The present invention relates to a lip makeup kit, a cosmetic product applicator for lips, the uses thereof and the lip makeup method using same. More specifically, the present invention relates to a makeup kit for decorating the lips with a plurality of different colors and/or appearances.
Lip makeup kit, cosmetic product applicator and makeup method using same

The present invention relates to a lip makeup kit, a cosmetic product applicator for lips, the uses thereof and the lip makeup method using same. More specifically, the present invention relates to a makeup kit for decorating the lips with a plurality of different colors and/or appearances.

To apply a makeup product on the lips of a user, it is known to use a lipstick to transfer the product by gliding.

In addition, to obtain a very satisfactory end result, the user may, when there is time, use a liner or a pencil to produce the contour, and a conventional lipstick to cover the interior portion of the lips. She may also overlay a plurality of layers of different products, for example applying one lipstick followed by a second, to obtain particular color effects, patterns or appearances of the lips.

However, these different makeup methods are not entirely satisfactory. Indeed, the contour is often more resistant than the interior portion to wear, which sometimes produces a visually unappealing change in the makeup over time.

If products are overlaid, the mix of colors does not withstand well over time. Since the second layer is on top of the first, it wears off first, giving rise to an unappealing intermediary situation.

Ideally, users should be able to add touches of color without overlapping. However, this is not feasible in practice since great precision would be needed to apply one touch of color and, tracing the outline of the touch, apply the second color.

It is thus necessary to seek a technical solution suitable for decorating lips using various compositions having different colors and/or appearances while avoiding the disadvantages of the techniques cited above.

The aim of the invention is to meet these needs.

The purpose of the present invention is to enable lip makeup using various compositions having different colors and/or appearances.

The purpose of the present invention is also to enable lip makeup with two-tone effects with a blend of the two colors.

The purpose of the present invention is also to enable lip makeup with two-tone effects with a clear demarcation between the two colors.

The purpose of the present invention is also to enable lip makeup with compositions of different appearances, for example one matt and the other gloss.

The present invention thus relates to a makeup kit comprising:
- an applicator (10) of at least one cosmetic product on a user's lips, of the type comprising an application surface (16), with a shape analogous to that of human lips, said application surface being intended to receive a cosmetic product, and

- said cosmetic product, comprising:

 - at least one composition (1) in the form of a water-in-oil emulsion comprising a physiologically acceptable medium; and

 - at least one composition (2), separate from the composition (1), and comprising a physiologically acceptable medium, said composition (2) being:

 - either an aqueous composition containing at least 20% by weight of water with respect to the total weight of said aqueous composition,

 - or an oily composition containing less than 5% by weight of water with respect to the total weight of said oily composition.

The term "physiologically acceptable medium" is intended to denote a medium that is particularly suitable for the application of a composition according to the invention to keratin materials, namely the skin or the lips.

The physiologically acceptable medium is generally suitable for the nature of the support to which the composition should be applied, and also for the way in which the composition is to be packaged.

Water-in-oil composition (1)

The composition (1) is in the form of a water-in-oil emulsion.

The term emulsion refers to a macroscopically homogeneous but microscopically heterogeneous mixture of two non-miscible phases.

A water-in-oil (W/O) emulsion consists of an aqueous phase dispersed in an oily phase.

In one embodiment of the invention, the composition (1) has a water content of 20% to 60%, preferably of 20% to 40% by weight with respect to the total weight of the composition (1).

The water may be a floral water such as cornflower water and/or a mineral water such as Vittel water, Lucas water or La Roche Posay water and/or a spring water.

According to one embodiment, the composition (1) comprises at least one solvent.

According to one embodiment, the composition (1) comprises at least one polar or water-soluble solvent.
The term "water-soluble solvent" in the present invention denotes a compound that is liquid at ambient temperature and water-miscible (miscibility in water greater than 50% by weight at 25°C and atmospheric pressure).

The water-soluble solvent(s) suitable for the invention may be chosen from C_{1.8} and particularly C_{1.5}, monoalcohols, particularly ethanol, isopropanol, tert-butanol, n-butanol, polyols, and mixtures thereof.

According to one embodiment, the composition (1) comprises at least one solvent which is not water-soluble.

The non-water-soluble solvents include oils. The oils may be chosen from hydrocarbon oils, silicon oils, fluorinated oils and mixtures thereof. The oils cited above may be volatile oils, non-volatile oils and mixtures thereof.

The term hydrocarbon oil refers to an oil essentially formed, or consisting, of carbon and hydrogen atoms, and optionally oxygen, nitrogen atoms, and containing no silicon or fluorine; it may contain ester, ether, amine, amide groups.

The term silicon oil refers to an oil containing at least one silicon atom and particularly containing Si-O groups.

The term fluorinated oil refers to an oil containing at least one fluorine atom.

Preferably, the composition (1) comprises one or a plurality of solvent(s) chosen from water, butylene glycol, glycerin, ethylhexylglycerin, pentylene glycol, isododecane, isoeicosane, volatile silicone oils and mixtures thereof.

Preferably, the aqueous composition has, at 20°C, a viscosity between 0.3 Pa.s and 100 Pa.s, preferably between 0.5 Pa.s and 100 Pa.s and optimally between 1 Pa.s and 40 Pa.s.

Preferably, the oily composition has, at 20°C, a viscosity between 0.5 Pa.s and 400 Pa.s, preferably between 1 Pa.s and 200 Pa.s and optimally between 2 Pa.s and 100 Pa.s.

Preferably, the emulsion has, at 20°C, a viscosity between 0.3 Pa.s and 100 Pa.s, preferably between 0.5 Pa.s and 100 Pa.s and optimally between 0.5 Pa.s and 40 Pa.s.

Preferably, the compositions according to the invention will have a viscosity at 20°C greater than 0.3 Pa.s, particularly greater than 0.5 Pa.s according to the protocol described hereinafter.

The viscosity is generally measured at 25°C, using a RHEOMAT RM 180 viscometer equipped with a moving body suitable for the viscosity of the product (moving...
body chosen such that the measurement is always between 10 and 90 DU (Deviation Units), the measurement being made after 10 minutes of rotation of the moving body in the composition (times after which stabilization of the viscosity and rotational speed of the moving body is observed), at a shear rate of 200 s\(^{-1}\).

The DU values are then converted into Poises (1 Poise\(=0.1\) Pa.s) using an equivalence table.

The moving body 3 is generally used for compositions having a viscosity \(<3\) Pa.s, the moving body 4 for compositions having a viscosity ranging from 3 to 20 Pa.s, and the moving body 5 for compositions having a viscosity \(>20\) Pa.s.

Therefore, according to one embodiment, the invention relates to a makeup kit comprising an applicator intended to apply a cosmetic product on a user's lips, said product comprising a composition (1) and a composition (2).

According to one embodiment of the invention, the compositions (1) and (2) have a different color and/or appearance or change to produce a different color and/or appearance.

The term "different appearance" refers to a gloss or a different texture.

The term "leaves a different appearance" denotes that the colors may be initially identical but change over time to give rise to the creation of a difference in color or appearance. For example, if the color of one of the two does not hold as well over time as the other, a two-tone appearance will be created.

The aim of the present invention is that of enabling lip makeup comprising a plurality of different colors or appearances.

The aim of the present invention is also that of enabling lip makeup comprising patterns or designs.

In particular, the ability of create effects increasing the relief effect of the lips is sought. For this, it is sought to be able to place on some areas of the lips, particularly in the central part, a lighter or darker color which, by contrast with the color attributed to the rest of the surface of the lips, produces the impression of relief. In this case, the color difference \(\Delta E\) between the two areas does not need to be great (\(\Delta E\) is greater than 2 and preferentially greater than 4 but less than 10).

Delta E, \(dE\) or \(\Delta E\), is defined as a measurement of the difference between two colors. The formula defined in 1976 is given below:

\[
\Delta E^* = \sqrt{\left((L_1 - L_2)^2 + (a_1 - a_2)^2 + (\frac{\gamma}{4} - b_2)^2 \right)}
\]

where:
L_1,a_1,b_1 are the colorimetric space coordinates of the first color to be compared and L_2,a_2,b_2 are those of the second in the CIE Lab system (L meaning luminance, a red, b yellow).

This measurement may be made by a camera.

In another scenario, it is sought to easily create effects to embellish the surface of the lips, in the aim of imprinting a natural (in that it is found on some lips) or artificial pattern. In the first scenario, it would be sought to imprint lines, for example, to recreate a wrinkled impression. In the second scenario, it would be sought for example to imprint a logo or geometric pattern.

In a further scenario, it is sought to create color shading, between different areas. The term shading refers to a progressive change from a color a to a color b, in such a way that a clear demarcation is not observed.

In this way, according to one embodiment of the invention, at least one of the compositions (1) or (2) comprises at least one dye, particularly chosen from pigments, colorants, reflective particles (also referred to as glitter) and mixtures thereof.

According to one particular embodiment of the invention, each of the compositions (1) and (2) comprises at least one dye, the dye of composition (1) being different to the dye of composition (2).

According to one particular embodiment of the invention, a two-tone appearance is obtained on the user's lips. This two-tone appearance may, for example, have a blended effect, i.e. the demarcation area between the two colors is unclear.

This two-tone appearance may also, for example, represent patterns if the demarcation area between the two colors is clear.

In one particular scenario, the outline of the lips may be colored by applying any one of the two compositions (1) or (2) whereas the inside of the lips may be colored with the other composition.

According to one particular embodiment of the invention, one of the compositions (1) or (2) comprises at least one dye, the other composition not comprising any dye.

Dyes

The dye (also referred to as "coloring agent") may be chosen from water-soluble or liposoluble colorants, pigments, nacres, glitter and mixtures thereof.

The dyes may be present, in the composition (1) or composition (2), at a content ranging from 0.01 % to 30% by weight, with respect to the weight of the composition.
The term "pigments" should be understood to mean white or colored, mineral or organic particles, which are insoluble in an aqueous solution and are intended for coloring and/or opacifying the resulting film.

The pigments may be present, in the composition (1) or (2), at a content ranging from 0.01% to 30% by weight, with respect to the weight of the aqueous or oily composition, preferably from 1% to 12% by weight.

As mineral pigments that can be used in the invention, mention may be made of titanium, zirconium or cerium oxides, and also zinc, iron or chromium oxides, ferric blue, manganese violet, ultramarine blue and chromium hydrate.

The pigment may also be a pigment having a structure that may be, for example, of sericite/brown iron oxide/titanium dioxide/silica type. Such a pigment is sold, for example, under the reference COVERLEAF NS or JS by the CHEMICALS AND CATALYSTS company and has a contrast ratio of around 30.

The dye may also comprise a pigment having a structure that may, for example, be of the type of silica microspheres containing iron oxide. An example of a pigment having this structure is sold by MIYOSHI under the name PC BALL PC-LL-100 P, and this pigment consists of silica microspheres containing yellow iron oxide.

Preferably, the mineral pigments used in the present invention are chosen from the group consisting of iron oxides, titanium dioxide, aluminum hydroxide and silver.

Preferably, the organic pigment used in the present invention is carmine.

The term "nacres" should be understood to mean iridescent or non-iridescent colored particles of any shape, which are in particular produced by certain mollusks in their shell or else are synthesized and which exhibit a color effect by optical interference.

The nacres may be selected from pearlescent pigments such as titanium mica coated with iron oxide, titanium mica coated with bismuth oxychloride, titanium mica coated with chromium oxide, titanium mica coated with an organic dye, and pearlescent pigments based on bismuth oxychloride. This may also involve mica particles at the surface of which are superposed at least two successive layers of metal oxides and/or of organic dyes.

By way of example of nacres, mention may also be made of natural mica coated with titanium oxide, with iron oxide, with natural pigment or with bismuth oxychloride.

Among the nacres available on the market, mention may be made of the TIMICA, FLAMENCO and DUOCHROME nacres (based on mica) sold by ENGELHARD, the
TIMIRON nacres sold by MERCK, the nacres based on mica, PRESTIGE, sold by ECKART and the nacres based on synthetic mica, SUNSHINE, sold by SUN CHEMICAL

The nacres may more particularly possess a yellow, pink, red, bronze, orange, brown, gold and/or copper color or glint.

By way of illustration of nacres which can be used in the context of the invention, mention may, in particular, be made of the gold nacres sold, in particular, by ENGELHARD, under the name Brilliant gold 212G (Timica), Gold 222C (Cloisonne), Sparkle gold (Timica), Gold 4504 (Chromalite) and Monarch gold 233X (Cloisonne); the bronze nacres, sold, in particular, by MERCK under the name Bronze fine (17384) (Colorona) and Bronze (17353) (Colorona) and by ENGELHARD under the name Super bronze (Cloisonne); the orange nacres, in particular, sold by ENGELHARD under the name Orange 363C (Cloisonne) and Orange MCR 101 (Cosmica) and by MERCK under the name Passion orange (Colorona) and Matte orange (17449) (Microna); the brown-hued nacres sold in particular by ENGELHARD under the name Nu-antique copper 340XB (Cloisonne) and Brown CL4509 (Chromalite); the copper-glint nacres sold in particular by ENGELHARD under the name Copper 340A (Timica); the red-glint nacres sold in particular by MERCK under the name Sienna fine (17386) (Colorona); the yellow-glint nacres sold in particular by ENGELHARD under the name Yellow (4502) (Chromalite); the gold-glint red-hued nacres sold in particular by ENGELHARD under the name Sunstone G012 (Gemtone); the pink nacres sold in particular by ENGELHARD under the name Tan opal G005 (Gemtone); the gold-glint black nacres sold in particular by ENGELHARD under the name Nu-antique bronze 240 AB (Timica), the blue nacres sold in particular by MERCK under the name Matte blue (17433) (Microna), the silver-glint white nacres sold in particular by MERCK under the name Xirona Silver and the green-gold and pinkish orangish nacres sold in particular by MERCK under the name Indian summer (Xirona) and mixtures thereof.

Preferably, the nacres according to the present invention are chosen from synthetic fluorphlogopite, calcium and aluminum borosilicate, calcium and sodium borosilicate and mica.

The term "colorants" refers to generally organic compounds soluble in fats such as oils or in a hydroalcoholic phase.

The compositions (1) and (2) according to the invention may also comprise water-soluble or liposoluble colorants. The liposoluble colorants are for example Sudan Red, DC Red 17, DC Green 6, β-carotene, Sudan Brown, DC Yellow 11, DC Violet 2, DC orange 5 and Quinoline Yellow. The water-soluble colorants are, for example, beetroot juice and methylene blue.
Preferably, the colorants are chosen from the group consisting of Yellow 5, Red 4, Red 7, Red 21, Red 27, Red 28, Red 33, Red 40, (Yellow 5 lake, Yellow 6 lake, Blue 1 lake).

The compositions (1) or (2) according to the invention may also contain at least one material with a specific optical effect, also referred to as glitter or reflective particles. This effect is different from a simple conventional hue effect, i.e. a unified and stabilized effect of the kind produced by conventional dyes, such as, for example, monochromatic pigments. For the purpose of the invention, the term "stabilized" signifies absence of an effect of variability of color with the angle of observation or in response to a temperature change.

For example, this material may be selected from particles having a metallic glint, goniochromatic coloring agents, diffracting pigments, thermochromatic agents, optical brighteners, and also fibers, in particular of the interference type. Of course, these various materials may be combined so as to provide the simultaneous manifestation of two effects, or even a new effect in accordance with the invention.

Volatile oils
According to one embodiment, the composition (1) comprises at least one volatile oil, particularly chosen from volatile hydrocarbon and silicone oils and mixtures thereof.

The term "volatile oil" is intended to mean any oil capable of evaporating on contact with keratin matter, in less than one hour, at ambient temperature and at atmospheric pressure (760 mm Hg). The volatile organic solvent(s) and volatile oils according to the invention are organic solvents and volatile cosmetic oils, which are liquid at ambient temperature, having a vapor pressure different to zero, at ambient temperature and atmospheric pressure, particularly ranging from 0.13 Pa to 40,000 Pa (10^{-3} at 300 mm Hg), particularly ranging from 1.3 Pa to 13,000 Pa (0.01 to 100 mm Hg), and more specifically ranging from 1.3 Pa to 1300 Pa (0.01 to 10 mm Hg).

These oils may be hydrocarbon oils, silicone oils, fluorinated oils or mixtures thereof.

The term "silicon oil" refers to an oil comprising at least one silicon atom and particularly comprising Si-O groups.

The volatile silicone oil suitable for use in the invention may be chosen from silicone oils particularly having a viscosity ≤ 8 centistokes (cSt) (8 x 10^{-6} m²/s).

The volatile silicone oil suitable for use in the invention made by chosen from the silicone oils having a flash point ranging from 40°C to 102°C, preferably having a flash point greater than 55°C and less than or equal to 95°C, and preferentially ranging from 65°C to 95°C.
The volatile silicone oil may be chosen from linear or cyclic silicone oils such as linear or cyclic polydimethylsiloxanes (PDMS) having 3 to 7 silicon atoms.

By way of example of such oils, mention may be made of octyltrimethicone, hexyltrimethicone, decamethylcyclopentasiloxane (cyclopentasiloxane or D5), octamethylcyclo-tetrasiloxane (cyclo-tetramethylsiloxane or D4), dodecamethylcyclo-hexasiloxane (D6), decamethyldisiloxane (L4), Shin Etsu KF 96 A, polydimethylsiloxanes such as those sold under the reference DC 200 (1.5 cSt), DC 200 (5 cSt), DC 200 (3 cSt) by Dow Corning, dodecylmethyldisiloxane (L5) (INCI name Dimethicone), such as Shin Etsu KF-96L-2CS and Dow Corning DM-Fluid-2CS.

Preferably, the volatile silicone oil is chosen from volatile linear silicone oils, volatile cyclic silicone oils and mixtures thereof.

According to one particular embodiment, the volatile cyclic silicone oils are chosen from decamethylcyclopentasiloxane (cyclopentasiloxane or D5), dodecamethylcyclo-hexasiloxane (D6), and mixtures thereof.

According to a further particular embodiment, the volatile linear silicone oils are chosen from polydimethylsiloxanes (PDMS) having a molecular weight ranging from 1 to 5 est, particularly decamethylpentasiloxane (L5).

According to one embodiment, the volatile silicone oils represent 15% to 20% by weight of the total weight of the composition (1).

According to one embodiment, they may be associated with non-volatile silicone oils representing 2% to 7% by weight of the total weight of the composition (1).

The term "hydrocarbon oil" refers to an oil essentially formed, or consisting, of carbon and hydrogen atoms, and optionally oxygen, nitrogen atoms, and containing no silicon or fluorine. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.

The volatile hydrocarbon oils may be chosen from hydrocarbon oils having 8 to 16 carbon atoms (preferably between 8 and 14 carbon atoms), and particularly volatile hydrocarbon oils wherein the flash point is less than or equal to 80°C (the flash point is particularly measured according to the ISO 3679 standard), and in particular:

- \(C_8-C_{16}\) branched alkanes such as petroleum-based \(C_8-C_{16}\) isoalkanes (also referred to as isoparaffins) such as isododecane (also referred to as 2,2,4,4,6-pentamethylheptane), isododecane and for example the oils sold under the trade names Isopars' or Permetyl,

- linear alkanes, for example such as n-dodecane (C12) and n-tetradecane (C14) sold by Sasol respectively under the references PARAFOL 12-97 and PARAFOL 14-97, and the mixtures thereof, the undecane-tridecane mixture, the mixtures of n-undecane (C11) and n-tridecane (C13) obtained in examples 1 and 2 in application
WO2008/155059 held by Cognis, and mixtures thereof.
- C8-C16 branched esters, iso-hexyl neopentanoate, and mixtures thereof. Further volatile hydrocarbon oils such as petroleum distillates, particularly those sold under the name Shell Solt by SHELL, may also be used.

By way of example of further volatile hydrocarbon oils suitable for use in the composition (1) according to the invention, mention may also be made of liquid ketones at ambient temperature such as methylethylketone, acetone; short-chain esters (having 3 to 8 carbon atoms in total) such as ethyl acetate, methyl acetate, propyl acetate, n-butyl acetate; liquid ethers at ambient temperature such as diethylether, dimethylether or dichlorodiethylether.

The volatile oil may also be chosen from fluorinated oils such as perfluoropolyethers, perfluoroalkanes, perfluoroalkylphosphate monoesters, diesters and triesters and fluorinated ester oils.

Fatty esters
According to one embodiment, the composition (1) may comprise a fatty ester particularly chosen from hexyl laurate, isostearyl neopentanoate, tristearin and acetylated glycol stearate.

The term "fat" refers to a substance consisting of hydrophobic molecules.

Gelling agents
According to one embodiment, the composition (1) comprises at least one gelling agent. It may be a lipophilic gelling agent or a mineral or organic, polymeric or non-polymeric aqueous phase gelling agent.

By way of example of a mineral lipophilic gelling agent, mention may be made for example of modified magnesium silicate (RHEOX Bentone gel VS38), hectorite modified with distearyl dimethyl ammonium chloride (CTFA name: Distearidonium hectorite) marketed under the name "Bentone 38 CE" by RHEOX.

By way of example of a mineral lipophilic gelling agent, mention may also be made of optionally modified clays such as hectorites modified by a C10 to C12 fatty acid ammonium chloride, such as hectorite modified with di-stearyl di-methyl ammonium such as, for example, that marketed under the name Bentone 38V® by ELEMENTIS.

Mention may also be made of pyrogenic silica optionally with a hydrophobic surface treatment wherein the particle size is less than 1 μm. Indeed, it is possible to modify the surface of the silica chemically, by means of a chemical reaction giving rise to
a reduction in the silanol groups present on the silica surface. The silanol groups may particularly be substituted with hydrophobic groups: a hydrophobic silica is thus obtained. The hydrophobic groups may be:

- trimethylsiloxy groups, particularly obtained by treating pyrogenic silica in the presence of hexamethyldisilazane. Silicas treated in this way are referred to as "Silica silylate" as per the CTFA (6th edition, 1995). For example, they are sold under the references Aerosil R812® by DEGUSSA, CAB-O-SIL TS-530® by CABOT,

- dimethylsilyloxy or polydimethylsiloxane groups, particularly obtained by treating pyrogenic silica in the presence of polydimethylsiloxane or dimethylidichlorosilane. Silicas treated in this way are referred to as "Silica dimethyl silylate" as per the CTFA (6th edition, 1995). They are for example sold under the references Aerosil R972®, and Aerosil R974® by DEGUSSA, CAB-O-SIL TS-610® and CAB-O-SIL TS-720® by CABOT.

The hydrophobic pyrogenic silica particularly has a particle size that may be nanometric to micrometric, for example ranging from approximately 5 to 200 nm.

An organic lipophilic gelling agent may be chosen from polymeric organic lipophilic gelling agents, such as for example:

- partially or totally cross-linked elastomeric organopolysiloxanes, having a three-dimensional structure, such as those sold under the names KSG6®, KSG16® and KSG18® by SHIN-ETSU, Trefil E-505C® and Trefil E-506C® by DOW-CORNING, Gransil SR-CYC®, SR DMF10®, SR-DC556®, SR 5CYC gel®, SR DMF 10 gel® and SR DC 556 gel® by GRANT INDUSTRIES, SF 1204® and JK 113® by GENERAL ELECTRIC;

- ethylcellulose such as that sold under the name Ethocel® by DOW CHEMICAL;

- galactomannans comprising from one to six, and in particular from two to four, hydroxyl groups per sugar, substituted with an optionally saturated alkyl chain, such as guar gum alkylated with C1 to C6, and particularly C1 to C3 alkyl chains, and mixtures thereof;

- block copolymers of the "diblock", "triblock" or "radial" type, of the polystyrene/polyisoprene or polystyrene/polybutadiene type, such as those sold under
the name Luvitol HSB® by BASF, of the polystyrene/copoly(ethylene-propylene) type, such as those sold under the name Kraton® by SHELL CHEMICAL CO or of the polystyrene/copoly(ethylene-butylene) type, mixtures of triblock and radial (star) copolymers in isododecane, such as those sold by PENRECO under the name Versagel® for instance the mixture of butylene/ethylene/styrene triblock copolymer and of ethylene/propylene/styrene star copolymer in isododecane (Versagel M 5960).

By way of example of organic lipophilic gelling agents suitable for use in a composition (1) according to the invention, mention may also be made of dextrin and fatty acid esters, such as dextrin palmitates, particularly such as those sold under the names Rheopelar TL® or Rheopelar KL® by CHIBA FLOUR.

Preferably, the gelling agent is chosen from mineral lipophilic gelling agents such as distearadimonium hectorite and aqueous phase gelling agents such as anionic copolymers such as acrylate copolymers.

Preferentially, the gelling agent is chosen from aqueous phase gelling agents such as carbomers or gums such as xanthan gum or guar gum.

The lipophilic gelling agents may be chosen from polymeric organic lipophilic gelling agents such as silicon gum or minerals such as bentone, and mixtures thereof.

Composition (2)

As mentioned above, the composition (2) is either an aqueous composition or an oily composition.

According to one embodiment, the composition (2) mentioned above comprises at least one non-volatile oil, particularly chosen from non-volatile hydrocarbon and silicone oils and mixtures thereof.

The term "oil" refers to a non-aqueous compound, which is not water-miscible, and liquid at ambient temperature (25°C) and atmospheric pressure (760 mm Hg).

The term "non-volatile oil" refers to an oil remaining on keratin matter at ambient temperature and atmospheric pressure for at least several hours and particularly having a vapor pressure less than 10⁻³ mm Hg (0.13 Pa). A non-volatile oil may also be defined as having an evaporation rate such that, under the conditions defined above, the evaporated quantity after 30 minutes is less than 0.07mg/cm².

The non-volatile silicone oil suitable for use in the invention may particularly be chosen from the silicone oils particularly having a viscosity at 25°C greater than or equal to 9 centistokes (cSt) (9 x 10⁻⁶ m²/s) and preferably less than 800,000 cSt, preferably between 50 and 600,000 cSt, preferably between 100 and 500,000 cSt. The viscosity of the silicone oils may be measured according to the ASTM D-445 standard.
Of these silicone oils, a distinction may be made between two types of oils depending on whether they are phenylated or not.

According to a first embodiment, the non-volatile silicone oil is a non-phenylated oil.

By way of example of non-phenylated non-volatile oils, mention may be made of:
- non-volatile polydimethylsiloxanes (PDMS),
- PDMS comprising alkyl or alcoxy pendant and/or silicone chain-end groups, each having 2 to 24 carbon atoms,
- PDMS comprising aliphatic and/or aromatic groups, or functional groups such as hydroxyl, thiol and/or amine groups,
- polyalkylsiloxanes optionally substituted with a fluorinated group such as polymethyltrifluoropropylmethylsiloxane,
- polyalkylsiloxanes substituted with functional groups such as hydroxyl, thiol and/or amine groups,
- polysiloxanes modified by fatty acids, fatty alcohols or polyoxyalkylenes, and mixtures thereof.

As a representation of these non-volatile linear silicon oils, mention may be made of polydimethylsiloxanes; alkyldimethicones; vinylmethylmethicones; and silicones modified by optionally fluorinated aliphatic groups or by functional groups such as hydroxyl, thiol and/or amine groups.

The non-phenylated linear silicone oil may particularly be chosen from silicones having formula (I):

\[
\begin{array}{c}
\text{R}_1 \\
\text{X} - \text{Si} - \text{O} - \text{Si} - \text{O} - \text{Si} - \text{X} \\
\text{R}_2 \\
\end{array}
\]

(I)

in which:
\(\text{R}_1, \text{R}_2, \text{R}_5 \) and \(\text{R}_6 \) are, together or separately, an alkyl radical having 1 to 6 carbon atoms,
\(\text{R}_3 \) and \(\text{R}_4 \) are, together or separately, an alkyl radical having 1 to 6 carbon atoms, a vinyl radical, an amine radical or a hydroxyl radical,
\(\text{X} \) is an alkyl radical having 1 to 6 carbon atoms, a hydroxyl radical or an amine radical,
where \(n \) and \(p \) are integers are chosen so as to obtain a fluid compound, in particular wherein the viscosity at 25°C is between 9 centistokes (cSt) \((9 \times 10^5 \text{ m}^2\text{s}^{-1}) \) and 800,000 cSt.

By way of example of a non-volatile silicone oil according to the invention, mention may be made of compounds for which:

- the substituents \(R_1 \) to \(R_6 \) and \(X \) represent a methyl group, \(p \) and \(n \) are such that the viscosity is 500,000 est, such as that sold under the name SE30 by General Electric, that sold under the name AK 500000 by Wacker, that sold under the name Mirasil DM 500.000 by Bluestar and that sold under the name Dow Corning 200 Fluid 500.000 est by Dow Corning.
- the substituents \(R_1 \) to \(R_6 \) and \(X \) represent a methyl group, \(p \) and \(n \) are such that the viscosity is 60,000 est, such as that sold under name Dow Corning 200 Fluid 60000 CS by Dow Corning and that sold under the name Wacker Belsil DM 60.000 by Wacker.
- the substituents \(R_1 \) to \(R_6 \) and \(X \) represent a methyl group, \(p \) and \(n \) are such that the viscosity is 350 est, such as that sold under name Dow Corning 200 Fluid 350 CS by Dow Corning.
- the substituents \(R_1 \) to \(R_6 \) represent a methyl group, the group \(X \) represents a hydroxy group, \(n \) and \(p \) are such that the viscosity is 700 est, such as that sold under the name Baysilone Fluid TO.7 by Momentive.

According to one embodiment, the composition (2) according to the invention comprises at least one non-phenylated linear silicone oil.

According to one alternative embodiment, the composition (2) according to the invention comprises at least one non-volatile phenylated silicone oil.

By way of example of non-volatile phenylated oils, mention may be made of:

- phenylated silicone oils having the following formula:

\[
\begin{align*}
\text{R} & \quad \text{Si} - \text{O} - \text{Si} - \text{O} - \text{Si} - \text{O} - \text{Si} - \text{R} \\
\text{R} & \quad \text{Si} - \text{R} \\
\text{R} & \quad \text{Si} - \text{R} \\
\end{align*}
\]

(l)

wherein the \(R \) groups independently represent a methyl or a phenyl, provided that at least one \(R \) group represents a phenyl. Preferably in this formula, the phenylated silicone oil comprises at least three phenyl groups, for example at least four, at least five or at least six.

- phenylated silicone oils having the following formula:
wherein the R groups independently represent a methyl or a phenyl, provided that at least one R group represents a phenyl. Preferably in this formula, said organopolysiloxane comprises at least three phenyl groups, for example at least four or at least five. Mixtures of the phenylated organosiloxanes described above may be used. For example, mention may be made of triphenylated, tetra- or penta-phenylated organopolysiloxane mixtures.

- phenylated silicone oils having the following formula:

\[\text{Ph} \quad \text{Me} \quad \text{Si} \quad \text{O} \quad \text{Si} \quad \text{O} \quad \text{Si} \quad \text{O} \quad \text{Si} \quad \text{Me} \quad \text{Ph} \]

wherein Me represents methyl, Ph represents phenyl. Such a phenylated silicone is particularly manufactured by Dow Corning under the reference PH-1555 HRI or Dow Corning 555 Cosmetic Fluid (chemical name: 1,3,5-trimethyl 1,1,3,5,5-pentaphenyl trisiloxane, INCI name: trimethyl pentaphenyl trisiloxane). The reference Dow Corning 554 Cosmetic Fluid may also be used.

- phenylated silicone oils having the following formula:

\[\text{X} \quad \text{Si} \quad \{\text{O} \quad \text{Si} \}^y \quad \text{O} \quad \text{Si} \quad \text{X} \quad \text{Me} \quad \text{Me} \quad \text{Me} \quad \text{Me} \quad \text{Me} \]

wherein Me represents methyl, y is between 1 and 1000, and X represents \(-\text{CH}_2\)

\[\text{CH(CH}_3\text{)(Ph)} \]

- phenylated silicone oils having the following formula (V):

\[\text{Me} \quad \text{Si} \quad \{\text{O} \quad \text{Si} \}^y \quad \text{O} \quad \text{Si} \quad \text{O} \quad \text{Si(Ch}_3)_3 \quad \text{Me} \quad \text{Me} \quad \text{Me} \quad \text{Me} \quad \text{Me} \]

wherein Me is methyl and Ph is phenyl, OR' represents an -OSiMe$_3$ group and y is 0 or varies between 1 and 1000, z varies between 1 and 1000, such that the compound (V) is a non-volatile oil.
According to a first embodiment, y varies between 1 and 1000. For example, trimethyl Siloxyphenyl Dimethicone, particularly sold under the reference BELSIL PDM 1000 marketed by Wacker, may be used.

According to a second embodiment, y is equal to 0. For example, PHENYL TRIMETHYL SILoxy TRISILoxANE, particularly sold under the DOW CORNING 556 COSMETIC GRADE FLUID, may be used.

- phenylated silicone oils having the following formula (VI), and mixtures thereof:

![Formula VI](image)

\[\text{(VI)} \]

in which:
- \(R_1 \) to \(R_{10} \), independently of each other, are C1-C30 linear, cyclic or branched, saturated or unsaturated hydrocarbon radicals,

- \(m \), \(n \), \(p \) and \(q \) are, independently of each other, integers between 0 and 900, provided that the sum \(m+n+q \) is different to 0.

Preferably, the sum \(m+n+q \) is between 1 and 100. Preferably, the sum \(m+n+p+q \) is between 1 and 900, or preferably between 1 and 800. Preferably, \(q \) is equal to 0.

- phenylated silicone oils having the following formula (VII), and mixtures thereof:

![Formula VII](image)

\[\text{(VII)} \]

in which:
- \(R_1 \) to \(R_6 \), independently of each other, are C1-C30 linear, cyclic or branched, saturated or unsaturated hydrocarbon radicals,
- m, n and p are, independently of each other, integers between 0 and 100, provided that the sum 'n + m' is between 1 and 100.

Preferably, R1 to R6, independently of each other, represent a C1-C30, particularly C1-C12, linear or branched saturated hydrocarbon radical, and particularly a methyl, ethyl, propyl or butyl radical.

In particular, R1 to R6 may be identical and, moreover, may be a methyl radical.

Preferably, it is possible to have m=1 or 2 or 3, and/or n=0 and/or p=0 or 1, in formula (VII).

- phenylated silicone oils having the following formula (VIII), and mixtures thereof:

![Formula](VIII)

in which:
- R is a C1-C30 alkyl radical, an aryl radical or an aralkyl radical,
- n is an integer varying from 0 to 100, and
- m is an integer varying from 0 to 100, provided that the sum n+m varies from 1 to 100.

In particular, the radicals R in formula (VIII) and R1 to R10 defined above, each may represent a saturated or unsaturated linear or branched alkyl radical, particularly C2-C20, in particular C3-C16, and more particularly C4-C10, or a C6-C14, particularly C10-C13 mono- or polycyclic aryl radical or an aralkyl radical wherein the aryl and alkyl residues are as defined above.

Preferably, R according to formula (VIII) and R1 to R10 may each represent a methyl, ethyl, propyl, isopropyl, decyl, dodecyl or octadecyl radical, or a phenyl, tolyl, benzyl or phenethyl radical.

According to one embodiment, a phenylated silicone oil according to formula (VIII) having a viscosity at 25°C between 5 and 1500 mm²/s (i.e. 5 to 1500 cSt), preferably having a viscosity between 5 and 1000 mm²/s (i.e. 5 to 1000 cSt), may be used.

As a phenylated silicone oil according to formula (VIII), phenyltrimethicones such as DC556 from Dow Corning (22.5 cSt), Silbione 70663V30 oil from Rhone Poulenc (28
cSt), or diphenyldimethicones such as Belsil oils, particularly Belsil PDM1000 (1000 cSt), Belsil PDM 200 (200 cSt) and Belsil PDM 20 (20 cSt) from Wacker, may be used. The values between brackets represent the viscosities at 25°C.

- phenylated silicone oils having the following formula, and mixtures thereof:

\[R_1 \overline{Si} \overline{O} \overline{Si} \overline{O} \overline{Si} \overline{O} \overline{Si} \overline{Si} \overline{X} \]

in which:

- \(R_1, R_2, R_5 \) and \(R_6 \) are, together or separately, an alkyl radical having 1 to 6 carbon atoms,
- \(R_3 \) and \(R_4 \) are, together or separately, an alkyl radical having 1 to 6 carbon atoms, or an aryl radical,
- \(X \) is an alkyl radical having 1 to 6 carbon atoms, a hydroxyl radical or a vinyl radical,
- where \(n \) and \(p \) are chosen so as to give the oil a molecular weight less than 200,000 g/mol, preferably less than 150,000 g/mol and more preferably less than 100,000 g/mol.

- the phenylated silicones are more particularly chosen from phenyl trimethicones, phenyl dimethicones, phenyl trimethylsiloxy diphenylsiloxanes, diphenyl dimethicones, diphenyl methylidiphenyl trisiloxanes, and 2-phenylethyl trimethylsiloxy silicates, and mixtures thereof.

More particularly, the phenylated silicones are chosen from phenyl trimethicones, phenyl dimethicones, phenyl trimethylsiloxy diphenylsiloxanes, diphenyl dimethicones, diphenyl methylidiphenyl trisiloxanes, and 2-phenylethyl trimethylsiloxy silicates, and mixtures thereof.

Preferably, the molecular weight of the non-volatile phenylated silicone oil varies from 500 to 10,000 g/mol.

Preferably, the silicone oil is chosen from:

i) phenylated silicone oils, particularly having the following formula (II) or (VII):
in which:

- R1 to R6, independently from each other, are C1-C30, linear, cyclic or branched, saturated or unsaturated hydrocarbon radicals,
- m, n and p are, independently of each other, integers between 0 and 100, provided that the sum 'n + m' is between 1 and 100;

wherein the R groups independently represent a methyl or a phenyl, at least one R group being a phenyl group.

- ii) linear or cyclic polydimethylsiloxanes (PDMS),
- iii) polydimethylsiloxanes comprising alkyl or alcoxy, pendant and/or silicone chain-end groups, each having 2 to 24 carbon atoms,

As a phenylated silicone oil, an oil having formula (V) or formula (II) (preferably formula (III)) is preferably used.

By way of example of preferred non-volatile silicone oils, mention may be made of silicone oils such as:

- phenylated silicones (also referred to as phenylated silicone oil) such as BELSIL PDM 1000 from WACKER (MW=9000 g/mol) (see formula (V) above), phenyl trimethicones (such as phenyl trimethicone sold under the trade name DC556 by Dow Corning), phenyl dimethicones, phenyl trimethylsiloxy diphenyl siloxanes, diphenyl dimethicones, diphenyl methyl diphenyl trisiloxanes, 2-phenylethyl trimethylsiloxy silicates, trimethylpentaphenyl trisiloxane (such as that sold under the name Dow Corning PH-1555 HRI cosmetic fluid by Dow Corning) (see formula (III) above),
- non-volatile polydimethylsiloxanes (PDMS), the polydimethylsiloxanes comprising alkyl or alcoxy, pendant and/or silicone chain-end groups, each group having 2 to 24 carbon atoms;
- and mixtures thereof.

It should be noted that, of the silicone oils mentioned above, phenylated silicone oils have been found to be particularly advantageous. They particularly confer a good level of luminance following application on the skin or lips with the composition (2) according to the invention, without giving rise to a sticky sensation on the lips.

According to one embodiment, the non-volatile oil contained in the composition (2) according to the invention is a non-polar hydrocarbon oil.

These oils may be of plant, mineral or synthetic origin.

The term "non-polar oil" according to the present invention refers to an oil wherein the solubility parameter at 25°C, δ_a, is equal to 0 (J/cm3)$^{1/2}$.

The definition and calculation of HANSEN three-dimensional solubility parameters are described in the article by C. M. HANSEN: "The three dimensional solubility parameters" J. Paint Technol. 39, 105 (1967).

According to the Hansen space:
- δ_D characterizes the LONDON dispersion forces derived from the formation of dipoles induced during molecular shocks;
- δ_p characterizes the DEBYE interaction forces between permanent dipoles and the KEESOM interaction forces between induced dipoles and permanent dipoles;
- δ_h characterizes the specific interaction forces (such as hydrogen, acid/base, donor/acceptor bonds, etc.); and
- δ_a is determined by the equation: $\delta_a = (\delta_p^2 + 6\delta_h^2)^{1/2}$.

The parameters δ_p, δ_h, δ_D and δ_a are expressed in (J/cm3)$^{1/2}$.

The term "hydrocarbon oil" refers to an oil essentially formed, or consisting, of carbon and hydrogen atoms, and optionally oxygen, nitrogen atoms, and containing no silicon or fluorine. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.

The term "hydrocarbon ester oil" refers to a hydrocarbon oil comprising at least one ester group.

Preferably, the non-volatile non-polar hydrocarbon oil is free from oxygen atoms.

Preferably, the non-volatile non-polar hydrocarbon oil may be chosen from mineral or synthetic linear or branched hydrocarbons such as:
- paraffin oil or derivatives thereof,
- squalane,
- isoeicosane,
- Vaseline oil,
- naphthalene oil,
- polybutylenes such as INDOPOL H-100 (having a molecular weight of MW=965 g/mol), INDOPOL H-300 (MW=1340 g/mol), INDOPOL H-1500 (MW=2160 g/mol) sold or manufactured by AMOCO,
- hydrogenated polyisobutenes such as Parleam® sold by NIPPON OIL FATS, PANALANE H-300 E sold or manufactured by AMOCO (MW =1340 g/mol), VISEAL 20000 sold or manufactured by SYNTAL (MW=6000 g/mol), REWOPAL PIB 1000 sold or manufactured by WITCO (MW=1000 g/mol),
- decene/butene copolymers, polybutene/polyisobutene copolymers particularly Indopol L-14,
- polydecenes and hydrogenated polydecenes such as: PURESYN 10 (MW=723 g/mol), PURESYN 150 (MW=9200 g/mol) sold or manufactured by MOBIL CHEMICALS, and mixtures thereof.

According to a first embodiment, said non-volatile oil is a polar hydrocarbon oil.

The term "polar oil" according to the present invention refers to an oil wherein the solubility at 25°C, δₐ, is different to 0 (J/cm³)½.

These oils may be of plant, mineral or synthetic origin.

The term "polar hydrocarbon oil" refers to an oil essentially formed, or consisting, of carbon and hydrogen atoms, and optionally oxygen, nitrogen atoms, and containing no silicon or fluorine. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.

In particular, the non-volatile polar hydrocarbon oil may be chosen from the list of oils below, and mixtures thereof:
- plant-based hydrocarbon oils such as fatty acid liquid triglycerides having 4 to 10 carbon atoms such as heptanoic or octanoic acid triglycerides or jojoba oil;
- hydrocarbon esters having the formula RCOOR' wherein RCOO represents a carboxylic acid residue comprising 2 to 30 carbon atoms, and R' represents a hydrocarbon chain containing 1 to 30 carbon atoms, such as isononyl isononanoate, oleyl erucate or octyl-2-dodecyl neopentanoate; isopropyl myristate;
- polyesters obtained by condensing unsaturated fatty acid dimers and/or trimers and diol such as those described in the patent application FR 0 853 634, such as in particular d linoleic acid and 1,4- butanediol. Mention may particularly be made in this respect of the polymer sold by Biosynthesis under the name Viscoplast 14436H (INCI
name: dilinoleic acid/butanediol copolymer), or polyol and diacid dimer copolymers, and esters thereof, such as Hailuscent ISDA,
- fatty alcohols having 12 to 26 carbon atoms, preferably monoalcohols, preferably branched, such as octyl dodecanol, 2-butyl octanol, 2-hexyl decanol, 2-undecyl pentadecanol, oleic acid;
- C12-C22 higher fatty acids, such as oleic acid, linoleic acid, linolenic acid, and mixtures thereof;
- plant-based oils such as sesame oil (820.6 g/mol),
- fatty acids such as 12 to 26 carbon atoms such as oleic acid;
- dialkyl carbonates, the two alkyl chains possibly being identical or different, such as the dicaprylyl carbonate sold under the name Cetiol CC®, by Cognis; and
- high molecular weight non-volatile oils, for example between 650 and 10000 g/mol, such as for example:
 Of the high molecular weight non-volatile oils, mention may be made of:
 - vinylpyrrolidone copolymers such as the vinylpyrrolidone/1-hexadecene copolymer, ANTARON V-216 sold or manufactured by ISP (MW=7300 g/mol),
 - ester oils such as:
 - linear fatty acid esters having a total carbon number ranging from 35 to 70 such as pentaerythritol tetrapelargonate (MW=697.05 g/mol),
 - hydroxylated esters such as polyglycerol-2 triisostearate (MW=965.58 g/mol),
 - aromatic esters such as tridecyl trimellitate (MW=757.19 g/mol),
 - C24-C28 branched fatty alcohol or fatty acid esters such as those described in the application EP-A-0 955 039, and particularly triisoarachidyl citrate (MW=1 033.76 g/mol), pentaerythrityl tetraisononanoate (MW=697.05g/mol), glyceryl triisostearate (MW=891.51 g/mol), glyceryl tri decyl-2 tetradecanoate (MW=1 143.98 g/mol), pentaerythrityl tetraisostearate (MW=1202.02 g/mol), polyglyceryl-2 tetraisostearate (MW=1 232.04 g/mol) or pentaerythrityl tetra decyl-2 tetradecanoate (MW=1 538.66 g/mol),
 - dimer diol and mono- and dicarboxylic esters and polyesters, such as dimer diol and fatty acid esters and dimer diol esters carboxylic diacid dimers, mention may particularly be made of dilinoleic diacid esters and dilinoleic diol dimers sold by NIPPON FINE CHEMICAL under the trade name LUSPLAN DD-DA5® and DD-DA7® and mixtures thereof.
The dimer diol and mono-carboxylic acid esters mentioned above may be obtained from mono-carboxylic acid comprising 4 to 34 carbon atoms, particularly 10 to 32 carbon atoms, said acids being linear, branched, saturated or unsaturated.

By way of example of a mono-carboxylic acid suitable for the invention, mention may particularly be made of fatty acids.

The dimer diol and dicarboxylic acid esters may be obtained from a carboxylic diacid dimer particularly derived from the dimerization of an unsaturated fatty acid, particularly \(C_8\) to \(C_{34}\), particularly \(C_{12}\) to \(C_{22}\), particularly \(C_{16}\) to \(C_{20}\), and more particularly \(C_{18}\).

According to one particular alternative embodiment, it consists more specifically of the carboxylic diacid dimer from which the dimer diol for esterification is also derived.

The dimer diol and carboxylic acid esters may be obtained from a dimer diol produced by means of catalytic hydrogenation of a carboxylic diacid dimer as described, for example hydrogenated dilinoleic diacid diacid.

By way of example of dimer diol esters, mention may particularly be made of dilinoleic diacid and dilinolenic dimer diols esters sold by NIPPON FINE CHEMICAL under the trade name LUSPLAN DD-DA5® and DD-DA7®.

Preferably, the non-volatile polar hydrocarbon oil is chosen from isopropyl palmitate or octylidodecanol.

According to one embodiment, the non-volatile oil is a fluorinated oil.

The term "fluorinated oil" refers to an oil comprising at least one fluorine atom.

The fluorinated oils suitable for use according to the invention may be chosen from fluorosilicone oils, fluorinated polyethers, fluorinated silicones as described in the document EP-A-847752 and perfluorinated compounds.

The term perfluorinated compounds according to the invention refers to compounds wherein all the hydrogen atoms have been substituted by fluorine atoms.

According to one particularly preferred embodiment, the fluorinated oil according to the invention is chosen from perfluorinated oils.

By way of example of perfluorinated oils suitable for use in the invention, mention may be made of perfluorodecalins, perfluoroperhydrophenanthrenes.

According to one particularly preferred embodiment, the fluorinated oil is chosen from perfluoroperhydrophenanthrenes, and particularly the Fiflow® products sold by Creations Couleurs. In particular, the fluorinated oil for which the INCI name is perfluoroperhydrophenanthrene, sold under the reference FIFLOW 220 by F2 Chemicals may be used.

If the composition (2) is an aqueous composition, it may also comprise at least one polar or water-soluble solvent.
The water-soluble solvents according to the invention have been mentioned above.

Preferably, said aqueous composition comprises at least one water-soluble solvent, particularly chosen from alcohols or polyols and more specifically in the group consisting of glycerin, pentylene glycol, non-denatured 96° ethanol and mixtures thereof.

According to the invention, said aqueous composition may comprise at least one fat, preferably a non-volatile hydrocarbon polar oil.

The aqueous composition preferentially comprises less than 35% by weight of fat with respect to the total weight of said composition.

The term fat refers to a substance consisting of hydrophobic molecules.

The non-volatile polar oils suitable for use in the aqueous compositions according to the present invention are mentioned above.

Said aqueous composition may also include any water-soluble or water-dispersible compound compatible with an aqueous phase, such as gelling agents, film-forming polymers, thickeners, surfactants and mixtures thereof.

Said aqueous composition may thus comprise at least one gelling agent.

The gelling agents according to the invention have been mentioned above.

Preferentially, the gelling agent is chosen from aqueous phase gelling agents such as carbomers or gums such as xanthan gum, and polymeric organic lipophilic gelling agents such as guar gum, ethylcellulose and mixtures thereof.

If the composition (2) is an oily composition, according to one preferred embodiment of the invention, said oily composition comprises less than 5% by weight or even less than 2% by weight of water with respect to the total weight of the oily composition and may particularly be anhydrous.

Preferably, said oily composition is an anhydrous composition. The term "anhydrous" particularly infers that water is preferably not deliberately added to the compositions but may be present at trace levels in the various compounds used in the compositions.

Solid fats

In one embodiment, said oily composition comprises at least one solid fat content less than or equal to 30% by weight with respect to the total weight of the composition.

According to one embodiment, the fat is a wax.

The term "wax" according to the present invention refers to a lipophilic compound, which is solid at ambient temperature (25°C), having a reversible solid/liquid change of state and a melting point greater than or equal to 30°C of up to 200°C and particularly up
to 120°C. In particular, the waxes suitable for the invention may have a melting point greater than or equal to 45°C, and particularly greater than or equal to 55°C.

According to the invention, the melting point is equivalent to the temperature of the most endothermic peak observed in thermal analysis (DSC) as described in the standard ISO 11357-3; 1999. The melting point of the wax may be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name "DSC Q2000" by TA Instruments.

Preferably, the waxes have an enthalpy of fusion ΔH_f greater than or equal to 70 J/g.

Preferably, the waxes comprise at least one part suitable for crystallization, visible by means of X-ray observations.

The measurement protocol is as follows:

A 5 mg sample of wax placed in a crucible is subjected to a first temperature rise from -20°C to 120°C, at a heating rate of 10°C / minute, and is then cooled from 120°C to -20°C at a cooling rate of 10°C / minute and finally subjected to a second temperature rise from -20°C to 120°C at a heating rate of 5°C / minute. During the second temperature rise, the following parameters are measured:

- the melting point (T_m) of the wax, as mentioned above equivalent to the temperature of the most endothermic peak of the fusion curve observed, representing the variation in the difference in power absorbed as a function of the temperature,

- ΔH_f: the enthalpy of fusion of the wax equivalent to the integral of the overall fusion curve obtained. This enthalpy of fusion of the wax is the quantity of energy required to change the compound from the solid state to the liquid state. It is expressed in J/g.

The waxes suitable for use in the oily compositions according to the invention are chosen from animal, plant, mineral or synthetic waxes, which are solid at ambient temperature, and mixtures thereof.

By way of illustration of waxes suitable for the invention, particular mention may be made of hydrocarbon waxes such as beeswax, lanolin wax, and Chinese insect waxes, rice bran wax, Carnauba wax, Candellila wax, Ouricury wax, Alfa wax, berry wax, shellac wax, Japan wax and sumac wax; montan wax, orange and lemon waxes, microcrystalline waxes, paraffins and ozokerite; polyethylene waxes, waxes obtained by means of Fisher-Tropsch synthesis and waxy copolymers and the esters thereof.

Mention may also be made of waxes obtained by means of the catalytic hydrogenation of animal or plant oils having C_6-C_{32} linear or branched fat chains. Of these, particular mention may be made of isomerized jojoba oil such as the trans
isomerized partially hydrogenated jojoba oil manufactured or sold by DESERT WHALE under the trade name ISO-JOJOBA-50®, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut oil, hydrogenated lanolin oil, and di-(trimethylol-1,1,1 propane) tetrastearate sold under the name Hest 2T-4S® by HETERENE.

Mention may also be made of silicone waxes (C30-45 ALKYL DIMETHICONES) and fluorinated waxes.

It is also possible to use waxes obtained by hydrogenating esterified castor oil with cetyl alcohol sold under the names Phytowax ricin 16L64® and 22L73® by SOPHIM. Such waxes are described in the application FR-A- 2792190.

A C20-C40 alkyl (hydroxystearloxy)stearate (the alkyl group comprising 20 to 40 carbon atoms), alone or in a mixture, may be used as the wax.

Such a wax is particularly sold under the names "Kester Wax K 82 P®", "Hydroxypolyester K 82 P®" and "Kester Wax K 80 P®" by KOSTER KEUNEN.

Preferentially, the wax is chosen in the group consisting of monocrystalline wax, acetylated lanolin, beeswax and mixtures thereof.

According to one embodiment of the present invention, an aqueous composition according to the invention comprises 20% to 90% by weight of water with respect to the total weight of the aqueous composition.

According to one embodiment, the water may be a floral water such as cornflower water and/or a mineral water such as Vittel water, Lucas water or La Roche Posay water and/or a spring water.

Said oily composition comprises, according to one embodiment, a volatile oil, preferably chosen from silicone volatile oils.

Preferably, said oily composition comprises less than 30% by weight of volatile oil.

The volatile silicone oils suitable for use in the oily compositions according to the present invention are mentioned above.

According to the invention, said oily composition may also comprise an oily phase representing at least 15% by weight with respect to the total weight of said oily composition.

Said oily composition may also comprise, in the oily phase, at least one hydrocarbon oil, which may be volatile or non-volatile.

Said oily composition may also comprise at least one plant oil in the oily phase.

Said oily composition may also comprise at least one hydrocarbon ester in the oily phase.
Said oily composition may also comprise at least one fatty alcohol or fatty acid ester in the oily phase.

Said oily composition may also comprise at least one C18-C36 liquid triglyceride in the oily phase.

Said oily composition may also comprise at least one wax, more specifically a hydrocarbon wax, in the oily phase.

The term "hydrocarbon oil" refers to an oil essentially formed, or consisting, of carbon and hydrogen atoms, and optionally oxygen, nitrogen atoms, and containing no silicon or fluorine. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.

The hydrocarbon oil may be volatile or non-volatile.

The hydrocarbon oils suitable for use in the present invention have been mentioned above.

The hydrocarbon oil is preferably chosen from the group consisting of isododecane, oleyl erucate, rosa canina fruit oil, sesame oil, lanolin oil, hydrogenated jojoba, tridecyl trimellitate, bis-diglyceryl polyacyladipate-2, diisostearyl malate, pentaerythrityl tetraisostearate, C18-C36 triglyceride acids and mixtures thereof.

The plant oils are oils obtained from plants or seeds.

Particular mention may be made of shea oil, sweet almond oil, argan oil, calendula oil, jojoba oil, meadowfoam oil, olive oil, evening primrose oil, palm oil, grape seed oil, musk rose oil, sesame oil, soybean oil, sunflower oil, castor oil and mixtures thereof.

The hydrocarbon esters may particularly be chosen from hydrocarbon esters having the formula RCOOR' wherein RCOO represents a carboxylic acid residue comprising 2 to 30 carbon atoms, and R' represents a hydrocarbon chain containing 1 to 30 carbon atoms. Of these esters, mention may be made of isononyl isononanoate, oleyl erucate, octyl-2-dodecyl neopentanoate and isopropyl myristate.

Preferably, the hydrocarbon esters are chosen from isopropyl palmitate, oleyl erucate, hexyl laurate, diisostearyl malate and mixtures thereof.

C24-C28 branched fatty alcohol or fatty acid esters such as those described in the application EP-A-0 955 039, and particularly triisoarachidyl citrate (MW=1033.76 g/mol), pentaerythrityl tetraisononanoate (MW=697.05 g/mol), glyceryl trisostearate (MW=891.51 g/mol), glyceryl tri decyl-2 tetradecanoate (MW=1143.98 g/mol), pentaerythrityl tetraisostearate (MW=1202.02 g/mol), polyglyceryl-2 tetrasisostearate (MW=1232.04 g/mol) or pentaerythrityl tetra decyl-2 tetradecanoate (MW=1538.66 g/mol).

Preferably, the fatty alcohol or fatty acid ester is pentaerythrityl tetraisostearate.
The triglycerides (also referred to as triacylglycerols or triacylglycerides or TAG) are glycerides wherein the three hydroxyl groups of the glycerol are esterified with fatty acids.

Preferably, the triglycerides chosen are C18-C36 liquid triglycerides.

The oily composition may further comprise a lipophilic gelling agent or thickening agent. The lipophilic gelling agents suitable for use according to the invention have been mentioned above.

Preferably, the oily composition comprises at least one lipophilic gelling agent chosen from the group consisting of disteardimonium hectorite, silica dimethyl silylate, dextrin palmitate, polyvinyl laurate, allyl stearate and vinyl acetate copolymer and mixtures thereof.

The compositions (1) and (2) according to the invention may comprise silicone and/or silicone derivatives, preferably phenylated silicone oils such as phenyl dimethicones.

According to one embodiment, the composition (1) comprises 25% to 35% by weight of silicone compounds with respect to the total weight of the composition.

Of the silicone derivatives, mention may be made of the non-phenylated non-volatile silicone oils mentioned above.

Preferably, as silicone and silicone derivatives, the compositions (1) and (2) may comprise trimethylpentaphenyl trisiloxane, trimethylsiloxyphenyl dimethicone, trimethylsiloxydimethylsilicate, nylon-611 and dimethicone copolymer, cyclopentasiloxane, cyclohexasiloxane, cetyl-PEG/PPG dimethicone, PEG-10 dimethicone, dimethicone and mixtures thereof.

Pasty fats

According to the invention, at least one of compositions (1) and (2) comprises at least one pasty fat.

For the purposes of the invention, the term "pasty fat" refers to a lipophilic fat compound having a reversible solid/liquid change of state and comprising at a temperature of 23°C a liquid fraction and a solid fraction.

In other words, the initial melting point of the pasty compound may be less than 23°C. The liquid fraction of the pasty compound measured at 23°C may represent 9% to 97% by weight of the compound. This liquid fraction at 23°C preferably represents between 15% and 85%, more preferably between 40% and 85% by weight.

Preferably, the pasty fat has an ending melting point less than 60°C.

Preferably, the pasty fats have a hardness less than or equal to 6 MPa.
Preferably, the pasty fats exhibit, in the solid state, an anisotropic crystalline organization, visible by means of X-ray examinations.

According to the invention, the melting point is equivalent to the temperature of the most endothermic peak observed in thermal analysis (DSC) as described in the standard ISO 11357-3; 1999. The melting point of a paste or a wax may be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name "DSC Q2000" by TA Instruments.

In respect of the melting point measurement and the determination of the ending melting point, the sample preparation and measurement protocols are as follows:

A 5 mg sample of pasty fat previously heated to 80°C and sampled under magnetic stirring using a spatula which has also been heated is placed in a sealed aluminum capsule or crucible. Two tests are conducted to ensure the reproducibility of the results.

The measurements are made on the abovementioned calorimeter. The oven is subject to nitrogen scavenging. Cooling is carried out by the RCS 90 heat exchanger. The sample is then subjected to the following protocol after stabilizing at a temperature of 20°C, and subjected to a first temperature rise from 20°C to 80°C, at a heating rate of 5°C/minute, and is then cooled from 80°C to -80°C at a cooling rate of 5°C/minute and finally subjected to a second temperature rise from -80°C to 80°C at a heating rate of 5°C/minute. During the second temperature rise, the variation in the difference in power absorbed by the empty crucible and by the crucible containing the paste or wax sample as a function of temperature is measured. The melting point of the compound is the value of the temperature equivalent to the top point of the peak of the curve representing the variation in the difference in power absorbed as a function of temperature.

The ending melting point is equivalent to the temperature at which 95% of the sample has melted.

The liquid fraction by weight of the pasty compound at 23°C is equal to the ratio of the enthalpy of fusion consumed at 23°C to the enthalpy of fusion of the pasty compound.

The enthalpy of fusion of the pasty compound is the enthalpy consumed by the compound to change from the solid state to the liquid state. The pasty compound is said to be in the solid state when the entire mass thereof is in solid crystalline form. The pasty compound is said to be in the liquid state when the entire mass thereof is in liquid form.

The enthalpy of fusion of the pasty compound is equal to the integral of the overall fusion curve obtained using the abovementioned calorimeter, with a temperature rise of 5 or 10°C per minute, according to the ISO 11357-3:1999 standard. The enthalpy of fusion of the pasty compound is the quantity of energy required to change the compound from the solid state to the liquid state. It is expressed in J/g.
The enthalpy of fusion consumed at 23°C is the quantity of energy required by the sample to change from the solid state to the state presented at 23°C consisting of a liquid fraction and a solid fraction.

The liquid fraction of the pasty compound measured at 32°C preferably represents 30 to 100% by weight of the compound, preferably 50 to 100%, more preferably 60 to 100% by weight of the compound. If the liquid fraction of the pasty compound measured at 32°C is equal to 100%, the temperature of the end of the melting range of the pasty compound is less than or equal to 32°C.

The liquid fraction of the pasty compound at 32°C is equal to the ratio of the enthalpy of fusion consumed at 32 °C to the enthalpy of fusion of the pasty compound. The enthalpy of fusion consumed at 32°C is calculated as for the enthalpy of fusion consumed at 23°C.

In respect of the hardness measurement, the sample preparation and measurement protocols are as follows:

The pasty fat is placed in a 75mm diameter mold filled to approximately 75% of the height thereof. So as not to be subject to the thermal history and to control crystallization, the mold is placed in a Votsch VC0018 programmable chamber where it is first set to a temperature of 80°C for 60 minutes, and then cooled from 80°C to 0°C at a cooling rate of 5°C/minute, and then left at the stabilized temperature of 0°C for 60 minutes, and subjected to a temperature rise from 0°C to 20°C, at a heating rate of 5°C/minute, and then left at the stabilized temperature of 20°C for 180 minutes.

The compression force measurement is made with the Swantech TA/TX2i texture analyzer. The moving body used is chosen according to the texture:

- 2mm diameter cylindrical steel moving body for very rigid raw materials;
- 12mm diameter cylindrical steel moving body for non-rigid raw materials;

The measurement comprises 3 steps: a first step after automatic detection of the surface of the sample on which the moving body moves at a measurement speed of 0.1 mm/s, and enters the pasty fat at a penetration depth of 0.3 mm, the software records the maximum force value reached; a second "relaxation" step wherein the moving body remains in this position for one second and wherein the force is recorded after 1 second of relaxation; finally, a 3rd "withdrawal" step wherein the moving body returns to the initial position thereof at a speed of 1 mm/s and the probe withdrawal energy (negative force) is recorded.

The hardness value measured in the first step is equivalent to the maximum compression force measured in Newton divided by the surface area of the texture analyzer cylinder expressed in mm² in contact with the pasty fat. The hardness value obtained is expressed in megaPascal or MPa.
The pasty compound is chosen from synthetic compounds and plant-based compounds. A pasty compound may be obtained by means of synthesis from plant-based starting materials.

The pasty compound is advantageously chosen from:

- lanolin and the derivatives thereof,
- polyol ethers chosen from pentaerythritol ethers and polyalkylene glycol, fatty alcohol and sugar ethers, and mixtures thereof; pentaerythritol ether and polyethylene glycol comprising 5 oxyethenated units (5 OE) (CTFA name: PEG-5 Pentaerythrityl Ether), pentaerythritol and polypropylene glycol ether comprising 5 oxypropylenated units (5 OP) (CTFA name: PPG-5 Pentaerythrityl Ether), and the mixtures thereof and more specifically the mixture of PEG-5 Pentaerythrityl Ether, PPG-5 Pentaerythrityl Ether and soybean oil, sold under the name "Lanolide" by Vevy, wherein the ratio of the constituents by weight is 46:46:8: 46% PEG-5 Pentaerythrityl Ether, 46% PPG-5 Pentaerythrityl Ether and 8% soybean.
- optionally polymeric silicone compounds,
- optionally polymeric fluorinated compounds,
- vinyl polymers, in particular:
 - olefin homopolymers and copolymers
 - hydrogenated diene homopolymers and copolymers
 - linear or branched oligomers, alkyl (meth)acrylate homo or copolymers preferably having a C₈₋₃₀ alkyl group
 - vinyl ester homo and copolymer oligomers, having C₈₋₃₀ alkyl groups
 - vinyl ether homo and copolymer oligomers, having C₈₋₃₀ alkyl groups,
- liposoluble polyethers derived from polyetherification between one or a plurality of C2-C100, preferably C2-C50, diols,
 - esters
 - and/or mixtures thereof.

Of the liposoluble polyethers, ethylene-oxide and/or propylene-oxide copolymers with C6-C30 long-chain alkylene-oxides are particularly preferred, more preferably such that the weight ratio of ethylene-oxide and/or propylene-oxide with alkylene-oxides in the copolymer is 5:95 to 70:30. In this family, particular mention may be made of copolymers such as long-chain alkylene-oxides arranged in blocks having a mean molecular weight of 1000 to 10,000, for example a polyoxyethylene/polydodecyl glycol block copolymer such
as the dodecanediol (22 mol) and polyethylene glycol (45 OE) ethers marketed under the brand ELFACOS ST9 by Akzo Nobel.

Among the esters, particular preference is given to:

- glycerol oligomer esters, namely diglycerol esters, particularly adipic acid and glycerol condensates, for which part of the hydroxyl groups of the glycerols have reacted with a mixture of fatty acids such as stearic acid, capric, stearic acid and isostearic acid and 12-hydroxystearic acid, particularly such as those sold under the brand Softisan 649 by Sasol,

- arachidyl propionate sold under the brand Waxenol 801 by Alzo,

- phytoster esters,

- triglycerides of fatty acids and derivatives thereof, such as for example, the partially or totally hydrogenated, particularly \(C_{10} \) - \(C_{18} \), fatty acid triglycerides such as those sold under the reference Softisan 100 by Sasol,

- pentaerythritol esters,

- non-cross-linked polyesters derived from polycondensation between dicarboxylic acid or a \(C_4 - C_8 \), linear or branched carboxylic acid and a diol or a \(C_2 - C_8 \), polyol,

- aliphatic esters of esters derived from the esterification of an aliphatic hydroxycarboxylic acid ester with an aliphatic carboxylic acid. Preferably, the aliphatic carboxylic acid comprises 4 to 30 and preferably 8 to 30 carbon atoms. It is preferably chosen from hexanoic acid, heptanoic acid, octanoic acid, ethyl-2 hexanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, hexyldecanoic acid, heptadecanoic acid, octadecanoic acid, isostearic acid, nonadecanoic acid, eicosanoic acid, isoarachidic acid, octyldecanoic acid, heneicosanoic acid, docosanoic acid, and mixtures thereof. The aliphatic carboxylic acid is preferably branched. The aliphatic hydroxy carboxylic acid ester is advantageously derived from a hydroxylated aliphatic carboxylic acid comprising 2 to 40 carbon atoms, preferably 10 to 34 carbon atoms and more preferably 12 to 28 carbon atoms, and 1 to 20 hydroxyl groups, preferably 1 to 10 hydroxyl groups and more preferably 1 to 6 hydroxyl groups. The aliphatic hydroxy carboxylic acid ester is chosen from:

a) partial or total saturated, linear mono-hydroxylated aliphatic monocarboxylic acid esters;

b) partial or total unsaturated, linear mono-hydroxylated aliphatic monocarboxylic acid esters;
c) partial or total saturated non-hydroxylated aliphatic carboxylic polyacid esters;
d) partial or total saturated poly-hydroxylated aliphatic carboxylic polyacid esters;

e) partial or total C_2 to C_{16} aliphatic polyol esters, having reacted with a mono or poly-hydroxylated aliphatic carboxylic mono or polyacid, and mixtures thereof.

 - dimer diol and dimer diacid esters, optionally esterified on the alcohol or free acid function(s) thereof by acid or alcohol radicals, particularly dimer dilinolate esters, such esters may particularly be chosen from esters having the following INCI classification: bis-behenyl/isostearyl/phytosteryl dimerdilinoleyl dimerdilinolate (Plandool G), phytosteryl/isosterylcetyl/stearyl/ behenyl dimerdilinolate (Plandool H or Plandool S), and mixtures thereof.

 - hydrogenated rosinate esters, such as dimer dilinoleyl hydrogenated rosinates (Lusplan DD-DHR or DD-DHR from Nippon Fine Chemical)

 - and mixtures thereof.

The compositions (1) and (2) according to the invention may comprise at least one pasty fat chosen from triglycerides of fatty acids and derivatives thereof, preferably chosen from the examples of partially or totally hydrogenated fatty acid triglycerides, particularly C_{14}-C_{16}, such as those marketed under the reference Softisan 100 by Sasol.

Preferably, the pasty fat is chosen from lanolin and the derivatives thereof, glycerol oligomer esters such as bis-diglyceryl polyacyladipate-2.

The compositions (1) and/or (2) may further comprise at least one surfactant. The compositions (1) and/or (2) may further comprise at least one preservative.

The compositions (1) and/or (2) may further comprise at least one filling agent. The compositions (1) and/or (2) may further comprise at least one polymer.

The compositions (1) and/or (2) may comprise one or a plurality of perfume(s) and/or vitamin(s).

The compositions (1) and/or (2) may further comprise at least one active agent.

The surfactants may be amphoteric, anionic, cationic or non-ionic, used alone or in a mixture.

By way of example of hydrocarbon surfactants, mention may be made of polyol polyesters such as polyPEG-30 dipolyhydroxystearate sold under the reference ARLACEL P 135 by Uniqema, polyglyceryl-2 dipolyhydroxystearate sold under the reference DEHYMULS PGPH by Cognis.
By way of example of silicone surfactants, mention may be made of alkyl-
dimethicone copolyols such as Laurilmethicone copolyol sold under the name "Dow
Corning 5200 Formulation Aid" by Dow Corning and Cetyl dimethicone copolyol sold
under the name ABIL EM 90 by Goldschmidt, or the polyglyceryl-4 isostearate/cetyl
dimethicone copolyol/hexyllaurate mixture sold under the name ABIL WE 09 by
Goldschmidt.

One or a plurality of co-emulsifiers may also be added. Advantageously, the co-
emulsifiers may be chosen in the group comprising alkylated polyol esters. By way of
example of alkylated polyol esters, particular mention may be made of glycerol and/or
sorbitan esters and for example polyglyceryl-3 diisostearate sold under the name
LAMEFORM TGI by Cognis, polyglycerol-4 isostearate, such as the product sold under
the name Isolan GI 34 by Goldschmidt, sorbitan isostearate, such as the product sold
under the name Arlacel 987 by ICI, sorbitan and glycerol isostearate, such as the product
sold under the name Arlacel 986 by ICI, and mixtures thereof.

The surfactants according to the invention are more particularly chosen in the
group consisting of PPG-5 lanolin wax, C\textsubscript{14–16} alcohol, sorbitan stearate, sucrose
cocoate and/or polyglyceryl-4-isostearate.

According to one embodiment, the compositions (1) and (2) may comprise
preservatives, particularly chosen from diazodinyl urea, phenoxyethanol, sodium
dehydroacetate and parabens.

According to one preferred embodiment, at least one of the compositions (1) or
(2) comprises at least one filler as a matting agent, preferably from 0.1% to 30% by
weight with respect to the total weight of the composition (1).

According to a further preferred embodiment, at least one of the compositions (1)
or (2) comprises at least one filler as a matting agent, preferably from 0.1% to 30% by
weight with respect to the total weight of the composition (2).

The term fillers refers to mineral or synthetic particles of any shape, insoluble in
the medium of the composition regardless of the temperature at which the composition is
manufactured. These fillers may particularly be used to modify the rheology or texture of
the composition.

The fillers may be mineral or organic particles of any shape, in sheet, spherical or
oblong form, regardless of the crystallographic shape (for example sheet, cubic,
hexagonal, orthorhombic, etc). Mention may be made of talc, mica, silica, kaolin,
polyamide (Nylon® (Orgasol® from Atochem), poly-p-alanine and polyethylene powders,
tetrafluoroethylene polymer powders (Teflon®), lauroyl-lysine, starch, boron nitride,
polymeric hollow microspheres such as those of polyvinylidene chloride/acylonitrile like
Expancel® (Nobel Industrie), acrylic acid copolymers (Polytrap® from Dow Corning) and
silicone resin microbeads (Tospearls® from Toshiba, for example), elastomer polyorganosiloxane particles, precipitated calcium carbonate, magnesium carbonate and hydro-carbonate, hydroxyapatite, hollow silica microspheres (Silica Beads® from Maprecos), glass or ceramic microcapsules, metallic soaps derived from carboxylic organic acids having 8 to 22 carbon atoms, preferably from 12 to 18 carbon atoms, for example zinc, magnesium or lithium stearate, zinc laurate, magnesium myristate.

The compositions (1) or (2) according to the invention may also comprise at least one gelling/structuring polymer chosen from xanthan gum, cellulose gum, carbomers, polyvinyl laurate, allyl stearate and vinyl acetate copolymer, dextrin palmitate, polybutene, ethylcellulose and hydroxypropylguar, methylmetacrylate polymer.

The compositions (1) or (2) according to the invention may particularly come in the form of a liquid, gel, cream or paste.

Preferably, the compositions according to the invention dry quickly.

Preferably, the compositions according to the invention are quick-drying, i.e. including quick-drying volatile solvents in a thin layer as applied over a 10 μηι thickness, the viscosity thereof is multiplied by 4 in 5 min. For this purpose, they may contain solvents for which the boiling point <160°C and/or compounds chosen from volatile linear alkanes, such as C11-C13 compounds, isododecane, C2-C4 monoalcohols such as ethanol, and mixtures thereof.

The cosmetic product according to the invention is preferentially intended to be applied on a user's lips by means of a cosmetic product applicator.

The applicator is described hereinafter using figures.

This applicator comprises an application surface for receiving the cosmetic product.

According to one embodiment, this applicator comprises an application surface (16) having a central region (22) and a peripheral line (24) having a contour analogous to the contour of human lips, the central region (22) and the peripheral line (24) being intended to receive the cosmetic product.
Description of the figures:
- figure 1 is a front view of a cosmetic product applicator according to the invention;
- figure 2 is a cross-section view according to the transverse plane II of figure 1;
- figure 3 is a front view of lips 55 on which a cosmetic product applicator according to the invention having a different-colored pattern 60 to the color applied on the rest of the lips has been applied according to the invention.

A particular cosmetic product applicator 10 according to the invention is shown in figures 1 and 2. This applicator 10 is intended to apply the cosmetic product on the lips of a user, according to the contour of the lips.

According to one embodiment, the applicator 10 comprises a body 14 defining a surface 16 for application of the cosmetic product on the lips. The surface 16 is advantageously defined in a cavity 18 of the body 16 with a shape complementary to that of the lips of a user.

As shown in figure 1, the application surface 16 preferably includes a hollow central region 22 and a peripheral line 24 having a shape matching the contour of human lips.

According to one embodiment, the peripheral line 24 is equipped with preferred means 26 for applying cosmetic product on the lips of the user.

Once the applicator 10 has been filled with cosmetic product, the user brings the application surface 16 into contact with the lips. For this purpose, the user inserts the lips in the concave spaces 28A, 28B, respectively.

According to a further aim, the present invention relates to an applicator (10) of at least one cosmetic product on a user's lips, of the type comprising an application surface (16), with a shape analogous to that of human lips, said application surface being intended to receive a cosmetic product, said cosmetic product comprising:
- at least one composition (1) in the form of a water-in-oil emulsion comprising a physiologically acceptable medium; and
- at least one composition (2), separate from the composition (1), and comprising a physiologically acceptable medium, said composition (2) being:
 • either an aqueous composition containing at least 20% by weight of water with respect to the total weight of said aqueous composition
 • or an oily composition containing less than 5% by weight of water with respect to the total weight of said oily composition.
The abovementioned cosmetic product is as defined above.

According to one preferred embodiment, this applicator application surface (16) has a central region (22) and a peripheral line (24) having a contour analogous to the contour of a user's lips (22) and a peripheral line (24) for receiving the cosmetic product.

According to one embodiment, one of the two compositions (1) or (2) is in the central region of the application surface and the other composition is on the peripheral line of the application surface.

According to a further embodiment, the application surface may have compartments separated by membranes or having different surface treatments.

If the compartments are separated by a membrane, said membrane is molded directly during the molding of the applicator.

If the application surface has separate compartments, these compartments are characterized by different surface treatments, obtained by depositing coatings having different surface tensions on the applicator surface. These coatings may for example be chosen from:

- a hydrophilic surface such as metallic surface. For example, a metal salt reduced to the native metallic form thereof, or a surface formed from a hydrophilic polymer, such as an acrylic copolymer;
- a hydrophobic surface such as a surface coated with a hydrophobic polymer such as a reactive silicone, for example.

According to a further embodiment, the applicator application surface may comprise a plurality of orifices or pores communicating with one or a plurality of cosmetic product receptacles.

The compositions are then deposited by contact, by producing an imprint on the user's lips. This, in conjunction with the formulation rules to be followed, makes it possible to obtain lip colors and appearances which are resistant to blotting and over time.

The term "blotting" refers to slight pinching of the top and bottom lips together, in order to homogenize the quantity of product deposited thereon.

Blotting may be produced immediately after applying the cosmetic product.

According to one embodiment, the cosmetic product is applied on the application surface manually or by means of a suitable applicator tool.

The applicator tool may comprise one or a plurality of compartment(s), preferably one or two compartment(s) suitable for dispensing the aqueous and/or oily compositions simultaneously or in two stages.
According to one particular embodiment, the applicator tool may comprise a plurality of compartments and means for choosing one and/or two aqueous and/or oily compositions to be deposited on the applicator.

According to a further embodiment, the applicator comprises one or a plurality of receptacle(s) comprising one or a plurality of aqueous and/or oily composition(s). Preferably, the applicator comprises two receptacles each comprising one composition, one aqueous, the other oily.

Preferably, the receptacles are flexible and the compositions may be released by pressing on the receptacle(s), for example from pores present on the application surface and may thus be applied on the lips.

According to a further embodiment, the applicator comprises one or a plurality of compositions, preferably two compositions. The compositions are not or barely deposited on the application surface. By means of additional stimulus, such as the application of an aqueous or organic liquid or by applying heat, the compositions become capable of being applied on the lips in case of contact with said lips.

According to one particular embodiment, the aqueous and/or oily compositions may be in liquid form.

It is thus possible to apply the composition(s) to be applied on the lips with a brush, cotton bud or finger on the application surface and the applicator is then brought into contact with the lips, light pressure is applied so that the composition(s) is/are applied on the lips and the applicator is removed.

In the case of an applicator having an applicator surface with pores, the compositions may be contained in one or a plurality of flexible receptacles situated at the rear of the applicator. The compositions may be released on the surface of the applicator by pressing on the receptacle(s).

According to one particular embodiment, the aqueous and/or oily compositions may be in stick form.

In this case, the compositions may be applied by rubbing on the applicator application surface.

In the specific case of an applicator having an application surface with pores, the stick may be situated at the rear of the applicator. The applicator may be heating to change stick compositions to liquid form and enable surface exudation by rotating the stick.

According to one particular embodiment, the aqueous and/or oily compositions may be in paste form.
In the specific case of an applicator having an application surface with pores, the compositions may be contained in a syringe and mechanically extruded by pressing on the syringe plunger toward the applicator surface.

The present invention also relates to the non-therapeutic cosmetic use for lip makeup of the kit and applicator as described above.

The invention also relates to a non-therapeutic cosmetic treatment lip makeup method comprising:

- providing a kit according to the invention,
- applying the compositions (1) and (2) on the applicator application surface (said surface optionally having compartments separated by membranes or having different surface treatments),
- applying the application surface on the lips of a user,
- applying the two compositions on the user's lips.

The invention also relates to a non-therapeutic cosmetic treatment lip makeup method comprising:

- providing an applicator according to the invention, and
- applying the application surface of said applicator on the lips of a user.

Unexpectedly, the inventors established that, in order to succeed in obtaining two-tone or different appearance effects, it is necessary to observe precise formulation rules.

Indeed, to ensure that the makeup derived from the present invention is resistant to transfer, blotting and over time, it is necessary to combine the makeup compositions precisely according to certain formulation rules.

These formulation rules are shown in the examples hereinafter:
EXAMPLES

The compositions (1) and (2) according to the invention were prepared using a standard procedure for those skilled in the art.

Various compositions pairings were then applied on the applicator as mentioned above using cotton buds or brushes.

The applicator was then deposited on a user’s lips without delay.

Two performances were recorded:

• Transfer of two colors:
The term transfer refers to the application of the two compositions on the user’s lips.
The transfer is poor if it causes the colors to mix (hereinafter referred to as "poor transfer").
The transfer is good when the colors do not mix (hereinafter referred to as "good transfer").

• Blotting:
After blotting, if the colors mix, the result is not satisfactory (hereinafter referred to as "poor blotting resistance").
After blotting, if the colors do not mix, the result is satisfactory (hereinafter referred to as "good blotting resistance").

Example 1:
The following two compositions (1) and (2) were prepared:
The following aqueous composition was used as composition (2):
Aqueous composition 2
(aqueous gel)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Constituents (trade names)</th>
<th>quantity (% weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active substance</td>
<td>Sodium hydroxide</td>
<td>0,14</td>
</tr>
<tr>
<td>Colorant</td>
<td>Yellow 5</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Red 4</td>
<td>0,1</td>
</tr>
<tr>
<td>Preservative</td>
<td>Sodium dehydroacetate</td>
<td>0,02</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Phenoxyethanol</td>
<td>0,5</td>
</tr>
<tr>
<td>Fats</td>
<td>Isopropyl palmitate</td>
<td>3</td>
</tr>
<tr>
<td>Polymer</td>
<td>Carbomer (CARBOPOL 980 POLYMER)</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>Xanthan gum</td>
<td>0,2</td>
</tr>
<tr>
<td>Solvent</td>
<td>Non-denatured 96° ethanol</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>82,09</td>
</tr>
<tr>
<td></td>
<td>Glycerin</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pentylene glycol</td>
<td>3</td>
</tr>
</tbody>
</table>

Viscosity: 0.34 Pa.s according to the measurement protocol described above.

The following W/O emulsion was used for composition (1):

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Constituents (trade names)</th>
<th>Quantity (% weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filler</td>
<td>Distearidimonium hectorite</td>
<td>1,6</td>
</tr>
<tr>
<td>Colorant</td>
<td>Iron oxides</td>
<td>5,38</td>
</tr>
<tr>
<td></td>
<td>Titanium dioxide</td>
<td>6,62</td>
</tr>
<tr>
<td>Preservative</td>
<td>Pentylene glycol</td>
<td>0,8</td>
</tr>
<tr>
<td>Fats</td>
<td>Isostearyl neopentanoate</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>Hexyl laurate</td>
<td>0,6</td>
</tr>
<tr>
<td>Nacre</td>
<td>Mica and titanium dioxide</td>
<td>2</td>
</tr>
<tr>
<td>Polymer</td>
<td>Hollow Methyl methacrylate polymer spheres (10µm), Covabead LH 85 from LCW</td>
<td>4</td>
</tr>
<tr>
<td>Silicone</td>
<td>Cyclopentasiloxane</td>
<td>12,9</td>
</tr>
<tr>
<td></td>
<td>Cyclohexasiloxane</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Polydimethylsiloxane 5cst</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>(XIAMETER PMX-200 SILICONE FLUID from Dow Corning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cetyl PEG/PPG-10/1 dimethicone</td>
<td>0,8</td>
</tr>
</tbody>
</table>
Surfactant 0,6
Viscosity: 0,5 Pa.s according to the measurement protocol described above.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and very good blotting resistance were obtained.

Example 2:

The following two compositions (1) and (2) were prepared:

The following oily composition (stick) was used as composition (2):

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Constituents (trade names)</th>
<th>quantity (% weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filler</td>
<td>Distearidimonium hectorite</td>
<td>0,6</td>
</tr>
<tr>
<td>Colorant</td>
<td>Yellow 6 Lake</td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td>Red 7</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td>Iron oxides</td>
<td>0,02</td>
</tr>
<tr>
<td>Fats</td>
<td>Microcrystalline wax</td>
<td>2,55</td>
</tr>
<tr>
<td></td>
<td>Acetylated lanolin</td>
<td>7,44</td>
</tr>
<tr>
<td></td>
<td>Beeswax</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td>Microcrystalline wax</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Oleyl erucate</td>
<td>14,9</td>
</tr>
<tr>
<td></td>
<td>Rosa canina fruit oil</td>
<td>0,55</td>
</tr>
<tr>
<td></td>
<td>Sesame seed oil</td>
<td>14,8</td>
</tr>
<tr>
<td></td>
<td>Lanolin oil</td>
<td>qs 100</td>
</tr>
<tr>
<td>Nacre</td>
<td>mica and titanium dioxide</td>
<td>5</td>
</tr>
<tr>
<td>Perfume</td>
<td>Fragrance</td>
<td>0,5</td>
</tr>
</tbody>
</table>
Viscosity >50 Pa.s on such a stick composition, previously heated to render the texture measurable.

This stick is prepared using a conventional protocol.
Firstly, the pigments are dispersed in part of the waxes and oils.
The remainder of the liposoluble ingredients and the waxes are mixed at a temperature of 100°C and the ground product and the remainder of the oily phase are then added. The whole is mixed at a temperature of 100°C until a very homogeneous mixture is obtained.
The composition may be cast in a mold to produce the shape of an 11.06 mm diameter stick.

For composition (1), the W/O emulsion in example 1 was used.
By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and good blotting resistance were obtained.

Example 3:
The following two compositions (1) and (2) were prepared:
The following oily composition was used as composition (2):

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Constituents (trade names)</th>
<th>quantity (% weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorant</td>
<td>Yellow 6 Lake</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>Blue 1 Lake</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>Red 7</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>Titanium dioxide</td>
<td>1,58</td>
</tr>
<tr>
<td></td>
<td>Iron oxides</td>
<td>0,07</td>
</tr>
<tr>
<td>Fats</td>
<td>Microcrystalline wax</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Base Wax 30540 from paramelt)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrogenated jojoba oil</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Jojoba Wax flakes from Desert Whale)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tridecyl trimellillate</td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td>Octyldodecyl PPG3 Myristyl ether dimer</td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Nacre</td>
<td>Mica-titanium dioxide-brown iron oxide</td>
<td></td>
</tr>
<tr>
<td>Polymer</td>
<td>Vinyl polyglyurate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Mexomere PP from Chimex)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate and allyl stearate copolymer (65:35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(mexomere PQ from Chimex)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dextrin palmitate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polyester:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentaerythritol 20 / benzoic acid 4 / isostearic acid 56 / isophthalic acid 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(as prepared in example 2 of EP-A-1870082)</td>
<td></td>
</tr>
<tr>
<td>Silicone</td>
<td>Trimethyl 1,1,3,5,5-pentaphenyl trisiloxane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PH-1555 HRI from Dow Corning)</td>
<td></td>
</tr>
<tr>
<td>Surfactants</td>
<td>C30-50 alcohols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Performacol 550-L Alcohol from New phase technologies)</td>
<td></td>
</tr>
</tbody>
</table>

Firstly, the pigments are dispersed in Liquiwax and part of the silicone oil.

The remainder of the liposoluble ingredients and the waxes are mixed at a temperature of 100°C and the ground product and the remainder of the silicone oil phase are then added. The whole is mixed at a temperature of 100°C until a very homogeneous mixture is obtained.

The composition may be cast in a mold to produce the shape of an 11.06 mm diameter stick.

Viscosity >50Pa.s on such a stick composition, previously heated to render the texture measurable.

For composition (1), the W/O emulsion in example 1 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and good blotting resistance were obtained.
Example 4:
The following two compositions (1) and (2) are prepared:

The following liquid oily composition was used as composition (2):

Oily composition 4
(liquid composition for lips)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Constituents (trade names)</th>
<th>quantity (% weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filler</td>
<td>Silica dimethyl silylate</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(AEROSIL R 972 from EVONIK DEGUSSA)</td>
<td></td>
</tr>
<tr>
<td>Colorant</td>
<td>Red 7</td>
<td>0,23</td>
</tr>
<tr>
<td></td>
<td>Nacre</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>Iron oxides</td>
<td>0,05</td>
</tr>
<tr>
<td>Preservative</td>
<td>Preservatives</td>
<td>0,47</td>
</tr>
<tr>
<td>Fats</td>
<td>Bis-diglycerol polyacyladipate-2</td>
<td>18,95</td>
</tr>
<tr>
<td></td>
<td>Diisostearyl malate</td>
<td>10,28</td>
</tr>
<tr>
<td></td>
<td>Pentaerythrityl tetraisostearate</td>
<td>14,42</td>
</tr>
<tr>
<td></td>
<td>Tridecyl trimellitate</td>
<td>10,94</td>
</tr>
<tr>
<td></td>
<td>C18-C36 triglycerides (DUB TGI 24 from STEARINERIE DUBOIS)</td>
<td>Qs 100</td>
</tr>
<tr>
<td>Nacre</td>
<td>Mica, titanium dioxide and iron oxides</td>
<td>1</td>
</tr>
<tr>
<td>Perfume</td>
<td>Fragrance</td>
<td>0,3</td>
</tr>
<tr>
<td>Polymer</td>
<td>Polybutene (MW: 920, INDOPOL H 100 from INEOS)</td>
<td>12</td>
</tr>
</tbody>
</table>

Viscosity: approximately 12 Pa.s according to the measurement protocol described above.

For composition (1), the emulsion in example 1 was used.
By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and good blotting resistance were obtained.

Example 5:
The following two compositions (1) and (2) were prepared:
The following aqueous composition was used as composition (2):

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Compounds (trade names)</th>
<th>Quantity (% by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorant</td>
<td>Disodium fuchsin acid D salt (CI: 17200), disodium tartrazine salt (CI: 19140) and trisodium Allura-Red salt (CI: 16035)</td>
<td>0.2</td>
</tr>
<tr>
<td>Preservative</td>
<td>Phenoxy ethanol</td>
<td>0.5</td>
</tr>
<tr>
<td>Non-volatile oil</td>
<td>Octyldodecanol</td>
<td>33.3</td>
</tr>
<tr>
<td>Ethylcellulose dispersion in water</td>
<td>26.2% ethylcellulose in water; sodium lauryl sulfate (1.3%) and cetyl alcohol (2.5%)/ AQUACOAT ECD 30 from FMC Biopolymer</td>
<td>33.3 5*</td>
</tr>
<tr>
<td>Polymer</td>
<td>Polyvinyl alcohol (viscosity: 50/ degree of hydrolysis: 88%) CELVOL 540 PV ALCOHOL from CELANESE CHEMICALS</td>
<td>0.5</td>
</tr>
<tr>
<td>Silicone</td>
<td>Polyphenyltrimethylsiloxy dimethylsiloxane (viscosity: 1000 cSt- MW: 3000 g/mol)/ Wacker-Belsil PDM 1000 from Wacker</td>
<td>23</td>
</tr>
<tr>
<td>Solvent</td>
<td>Non-denatured 96 degree ethanol</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>2.15</td>
</tr>
<tr>
<td>Surfactant</td>
<td>Mixture of sorbitan stearate, sucrose cocoate/ Arlatone 2121U from Croda</td>
<td>3.95</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

* Expressed by weight of commercial product.
1) The aqueous ethylcellulose dispersion is mixed in the non-volatile oil under stirring and heated for 1 hr to 2 hrs at 55°C.

2) The surfactant is added and the whole is mixed under stirring at 55°C until a homogeneous mixture is obtained.

3) Polyvinyl alcohol is added until a homogeneous mixture is obtained and allowed to cool to ambient temperature.

4) The non-volatile silicone oil is then added, while continuing to stir.

5) The colorants/pigments previously placed in solution in water are then added.

6) Finally, the alcohol and phenoxy ethanol is added under stirring.

Viscosity: 1.4 Pa.s according to the measurement protocol described above.

For composition (1), the emulsion in example 1 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and very good blotting resistance were obtained.

Example 6:

The following two compositions (1) and (2) were prepared:

The following oily (anhydrous) composition was used as composition (2):

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Constituents (trade names)</th>
<th>quantity (% weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filler</td>
<td>Disteardimonium hectorite in isododecane (BENTONE GEL ISD V from ELEMENTIS)</td>
<td>25</td>
</tr>
<tr>
<td>Colorant</td>
<td>Yellow 5 Lake</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td>Iron oxides</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>Red 7</td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td>Titanium dioxide</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td>Mica, titanium dioxide and iron oxides</td>
<td>3,5</td>
</tr>
<tr>
<td>Silicone</td>
<td>Trimethylsiloxy silicate</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>(SR 1000 from MOMENTIVE PERFORMANCE MATERIALS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nylon-611 and dimethicone copolymer (DOW CORNING 2-8179 GELLANT from Dow</td>
<td>11,33</td>
</tr>
</tbody>
</table>
Viscosity: 1.6 Pa.s according to the measurement protocol described above.

For composition (1), the emulsion in example 1 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and very good blotting resistance were obtained.

Example 7:
The following two compositions (1) and (2) were prepared:
For composition (2), the aqueous composition in example 1 was used.
For composition (1), the W/O emulsion was used.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Constituents (trade names)</th>
<th>Quantity (%) weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active substance</td>
<td>Magnesium sulfate</td>
<td>1,5</td>
</tr>
<tr>
<td>Filler</td>
<td>Disteardimonium hectorite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Acrylate copolymer microspheres (EXPANCEL 461 DE 20 D70 from AKZO NOBEL)</td>
<td>0.6</td>
</tr>
<tr>
<td>Colorant</td>
<td>Titanium dioxide, disodium stearoyl glutamate and aluminum hydroxide</td>
<td>18,2</td>
</tr>
<tr>
<td></td>
<td>Iron oxides, disodium stearoyl glutamate and aluminum hydroxide</td>
<td>6,8</td>
</tr>
<tr>
<td>Fats</td>
<td>Tristearin and acetylated glycol stearate</td>
<td>0,3</td>
</tr>
<tr>
<td>Polymer</td>
<td>Cellulose gum</td>
<td>0,5</td>
</tr>
<tr>
<td>Silicone</td>
<td>Cyclopentasiloxane</td>
<td>15,3</td>
</tr>
</tbody>
</table>

4-polyglyceryl isostearate, cetyl PEG/PPG-10/1 dimethicone and
hexyl laurate (ABIL WE 09 from EVONIK GOLDSCHMIDT)

<table>
<thead>
<tr>
<th>Solvent</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Polydimethylsiloxane 5cst</td>
<td>6,6</td>
</tr>
<tr>
<td>(XIAMETER PMX-200 SILICONE FLUID from Dow Corning)</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>qs 100</td>
</tr>
<tr>
<td>Glycerin</td>
<td>5</td>
</tr>
<tr>
<td>Ethylhexylglycerin</td>
<td>0,5</td>
</tr>
<tr>
<td>Pentylene glycol</td>
<td>3</td>
</tr>
</tbody>
</table>

Viscosity: 0.72 Pa.s according to the measurement protocol described above.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and good blotting resistance were obtained.

Example 8:
The following two compositions (1) and (2) were prepared:

For composition (2), the oily composition in example 3 was used.

For composition (1), the emulsion in example 7 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, very good transfer and very good blotting resistance were obtained.

Example 9:
The following two compositions (1) and (2) were prepared:

For composition (2), the oily composition in example 4 was used.

For composition (1), the emulsion in example 7 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, very good transfer and very good blotting resistance were obtained.

Example 10:
The following two compositions (1) and (2) were prepared:
For composition (2), the aqueous composition in example 5 was used.
For composition (1), the emulsion in example 7 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and very good blotting resistance were obtained.

Example 11:
The following two compositions (1) and (2) were prepared:
For composition (2), the oily composition in example 6 was used.
For composition (1), the emulsion in example 7 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, good transfer and very good blotting resistance were obtained.

It was thus observed that combining a composition in the form of a W/O oil emulsion (1) with an aqueous or oily composition (2) makes it possible to obtain satisfactory results in respect of transfer and blotting resistance, according to the present invention.

Example 12: (comparison: combination of two solid oily compositions):
For composition (1), the oily (stick) composition in example 2 was used.
For composition (2), the oily (stick) composition in example 3 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, poor transfer and poor blotting resistance were obtained.

Example 13: (comparison: combination of two solid/liquid oily compositions)
For composition (1), the oily (stick) composition in example 3 was used.
For composition (2), the oily (liquid) composition in example 4 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, poor transfer and poor blotting resistance were obtained.
Example 14: (comparison: combination of two liquid oily compositions)

For composition (1), the oily (stick) composition in example 2 was used.
For composition (2), the oily (liquid) composition in example 6 was used.

By applying the two compositions mentioned above on the applicator, and applying said applicator on the lips, poor transfer and poor blotting resistance were obtained.

These results confirm that combining oily compositions does not make it possible to arrive at the sought results.
1. Makeup kit comprising:
 - an applicator (10) of at least one cosmetic product on a user's lips, of the type comprising an application surface (16), with a shape analogous to that of human lips, said application surface being intended to receive a cosmetic product, and
 - said cosmetic product, comprising:
 - at least one composition (1) in the form of a water-in-oil emulsion comprising a physiologically acceptable medium; and
 - at least one composition (2), separate from the composition (1), and comprising a physiologically acceptable medium, said composition (2) being:
 - either an aqueous composition containing at least 20% by weight of water with respect to the total weight of said aqueous composition,
 - or an oily composition containing less than 5% by weight of water with respect to the total weight of said oily composition.

2. Kit according to claim 1, wherein the composition (1) has a water content of 20% to 60%, preferably of 20% to 40% by weight with respect to the total weight of the composition.

3. Kit according to claim 1 or 2, wherein the compositions (1) and (2) have a viscosity at 20°C greater than 0.3 Pa.s

4. Kit according to any of claims 1 to 3, wherein at least one of the compositions (1) or (2) comprises at least one dye, particularly chosen from pigments, colorants, reflective particles or a mixture thereof.

5. Kit according to any of claims 1 to 4, wherein the composition (1) comprises at least one volatile oil, particularly chosen from volatile hydrocarbon and silicone oils or a mixture thereof.

6. Kit according to any of claims 1 to 5, wherein the composition (2) comprises at least one non-volatile oil, particularly chosen from non-volatile hydrocarbon and silicone oils or a mixture thereof.
7- Kit according to any of claims 1 to 6, wherein the oily composition comprises at least one solid fat at a content less than or equal to 30% by weight with respect to the total weight of the composition.

8- Kit according to any of claims 1 to 7, wherein each of the compositions (1) and (2) comprises at least one dye, the dye of composition (1) being different to the dye of composition (2).

9- Kit according to any of claims 1 to 7, wherein only one of the compositions (1) or (2) comprises at least one dye, the other composition not comprising any dye.

10- Kit according to any of claims 1 to 9, wherein at least one of the compositions (1) or (2) comprises at least one filler as a matting agent, preferably from 0.1% to 30% by weight with respect to the total weight of the composition.

11- Makeup kit according to any of claims 1 to 10, wherein the applicator application surface (16) has a central region (22) and a peripheral line (24) having a contour analogous to the contour of human lips, the central region (22) and the peripheral line (24) being intended to receive the cosmetic product.

12- Applicator (10) of at least one cosmetic product on a user's lips, of the type comprising an application surface (16), with a shape analogous to that of human lips, said application surface being intended to receive a cosmetic product, said cosmetic product comprising:

- at least one composition (1) in the form of a water-in-oil emulsion comprising a physiologically acceptable medium; and
- at least one composition (2), separate from the composition (1), and comprising a physiologically acceptable medium, said composition (2) being:
 - either an aqueous composition containing at least 20% by weight of water with respect to the total weight of said aqueous composition
 - or an oily composition containing less than 5% by weight of water with respect to the total weight of said oily composition.

13- Applicator according to claim 11, wherein the application surface (16) has a central region (22) and a peripheral line (24) having a contour analogous to the contour
of human lips, the central region (22) and the peripheral line (24) being intended to receive the cosmetic product.

14- Non-therapeutic cosmetic use for lip makeup of the kit according to any of claims 1 to 10 or the applicator according to any of claims 11 to 13.

15- Non-therapeutic cosmetic treatment method for lip makeup comprising:
- providing a kit according to any of claims 1 to 10;
- applying the compositions (1) and (2) on the applicator application surface, said surface optionally having compartments separated by membranes or having different surface treatments, and
- applying the application surface on the lips of a user,
- applying the two compositions on the user's lips.
According to International Patent Classification (IPC) or to both national classification and IPC

A. CLASSIFICATION OF SUBJECT MATTER

INV. A45D40/30 A45D40/26

ADD.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A45D A61K A61Q

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2009/211591 AI (HWANG REN I [US]) 27 August 2009 (2009-08-27) abstract paragraphs [0014], [0068], [0072], [0101], [0111], [0112], [0113]</td>
<td>1-15</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2011/030310 A2 (OREAL [FR]; RICARD AUDREY [FR]; BODELIN SOPHIE [FR]) 17 March 2011 (2011-03-17) abstract claim 1</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>US 2011/070177 AI (ARNAUD PASCAL [FR] ET AL) 24 March 2011 (2011-03-24) abstract claims 1,3</td>
<td>1, 12, 14, 15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason (as specified).
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search

24 January 2013

Date of mailing of the international search report

31/01/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Zetzsche, Brigitta

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 743 545 AI (MOLENAAR ALBERTUS SIMON MARIA [NL]; ALPEN BERTUS JOHANNES VAN [NL]) 17 January 2007 (2007-01-17) abstract paragraph [0037]</td>
<td>1, 12, 14, 15</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2009211591 A1</td>
<td>27-08-2009</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2011030310 A2</td>
<td>17-03-2011</td>
<td>CN 102869284 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2475284 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2949954 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012279514 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011030310 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2950232 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011070177 A1</td>
</tr>
</tbody>
</table>