发明名称
BP全局最优丙烯聚合生产过程最优软测量
仪表和方法

摘要
本发明公开了一种BP全局最优丙烯聚合生产过程最优软测量仪表，包括丙烯聚合生产过程、现场智能仪表、控制站、存放数据的DCS数据库、BP全局最优软测量仪以及熔融指数软测量值显示仪。现场智能仪表及控制站与丙烯聚合生产过程相连，与DCS数据库相连；最优软测量仪与DCS数据库及软测量值显示仪相连。所述的BP全局最优软测量仪包括模型更新模块、数据预处理模块、PCA主成分分析模块、智能多模BP神经网络优化模块以及提供了一种用软测量仪表实现的软测量方法。本发明实现在线测量、在线参数优化、软测量速度快、模型自动更新、抗干扰能力强、精度高。
1. 一种BP全局最优丙烯聚合生产过程最优软测量仪表，包括丙烯聚合生产过程、用于测量易测变量的现场智能仪表、用于测量操作变量的控制站、存放数据的DCS数据库、BP全局最优软测量仪以及熔融指数软测量显示仪，所述测量智能仪表、控制站与丙烯聚合生产过程连接，所述测量智能仪表、控制站与DCS数据库连接，所述DCS数据库与BP全局最优软测量仪的输入端连接，所述BP全局最优软测量仪的输出端与熔融指数软测量显示仪连接，其特征在于，所述BP全局最优软测量仪包括：

（1）数据预处理模块，用于将从DCS数据库输入的模型输入变量进行预处理，对输入变量中心化，即减去变量的平均值；再进行归一化处理，即除以变量值的变化区间；

（2）PCA主成分分析模块，用于将输入变量预白化处理及变量去相关，通过对输入变量施加一个线性变换实现，即主成分由C=U\text{T}得到，其中U为输入变量，C为主成分得分矩阵，U为载荷矩阵；若对原始数据进行重构，由x=U\text{T}计算，其中上标T表示矩阵的转置；当选取的主成分数目小于输入变量的变量个数时，x=U\text{T}+E，其中E为残差矩阵；

（3）神经网络模型模块，用于采用BP神经网络，通过误差函数最小化来完成输入到输出的一种高度非线性映射，映射中保持拓扑不变性；需要建立若干子神经网络，第一个子BP网络的训练目标是预报结果与实际结果差距最小；

$$J_{i} = \frac{1}{N} \sum_{j=1}^{N} (F_{i}(x_{j}) - d_{j})^{2}$$ \hspace{1cm} (1)

N为样本数目，x为输入变量，l为样本点序号，F_{i}(x)为子网络输出结果，d_{j}为实际结果；

从第二个子网络开始，训练目标变为使得网络的预报误差尽可能小，同时网络的预报结果与之前的网络预报结果又尽可能大的差异，目标函数如下：

$$J_{i} = \frac{1}{N} \sum_{j=1}^{N} (F_{i}(x_{j}) - d_{j})^{2} - \frac{1}{N} \sum_{i=1}^{N} (F_{i}(x_{j}) - F_{i+1}(x_{j}))^{2}$$ \hspace{1cm} (2)

J_{i}为前i个子网络的训练目标，F_{i}(x)为第i个网络的预报结果，d_{j}为实际结果；F_{i+1}(x)为前i+1个子网络的综合结果；x为调节参数，N为样本数目；

训练的终止条件为当得到的新的子网络加入多层神经网络后，网络层的预报误差不再减小；

采用一种智能连续空间蚁群算法对每个BP网络进行训练和最优化，具体步骤为：

(a) 算法初始化，根据待优化的BP网络构造出初始的解集S=(s_{1},s_{2},...,s_{n}),n为初始解的个数，s_{n}为第n个初始解，确定蚁群的大小M，设置蚁群寻优算法迭代次数的阈值MaxGen并初始化蚁群寻优的迭代次数序号gen=0；

(b) 计算出解集S对应的适应度值G_{i}(i=1,2,...,n)，适应度值越大代表解越好；再根据下式确定解集中每个解被取到作为蚂蚁寻优的初始解的概率P_{i}(i=1,2,...,n)

$$P_{a}(k) = \frac{G_{a}}{\sum_{a=1}^{n} G_{j}} \quad (a=1,2,\cdots,n)$$ \hspace{1cm} (3)

n为初始解的个数，s_{n}为第n个初始解，k为迭代次数；初始化执行寻优算法的蚂蚁编号a=0；

(c) 蚂蚁a选取S中的一个解作为寻优的初始解，选取规则是根据P来做轮盘选；
(d) 蚂蚁 a 在选取的初始解的基础上进行寻优，找到更好的解 s_{a}′；
(e) 如果 a ≤ M，则 a = a + 1，返回步骤 c；否则继续向下执行步骤 f；
(f) 如果 gen < MaxGen，则 gen = gen + 1，使用步骤 d 中所有蚂蚁得到的更好的解取代 S 中的对应解，返回步骤 b；否则向下执行步骤 g；
(g) 计算出解集 S 对应的适应度值 G_{a} (a = 1, 2, \ldots, n)，选取出适度值最大的解作为算法的最优解，结束算法并返回；

每一只蚂蚁在它选定的初始解的基础上寻优时会循环固定的次数，如果本次循环得到了更好的解，则在下次循环中会基于该解并保持搜索方向不变；否则在下次循环中仍基于原来的解但会调整搜索方向；

同时随着整个蚁群寻优代数的增加，蚂蚁搜索的步长会智能减小，以适合整个蚁群寻优的收敛：

\[\text{del}_{k} = \text{Random} \cdot k^{r} \quad (4) \]

式中，\text{del}_{k} 为蚂蚁第 k 代迭代的初始步长，k 为迭代代数，Random 为随机向量，r 为负偏常数；

对于解集 S 中长期不被蚂蚁选作寻优初始解的那些解，会采用遗传算法中的变异和交叉策略进行处理，从而提高算法的全局寻优性能；

(4) 神经网络智能多模优化模块，用于对步骤 (3) 中的每个子网络赋权值，依据是每个子网络的预报误差，误差越小，权值越大；

\[w_{q} = \frac{1}{e_{q}} \left(\frac{1}{\sum_{j=1}^{l} e_{j}} \right), q = 1, 2, \ldots, l. \quad (5) \]

\[e_{j} = \frac{1}{N} \sum_{m=1}^{N} \left| F_{j}(x_{m}) - d(x_{m}) \right| \quad (6) \]

\[w_{q} \] 为第 q 个子网络的权值；\(e_{q} \) 为第 q 个子网络的预报误差；l 为总的子网络数目；j 为子网络序号；N 为样本数目，x 为输入变量，n 为样本点序号，\(F_{j}(\cdot) \) 为第 j 个子网络预报结果，d (\cdot) 为实际结果；

最终多模神经网络的预报结果为各个子网络预报结果的加权求和：

\[O(x) = \sum_{k=1}^{l} (w_{k} \cdot F_{k}(x)) \quad (7) \]

式中 x 为输入变量，O (\cdot) 为模型输出，\(F_{k}(\cdot) \) 为第 k 个子网络输出，\(w_{k} \) 为第 k 个子网络的权值，l 为子网络总数；

所述 BP 全局最优软测量仪还包括：模型更新模块，用于模型的在线更新，定期将离线化验数据输入到训练集中，更新神经网络模型；

所述的 BP 全局最优软测量仪，训练子 BP 神经网络，然后将其智能构建起来形成神经网络群；由于网络的选取标准是预报误差小、与其他的子网络差异大，所以这些预报效果好、又各不相同的子神经网络的综合预报效果能够具有更好的预报精度和稳定性；PCA 主成分分析模块中，PCA 方法实现输入变量的预白化处理，能够简化神经网络模型的输入变量，进而提高模型的性能。

2. 一种用如权利要求 1 所述的 BP 全局最优聚丙烯生产工艺最优软测量仪表实现的软测
量方法，其特征在于，所述软测量方法具体实现步骤如下：
(5.1) 对丙烯聚合生产过程对象，根据工艺分析和操作分析，选择操作变量和易测变量作为模型的输入，操作变量和易测变量取温度、压力、液位、氢气含量百分数、3股丙烯进料、流速和2股催化剂量进料流速这些变量，由DCS数据库获得；
(5.2) 对样本数据进行预处理，对输入变量中心化，即减去变量的平均值；再进行归一化处理，即除以变量值的变化区间；
(5.3) PCA主成分分析模块，用于将输入变量预白化处理及变量相关性处理，通过对输入变量施加一个线性变换实现，即主成分由C＝xU得到，其中x为输入变量，C为主成分得分矩阵，U为载荷矩阵；若对原始数据进行重构，由x＝CU得到，其中X为矩阵的转置；当选取的主成分数目小于输入变量的变量个数时，x＝CU^TE，其中E为残差矩阵；
(5.4) 基于模型输入、输出数据建立若干个初始子神经网络模型，采用BP神经网络，通过误差最小化来完成输入到输出的一种非线性映射，映射中保持拓扑不变性；第一个子BP网络的训练目标是预报结果与实际结果差距J最小：
\[J_i = \frac{1}{N} \sum_{i=1}^{N} (F_i(x_i) - d(x_i))^2 \] \hspace{1cm} (1)
N为样本数目，x为输入变量，i为样本点序号，F_i(·)为子网络预报结果，d(·)为实际结果；
从第二个子网络开始，训练目标变为使得网络的预报误差尽可能小，同时网络的预报结果与前一网络预报结果又尽可能大，差异，目标函数如下：
\[J_i = \frac{1}{N} \sum_{i=1}^{N} (F_i(x_i) - d(x_i))^2 - \frac{1}{N} \sum_{i=1}^{N} (F_i(x_i) - F_i(x_i))^2 \] \hspace{1cm} (2)
J_i为第i个子网络的训练目标，F_i(·)为第i个网络的预报结果；d(·)为实际结果；F(·)为前i-1个子网络的综合结果；s为调节参数，N为样本数目；
训练的终止条件为将得到的新的子网络加入多模神经网络后，网络组的预报误差不再减小；
采用一种智能连续空间蚁群算法对每个BP网络进行训练和最优选择，具体步骤为：
(a) 算法初始化，根据迭代优化的BP网络构造出的初始的解集S＝(s_1, s_2, ⋯, s_n)。n为初始解的个数，s_n为第n个初始解，确定蚁群的大小M，设置蚁群寻优算法迭代次数的阈值MaxGen并初始化蚁群寻优的迭代次数序号Gen＝0；
(b) 计算出解集S对应的适应度G_i(1, 2, ⋯, n)。适应度值越大代表解越好；再根据下式确定解集中每个被取到作为蚂蚁寻优的初始解的概率P_i(1, 2, ⋯, n)
\[P_a(k) = \frac{G_a}{\sum_{a=1}^{n} G_i} \] \hspace{1cm} (3)
n为初始解的个数，s_n为第n个初始解，k为迭代次数；初始化执行寻优算法的蚂蚁编号a = 0；
(c) 蚂蚁a选取S中的一个解作为寻优的初始解，选取规则是根据P来做轮盘选；
(d) 蚂蚁a在选取的初始解的基础上进行寻优，找到更好的解s_a’；
(e) 如果a＜M，则a＝a+1，返回步骤c；否则继续向下执行步骤f；
（f）如果gen<MaxGen,则gen=gen+1，使用步骤d中所有蚂蚁得到的更好的解取代S中的对应解，返回步骤b；否则向下执行步骤g；

（g）计算出解集S对应的适应度值G(a=1,2,...,n)，选取适应度值最大的解作为算法的最优解，结束算法并返回；

每一只蚂蚁在它选定的初始解的基础上寻优时会循环固定次数，如果本次循环得到了更好的解，则在下次循环中会基于该解并保持搜索方向不变；否则在下次循环中仍基于原来的解但会调整搜索方向；

同时随着整个蚁群寻优代数的增加，蚂蚁搜索的步长会智能减小，以适合整个蚁群寻优的收敛；

\[d_{el} = \text{Random} \cdot k^r \] (4)

式中，\(d_{el}\)为蚂蚁第k代迭代的初始步长，k为迭代代数，Random为随机向量，r为负常数实数；

对于解集S中长期不被蚂蚁选作寻优初期的那些解，会采用遗传算法中的变异和交叉策略进行处理，从而提高算法的全局寻优性能；

（5.5）智能构建所有的子网络，用于对步骤（5.4）中的每个子网络赋权值，依据是每个子网络的预报误差，误差越小，权值越大；

\[w_q = \left(\frac{1}{e_q}\right) / \left(\sum_{j=1}^{I} \frac{1}{e_j}\right), q = 1,2,...,I. \] (5)

\[e_j = \frac{1}{N} \sum_{m=1}^{N} \left| F_j(x_m) - d(x_m) \right| \] (6)

\(w_q\)为第q个子网络的权值，\(e_q\)为第q个子网络的预报误差，I为总的子网络数目，j为子网络序号，N为样本数目，x为输入变量，m为样本点序号，\(F_j(\cdot)\)为第j个子网络预报结果，d(\cdot)为实际结果；

最终多模神经网络的预报结果为各个子网络预报结果的加权求和；

\[O(x) = \sum_{k=1}^{I} (w_k \cdot F_k(x)) \] (7)

式中x为输入变量，\(O(\cdot)\)为模型输出，\(F_k(\cdot)\)为第k个子网络输出，\(w_k\)为第k个子网络的权重，I为子网络总数；

所描述测量方法还包括：定期将离线化验数据输入到训练集中，更新神经网络模型；

所述的软测量方法，训练子BP神经网络，然后将其智能构建起来形成神经网络群；由于子网络的选取标准是预报误差小、与其他子网络差异大，所以这些预报效果好、又各不相同的子神经网络的综合预报效果能够具有更好的预报精度和稳定性；在所述的步骤（5.3）中采用PCA主成分分析方法实现输入变量的预白化处理，能够简化神经网络模型的输入变量，进而提高模型的性能。
BP全局最优丙烯聚合生产过程最优软测量仪表和方法

技术领域

[0001] 本发明涉及一种最优软测量仪表及方法，具体是一种BP全局最优丙烯聚合生产过程最优软测量仪表及方法。

背景技术

[0002] 丙烯是由丙烯聚合和制得的一种热塑性树脂，丙烯最重要的下游产品，世界丙烯的50%，我国丙烯的65%都是用来制丙烯，是五大通用塑料之一，与我们的日常生活密切相关。丙烯是世界上增长最快的通用热塑性树脂，总量仅次于聚乙烯和聚氯乙烯。为使我国聚丙烯产品具有市场竞争力，开发刚性、韧性、流动性平衡好的抗冲共聚产品、无规共聚产品、BOPP和CPP薄膜料、纤维、无纺布料，及开发聚丙烯在汽车和家电领域应用，都是今后重要的研究课题。

[0003] 熔融指数是聚丙烯产品确定产品牌号的重要质量指标之一，它决定了产品的不同用途，对熔融指数的测量是聚丙烯生产中产品质量控制的一个重要环节，对生产及科研，都有非常重要的作用和指导意义。

[0004] 然而，熔融指数的在线分析测量目前很难做到，一方面是在线熔融指数分析仪的缺乏，另一方面是现有的在线分析仪由于经常是堵塞而测量不准甚至无法正常使用所导致的使用上的困难。因此，目前工业生产中MI的测量，主要是通过人工取样、离线化验分析获得，而且一般每2-4小时只能分析一次，时间滞后大，对丙烯聚合生产的质量控制带来了困难，成为生产中急需解决的一个瓶颈问题。聚丙烯熔融指数的在线软测量仪表及方法研究，从而成为学术界和工业界的一个前沿和热点。

发明内容

[0005] 为了克服目前已有丙烯聚合生产过程的测量精度不高、易受人为因素的影响的不足，本发明的目的在于提供一种在线测量、在线参数优化、软测量速度快、模型自动更新、抗干扰能力强、精度高的BP全局最优丙烯聚合生产过程熔融指数最优软测量仪表及方法。

[0006] 本发明解决其技术问题所采用的技术方案是：

[0007] 1.一种BP全局最优丙烯聚合生产过程最优软测量仪表，包括丙烯聚合生产过程、用于测量易测变量的现场智能仪表、用于测量操作变量的控制站、存放数据的DCS数据库、BP全局最优软测量仪表以及熔融指数软测量显示仪，所述现场智能仪表、控制站与丙烯聚合生产过程连接，所述现场智能仪表、控制站与DCS数据库连接，所述DCS数据库与BP全局最优软测量仪表的输入端连接，所述BP全局最优软测量仪的输出端与熔融指数软测量显示仪连接，其特征在于：所述BP全局最优软测量仪包括：

[0008] (1)、数据预处理模块，用于将从DCS数据库输入的模型输入变量进行预处理，对输入变量中心化，即减去变量的平均值；再进行归一化处理，即除以变量值的变化区间；

[0009] (2)、PCA主成分分析模块，用于将输入变量白化处理及变量去相关，通过对输入变量施加一个线性变换实现，即主成分由C=xU得到，其中x为输入变量，C为主成分得分矩
阵, U为载荷矩阵。若对原始数据进行重构, 可由 x = CU^T 计算, 其中上标 T 表示矩阵的转置。当选取的主成分数目小于输入变量的变量个数时, x = CU^T + E, 其中 E 为残差矩阵；

[0010] (3) 神经网络模型模块, 用于采用 BP 神经网络, 通过误差函数最小化来完成输入到输出的一种非线性映射, 映射中保持拓扑不变性。需要建立若干子神经网络, 第一个子 BP 网络的训练目标是预报结果与实际结果差距 J 最小；

\[J_i = \frac{1}{N} \sum_{j=1}^{N} (F_i(x_j) - d(x_j))^2 \tag{1} \]

N 为样本数目, x 为输入变量, l 为样本点序号, F_i(...) 为子网络预报结果, d(...) 为实际结果。

[0012] 从第二个子网络开始, 训练目标变为使得网络的预报误差尽可能小, 同时网络的预报结果与之前的网络预报结果又尽可能大的差异, 目标函数如下:

\[J_i = \frac{1}{N} \sum_{j=1}^{N} (F_i(x_j) - d(x_j))^2 - \lambda \sum_{j=1}^{N} (F_i(x_j) - F(x_j))^2 \tag{2} \]

J_i 为前 i 个子网络的训练目标, F_i(...) 为第 i 个网络的预报结果; d(...) 为实际结果; F(...) 为前 i-1 个子网络的综合结果; λ 为调节参数, N 为样本数目。

[0014] 训练的终止条件为将得到的新的子网络加入多模神经网络后, 网络群的预报误差不再减小。

[0016] 采用一种智能连续空间蚂蚁算法对每个 BP 网络进行训练和最优化, 具体步骤为:

[0018] (a) 算法初始化, 根据待优化的 RBF 神经网络结构构造出初始的解集 S = (s_1, s_2, \cdots, s_n), n 为初始解的个数, s_n 为第 n 个初始解, 确定蚁群的大小 M, 设置蚁群寻优算法迭代次数的阈值 MaxGen 并初始化蚁群寻优的迭代次数编号 gen = 0;

[0019] (b) 计算出解集 S 对应的适应度值 G_i (i = 1, 2, \cdots, n), 适应度值越大代表解越好; 再根据下式确定解集中每个解被取到作为蚂蚁寻优的初始解的概率 P_i (i = 1, 2, \cdots, n)

\[P_a(k) = \frac{G_a}{\sum_{a=1}^{n} G_a} (a = 1, 2, \cdots, n) \tag{3} \]

n 为初始解的个数, s_n 为第 n 个初始解, k 为迭代次数。初始化执行寻优算法的蚂蚁编号 a = 0;

[0021] (c) 蚂蚁 a 选取 S 中的一个解作为寻优的初始解, 选取规则是根据 P 来做轮盘选;

[0022] (d) 蚂蚁 a 在选取的初始解的基础上进行寻优, 找到更好的解 s_a';

[0023] (e) 如果 a < M, 则 a = a + 1, 返回步骤 c; 否则继续向下执行步骤 f;

[0024] (f) 如果 gen < MaxGen, 则 gen = gen + 1, 使用步骤 d 中所有蚂蚁得到的更好的解取代 S 中的对应解, 返回步骤 b; 否则向下执行步骤 g;

[0025] (g) 计算出解集 S 对应的适应度值 G_a (a = 1, 2, \cdots, n), 选取适应度值最大的解作为算法的最优解, 结束算法并返回。

[0027] 每一只蚂蚁在它选定的初始解的基础上寻优时会循环固定的次数, 如果本次循环得到了更好的解, 则在下次循环中会基于该解并保持搜索方向不变; 否则在下次循环中仍基于原来的解但会调整搜索方向;

[0028] 同时随着整个蚁群寻优代数的增加, 蚂蚁搜索的步长会智能减小, 以适合整个蚁
群寻优的收敛：

\[\text{del}k = \text{Random} \cdot k^r \quad (4) \]

式中，\(\text{del}k \) 为蚂蚁第 \(k \) 代迭代的初始步长，\(k \) 为迭代代数，\(\text{Random} \) 为随机向量，\(r \) 为负常数。

对于解集 \(S \) 中长期不被蚂蚁选作寻优初始解的那些解，会采用遗传算法中的变异和交叉策略进行处理，从而提高算法的全局寻优性能。

（4），神经网络智能多模优化模块，用于对步骤（3）中的每个子网络赋权值；依据是每个子网络的预报误差，误差越小，权值越大；

\[w_q = (1/e_q) \left(\sum_{j=1}^{I} 1/e_j \right), q = 1, 2, \ldots, I. \quad (5) \]

\[e_j = \frac{1}{N} \sum_{m=1}^{N} |F_j(m) - d(m)| \quad (6) \]

\(w_q \) 为第 \(q \) 个子网络的权值；\(e_q \) 为第 \(q \) 个子网络的预报误差；\(I \) 为总子网络数目；\(j \) 为子网络序号；\(N \) 为样本数目，\(x \) 为输入变量，\(m \) 为样本点序号，\(F_j(\cdot) \) 为第 \(j \) 个子网络预报结果，\(d(\cdot) \) 为实际结果。

最终多模神经网络的预报结果为各个子网络预报结果的加权求和。

\[O(x) = \sum_{k=1}^{I} (w_k \cdot F_k(x)) \quad (7) \]

式中，\(x \) 为输入变量，\(O(\cdot) \) 为模型输出，\(F_k(\cdot) \) 为第 \(k \) 个子网络输出，\(w_k \) 为第 \(k \) 个子网络的权值，\(I \) 为子网络总数。

作为优选的一种方案，所述BP全局最优软测量模型还包括：模型更新模块，用于模型的在线更新，将预估与线性化数据输入到训练集中，更新神经网络模型。

作为优选的再一种方案：在所述的智能连续空间蚁群算法训练智能多模BP神经网络模型中，训练子BP神经网络，然后将其智能构建起来形成神经网络群；由于子网络的选取标准是预报误差小、与其他的子网络差异小，所以这些预报效果好、又各不同的子神经网络的综合预报效果能够具有更好的预报精度和稳定性。

作为优选的再一种方案：在PCA主成分分析模块中，PCA方法实现输入变量的预白化处理，能够简化神经网络模型的输入变量，从而提高模型的性能。

2. 一种BP全局最优聚丙烯生产过程最优软测量仪表实现的软测量方法，所述软测量方法具体实现步骤如下：

（1）对聚丙烯聚合生产过程对象，根据工艺分析和操作分析，选择操作变量和易测变量作为模型的输入，操作变量和易测变量由DCS数据库获得；

（2）对样本数据进行预处理，对输入变量中心化，即减去变量的平均值，再进行归一化处理，即除以变量值的变化区间；

（3）PCA主成分分析模块，用于将输入变量预白化处理及变量去相关，通过对输入变量施加一个线性变换实现，即主成分由C=xU得到，其中X为输入变量矩阵，C为主成分得分矩阵，U为载荷矩阵。若对原始数据进行重构，可由x=CU转，其中上标T表示矩阵的转置。当选取的主成分数目小于输入变量的变量个数时，x=CU+E，其中E为残差矩阵；
(4) 基于模型输入、输出数据智能连续空间蚁群算法训练智能的建立若干个初始化子神经网络模型，采用BP神经网络，通过误差最小化来完成输入到输出的一种高度非线性映射，映射中保持拓扑不变性；第一个子BP网络的训练目标是预报结果与实际结果差距最小；

\[J_i = \frac{1}{N} \sum_{k=1}^{N} (F_i(x_k) - d(x_k))^2 \]

(1)

N为样本数目，x为输入变量，l为样本点序号，Fi(•)为子网络预报结果，d(•)为实际结果。

从第二子网络开始，训练目标变为使得网络的预报误差尽可能小，同时网络的预报结果与之前的网络预报结果尽可能大之差，目标函数如下；

\[J_i = \frac{1}{N} \sum_{k=1}^{N} (F_i(x_k) - d(y_k))^2 - \frac{d}{N} \sum_{i=1}^{N} (F_i(x_k) - F(x_k))^2 \]

(2)

 Ji为前i个子网络的训练目标, Fi(•)为第i个网络的预报结果；d(•)为实际结果；F(•)为前i-1个子网络的综合结果；y为调节参数，N为样本数目。

训练的终止条件为将得到的新的子网络加入多模神经网络后，网络群的预报误差不再减小。

采用一种智能连续空间蚁群算法对每个BP网络进行训练和最优化，具体步骤为：

(a) 算法初始化，根据待优化的RBF神经网络结构构造出初始的解集S=(s1, s2, ..., sn)，n为初始化的个数，sn为第n个初始化，确定蚁群的大小M，设置蚁群寻优算法迭代次数的阈值MaxGen并初始化蚁群寻优的迭代次数序号gen=0；

(b) 计算出解集中S对应的适配度值Gi(i=1,2, ..., n)，适应度值越大代表解越好；再根据下式确定解集中每个解被取到作为蚂蚁寻优的初始解的概率Pi(i=1,2, ..., n)；

\[P_a(k) = \frac{G_a}{\sum_{a=1}^{n} G_a} (a = 1, 2, ..., n) \]

(3)

n为初始化的个数，sn为第n个初始化，k为迭代次数。初始化执行寻优算法的蚂蚁编号a=0；

(c) 蚂蚁a选取S中的一个解作为寻优的初始解，选取规则是根据P来做轮盘选；

(d) 蚂蚁a在选取的初始解的基础上进行寻优，找到更好的解s′；

(e) 如果a≤M,则a=a+1,返回步骤c；否则继续向下执行步骤f；

(f) 如果gen<MaxGen,则gen=gen+1,使用步骤d中所有蚂蚁得到的更好的解取代S中的对应解，返回步骤b；否则向下执行步骤g；

(g) 计算出解集S对应的适配度值Ga(a=1,2, ..., n),选取出适配度最高的解作为算法的最优解，结束算法并返回。

每一只蚂蚁在它选定的初始解的基础上寻优时会循环固定的次数，如果本次循环得到了更好的解，则在下次循环中会基于该解并保持搜索方向不变；否则在下次循环中仍基于原来的解但会调整搜索方向；

同时随着整个蚁群寻优代数的增加，蚂蚁搜索的步长会智能减小，以适合整个蚁群寻优的收敛。
\[\text{式中, } \delta_{lk} \text{为第 } k \text{代迭代的初始步长, } k \text{ 为迭代代数, Random 为随机向量, } r \text{ 为负常实数。} \]

\[\text{（5）, 智能构建所有的子神经网络, 用于对步骤 (5.4) 中的每个子神经赋权值; 依据是每个子网络的预报误差, 误差越小, 权值越大; } \]

\[w_q = \frac{1}{e_q} = \frac{1}{\sum_{j=1}^{I} 1/e_j}, q = 1, 2, \ldots, I. \quad (5) \]

\[e_j = \frac{1}{N} \sum_{m=1}^{N} \left| F_j(x_m) - d(x_m) \right| \quad (6) \]

\[w_q \text{ 为第 } q \text{ 个子网络的权值; } e_q \text{ 为第 } q \text{ 个子网络的预报误差; } I \text{ 为总的子网络数目; } j \text{ 为子网络序号; } N \text{ 为样本数目, } x \text{ 为输入变量, } m \text{ 为样本点序号, } F_j(\cdot) \text{ 为第 } j \text{ 个子网络预报结果, } d(\cdot) \text{ 为实际结果。} \]

\[\text{最终多模神经网络的预报结果为各个子网络预报结果的加权求和。} \]

\[O(x) = \sum_{k=1}^{I} (w_k - F_k(x)) \quad (7) \]

\[\text{式中 } x \text{ 为输入变量, } O(\cdot) \text{ 为模型输出, } F_k(\cdot) \text{ 为第 } k \text{ 个子网络输出, } w_k \text{ 为第 } k \text{ 个子网络的权值, } I \text{ 为子网络总数。} \]

\[\text{本发明的技术构思为: 对丙烯聚合生产过程的重要质量指标熔融指数进行在线最优软测量, 克服已有的聚丙烯熔融指数测量仪表测量精度不高、易受人为因素的影响的不足, 通过智能连续空间蚁群算法来提高智能多模BP神经网络的方法来建立预报精度高、稳定性好的预报模型来得到最优的软测量结果。} \]

\[\text{本发明的有益效果主要表现在: } 1. \text{ 在线测量; } 2. \text{ 在线参数自适应; } 3. \text{ 软测量速度快; } 4. \text{ 模型自适应更新; } 5. \text{ 抗干扰能力强; } 6. \text{ 精度高。} \]

附图说明

1. 图1是BP全局最优丙烯聚合生产过程最优软测量仪表及方法的基本结构示意图；
2. 图2是BP全局最优软测量仪结构示意图；
3. 图3是丙烯聚合生产过程Hypol工艺生产流程图。

具体实施方式

1. 参照图1、图2和图3，一种BP全局最优丙烯聚合生产过程最优软测量仪表，包括丙烯聚合生产过程1，用于测量易测变量的现场智能仪表2，用于测量操作变量的控制站3，
存放数据的DCS数据库4、BP全局最优软测量仪5以及熔融指数软测量值显示仪6，所述现场智能仪表2、控制站3与丙烯聚合生产过程1连接，所述现场智能仪表2、控制站3与DCS数据库4连接，所述DCS数据库4与BP全局最优软测量仪5的输入端连接，所述BP全局最优软测量仪5的输出端与熔融指数软测量值显示仪6连接，所述BP全局最优软测量仪5包括：

【0083】（1）、数据预处理模块，用于将从DCS数据库输入的模型输入变量进行预处理，对输入变量中心化，即减去变量的平均值，再进行正态化处理，即除以变量值的变化区间，

【0084】（2）、PCA主成分分析模块，用于将输入变量预白化处理及变量去相关，通过对输入变量施加一个线性变换实现，即主成分由C=xU得到，其中x为输入变量，C为主成分得分矩阵，U为载荷矩阵，若对原始数据进行重构，可由x=CU计算，其中上标T表示矩阵的转置。当选取的主成分数目小于输入变量的变量个数时，x=CU^T+E，其中E为残差矩阵；

【0085】（3）、神经网络模型模块，用于采用BP神经网络，通过误差函数最小化来完成输入到输出的一种非线性映射，映射中保持拓扑不变性；需要建立若干子神经网络，第一个子BP网络的训练目标是预报结果与实际结果差距J，

【0086】\[J_i = \frac{1}{N} \sum_{x=x_1}^{x=N} (F_i(x_i) - d(x_i))^2 \] \(i = 1 \)

【0087】N为样本数目，x为输入变量，l为样本点序号，F_i(•)为子网络预报结果，d(•)为实际结果。

【0088】从第二子网络开始，训练目标变为使得网络的预报误差尽可能小，同时网络的预报结果与之前的网络预报结果又尽可能大的差异，目标函数如下；

【0089】\[J_i = \frac{1}{N} \sum_{x=x_1}^{x=N} (F_i(x_i) - d(x_i))^2 - \frac{A}{N} \sum_{x=x_1}^{x=N} (F_i(x_i) - F(x_i))^2 \] \(i = 1 \)

【0090】J_i为第i个子网络的训练目标，F_i(•)为第i个网络的预报结果，d(•)为实际结果，F(•)为前i-1个子网络的综合结果，A为调节参数，N为样本数目。

【0091】训练的终止条件为将得到的新的子网络加入多模神经网络后，网络群的预报误差不再减小。

【0092】采用一种智能连续空间蚁群算法对每个BP网络进行训练和最优化，具体步骤为：

【0093】（a）算法初始化，根据待优化的RBF神经网络结构构造出初始的解集S=(s_1, s_2, ⋅⋅⋅, s_n)，n为初始解的个数，s_n为第n个初始解，确定蚁群的大小M，设置蚁群寻优算法迭代次数的阈值MaxGen并初始化蚁群寻优的迭代次数序号gen=0；

【0094】（b）计算出解集S对应的适应度值G_i(i=1, 2, ⋅⋅⋅, n)，适应度值越大代表解越好，再根据下式确定解集中每个解被选到作为蚂蚁寻优的初始解的概率P_i(i=1, 2, ⋅⋅⋅, n)

【0095】\[P_a(k) = \frac{G_a}{\sum_{a=1}^{n} G_a}(a=1, 2, ⋅⋅⋅, n) \] \((3) \)

【0096】n为初始解的个数，s_n为第n个初始解，k为迭代次数。初始化执行寻优算法的蚂蚁编号a=0；

【0097】（c）蚂蚁a选取S中的一个解作为寻优的初始解，选取规则是根据P来做轮盘选；

【0098】（d）蚂蚁a在选取的初始解的基础上进行寻优，找到更好的解s_a；

【0099】（e）如果a<M，则a=a+1，返回步骤c；否则继续向下执行步骤f；
[0100] （f）如果gen<MaxGen，则gen=gen+1，使用步骤d中所有蚂蚁得到的更好的解取代S中的对应解，返回步骤b；否则向下执行步骤g；
[0101] （g）计算出解集S对应的适应度值ga(a=1,2,…,n)，选取适应度值最大的解作为算法的最优解，结束算法并返回。
[0102] 每一只蚂蚁在它选定的初始化的基础上寻优时会循环固定的次数，如果本次循环得到了更好的解，则在下次循环中会基于该解并保持搜索方向不变；否则在下次循环中仍基于原来的解但会调整搜索方向；
[0103] 同时随着整个蚁群寻优代数的增加，蚂蚁选择的步长会智能减小，以适合整个蚁群寻优的收敛；
[0104] \[\text{del}_k = \text{Random} \cdot k^r \quad (4) \]
[0105] 式中，delk为蚂蚁第k代迭代的初始步长，k为迭代代数，Random为随机向量，r为负常数。
[0106] 对于解集S中长期不被蚂蚁选作寻优初始解的那些解，会采用遗传算法中的变异和交叉策略进行处理，从而提高算法的全局寻优性能。
[0107] （4），神经网络智能多模优化模块，用于对步骤(3)中的每个子网络赋权值；依据是每个子网络的预报误差，误差越小，权值越大；
[0108] \[w_q = (1/e_q)/\left(\sum_{j=1}^{I} 1/e_j\right), q = 1,2,\cdots,I. \] \((5) \)
[0109] \[e_j = \frac{1}{N} \sum_{m=1}^{N} \left| F_j(x_m) - d(x_m) \right| \]
[0110] wq为第q个子网络的权值；eq为第q个子网络的预报误差；I为总的子网络数目；j为子网络序号；N为样本数目，x输入变量，m为样本点序号，Fj(·)为第j个子网络预报结果，d(·)为实际结果。
[0111] 最终多模神经网络的预报结果为各个子网络预报结果的加权求和。
[0112] \[O(x) = \sum_{k=1}^{I} (w_k \cdot F_k(x)) \]
[0113] 式中x为输入变量，O(·)为模型输出，Fk(·)为第k个子网络输出，wk为第k个子网络的权，i为子网络总数。
[0114] 在PCA主成分分析模块中，PCA方法可以实现输入变量的预白化处理，能够简化神经网络模型的输入变量，进而提高模型的性能。
[0115] 2. 丙烯聚合生产过程流程图如图3所示，根据反应机理以及流程工艺分析，考虑到聚丙烯生产过程中对熔融指数产生影响的各个因素，取实际生产过程中常用的九个操作变量和易测变量作为模型输入变量，有：三股丙烯进料流率，主催化剂流率，共催化剂流率，釜内温度，釜内压强，釜内液位，釜内氢气体积浓度，釜内丙烯进料流率f1，釜内氢气体积浓度Xr，3股丙烯进料流率f2，第三股丙烯进料流率f3)，2股催化剂进料流率（主催化剂流率f4，共催化剂流率f5)。反应釜中的聚合反应是反应物重复混合后参与反应的，因
此模型输入变量涉及物料的过程变量采用前若干时刻的平均值。此模型采用前一小时的平均值。熔融指数离线化验数据作为BP全优软测量仪5 的输出变量，通过人工取样，离线化验分析获得，每4小时分析采集一次。

【0017】表1BP全局最优软测量仪所需模型输入变量

<table>
<thead>
<tr>
<th>变量符号</th>
<th>变量含义</th>
<th>变量符号</th>
<th>变量含义</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>釜内温度</td>
<td>f1</td>
<td>第一股丙烯进料流量</td>
</tr>
<tr>
<td>p</td>
<td>釜内压强</td>
<td>f2</td>
<td>第二股丙烯进料流量</td>
</tr>
<tr>
<td>L</td>
<td>釜内液位</td>
<td>f3</td>
<td>第三股丙烯进料流量</td>
</tr>
<tr>
<td>X_ν</td>
<td>釜内氢气体积浓度</td>
<td>f4</td>
<td>主催化剂流量</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f5</td>
<td>辅催化剂流量</td>
</tr>
</tbody>
</table>

【0019】现场智能仪表2及控制站3与丙烯聚合生产过程1相连，与DCS数据库4相连。最优软测量仪5与DCS数据库4及软测量仪显示仪6相连。现场智能仪表2测量丙烯聚合生产对象的易测变量，将数据传送到DCS数据库4；控制站3控制丙烯聚合生产对象的操作变量，将数据传送到DCS数据库4。DCS数据库4中记录的变量数据作为BP全局最优软测量仪5的输入，软测量显示仪6用于显示BP全优软测量仪5的输出，即软测量值。

【0020】BP全局最优软测量仪5，包括：

【0021】（1）数据预处理模块7，用于对模型输入进行预处理，即中心化和归一化。对输入变量进行中心化，就是减去变量的平均值，使变量为零均值的变量，从而简化算法；对输入变量进行归一化，就是除以输入变量的变化区间，是变量的值落在-0.5～0.5之内，进一步简化。

【0022】（2）PCA主成分分析模块8，用于对输入变量预处理后，对变量进行中心化，减少输入变量的个数，从而简化算法。PCA的步骤为：

- 计算中心化后的变量，
- 计算协方差矩阵，
- 计算特征值和特征向量，
- 选取主成分数目。

【0023】（3）神经网络模型模块9，采用BP神经网络，BP神经网络能学习和存储大量的输入-输出模式映射关系，而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法，通过反向传播来不断调整网络的权值和阈值，使网络的误差平方和最小。BP神经网络模型有输入层、一个输出层和一个隐藏层，神经元数量存储为隐藏层。理论上可以证明，BP神经网络可以产生近线性系统。BP神经网络训练算法通过误差函数最小化来完成输入到输出的一种线性非线性映射，映射中保持拓扑不变性。需要建立若干子神经网络，第一个子神经网络的训练目标是预测结果与实际结果差值j_i最小；

【0024】$$J_i = \frac{1}{N} \sum_{i=1}^{N} (F_i(x_i) - d(x_i))^2$$

【0025】N为样本数目，x为输入变量，l为样本点序号，F_i(·)为子网络预报结果，d(·)为实际结果。

【0026】从第二个子网络开始，训练目标变为使得网络的预报误差尽可能小，同时网络的预报结果与之前的网络预报结果又尽可能大的差异，目标函数如下：
\[J_i = \frac{1}{N} \sum_{l=1}^{N} (F_l(x_l) - d(x_l))^2 - \frac{\lambda}{N} \sum_{l=1}^{N} (F_l(x_l) - F(x_l))^2 \]

(2)

\[J_i \] 为前i个子网络的训练目标，\(F_i(\cdot) \) 为第i个网络的预报结果；\(d(\cdot) \) 为实际结果；\(F(\cdot) \) 为前i-1个子网络的综合结果；\(\lambda \) 为调节参数，\(N \) 为样本数目。

训练的终止条件为将得到的新子网络加入多模神经网络后，网络群的预报误差不再减小。

采用一种智能连续空间蚁群算法对每个BP网络进行训练和最优化，具体步骤为：

(a) 算法初始化，根据待优化的RBF神经网络结构构造出原始的解集\(S = (s_1, s_2, \cdots, s_n) \)，\(n \) 为初始解的个数，\(s_n \) 为第n个初始解，确定蚁群的大小M，设置蚁群寻优算法迭代次数的阈值MaxGen，并初始化蚁群寻优的迭代次数序号gen=0；

(b) 计算出解集\(S \) 对应的适应度值\(G_i (i = 1, 2, \cdots , n) \)，适应度值越大代表解越好；再根据下式确定解集集中每个解被选到作为蚂蚁寻优的初始解的概率\(P_i (i = 1, 2, \cdots , n) \)

\[P_a (k) = \frac{G_a}{\sum_{a=1}^{n} G_i} \quad (a = 1, 2, \cdots , n) \]

(3)

\[n \] 为初始解的个数，\(s_n \) 为第n个初始解，\(k \) 为迭代次数。初始化执行寻优算法的蚂蚁编号\(a = 0 \)；

(c) 蚂蚁a选取\(S \) 中的一个解作为寻优的初始解，选取规则是根据P来做轮盘选；

(d) 蚂蚁a在选取的初始解的基础上进行寻优，找到更好的解\(s_a' \)；

(e) 如果\(a \neq M \)，则\(a = a + 1 \)，返回步骤c；否则继续向下执行步骤f；

(f) 如果\(gen < \text{MaxGen} \)，则\(gen = gen + 1 \)，使用步骤d中所有蚂蚁得到的更好的解取代S中的对应解，返回步骤b；否则向下执行步骤g；

(g) 计算出解集S对应的适应度值\(G_a (a = 1, 2, \cdots , n) \)，选取适应度值最大的解作为算法的最优解，结束算法并返回。

每一只蚂蚁在它选定的初始解的基础上寻优时会循环固定的次数，如果本次循环得到了更好的解，则在下次循环中会基于该解并保持搜索方向不变；否则在下次循环中仍基于原来的解但调整搜索方向；

同时随着整个蚁群寻优代数的增加，蚂蚁搜索的步长会智能减小，以适合整个蚁群寻优的收敛；

\[d_{elk} = \text{Random} \times k^r \]

(4)

\[\text{式中，} d_{elk} \text{为蚂蚁第k代迭代的初始步长，} k \text{为迭代代数，Random为随机向量，} r \text{为负常实数。} \]

对于解集S中长期不被蚂蚁选作寻优初始解的那些解，会采用遗传算法中的变异和交叉策略进行处理，从而提高算法的全局寻优性能。

(4) 神经网络智能多模优化模块10，用于对步骤(3)中的每个子网络赋权值；依据是每个子网络的预报误差，误差越小，权值越大；

\[w_q = (1 / e_q) / (\sum_{j=1}^{I} 1 / e_j), q = 1, 2, \cdots , I. \]

(5)
\[e_j = \frac{1}{N} \sum_{m=1}^{N} \left| F_j(x_m) - d(x_m) \right| \] \hspace{1cm} (6)

\[w_k = \text{第} k \text{个子网络的权值}; e_k = \text{为第} k \text{个子网络的预报误差}; I = \text{为总的子网络数目}; j = \text{为子网络序号}; N = \text{为样本数}, x = \text{为输入变量}, m = \text{为样本点序号}, F_j(\cdot) = \text{为第} j \text{个子网络预报结果}, d(\cdot) = \text{为实际结果}。\]

最终多模神经网络的预报结果为各个子网络预报结果的加权求和。

\[O(x) = \sum_{k=1}^{I} (w_k \cdot F_k(x)) \] \hspace{1cm} (7)

式中x为输入变量, O(·)为模型输出, F_k(·)为第k个子网络输出, w_k为第k个子网络的权重, I为子网络总数。

在PCA主成分分析模块中, PCA方法实现输入变量的预白化处理, 能够简化神经网络模型的输入变量, 进而提高模型的性能。

(5) 模型更新模块11, 用于模型的在线更新, 定期将离线化验数据输入到训练集中, 更新神经网络模型。

实施例2

1. 参照图1、图2和图3, 一种BP全局最优丙烯聚合生产过程最优化测量方法包括以下步骤:

(1) 对丙烯聚合生产过程对象, 根据工艺分析和操作分析, 选择操作变量和易测变量作为模型的输入, 操作变量和易测变量由DCS数据库获得；

(2) 对样本数据进行预处理, 对输入变量中心化, 即减去变量的平均值, 再进行归一化处理, 即除以变量值的变化区间；

(3) PCA主成分分析模块, 用于将输入变量预白化处理及变量去相关, 通过对输入变量施加一个线性变换实现, 即主成分由C=xU得到, 其中x为输入变量, C为主成分得分矩阵, U为载荷矩阵。若对原始数据进行重组, 可由x=CU^T计算, 其中上标T表示矩阵的转置。当选取的主成分数目小于输入变量的变量个数时, x=CU^T+E, 其中E为残差矩阵；

(4) 基于模型输入、输出数据建立初始神经网络模型, 采用BP神经网络, 通过误差最小化来完成输入到输出的一种高精度非线性映射, 映射中保持拓扑不变性: 第一个子BP网络的训练目标是误差结果与实际结果差距最小；

\[J_{\text{L}} = \frac{1}{N} \sum_{i=1}^{N} (F_i(x_i) - d(x_i))^2 \] \hspace{1cm} (1)

N为样本数, x为输入变量, L为样本点序号, F_i(·)为子网络预报结果, d(·)为实际结果。

从第二个子网络开始, 训练目标变为使得网络的预报误差尽可能小, 同时网络的预报结果与之前的网络预报结果又尽可能小的差异, 目标函数如下:

\[J_{\text{L}} = \frac{1}{N} \sum_{i=1}^{N} (F_i(x_i) - d(x_i))^2 - \lambda \sum_{i=1}^{N} (F_i(x_i) - F(x_i))^2 \] \hspace{1cm} (2)

J_L为第i个子网络的训练目标, F_i(·)为第i个网络的预报结果; d(·)为实际结果; F(·)为前i-1个子网络的综合结果; \lambda 为调节参数, N为样本数目。
训练的终止条件为将得到的新的子网络加入多模神经网络后，网络群的预报误差不再减小。

采用一种智能连续空间蚁群算法对每个BP网络进行训练和最优化，具体步骤为：

（a）算法初始化，根据待优化的RBF神经网络结构构造出初始的解集 $S=(s_1, s_2, \cdots, s_n)$，$n$ 为初始化的个数，s_n 为第 n 个初始解，确定蚁群的大小 M，设置蚁群寻优算法迭代次数的阈值 MaxGen 并初始化蚁群寻优的迭代次数序号 gen = 0；

（b）计算出解集 S 对应的适应度值 $G_i(i=1, 2, \cdots, n)$，适应度值越大代表解越好；再根据下式确定解集中每个解被取到作为蚂蚁寻优的初始解的概率 $P_i(i=1, 2, \cdots, n)$

$$P_a(k) = \frac{G_a}{\sum_{a=1}^{n} G_j}(a = 1, 2, \cdots, n)$$ \hspace{1cm} (3)

（c）蚁群 a 从 S 中的一个解作为寻优的初始解，选取规则是根据 P 来做轮盘选；

（d）蚁群 a 在选取的初始解的基础上进行寻优，找到更好的解 s_a'；

（e）如果 $a < M$，则 $a = a + 1$，返回步骤 e；否则继续向下执行步骤 f；

（f）如果 $gen < MaxGen$，则 $gen = gen + 1$，使用步骤 d 中所有蚂蚁得到的更好的解取代 S 中的对应解，返回步骤 b；否则向下执行步骤 g；

（g）计算出解集 S 对应的适应度值 $G_a(a = 1, 2, \cdots, n)$，选取适应度值最大的解作为算法的最优解，结束算法并返回。

每一只蚁群在它选定的初始解的基础上寻优时会循环固定的次数，如果本次循环得到了更好的解，则在下次循环中会基于该解并保持搜索方向不变；否则在下次循环中仍基于原来的解但会调整搜索方向，同时随着整个蚁群寻优代数的增加，蚁群搜索的步长会智能减小，以适合整个蚁群寻优的收敛；

$$del_k = Random \cdot k^r$$ \hspace{1cm} (4)

式中，del_k 为蚁群第 k 代迭代的初始步长，k 为迭代代数，$Random$ 为随机向量，r 为负常数。

对于解集 S 中长期不被蚁群选作寻优初始解的那些解，会采用遗传算法中的变异和交叉策略进行处理，从而提高算法的全局寻优性能。

（5）、智能构建所有的子神经网络，用于对步骤 (5, 4) 中的每个子网络赋权；依据是每个子网络的预报误差，误差越小，权值越大；

$$w_q = \left(1/e_q\right)/(\sum_{j=1}^{I} 1/e_j), q = 1, 2, \cdots, I.$$ \hspace{1cm} (5)

$$e_j = \frac{1}{N} \sum_{m=1}^{N} \left| F_j(x_m) - d(x_m) \right|$$ \hspace{1cm} (6)

w_q 为第 q 个子网络的权值；e_q 为第 q 个子网络的预报误差；I 为总的子网络数目；j 为子网络序号；N 为样本数目；x 为输入变量，m 为样本点序号，$F_j(\cdot)$ 为第 j 个子网络预报结果，$d(\cdot)$ 为实际结果。
最终多模神经网络的预报结果为各个子网络预报结果的加权求和。

$$O(x) = \sum_{k=1}^{l} (w_k \cdot F_k(x))$$ \hspace{1cm} (7)

式中 x 为输入变量，$O(\cdot)$ 为模型输出，$F_k(\cdot)$ 为第 k 个子网络输出，w_k 为第 k 个子网络的权重，l 为子网络总数。

进一步，在所述的步骤(3)中采用PCA主成分分析方法实现输入变量的预白化处理，能够简化神经网络模型的输入变量，进而提高模型的性能。

2. 本实施例的方法具体实施步骤如下：

步骤1：对丙烯聚合生产过程对象1，根据工艺分析和操作分析，选择操作变量和易测变量作为模型的输入。

步骤2：对样本数据进行预处理，由数据预处理模块7完成。

步骤3：对经过预处理的数据进行主成分分析，由PCA主成分分析模块8完成。

步骤4：模块9基于模型输入、输出结合步骤(4)建立若干初始神经网络模型，输入数据如步骤1所述获得，输出数据由离线化验获得。

步骤5：模块10结合步骤(5)根据子网络预报误差将所有的子神经网络智能构建起来；

步骤6：模型更新模块11定期将离线化验数据输入到训练集中，更新神经网络模型，BP全局最优软测量仪5建立完成。

步骤7：建立好的BP全局最优软测量仪5基于DCS数据库4传来的实时模型输入变量数据对丙烯聚合生产过程1的熔融指数进行BP全局最优软测量。

步骤8：熔融指数软测量显示仪6显示BP全局最优软测量仪5的输出，完成对丙烯聚合生产过程熔融指数的最优软测量的显示。
图3