
USOO8875.064B2

(12) United States Patent (10) Patent No.: US 8,875,064 B2
Aggarwal et al. (45) Date of Patent: Oct. 28, 2014

(54) AUTOMATED DESIGN RULE CHECKING 6,212,667 B1 4/2001 Geer et al.
(DRC). TEST CASE GENERATION 6,526,546 B1* 2/2003 Rolland et al. 324,762.06

6,606,735 B1* 8/2003 Richardson et al. T16, 112
ck

(71) Applicant: International Business Machines sy R 2. chain et al. T16, 112
- 4 rouse et al.

Corporation, Armonk, NY (US) 7.254,791 B1* 8/2007 Agrawal et al. T16, 112
7,430,729 B2* 9/2008 McLain et al. 716,100

(72) Inventors: Davinder Aggarwal, Bangalore (IN); 7.757, 190 B2 * 7/2010 Dai et al. 716, 52
Vibhor Jain, Bangalore (IN); 2006/0218516 A1* 9, 2006 McLain et al. 716, 10
Janakiraman Viraraghavan, Bangalore 2007/003897O A1* 2, 2007 DeMaris et al. 716.f4
(IN) 2009,0187867 A1* 7/2009 Lawrence T16/4

(73) Assignee: International Business Machines OTHER PUBLICATIONS
Corporation, Armonk, NY (US)

“Design Rule Checking”, Wikipedia; http://en.wikipedia.org/wiki/
(*) Notice: Subject to any disclaimer, the term of this Design rule checking; last modified on Mar. 7, 2013, and previ

patent is extended or adjusted under 35 ously modified on Nov. 17, 2012; 3 Pages.
U.S.C. 154(b) by 0 days.

* cited by examiner
(21) Appl. No.: 13/833,028

(22) Filed: Mar 15, 2013 Primary Examiner — Nha Nguyen
O O (74) Attorney, Agent, or Firm — David Cain; Roberts

(65) Prior Publication Data Mlotkowski Safran & Cole, P.C.
US 2014/0282329 A1 Sep. 18, 2014

(51) Int. Cl. (57) ABSTRACT
G06F 17/50 (2006.01)

(52) U.S. Cl. Approaches for generating test cases for design rule checking
CPC G06F 17508.1 (2013.01) are provided. A method includes extracting coordinates of an
USPC 716/52; 716/53; 716/54; 716/55; error marker in an integrated circuit design. The method also

716/106; 716/112 includes creating an error polygon using the coordinates. The
(58) Field of Classification Search method additionally includes selecting polygons in the design

USPC 716/51-53, 106 115 that touch the error polygon. The method further includes
See application file for complete search history. identifying a rectangle that encloses the selected polygons.

The method also includes generating a test case based on data
(56) References Cited of the design contained within the rectangle. The extracting,

U.S. PATENT DOCUMENTS

5,724,504 A 3, 1998 Aharon et al.
5,774,358 A 6, 1998 Shrote
6,063,132 A * 5/2000 DeCamp et al. T16, 112

the creating, the selecting, the identifying, and the generating
are performed using a computer device.

16 Claims, 7 Drawing Sheets

40) - Identify error in design

40

420

Extract coordinates of error marker

Create temporary error polynomial

Select polygons that touch temporary error polynomial and are in rule

Create polygon that is union of selected polygons
y

Create smallest rectangle that encloses polygon of step 440

Extract design data from inside rectangle and create test case

US 8,875,064 B2 Sheet 1 of 7 Oct. 28, 2014 U.S. Patent

&

Ce

4() O

dith over L2 for 45' NFET dev
y 3

L DRC Rule 1

F.G. 1

U.S. Patent Oct. 28, 2014 Sheet 2 of 7 US 8,875,064 B2

5

&

:

& SS S

8 SS
&

8 & 8.

FIG. 2

U.S. Patent Oct. 28, 2014 Sheet 3 of 7 US 8,875,064 B2

10 O 110 110

G 2
20

120

N 105

FIG. 3A

X

--
FIG. 3B

E.

E

--
FIG. 3C

U.S. Patent Oct. 28, 2014 Sheet 4 of 7 US 8,875,064 B2

400 identify error in design

40 Extract coordinates of error marker

420 Create temporary error polynomial

430 Select polygons that touch temporary error polynomial and are in rule

440 Create polygon that is union of Selected polygons

450 Create smallest rectangle that encloses polygon of step 440

460 Extract design data from inside rectangle and create test case

FIG. 4

U.S. Patent Oct. 28, 2014 Sheet 5 Of 7 US 8,875,064 B2

DRC Rule 1: L1 width over L2 for 45° NFET device Leff>= value - 505

Layers involved in PRC Rule 1: L1, L2, L3, LA, L5, L6 1- 5 O

983984() 43 458O
984.OOO 1434. 20
98.4086O 43488O
98.40400 143 540

INCLUDE Layer definition extracted from
STECHDIR/DRC/Include?', layers.ca original DRC runset
LAYER TEMP ERROR 5953 Temporary error layer

POLY GON 9839.84OOOO 434.580000 Temporary error polynomia
984). OOOOO 434.20000984.86OOOO
434.880000984.0.400000 4315.140000
TEMP ERROR

-- 55

520

TEST DRC Rule: G Generating test case for INTERACT: selects polygons
DRC Ruie that touch the error polynomial
COPY (EXTENT {(Li OR (L2 OR (L3 OR EXTENT: Smallest rectangle

(L4 OR (L5 OR L6))))) INTERACT encloses polygons touching
TEMPERROR))} error polynomial

525

F.G. 5

U.S. Patent Oct. 28, 2014 Sheet 6 of 7 US 8,875,064 B2

Computing Device 64

O/S

Processor 620 Memory 622A

Design Tool
Program Control 650

644
/O interface 624

626
f

/O Device
628

Storage System 622B

F.G. 6

US 8,875,064 B2 Sheet 7 Of 7 Oct. 28, 2014 U.S. Patent

XEjd SAT

US 8,875,064 B2
1.

AUTOMATED DESIGN RULE CHECKING
(DRC). TEST CASE GENERATION

FIELD OF THE INVENTION

The invention relates to testing of integrated circuits and,
more particularly, to computer-aided testing for design veri
fication of integrated circuits.

BACKGROUND

Design rule checking (DRC) is used in electronic design
automation (EDA) of integrated circuits to determine whether
the physical layout of a particular chip design satisfies a series
of recommended parameters called design rules. Design rules
are a series of parameters provided by Semiconductor manu
facturers that enable the designer to verify the correctness of
a mask set. Design rules are specific to a particular semicon
ductor manufacturing process. A design rule set specifies
certain geometric and connectivity restrictions to ensure Suf
ficient margins to account for variability in semiconductor
manufacturing processes, so as to ensure that most of the parts
work correctly.

Specific design rule checks verify the shape and sizes of
various circuit components that are diffused, deposited, or
etched onto a chip. Additionally, design rule checking also
Verifies that the shapes are of the proper size, shape, and type,
and furthermore, that the shapes are not placed so close
together within the chip that they will not work. Design rule
checking may involve a general purpose shapes processing
program (GPSPP) that receives inputs from two files: runset
and physical layout files. The runset file is a command lan
guage input file that instructs the processor executing the
GPSPP how to perform the design rule checks. The runset
may include several hundred individual design rule checks,
for example. The runset may also be referred to as a DRC
runset, a rule deck, or merely a deck.

Design rules (also referred to as DRC rules) specify how
the layers in the layout should be arranged to ensure good
manufacturing yield in a foundry. The runset is provided by
the foundry and is coded based on a design manual. Inputs
from the technology development and manufacturing teams,
and information on the devices Supported in a particular tech
nology, are used by the design manual team to create the DRC
rules in the design manual. It is thus advantageous to ensure
that the runset is consistent with the design manual since
customers are expected to ensure their designs are “DRC
clean' on this “golden' runset.
When developing a runset for a semiconductor process, a

set of layout test cases is used to verify functionality and
accuracy. The task of creating test cases for runsets exists
across all organizations and companies that code checking
runsets. The code for DRC is created based on a set of layout
design rules or parameters for a particular semiconductor
process. The code and test cases are both manually created.
A runset may be validated with regression testing that uses

shape-based test cases that are based on rules described in the
design manual. For example, regression testing involves cre
ating Such test cases and verifying the test cases against the
runset. The test cases used in regression testing are not based
on an actual circuit design, but rather are simple shapes based
on rules included in the design manual and designed to trigger
either a pass condition or a fail condition when verified
against the runset. Both pass test cases and fail test cases are
built to ensure good verification coverage of the design rules.
For example, the fail test cases are designed to cause the
runset to report an error, and the pass test cases are designed

10

15

25

30

35

40

45

50

55

60

65

2
such that the runset should not report an error. In the event the
runset does not behave as expected according to the test cases,
then one or more design rule checks in the runset may be
modified, or the design manual itself may be modified, or
both.

Since the test cases used in regression testing are manually
created, they are necessarily limited by the imagination and/
or expertise of the person tasked with creating the test cases.
This person-based limitation can limit the verification cover
age provided by the test cases. The Verification coverage is
also limited since the number of ways in which a rule can be
violated grows exponentially with the number of layers/con
straints involved in the rule. As the number of layers and
constraints in a design increases, it becomes unworkable to
manually create test cases that provide Sufficient verification
coverage.

SUMMARY

In a first aspect of the invention, there is a method of
generating a test case in design rule checking. The method
includes extracting coordinates of an error marker in an inte
grated circuit design. The method also includes creating an
error polygon using the coordinates. The method additionally
includes selecting polygons in the design that touch the error
polygon. The method further includes identifying a rectangle
that encloses the selected polygons. The method also includes
generating a test case based on data of the design contained
within the rectangle. The extracting, the creating, the select
ing, the identifying, and the generating are performed using a
computer device.

In another aspect of the invention, there is a system for
generating a test case. The system includes a computer device
including a processor and a design tool that is structured and
arranged to: perform design rule checking of an integrated
circuit design; identify a violation of a design rule during the
design rule checking; extract coordinates of an error marker
associated with the violation; create an error polygon using
the coordinates; select polygons in the design that touch the
error polygon; identify a rectangle that encloses the selected
polygons; and generate a test case based on data of the design
contained within the rectangle.

In another aspect of the invention, there is a computer
program product for generating a test case. The computer
program product comprises a computer readable storage
medium having program code embodied therewith, the pro
gram code being readable and/or executable by a processor of
a computer device to performa method. The method includes:
performing, by the processor, indentifying, by the processor,
a violation of a design rule during design rule checking of an
integrated circuit design; creating, by the processor, an error
polygon based on the violation; identifying, by the processor,
a rectangle that encloses polygons in the design that are
associated with the design rule and that touch the error poly
gon; and generating, by the processor, a test case based on
data of the design contained within the rectangle.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present invention is described in the detailed descrip
tion which follows, in reference to the noted plurality of
drawings by way of non-limiting examples of exemplary
embodiments of the present invention.

FIG. 1 depicts a portion of an integrated circuit design in
accordance with aspects of the invention;

US 8,875,064 B2
3

FIG. 2 depicts a portion of an integrated circuit design in
accordance with aspects of the invention;

FIGS. 3A-3C depict steps of generating an area for extract
ing test case data in accordance with aspects of the invention;

FIG. 4 shows a flowchart of a process in accordance with
aspects of the invention;

FIG. 5 shows exemplary programming for performing
aspects of the invention;

FIG. 6 shows an illustrative environment for performing
the processes in accordance with the invention; and

FIG. 7 shows an exemplary interface providing function
ality in accordance with aspects of the invention.

DETAILED DESCRIPTION

The invention relates to testing of integrated circuits and,
more particularly, to computer-aided testing for design veri
fication of integrated circuits. According to aspects of the
invention, a test case for verifying a DRC runset is automati
cally generated based on an error that is identified when
performing design rule checking of an existing integrated
circuit design. In embodiments, the error is identified by
performing design rule checking of the integrated circuit
design using two different design tools that use two different
runsets, and identifying discrepancies between results of the
two different design tools. In implementations, the test case is
automatically generated by: extracting coordinates of an error
marker associated with the error, creating a polygon that is the
union of all shapes in the integrated circuit design that touch
the error marker; determining the coordinates of a smallest
rectangle that encloses the polygon; and generating a unit
level test case based on the coordinates of a smallest rect
angle.

In this manner, test cases for verifying DRC runsets may be
automatically generated based on actual integrated circuit
designs. Moreover, by including only the shapes that touch
the error region, the automatically generated test cases in
accordance with aspects of the invention contain Sufficient
information for debugging the runset, but are not so large as to
impose great computational penalties during the runset
debugging.

Test cases generated in aspects of the invention may be
used to Verify the runset of a design tool, in addition to
regression testing. Test cases generated in aspects of the
invention improve test coverage of the runset, compared to
regression testing alone, by looking at failures that occur in an
existing integrated circuit design, e.g., at the highest level in
a hierarchy of a larger integrated circuit design.

Testing of an existing integrated circuit design (referred to
as “IP testing) addresses the issue of testing the runset on
complicated yet practical test cases. In IP testing, the runset is
Verified on an existing integrated circuit design that is typi
cally very large. The existing design may include a custom
er's design of an integrated circuit, for example, which means
that test cases generated from IP testing have a practical basis
and thus are well-suited for verifying a DRC runset. Any
errors reported on existing integrated circuit designs are nec
essarily true errors, which should not be missed. False errors
and missed errors are detected in aspects of the invention by
performing DRC testing of the existing design using two
different tools having two different runsets, and noting any
discrepancy of when one of the tools indicates an error that
the other tool does not. Such a discrepancy can be due to
either a false error (i.e., the design does not have an error,
meaning that the tool reporting the error has a bug) or a missed
error (i.e., the design does have an error, meaning that the tool
not reporting the error has a bug). A true error is where both

10

15

25

30

35

40

45

50

55

60

65

4
design tools agree in indicating an error in the design, in
which case there is not a discrepancy between the design tools
and no test case is generated for Such an error.

It is noted that a discrepancy is not always due to a bug in
one of the runsets that results in a change being made to one
of the runsets. For example, discovering Such a discrepancy
may result in changing design manual wording or reporting a
tool limitation to the DRC tool vendor. Specifically, although
the design manual specifies a particular intent of a DRC rule,
the DRC rule when written and implemented may not capture
and/or convey the intent. In Such cases, finding of a discrep
ancy during IP testing may result in changing the wording of
the design manual rather than changing the DRC code.

IP testing may be performed on large existing designs to
the extent that the design is even able to be loaded in a DRC
tool. Due to the large size of existing designs, viewing a DRC
error in the DRC tool can be difficult. It is therefore desirable
to extract relatively small test cases from the larger design,
which test cases are representative of the actual error found in
the design. To this end, a representative test case should: be
much smaller than the whole existing design; reproduce the
error seen in the existing design; and clearly show the struc
ture that resides in the design. Showing the structure that
resides in the design is useful since a design manual change
may result from the discrepancy, in which case it is useful to
be aware of the exact structure in the design to determine
whether it is consistent with the intent of the design manual.

FIG. 1 shows an example of an error in an existing inte
grated circuit design5 in IP testing in accordance with aspects
of the invention. The exemplary design includes shapes 10
(e.g., features, objects, etc.) formed in a first layer "L1 and
shapes 20 (e.g., features, objects, etc.) formed in a second
layer “L2 of the integrated circuit. An exemplary DRC rule
30 is also shown in FIG.1. The exemplary rule 30 specifies a
width of L1 over L2 at 45°. An error marker 40 shows a
location of an error, i.e., a violation of the rule 30.
The display of FIG. 1 may be generated and displayed

using a DRC tool, e.g., by loading a runset including at least
DRC rule 30 into the tool, loading a design including at least
L1 and L2 into the tool, and Verifying the design against the
runset using the tool. The DRC tool may be implemented, for
example, using special purpose programming that is loaded in
and executed on a computer device, e.g., as described with
respect to FIG. 6 herein. The DRC tool may be a standalone
program, or included as a module of another program such as
a process design kit (PDK), e.g., as described with respect to
FIG. 7 herein.

Still referring to FIG. 1, one approach to generating a test
case based on the error marker 40 is to draw a rectangle 50
around the error marker 40, and create a test case data struc
ture (e.g., a file) that includes a portion of the design data
included within the bounds of the rectangle 50. The format of
the data can be any Suitable format. Such as graphic data
system (GDS), GDSII, etc. Manually drawing the rectangle
50 involves some action (e.g., input) by a user of the DRC
tool, and thus does not represent a fully automated approach
for generating the test case. Moreover, arbitrarily selecting a
size of the rectangle 50 does not necessarily include sufficient
structure of the design 5 to permit an engineer or designer to
determine whether the design as a whole complies with the
intent of the design manual, e.g., when debugging the runset
using the generated test case.

FIG. 2 shows a larger portion of the design 5 of FIG.1. As
depicted in FIG. 2, the design 5 includes an allowable valid
structure that is not discernable when only viewing the rect
angle 50 surrounding error marker 40. An exemplary solution
to this problem is to ask the designer to add a waiver layer to

US 8,875,064 B2
5

prevent this error from being flagged on the structure, in
which case no change in the DRC deck is required.

FIGS. 3A-3C depict steps of generating an area for extract
ing test case data in accordance with aspects of the invention.
In particular, FIG.3A shows an exemplary portion of another 5
design 105 including shapes 110 in a first layer and shapes
120 in a second layer. Error marker 140 represents the loca
tion of an error where the design 105 violates a DRC rule
contained in a runset.

With reference to FIGS. 3B and 3C, and according to
aspects of the invention, a test case is created by: identifying
all the shapes that touch the error marker 140; creating a
polygon 145 that is a union of all the shapes touching the error
marker 140 (FIG. 3B); creating the smallest rectangle 150
that encloses the polygon 145 (FIG. 3C); and creating a test
case data structure (e.g., a file) by extracting and saving data
of the design 105 (e.g., GDS data) that is included in the
rectangle 150. In embodiments, the smallest rectangle 150 is
the rectangle that is coincident with outermost edges of the 20
polygon 145. By using the Smallest rectangle, implementa
tions of the invention generate a test case that is relatively
Small so as not to be too computationally expensive during
debugging, but which test case still contains enough design
information (e.g., the shapes contained in the rectangle) to 25
provide the debugger with context of the design Surround the
eO.

In embodiments, identifying the shapes, creating the poly
gon, creating the Smallest rectangle 150, and creating the test
case data structure are all performed automatically. For 30
example, a script (e.g., routine, program, etc.) may be written
that uses commands of the DRC tool to perform these steps in
this order, thereby resulting in the automatic generation of a
test case associated with the error. For example, the script
(e.g., routine, program, etc.) may utilize commands such as: 35
“interact’ to select shapes (e.g., polygons) that touch the error
marker 140; “extent” to create the smallest rectangle 150; and
"yank” or “layout copy’ to extract GDS data of the design that
is included in the rectangle 150.

FIG. 4 shows an exemplary flowchart and/or block diagram 40
for performing aspects of the present invention. The steps of
FIG. 4 may be implemented, for example, in the environment
of FIG. 6, which is described in greater detail herein.
The flowcharts and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible 45
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions 50
for implementing the specified logical function(s). It should
also be noted that, in Some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the 55
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special 60
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com- 65
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution

10

15

6
system. The software and/or computer program product can
be implemented in the environment of FIG. 6.

FIG. 4 depicts an exemplary flowchart for a process in
accordance with aspects of the present invention. The steps of
FIG. 4 may be performed by a computer-based design tool
using commands that are included in (e.g., programmed in)
the design tool. The computer-based design tool may be
implemented in the environment of FIG. 6, for example, and
may comprise a combination of hardware and special-pur
pose software that is configured to perform the functions
described herein.
At step 400, the design tool identifies an error (e.g., a

design rule violation) in a design of an integrated circuit by
applying at least one DRC rule included in a runset against the
integrated circuit design. The error represents a situation
where the design violates the DRC rule. Step 400 may include
loading layout data (e.g., GDS data) of the design into the
design tool. Step 400 may also include loading two different
runsets into the design tool. In embodiments, step 400 may
further include verifying the design using the two different
runsets and identifying any false errors or missed errors. In
this case, the error identified at step 400 is an error that is
reported by only one of the two runsets, which indicates a
discrepancy between the runsets. Alternatively, the error
identified at step 400 may be determined by verifying the
design using a single runset, in which case it is not determined
whether the erroris a false error, a missed error, or a true error.
At step 410, the design tool extracts the coordinates of an

error marker for the error identified at step 400. At step 420,
the design tool creates a temporary polygon layer with the
error coordinates from step 410. The temporary polygon layer
may be referred to as the temporary error polygon (or error
shape). At step 430, the design tool identifies (e.g., selects) a
set of polygons in the design that touch the error polygon and
are included in a list of layers associated with the DRC rule
that is the basis of the error from step 400. At optional step
440, the design tool creates a polygon which is the union of
the set of polygons identified at step 430. At step 450, the
design tool identifies a smallest rectangle that encloses the
polygon created at step 440 or, when step 440 is omitted, the
Smallest rectangle that contains all of the polygons touching
the temporary error polygon as identified at step 530. At step
460, the design tool extracts data from the design data that is
included within the rectangle identified at step 450 and saves
the data in a test case data structure.

FIG. 5 shows an exemplary DRC rule 505 which may
represent, for example, the DRC rule that generated the error
at step 400 of FIG. 4. In embodiments, the DRC rule 505 is
associated with a list of layers 510 of the integrated circuit
design. FIG. 5 also depicts exemplary coordinates 515 of the
error marker determined at step 410. FIG. 5 further depicts
program code for implementing function described with
respect to the flowchart of FIG. 4. For example, code portions
520 may be employed to implement the functionality of step
420, and code portion 525 may be employed to implement the
functionality of steps 430,440, and 450. Although not shown,
a command Such as "yank”, “layout copy, or the like may be
employed to implement the functionality of step 460. The
code portions 520 are implemented in CALIBRE(R), which is
a trademark of Mentor Graphics Corporation of Wilsonville,
Oreg. Aspects of the invention may be implemented using any
Suitable computer design software for electronic design auto
mation, and are not limited to the particular software shown in
FIG.S.

FIG. 6 shows an illustrative environment 610 for managing
the processes in accordance with the invention. As will be
appreciated by one skilled in the art, aspects of the present

US 8,875,064 B2
7

invention may be embodied as a system, method, or computer
program product. Accordingly, aspects of the present inven
tion may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi
dent Software, micro-code, etc.) or an embodiment combin
ing Software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module’ or “system.” Fur
thermore, aspects of the present invention may take the form
of a computer program product embodied in one or more
computer readable medium(s) having computer readable pro
gram code embodied thereon.
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/

10

15

25

30

35

40

45

50

55

60

65

8
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process Such that the instructions which execute on the com
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Still referring to FIG. 6, the environment 610 includes a
server or other computing system 612 that can perform the
processes described herein. In particular, the system 612
includes a computing device 614. The computing device 614
can be resident on a network infrastructure or computing
device of a third party service provider (any of which is
generally represented in FIG. 6).
The computing device 614 also includes a processor 620,

memory 622A, an I/O interface 624, and a bus 626. The
memory 622A can include local memory employed during
actual execution of program code, bulk storage, and cache
memories which provide temporary storage of at least some
program code in order to reduce the number of times code
must be retrieved from bulk storage during execution. In
addition, the computing device includes random access
memory (RAM), a read-only memory (ROM), and an oper
ating system (O/S).
The computing device 614 is in communication with the

external I/O device/resource 628 and the storage system
622B. For example, the I/O device 628 can comprise any
device that enables an individual to interact with the comput
ing device 614 (e.g., user interface) or any device that enables
the computing device 614 to communicate with one or more
other computing devices using any type of communications
link. The external I/O device/resource 628 may be for
example, a handheld device, PDA, handset, keyboard etc.

In general, the processor 620 executes computer program
code (e.g., program control 644), which can be stored in the
memory 622A and/or storage system 622B. Moreover, in
accordance with aspects of the invention, the program control
644 controls a design tool 650, e.g., that performs one or more
of the processes described herein. The design tool 650 can be
implemented as one or more program code in the program
control 44 stored in memory 622A as separate or combined
modules. Additionally, the design tool 650 may be imple
mented as separate dedicated processors or a single or several
processors to provide the function of these tools. While
executing the computer program code, the processor 620 can
read and/or write data to/from memory 622A, storage system

US 8,875,064 B2
9

622B, and/or I/O interface 624. The program code executes
the processes of the invention. The bus 626 provides a com
munications link between each of the components in the
computing device 614.
The computing device 614 can comprise any general pur

pose computing article of manufacture capable of executing
computer program code installed thereon (e.g., a personal
computer, server, etc.). However, it is understood that the
computing device 614 is only representative of various pos
sible equivalent-computing devices that may perform the pro
cesses described herein. To this extent, in embodiments, the
functionality provided by the computing device 614 can be
implemented by a computing article of manufacture that
includes any combination of general and/or specific purpose
hardware and/or computer program code. In each embodi
ment, the program code and hardware can be created using
Standard programming and engineering techniques, respec
tively.

Similarly, the system 612 is only illustrative of various
types of computerinfrastructures for implementing the inven
tion. For example, in embodiments, the system 612 comprises
two or more computing devices (e.g., a server cluster) that
communicate over any type of communications link, such as
a network, a shared memory, or the like, to perform the
process described herein. Further, while performing the pro
cesses described herein, one or more computing devices on
the system 612 can communicate with one or more other
computing devices external to the system 612 using any type
of communications link. The communications link can com
prise any combination of wired and/or wireless links; any
combination of one or more types of networks (e.g., the
Internet, a wide area network, a local area network, a virtual
private network, etc.); and/or utilize any combination of
transmission techniques and protocols.

FIG. 7 shows an exemplary computer-based graphical user
interface 705 in accordance with aspects of the invention. As
depicted in FIG. 7, design tool software included in a process
design kit (PDK) may be programmed to include a “Test
Case' menu option 710 that generates a test case in a manner
described herein, e.g., as described with respect to FIGS.
3A-C, 4, and 5. In this manner, a customer may generate a test
case and include the test case as part of a foundry change
request (FCR) that is submitted to a foundry. Since the test
case according to aspects of the invention does not include the
entire integrated circuit design, the customer is able to avoid
Submitting the entire design to the foundry. This is advanta
geous for customers who are prohibited from sharing the
entire design with a third party.
As described herein, implementations of the invention may

be used to save significant amounts of time by generating test
cases at the time of IP testing. Moreover, aspects of the
methods described herein are technology independent and
can be implemented using commands of commercial DRC
tools. Test cases according to aspects of the invention may
also be automatically generated at regression testing time and
used to improve the debugging during regression testing.
Furthermore, application engineers may use aspects of the
invention to report DRC discrepancies and to reduce the size
of test cases included in foundry change requests, e.g., from
36 Mb to 16 Kb in one example, and from 236 Mb to 246 Kb
in another example.
As described herein, and according to aspects of the inven

tion, when a discrepancy is seen between two DRC tools, the
one flagging the error will display an error marker, e.g., a
polygon, showing the region where the DRC rule is failing.
Implementations of the invention identify a minimal region
around the error marker which will reproduce the error. Arbi

10

15

25

30

35

40

45

50

55

60

65

10
trarily choosing a large rectangular region around the error
marker might reproduce the error but the test case might be
too large, e.g., too computationally expensive. Conversely, a
Small rectangular region may not even reproduce the discrep
ancy. Implementations of the invention identify the Smallest
region around the error marker which reproduces the discrep
ancy by using the error marker as the reference. All shapes in
the design involved in that error (e.g., that interact, touch,
overlap, etc., the error marker) are used to generate a polygo
nal region which is involved in flagging this error. The coor
dinates of Smallest rectangle enclosing this polygon are then
extracted, which is in turn used to generate the unit level test
case. The unit level test cases, owing to their Small sizes, are
relatively simpler than entire designs in analyzing and resolv
ing the discrepancy. Additionally, these unit level test cases
can be added to regression test libraries for future DRC deck
validation.
The method as described above is used in the fabrication of

integrated circuit chips. The resulting integrated circuit chips
can be distributed by the fabricator in raw wafer form (that is,
as a single wafer that has multiple unpackaged chips), as a
bare die, or in a packaged form. In the latter case the chip is
mounted in a single chip package (such as a plastic carrier,
with leads that are affixed to a motherboard or other higher
level carrier) or in a multichip package (such as a ceramic
carrier that has either or both surface interconnections or
buried interconnections). In any case, the chip is then inte
grated with other chips, discrete circuit elements, and/or other
signal processing devices as part of either (a) an intermediate
product, Such as a motherboard, or (b) an end product. The
end product can be any product that includes integrated cir
cuit chips, ranging from toys and other low-end applications
to advanced computer products having a display, a keyboard
or other input device, and a central processor.
The descriptions of the various embodiments of the present

invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin
ciples of the embodiments, the practical application or tech
nical improvement over technologies found in the market
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.
What is claimed is:
1. A method of generating a test case in design rule check

ing, comprising:
extracting coordinates of an error marker in an integrated

circuit design;
creating an error polygon using the coordinates;
selecting polygons in the design that touch the error poly
gOn

identifying a rectangle that encloses the selected polygons;
generating a test case based on data of the design contained

within the rectangle, wherein the extracting, the creat
ing, the selecting, the identifying, and the generating are
performed using a computer device;

identifying an error in the integrated circuit design,
wherein:

the error indicates a violation of a design rule; and
the error maker is based on the error; and
wherein:
the identifying the error comprises testing the design using

a first runset and a second runset; and
the error is a design rule violation of only one of the first

runset and the second runset.

US 8,875,064 B2
11

2. The method of claim 1, wherein the selecting the poly
gons comprises selecting the polygons in the design that
touch the error polygon and which are included in a list of
layers associated with a design rule.

3. The method of claim 2, wherein the error marker is based
on a violation of the design rule.

4. The method of claim 1, wherein the rectangle is a small
est rectangle that encloses the selected polygons.

5. The method of claim 1, further comprising creating a
polygon that is a union of the selected polygons.

6. The method of claim 5, wherein the rectangle is a small
est rectangle that encloses the created polygon.

7. The method of claim 1, wherein the generating the test
case comprises extracting the data from the design.

8. The method of claim 7, wherein the generating the test
case comprises saving the extracted data in a data structure.

9. The method of claim 1, further comprising using the test
case to debug a runset.

10. The method of claim 1, further comprising automati
cally performing the extracting, the creating, the selecting,
the identifying, and the generating.

11. A system for generating a test case, comprising:
a computer device comprising a processor and a design tool

that is structured and arranged to:
perform design rule checking of an integrated circuit

design;
identify a violation of a design rule during the design

rule checking;
extract coordinates of an error marker associated with

the violation;
create an error polygon using the coordinates;
select polygons in the design that touch the error poly
gOn

identify a rectangle that encloses the selected polygons;
generate a test case based on data of the design contained

within the rectangle; and
wherein:
the performing design rule checking comprises testing the

design using a first runset and a second runset; and
the violation is a design rule violation of only one of the

first runset and the second runset.
12. The system of claim 11, wherein the generating the test

case comprises:

5

10

15

25

30

35

40

12
extracting the data from the design; and
saving the extracted data in a test case data structure.
13. The system of claim 11, wherein the rectangle is a

Smallest rectangle that encloses the selected polygons.
14. The system of claim 11, wherein:
the design tool is included in a process design kit and

includes a menu option for performing the generating
the test case;

the rectangle is a Smallest rectangle that encloses the
Selected polygons; and

the Smallest rectangle is coincident with outermost edges
of the selected polygons.

15. A computer program product for generating a test case,
the computer program product comprising a computer read
able storage medium having program code embodied there
with, the program code being readable and/or executable by a
processor of a computer device to perform a method compris
ing:

identifying, by the processor, a violation of a design rule
during design rule checking of an integrated circuit
design;

creating, by the processor, an error polygon based on the
violation;

identifying, by the processor, a rectangle that encloses
polygons in the design that are associated with the
design rule and that touch the error polygon; and

generating, by the processor, a test case based on data of the
design contained within the rectangle,

wherein the rectangle is a smallest rectangle that encloses
polygons in the design that are associated with the
design rule and that touch the error polygon; and

wherein:
the design rule checking comprises testing the design using

a first runset and a second runset; and
the violation is a design rule violation of only one of the

first runset and the second runset.
16. The computer program product of claim 15, wherein

the creating the error polygon and the identifying the rect
angle are performed using commands in a design rule check
ing tool.

