

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2003/0198972 A1 Erlander et al.

(43) Pub. Date:

Oct. 23, 2003

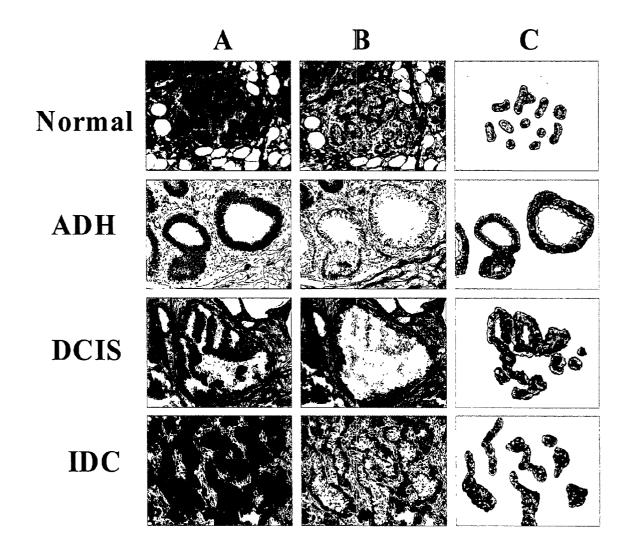
(54) GRADING OF BREAST CANCER

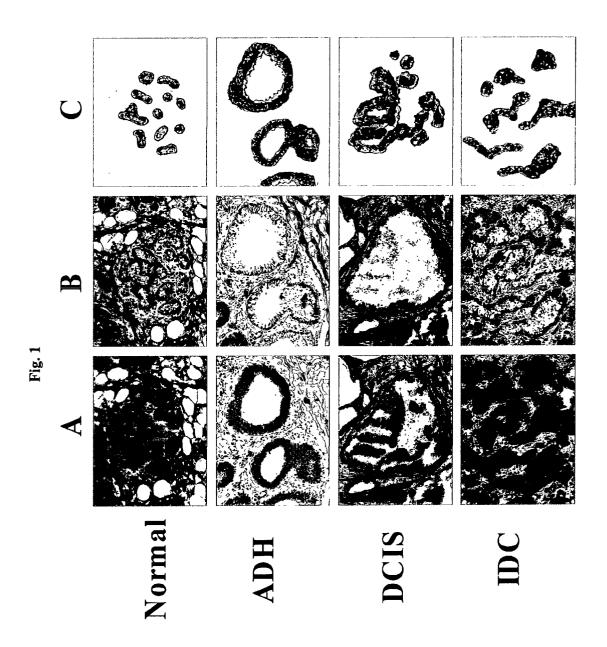
(76) Inventors: Mark G. Erlander, Encinitas, CA (US); Xiao-Jun Ma, San Diego, CA (US); Dennis C. Sgroi, Winchester, MA

> Correspondence Address: Kawai Lau Morrison & Foerster LLP Suite 500 3811 Valley Centre Drive San Diego, CA 92130-2332 (US)

(21) Appl. No.: 10/211,015

(22) Filed: Aug. 1, 2002


Related U.S. Application Data


Continuation-in-part of application No. 10/028,018, filed on Dec. 21, 2001.

Publication Classification

- (51) **Int. Cl.**⁷ **C12Q** 1/68; C12P 19/34; C12M 1/34
- (57)**ABSTRACT**

Methods and compositions for the identification of breast cancer grade signatures are provided. The signature profiles are identified based upon multiple sampling of reference breast tissue samples from independent cases of breast cancer and provide a reliable set of molecular criteria for identification of cells as being in one or more particular stages and/or grades of breast cancer.

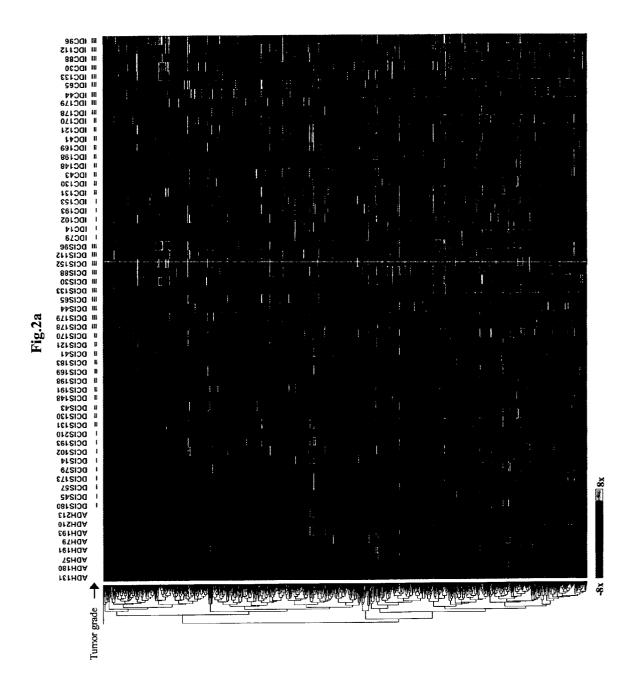
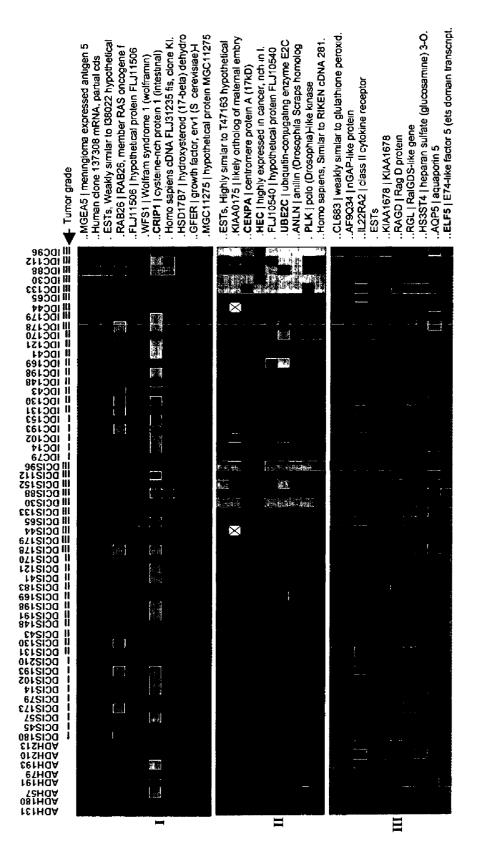
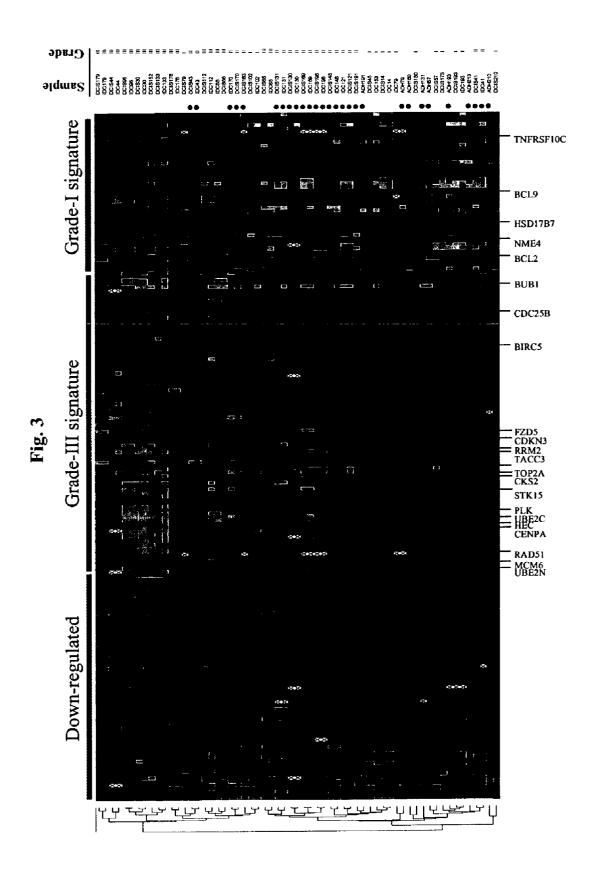
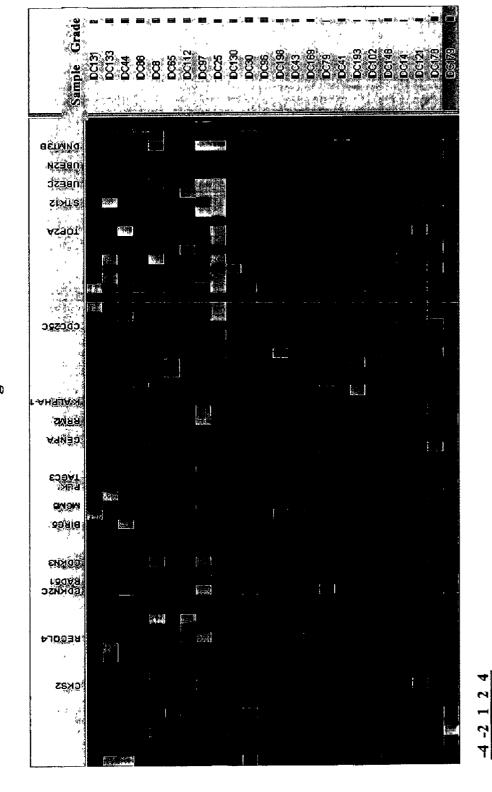
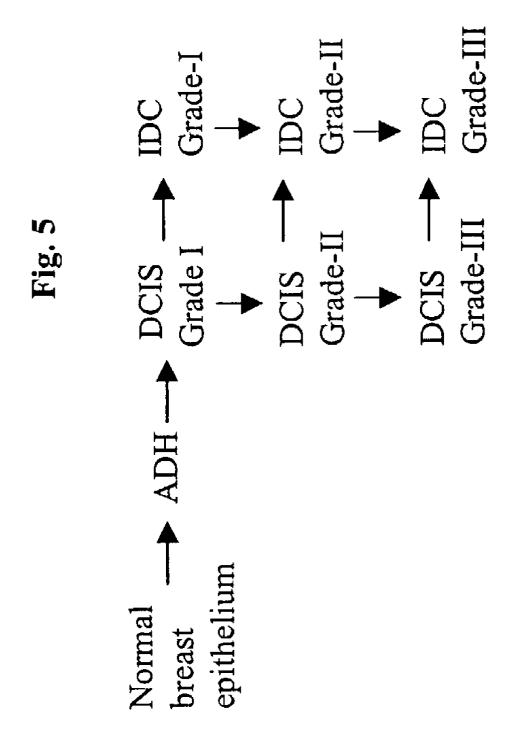






Fig.2b

GRADING OF BREAST CANCER

RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S. patent application Ser. No. 10/028,018 filed Dec. 21, 2001, which is hereby incorporated in its entirety as if fully set forth.

FIELD OF THE INVENTION

[0002] The invention relates to the identification and use of gene expression profiles, or patterns, involved in breast cancer progression. In particular, the invention provides the identities of genes that may be used to identify different grades of breast cancer within and between stages thereof. The gene expression profiles, whether embodied in nucleic acid expression, protein expression, or other expression formats, are used in the study and/or diagnosis of cells and tissue during breast cancer progression as well as for the study and/or determination of prognosis of a patient. When used for diagnosis or prognosis, the profiles are used to predict the status and/or phenotype of cells and tissues relative to breast cancer and the treatment thereof.

BACKGROUND OF THE INVENTION

[0003] Breast cancer is by far the most common cancer among women. Each year, more than 180,000 and 1 million women in the U.S. and worldwide, respectively, are diagnosed with breast cancer. Breast cancer is the leading cause of death for women between ages 50-55, and is the most common non-preventable malignancy in women in the Western Hemisphere. An estimated 2,167,000 women in the United States are currently living with the disease (National Cancer Institute, Surveillance Epidemiology and End Results (NCI SEER) program, Cancer Statistics Review www-seer.ims.nci.nih.gov/Publications/CSR1973 (1998)). Based on cancer rates from 1995 through 1997, a report from the National Cancer Institute (NCI) estimates that about 1 in 8 women in the United States (approximately 12.8 percent) will develop breast cancer during her lifetime (NCI's Surveillance, Epidemiology, and End Results Program (SEER) publication SEER Cancer Statistics Review 1973-1997). Breast cancer is the second most common form of cancer, after skin cancer, among women in the United States. An estimated 250,100 new cases of breast cancer are expected to be diagnosed in the United States in 2001. Of these, 192,200 new cases of more advanced (invasive) breast cancer are expected to occur among women (an increase of 5% over last year), 46,400 new cases of early stage (in situ) breast cancer are expected to occur among women (up 9% from last year), and about 1,500 new cases of breast cancer are expected to be diagnosed in men (Cancer Facts & Figures 2001 American Cancer Society). An estimated 40,600 deaths (40,300 women, 400 men) from breast cancer are expected in 2001. Breast cancer ranks second only to lung cancer among causes of cancer deaths in women. Nearly 86% of women who are diagnosed with breast cancer are likely to still be alive five years later, though 24% of them will die of breast cancer after 10 years, and nearly half (47%) will die of breast cancer after 20 years.

[0004] Every woman is at risk for breast cancer. Over 70 percent of breast cancers occur in women who have no identifiable risk factors other than age (U.S. General Accounting Office. Breast Cancer, 1971-1991: Prevention, Treatment and Research. GAO/PEMD-92-12; 1991). Only 5 to 10% of breast cancers are linked to a family history of

breast cancer (Henderson I C, Breast Cancer. In: Murphy G P, Lawrence W L, Lenhard R E (eds). *Clinical Oncology*. Atlanta, Ga: American Cancer Society; 1995:198-219).

[0005] Each breast has 15 to 20 sections called lobes. Within each lobe are many smaller lobules. Lobules end in dozens of tiny bulbs that can produce milk. The lobes, lobules, and bulbs are all linked by thin tubes called ducts. These ducts lead to the nipple in the center of a dark area of skin called the areola. Fat surrounds the lobules and ducts. There are no muscles in the breast, but muscles lie under each breast and cover the ribs. Each breast also contains blood vessels and lymph vessels. The lymph vessels carry colorless fluid called lymph, and lead to the lymph nodes. Clusters of lymph nodes are found near the breast in the axilla (under the arm), above the collarbone, and in the chest.

[0006] Breast tumors can be either benign or malignant. Benign tumors are not cancerous, they do not spread to other parts of the body, and are not a threat to life. They can usually be removed, and in most cases, do not come back. Malignant tumors are cancerous, and can invade and damage nearby tissues and organs. Malignant tumor cells may metastasize, entering the bloodstream or lymphatic system. When breast cancer cells metastasize outside the breast, they are often found in the lymph nodes under the arm (axillary lymph nodes). If the cancer has reached these nodes, it means that cancer cells may have spread to other lymph nodes or other organs, such as bones, liver, or lungs.

[0007] Major and intensive research has been focussed on early detection, treatment and prevention. This has included an emphasis on determining the presence of precancerous or cancerous ductal epithelial cells. These cells are analyzed, for example, for cell morphology, for protein markers, for nucleic acid markers, for chromosomal abnormalities, for biochemical markers, and for other characteristic changes that would signal the presence of cancerous or precancerous cells. This has led to various molecular alterations that have been reported in breast cancer, few of which have been well characterized in human clinical breast specimens. Molecular alterations include presence/absence of estrogen and progesterone steroid receptors, HER-2 expression/amplification (Mark H F, et al. HER-2/neu gene amplification in stages I-IV breast cancer detected by fluorescent in situ hybridization. Genet Med; 1(3):98-103 1999), Ki-67 (an antigen that is present in all stages of the cell cycle except G0 and used as a marker for tumor cell proliferation, and prognostic markers (including oncogenes, tumor suppressor genes, and angiogenesis markers) like p53, p27, Cathepsin D, pS2, multi-drug resistance (MDR) gene, and CD31.

[0008] Examination of cells by a trained pathologist has also been used to establish whether ductal epithelial cells are normal (i.e. not precancerous or cancerous or having another noncancerous abnormality), precancerous (i.e. comprising hyperplasia, atypical ductal hyperplasia (ADH)) or cancerous (comprising ductal carcinoma in situ, or DCIS, which includes low grade ductal carcinoma in situ, or LG-DCIS, and high grade ductal carcinoma in situ, or HG-DCIS) or invasive (ductal) carcinoma (IDC). Pathologists may also identify the occurrence of lobular carcinoma in situ (LCIS) or invasive lobular carcinoma (ILC). Breast cancer progression may be viewed as the occurrence of abnormal cells, such as those of ADH, DCIS, IDC, LCIS, and/or ILC, among normal cells.

[0009] It remains unclear whether normal cells become hyperplastic (such as ADH) and then progressing on to

become malignant (DCIS, IDC, LCIS, and/or ILC) or whether normal cells are able to directly become malignant without transitioning through a hyperplastic stage. It has been observed, however, that the presence of ADH indicates a higher likelihood of developing a malignancy. This has resulting in treatment of patients with ADH to begin treatment with an antineoplastic/antitumor agent such as tamoxifen. This is in contrast to the treatment of patients with malignant breast cancer which usually includes surgical removal.

[0010] The rational development of preventive, diagnostic and therapeutic strategies for women at risk for breast cancer would be aided by a molecular map of the tumorigenesis process. Relatively little is known of the molecular events that mediate the transition of normal breast cells to the various stages of breast cancer progression. Similarly, little is known of the molecular events that mediate the transition of cells from one stage of breast cancer to another.

[0011] Molecular means of identifying the differences between normal, non-cancerous cells and cancerous cells (in general) have been the focus of intense study. The use of cDNA libraries to analyze differences in gene expression patterns in normal versus tumorigenic cells has been described (U.S. Pat. No. 4,981,783). DeRisi et al. (1996) describe the analysis of gene expression patterns between two cell lines: UACC-903, which is a tumorigenic human melanoma cell line, and UACC-903(+6), which is a chromosome 6 suppressed non-tumorigenic form of UACC-903. Labeled cDNA probes made from mRNA from these cell lines were applied to DNA microarrays containing 870 different cDNAs and controls. Genes that were preferentially expressed in one of the two cell lines were identified.

[0012] Golub et al. (1999) describe the use of gene expression monitoring as means to cancer class discovery and class prediction between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Their approach to class predictors used a neighborhood analysis followed by cross-validation of the validity of the predictors by withholding one sample and building a predictor based only on the remaining samples. This predictor is then used to predict the class of the withheld sample. They also used cluster analysis to identify new classes (or subtypes) within the AML and ALL.

[0013] Gene expression patterns in human breast cancers have been described by Perou et al. (1999), who studied gene expression between cultured human mammary epithelia cells (HMEC) and breast tissue samples by use of microarrays comprising about 5000 genes. They used a clustering algorithm to identify patterns of expression in HMEC and tissue samples. Perou et al. (2000) describe the use of clustered gene expression profiles to classify subtypes of human breast tumors. Hedenfalk et al. describe gene expression profiles in BRCA1 mutation positive, BRCA2 mutation positive, and sporadic tumors. Using gene expression patterns to distinguish breast tumor subclasses and predict clinical implications is described by Sorlie et al. and West et al.

[0014] All of the above described approaches, however, utilize heterogeneous populations of cells found in culture or in a biopsy to obtain information on gene expression patterns. The use of such populations may result in the inclusion or exclusion of multiple genes from the patterns. For this and

the lack of statistical robustness reasons, the gene expression patterns observed by the above described approaches provide little confidence that the differences in gene expression may be meaningfully associated with the stages of breast cancer.

[0015] Citation of documents herein is not intended as an admission that any is pertinent prior art. All statements as to the date or representation as to the contents of documents is based on the information available to the applicant and does not constitute any admission as to the correctness of the dates or contents of the documents.

SUMMARY OF THE INVENTION

[0016] The present invention relates to the identification and use of gene expression patterns (or profiles or "signatures") which are correlated with (and thus able to discriminate between) cells in various stages and/or grades of breast cancer. Broadly defined, these stages are non-malignant versus malignant, but may also be viewed as normal versus atypical (optionally including reactive and pre-neoplastic) versus cancerous. Another definition of the stages is normal versus precancerous (e.g. atypical ductal hyperplasia (ADH) or atypical lobular hyperplasia (ALH)) versus cancerous (e.g. carcinoma in situ such as DCIS and/or LCIS) versus invasive (e.g. carcinomas such as IDC and/or ILC). The invention may also be applied to discriminations between normal and non-normal (including cancerous and other non-normal cells).

[0017] The invention also relates to the identification and use of gene expression patterns (or profiles or "signatures") which are correlated with (and thus able to discriminate between) cells in various grades (within one or more stage) of breast cancer. Grading of breast cancer is normally done for cases of invasive ductal carcinoma (IDC), and may be done for invasive lobular carcinoma (ILC) as well, where cytological criteria such as the Nottingham BSR, nuclear morphology, tissue architecture, proliferation index (such as assays for PCNA or Ki67), and extent of differentiation are used to assign a grade of I, II or III to particular breast cancer samples. Grade I is usually where the cells are still well differentiated and are usually positive for the estrogen receptor (ER). Grade III is usually where the cells are poorly differentiated and usually negative for ER. Grade II is generally where the cells have characteristics intermediate between grades I and III and can make up approximately 60% of all samples assayed. This is rather unfortunate because determination of grade in IDC is used directly for decisions on patient care.

[0018] Grading of cases of ductal carcinoma in situ (DCIS) is also possible, but is not routine in current clinical practice. Grading of lobular carcinoma in situ (LCIS) is also possible. In addition to grades I to III, conventional grading schemes may use the terms "low grade" and/or "high grade".

[0019] The present invention provides a non-subjective means for the identification of grades of various stages of cancer by assaying for the expression patterns associated with particular grades. Thus where subjective interpretation is used in grade assessment by pathologists using cytological criteria, the present invention provides objective gene expression patterns, which may optionally be performed in the absence of grading by histomorphological or cytological criteria, that are correlated with grades I-III (or low to high

grade) to provide a more accurate assessment of breast cancer progression. The expression patterns of the invention thus provide a means to determine breast cancer prognosis. Furthermore, the expression patterns can also be used as a means to assay small, node negative tumors that are not readily graded by conventional means.

[0020] The gene expression patterns comprise one or more than one gene capable of discriminating between various stages and/or grades of breast cancer with significant accuracy. The gene(s) are identified as correlated with various stages and/or grades of breast cancer such that the levels of their expression are relevant to a determination of the stage and/or grade of breast cancer of a cell. Thus in one aspect, the invention provides a method to determine the stage and/or grade of breast cancer of a subject afflicted with, or suspected of having, breast cancer by assaying a cell containing sample from said subject for expression of one or more than one gene disclosed herein as correlated with one or more stages and/or grades of breast cancer.

[0021] Gene expression patterns of the invention are identified by analysis of gene expression in multiple samples of each stage and/or grade to be studied. The overall gene expression profile of a sample is obtained through quantifying the expression levels of mRNA corresponding to approximately 12000 genes. This overall profile is then analyzed to identify genes that are positively, or negatively, correlated, with a stage and/or grade of breast cancer. An expression profile of a subset of human genes may then be identified by the methods of the present invention as correlated with a particular stage and/or grade of breast cancer. The use of multiple samples increases the confidence which a gene may be believed to be correlated with a particular stage and/or grade. Without sufficient confidence, it remains unpredictable whether a particular gene is actually correlated with a stage and/or grade of breast cancer and also unpredictable whether a particular gene may be successfully used to identify the stage and/or grade of an unknown breast cancer cell sample.

[0022] A profile of genes that are highly correlated with one stage and/or grade relative to another may be used to assay an sample from a subject afflicted with, or suspected of having, breast cancer to identify the stage and/or grade of breast cancer to which the sample belongs. Such an assay may be used as part of a method to determine the therapeutic treatment for said subject based upon the stage(s) and/or grade(s) of breast cancer identified. The present invention thus also provides for the advantageous ability to determine grade of a stage of breast cancer in combination with stage information to provide more detailed information in diagnosing and treating breast cancer. This has not always been possible in the diagnosis and treatment of breast cancer using previous protocols, where it was often only possible to determine stage with grade being only occasionally determinable.

[0023] The correlated genes may be used singly with significant accuracy or in combination to increase the ability to accurately discriminate between various stages and/or grades of breast cancer. The present invention thus provides means for correlating a molecular expression phenotype with a physiological (cellular) stage or state. This correlation provides a way to molecularly diagnose and/or monitor a cell's status in comparison to different cancerous versus

non-cancerous phenotypes as disclosed herein. Additional uses of the correlated gene(s) are in the classification of cells and tissues; determination of diagnosis and/or prognosis; and determination and/or alteration of therapy.

[0024] The ability to discriminate is conferred by the identification of expression of the individual genes as relevant and not by the form of the assay used to determine the actual level of expression. An assay may utilize any identifying feature of an identified individual gene as disclosed herein as long as the assay reflects, quantitatively or qualitatively, expression of the gene. Identifying features include, but are not limited to, unique nucleic acid sequences used to encode (DNA), or express (RNA), said gene or epitopes specific to, or activities of, a protein encoded by said gene. All that is required is the identity of the gene(s) necessary to discriminate between stages and/or grades of breast cancer and an appropriate cell containing sample for use in an expression assay.

[0025] In one aspect, the invention provides for the identification of the gene expression patterns by analyzing global, or near global, gene expression from single cells or homogenous cell populations which have been dissected away from, or otherwise isolated or purified from, contaminating cells beyond that possible by a simple biopsy. Because the expression of numerous genes fluctuate between cells from different patients as well as between cells from the same patient sample, multiple individual gene expression patterns are used as reference data to generate models which in turn permit the identification of individual gene(s) that are most highly correlated with particular breast cancer stages, and/or grades, and/or have the best the ability to discriminate cells of one stage and/or grade from another.

[0026] Use of the present invention has resulted in the identification of two major changes in gene expression, one of which is associated with the transition of normal breast cells to ADH (and persisting in a majority of DCIS and IDC cells), and the second is associated with tumor grade progression. The invention also provides the identification of a subset of genes that differ quantitatively in expression between DCIS and IDC cells.

[0027] In another aspect, the invention provides physical and methodological means for detecting the expression of gene(s) identified by the models generated by individual expression patterns. These means may be directed to assaying one or more aspect of the DNA template(s) underlying the expression of the gene(s), of the RNA used as an intermediate to express the gene(s), or of the proteinaceous product expressed by the gene(s).

[0028] In a further aspect, the gene(s) identified by a model as capable of discriminating between breast cancer stages and/or grades may be used to identify the cellular state of an unknown sample of cell(s) from the breast. Preferably, the sample is isolated via non-invasive means. The expression of said gene(s) in said unknown sample may be determined and compared to the expression of said gene(s) in reference data of gene expression patterns from the various stages and/or grades of breast cancer. Optionally, the comparison to reference samples may be by comparison to the model(s) constructed based on the reference samples.

[0029] One advantage provided by the present invention is that contaminating, non-breast cells (such as infiltrating

lymphocytes or other immune system cells) are not present to possibly affect the genes identified or the subsequent analysis of gene expression to identify the status of suspected breast cancer cells. Such contamination is present where a biopsy is used to generate gene expression profiles.

[0030] While the present invention has been described mainly in the context of human breast cancer, it may be practiced in the context of breast cancer of any animal known to be potentially afflicted by breast cancer. Preferred animals for the application of the present invention are mammals, particularly those important to agricultural applications (such as, but not limited to, cattle, sheep, horses, and other "farm animals") and for human companionship (such as, but not limited to, dogs and cats).

BRIEF DESCRIPTION OF THE FIGURES

[0031] FIG. 1. Laser capture microdissection. Phenotypically normal breast epithelium and phenotypically abnormal epithelium from atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) from a single breast specimen (case 79) were captured from hematoxylin and eosin-stained sections (8 m in thickness). Panels A, B and C show the images of pre-capture, post-capture, and the captured epithelial compartments, respectively.

[0032] FIGS. 2a and 2b. Expression profiles of breast cancer progression. 2a. Data matrix of 1940 genes by breast cancer samples of different pathological stages. Columns represent samples of tissues identified as ADH; grades I, II, or III of DCIS; and grades I, II, or III of IDC. Rows represent genes. Color scale shown at left bottom. Genes are ordered by hierarchical clustering, and samples are ordered by pathological stage and tumor grade. 2b. Examples of interesting clusters I, II and III.

[0033] FIG. 3. Two-dimensional clustering of 62 samples and 200 genes correlated with tumor grade. Genes (columns) and samples (rows) were clustered independently using a hierarchical clustering algorithm. Red dots indicate ADH samples and green dots indicate grade II samples (DCIS or IDC). Three main clusters (down regulated, Grade III signature, and Grade I signature) are highlighted by color bars. See FIG. 2A for color scale.

[0034] FIG. 4. Genes with increased expression in IDC relative to DCIS. Two dimensional clustering was applied to 1688 genes and 24 IDC samples and a portion of the data matrix is shown to highlight a cluster of genes with higher expression in IDC than its corresponding DCIS from the same patient. Expression values are expressed as log-ratios of expression in IDC to that in DCIS. Color scheme shown at left bottom.

[0035] FIG. 5. Breast cancer progression model Breast cancer initiates within normal epithelium evolving into ADH, which progresses into grade I DCIS. A simultaneous 2-dimensional process drives tumor grade progression from I to II to III and stage progression from DCIS to IDC.

DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENTS

[0036] Definitions of Terms as Used Herein:

[0037] A gene expression "pattern" or "profile" or "signature" refers to the relative expression of a gene between

two or more stages of breast cancer which is correlated with being able to distinguish between said stages.

[0038] A "gene" is a polynucleotide that encodes a discrete product, whether RNA or proteinaceous in nature. It is appreciated that more than one polynucleotide may be capable of encoding a discrete product. The term includes alleles and polymorphisms of a gene that encodes the same product, or a functionally associated (including gain, loss, or modulation of function) analog thereof, based upon chromosomal location and ability to recombine during normal mitosis

[0039] A "stage" or "stages" (or equivalents thereof) of breast cancer refer to a physiologic state of a breast cell as defined by known cytological or histological (including immunohistology, histochemistry, and immunohistochemistry) procedures and are readily known to skilled in the art. Non-limiting examples include normal versus abnormal, non-cancerous versus cancerous, the different stages described herein (e.g. hyperplastic, carcinoma, and invasive), and grades within different stages (e.g. grades I, II, or III or the equivalents thereof within cancerous stages).

[0040] The terms "correlate" or "correlation" or equivalents thereof refer to an association between expression of one or more genes and a physiologic state of a breast cell to the exclusion of one or more other stages and/or identified by use of the methods as described herein. A gene may be expressed at higher or lower levels and still be correlated with one or more breast cancer stages.

[0041] A "polynucleotide" is a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, this term includes double- and single-stranded DNA and RNA. It also includes known types of modifications including labels known in the art, methylation, "caps", substitution of one or more of the naturally occurring nucleotides with an analog, and intemucleotide modifications such as uncharged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), as well as unmodified forms of the polynucleotide.

[0042] The term "amplify" is used in the broad sense to mean creating an amplification product can be made enzymatically with DNA or RNA polymerases. "Amplification," as used herein, generally refers to the process of producing multiple copies of a desired sequence, particularly those of a sample. "Multiple copies" mean at least 2 copies. A "copy" does not necessarily mean perfect sequence complementarity or identity to the template sequence.

[0043] By corresponding is meant that a nucleic acid molecule shares a substantial amount of sequence identity with another nucleic acid molecule. Substantial amount means at least 95%, usually at least 98% and more usually at least 99%, and sequence identity is determined using the BLAST algorithm, as described in Altschul et al. (1990), J. Mol. Biol. 215:403-410 (using the published default setting, i.e. parameters w=4, t=17). Methods for amplifying mRNA are generally known in the art, and include reverse transcription PCR (RT-PCR) and those described in U.S. Patent Application (number to be assigned) entitled "Nucleic Acid Amplification" filed on Oct. 25, 2001 as attorney docket number 485772002900 as well as U.S. Provisional Patent Applications 60/298,847 (filed Jun. 15, 2001) and 60/257,

801 (filed Dec. 22, 2000), all of which are hereby incorporated by reference in their entireties as if fully set forth. Another method which may be used is quantitative PCR (or Q-PCR). Alternatively, RNA may be directly labeled as the corresponding cDNA by methods known in the art.

[0044] A "microarray" is a linear or two-dimensional array of preferably discrete regions, each having a defined area, formed on the surface of a solid support such as, but not limited to, glass, plastic, or synthetic membrane. The density of the discrete regions on a microarray is determined by the total numbers of immobilized polynucleotides to be detected on the surface of a single solid phase support, preferably at least about 50/cm², more preferably at least about 100/cm², even more preferably at least about 500/cm², but preferably below about 1,000/cm². Preferably, the arrays contain less than about 500, about 1000, about 1500, about 2000, about 2500, or about 3000 immobilized polynucleotides in total. As used herein, a DNA microarray is an array of oligonucleotides or polynucleotides placed on a chip or other surfaces used to hybridize to amplified or cloned polynucleotides from a sample. Since the position of each particular group of primers in the array is known, the identities of a sample polynucleotides can be determined based on their binding to a particular position in the microarray.

[0045] Because the invention relies upon the identification of genes that are over- or under-expressed, one embodiment of the invention involves determining expression by hybridization of mRNA, or an amplified or cloned version thereof, of a sample cell to a polynucleotide that is unique to a particular gene sequence. Preferred polynucleotides of this type contain at least about 20, at least about 22, at least about 24, at least about 26, at least about 28, at least about 30, or at least about 32 consecutive basepairs of a gene sequence that is not found in other gene sequences. The term "about" as used in the previous sentence refers to an increase or decrease of 1 from the stated numerical value. Even more preferred are polynucleotides of at least or about 50, at least or about 100, at least about or 150, at least or about 200, at least or about 250, at least or about 300, at least or about 350, or at least or about 400 basepairs of a gene sequence that is not found in other gene sequences. The term "about" as used in the preceding sentence refers to an increase or decrease of 10% from the stated numerical value. Such polynucleotides may also be referred to as polynucleotide probes that are capable of hybridizing to sequences of the genes, or unique portions thereof, described herein. Preferably, the sequences are those of mRNA encoded by the genes, the corresponding cDNA to such mRNAs, and/or amplified versions of such sequences. In preferred embodiments of the invention, the polynucleotide probes are immobilized on an array, other devices, or in individual spots that localize the probes.

[0046] Alternatively, and in another embodiment of the invention, gene expression may be determined by analysis of expressed protein in a cell sample of interest by use of one or more antibodies specific for one or more epitopes of individual gene products (proteins) in said cell sample. Such antibodies are preferably labeled to permit their easy detection after binding to the gene product.

[0047] The term "label" refers to a composition capable of producing a detectable signal indicative of the presence of the labeled molecule. Suitable labels include radioisotopes, nucleotide chromophores, enzymes, substrates, fluorescent

molecules, chemiluminescent moieties, magnetic particles, bioluminescent moieties, and the like. As such, a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means.

[0048] The term "support" refers to conventional supports such as beads, particles, dipsticks, fibers, filters, membranes and silane or silicate supports such as glass slides.

[0049] As used herein, a "breast tissue sample" or "breast cell sample" refers to a sample of breast tissue or fluid isolated from an individual suspected of being afflicted with, or at risk of developing, breast cancer. Such samples are primary isolates (in contrast to cultured cells) and may be collected by any non-invasive means, including, but not limited to, ductal lavage, fine needle aspiration, needle biopsy, the devices and methods described in U.S. Pat. No. 6,328,709, or any other suitable means recognized in the art. Alternatively, the "sample" may be collected by an invasive method, including, but not limited to, surgical biopsy.

[0050] "Expression" and "gene expression" include transcription and/or translation of nucleic acid material.

[0051] As used herein, the term "comprising" and its cognates are used in their inclusive sense; that is, equivalent to the term "including" and its corresponding cognates.

[0052] Conditions that "allow" an event to occur or conditions that are "suitable" for an event to occur, such as hybridization, strand extension, and the like, or "suitable" conditions are conditions that do not prevent such events from occurring. Thus, these conditions permit, enhance, facilitate, and/or are conducive to the event. Such conditions, known in the art and described herein, depend upon, for example, the nature of the nucleotide sequence, temperature, and buffer conditions. These conditions also depend on what event is desired, such as hybridization, cleavage, strand extension or transcription.

[0053] Sequence "mutation," as used herein, refers to any sequence alteration in the sequence of a gene disclosed herein interest in comparison to a reference sequence. A sequence mutation includes single nucleotide changes, or alterations of more than one nucleotide in a sequence, due to mechanisms such as substitution, deletion or insertion. Single nucleotide polymorphism (SNP) is also a sequence mutation as used herein. Because the present invention is based on the relative level of gene expression, mutations in non-coding regions of genes as disclosed herein may also be assayed in the practice of the invention.

[0054] "Detection" includes any means of detecting, including direct and indirect detection of gene expression and changes therein. For example, "detectably less" products may be observed directly or indirectly, and the term indicates any reduction (including the absence of detectable signal). Similarly, "detectably more" product means any increase, whether observed directly or indirectly.

[0055] Unless defined otherwise all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.

[0056] Specific Embodiments

[0057] The present invention relates to the identification and use of gene expression patterns (or profiles or "signa-

tures") which discriminate between (or are correlated with) cells in various stages and/or grades of breast cancer. Such patterns may be determined by the methods of the invention by use of a number of reference cell or tissue samples, such as those reviewed by a pathologist of ordinary skill in the pathology of breast cancer, which reflect various stages and/or grades of breast cancer. Because the overall gene expression profile differs from person to person, cancer to cancer, and cancer cell to cancer cell, correlations between certain cell states and genes expressed or underexpressed may be made as disclosed herein to identify genes that are capable of discriminating between different breast cancer states.

[0058] The present invention may be practiced with any number of genes believed, or likely to be, differentially expressed in breast cancer cells. Approximately 12,000 genes were used to identify hundreds of genes capable of discriminating between various stages and/or grades of breast cancer as shown in the following Examples. The identification may be made by using expression profiles of various homogenous normal and breast cancer cell populations, which were isolated by microdissection, such as, but not limited to, laser capture microdissection (LCM) of 100-1000 cells. Each gene of the expression profile may be assigned weights based on its ability to discriminate between two or more stages and/or grades of breast cancer. The magnitude of each assigned weight indicates the extent of difference in expression between the two groups and is an approximation of the ability of expression of the gene to discriminate between the two groups (and thus stages and/or grades). The magnitude of each assigned weight also approximates the extent of correlation between expression of individual gene(s) and particular breast cancer stages and/or grades.

[0059] It should be noted that merely high levels of expression in cells from a particular stage or grade does not necessarily mean that a gene will be identified as having a high absolute weight value.

[0060] Genes with top ranking weights (in absolute terms) may be used to generate models of gene expressions that would maximally discriminate between the two groups. Alternatively, genes with top ranking weights (in absolute terms) may be used in combination with genes with lower weights without significant loss of ability to discriminate between groups. Such models may be generated by any appropriate means recognized in the art, including, but not limited to, cluster analysis, supported vector machines, neural networks or other algorithm known in the art. The models are capable of predicting the classification of a unknown sample based upon the expression of the genes used for discrimination in the models. "Leave one out" cross-validation may be used to test the performance of various models and to help identify weights (genes) that are uninformative or detrimental to the predictive ability of the models. Cross-validation may also be used to identify genes that enhance the predictive ability of the models.

[0061] The gene(s) identified as correlated with particular breast cancer stages and/or grades by the above models provide the ability to focus gene expression analysis to only those genes that contribute to the ability to identify a cell as being in a particular stage and/or grade of breast cancer relative to another stage or grade. The expression of other

genes in a breast cancer cell would be relatively unable to provide information concerning, and thus assist in the discrimination of, different stages of breast cancer. For example, the cysteine-rich protein 1 (intestinal), identified by I.M.A.G.E. Consortium CloneID 1323448 ("The I.M.A.G.E. Consortium: An Integrated Molecular Analysis of Genomes and their Expression," Lennon et al., 1996, Genomics 33:151-152; see also image.llnl.gov) has been found to be useful in discriminations between normal and ADH cells (with persistence through DCIS and IDC). Thus expression of this gene would be utilized in models to discriminate between the above listed stages but not for discerning between other stages. This type of analysis is readily incorporated into algorithms used to generate models with reference gene expression data.

[0062] As will be appreciated by those skilled in the art, the models are highly useful with even a small set of reference gene expression data and can become increasingly accurate with the inclusion of more reference data although the incremental increase in accuracy will likely diminish with each additional datum. The preparation of additional reference gene expression data using genes identified and disclosed herein for discriminating between different stages and/or grades of breast cancer is routine and may be readily performed by the skilled artisan to permit the generation of models as described above to predict the status of an unknown sample based upon the expression levels of those genes.

[0063] To determine the (increased or decreased) expression levels of genes in the practice of the present invention, any method known in the art may be utilized. In one preferred embodiment of the invention, expression based on detection of RNA which hybridizes to the genes identified and disclosed herein is used. This is readily performed by any RNA detection or amplification+detection method known or recognized as equivalent in the art such as, but not limited to, reverse transcription-PCR, the methods disclosed in U.S. Patent Application (number to be assigned) entitled "Nucleic Acid Amplification" filed on Oct. 25, 2001 as attorney docket number 485772002900 as well as U.S. Provisional Patent Applications 60/298,847 (filed Jun. 15, 2001) and 60/257,801 (filed Dec. 22, 2000), and methods to detect the presence, or absence, of RNA stabilizing or destabilizing sequences.

[0064] Alternatively, expression based on detection of DNA status may be used. Detection of the DNA of an identified gene as methylated or deleted may be used for genes that have decreased expression in correlation with a particular breast cancer stage and/or grade. This may be readily performed by PCR based methods known in the art, including, but not limited to, Q-PCR. Conversely, detection of the DNA of an identified gene as amplified may be used for genes that have increased expression in correlation with a particular breast cancer stage and/or grade. This may be readily performed by PCR based, fluorescent in situ hybridization (FISH) and chromosome in situ hybridization (CISH) methods known in the art.

[0065] Expression based on detection of a presence, increase, or decrease in protein levels or activity may also be used. Detection may be performed by any immunohistochemistry (IHC) based, blood based (especially for secreted proteins), antibody (including autoantibodies

against the protein) based, ex foliate cell (from the cancer) based, mass spectroscopy based, and image (including used of labeled ligand) based method known in the art and recognized as appropriate for the detection of the protein. Antibody and image based methods are additionally useful for the localization of tumors after determination of cancer by use of cells obtained by a non-invasive procedure (such as ductal lavage or fine needle aspiration), where the source of the cancerous cells is not known. A labeled antibody or ligand may be used to localize the carcinoma(s) within a patient.

[0066] A preferred embodiment using a nucleic acid based assay to determine expression is by immobilization of one or more of the genes identified herein on a solid support, including, but not limited to, a solid substrate as an array or to beads or bead based technology as known in the art. Alternatively, solution based expression assays known in the art may also be used. The immobilized gene(s) may be in the form of polynucleotides that are unique or otherwise specific to the gene(s) such that the polynucleotide would be capable of hybridizing to a DNA or RNA corresponding to the gene(s). These polynucleotides may be the full length of the gene(s) or be short sequences of the genes (up to one nucleotide shorter than the full length sequence known in the art by deletion from the 5' or 3' end of the sequence) that are optionally minimally interrupted (such as by mismatches or inserted non-complementary basepairs) such that hybridization with a DNA or RNA corresponding to the gene(s) is not affected.

[0067] The immobilized gene(s) may be used to determine the state of nucleic acid samples prepared from sample breast cell(s) for which the pre-cancer or cancer status is not known or for confirmation of a status that is already assigned to the sample breast cell(s). Without limiting the invention, such a cell may be from a patient suspected of being afflicted with, or at risk of developing, breast cancer. The immobilized polynucleotide(s) need only be sufficient to specifically hybridize to the corresponding nucleic acid molecules derived from the sample. While even a single correlated gene sequence may to able to provide adequate accuracy in discriminating between two breast cancer cell stages and/or grades, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, or eleven or more of the genes identified herein may be used as a subset capable of discriminating may be used in combination to increase the accuracy of the method. The invention specifically contemplates the selection of more than one, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, or eleven or more of the genes disclosed in the tables and figures herein for use as a subset in the identification of whether an unknown or suspicious breast cancer sample is normal or is in one or more stages and/or grades of breast cancer. Optionally, the genes used will not include CloneID 809507, which is also known as GenBank accession number AA454563, described as an EST with high similarity to CD63 but of unknown function.

[0068] In embodiments where only one or a few genes are to be analyzed, the nucleic acid derived from the sample breast cancer cell(s) may be preferentially amplified by use of appropriate primers such that only the genes to be analyzed are amplified to reduce contaminating background

signals from other genes expressed in the breast cell. Alternatively, and where multiple genes are to be analyzed or where very few cells (or one cell) is used, the nucleic acid from the sample may be globally amplified before hybridization to the immobilized polynucleotides. Of course RNA, or the cDNA counterpart thereof may be directly labeled and used, without amplification, by methods known in the art.

[0069] The above assay embodiments may be used in a number of different ways to identify or detect the breast cancer stage and/or grade, if any, of a breast cancer cell sample from a patient. In many cases, this would reflect a secondary screen for the patient, who may have already undergone mammography or physical exam as a primary screen. If positive, the subsequent needle biopsy, ductal lavage, fine needle aspiration, or other analogous methods may provide the sample for use in the above assay embodiments. The present invention is particularly useful in combination with non-invasive protocols, such as ductal lavage or fine needle aspiration, to prepare a breast cell sample. The current analysis of ductal lavage samples is by cytological examination by a trained pathologist who classifies the samples in terms that are at least partly subjective: unsatisfactory (too few cells), benign (including fibrocystic change), atypical (or mild atypia), suspicious (or marked atypia), or malignant.

[0070] The present invention provides a more objective set of criteria, in the form of gene expression profiles of a discrete set of genes, to discriminate (or delineate) between meaningful stages and/or grades (or classes) of breast cancer cells. In particularly preferred embodiments of the invention, the assays are used to discriminate between the three grades (I, II, III) of carcinomas in situ as well as invasive carcinomas. With the use of alternative algorithms, such as neural networks, comparisons that discriminate between multiple (more than pairwise) classes may also be performed.

[0071] In one embodiment of the invention, the isolation and analysis of a breast cancer cell sample may be performed as follows:

- [0072] (1) Ductal lavage or other non-invasive procedure is performed on a patient to obtain a sample.
- [0073] (2) Sample is prepared and coated onto a microscope slide. Note that ductal lavage results in clusters of cells that are cytologically examined as stated above.
- [0074] (3) Pathologist or image analysis software scans the sample for the presence of non-normal and/or atypical cells.
- [0075] (4) If non-normal and/or atypical cells are observed, those cells are harvested (e.g. by micro-dissection such as LCM).
- [0076] (5) RNA is extracted from the harvested cells.
- [0077] (6) RNA is purified, amplified, and labeled.
- [0078] (7) Labeled nucleic acid is contacted with a microarray containing polynucleotides of the genes identified herein as correlated to discriminations between two or more stages of breast cancer under hybridization conditions, then processed and scanned to obtain a pattern of intensities of each spot

(relative to a control for general gene expression in cells) which determine the level of expression of the gene(s) in the cells.

[0079] (8) The pattern of intensities is analyzed by comparison to the expression patterns of the genes in known samples of normal and breast cancer cells (relative to the same control).

[0080] A specific example of the above method would be performing ductal lavage following a primary screen, observing and collecting non-normal and/or atypical cells for analysis. The comparison to known expression patterns, such as that made possible by a model generated by an algorithm (such as, but not limited to nearest neighbor type analysis, SVM, or neural networks) with reference gene expression data for the different breast cancer stages and/or grades, identifies the cells as being most likely grade III

[0081] Alternatively, the sample may permit the collection of both normal as well as non-normal and/or atypical cells for analysis. The gene expression patterns for each of these two samples will be compared to each other as well as the model and the normal versus individual abnormal comparisons therein based upon the reference data set. This approach can be significantly more powerful that the non-normal and/or atypical cells only approach because it utilizes significantly more information from the normal cells and the differences between normal and non-normal/atypical cells (in both the sample and reference data sets) to determine the status of the non-normal and/or atypical cells from the sample.

[0082] By appropriate selection of the genes used in the analysis, identification of the relative amounts of non-normal and/or atypical cells may also be possible, although in most clinical settings, the identification of the highest grade of breast cancer with confidence makes identification of lower grades less important. Stated differently, the identification of invasive cancer determines the clinical situation regardless of the presence of carcinoma in situ or hyperplastic cells, or the identification of carcinoma in situ makes determines the clinical situation regardless of the presence of hyperplastic cells. Similarly, the identification of a higher grade of cancer cells determines the clinical situation regardless of the presence of lower grades of cancer cells.

[0083] With use of the present invention, skilled physicians may prescribe treatments based on non-invasive samples that they would have prescribed for a patient which had previously received a diagnosis via a solid tissue biopsy.

[0084] The above discussion is also applicable where a palpable lesion is detected followed by fine needle aspiration or needle biopsy of cells from the breast. The cells are plated and reviewed by a pathologist or automated imaging system which selects cells for analysis as described above. This again provides a means of linking visual to molecular cytology and provides a less subjective means of identifying the physiological state of breast cancer cells without the need for invasive solid tissue biopsies.

[0085] The present invention may also be used, however, with solid tissue biopsies. For example, a solid biopsy may be collected and prepared for visualization followed by determination of expression of one or more genes identified herein to determine the stage of breast cancer, if any. One

preferred means is by use of in situ hybridization with polynucleotide or protein identifying probe(s) for assaying expression of said gene(s).

[0086] In an alternative method, the solid tissue biopsy may be used to extract molecules followed by analysis for expression of one or more gene(s). This provides the possibility of leaving out the need for visualization and collection of only those cells suspected of being non-normal and/or atypical. This method may of course be modified such that only cells suspected of being non-normal and/or atypical are collected and used to extract molecules for analysis. This would require visualization and selection as an prerequisite to gene expression analysis.

[0087] In a further modification of the above, both normal cells and cells suspected of being non-normal and/or atypical are collected and used to extract molecules for analysis of gene expression. The approach, benefits and results are as described above using non-invasive sampling.

[0088] In a further alternative to all of the above, the gene(s) identified herein may be used as part of a simple PCR or array based assay simply to determine the presence of non-normal and/or atypical cells in a sample from a non-invasive sampling procedure. This is simple to perform and utilizes genes identified to be the best discriminators of normal versus abnormal cells without the need for any cytological examination. If no non-normal and/or atypical cells are identified, no cytological examination is necessary. If non-normal and/or atypical cells are identified, cytological examination follows, and a more comprehensive analysis, as described above, may follow.

[0089] The genes identified herein may be used to generate a model capable of predicting the breast cancer stage and/or grade (if any) of an unknown breast cell sample based on the expression of the identified genes in the sample. Such a model may be generated by any of the algorithms described herein or otherwise known in the art as well as those recognized as equivalent in the art using gene(s) (and subsets thereof) disclosed herein for the identification of whether an unknown or suspicious breast cancer sample is normal or is in one or more stages and/or grades of breast cancer. The model provides a means for comparing expression profiles of gene(s) of the subset from the sample against the profiles of reference data used to build the model. The model can compare the sample profile against each of the reference profiles or against model defining delineations made based upon the reference profiles. Additionally, relative values from the sample profile may be used in comparison with the model or reference profiles.

[0090] In a preferred embodiment of the invention, breast cell samples identified as normal and non-normal and/or atypical from the same subject may be analyzed for their expression profiles of the genes used to generate the model. This provides an advantageous means of identifying the stage of the abnormal sample based on relative differences from the expression profile of the normal sample. These differences can then be used in comparison to differences between normal and individual abnormal reference data which was also used to generate the model.

[0091] The detection of gene expression from the samples may be by use of a single microarray able to assay gene expression from all pairwise comparisons disclosed herein for convenience and accuracy.

[0092] Other uses of the present invention include providing the ability to identify breast cancer cell samples as being those of a particular stage and/or grade of cancer for further research or study. This provides a particular advantage in many contexts requiring the identification of breast cancer stage and/or grade based on objective genetic or molecular criteria rather than cytological observation. It is of particular utility to distinguish different grades of a particular breast cancer stage for further study, research or characterization because no objective criteria for such delineation was previously available.

[0093] The materials for use in the methods of the present invention are ideally suited for preparation of kits produced in accordance with well known procedures. The invention thus provides kits comprising agents for the detection of expression of the disclosed genes for identifying breast cancer stage. Such kits optionally comprising the agent with an identifying description or label or instructions relating to their use in the methods of the present invention, is provided. Such a kit may comprise containers, each with one or more of the various reagents (typically in concentrated form) utilized in the methods, including, for example, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more primer complexes of the present invention (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase). A set of instructions will also typically be included.

[0094] The methods provided by the present invention may also be automated in whole or in part. All aspects of the present invention may also be practiced such that they consist essentially of a subset of the disclosed genes to the exclusion of material irrelevant to the identification of breast cancer stages in a cell containing sample.

[0095] Gene Expression Profiles of Pathological Stage and Histological Grade Progression of Human Breast Cancer

[0096] To identify gene expression changes that occur during breast cancer progression, isolation via LCM phenotypically of abnormal epithelium from ADH, DCIS and IDC and phenotypically normal epithelium (henceforth referred to as normal) from 36 breast cancer patients and 3 healthy mammoplasty reduction patients (FIG. 1A and Table 1) was performed. The resulting 300 independently microdissected samples were used to interrogate a microarray containing approximately 12,000 human genes. Genes showing significant differences in the pair-wise comparisons of normal vs. ADH, normal vs. DCIS and normal vs. IDC were selected by linear discriminant analysis, resulting in a total of 1940 unique genes for further exploration.

TABLE 1

<u>P</u>	Patient and tumor characteristics of clinical samples in this study					
Case ID	Stages Microdissected	Age	ER	PR	HER2	Nodea
14	DCIS (III), IDC (III) N, DCIS (I), IDC (I) ADH, DCIS (I) DCIS (I), IDC (II)	48 44 44 81	Pos Pos ND Pos	Pos Pos ND Neg	Pos ND ND ND	Pos Pos Pos ND

TABLE 1-continued

<u>P</u>	Patient and tumor characteristics of clinical samples in this study						
Case							
ID	Stages Microdissected	Age	ER	PR	HER2	Nodea	
30	N, DCIS (III), IDC (III)	47	Neg	Neg	Neg	Pos	
41	N, DCIS (II), IDC (II)	55	Pos	Pos	ND	Neg	
43	N, DCIS (II), IDC (II)	53	Pos	Neg	Neg	Pos	
	N, DCIS (III), IDC (III)	28	Pos	Pos	Neg	Neg	
	N, DCIS (I)	36	Pos	Neg	Neg	Neg	
ь ₅₇	N, ADH, DCIS (I)	34	ND	ND	ND	Neg	
65	N, DCIS (III), IDC (III)	39	Pos	Pos	Neg	Neg	
	MPR	46					
79	N, ADH, DCIS (I), IDC	54	Pos	Pos	Neg	Pos	
	(I)						
88	N, DCIS (III), IDC (III)	35	Pos	Pos	ND	Pos	
95	MPR	16					
96	N, DCIS (III), IDC (III)	31	Neg	Neg	Neg	Pos	
97	DCIS (III), IDC (III)	79	Neg	Neg	Pos	Pos	
102	N, DCIS (I), IDC (I)	55	Pos	Neg	Neg	Pos	
	N, DCIS (III), IDC (III)	31	Neg	Pos	Neg	Pos	
	N, DCIS (II), IDC (II)	45	Pos	Pos	Pos	Pos	
130	N, DCIS (II), IDC (II)	54	Pos	Pos	Neg	Pos	
	N, ADH, DCIS (II), IDC	37	Pos	Pos	Pos	Pos	
	(II)						
	N, DCIS (III), IDC (III)	44	Neg	Neg	Pos	Pos	
148	N, DCIS (II), IDC (II)	42	Pos	Pos	Neg	Pos	
^ь 152	N, DCIS (III)	55	ND	ND	ND	Neg	
153	N, IDC (I)	46	Pos	Pos	Pos	Pos	
169	N, DCIS (II), IDC (II)	34	Pos	Pos	Neg	Pos	
170	N, DCIS (II), IDC (II)	44	Pos	Pos	Pos-	Pos	
					FISH		
	N, DCIS (I), IDC (I)	52	Pos	Pos	Neg	Neg	
178	N, DCIS (III), IDC (III)	43	Pos	Pos	Pos	Pos	
	N, DCIS (III), IDC (III)	37	Neg	Neg	Pos-	Pos	
				-	FISH		
180	N, ADH, DCIS (I), IDC	46	Pos	Pos	Neg	Pos	
	(I)						
183	N, DCIS (II)	46	ND	ND	ND	Pos	
191	N, ADH, DCIS (II)	43	ND	ND	ND		
193	N, ADH, DCIS (I), IDC	45	Pos	Pos	Neg	Pos	
	(I)						
198	N, DCIS (II), IDC (II)	30	Pos	Pos	Neg	Neg	
	N, ADH, DCIS (I)	62	ND	ND	ND	Neg	
	N, ADH	45	ND	ND	ND	Neg	
215	MPR	30				-	

^aNodal status. Tumor grades indicated by roman numerals in parenthesis after the pathological stage of the specimen. Abbreviations used for pathological stages: N, normal; ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; MPR, mammoplasty reduction. Abbreviations used for tumor marker status: ND, not determined; Pos, positive; Neg, negative; Pos-Fish, HER2-positivity by fluorescent in situ hybridization (FISH).

bIndividuals with pre-invasive breast cancer only.

[0097] One important advantage of LCM is the ability to procure both normal and diseased cell populations from the same biopsy. Therefore, the expression level of each gene in a disease state (ADH or DCIS or IDC) is represented as the ratio to the patient-matched normal, which highlights differences due to disease state as opposed to the genetic background of a particular patient. Unsupervised hierarchical clustering of the 1940 genes based on the resulting data across all samples reveals two main clusters (See FIG. 2a). One cluster demonstrates increased expression in a majority of the diseased samples, and another cluster shows a relatively uniform decrease in expression across all samples. Importantly, most of these alterations (both increases and decreases) occur in the earliest stage of progression (ADH) and persist throughout later stages of DCIS and IDC. In addition, closer examination of this global view suggests that some of these genes increase their expression in DCIS/IDC of higher tumor grade. See Example II below.

[0098] Three example clusters of genes, further illustrate these points (FIG. 2b). Cluster I consists of genes whose expression levels increase in ADH and persist in a majority of DCIS and IDC samples. The gene CRIP1 is especially prominent and thus may be a potential biomarker for the detection of breast cancer including the pre-malignant stage of ADH. The genes of Cluster I along with their I.M.A.G.E. Consortium CloneID number and descriptive identifiers are listed in Table 2.

and IDC. The genes of Cluster III along with their I.M.A.G.E. Consortium CloneID number and descriptive identifiers are listed in Table 4.

TABLE 4

IMAGE CloneID	Description
768007 877621 1570670	CL683 weakly similar to glutathione peroxidase 2 nGAP-like protein IL22RA2 class II cytokine receptor

TABLE 2

IMAGE CloneI	D Description
729975	MGEA5 meningioma expressed antigen 5 (hyaluronidase)
241043	Human clone 137308 mRNA, partial cds
1556859	ESTs, Weakly similar to I38022 hypothetical protein [H. sapiens]
1911343	RAB26 RAB26, member RAS oncogene family
589232	FLJ11506 hypothetical protein FLJ11506
138189	WFS1 Wolfram syndrome 1 (wolframin)
1323448	CRIP1 cysteine-rich protein 1 (intestinal)
488202	Homo sapiens cDNA FLJ31235 fis, clone KIDNE2004681, moderately similar to
	Mus musculus peroxisomal long chain acyl-CoA thioesterase Ib (Pte1b) gene
256619	HSD17B7 hydroxysteroid (17-beta) dehydrogenase 7
810063	GFER growth factor, erv1 (S. cerevisiae)-like (augmenter of liver regeneration)
824879	MGC11275 hypothetical protein MGC11275

[0099] Genes in cluster II display an expression pattern that correlate with tumor grade with the highest expression in grade III DCIS/IDC. Cluster II includes several genes important in the cell cycle (CENPA, HEC, UBE2C and PLK), and their elevated expression in grade III DCIS/IDC may reflect the higher proliferative index of high-grade tumors. The genes of Cluster II along with their I.M.A.G.E. Consortium CloneID number and descriptive identifiers are listed in Table 3.

TABLE 4-continued

IMAGE CloneID	Description
1881774	KIAA1678 KIAA1678
1686766	Rag D protein
505864	RGL RalGDS-like gene
1569187	HS3ST4 heparan sulfate (glucosamine) 3-O-

TABLE 3

IMAGE CloneID	Description
66406	ESTs, Highly similar to T47163 hypothetical protein DKFZp762E1312.1 [H. sapiens]
1517595	KIAA0175 likely ortholog of maternal embryonic leucine zipper kinase
2017415	CENPA centromere protein A (17 kD)
345787	HEC highly expressed in cancer, rich in leucine heptad repeats
504308	FLJ10540 hypothetical protein FLJ10540
769921	UBE2C ubiquitin-conjugating enzyme E2C
128711	ANLN anillin (Drosophila Scraps homolog), actin binding protein
744047	PLK polo (Drosophia)-like kinase
128695	Homo sapiens, Similar to RIKEN cDNA 1810054O13 gene, clone IMAGE: 3845933,
	mRNA, partial cds

[0100] Genes in cluster III demonstrate decreased expression in all three pathological stages. The epithelium-specific transcription factor ELF5 is noteworthy since it maps to chromosome 11 p13-15, a region subject to frequent loss of heterozygosity and rearrangement in multiple carcinoma including breast cancer (Zhou, J. et al. (1998a)). Therefore, loss of expression of ELF5 in ADH may be an important first step in the initiation of breast malignancy. Taken together, these results demonstrate that the normal to ADH transition is associated with extensive gene expression alterations and support the notion that ADH is a direct precursor to DCIS

TABLE 4-continued

IMAGE CloneID	Description
755881 1864302	sulfotransferase 4 AQP5 aquaporin 5 ELF5 E74-like factor 5 (ets domain transcription factor)

[0101] To gain further insight into the observation that different histological grades may be associated with distinct gene expression signatures (FIG. 2b, cluster II), two sets of genes were identified. Each comprised 100 genes correlating with grade I and grade III samples respectively using discriminant analysis. Again, to cancel out potential differences in the absolute levels of expression among individuals, gene expression values were expressed as ratios of ADH, DCIS or IDC to the corresponding normal. Unsupervised two-dimensional clustering revealed three major gene clusters (FIG. 3). One cluster of genes demonstrated

decreased expression in all samples with subtle quantitative differences between grade I and grade III (green bar). A second cluster of genes (denoted as the grade III signature) shows markedly increased expression in grade III samples (red bar), whereas a third cluster (grade I signature) demonstrates increased expression primarily in grade I samples (blue bar). The genes of "green bar" genes along with their I.M.A.G.E. Consortium CloneID number, chromosomal location and descriptive identifiers (if known) are listed in Table 5.

TABLE 5

Clone ID	location	Description
471196	2q37	ITM3 integral membrane protein 3
796904	6q24–q25	PLAGL1 pleiomorphic adenoma gene-like 1
32493	2q31.1	ITGA6 "integrin, alpha 6"
1534700		KIAA0830 KIAA0830 protein
712139 291478	2q37.2 1p36	ARL7 ADP-ribosylation factor-like 7 RUNX3 runt-related transcription factor 3
	19p13.1	B3GNT3 "UDP-GlcNAc: betaGal beta-1,3-N-acetylglucosaminyltransferase 3"
1653105	3p14-p12	TSP50 testes-specific protease 50
665384	16	KIAA1609 KIAA1609 protein
	16q23–q24	KARS lysyl-tRNA synthetase
	18q11.2	FLJ21610 hypothetical protein FLJ21610
503671	16q22.1 6	CDH3 "cadherin 3, type 1, P-cadherin (placental)" Homo sapiens cDNA FLJ14368 fis, clone HEMBA1001122
3172883		ESTs, Weakly similar to S24195 dopamine receptor D4 [H. sapiens]
	16p12.1	FLJ20274 hypothetical protein FLJ20274
	17q11.2	DKFZP564K1964 DKFZP564K1964 protein
121454	17p13.1	ALOX12 arachidonate 12-lipoxygenase
197913	1p34.2	SFPQ splicing factor proline/glutamine rich (polypyrimidine tract-binding protein-associated)
43090 814826	20q13.12 2	H-L(3)MBT lethal (3) malignant brain tumor l(3)mbt protein (Drosophila) homolog ESTs
	12q13.13	DKFZP586A011 DKFZP586A011 protein
814815	7-22 -21 1	CARRY C-2
1601845	7q22–q31.1 19p13.3	CAPRI Ca2+-promoted Ras inactivator GNG7 "guanine nucleotide binding protein (G protein), gamma 7"
	19q13.32	KIAA1183 KIAA1183 protein
1592530	3p21.31	IP6K2 mammalian inositol hexakisphosphate kinase 2
431231		EFEMP2 EGF-containing fibulin-like extracellular matrix protein 2
267254		ESTS, Highly similar to LOX2_HUMAN ARACHIDONATE 12-LIPOXYGENASE [H. sapiens]
43679		ESTs
	12q24.21 12q13.1	KIAA0682 KIAA0682 gene product HDAC7A histone deacetylase 7A
1569077	6	EST
138242	1	ESTs, Moderately similar to MAS2_human mannan-binding lectin serine protease 2 precursor [H. sapiens]
417637	4p16	KIAA1276 KIAA1276 protein
248631	3p21.2-p21.1	AMT aminomethyltransferase (glycine cleavage system protein T)
1553530	2	KIAA0788 KIAA0788 protein
307029 1883169	5p15.32	FLJ20303 hypothetical protein FLJ20303
345764	3p23	SATB1 special AT-rich sequence binding protein 1 (binds to nuclear matrix/scaffold-associating DNA's)
703964	11q23	INPPL1 inositol polyphosphate phosphatase-like 1
70349	Xq13.1	MLLT7 "myeloid/lymphoid or mixed-lineage leukemia (trithorax (Drosophila) homolog); translocated to, 7"
	15q11.2-q21.3	
126466	1p34.1	KIAA0467 KIAA0467 protein
1631682	1p32	PPIE peptidylprolyl isomerase E (cyclophilin E)
172783 1566877		ZNF358 zinc finger protein 358 C11orf2 chromosome 11 open reading frame2
1630990	3p21.3–p21.2	
283124		Homo sapiens, clone IMAGE: 3917549, mRNA, partial cds
126415		Homo sapiens mRNA; cDNA DKFZp566H0124 (from clone DKFZp566H0124)
344168		POLL "polymerase (DNA directed), lambda"
823634	10	ESTs
325583		EST
	17p13.2	GABARAP GABA(A) receptor-associated protein
511831	3	MGC12936 hypothetical protein MGC12936

TABLE 5-continued

Clone ID	location	Description
180561 206217 108667 839796 502518 810981 1635059	1p13.3 11p11.2 22q12.2 12p13.31 3p21 22q13 9	GSTM1 glutathione S-transferase M1 NR1H3 "nuclear receptor subfamily 1, group H, member 3" SF3A1 "splicing factor 3a, subunit 1, 120 kD" LOC51147 candidate tumor suppressor p33 ING1 homolog LAMB2 "laminin, beta 2 (laminin S)" FLJ20699 hypothetical protein FLJ20699 Homo sapiens, clone MGC: 16638 IMAGE: 4121964, mRNA, complete cds
	17p13.1 17p13-p11 10p11.2 7q31.3	TNFSF13 "tumor necrosis factor (ligand) superfamily, member 13" ACADVL "acyl-Coenzyme A dehydrogenase, very long chain" ZNF37A zinc finger protein 37a (KOX 21) LKR/SDH lysine-ketoglutarate reductase/saccharopine dehydrogenase

[0102] The genes of "red bar" genes along with their I.M.A.G.E. Consortium CloneID number, chromosomal

location and descriptive identifiers (if known) are listed in Table 6.

TABLE 6

		TABLE 0
	Chromosomal	
Clone ID	location	Description
293727	22a13.2	MGC861 hypothetical protein MGC861
	6p22.1-p21.2	CLIC1 chloride intracellular channel 1
839682		UBE2N ubiquitin-conjugating enzyme E2N (homologous to yeast UBC13)
815501	*	MGC2721 hypothetical protein MGC2721
1587847	2q21	MCM6 "minichromosome maintenance deficient (mis5, S. pombe) 6"
1416055	8	KIAA0165 "extra spindle poles, S. cerevisiae, homolog of"
2018131	12p13.2-p13.1	RACGAP1 Rac GTPase activating protein 1
1476053		RAD51 RAD51 (S. cerevisiae) homolog (E coli RecA homolog)
869375	15q26.1	IDH2 "isocitrate dehydrogenase 2 (NADP+), mitochondrial"
951241		ANKT nucleolar protein ANKT
743810	12p13	MGC2577 hypothetical protein MGC2577
292936	1p34.3	FLJ10468 hypothetical protein FLJ10468
66406	2	ESTs, Highly similar to T47163 hypothetical protein DKFZp762E1312.1 [H. sapiens]
1517595	9p11.2	KIAA0175 likely ortholog of maternal embryonic leucine zipper kinase
	2p24–p21	CENPA centromere protein A (17 kD)
	18p11.31	HEC "highly expressed in cancer, rich in leucine heptad repeats"
	10cen-q26.11	FLJ10540 hypothetical protein FLJ10540
	20q13.12	UBE2C ubiquitin-conjugating enzyme E2C
	7p15-p14	ANLN "anillin (Drosophila Scraps homolog), actin binding protein"
744047		PLK polo (Drosophia)-like kinase
564981	18	Homo sapiens, Similar to RIKEN cDNA 2810433K01 gene, clone MGC: 10200 IMAGE: 3909951,
250050	0-22	mRNA, complete cds
259950	8q23	CML66 chronic myelogenous leukemia tumor antigen 66
825606 814270	1	KNSL1 kinesin-like 1 PMSCL1 polymyositis/scleroderma autoantigen 1 (75 kD)
	4q27 8p21–p12	TOPK PDZ-binding kinase; T-cell originated protein kinase
	20q13.2–q13.3	STK15 serine/threonine kinase 15
	1q21.2	LASS2 "longevity assurance(LAG1, S. cerevisiae) homolog 2"
1702742		SLC7A5 "solute carrier family 7 (cationic amino acid transporter, y+ system), member 5"
1631634	9q34.11	MGC3038 "hypothetical protein similar to actin related protein 2/3 complex, subunit 5"
725454	9q22	CKS2 CDC28 protein kinase 2
	17q21-q22	TOP2A topoisomerase (DNA) II alpha (170 kD)
796469	1q32.1	HSPC150 HSPC150 protein similar to ubiquitin-conjugating enzyme
705064	4p16.3	TACC3 "transforming, acidic coiled-coil containing protein 3"
471568		HN1 hematological and neurological expressed 1
742707	7	ESTs, Weakly similar to MUC2_HUMAN MUCIN 2 PRECURSOR [H. sapiens]
624667	9q34.13	LOC51117 CGI-92 protein
1422338	2p25-p24	RRM2 ribonucleotide reductase M2 polypeptide
700792	14q22	CDKN3 cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase)
280375	8p22	PRO2000 PRO2000 protein
122241	1p34.2	PSMB2 "proteasome (prosome, macropain) subunit, beta type, 2"
2309073	2q33–q34	FZD5 frizzled (Drosophila) homolog 5
2322367	2p14–p13	RTN4 reticulon 4
796694	17q25	BIRC5 baculoviral IAP repeat-containing 5 (survivin)
74677		Homo sapiens, Similar to RIKEN cDNA A430107J06 gene, clone MGC: 21416 IMAGE: 4452699,
		mRNA, complete cds
824524	17q21.32	UGTREL1 UDP-galactose transporter related
825282		DKFZP586L0724 DKFZP586L0724 protein
824962	17q23.1-q23.3	KPNA2 "karyopherin alpha 2 (RAG cohort 1, importin alpha 1)"
42831	11q11–q12	NTKL N-terminal kinase-like
	=	

TABLE 6-continued

IMAGE Clone ID	Chromosomal location	Description
814054	1q24-25	KIAA0040 KIAA0040 gene product
2054635	20q13.33	PSMA7 "proteasome (prosome, macropain) subunit, alpha type, 7"
210862	17q24-17q25	ACOX1 "acyl-Coenzyme A oxidase 1, palmitoyl"
897997	Xp11.22-p11.21	SMC1L1 "SMC1 (structural maintenance of chromosomes 1, yeast)-like 1"
	14q13.1	NP nucleoside phosphorylase
756595	1q21	S100A10 "S100 calcium-binding protein A10 (annexin II ligand, calpactin I, light polypeptide
054222	2.25	(p11))"
951233	2q35	PSMB3 "proteasome (prosome, macropain) subunit, beta type, 3"
	Xp22.31	SYAP1 reserved CA5B "carbonic anhydrase VB, mitochondrial"
1660666 1696757		KIAA1165 hypothetical protein KIAA1165
361922	15q22.2 1p34	ZMPSTE24 "zinc metalloproteinase, STE24 (yeast, homolog)"
823598	1p34	PSMD12 "proteasome (prosome, macropain) 26S subunit, non-ATPase, 12"
	3q21.2	PDIR for protein disulfide isomerase-related
	8q12.1	ASPH aspartate beta-hydroxylase
	20q13.33	GP110 "cell membrane glycoprotein, 110000M(r) (surface antigen)"
1474424		Homo sapiens cDNA FLJ31911 fis, clone NT2RP7004751
1947647		LOC51651 CGI-147 protein
	12q23.2	FLJ10074 hypothetical protein FLJ10074
753378	4q34.1	FLJ22649 hypothetical protein FLJ22649 similar to signal peptidase SPC22/23
124331	16	CPSF5 "cleavage and polyadenylation specific factor 5, 25 kD subunit"
327506	15	Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 327506
345538	9q21–q22	CTSL cathepsin L
753320	8q13.3	FLJ20533 hypothetical protein FLJ20533
	8q12.2	FLJ10511 hypothetical protein FLJ10511
149355	8q13.1	TRAM translocating chain-associating membrane protein
347373	8q13.3	TCEB1 "transcription elongation factor B (SIII), polypeptide 1 (15 kD, elongin C)"
	17q21.31	PRO1855 hypothetical protein PRO1855
624627	2p25-p24	RRM2 ribonucleotide reductase M2 polypeptide
731023	9q34	WDR5 WD repeat domain 5
786067	. *	CDC25B cell division cycle 25B
878330	3	Homo sapiens cDNA: FLJ22044 fis, clone HEP09141
1631132		PHT2 peptide transporter 3
756442 823930	7q11.2	POR P450 (cytochrome) oxidoreductase ARPC1A "actin related protein 2/3 complex, subunit 1A (41 kD)"
268946	7q22.1 2	Homo sapiens cDNA FLJ31861 fis, clone NT2RP7001319
1914863	2p13.3-p13.1	DYSF "dysferlin, limb girdle muscular dystrophy 2B (autosomal recessive)"
789012	3p25-p24	FBLN2 fibulin 2
781047	2q14	BUB1 budding uninhibited by benzimidazoles 1 (yeast homolog)
753428	8	Homo sapiens, Similar to RIKEN cDNA 1110014B07 gene, clone MGC: 20766 IMAGE: 4586039,
, 55 .20	=	mRNA, complete cds

[0103] The genes of "blue bar" genes along with their I.M.A.G.E. Consortium CloneID number, chromosomal

location and descriptive identifiers (if known) are listed in Table 7.

TABLE 7

IMAGE Clone ID	Chromosomal location	Description
286378	19q13.4	ZNF135 zinc finger protein 135 (clone pHZ-17)
854763	2q31.1	MGC20702 hypothetical protein MGC20702
344959	4p16.2	HSA250839 gene for serine/threonine protein kinase
278222	18	Homo sapiens, clone MGC: 10083 IMAGE: 3897118, mRNA, complete cds
1679977	18	Homo sapiens, clone MGC: 10083 IMAGE: 3897118, mRNA, complete cds
504959	11	Homo sapiens mRNA; cDNA DKFZp586G0321 (from clone DKFZp586G0321)
342181	18q21.3	BCL2 B-cell CLL/lymphoma 2
502988	19p13.3-p13.2	ZNF20 zinc finger protein 20 (KOX 13)
590310	2	Homo sapiens, clone MGC: 17393 IMAGE: 3914851, mRNA, complete cds
186301	11	Homo sapiens cDNA FLJ12924 fis, clone NT2RP2004709
357120	16	Homo sapiens, clone IMAGE: 3538007, mRNA, partial cds
203003	16p13.3	NME4 "non-metastatic cells 4, protein expressed in"
725649	14q11.2	NFATC4 "nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4"
2014373	2q11.2	HNK-1ST HNK-1 sulfotransferase
183440	22q13.33	ARSA arylsulfatase A
2014856	1q25.3	HLALS "major histocompatibility complex, class I-like sequence"
256619	10p11.2	HSD17B7 hydroxysteroid (17-beta) dehydrogenase 7
768570	1q21.2	FLJ11280 hypothetical protein FLJ11280
2975668	11p13	RAG2 recombination activating gene 2

TABLE 7-continued

IMAGE Clone ID	Chromosomal	Description
Clotte ID	location	Description
278430	2q23.3	KIF5C kinesin family member 5C
1558233	3	ESTs
627248	5q23.2	SBBI31 SBBI31 protein
	10p15–p14	IL2RA "interleukin 2 receptor, alpha"
1492468	1p32.3	KIAA0452 DEME-6 protein
292770	1	Homo sapiens, clone IMAGE: 3627860, mRNA, partial cds
1456701	1q21	BCL9 B-cell CLL/lymphoma 9
743146	18p11.21	FLJ23403 hypothetical protein FLJ23403
1557637	5	ESTs
1583198	5	ESTs, Weakly similar to S65824 reverse transcriptase homolog [H. sapiens]
741891	6p21.3	RAB2L "RAB2, member RAS oncogene family-like"
179572	1	Homo sapiens cDNA FLJ14227 fis, clone NT2RP3004095
1569902	16p11.2	KIAA0556 KIAA0556 protein
127646	18	ESTs, Weakly similar to T00365 hypothetical protein KIAA0670 [H. sapiens]
782688	1p35.1	P28 "dynein, axonemal, light intermediate polypeptide"
1883630	15	KIAA1547 KIAA1547 protein
725340	4p16.3	TETRAN tetracycline transporter-like protein
726890	10q24.2	MGC4643 hypothetical protein MGC4643
82322	2p23.3	RBSK ribokinase
839382	9	Homo sapiens, Similar to RIKEN cDNA 1700017I11 gene, clone MGC: 26847 IMAGE: 4821517,
		mRNA, complete cds
49630	3p14.3	CACNA1D ["calcium channel, voltage-dependent, L type, alpha 1D subunit"
32050	2	Homo sapiens mRNA; cDNA DKFZp586P1124 (from clone DKFZp586P1124)
110226		TNFRSF10C "tumor necrosis factor receptor superfamily, member 10c, decoy without an
		intracellular domain"
1932725	1q32.1	ZNF281 zinc finger protein 281
279720	11	Homo sapiens, Similar to RIKEN cDNA 1700008D07 gene, clone MGC: 9830 IMAGE: 3863323,
		mRNA, complete cds
1733262	3p21.3	BLu BLu protein
197903	1	ESTs, Moderately similar to unnamed protein product [H. sapiens]
1556859	17	ESTs, Weakly similar to I38022 hypothetical protein [H. sapiens]
726699		Homo sapiens, clone MGC: 9889 IMAGE: 3868330, mRNA, complete cds

[0104] Most striking is the existence of reciprocal gradients in the intensities of these two signatures from grade I to grade III with most grade II lesions exhibiting both signatures to varying degrees (e.g., cases 130, 169, 198). Interestingly, some grade II lesions show an expression pattern that is most similar to either grade I or grade III lesions (case 41 and 43, respectively), and some grade III samples also express the grade I signature (e.g., cases 65, 88 and 112). Histological grade is an important characteristic of breast cancer with proven utility in patient prognostication and treatment (Fitzgibbons, P. L. et al.). For example, tumors of grade III are more likely to recur and are more likely to respond to chemotherapy than those of grade I (Page, D. L. et al. (2001)). However, the current tumor grading system relies mainly on histomorphological criteria, which, although highly successful in differentiating grade I from grade III tumors, are inadequate to score grade II tumors consistently (Dalton, L. W. et al.). This difficulty may be explained by the existence of a transcriptional continuum from grade I to grade III as we observed here. Therefore, a gene expression-based molecular grading system may allow greater precision in classifying breast cancer and provide greater insight into the state of progression of a particular tumor.

[0105] An expanded set of 250 genes that display increased expression in Grade I samples in comparison to Grade III samples are identified in Table 8 by use of their I.M.A.G.E. Consortium CloneID numbers along with their chromosomal location and descriptive identifiers (if known) and relative weights.

TABLE 8

IMAGE Clone ID	Weight	Chromosome Location	Description
	1.451333 1.28687	4p16.2 11	HSA250839 gene for serine/threonine protein kinase Homo sapiens mRNA; cDNA DKFZp586G0321 (from clone DKFZp586G0321)
814815	1.2414		
743146	1.221818	18p11.21	FLJ23403 hypothetical protein FLJ23403
417637	1.208243	4p16	KIAA1276 KIAA1276 protein
502988	1.133964	19p13.3-p13.2	ZNF20 zinc finger protein 20 (KOX 13)
1679977	1.131337	18	Homo sapiens, clone MGC: 10083 IMAGE: 3897118, mRNA, complete cds
342181	1.12098	18q21.3	BCL2 B-cell CLL/lymphoma 2
1932725	1.11409	1q32.1	ZNF281 zinc finger protein 281
70349	1.110469	Xq13.1	MLLT7 myeloid/lymphoid or mixed-lineage leukemia (trithorax (Drosophila) homolog); translocated to, 7

TABLE 8-continued

IMAGE		Chromosome	
Clone ID	Weight	Location	Description
	1.077508	1p13.3	GSTM1 glutathione S-transferase M1
	1.068369	11	Homo sapiens cDNA FLJ12924 fis, clone NT2RP2004709
	1.065646	18	Homo sapiens, clone MGC: 10083 IMAGE: 3897118, mRNA, complete cds
	1.062902	16	Homo sapiens, clone IMAGE: 3538007, mRNA, partial cds
	1.04971	3p21.2–p21.1	AMT aminomethyltransferase (glycine cleavage system protein T)
	1.021857	20q13.12	H-L(3)MBT lethal (3) malignant brain tumor I(3)mbt protein (Drosophila) homolog PPIE peptidylprolyl isomerase E (cyclophilin E)
	1.021091 1.003495	1p32 17p13.1	TNFSF13 tumor necrosis factor (ligand) superfamily, member 13
	1.00279	17p13.1	EST
	0.979795	15	KIAA1547 KIAA1547 protein
	0.979642	2	Homo sapiens mRNA; cDNA DKFZp586P1124 (from clone DKFZp586P1124)
	0.962484	3p21	LAMB2 laminin, beta 2 (laminin S)
126415	0.957069	10	Homo sapiens mRNA; cDNA DKFZp566H0124 (from clone DKFZp566H0124)
	0.946458	2p23.3	RBSK ribokinase
	0.936737	11p13	RAG2 recombination activating gene 2
	0.931636	3	ESTs
	0.928002	10p11.2	HSD17B7 hydroxysteroid (17-beta) dehydrogenase 7
	0.92794	11p11.2	NR1H3 nuclear receptor subfamily 1, group H, member 3
	0.926526 0.906969	10q24.2	MGC4643 hypothetical protein MGC4643
	0.89695	2q11.2 19	HNK-1ST HNK-1 sulfotransferase Homo sapiens, clone IMAGE: 3917549, mRNA, partial cds
	0.887613	6p21.3	RAB2L RAB2, member RAS oncogene family-like
	0.885374	3p14.3	CACNA1D calcium channel, voltage-dependent, L type, alpha 1D subunit
	0.871817	3p21.31	IP6K2 mammalian inositol hexakisphosphate kinase 2
277044	0.868338	19q13.32	KIAA1183 KIAA1183 protein
	0.867336	11q13	C11orf2 chromosome 11 open reading frame2
	0.867221	12p13.31	LOC51147 candidate tumor suppressor p33 ING1 homolog
279720	0.864865	11	Homo sapiens, Similar to RIKEN cDNA 1700008D07 gene, clone MGC:9830
511021	0.054061	2	IMAGE: 3863323, mRNA, complete cds
	0.854961 0.849103	3	MGC12936 hypothetical protein MGC12936 HLALS major histocompatibility complex, class I-like sequence
	0.845966	1q25.3 7q31.3	LKR/SDH lysine-ketoglutarate reductase/saccharopine dehydrogenase
	0.844046	19	ZNF358 zinc finger protein 358
	0.838823	17	ESTs, Highly similar to LOX2_HUMAN ARACHIDONATE 12-LIPOXYGENASE
			[H. sapiens]
725340	0.826253	4p16.3	TETRAN tetracycline transporter-like protein
593840	0.82327	17q11.2	DKFZP564K1964 DKFZP564K1964 protein
	0.819502	1	Homo sapiens cDNA FLJ14227 fis, clone NT2RP3004095
	0.818371	2q31.1	MGC20702 hypothetical protein MGC20702
	0.818288	19q13.4	ZNF135 zinc finger protein 135 (clone pHZ-17)
	0.815457 0.812481	3p21.3 10p15–p14	BLu BLu protein IL2RA interleukin 2 receptor, alpha
	0.812481	2	ESTs
	0.797965	1p34.1	KIAA0467 KIAA0467 protein
	0.796159	-pc2	TNFRSF10C tumor necrosis factor receptor superfamily, member 10c, decoy
			without an intracellular domain
344168	0.795755	10q23	POLL polymerase (DNA directed), lambda
	0.79402	22q12.2	SF3A1 splicing factor 3a, subunit 1, 120kD
	0.792031	12q24.21	KIAA0682 KIAA0682 gene product
	0.789164	10	ESTs
138242	0.787686	1	ESTs, Moderately similar to MAS2_HUMAN MANNAN-BINDING LECTIN SERINE
107002	0.785879	1	PROTEASE 2 PRECURSOR [H. sapiens] ESTs, Moderately similar to unnamed protein product [H. sapiens]
	0.783879	1	Homo sapiens, clone IMAGE: 3627860, mRNA, partial cds
	0.784118	22q13	FLJ20699 hypothetical protein FLJ20699
	0.777546	1p34.2	SFPQ splicing factor proline/glutamine rich (polypyrimidine tract-binding protein-
-		•	associated)
	0.77474	19p13.3	GNG7 guanine nucleotide binding protein (G protein), gamma 7
	0.77051	1p35.1	P28 dynein, axonemal, light intermediate polypeptide
	0.76967	17p13.1	ALOX12 arachidonate 12-lipoxygenase
	0.764217	16p11.2	KIAA0556 KIAA0556 protein
	0.760736	16	Homo sapiens, clone MGC: 9889 IMAGE: 3868330, mRNA, complete cds
	0.759847 0.759625	7q22–q31.1	CAPRI Ca2+-promoted Ras inactivator INPPL1 inositol polyphosphate phosphatase-like 1
	0.757148	11q23 22q13.33	ARSA arylsulfatase A
	0.756281	11q13	EFEMP2 EGF-containing fibulin-like extracellular matrix protein 2
	0.750312	17p13-p11 ACADVL	acyl-Coenzyme A dehydrogenase, very long chain
	0.749857	5	ESTs, Weakly similar to S65824 reverse transcriptase homolog [H. sapiens]
	0.748442	3p21.3-p21.2	RPL29 ribosomal protein L29
	0.746257	15q11.2–q21.3	PLA2G4B phospholipase A2, group IVB (cytosolic)
	0.744679	5q23.2	SBBI31 SBBI31 protein
	0.743672	18	ESTs, Weakly similar to T00365 hypothetical protein KIAA0670 [H. sapiens]
1635059	0.739062	9	Homo sapiens, clone MGC: 16638 IMAGE: 4121964, mRNA, complete cds

TABLE 8-continued

IMAGE		Chromosome	
Clone ID	Weight	Location	Description
	0.732349	1q21	BCL9 B-cell CLL/lymphoma 9
345764	0.72889	3p23	SATB1 special AT-rich sequence binding protein 1 (binds to nuclear matrix/scaffold-associating DNA's)
	0.728595	2q23.3	KIF5C kinesin family member 5C
1492468	0.72665 0.725531	1p32.3 2	KIAA0452 DEME-6 protein Homo sapiens, clone MGC: 17393 IMAGE: 3914851, mRNA, complete cds
	0.720983	1q21.2	FLJ11280 hypothetical protein FLJ11280
	0.716948	5p15.32	FLJ20303 hypothetical protein FLJ20303
	0.716142 0.715294	12q13.13 10p11.2	DKFZP586A011 DKFZP586A011 protein ZNF37A zinc finger protein 37a (KOX 21)
810741	0.709032	17p13.2	GABARAP GABA(A) receptor-associated protein
	0.708429 0.708359	6 3p14–p12	EST TSP50 testes-specific protease 50
	0.707954	2	KIAA0788 KIAA0788 protein
	0.707235	10 14a11 2	ESTs
	0.706826 0.705934	14q11.2 16p12.1	NFATC4 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4 FLJ20274 hypothetical protein FLJ20274
	0.702746	17	ESTs, Weakly similar to I38022 hypothetical protein [H. sapiens]
	0.698307 0.697573	5 16p13.3	ESTs NME4 non-metastatic cells 4, protein expressed in
46129	0.694321	12q13.1	HDAC7A histone deacetylase 7A
839382	0.693177	9	Homo sapiens, Similar to RIKEN cDNA 1700017I11 gene, clone MGC:26847 IMAGE: 4821517, mRNA, complete cds
307029	0.690207		
	0.689767 0.681153	11p15 19	APBB1 amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65) Homo sapiens mRNA; cDNA DKFZp566J2324 (from clone DKFZp566J2324); partial
769600	0.68017	5p15.2–p13.1	cds UNG2 uracil-DNA glycosylase 2
	0.677821	15	MGC5139 hypothetical protein MGC5139
	0.674861	16p13.11	NUDE1 LIS1-interacting protein NUDE1, rat homolog
	0.674702 0.669502	16p13.3 12	MGC11275 hypothetical protein MGC11275 Homo sapiens, clone IMAGE: 3346451, mRNA, partial cds
811920	0.658971	9p13	IL11RA interleukin 11 receptor, alpha
	0.658963 0.658146	15q21.1–q21.2 11q23	FLJ14957 hypothetical protein FLJ14957 LOH11CR2A loss of heterozygosity, 11, chromosomal region 2, gene A
1609372	0.657294	14q11.2	RIPK3 receptor-interacting serine-threonine kinase 3
	0.655725 0.653314	3p24.3	KIAA0210 KIAA0210 gene product
	0.651746	1q25 12	C1orf21 chromosome 1 open reading frame 21 Homo sapiens, clone IMAGE: 3833472, mRNA
	0.65172	14q11.2	KIAA0323 KIAA0323 protein
	0.648958 0.648579	10q21.1	FLJ20241 hypothetical protein FLJ20241 JDP1 domain containing protein 1
74070	0.648244	1q21.2	ENSA endosulfine alpha
	0.644915	6	ESTs, Weakly similar to CYP4_HUMAN 40 KDA PEPTIDYL-PROLYL CIS-TRANS ISOMERASE [H. sapiens]
296679 2119838	0.644155 0.64368	5 11q25	Homo sapiens clone TCCCTA00151 mRNA sequence ADAMTS8 a disintegrin-like and metalloprotease (reprolysin type) with
813488	0.643211	1q32.1	thrombospondin type 1 motif, 8 LOC51235 hypothetical protein
742094	0.639857	14q32.12	FLJ20950 hypothetical protein FLJ20950
	0.638802 0.633833	2q37.2	DGKD diacylglycerol kinase, delta (130 kD) Homo sapiens cDNA FLJ32001 fis, clone NT2RP7009373
	0.631361	Xq26.1	GPC4 glypican 4
	0.629143	10	Homo sapiens clone CDABP0014 mRNA sequence
	0.628435 0.627736	19 16p13	ESTs CLCN7 chloride channel 7
490449	0.623346	5q31	RAD50 RAD50 (S. cerevisiae) homolog
788334 1909935	0.622909	11p15.5–p15.4 8	MRPL23 mitochondrial ribosomal protein L23 ESTs
250883	0.61921	3p21	UBE1L ubiquitin-activating enzyme E1-like
	0.618023 0.617869	17 12	Homo sapiens cDNA FLJ31065 fis, clone HSYRA2001142 MLC1SA myosin light chain 1 slow a
	0.617263	19q13.33	NAPA N-ethylmaleimide-sensitive factor attachment protein, alpha
	0.616776	11 1042 11 042 3	ESTs, Highly similar to AF175283 1 zinc metalloendopeptidase [H. sapiens]
	0.616769 0.616211	1q42.11–q42.3 3p21.3	LDLC low density lipoprotein receptor defect C complementing RASSF1 Ras association (RalGDS/AF-6) domain family 1
490668	0.613699	3	Homo sapiens, clone IMAGE: 4182947, mRNA
	0.613652 0.612671	6p21.3 12p11	C6orf1 chromosome 6 open reading frame 1 ITPR2 inositol 1,4,5-triphosphate receptor, type 2
1911343	0.612387	16p13.3	RAB26 RAB26, member RAS oncogene family
1637296 753252	0.60612 0.604292	10q22–q23 17q21.31	RPS24 ribosomal protein S24 MGC4251 hypothetical protein MGC4251
	0.602612	17q21.31 11q13.2–q13.3	MTL5 metallothionein-like 5, testis-specific (tesmin)

TABLE 8-continued

IMAGE		Chromosome	
Clone ID	Weight	Location	Description
234522	0.601183	1q21.3	KIAA1535 KIAA1535 protein
	0.598962	9q13-q21	X123 Friedreich ataxia region gene X123
	0.598475	18p11.32	TYMS thymidylate synthetase
877664	0.598243	20	FLJ14987 hypothetical protein FLJ14987
826622	0.594938	16p13.12	KIAA0430 KIAA0430 gene product
	0.591773	3p25	XPC xeroderma pigmentosum, complementation group C
	0.591377	8q24	BAI1 brain-specific angiogenesis inhibitor 1
	0.586956	9p23	KIAA0172 KIAA0172 protein
	0.585918	10p15	GATA3 GATA-binding protein 3
130/003	0.581689	3p23-p22	ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiolase)
1518402	0.576275	17q11.1	KIAA1361 KIAA1361 protein
796996	0.57565	Xq13.1-q13.3	IGBP1 immunoglobulin (CD79A) binding protein 1
	0.575218	7q11.23	CRIP1 cysteine-rich protein 1 (intestinal)
	0.574109	19p13.1–q12	AKAP8 A kinase (PRKA) anchor protein 8
	0.573276	12	ESTs
	0.572299	6	Homo sapiens cDNA FLJ32724 fis, clone TESTI2000951
	0.572179 0.571917	20q13.2–q13.3 20q11.2	EDN3 endothelin 3 GHRH growth hormone releasing hormone
	0.567626	10	ESTs
	0.563887	1q21.3	SNAPAP SNARE associated protein snapin
	0.561448	12cen-q21	SYT1 synaptotagmin I
897550	0.561065	17q21.2	MGC2744 hypothetical protein MGC2744
215000	0.560663	3p22	VIPR1 vasoactive intestinal peptide receptor 1
	0.560564	11cen-q12.1	LOC51035 ORF
	0.56053	10q26	GFRA1 GDNF family receptor alpha 1
	0.560068	18p11.2	C18orf1 chromosome 18 open reading frame 1
	0.556854 0.55621	17p13.1–17p12	PER1 period (Drosophila) homolog 1 C3IP1 kelch-like protein C3IP1
	0.555748	1q32.1 10q22.1	FLJ11160 hypothetical protein FLJ11160
	0.554359	11q23.2–q24.2	SORL1 sortilin-related receptor, L(DLR class) A repeats-containing
	0.554027	13	FLJ22624 hypothetical protein FLJ22624
	0.553058	11	Homo sapiens cDNA FLJ14242 fis, clone OVARC1000678
33500	0.552872		Homo sapiens clone 23556 mRNA sequence
	0.551916	15	Homo sapiens mRNA; cDNA DKFZp586G1520 (from clone DKFZp586G1520)
	0.550166	0.24.2	ESTs
	0.55013	8q24.3	ARC activity-regulated cytoskeleton-associated protein
	0.548574 0.546276	18q23 11q14	CYB5 cytochrome b-5 PRCP prolylcarboxypeptidase (angiotensinase C)
	0.544517	16p13.3	RGS11 regulator of G-protein signalling 11
	0.544311	3q25	SIAH2 seven in absentia (Drosophila) homolog 2
	0.543871	5p14–p13	NPR3 natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide
			receptor C)
	0.543472	17q21	HDAC5 histone deacetylase 5
	0.542351	6q21	KIAA0274 KIAA0274 gene product
	0.540638	20	Homo sapiens cDNA FLJ30872 fis, clone FEBRA2004293
	0.540325 0.536594	7 14	Homo sapiens, clone IMAGE: 3463399, mRNA, partial cds
221770	0.550594	14	ESTs, Weakly similar to T20410 hypothetical protein E02A10.2 —Caenorhabditis elegans [C.elegans]
264632	0.535737	19	ESTs
741790	0.53497	2p13.3	FLJ20080 hypothetical protein FLJ20080
1626087	0.53252	3p21.31	DKFZP434A236 DKFZP434A236 protein
	0.532407	2q35–q37	GPC1 glypican 1
	0.531092	17q25	H3F3B H3 histone, family 3B (H3.3B)
	0.531011 0.528716	8p23 5q23	ARHGEF10 Rho guanine nucleotide exchange factor (GEF) 10 DTR diphtheria toxin receptor (heparin-binding epidermal growth factor-like growth
33020	0.320710	3 q 23	factor)
2284619	0.528522	19q13.4	ZNF132 zinc finger protein 132 (clone pHZ-12)
	0.528384	7 1	Homo sapiens cDNA FLJ13384 fis, clone PLACE1001062, highly similar to Homo
			sapiens mRNA for lysine-ketoglutarate reductase/saccharopine dehydrogenase
	0.52806	Xp11.4-p11.3	MAOA monoamine oxidase A
	0.527955		Homo sapiens cDNA FLJ32293 fis, clone PROST2001739
	0.526569	6q13–15	SH3BGRL2 SH3 domain binding glutamic acid-rich protein like 2
	0.525679	10	DNAJL1 hypothetical protein similar to mouse Dnajl1
	0.525406 0.524227	16p13.3 15q26.1	FLJ20568 hypothetical protein FLJ20568 PRO2198 hypothetical protein PRO2198
	0.521218	14	Homo sapiens cDNA FLJ31768 fis, clone NT2RI2007891, moderately similar to
222001			DMR-N9 PROTEIN
842980	0.519909	22q12.2	DRG1 developmentally regulated GTP-binding protein 1
	0.517789	1q21 – q22	NIT1 nitrilase 1
1926023	0.516851	7	ESTs, Weakly similar to T42727 proliferation potential-related protein-mouse
400055	0.51.6202	17	[M. musculus]
132857	0.516382	17	Homo sapiens mRNA; cDNA DKFZp586N1323 (from clone DKFZp586N1323)

TABLE 8-continued

IMAGE Clone ID	Weight	Chromosome Location	Description
855586	0.515352	5q31	NR3C1 nuclear receptor subfamily 3, group C, member 1
810331	0.515056	1q24	QSCN6 quiescin Q6
265103	0.512718	1p36	MMEL2 membrane metallo-endopeptidase-like 2
1521361	0.511233	8p21.2	KIAA0717 KIAA0717 protein
432072	0.508774	18q23	NFATC1 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1
2069602	0.506115	16q24.3	MC1R melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)
283173	0.505655	4	Homo sapiens PAC clone RP1-130H16 from 22q12.1-qter
1404841	0.501049	19q13.4	ZNF175 zinc finger protein 175
1871116	0.500004	2	Homo sapiens mRNA; cDNA DKFZp434C1714 (from clone DKFZp434C1714); partial cds
758365	0.4988	12q13-q15	OS4 conserved gene amplified in osteosarcoma
1641894	0.498542	10	ESTs
1492147	0.498131	Xq13.1	RPS4X ribosomal protein S4, X-linked
1558642	0.497736	2q37.3	MLPH melanophilin
1641245	0.497723	18q21.1	LOC51320 hypothetical protein
1635649	0.497647	20p13	CDS2 CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 2
414999	0.496855	17q21	ETV4 ets variant gene 4 (E1A enhancer-binding protein, E1AF)
1535957	0.496325	5p15.3	SEC6 similar to S. cerevisiae Sec6p and R. norvegicus rsec6
774082	0.495883	12q22-q23	ASCL1 achaete-scute complex (Drosophila) homolog-like 1
811013	0.494705	1p13.3	AMPD2 adenosine monophosphate deaminase 2 (isoform L)
809998	0.493372	1p21	AMY2A amylase, alpha 2A; pancreatic
2018084	0.48899	2q24.3	SPAK Ste-20 related kinase
161373	0.485425	7q11–q22	PMS2L4 postmeiotic segregation increased 2-like 4
178137	0.485162	4q25	RPL34 ribosomal protein L34
75886	0.484926	4	ESTs, Weakly similar to E54024 protein kinase [H. sapiens]
429387	0.484053	7p15.3	CHN2 chimerin (chimaerin) 2
	0.481369	7p13	DKFZP761I2123 KIAA1886 protein
	0.480946	1p33-p32.1	MGC8974 hypothetical protein MGC8974
838366	0.480888	1p36.1–p35	HMGCL 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase
			(hydroxymethylglutaricaciduria)
	0.480102	13q34	GAS6 growth arrest-specific 6
	0.479727	4p15.31	QDPR quinoid dihydropteridine reductase
	0.478064	17	Homo sapiens cDNA FLJ30754 fis, clone FEBRA2000438
	0.477446	1p13	PHTF1 putative homeodomain transcription factor 1
	0.475933	12pter-p13.31	MDS028 uncharacterized hematopoietic stem/progenitor cells protein MDS028
	0.474189	2q37.3	RAB17 RAB17, member RAS oncogene family
	0.469813	6q25–q26	TUSP tubby super-family protein
	0.469171	5q31	HDAC3 histone deacetylase 3
	0.468844	11p15	EIF4G2 eukaryotic translation initiation factor 4 gamma, 2
741977	0.466816	6p21.3	BF B-factor, properdin

[0106] Some of the genes within the tumor grade I/III signatures have been previously reported to be associated with breast cancer. Within the grade I signature, two genes, BCL2 and TNFRSF10C, are inhibitors of apoptosis. Various reports in the literature link BCL2 expression to ER-positive, low-grade tumors (van Slooten, H. J. et al.). TNFRSF10C is a decoy receptor (DcR1) for TRAIL, an apoptosis-inducing cytokine of the tumor necrosis factor (TNF) family (Sheridan, J. P. et al.). Without being bound by theory, presence of DcR1 on the surface of breast cancer

cells would be expected to block signaling through the cell death receptors activated by TRAIL, thus inhibiting apoptosis

[0107] Similarly, an expanded set of 250 genes that display increased expression in Grade III samples in comparison to Grade I samples are identified in Table 9 by use of their I.M.A.G.E. Consortium CloneID numbers along with their chromosomal location and descriptive identifiers (if known) and relative weights (which are expressed with a negative sign solely due to the relative comparison).

TABLE 9

IMAGE Clone ID	Weight	Chromosome Location	Description
769921	-1.53568	20q13.12	UBE2C ubiquitin-conjugating enzyme E2C
951241	-1.33815	15q13.3	ANKT nucleolar protein ANKT
1517595	-1.3332	9p11.2	KIAA0175 likely ortholog of maternal embryonic leucine zipper kinase
1474424	-1.32072	17	Homo sapiens cDNA FLJ31911 fis, clone NT2RP7004751
2309073	-1.29533	2q33-q34	FZD5 frizzled (Drosophila) homolog 5
796469	-1.27516	1q32.1	HSPC150 HSPC150 protein similar to ubiquitin-conjugating enzyme

TABLE 9-continued

IMAGE Clone ID	Weight	Chromosome Location	Description
823598 700792	-1.26568 -1.25232	14q22	PSMD12 proteasome (prosome, macropain) 26S subunit, non-ATPase, 12 CDKN3 cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity
2018131 292936	-1.23217 -1.20973	12p13.2–p13.1 1p34.3	phosphatase) RACGAP1 Rac GTPase activating protein 1 FLJ10468 hypothetical protein FLJ10468
1422338	-1.20922		RRM2 ribonucleotide reductase M2 polypeptide
504308		10cen-q26.11	FLJ10540 hypothetical protein FLJ10540
796694	-1.16444		BIRC5 baculoviral IAP repeat-containing 5 (survivin)
869375 814270	-1.15363 -1.14538		IDH2 isocitrate dehydrogenase 2 (NADP+), mitochondrial PMSCL1 polymyositis/scleroderma autoantigen 1 (75 kD)
42831		11q11–q12	NTKL N-terminal kinase-like
1476053	-1.10462		RAD51 RAD51 (S. cerevisiae) homolog (E coli RecA homolog)
32493	-1.10275		ITGA6 integrin, alpha 6
149355	-1.10225		TRAM translocating chain-associating membrane protein
824962 1702742	-1.09918 -1.09644	17q23.1–q23.3 16q24.3	KPNA2 karyopherin alpha 2 (RAG cohort 1, importin alpha 1) SLC7A5 solute carrier family 7 (cationic amino acid transporter, y ⁺ system), member 5
824524	-1.07854	17q21.32	UGTREL1 UDP-galactose transporter related
128711	-1.07401	7p15-p14	ANLN anillin (Drosophila Scraps homolog), actin binding protein
843121	-1.06508		CLIC1 chloride intracellular channel 1
2017415 753378	-1.06388 -1.0364	2p24–p21 4q34.1	CENPA centromere protein A (17 kD) FLJ22649 hypothetical protein FLJ22649 similar to signal peptidase
825470	-1.03507	17q21–q22	SPC22/23 TOP2A topoisomerase (DNA) II alpha (170 kD)
705064	-1.02376		TACC3 transforming, acidic coiled-coil containing protein 3
2054635	-1.02042	20q13.33	PSMA7 proteasome (prosome, macropain) subunit, alpha type, 7
781047	-1.0153	2q14	BUB1 budding uninhibited by benzimidazoles 1 (yeast homolog)
1534700	-1.01343 -1.01171		KIAA0830 KIAA0830 protein
1587847 743810	-1.01171 -1.0099		MCM6 minichromosome maintenance deficient (mis5, <i>S. pombe</i>) 6 MGC2577 hypothetical protein MGC2577
897609	-0.99379		FLJ10074 hypothetical protein FLJ10074
66406	-0.98421	2	ESTs, Highly similar to T47163 hypothetical protein DKFZp762E1312.1 [H. sapiens]
1631634	-0.98233	•	MGC3038 hypothetical protein similar to actin related protein 2/3 complex, subunit 5
624627	-0.96436		RRM2 ribonucleotide reductase M2 polypeptide
814054 773301	-0.95575 -0.91294		KIAA0040 KIAA0040 gene product CDH3 cadherin 3, type 1, P-cadherin (placental)
1416055	-0.91005	*	KIAA0165 extra spindle poles, S. cerevisiae, homolog of
345787		18p11.31	HEC highly expressed in cancer, rich in leucine heptad repeats
624667	-0.88376		LOC51117 CGI-92 protein
786067 785269	-0.87714		CDC25B cell division cycle 25B
785368 564981	-0.87699 -0.85513		TOPK PDZ-binding kinase; T-cell originated protein kinase Homo sapiens, Similar to RIKEN cDNA 2810433K01 gene, clone MGC: 10200 IMAGE: 3909951, mRNA, complete cds
753320	-0.85505	8q13.3	FLJ20533 hypothetical protein FLJ20533
529827	-0.85016		SYAP1 reserved
122241	-0.84842		PSMB2 proteasome (prosome, macropain) subunit, beta type, 2
712139 259950	-0.84823 -0.83947		ARL7 ADP-ribosylation factor-like 7
772220	-0.83895	-	CML66 chronic myelogenous leukemia tumor antigen 66 PDIR for protein disulfide isomerase-related
124331	-0.83664		CPSF5 cleavage and polyadenylation specific factor 5, 25 kD subunit
842818	-0.83338	16q23-q24	KARS lysyl-tRNA synthetase
150897	-0.82922		B3GNT3 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 3
823930 210862	-0.82876 -0.82312	7q22.1 17q24–17q25	ARPC1A actin related protein 2/3 complex, subunit 1A (41 kD) ACOX1 acyl-Coenzyme A oxidase 1, palmitoyl
731023	-0.82276		WDR5 WD repeat domain 5
665384	-0.82232	16	KIAA1609 KIAA1609 protein
815501	-0.82108		MGC2721 hypothetical protein MGC2721
769890	-0.81864		NP nucleoside phosphorylase STK15 serine/threonine kinase 15
209066 471568	-0.81121 -0.81026	20q13.2–q13.3 17q25	HN1 hematological and neurological expressed 1
725454	-0.80701		CKS2 CDC28 protein kinase 2
951233	-0.80178	2q35	PSMB3 proteasome (prosome, macropain) subunit, beta type, 3
268946	-0.79976		Homo sapiens cDNA FLJ31861 fis, clone NT2RP7001319
2028949	-0.78651 -0.78621	17q21.31	PRO1855 hypothetical protein PRO1855 DYSF dysferlin, limb girdle muscular dystrophy 2B (autosomal recessive)
1914863 744047	-0.78621 -0.77737		PLK polo (Drosophia)-like kinase
703707	-0.77579		ASPH aspartate beta-hydroxylase
78869	-0.76948	20q13.33	GP110 cell membrane glycoprotein, 110000M(r) (surface antigen)
742707	-0.7686	7	ESTs, Weakly similar to MUC2_HUMAN MUCIN 2 PRECURSOR [H. sapiens]
825606	-0.75817		KNSL1 kinesin-like 1
361922	-0.7559	1p34	ZMPSTE24 zinc metalloproteinase, STE24 (yeast, homolog)

TABLE 9-continued

IMAGE Clone ID	Weight	Chromosome Location	Description
756595	-0.75094	1q21	S100A10 S100 calcium-binding protein A10 (annexin II ligand, calpactin I,
756440	0.7500	7.44.0	light polypeptide (p11))
756442 823907	-0.7508 -0.74968	7q11.2	POR P450 (cytochrome) oxidoreductase FLJ10511 hypothetical protein FLJ10511
471196	-0.74806		ITM3 integral membrane protein 3
753428	-0.74668		Homo sapiens, Similar to RIKEN cDNA 1110014B07 gene, clone MGC: 20766
			IMAGE: 4586039, mRNA, complete cds
739450	-0.74247		LASS2 longevity assurance (LAG1, S. cerevisiae) homolog 2
1696757 293727	-0.73849 -0.73213		KIAA1165 hypothetical protein KIAA1165 MGC861 hypothetical protein MGC861
839682	-0.73213	12q22	UBE2N ubiquitin-conjugating enzyme E2N (homologous to yeast UBC13)
1631132	-0.73053		PHT2 peptide transporter3
327506	-0.72966		Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 327506
1660666 280375	-0.72774 -0.72588		CA5B carbonic anhydrase VB, mitochondrial PRO2000 PRO2000 protein
796904	-0.71939		PLAGL1 pleiomorphic adenoma gene-like 1
503671	-0.71201	6	Homo sapiens cDNA FLJ14368 fis, clone HEMBA1001122
74677	-0.71194		Homo sapiens, Similar to RIKEN cDNA A430107 J06 gene, clone MGC: 21416 IMAGE: 4452699, mRNA, complete cds
291478	-0.71127	1p36	RUNX3 runt-related transcription factor 3
825282	-0.7096		DKFZP586L0724 DKFZP586L0724 protein
878330	-0.70859		Homo sapiens cDNA: FLJ22044 fis, clone HEP09141
37671 789012	-0.70374 -0.7019	3p25-p24	FLJ21610 hypothetical protein FLJ21610 FBLN2 fibulin 2
347373	-0.70161		TCEB1 transcription elongation factor B (SIII), polypeptide 1 (15 kD, elongin
2322367	-0.69997	2p14-p13	C) RTN4 reticulon 4
897997		Xp11.22-p11.21	SMC1L1 SMC1 (structural maintenance of chromosomes 1, yeast)-like 1
345538		9q21–q22	CTSL cathepsin L
1947647	-0.69371		LOC51651 CGI-147 protein
3172883 1035796	-0.69164 -0.68832		ESTs, Weakly similar to S24195 dopamine receptor D4 [<i>H. sapiens</i>] ESTs, Weakly similar to T33068 hypothetical protein C35E7.9 - Caenorhabditis
746163	-0.67918		elegans [C.elegans] ESTs, Weakly similar to ALU1—HUMAN ALU SUBFAMILY J SEQUENCE
810711	_0 67743	10q23-q24	CONTAMINATION WARNING ENTRY [H. sapiens] SCD stearoyl-CoA desaturase (delta-9-desaturase)
462926		1q32.2–q41	NEK2 NIMA (never in mitosis gene a)-related kinase 2
1614140		15q11.2-q22.33	LOC51285 Ris
124781	-0.66984		SQLE squalene epoxidase
1642496 113300	-0.66639 -0.66053		MGC11266 hypothetical protein MGC11266 TRIM14 tripartite motif-containing 14
2014034	-0.65845		MTHFD2 methylene tetrahydrofolate dehydrogenase (NAD+ dependent),
			methenyltetrahydrofolate cyclohydrolase
1946448	-0.65464		CAV2 caveolin 2
1635352 753400	-0.65164 -0.64918		TPARL TPA regulated locus BAF53A BAF53
1605426	-0.64391		FLJ13352 hypothetical protein FLJ13352
565319	-0.64374		MAL2 mal, T-cell differentiation protein 2
489755	-0.64095		ADAM12 a disintegrin and metalloproteinase domain 12 (meltrin alpha)
1916461 359887	-0.63993 -0.63379		Homo sapiens, clone IMAGE: 3605655, mRNA TIM17 translocase of inner mitochondrial membrane 17 homolog A (yeast)
629944	-0.63018		MYO5B myosin VB
150314	-0.62891		LYPLA1 lysophospholipase I
770355 489594	-0.62829 -0.6245		LSS lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)
489594 212640	-0.6245 -0.6219		FLJ11565 hypothetical protein FLJ11565 ARHGAP4 Rho GTPase activating protein 4
30170	-0.62007	4q34	CASP3 caspase 3, apoptosis-related cysteine protease
51773	-0.61957	7p15–p14	MGC3077 hypothetical protein MGC3077
490777 1858892	-0.61906	Yn22 13	MGC4825 hypothetical protein MGC4825
358456	-0.61552	Xp22.13 7p11.2	SEC61G Sec61 gamma
840894	-0.61414		COX6A1 cytochrome c oxidase subunit VIa polypeptide 1
241348	-0.61157		PCL1 prenylcysteine lyase
1505038 144880	-0.61123 -0.60976		FLJ20171 hypothetical protein FLJ20171 LOC56932 hypothetical protein from EUROIMAGE 1759349
454896		16q11.1–q11.2	DNAJA2 DnaJ (Hsp40) homolog, subfamily A, member 2
753236	-0.60461	1 1	6 ESTs, Weakly similar to S71512 hypothetical protein T2 - mouse [M. musculus]
266218	-0.60106	22-12-1	CNAICD4
418159 208718	-0.60025 -0.59862	22q13.1 9q12–q21.2	SYNGR1 synaptogyrin 1 ANXA1 annexin A1
781097	-0.59718		RTN3 reticulon 3
469383	-0.59434	8q21	C8orf1 chromosome 8 open reading frame 1
725152	-0.59375	11q11	DKFZp762A227 hypothetical protein DKFZp762A227

TABLE 9-continued

			TABLE 7-Continued
IMAGE Clone ID	Weight	Chromosome Location	Description
945262	0.50212	17~01.2	NIMES I was material calle 1 materia (NIMOSA) arranged in
845363 1460110	-0.59313 -0.59206		NME1 non-metastatic cells 1, protein (NM23A) expressed in PSMB5 proteasome (prosome, macropain) subunit, beta type, 5
769959	-0.5913		COL4A2 collagen, type IV, alpha 2
796527	-0.59108		DKFZp761N0624 hypothetical protein DKFZp761N0624
108425	-0.59009		ESTs, Weakly similar to JC5314 CDC28/cdc2-like kinase associating arginine-
22224	0.50516		serine cyclophilin [H. sapiens]
32231	-0.58516		FLJ12442 hypothetical protein FLJ12442 RPN1 ribophorin I
502690 135221	-0.58445 -0.58203		S100P S100 calcium-binding protein P
897813	-0.58167		PAIP1 polyadenylate binding protein-interacting protein 1
824352	-0.58119		RAD23B RAD23 (S. cerevisiae) homolog B
897751	-0.58057		TLK2 tousled-like kinase 2
343607		15q14-q24.3	LOC55829 AD-015 protein
51899 726645	-0.5772 -0.57716		KIAA0513 KIAA0513 gene product CLECSF1 C-type (calcium dependent, carbohydrate-recognition domain)
720043	-0.57710	10q23	lectin, superfamily member 1 (cartilage-derived)
1591264	-0.57558	11p15.5-p15.4	TALDO1 transaldolase 1
290841	-0.57171		H2BFA H2B histone family, member A
486626	-0.57063	8	Homo sapiens, clone IMAGE: 4332938, mRNA
221846		14q24.3–q31	CHES1 checkpoint suppressor 1
772913	-0.56751	5	Homo sapiens cDNA FLJ31951 fis, clone NT2RP7007177, weakly similar to
1686766	-0.56178	6q15–q16	Homo sapiens multiple membrane spanning receptor TRC8 mRNA RAGD Rag D protein
37708	-0.56053		MGC3101 hypothetical protein MGC3101
825740	-0.56021		DKFZP434J1813 DKFZp434J1813 protein
741139	-0.56009		EYA2 eyes absent (Drosophila) homolog 2
754293	-0.55369		C2orf6 chromosome 2 open reading frame 6
83363		6q24–q25	PCMT1 protein-L-isoaspartate (D-aspartate) O-methyltransferase
686552 950429	-0.55207 -0.54962		GOLPH1 golgi phosphoprotein 1
813419	-0.54843		KIAA1708 KIAA1708 protein HADH2 hydroxyacyl-Coenzyme A dehydrogenase, type II
2043167		10q25.2–q26.2	BAG3 BCL2-associated athanogene 3
701115	-0.54546		PRO2013 hypothetical protein PRO2013
795498	-0.54391	15q26.1	HS1-2 putative transmembrane protein
965223		17q23.2–q25.3	TK1 thymidine kinase 1, soluble
377191		8p22–q22.1	LOC51123 HSPC038 protein
233679 590759	-0.53609 -0.53571		FLJ22362 hypothetical protein FLJ22362 SC4MOL sterol-C4-methyl oxidase-like
358083	-0.53534		KIAA0226 KIAA0226 gene product
810612	-0.53335		S100A11 S100 calcium-binding protein A11 (calgizzarin)
220395	-0.52987		FLJ23293 likely ortholog of mouse ADP-ribosylation-like factor 6 interacting
*******	0.50010	_	protein 2
280699	-0.52812		UCC1 upregulated in colorectal cancer gene 1
2016775 470124	-0.52687 -0.52331		GPRC5B G protein-coupled receptor, family C, group 5, member B RAD1 RAD1 (S. pombe) homolog
154707		2p23-p21	MPV17 MpV17 transgene, murine homolog, glomerulosclerosis
785933	-0.51884		SRPX sushi-repeat-containing protein, X chromosome
2062825	-0.51819	20q11.23	KIAA0964 KIAA0964 protein
2009491	-0.51791		LOC51191 cyclin-E binding protein 1
1534493	-0.51765		ESTs
150003 950600	-0.5167 -0.51409	8q22.2 1	FLJ13187 phafin 2 Homo sapiens mRNA; cDNA DKFZp586C1019 (from clone DKFZp586C1019)
1455394	-0.51333		HCS cytochrome c
811918	-0.51318		KIAA0952 KIAA0952 protein
415191	-0.51	2p25.3	KIAA0161 KIAA0161 gene product
32927	-0.50974		FBXL6 f-box and leucine-rich repeat protein 6
1845744 325160	-0.50818		ND25 nouvered protein
812048	-0.50752 -0.50542	3q13.13 20pter-p12	NP25 neuronal protein PRNP prion protein (p27–30) (Creutzfeld-Jakob disease, Gerstmann-
012040	-0.30342	zopici-piz	Strausler-Scheinker syndrome, fatal familial insomnia)
84161	-0.50451		DKFZP434F195 DKFZP434F195 protein
897806	-0.50236	14q21–q24	HIF1A hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix
			transcription factor)
814378	-0.50026	19q13.1	SPINT2 serine protease inhibitor, Kunitz type, 2
188335	-0.49789		EMR2 egf-like module containing, mucin-like, hormone receptor-like
1585492	-0.49501	9	sequence 2 ESTs
133213	-0.49332		FUT4 fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific)
73009	-0.49156		Homo sapiens, clone MGC: 9628 IMAGE: 3913311, mRNA, complete cds
785707	-0.49031		PRC1 protein regulator of cytokinesis 1
84464	-0.49025		FLJ12806 hypothetical protein FLJ12806
770066	-0.48965		KIAA0056 KIAA0056 protein
41208	-0.48944	8p21	BMP1 bone morphogenetic protein 1

TABLE 9-continued

IMAGE Clone ID	Weight	Chromosome Location	Description
1698036	-0.48904	20q13.2	UBE2V1 ubiquitin-conjugating enzyme E2 variant 1
1435862	-0.4889		MIC2 antigen identified by monoclonal antibodies 12E7, F21 and O13
768452	-0.48449	$2\dot{1}$	Homo sapiens EST from clone 491476, full insert
824426	-0.48229	7q22.1	PDAP1 PDGFA associated protein 1
768561	-0.48129	17q11.2–q21.1	SCYA2 small inducible cytokine A2 (monocyte chemotactic protein 1, homologous to mouse Sig-je)
377275	-0.48092	11q22-q23	TRIM29 tripartite motif-containing 29
470128	-0.48	15q21–q22	MYO1E myosin IE
809901	-0.47984	9q21–q22	COL15A1 collagen, type XV, alpha 1
50772	-0.47983	7p14-p13	MGC3251 hypothetical protein MGC3251
1843843	-0.47902	12q14.1	SRGAP1 KIAA1304 protein
823940	-0.47897	17q21	TOB1 = transducer of ERBB2, 1
564492	-0.47749	11p11.12	MTCH2 mitochondrial carrier homolog 2
290101	-0.47734	X	ESTs
263894	-0.47704	16p12.1	QPRT quinolinate phosphoribosyltransferase (nicotinate-nucleotide
			pyrophosphorylase (carboxylating))
202901	-0.47699	9q34.1	VAV2 vav 2 oncogene
1607229	-0.47609		TPD52L1 tumor protein D52-like 1
812050	-0.47584	1	TRC8 patched related protein translocated in renal cancer
1637756	-0.47545		ENO1 enolase 1, (alpha)
813410	-0.47231	1	POLR2K polymerase (RNA) II (DNA directed) polypeptide K (7.0 kD)
358162	-0.47197		HSU79266 protein predicted by clone 23627
2062238	-0.47184	•	PSMD1 proteasome (prosome, macropain) 26S subunit, non-ATPase, 1
753215	-0.47119	7q21	GNAI1 guanine nucleotide binding protein (G protein), alpha inhibiting activity
720126	0.460.50	0.04.0	polypeptide 1
739126	-0.46952	1	TSTA3 tissue specific transplantation antigen P35B
1917941	-0.46918		H2AV histone H2A.F/Z variant
111362	-0.46893		OSBPL2 oxysterol-binding protein-like 2
1456348 263716	-0.46742		SAS N-acetylneuraminic acid phosphate synthase; sialic acid synthase COL6A1 collagen, type VI, alpha 1
810156	-0.46636 -0.46594		DTYMK deoxythymidylate kinase (thymidylate kinase)
115443	-0.46519	2	HSPC216 hypothetical protein
32299	-0.46427	18p11 2	IMPA2 inositol(myo)-1(or 4)-monophosphatase 2
1434897	-0.46024		COL5A2 collagen, type V, alpha 2
2028916	-0.45905		Homo sapiens mRNA for Hmob33 protein, 3'untranslated region
2020898	-0.45878		PLOD3 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3
487797	-0.45837		DR1 down-regulator of transcription 1, TBP-binding (negative cofactor 2)
284734	-0.45795		WASF1 WAS protein family, member 1
79520	-0.45632	1 1	RAB2 RAB2, member RAS oncogene family
812977	-0.45368		Homo sapiens mesenchymal stem cell protein DSC96 mRNA, partial cds
810899	-0.45368		Tiomo supremo mesonenymai stem cen protein 250050 mile v.a, partan cus
428163	-0.45286		ESTs, Weakly similar to NAH6_HUMAN SODIUM/HYDROGEN EXCHANGER
			6 [H. sapiens]
613056	-0.45261		RCN1 reticulocalbin 1, EF-hand calcium binding domain
741474	-0.45249		GPI glucose phosphate isomerase
768989	-0.45147		Homo sapiens cDNA FLJ12874 fis, clone NT2RP2003769
754702	-0.45087	1 1	KIAA0846 KIAA0846 protein
246800	-0.45055	1	FLJ10803 hypothetical protein FLJ10803
246304	-0.4503	21q21.1	BTG3 BTG family, member 3

[0108] The grade III signature contains genes known to be involved in cell cycle control (CKS2, CDC25B, MCM6), chromosomal segregation (STK15, CENPA and TACC3), and DNA recombination and repair (RAD51, UBE2N, TOP2A, RRM2). In particular, CDC25B, a potential oncogene, transforms murine diploid fibroblasts into high-grade tumors (Galaktionov, K. et al.). STK15, a centrosomal protein kinase, is frequently amplified in breast cancer, and its quantitative expression levels positively correlate with tumor grade (Zhou, H. et al. (1998b)). RAD51 has recently been shown to interact with the tumor suppressor BRCA1 (Chen, J. J., et al. (1999)), and its expression also positively correlates with tumor grade in breast cancer (Maacke, H. et al.). It has not been previously known or suspected, however, whether the expression of these genes would be capable of differentiating grade III breast cancer cells from grade I breast cancer cells. Without being bound by theory, abnormal expression of the genes associated with DNA recombination and repair and those associated with centrosomal function may result in greater genome instability, thus driving the evolution of aggressively growing and high-grade cancer cells. The data thus verified the association of several known genes with breast tumorigenesis and uncovered additional novel associations, which together may underlie the molecular basis of current tumor grading systems in breast cancer.

[0109] The question of whether unique gene expression changes are associated with stage progression, specifically, the transition from noninvasive (DCIS) to invasive (IDC) growth, is also addressed by the present invention. The inventors have noticed that these two pathological stages are highly similar to each other with no striking differences at the level of gene expression (FIGS. 2-3). To increase our sensitivity in detecting differential gene expression between

DCIS and IDC, each IDC sample was compared directly to its corresponding patient-matched DCIS sample where available. 1,688 genes showing at least a 2-fold difference between IDC and DCIS in at least 3 different sample pairs were selected and subjected to unsupervised two-dimensional hierarchical clustering. One prominent cluster of

genes demonstrated elevated expression in IDC as compared with DCIS, predominately amongst the grade III IDC samples (FIG. 4). These genes, along with their I.M.A.G.E. Consortium CloneID number, along with their chromosomal location and descriptive identifiers (if known) are listed in Table 10.

TABLE 10

	IABLE 10
	Chromosome Location Description
795498	15q26.1 HS1-2 putative transmembrane protein
431505	15q26.1 HS1-2 putative transmembrane protein
741139	20q13.1 EYA2 eyes absent (Drosophila) homolog 2
1534592	2p12 C2orf6 chromosome 2 open reading frame 6
290422	9q13-q21 ZNF216 zinc finger protein 216
1609836	1q31 GLUL glutamate-ammonia ligase (glutamine synthase)
505575	2q35 FLJ10116 hypothetical protein FLJ10116
141852	11q13.5-q14.1 P2RY2 purinergic receptor P2Y, G-protein coupled, 2
121251 610326-10	12q13.1 MGC5576 hypothetical protein MGC5576 12q12–12q14.3 K-ALPHA-1 tubulin, alpha, ubiquitous
725454	9q22 CKS2 CDC28 protein kinase 2
756502	7p22 NUDT1 nudix (nucleoside diphosphate linked moiety X)-type motif 1
504308	10cen-q26.11 FLJ10540 hypothetical protein FLJ10540
2062329	6q13-q21 TTK TTK protein kinase
564981	18 Homo sapiens, Similar to RIKEN cDNA 2810433K01 gene, clone MGC:10200
	IMAGE:3909951, mRNA, complete cds
951080	8q24.3 RECQL4 RecQ protein-like 4
280375	8p22 PRO2000 PRO2000 protein
530219	8 Homo sapiens cDNA FLJ32554 fis, clone SPLEN1000106
594438 470232	1q12–1q21.2 DJ328E19.C1.1 hypothetical protein 7 ESTs, Weakly similar to 37356 epithelial microtubule-associated protein, 115K [H.sapiens]
470232 291057	1p32 CDKN2C cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)
1476053	15q15.1 RAD51 RAD51 (S. cerevisiae) homolog (E coli RecA homolog)
121436	2q11.2 MGC4677 hypothetical protein MGC4677
700792	14q22 CDKN3 cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase
308633	10q23-q24 HELLS helicase, lymphoid-specific
809588	8q12.1 GGH gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase)
1455394	7p15.2 HCS cytochrome c
796694	17q25 BIRC5 baculoviral IAP repeat-containing 5 (survivin)
2018131	12p13.2-p13.1 RACGAP1 Rac GTPase activating protein 1
1587847 743810	2q21 MCM6 minichromosome maintenance deficient (mis5, S. pombe) 6 12p13 MGC2577 hypothetical protein MGC2577
744047	16p12.3 PLK polo (Drosophia)-like kinase
705064	4p16.3 TACC3 transforming, acidic coiled-coil containing protein 3
1518591	
810899	ESTs
2018976	5q35.1 PTTG1 pituitary tumor-transforming 1
2017415	2p24–p21 CENPA centromere protein A (17kD)
815501	19p13.3 MGC2721 hypothetical protein MGC2721
624627	2p25-p24 RRM2 ribonucleotide reductase M2 polypeptide
1422338	2p25-p24 RRM2 ribonucleotide reductase M2 polypeptide
610326-8 79761	12q12–12q14.3 K-ALPHA-1 tubulin, alpha, ubiquitous 12q22 TMPO thymopoietin
610326-2	12q12=12q14.3 K-ALPHA-1 tubulin, alpha, ubiquitous
610326-4	12q12–12q14.3 K-ALPHA-1 tubulin, alpha, ubiquitous
610326-3	12q12–12q14.3 K-ALPHA-1 tubulin, alpha, ubiquitous
1476065	1p36.1-p35 STMN1 stathmin 1/oncoprotein 18
293785	11 ESTs, Weakly similar to A46010 X-linked retinopathy protein [H.sapiens]
47781	17 TEM7 tumor endothelial marker 7 precursor
415102	5q31 CDC25C cell division cycle 25C
869375	15q26.1 IDH2 isocitrate dehydrogenase 2 (NADP+), mitochondrial
	15q13.3 ANKT nucleolar protein ANKT
814270	4q27 PMSCL1 polymyositis/scleroderma autoantigen 1 (75kD)
785368	8p21-p12 TOPK PDZ-binding kinase; T-cell originated protein kinase
66406	2 ESTs, Highly similar to T47163 hypothetical protein DKFZp762E1312.1 [H.sapiens]
292936	1p34.3 FLJ10468 hypothetical protein FLJ10468
1517595	9p11.2 KIAA0175 likely ortholog of maternal embryonic leucine zipper kinase
128711	7p15-p14 ANLN anillin (Drosophila Scraps homolog), actin binding protein
200402 825470	20q11.22-q12 DJ616B8.3 hypothetical protein dJ616B8.3
	17q21–q22 TOP2A topoisomerase (DNA) II alpha (170kD)
	14a13 1 NP I nucleogide phosphorylace
769890	14q13.1 NP nucleoside phosphorylase
	14q13.1 NP nucleoside phosphorylase 1q32.1 HSPC150 HSPC150 protein similar to ubiquitin-conjugating enzyme 17p13.1 STK12 serine/threonine kinase 12

TABLE 10-continued

IMAGE Clone ID	Chromosome Location Description
769921 770992	20q13.12 UBE2C ubiquitin-conjugating enzyme E2C
839682 840364 276915	12q22 UBE2N ubiquitin-conjugating enzyme E2N (homologous to yeast UBC13) 20cen-q13.1 AHCY S-adenosylhomocysteine hydrolase 20q11.2 DNMT3B DNA (cytosine-5-)-methyltransferase 3 beta

[0110] Interestingly, many of the genes in this cluster have been identified already within the grade III signature cluster (FIG. 3). These include genes involved in the cell cycle (e.g., MCM6, TOP2A, CKS2, CDC25C), centrosomal function (TACC3, CENPA), and DNA repair (RAD51, RRM2). Thus, a subset of genes that are expressed at high levels in grade III DCIS are further elevated in IDC, suggesting an intriguing link between the two lines of cancer progression, i.e., tumor grade and invasion. Indeed, and without being bound by theory, RRM2, the M2 subunit of ribonucleotide reductase (RR), which catalyzes a rate-limiting step in DNA synthesis and repair, may play a dual role in both proliferative growth and invasion; overexpression of RRM2 in human cancer cells enhances their invasive potential (Zhou, B. S. et al. (1998c)), whereas its decreased expression inhibits cancer cell proliferation (Chen, S. et al. (2000)). In addition, centrosome amplification (e.g., induced by overexpression of STK15, Zhou et al. 1998b) may result in both high tumor grade and increased invasion potential due to altered cytoskeletal architecture (Lingle, W. L. et al.). However, these genes are not associated with the transition of grade I DCIS to grade I IDC, suggesting that the latter may employ a different mechanism(s) to gain invasion potential.

[0111] Without being bound by theory, and offered for the purposes of improving the understanding of the present invention and its possible applications, the above LCMderived gene expression profiles of the various phenotypic stages of breast cancer are consistent with a modified model of breast cancer progression (FIG. 5). In this model, breast cancer develops along two dimensions, one of which consists of stage transitions from normal to ADH to DCIS to IDC and another consists of tumor grade progression from grade I to II to III. This model is supported by existing histopathological and clinical data (see Dupont, W. D. et al.; Marshall, L. M. et al.; Betsill, W. L. et al.; and Page, D. L. et al. (1982)) and the following lines of evidence presented above. First, extensive changes in gene expression occur in ADH and persist in DCIS/IDC, suggesting a molecular linkage between ADH and DCIS/IDC. Second, the identified 200 genes whose expression levels quantitatively correlate with tumor grade progression in both DCIS and IDC indicate a transcriptional continuum from low to high-grade tumors. Finally, grade III DCIS and IDC differ quantitatively in the expression of the same genes associated with tumor grade progression. It is thus proposed that the various subtypes (e.g., ER+ and ER- subtypes) of breast cancer represent snapshots of this two-dimensional progression scheme; for example (and without limiting the invention), during the progression from grade I through grade III, ER-positive lesions evolve into ER-negative ones. The present invention thus provides the identity, and thus sequences, of various genes associated with the initiation and progression of breast cancer, and so provides for novel diagnostic, preventative and therapeutic strategies for women with breast cancer. This includes the ability to utilize the grade of DCIS/IDC breast cancer, irrespective of which stage of breast cancer is actually present, as a criterion for decisions concerning breast cancer diagnosis and treatment.

[0112] The following Table 11 summarizes the contents of Tables 2-10

TABLE 11

Table	Description
2	Genes with elevated expression in ADH and persisting through
	DCIS and IDC cells compared to normal cells
3	Genes with highest expression in grade III DCIS or IDC cells
4	Genes with decreased expression in ADH, DCIS and IDC cells compared to normal cells
5	Genes correlated with grade I and III samples and decreased expression in all samples
6	Genes with increased expression in grade III
	(DCIS and/or IDC) samples
7	Genes with increased expression in grade I
	(DCIS and/or IDC) samples
8	250 genes with increased expression in grade I
	(DCIS and/or IDC) samples
9	250 genes with increased expression in grade III
	(DCIS and/or IDC) samples
10	Genes with quantitative differences in expression between

[0113] Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

EXAMPLES

Example I

[0114] Materials and Methods

DCIS and IDC samples

[0115] Clinical specimen collection and clinicopathological parameters. All breast specimens were obtained from the Massachusetts General Hospital between 1998 and 2001. Thirty-six breast cancer patients were selected, 31 of which were diagnosed with two or more pathological stages of breast cancer progression, and 5 of which were diagnosed with pre-invasive disease only. Three healthy women who underwent elective mammoplasty reduction were selected as disease-free normal controls. Tissue specimens that demonstrated one or more pathological lesions (ADH, DCIS and IDC) were selected for the study. Cases of ADH were selected as proliferative epithelial lesions that possessed some, but not all, of the features of carcinoma in situ (Page,

D. L. et al. (1992)) and most closely resemble those lesions described as CAPSS (Oyama, T. et al. and Fraser, J. L. et al.). DCIS and IDC were classified (histological grade) according to the European classification (Holland, R. et al.) and by the Nottingham combined histological grade (Elston, C. W. et al.), respectively. ER and PR expression were determined by immunohistochemical staining (negative when none of the tumor cell nuclei showed staining), and Her-2 expression determined by immunohistochemistry or FISH. This study was approved the Massachusetts General Hospital human research committee in accordance with NIH human research study guidelines.

[0116] LCM and RNA isolation and amplification. Each component (Normal, ADH, DCIS or IDC) was laser capture microdissected in triplicate (from consecutive tissue sections) as described (Sgroi et al.) using a PixCell II LCM system (Arcturus Engineering Inc., Mountain View, Calif.). Total RNA was extracted from the captured cells using the Picopure™ RNA Isolation Kit (Arcturus). T7-based RNA amplification was carried out using the RiboAmp™ kit (Arcturus). Briefly, the RNA from each sample was primed with an oligo-dT primer containing a T7 promoter sequence, reverse transcribed and then converted to double stranded cDNA. The cDNA templates were then used in an in vitro transcription reaction using T7 RNA polymerase to generate amplified RNA (aRNA). To obtain enough aRNA for a microarray experiment, a second round of RNA amplification was performed on all samples. To serve as reference in microarray hybridizations, a human universal reference RNA from Stratagene (La Jolla, Calif.) was amplified identically.

[0117] Fabrication of microarrays. Sequence-verified human cDNA clones were obtained from Research Genetics (Huntsville, Ala.). cDNA clones (from the I.M.A.G.E. Consortium via Research Genetics) inserts were amplified by PCR, gel-purified, and spotted onto a 1×3-inch SuperAmineTM (TeleChem International, Sunnyvale, Calif.) glass microscope slide using an OmniGridTM robotic arrayer (GeneMachines, San Carlos, Calif.). As used herein, the I.M.A.G.E. Consortium CloneID, or the IMAGE CloneID, lists the identifiers of the cDNA clones on the microarrays according to the I.M.A.G.E. Consortium and Research Genetics (www.resgen.com/). This provides a unique single identifier for each clone. Descriptive names of clones (or genes) use the UniGene symbols and titles (www.ncbi.nlm-nih.gov/UniGene/).

[0118] Probe labeling and hybridization. cDNA was transcribed from aRNA in the presence of 5-(3-aminoallyl)-2'-deoxyuridine 5'-triphosphate (aminoallyl dUTP) using Stratagene's FairPlay kitTM (La Jolla, Calif.). Cy3 or Cy5 monoreactive dye (Amersham, Piscataway, N.J.) was conjugated onto purified cDNA and the residual dye was removed using QiaQuick PCR Purification columns (Qiagen, Valencia, Calif.). Each Cy5-labeled cDNA was hybridized together with the Cy3-labeled reference probe to a microarray in 40 μL hybridizationr solution (5×SSC, 0.1 μg/pL COT I, 0.2% SDS, 50% formamide) at a concentration of 25 ng/μL per channel for 17 hrs at 42° C. in >60% relative humidity.

[0119] Washing, scanning and image analysis. After hybridization, slides were washed as follows: 1×SSC, 0.2% SDS at 42° for 5 min (two times), 1×SSC, 0.2% SDS at 55° C. for 5 min, 0.1×SSC, 0.2% SDS at 55° C. for 5 min and

0.1×SSC at RT for 2 min. Washed slides were scanned using ScanArray 5000 (PerkinElmer, Billerica, Mass.), and Cy5/Cy3-signals were quantitated using ImaGene 4.2 (BioDiscovery, Los Angeles, Calif.).

[0120] Data processing. Fluorescent intensities of Cy5 and Cy3 channels on each slide were subjected to spot filtering and normalization. Spots flagged by ImaGene were excluded from further analysis. Normalization was performed using a robust nonlinear local regression method (Yang, Y. H. et al.). The normalized ratios of Cy5/Cy3 were used to represent the relative gene expression levels in the experimental samples. Measurements from replicate samples were averaged after normalization.

[0121] Cluster and discriminant analysis. Hierarchical cluster analysis was performed in GeneMaths (v1.5, Applied-Maths, Austin, Tex.) using the cosine correlation coefficient as a measure of similarity between two genes or samples and complete linkage. Linear discriminant analysis with variance was performed within GeneMaths.

Example II

[0122] Genes Showing Significant Differences in the Pair-Wise Comparisons of Normal vs. ADH, Normal vs. DCIS and Normal vs. IDC by Linear Discriminant Analysis

[0123] 2-3 independent LCM captures were made from the same breast biopsy for each disease state (normal, ADH, DCIS or IDC), and RNA from each capture was amplified, labeled, and hybridized to 2 identical 12,000-element microarrays, resulting in from 4 to 6 data points per gene per disease state. The replicate data points were averaged to represent the expression level of each gene at each cellular state, which was further transformed as data points which are the log2 value of the ratio of data from patient matched disease/normal samples or the log2 value of the ratio of data from patient matched IDC/DCIS samples.

REFERENCES

[0124] DeRisi, J., et al., Use of a cDNA microarray to analyse gene expression patterns in human cancer, Nature Genetics, (1996) 14:457-460.

[0125] Hedenfalk, I., et al., *Gene-Expression Profiles In Heredity Breast Cancer,* The New England Journal of Medicine, (Feb. 22, 2001) 344:8:539-548.

[0126] Golub, T. R., et al., Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, (Oct. 15, 1999) 286:531-537.

[0127] Perou, Charles M., et al., Molecular portraits of human breast tumours, Nature, (Aug. 17, 2000) 406:747-752

[0128] Garber, Mitchell E., et al., Diversity of gene expression in adenocarcinoma of the lung, Proc. Natl. Acad. Sci. USA, (Nov. 20, 2001) 98:24:13784-13789.

[0129] Perou, Charles M., et al., Distinctive gene expression patterns in human mammary epithelial cells and breast cancers, Proc. Natl. Acad. Sci. USA, (August 1999) 96:9212-9217.

[0130] Sgrio, Dennis C., et al., In Vivo Gene Expression Profile Analysis of Human Breast Cancer Progression, Cancer Research, (Nov. 15, 1999) 59:5656-5661.

- [0131] Sorlie, Therese, et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc. Natl. Acad. Sci., (Sep. 11, 2001) 98:19:10869-10874.
- [0132] Alizadeh, Ash A., et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, (Feb. 3, 2000) 403:503-511.
- [0133] Bittner, M., et al., Molecular classification of cutaneous malignant melanoma by gene expression profiling, Nature (Aug. 3, 2000) 406:536-540.
- [0134] West, Mike, et al., Predicting the clinical status of human breast cancer by using gene expression profiles, Proc. Natl. Acad. Sci., (Sep. 25, 2001) 98:20:11462-11467.
- [0135] Zhou, J. et al. A novel transcription factor, ELF5, belongs to the ELF subfamily of ETS genes and maps to human chromosome 11 p13-15, a region subject to LOH and rearrangement in human carcinoma cell lines. *Oncogene* 17, 2719-32. (1998a).
- [0136] Fitzgibbons, P. L. et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. *Arch Pathol Lab Med* 124, 966-78. (2000).
- [0137] Page, D. L. et al. Prediction of node-negative breast cancer outcome by histologic grading and S-phase analysis by flow cytometry: an Eastern Cooperative Oncology Group Study (2192). *Am J Clin Oncol* 24, 10-8. (2001).
- [0138] Dalton, L. W. et al. Histologic grading of breast cancer: linkage of patient outcome with level of pathologist agreement. *Mod Pathol* 13, 730-5. (2000).
- [0139] van Slooten, H. J. et al. Expression of Bcl-2 in node-negative breast cancer is associated with various prognostic factors, but does not predict response to one course of perioperative chemotherapy. *Br J Cancer* 74, 78-85. (1996).
- [0140] Sheridan, J. P. et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. *Science* 277, 818-21. (1997).
- [0141] Galaktionov, K. et al. CDC25 phosphatases as potential human oncogenes. *Science* 269, 1575-7. (1995).
- [0142] Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. *Nat Genet* 20, 189-93. (1998b).
- [0143] Chen, J. J., Silver, D., Cantor, S., Livingston, D. M. & Scully, R. BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. *Cancer Res* 59, 1752s-1756s. (1 999).
- [0144] Maacke, H. et al. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. *Int J Cancer* 88, 907-13. (2000).
- [0145] Zhou, B. S. et al. Overexpression of transfected human ribonucleotide reductase M2 subunit in human cancer cells enhances their invasive potential. *Clin Exp Metastasis* 16, 43-9. (1998c).
- [0146] Chen, S., Zhou, B., He, F. & Yen, Y. Inhibition of human cancer cell growth by inducible expression of human ribonucleotide reductase antisense cDNA. *Antisense Nucleic Acid Drug Dev* 10, 111-6. (2000).

- [0147] Lingle, W. L. et al. Centrosome amplification drives chromosomal instability in breast tumor development. *Proc Natl Acad Sci USA* 99, 1978-83. (2002).
- [0148] Dupont, W. D. & Page, D. L. Risk factors for breast cancer in women with proliferative breast disease. *N Engl J Med* 312, 146-51. (1985).
- [0149] Marshall, L. M. et al. Risk of breast cancer associated with atypical hyperplasia of lobular and ductal types. *Cancer Epidemiol Biomarkers Prev* 6, 297-301. (1997).
- [0150] Betsill, W. L., Jr., Rosen, P. P., Lieberman, P. H. & Robbins, G. F. Intraductal carcinoma. Long-term follow-up after treatment by biopsy alone. *Jama* 239, 1863-7. (1978).
- [0151] Page, D. L., Dupont, W. D., Rogers, L. W. & Landenberger, M. Intraductal carcinoma of the breast: follow-up after biopsy only. *Cancer* 49, 751-8. (1982).
- [0152] Page, D. L. & Rogers, L. W. Combined histologic and cytologic criteria for the diagnosis of mammary atypical ductal hyperplasia. *Hum Pathol* 23, 1095-7. (1992).
- [0153] Oyama, T., Maluf, H. & Koerner, F. Atypical cystic lobules: an early stage in the formation of low-grade ductal carcinoma in situ. *Virchows Arch* 435, 413-21. (1999).
- [0154] Fraser, J. L., Raza, S., Chorny, K., Connolly, J. L. & Schnitt, S. J. Columnar alteration with prominent apical snouts and secretions: a spectrum of changes frequently present in breast biopsies performed for microcalcifications. *Am J Surg Pathol* 22, 1521-7. (1998).
- [0155] Holland, R. et al. Ductal carcinoma in situ: a proposal for a new classification. *Semin Diagn Pathol* 11, 167-80. (1994).
- [0156] Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. *Histopathology* 19, 403-10. (1991).
- [0157] Yang, Y. H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. *Nucleic Acids Res* 30, e15. (2002).
- [0158] Unger, M. A. et al. Characterization of adjacent breast tumors using oligonucleotide microarrays. *Breast Cancer Res* 3, 336-41 (2001).
- [0159] van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. *Nature* 415, 530-6. (2002).
- [0160] Gruvberger, S. et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61, 5979-84. (2001).
- [0161] Luo, L. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. *Nat Med* 5, 117-22. (1999).
- [0162] Lennon et al. The I.M.A.G.E. Consortium: An Integrated Molecular Analysis of Genomes and their Expression. Genomics 33:151-152 (1996).
- [0163] All references cited herein, including patents, patent applications, and publications, are hereby incorporated by reference in their entireties, whether previously specifically incorporated or not.

[0164] Having now fully described this invention, it will be appreciated by those skilled in the art that the same can be performed within a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation.

[0165] While this invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

We claim:

- 1. An array comprising polynucleotide probes, capable of hybridizing to nucleic acid molecules of more than one of the genes listed in Table 2, hybridized to nucleic acids derived from a cell suspected of being non-normal.
 - 2. The array of claim 1 comprising 3-11 of the genes.
 - 3. The array of claim 2 comprising 5-11 of the genes.
 - 4. The array of claim 3 comprising all 11 genes.
- 5. The array of claim 1 wherein said cell is from a subject afflicted with, or suspected of having, breast cancer.
 - **6**. The array of claim 1 wherein said cell is a human cell.
- 7. The array of claim 1 wherein said nucleic acids derived from a cell are prepared by quantitative PCR.
- **8**. The array of claim 1 wherein at least one polynucleotide probe hybridizes to CRIP1 nucleic acid molecules.
- 9. The array of claim 1 wherein said non-normal cells are selected from ADH, DCIS, and IDC.
- 10. An array comprising polynucleotide probes, capable of hybridizing to nucleic acid molecules of more than one of the genes in Table 3, hybridized to nucleic acids derived from a cell suspected of being DCIS or IDC.
 - 11. The array of claim 10 comprising 3-9 of the genes.
 - 12. The array of claim 11 comprising 5-9 of the genes.
 - 13. The array of claim 12 comprising all 9 genes.
- 14. The array of claim 10 wherein said cell is from a subject afflicted with, or suspected of having, breast cancer.
- 15. The array of claim 10 wherein said cell is a human cell.
- **16**. The array of claim 10 wherein said nucleic acids derived from a cell are prepared by quantitative PCR.
- 17. An array comprising polynucleotide probes, capable of hybridizing to nucleic acid molecules of more than one of the genes in Table 4, hybridized to nucleic acids derived from a cell suspected of being non-normal.
 - **18**. The array of claim 17 comprising 3-9 of the genes.
 - 19. The array of claim 18 comprising 5-9 of the genes.
 - 20. The array of claim 19 comprising all 9 genes.
- 21. The array of claim 17 wherein said cell is from a subject afflicted with, or suspected of having, breast cancer.
- 22. The array of claim 17 wherein said cell is a human cell.
- 23. The array of claim 17 wherein said nucleic acids derived from a cell are prepared by quantitative PCR.
- **24**. The array of claim 17 wherein at least one polynucleotide probe hybridizes to ELF5 nucleic acid molecules.
- 25. The array of claim 17 wherein said non-normal cells are selected from ADH, DCIS, and IDC

- 26. A method to determine the presence, grade or stage of breast cancer cells in a sample from a subject comprising assaying said sample for expression of one or more genes in Table 2 and/or one or more genes in Table 4.
- 27. The method of claim 26 wherein said assaying comprises preparing RNA from said sample.
- **28**. The method of claim 27 wherein said RNA is used for quantitative PCR.
- 29. The method of claim 28 wherein said assaying comprises using an array.
- **30.** The method of claim 26 wherein said sample is a ductal lavage or fine needle aspiration sample.
- **31**. The method of claim 30 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- **32**. The method of claim 26 wherein said non-normal cells are selected from ADH, DCIS, and IDC.
- **33.** A method to determine the presence, grade or stage of breast cancer cells in a sample from a subject comprising
 - assaying said sample for expression of one or more genes selected from Table 2 and/or Table 4 and
 - identifying said sample as containing non-normal breast cancer cells, optionally without grading by histomorphological criteria.
- **34**. The method of claim 33 wherein said assaying comprises preparing RNA from said sample.
- **35**. The method of claim 34 wherein said RNA is used for quantitative PCR.
- **36**. The method of claim 33 wherein said assaying comprises using an array.
- **37**. The method of claim 33 wherein said sample is a ductal lavage or fine needle aspiration sample.
- **38**. The method of claim 37 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- **39**. The method of claim 33 wherein said non-normal cells are selected from ADH, DCIS, and IDC.
- **40**. A method to determine the presence of DCIS and/or IDC breast cancer cells of grade III in a sample from a subject comprising
 - assaying said sample for expression of one or more genes selected from Table 3, Table 6, and/or Table 9 and
 - identifying said sample as containing breast cancer cells of grade III, optionally without grading by histomorphological criteria.
- **41**. The method of claim 40 wherein said assaying comprises preparing RNA from said sample.
- **42**. The method of claim 41 wherein said RNA is used for quantitative PCR.
- **43**. The method of claim 40 wherein said assaying comprises using an array.
- **44**. The method of claim 40 wherein said sample is a ductal lavage or fine needle aspiration sample.
- **45**. The method of claim 44 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- **46**. A method to determine the grade of either DCIS or IDC cancer progression in a sample from a subject comprising assaying said sample for expression of one or more genes listed in Table 10.
- 47. The method of claim 46 wherein said assaying comprises preparing RNA from said sample.

- **48**. The method of claim 47 wherein said RNA is used for quantitative PCR.
- **49**. The method of claim 46 wherein said assaying comprises using an array.
- **50**. The method of claim 49 wherein said sample is a ductal lavage or fine needle aspiration sample.
- **51**. The method of claim 50 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- **52.** A method to determine the presence of DCIS and/or IDC breast cancer cells of grade I in a sample from a subject comprising
 - assaying said sample for expression of one or more genes selected from Table 7 and/or Table 8 and
 - identifying said sample as containing breast cancer cells of grade I, optionally without grading by histomorphological criteria.
- **53**. The method of claim 52 wherein said assaying comprises preparing RNA from said sample.
- **54**. The method of claim 53 wherein said RNA is used for quantitative PCR.
- **55**. The method of claim 52 wherein said assaying comprises using an array.
- **56**. The method of claim 55 wherein said sample is a ductal lavage or fine needle aspiration sample.
- **57**. The method of claim 56 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- **58**. A method to determine the presence of DCIS and/or IDC breast cancer cells of grade I and/or grade III in a sample from a subject comprising assaying said sample for decreased expression of one or more genes selected from Table 5.
- **59**. The method of claim 58 wherein said assaying comprises preparing RNA from said sample.
- **60**. The method of claim 59 wherein said RNA is used for quantitative PCR.
- **61**. The method of claim 58 wherein said assaying comprises using an array.
- **62**. The method of claim 58 wherein said sample is a ductal lavage or fine needle aspiration sample.
- **63**. The method of claim 62 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- **64.** An array comprising polynucleotide probes, capable of hybridizing to nucleic acid molecules of more than one of the genes listed in Table 5, hybridized to nucleic acids derived from a cell suspected of being DCIS or IDC.
 - **65**. The array of claim 41 comprising 3-11 of the genes.
- **66**. The array of claim 64 wherein said cell is from a subject afflicted with, or suspected of having, breast cancer.
- **67**. The array of claim 64 wherein said cell is a human cell.
- **68**. The array of claim 64 wherein said nucleic acids derived from a cell are prepared by quantitative PCR.
- **69**. An array comprising polynucleotide probes, capable of hybridizing to nucleic acid molecules of more than one of the genes listed in Table 6 and/or Table 9, hybridized to nucleic acids derived from a cell suspected of being grade III DCIS and/or IDC.
 - 70. The array of claim 69 comprising 3-11 of the genes.
- 71. The array of claim 69 wherein said cell is from a subject afflicted with, or suspected of having, breast cancer.

- 72. The array of claim 69 wherein said cell is a human cell.
- **73**. The array of claim 69 wherein said nucleic acids derived from a cell are prepared by quantitative PCR.
- 74. An array comprising polynucleotide probes, capable of hybridizing to nucleic acid molecules of more than one of the genes listed in Table 7 and/or Table 8, hybridized to nucleic acids derived from a cell suspected of being grade I DCIS and/or IDC.
 - 75. The array of claim 74 comprising 3-11 of the genes.
- **76**. The array of claim 74 wherein said cell is from a subject afflicted with, or suspected of having, breast cancer.
- 77. The array of claim 74 wherein said cell is a human cell.
- **78**. The array of claim 74 wherein said nucleic acids derived from a cell are prepared by quantitative PCR.
- **79**. An array comprising polynucleotide probes, capable of hybridizing to nucleic acid molecules of more than one of the genes listed in Table 10, hybridized to nucleic acids derived from a cell suspected of being DCIS or IDC.
 - **80**. The array of claim 79 comprising 3-11 of the genes.
- **81**. The array of claim 79 wherein said cell is from a subject afflicted with, or suspected of having, breast cancer.
- **82**. The array of claim 79 wherein said cell is a human cell.
- **83**. The array of claim 79 wherein said nucleic acids derived from a cell are prepared by quantitative PCR.
- **84.** A method to determine therapeutic treatment for a patient having cells suspected of being non-normal in a sample therefrom comprising
 - identifying said patient as having grade III DCIS and/or IDC after assaying said cells for expression of more than one gene listed in Table 3 and
 - selecting the appropriate treatment for a patient having cells of such a grade.
- **85**. The method of claim 84 wherein said assaying comprises preparing RNA from said cells.
- **86.** The method of claim 85 wherein said RNA is used for quantitative PCR.
- **87**. The method of claim 84 wherein said assaying comprises using an array.
- **88**. The method of claim 87 wherein said sample is a ductal lavage or fine needle aspiration sample.
- **89**. The method of claim 88 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- **90**. The method of claim 84 wherein said non-normal cells are selected from ADH, DCIS, and IDC.
- **91**. A method to determine therapeutic treatment for a patient having non-normal cells in a sample therefrom comprising
 - identifying said patient as having grade III DCIS and/or IDC after assaying said cells for expression of more than one gene listed in Table 6 and/or Table 9, and
 - selecting the appropriate treatment for a patient having cells of such a grade.
- **92**. The method of claim 91 wherein said assaying comprises preparing RNA from said cells.
- **93.** The method of claim 92 wherein said RNA is used for quantitative PCR.
- **94.** The method of claim 91 wherein said assaying comprises using an array.

- **95**. The method of claim 91 wherein said sample is a ductal lavage or fine needle aspiration sample.
- **96**. The method of claim 95 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- 97. The method of claim 91 wherein said non-normal cells are selected from ADH, DCIS, and IDC.
- **98**. A method to determine therapeutic treatment for a patient having non-normal cells in a sample therefrom comprising
 - identifying said patient as having grade I DCIS and/or IDC after assaying said cells for expression of more than one gene listed in Table 7 and/or Table 8, and
 - selecting the appropriate treatment for a patient having cells of such a grade.

- **99.** The method of claim 98 wherein said assaying comprises preparing RNA from said cells.
- **100**. The method of claim 99 wherein said RNA is used for quantitative PCR.
- **101.** The method of claim 98 wherein said assaying comprises using an array.
- **102.** The method of claim 98 wherein said sample is a ductal lavage or fine needle aspiration sample.
- 103. The method of claim 102 wherein said sample is microdissected to isolate one or more cells suspected of being breast cancer cells.
- **104**. The method of claim 98 wherein said non-normal cells are selected from ADH, DCIS, and IDC.

* * * * *