providing the memory management unit 104 in the memory module’s
control address space allows for any updates of control data structures associated
with the memory management unit 104 to be performed by just trusted entities, such
as an operating system, a hypervisor, a management engine, and so forth. On the

WO 2015/116078 PCT/US2014/013735

6

other hand, the content of the memory 102 in the memory module’s data address

space can be freely modified by various requestors.

[0027] Although not shown, the memory management unit 104 can include other
elements in addition to the address translator 108. For example, the memory
management unit 104 can include address mapping tables (or more generally,
address mapping data structures). Each address mapping table maps a memory
address to a corresponding physical page of memory, where a page of memory can
refer to a segment in the memory 102 of a given size. The memory management
unit 104 can also include control structures to manage various tables, including the

memory mapping tables.

[0028] Fig. 2 is a flow diagram of a process according to some implementations.
The process can be performed by the memory management unit 104, for example.
The memory management unit 104 receives (at 202) a transaction request to
perform an operation with respect to data in the memory 102, where the transaction

request includes control information.

[0029] The memory management unit identifies (at 204), based on the control
information, one of the multiple data versions 112-1 to 112-n. The multiple data
versions 112-1 to 112-n include a first version of a given unit of data and a second
version of the given unit of data that is modified from the first version of the given unit
of data.

[0030] The memory management unit accesses (at 206) the identified data
version in response to the transaction request. The access can be a read access, a
write access, or some other type of access.

[0031] The identifying (at 204) can be performed by using the address translator
108 in the memory management unit 104, which produces a physical resource
address based on control information in the received transaction request. In some
examples, the address translator 108 can perform a lookup of an index (e.g. 109 in

Fig. 1) or other translation data structure using the control information (e.g. memory

WO 2015/116078 PCT/US2014/013735

7

address, SSID, and/or DSID). The lookup of the index 109 produces a respective
physical resource address. Note that the index 109 can be changed dynamically,
such that the mapping between control information and data versions can change

over time.

[0032] In other examples, the address translator 108 can apply a function (e.g.
hash function or other type of function) on the transaction’s control information to
produce an output that corresponds to the physical resource address. In further
examples, other techniques for producing a physical resource address from control

information in a transaction request can be employed.

[0033] Depending upon the granularity (size) of each data version 112-1 to 112-
n, the lower n bits of the memory address in the address field of the control
information of the transaction request can be masked (disregarded) by the address
translator 108.

[0034] The memory management unit 104 can be instructed, such as by a
requestor, to create a new data version in the memory 102. Alternatively, the
memory management unit can 104 itself make a decision to create a new data
version, such as in response to receiving a request to modify data in the memory
102. To create a new data version, the memory management unit 104 allocates a
corresponding memory resource in the memory 102, and updates content of various
data structures in the memory management unit 104, such as the address mapping
tables and the index used by the address translator 108. The allocated memory
resource can include a location of a specified size in the memory 102.

[0035] Once a new data version is created, current and subsequent transactions
can be executed against the new data version. Alternatively, a requestor or multiple
requestors can execute multiple transactions in parallel with respect to multiple

respective data versions.

WO 2015/116078 PCT/US2014/013735

8

[0036] Although the present discussion refers to maintaining data versions of a
given unit of data in a data address space, it is noted that multiple versions of data

can also be provided in a control address space.

[0037] In some examples, to avoid race conditions, the memory management
unit 104 may temporarily hold off of transaction processing until a new data version
is created. To avoid delaying transactions for too long a time period, the temporary
holding of transaction processing can be performed with respect to individual blocks
of a memory resource that is used for holding the newly created data version. In
such latter examples, to create a new data version, respective blocks of the
corresponding memory resource are allocated. As each block of the memory
resource is allocated, any transaction targeting this block will be temporarily held,
while remaining transactions that target other blocks of the memory resource for the

new data version can continue to process normally.

[0038] A new data version can also be created prior to a memory resource being
made available to a requestor. Alternatively, a new data version can be created in
the background using a combination of local buffer copy or buffer management
operations and atomic updates to transparently migrate subsequent transactions to
the new data version. This can be accomplished by setting up multiple data versions
that are mapped to the same physical resource address. The address space for one
of the existing data versions can be recycled for the new data version, with the
foregoing operations used for migrating transactions to the new data version.

[0039] Fig. 3 is a schematic diagram showing concurrent access by different
requestors (requestor A and requestor B) of respective different data versions 112-A
and 112-B stored in the memory 102. The memory 102 is included in a memory

module 302, which also includes the memory management unit 104.

[0040] In some examples, different SSIDs that respectively identify requestor A
and requestor B can be used by the memory management unit 104 to map to the
different data versions 112-A and 112-B. For example, the SSID of requestor A can
be SSIDG6, while the SSID of requestor B can be SSID5. SSID6 is mapped by the

WO 2015/116078 PCT/US2014/013735

9

memory management unit 104 to the physical resource address of data version 112-
A, while SSID5 is mapped by the memory management unit 104 to the physical
resource address of data version 112-B. In this manner, multiple requestors can
access, in parallel, the different data versions of a given unit of data.

[0041] Fig. 4 is a block diagram of an arrangement that includes the requestor
106 and the memory management unit 104, along with an interface subsystem 400
between the requestor 106 and the memory management unit 104. The requestor
106 is associated with a memory controller 402 that interacts with a distinct media
controller 404 associated with the memory management unit 104. The memory
controller 402 can be part of the requestor 106 or can be separate from the
requestor 106. Similarly, the media controller 404 can be part of or separate from
the respective memory management unit 104. Note that the memory controller 402
can interact with multiple media controllers, or alternatively, the media controller 404

can interact with multiple memory controllers.

[0042] The memory controller 402 together with the media controller 404 form
the interface subsystem 400. By using the interface subsystem 400, the memory
controller 402 that is associated with the requestor 106 does not have to be
concerned with issuing commands that are according to specifications of respective
memories (e.g. 102 in Fig. 1). For example, a memory can be associated with a
specification that governs the specific commands (which can be in the form of
signals) and timings of such commands for performing accesses (read access or
write access) of data in the memory. The memory controller 402 can issue a
transaction request that is independent of the specification governing access of a
specific memory. Note that different types of memories may be associated with
different specifications. The transaction request does not include commands that
are according to the specification of the memory that is to be accessed.

[0043] A transaction request from the memory controller 402 is received by a
respective media controller 404, which is able to respond to the transaction request
by producing command(s) that is (are) according to the specification governing
access of a target memory. For example, the command can be a read command, a

WO 2015/116078 PCT/US2014/013735

10

write command, or another type of command, which has a format and a timing that is
according to the specification of the target memory. In addition to producing
command(s) responsive to a transaction request from the memory controller 402, the
media controller 404 is also able to perform other tasks with respect to a memory.
For example, if the memory is implemented with a DRAM, then the media controller
404 is able to perform refresh operations with respect to the DRAM. A storage cell in
a DRAM gradually loses its charge over time. To address this gradual loss of charge
in a storage cell, a DRAM can be periodically refreshed, to restore the charge of
storage cells to their respective levels.

[0044] In other examples, if a memory is implemented with a flash memory, then
the media controller 404 can include wear-leveling logic to even out the wear among
the storage cells of the memory. In addition, the media controller 404 can perform
other media-specific operations with respect to the memory, such as a data integrity
operation (e.g. error detection and correction), a data availability operation (e.g.
failover in case of memory error), and so forth. The media controller 404 can also
perform power management (e.g. reduce power setting of the memory when not in
use), statistics gathering (to gather performance statistics of the memory during
operation), and so forth.

[0045] The memory controller 402 includes a memory interface 406, which can
include a physical layer that governs the communication of physical signals over a
link between the memory controller 402 and a respective media controller 404. The
memory interface 406 can also include one or multiple other layers that control the
communication of information over a link between the memory controller 402 and a

respective media controller 404.

[0046] Each media controller 404 similarly includes a memory interface 408,
which interacts with the memory interface 406 of the memory controller 402. The
memory interface 408 can also include a physical layer, as well as one or multiple
other layers.

WO 2015/116078 PCT/US2014/013735

11

[0047] In some examples, a link between the memory interface 406 of the
memory controller 402 and the memory interface 408 of a media controller 404 can
be a serial link. In other examples, the link can be a different type of link. Also,
although not shown, a link can include one or multiple switches to route transactions

between the memory controller 402 and the media controller 404.

[0048] The interface subsystem 400 separates (physically or logically) memory
control into two parts: the memory controller 402 and the media controller(s) 404.
Note that the memory controller 402 and the media controller(s) 404 can be
physically in separate devices or can be part of the same device. By separating the
memory control into two parts, greater flexibility can be achieved in a system that
includes different types of memories. The memory controller 402 does not have to
be concerned with the specific types of memories used, since transaction requests
issued by the memory controller 402 would be the same regardless of the type of
memory being targeted. By splitting the memory controller 402 from the media

controllers 402, development of the memory controller 402 can be simplified.

[0049] The interface subsystem 400 shown in Fig. 4 can also be used to perform

communications between other types of components in a system.

[0050] The following describes various examples in which multiple data versions

may be employed.

[0051] First examples involve logging, in which a log is created that contains
transactions that modify data. As shown in Fig. 5, an application 502 (which can be
executable on a processor) can perform logging to enable error recovery. Multiple
logs (log 0, log 1, log 2, and log 3 shown in the example of Fig. 5) can be created for
the application 502, and stored in the memory 102. Each log includes a respective
set of transactions that modify given data. In the example of Fig. 5, the different logs
constitute the different versions of data that can be selectively accessed by the
application 502. The logs can be created at different points in time. For example,
the application 502 can log N (N = 1) transactions in a first log. After logging such
transactions, the application 502 can then log N further transactions in a second log.

WO 2015/116078 PCT/US2014/013735

12

Each of the logs can correspond to respective checkpointed data that represent
known good states of data at respective different time points. Checkpointing is

discussed further below.

[0052] When a data error occurs, the application 502 can roll back data to a
known good state (e.g. to data of one of the checkpoints) and can then replay
subsequent transactions that modify the rolled back data, where the subsequent
transactions are contained in respective one or multiple logs. When rollback is to be
performed (in response to a rollback request received by the memory management
unit 104), the memory management unit 104 can select an earlier log for access (by
mapping control information in the rollback request to a selected one of the logs),
and the application 502 can proceed to replay all subsequent transactions in the
earlier log and any subsequent logs. The selection of a log by the memory
management unit 104 can be based on control information included in a rollback
request from the application 502, for example.

[0053] Further examples associated with maintaining multiple data versions
involve checkpointing. Checkpointing refers to storing a known good state of data to
memory at respective time points. A data checkpoint can refer to a version of data at
a respective time point, which can be used by an application for error recovery. Data
checkpoints can be stored in volatile memory or persistent memory. The memory
management unit 104 can use control information in a request associated with

retrieving checkpointed data to select one of multiple data checkpoints.

[0054] The multiple versions of data created due to checkpointing can be multiple
versions of the entire memory resource for a given requestor, or of a subset of the
memory resource. The memory resource for the given requestor refers to the
portion of memory allocated to the given requestor. A checkpoint created for a
subset of the memory resource for the given requestor can include just active pages
of the given requestor (the pages in memory that are currently be accessed).
Checkpointing a subset of the memory resource for the given requestor may be
more efficient, since downtime of the given requestor during rollback to a checkpoint

can be reduced.

WO 2015/116078 PCT/US2014/013735

13

[0055] In response to a request for data recovery received by the memory
management unit 104, the memory management unit 104 can map control

information in the request for data recovery to one of the checkpointed data.

[0056] Fig. 6 shows an example in which the memory 102 stores an active data
version 602 (the version of a given unit of data that is actively being accessed by a
requestor), and a checkpoint data version 604 (the version of the given unit of data
that was checkpointed at a respective point in time). Although just one checkpoint
data version 604 is shown in Fig. 6, note that there can be multiple checkpoint data
versions for different time points in other examples. The memory management unit
104 can store an active indicator 606 for indicating which of the data versions 602 an

604 is active.

[0057] In the example of Fig. 6, various requestors of the active data version 602
or checkpoint data version 604 are represented as nodes 608, where a node 608
can include a processor, a computer, or other device. Fig. 6 also shows a standby
node 610, which can be used to replace one of the nodes 608 in case of failure of
the node 608. In some examples, a topology can employ an M + 1 strategy, where
for every M active nodes 608, one additional node is configured to act as a standby
node. In other examples, more than one standby node can be used. As further
examples, one of the active nodes 608 can be a standby node for another of the

active nodes 608.

[0058] The couplings between each of the nodes 608, 610 and the memory
management unit 104 in the memory module 302 can be based on the interface

subsystem 400 discussed above in connection with Fig. 4.

[0059] During failover from a failed active node 608 to the standby node 610, the
standby node 610 can acquire attributes of the failed active node 608. The attributes
of the failed active node 608 can specify a configuration of the failed active node, for
example. The attributes can be stored as part of the active data version 602 or
checkpoint data version 604, or alternatively, in another repository. Acquiring the

WO 2015/116078 PCT/US2014/013735

14

attributes of the standby node 610 allows the standby node 610 to operate according

to the configuration of the failed active node 608.

[0060] Failing over from the failed active node 608 to the standby node 610 can
cause the standby node 610 to access the checkpoint data version 604 in the
memory 102, which contains data at a known good state prior to failure of the failed
active node 608. Selection of the active data version 602 or checkpoint data version
604 can be performed by the memory management unit 104, in response to a
transaction request from the standby node 610.

[0061] Fig. 7 shows another example topology, in which the active data version
602 accessed by the node 608 is stored in the memory 102 of the memory module
302. However, in the example topology of Fig. 7, checkpoint data version 702 is
stored in a network storage 704 accessible through a network controller 706. The
coupling between the network controller 706 and each of the memory management
unit 104 and the network storage 704 can be according to the interface subsystem
400 depicted in Fig. 4.

[0062] If the checkpoint data version 702 is to be used for recovering from a data
error, the checkpoint data version 702 can be retrieved from the network storage 704
and copied to the memory 102.

[0063] Additional examples associated with employing multiple data versions
involves parallel operation of applications or other requestors of data. Traditionally,
when multiple applications (or other requestors) operate in parallel and access
common data, the requestors are configured to become aware of address ranges,
messaging, and other information associated with other requestors operating on the

common data.

[0064] In accordance with some implementations, by employing memory data
versioning, parallel requestors would no longer have to be made aware of each
other. Multiple data versions of given data can be transparently cycled or shuffled
among the requestors. An example shown in Fig. 8 includes requestors 1, 2, 3, and

WO 2015/116078 PCT/US2014/013735

15

4, which are able to selectively access data versions A, B, C, and D stored in the

memory 102 in the memory module 302.

[0065] When a given requestor completes its work on a particular data version,
then the particular data version can be shuffled for use by the next requestor.
Instead of having to explicitly transfer a data version between the requestors, the
memory management unit 104 can select which data version to access for a request
of a given requestor. In this manner, coordination among the requestors does not
have to be performed, beyond understanding data layouts employed by the
requestors. By eliminating a synchronization mechanism or message passing
among the requestors, complexity can be reduced while still allowing requestors to

operate in parallel on given data.

[0066] The mapping between requestors 1, 2, 3, and 4, and respective data
versions A, B, C, and D, which can change, can be provided by the memory
management unit 104. Each requestor can be associated with a respective unique
SSID; the different SSIDs can be mapped by the memory management unit 104 to
different ones of the data versions. Shuffling the data versions A, B, C, and D across
the requestors 1, 2, 3, and 4 allow the requestors to access different ones of the data
versions at different times. The shuffling can be performed by modifying a
translation data structure (e.g. index 109 in Fig. 1) in the memory management unit
104, for example.

[0067] Other examples associated with employing multiple data versions involves
providing alternative execution paths by an application, such as an application 902

depicted in Fig. 9. The application 902 can be executable on a processor.

[0068] The application 902 interacts with a computation device 904, which can
include an accelerator 906 and the memory management unit 104. The accelerator
can perform calculations on data, or can otherwise manipulate data (e.g. sort data,
merge data, join data, etc.). Performing a calculation on or manipulation of the data
can cause a data set to become modified.

WO 2015/116078 PCT/US2014/013735

16

[0069] In the example of Fig. 9, the application 902 can initially load the data set,
which the memory management unit 104 can store into the memory 102 as data

version A.

[0070] The accelerator 906 may be configured to perform a set of alternative
calculations and/or data manipulations, which can produce different results. The
application 902 may be unaware of how many alternative calculations and/or
manipulations will be performed by the accelerator 906, and may only know that one
of the results produced by the alternative calculations and/or manipulations is the

correct result.

[0071] In response to implicit or explicit signaling from the application 902, the
accelerator 906 can create multiple data versions of the data set (such as data
versions B, C, and D in addition to the initially loaded data version A). The additional
data versions B, C, and D are stored by the memory management unit 104 into the
memory 102. A data version may replicate the entire data set or only a subset of the
data set that will be modified. Creation of the multiple data versions corresponding
to the alternative calculations and/or manipulations may be performed on-demand to
avoid a large startup time.

[0072] The accelerator 906 may execute multiple alternative calculations and/or
manipulations by reloading the data set from data version A to each of data versions
B, C, and D, and then performing the respective calculation and/or manipulation on
each of the respective data versions B, C, and D.

[0073] The mapping between a current computation of the accelerator 906 and a
respective data version can be provided by the memory management unit 104, in
similar fashion as discussed above. For example, a request of an accelerator 906 to
begin a respective computation can include control information that is used by the
accelerator 906 to map to one of the data versions.

[0074] The foregoing may be repeated until either the accelerator 906 finds the
correct result (based on some specified criterion or criteria) or time expires. When

WO 2015/116078 PCT/US2014/013735

17

the correct alternative is found, the memory management unit 104 can map the
corresponding correct data version to the application’s view of memory (the entire
memory range or only those sub-ranges that were modified may be mapped). The
application is informed of the success (or failure) of the computations of the
accelerator 906, and the application 902 can access the mapped data version to
acquire the results.

[0075] The memory management unit 104 discussed above in the various
implementations can be implemented as hardware or as machine-executable
instructions executable on hardware. For example, the instructions can be loaded
for execution on a processor. A processor can include a microprocessor,
microcontroller, processor module or subsystem, programmable integrated circuit,

programmable gate array, or another control or computing device.

[0076] Data and instructions are stored in respective storage devices, which are
implemented as one or multiple computer-readable or machine-readable storage
media. The storage media include different forms of memory including
semiconductor memory devices such as dynamic or static random access memories
(DRAMs or SRAMSs), erasable and programmable read-only memories (EPROMSs),
electrically erasable and programmable read-only memories (EEPROMs) and flash
memories; magnetic disks such as fixed, floppy and removable disks; other magnetic
media including tape; optical media such as compact disks (CDs) or digital video
disks (DVDs); or other types of storage devices. Note that the instructions discussed
above can be provided on one computer-readable or machine-readable storage
medium, or alternatively, can be provided on multiple computer-readable or
machine-readable storage media distributed in a large system having possibly plural
nodes. Such computer-readable or machine-readable storage medium or media is
(are) considered to be part of an article (or article of manufacture). An article or
article of manufacture can refer to any manufactured single component or multiple
components. The storage medium or media can be located either in the machine
running the machine-readable instructions, or located at a remote site from which

machine-readable instructions can be downloaded over a network for execution.

WO 2015/116078 PCT/US2014/013735

18

[0077] In the foregoing description, numerous details are set forth to provide an
understanding of the subject disclosed herein. However, implementations may be
practiced without some of these details. Other implementations may include
modifications and variations from the details discussed above. It is intended that the

appended claims cover such modifications and variations.

- O O 0 N O O A W N -

_— A

2O N -

—_—

WO 2015/116078 PCT/US2014/013735

19

What is claimed is:

1. A method comprising:

receiving, by a memory management unit, a transaction request to perform an
operation with respect to data in memory, the transaction request including control
information;

identifying, by the memory management unit based on the control information,
one of a plurality of versions of a given memory data, wherein the plurality of
versions of the given memory data include a first version of the given memory data
and a second version of the given memory data that is modified from the first
version; and

accessing, by the memory management unit, the identified version of the

given memory data in response to the transaction request.

2. The method of claim 1, wherein accessing the identified version of the given
memory data comprises reading or writing the identified version of the given memory
data.

3. The method of claim 1, wherein the identifying comprises generating a
physical resource address based on the control information in the transaction
request, wherein different values of the control information map to different physical
resource addresses that specify different locations in the memory.

4. The method of claim 1, wherein identifying one of the plurality of versions of
the given memory data is based on an address field in the control information.

5. The method of claim 1, wherein identifying one of the plurality of versions of
the given memory data is based on an identifier in the control information.

_—
- O W 0 N O O & WO N -

2w N -

0o N OO 0o B~ WN -

WO 2015/116078 PCT/US2014/013735

20

6. The method of claim 1, wherein the transaction request is received from a first
requestor associated with a first value in the control information, the method further
comprising:

receiving, by the memory management unit, a second transaction request to
perform an operation with respect to data in the memory, the second transaction
request including control information having a second value;

identifying, by the memory management unit based on the second value of
the control information in second transaction request, another of the plurality of
versions of the given memory data; and

accessing, by the memory management unit in response to the second

transaction request, the identified another version of the given memory data.

7. The method of claim 1, wherein the plurality of versions of the given memory
data are selected from among: logs of transactions, data of different checkpoints,
and data versions produced from the given memory data due to different
computations by a computation device.

8. The method of claim 1, wherein the plurality of versions of the given memory
data are accessible by a plurality of requestors in parallel, the method further
comprising:

shuffling the plurality of versions of the given memory data across the plurality
of requestors such that the plurality of requestors access different ones of the
plurality of versions of the given memory data at different times, wherein the shuffling
is performed by modifying a translation data structure in the memory management

unit.

a A ON -

0o N OO O B~ W N -

11
12

WO 2015/116078 PCT/US2014/013735

21

9. The method of claim 1, wherein the transaction request is sent by a memory
controller associated with a requestor, the method further comprising:

the memory controller interacting with a distinct media controller associated
with the memory, the media controller to produce, in response to the transaction
request, at least one command according to a specification of the memory.

10. A system comprising:

a memory to store a plurality of versions of given memory data, wherein the
plurality of versions of the given memory data include a first version of the given
memory data and a second version of the given memory data that is modified from
the first version; and

a memory management unit to:

receive a transaction request to perform an operation with respect to
the given memory data in the memory;

map control information in the transaction request to one of the plurality
of versions of the given memory data; and

access, in response to the transaction request, the one of the plurality
of versions of the given memory data.

11. The system of claim 10, wherein the transaction request includes at least one
from among: a read request, a write request, a rollback request, and a request to
perform a computation.

12. The system of claim 10, wherein the mapping is performed using a translation
data structure that maps different values of the control information to different ones
of the plurality of versions of the given memory data.

13. The system of claim 10, wherein the mapping is performed by using a function

to produce an output in response to the control information.

0o N O 0o B~ WN -

11
12
13
14
15

2w N -

WO 2015/116078 PCT/US2014/013735

22

14. An article comprising at least one non-transitory machine-readable storage
medium storing instructions that upon execution cause a memory management unit
to:

receive a transaction request to perform an operation with respect to data in
memory, the transaction request including control information, the transaction
request received from a memory controller associated with a requestor;

identify, based on the control information, one of a plurality of versions of a
given memory data, wherein the plurality of versions of the given memory data
include a first version of the given memory data and a second version of the given
memory data that is modified from the first version; and

access, in response to the transaction request, the identified version of the
given memory data in the memory, wherein the accessing uses a media controller
distinct from the memory controller, the media controller to produce, in response to
the transaction request, at least one command according to a specification of the

memory.

15. The article of claim 14, wherein the identifying comprises generating a
physical resource address based on the control information in the transaction
request, wherein different values of the control information map to different physical
resource addresses that specify different locations in the memory.

WO 2015/116078 PCT/US2014/013735

1/5
100
\
SYSTEM
_30&7 _______ R _EEQUESTOR 106
TRANSACTION !
__ REQuEsT ___i[—110
MEMORY MANAGEMENT UNIT
ADDRESS TRANSLATOR INDEX N-104
| 1
108 109
DATA VERSION 11151
- N-102
DATA VERSION nk—11o_q
MEMORY

(MEMORY VERSION ACCESS)

RECEIVE A TRANSACTION REQUEST TO PERFORM AN OPERATION
WITH RESPECT TO DATA IN MEMORY, THE TRANSACTION
REQUEST INCLUDING CONTROL INFORMATION

~—202

IDENTIFY, BASED ON THE CONTROL INFORMATION, ONE OF
MULTIPLE VERSIONS OF MEMORY DATA, WHERE THE MULTIPLE
VERSIONS OF THE MEMORY DATA INCLUDE A FIRST VERSION OF
THE MEMORY DATA AND A SECOND VERSION OF THE MEMORY
DATA THAT IS MODIFIED FROM THE FIRST VERSION

~—204

ACCESS THE IDENTIFIED VERSION OF THE MEMORY DATA
IN RESPONSE TO THE TRANSACTION REQUEST

~—206

FIG. 2

PCT/US2014/013735

WO 2015/116078

2/5

€ 9l

g-¢Tl+

LA

g NOISH3IA VLvd

Y NOISY3A V1Vd

AJOW3N

1INN
INFNIOVNYIN
AHOWAN

»

20T— JINAOW AMOWIW =0T

(
c0€

g ¥01S3ndA

Y d01S3Nd3Y

WO 2015/116078

INTERFACE
SUBSYSTEM
(400)

3/5

PCT/US2014/013735

REQUESTOR

106

MEDIA CONTROLLER

— 402

MEMORY INTERFACE M- 406

<

MEMORY INTERFACE H 408

MEDIA CONTROLLER

404

MEMORY MANAGEMENT

UNIT

~—104

FIG. 4

APPLICATION
1

502

MEMORY MANAGEMENT UNIT 104

LOG O

LOG 1

LOG 2

LOG 3

~—102

MEMORY

FIG. 5

WO 2015/116078

4/5

PCT/US2014/013735

608 608 610
L L J
STANDBY
NODE NODE NODE
MEMORY MANAGEMENT UNIT
ACTIVE_INDICATOR f—g06 1104
602 604
ACTIVE CHECKPOINT 302
DATA DATA \
VERSION VERSION -102
MEMORY
MEMORY MODULE
608
\
NODE
MEMORY MANAGEMENT UNIT 104
602 702
. e e e —— A
ACTIVE t CHECKPOINT | }-102 706
DATA | DATA NI |)
VERSION | VERSION ! NETWORK
MEMORY CONTROLLER
MEMORY MODULE
(NETWORK STORAGE
302
704~ | CHECKPOINT
7021 DATA VERSION

FIG. 7

WO 2015/116078

5/5

PCT/US2014/013735

REQUESTOR 1

REQUESTOR 2

REQUESTOR 3

REQUESTOR 4

—

|_l

‘_l

'_l

302~

MEMORY MANAGEMENT UNIT

-104

DATA

VERSION
A

DATA

VERSION
B

DATA
VERSION
C

DATA

VERSION
D

—102

|

MEMORY

MEMORY MODULE

904 —~

102~

FIG. 8

APPLICATION
1

902

ACCELERATOR

MEMORY MANAGEMENT UNIT

COMPUTATION DEVICE

-906

-104

DATA

A

VERSION

DATA
VERSION
B

DATA
VERSION
C

DATA
VERSION
D

MEMORY

FIG. 9

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/013735

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 12/00(2006.01)i, GOGF 9/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 12/00; GO6F 12/02; GOGF 12/16; GO6F 12/10; GO6F 17/30; GO6F 11/08; GO6F 9/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: data versioning, transaction, memory management, control information, mapping,
transaction log, checkpoint, media controller,and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2013-0332684 Al (GOKUL B. KANDIRAJU et al.) 12 December 2013 1-6,10-13

See paragraphs [0008], [0018]-[0027], [0030]1-[0031]1, [0035], [0039], [0045],
[0049], and [0063]; claim 1; and figures 1-2 and 4.

Y 7-9,14-15

Y US 2013-0332660 A1 (NISHA TALAGALA et al.) 12 December 2013 7-9,14-15
See paragraphs [0036], [0045], [0065], and [0185]; and figure 1B.

A US 2009-0063548 A1l (JACK RUSHER et al.) 05 March 2009 1-15
See paragraphs [0005]-[0006], [0017], and [0020]-[0022].

A US 2013-0325830 A1l (SURENDRA VERMA et al.) 05 December 2013 1-15
See paragraphs [0065]-[0066], [0074], [0078], and [0080]; and figure 7.

A US 2011-0302474 A1 (RYAN JAMES GOSS et al.) 08 December 2011 1-15
See paragraphs [0001]-[0002], [0013]-[0017], [0025], and [0050]; and claim 1.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
27 October 2014 (27.10.2014) 27 October 2014 (27.10.2014)
Name and mailing address of the [ISA/KR Authorized officer

International Application Division

+ Korean Intellectual Property Office NH :
g

189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701, 0.4 Myong
Republic of Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8528
Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/013735

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2013-0332684 Al 12/12/2013 US 2013-332654 Al 12/12/2013

US 2013-0332660 Al 12/12/2013 None

US 2009-0063548 Al 05/03/2009 US 8745012 B2 03/06/2014

US 2013-0325830 Al 05/12/2013 AU 4580601 A 23/10/2001
CN 100337233 C 12/09/2007
CN 100445998 C 24/12/2008
CN 1449530 A 15/10/2003
CN 1746892 A 15/03/2006
CN 1746893 A 15/03/2006
CN 1746893 B 06/10/2010
EP 1269353 A2 02/01/2003
JP 2003-530646 A 14/10/2003
JP 4219589 B2 04/02/2009
US 2005-120036 Al 02/06/2005
US 2005-120059 Al 02/06/2005
US 2005-138085 Al 23/06/2005
US 2005-149525 Al 07/07/2005
US 2010-042626 Al 18/02/2010
US 2011-276611 Al 10/11/2011
US 6856993 Bl 15/02/2005
US 7257595 B2 14/08/2007
US 7418463 B2 26/08/2008
US 7512636 B2 31/03/2009
US 7613698 B2 03/11/2009
US 8010559 B2 30/08/2011
US 8510336 B2 13/08/2013
WO 01-77908 A2 18/10/2001
WO 01-77908 A3 18/07/2002

US 2011-0302474 Al 08/12/2011 US 8397101 B2 12/03/2013

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

