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(57) Abstract: A hardware based translation accelerator. The hardware includes a guest fetch logic component for accessing guest
instructions; a guest fetch buffer coupled to the guest fetch logic component and a branch prediction component for assembling
guest instructions into a guest instruction block; and conversion tables coupled to the guest fetch bufter for translating the guest in -
struction block into a corresponding native conversion block. The hardware further includes a native cache coupled to the conver -
sion tables for storing the corresponding native conversion block, and a conversion look aside butfer coupled to the native cache for
storing a mapping of the guest instruction block to corresponding native conversion block, wherein upon a subsequent request for a
guest instruction, the conversion look aside buffer is indexed to determine whether a hit occurred, wherein the mapping indicates the
guest instruction has a corresponding converted native instruction in the native cache.
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HARDWARE ACCELERATION COMPONENTS FOR TRANSLATING GUEST
INSTRUCTIONS TO NATIVE INSTRUCTIONS

This application claims the benefit co-pending commonly assigned US Provisional
Patent Application serial number 61/436966, titled “HARDWARE ACCELERATION
COMPONENTS FOR TRANSLATING GUEST INSTRUCTIONS TO NATIVE
INSTRUCTIONS” by Mohammad A. Abdallah, filed on January 27, 2011, and which is

incorporated herein in its entirety.

FIELD OF THE INVENTION

[001] The present invention is generally related to digital computer systems,
more particularly, to a system and method for translating instructions comprising an

instruction sequence.

BACKGROUND OF THE INVENTION

[001] Many types of digital computer systems utilize code
transformation/translation or emulation to implement software-based functionality.
Generally, translation and emulation both involve examining a program of software
instructions and performing the functions and actions dictated by the software
instructions, even though the instructions are not “native” to the computer system. In
the case of translation, the non-native instructions are translated into a form of native
instructions which are designed to execute on the hardware of the computer system.
Examples include prior art translation software and/or hardware that operates with
industry standard x86 applications to enable the applications to execute on non-x86 or
alternative computer architectures. Generally, a translation process utilizes a large
number of processor cycles, and thus, imposes a substantial amount of overhead. The
performance penalty imposed by the overhead can substantially erode any benefits

provided by the translation process.

[002] One attempt at solving this problem involves the use of just-in-time

compilation. Just-in-time compilation (JIT), also known as dynamic translation, is a

1
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method to improve the runtime performance of computer programs. Traditionally,
computer programs had two modes of runtime transformation, either interpretation
mode or JIT (Just-In-Time) compilation/translation mode. Interpretation is a decoding
process that involves decoding instruction by instruction to transform the code from
guest to native with lower overhead than JIT compilation, but it produces a transformed
code that is less performing. Additionally, the interpretation is invoked with every
instruction. JIT compilers or translators represent a contrasting approach to
interpretation. With JIT conversion, it usually has a higher overhead than interpreters,
but it produces a translated code that is more optimized and one that has higher
execution performance. In most emulation implementations, the first time a translation
is needed, it is done as an interpretation to reduce overhead, after the code is seen
(executed) many times, a JIT translation is invoked to create a more optimized

translation.

[003] However, the code transformation process still presents a number of
problems. The JIT compilation process itself imposes a significant amount of overhead
on the processor. This can cause a large delay in the start up of the application.
Additionally, managing the storage of transformed code in system memory causes
multiple trips back and forth to system memory and includes memory mapping and
allocation management overhead, which imposes a significant latency penalty.
Furthermore, changes to region of execution in the application involve relocating the
transformed code in the system memory and code cache, and starting of the process
from scratch. The interpretation process involves less overhead than JIT translation but
it's overhead is repeated per instruction and thus is still relatively significant. The code

produced is poorly optimized if at all.

SUMMARY OF THE INVENTION

[004] Embodiments of the present invention implement an algorithm and an
apparatus that enables a hardware based acceleration of a guest instruction to native

instruction translation process.
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[005] In one embodiment, the present invention is implemented as a hardware
based translation accelerator. The hardware based translation accelerator includes a
guest fetch logic component for accessing a plurality of guest instructions; a guest fetch
buffer coupled to the guest fetch logic component and a branch prediction component
for assembling the plurality of guest instructions into a guest instruction block; and a
plurality of conversion tables coupled to the guest fetch buffer for translating the guest

instruction block into a corresponding native conversion block.

[006] The hardware based translation accelerator further includes a native
cache coupled to the conversion tables for storing the corresponding native conversion
block, and a conversion look aside buffer coupled to the native cache for storing a
mapping of the guest instruction block to corresponding native conversion block,
wherein upon a subsequent request for a guest instruction, the conversion look aside
buffer is indexed to determine whether a hit occurred, wherein the mapping indicates
the guest instruction has a corresponding converted native instruction in the native
cache. In response to the hit the conversion look aside buffer forwards the translated

native instruction for execution.

[007] The foregoing is a summary and thus contains, by necessity,
simplifications, generalizations and omissions of detail; consequently, those skilled in
the art will appreciate that the summary is illustrative only and is not intended to be in
any way limiting. Other aspects, inventive features, and advantages of the present
invention, as defined solely by the claims, will become apparent in the non-limiting

detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

[001] The present invention is illustrated by way of example, and not by way
of limitation, in the figures of the accompanying drawings and in which like reference

numerals refer to similar elements.
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[002] Figure 1 shows an exemplary sequence of instructions operated on by

one embodiment of the present invention.

[003] Figure 2 shows a diagram depicting a block-based translation process
where guest instruction blocks are converted to native conversion blocks in accordance

with one embodiment of the present invention.

[004] Figure 3 shows a diagram illustrating the manner in which each
instruction of a guest instruction block is converted to a corresponding native
instruction of a native conversion block in accordance with one embodiment of the

present invention.

[005] Figure 4 shows a diagram illustrating the manner in which far branches
are processed with handling of native conversion blocks in accordance with one

embodiment of the present invention.

[006] Figure 5 shows a diagram of an exemplary hardware accelerated
conversion system illustrating the manner in which guest instruction blocks and their
corresponding native conversion blocks are stored within a cache in accordance with

one embodiment of the present invention.

[007] Figure 6 shows a more detailed example of a hardware accelerated

conversion system in accordance with one embodiment of the present invention.

[008] Figure 7 shows an example of a hardware accelerated conversion system
having a secondary software-based accelerated conversion pipeline in accordance with

one embodiment of the present invention.

[009] Figure 8 shows an exemplary flow diagram illustrating the manner in

which the CLB functions in conjunction with the code cache and the guest instruction to
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native instruction mappings stored within memory in accordance with one embodiment

of the present invention.

[010] Figure 9 shows an exemplary flow diagram illustrating a physical storage
stack code cache implementation and the guest instruction to native instruction

mappings in accordance with one embodiment of the present invention.

[011] Figure 10 shows a diagram depicting additional exemplary details of a
hardware accelerated conversion system in accordance with one embodiment of the

present invention.

[012] Figure 11A shows a diagram of an exemplary pattern matching process

implemented by embodiments of the present invention.

[013] Figure 11B shows a diagram of a SIMD register-based pattern matching

process in accordance with one embodiment of the present invention.

[014] Figure 12 shows a diagram of a unified register file in accordance with

one embodiment of the present invention.

[015] Figure 13 shows a diagram of a unified shadow register file and pipeline
architecture 1300 that supports speculative architectural states and transient

architectural states in accordance with one embodiment of the present invention.

[016] Figure 14 shows a diagram of the second usage model, including dual

scope usage in accordance with one embodiment of the present invention.

[017] Figure 15 shows a diagram of the third usage model, including transient
context switching without the need to save and restore a prior context upon returning

from the transient context in accordance with one embodiment of the present invention.
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[018] Figure 16 shows an diagram depicting a case where the exception in the
instruction sequence is because translation for subsequent code is needed in accordance

with one embodiment of the present invention.

[019] Figure 17 shows a diagram of the fourth usage model, including transient
context switching without the need to save and restore a prior context upon returning

from the transient context in accordance with one embodiment of the present invention.

[020] Figure 18 shows a diagram of an exemplary microprocessor pipeline in

accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[021] Although the present invention has been described in connection with
one embodiment, the invention is not intended to be limited to the specific forms set
forth herein. On the contrary, it is intended to cover such alternatives, modifications,
and equivalents as can be reasonably included within the scope of the invention as

defined by the appended claims.

[022] In the following detailed description, numerous specific details such as
specific method orders, structures, elements, and connections have been set forth. It is
to be understood however that these and other specific details need not be utilized to
practice embodiments of the present invention. In other circumstances, well-known
structures, elements, or connections have been omitted, or have not been described in

particular detail in order to avoid unnecessarily obscuring this description.

[023] References within the specification to "one embodiment” or "an
embodiment" are intended to indicate that a particular feature, structure, or
characteristic described in connection with the embodiment is included in at least one
embodiment of the present invention. The appearance of the phrase "in one
embodiment” in various places within the specification are not necessarily all referring

to the same embodiment, nor are separate or alternative embodiments mutually
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exclusive of other embodiments. Moreover, various features are described which may
be exhibited by some embodiments and not by others. Similarly, various requirements
are described which may be requirements for some embodiments but not other

embodiments.

[024] Some portions of the detailed descriptions, which follow, are presented
in terms of procedures, steps, logic blocks, processing, and other symbolic
representations of operations on data bits within a computer memory. These
descriptions and representations are the means used by those skilled in the data
processing arts to most effectively convey the substance of their work to others skilled
in the art. A procedure, computer executed step, logic block, process, etc., is here, and
generally, conceived to be a self-consistent sequence of steps or instructions leading to
a desired result. The steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of electrical
or magnetic signals of a computer readable storage medium and are capable of being
stored, transferred, combined, compared, and otherwise manipulated in a computer
system. It has proven convenient at times, principally for reasons of common usage, to

refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or

the like.

[025] It should be borne in mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities and are merely convenient
labels applied to these quantities. Unless specifically stated otherwise as apparent from
the following discussions, it is appreciated that throughout the present invention,
discussions utilizing terms such as "processing" or "accessing” or "writing" or "storing"
or "replicating” or the like, refer to the action and processes of a computer system, or
similar electronic computing device that manipulates and transforms data represented as
physical (electronic) quantities within the computer system's registers and memories
and other computer readable media into other data similarly represented as physical
quantities within the computer system memories or registers or other such information

storage, transmission or display devices.
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[026] Embodiments of the present invention function by greatly accelerating
the process of translating guest instructions from a guest instruction architecture into
native instructions of a native instruction architecture for execution on a native
processor. Embodiments of the present invention utilize hardware-based units to
implement hardware acceleration for the conversion process. The guest instructions can
be from a number of different instruction architectures. Example architectures include
Java or JavaScript, x86, MIPS, SPARC, and the like. These guest instructions are
rapidly converted into native instructions and pipelined to the native processor hardware
for rapid execution. This provides a much higher level of performance in comparison to

traditional software controlled conversion processes.

[027] In one embodiment, the present invention implements a flexible
conversion process that can use as inputs a number of different instruction architectures.
In such an embodiment, the front end of the processor is implemented such that it can
be software controlled, while taking advantage of hardware accelerated conversion
processing to deliver the much higher level of performance. Such an implementation
delivers benefits on multiple fronts. Different guest architectures can be processed and
converted while each receives the benefits of the hardware acceleration to enjoy a much
higher level of performance. The software controlled front end can provide a great
degree of flexibility for applications executing on the processor. The hardware
acceleration can achieve near native hardware speed for execution of the guest
instructions of a guest application. In the descriptions which follow, Figure 1 through
Figure 4 shows the manner in which embodiments of the present invention handle guest
instruction sequences and handle near branches and far branches within those guest
instruction sequences. Figure 5 shows an overview of an exemplary hardware
accelerated conversion processing system in accordance with one embodiment of the

present invention.

[028] Figure 1 shows an exemplary sequence of instructions operated on by
one embodiment of the present invention. As depicted in Figure 1, the instruction

sequence 100 comprises 16 instructions, proceeding from the top of Figure 1 to the
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bottom. As can be seen in Figure 1, the sequence 100 includes four branch instructions
101-104.

[029] One objective of embodiments of the present invention is to process
entire groups of instructions as a single atomic unit. This atomic unit is referred to as a
block. A block of instructions can extend well past the 16 instructions shown in Figure
1. In one embodiment, a block will include enough instructions to fill a fixed size (e.g.,
64 bytes, 128 bytes, 256 bytes, or the like), or until an exit condition is encountered. In
one embodiment, the exit condition for concluding a block of instructions is the
encounter of a far branch instruction. As used herein in the descriptions of
embodiments, a far branch refers to a branch instruction whose target address resides
outside the current block of instructions. In other words, within a given guest
instruction block, a far branch has a target that resides in some other block or in some
other sequence of instructions outside the given instruction block. Similarly, a near
branch refers to a branch instruction whose target address resides inside the current
block of instructions. Additionally, it should be noted that a native instruction block
can contain multiple guest far branches. These terms are further described in the

discussions which follow below.

[030] Figure 2 shows a diagram depicting a block-based conversion process,
where guest instruction blocks are converted to native conversion blocks in accordance
with one embodiment of the present invention. As illustrated in Figure 2, a plurality of
guest instruction blocks 201 are shown being converted to a corresponding plurality of

native conversion blocks 202.

[031] Embodiments of the present invention function by converting
instructions of a guest instruction block into corresponding instructions of a native
conversion block. Each of the blocks 201 are made up of guest instructions. As
described above, these guest instructions can be from a number of different guest
instruction architectures (e.g., Java or JavaScript, x86, MIPS, SPARC, etc.). Multiple
guest instruction blocks can be converted into one or more corresponding native

conversion blocks. This conversion occurs on a per instruction basis.
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[032] Figure 2 also illustrates the manner in which guest instruction blocks are
assembled into sequences based upon a branch prediction. This attribute enables
embodiments of the present invention to assemble sequences of guest instructions based
upon the predicted outcomes of far branches. Based upon far branch prediction, a
sequence of guest instructions is assembled from multiple guest instruction blocks and
converted to a corresponding native conversion block. This aspect is further described

in Figure 3 and Figure 4 below.

[033] Figure 3 shows a diagram illustrating the manner in which each
instruction of a guest instruction block is converted to a corresponding native
instruction of a native conversion block in accordance with one embodiment of the
present invention. As illustrated in Figure 3, the guest instruction blocks reside within a
guest instruction buffer 301. Similarly, the native conversion block(s) reside within a

native instruction buffer 302.

[034] Figure 3 shows an attribute of embodiments of the present invention,
where the target addresses of the guest branch instructions are converted to target
addresses of the native branch instructions. For example, the guest instruction branches
cach include an offset that identifies the target address of the particular branch. This is
shown in Figure 3 as the guests offset, or G_offset. As guest instructions are converted,
this offset is often different because of the different lengths or sequences required by the
native instructions to produce the functionality of the corresponding guest instructions.
For example, the guest instructions may be of different lengths in comparison to their
corresponding native instructions. Hence, the conversion process compensates for this
difference by computing the corresponding native offset. This is shown in Figure 3 as

the native offset, or N_offset.

[035] It should be noted that the branches that have targets within a guest
instruction block, referred to as near branches, are not predicted, and therefore do not

alter the flow of the instruction sequence.

10
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[036] Figure 4 shows a diagram illustrating the manner in which far branches
are processed with handling of native conversion blocks in accordance with one
embodiment of the present invention. As illustrated in Figure 4, the guest instructions
are depicted as a guest instruction sequence in memory 401. Similarly, the native

instructions are depicted as a native instruction sequence in memory 402.

[037] In one embodiment, every instruction block, both guest instruction
blocks and native instruction blocks, concludes with a far branch (e.g., even though
native blocks can contain multiple guest far branches). As described above, a block will
include enough instructions to fill a fixed size (e.g., 64 bytes, 128 bytes, 256 bytes, or
the like) or until an exit condition, such as, for example, the last guest far branch
instruction, is encountered. If a number of guest instructions have been processed to
assemble a guest instruction block and a far branch has not been encountered, then a
guest far branch is inserted to conclude the block. This far branch is merely a jump to
the next subsequent block. This ensures that instruction blocks conclude with a branch
that leads to either another native instruction block, or another sequence of guest
instructions in memory. Additionally, as shown in Figure 4 a block can include a guest
far branch within its sequence of instructions that does not reside at the end of the
block. This is shown by the guest instruction far branch 411 and the corresponding

native instruction guest far branch 412.

[038] In the Figure 4 embodiment, the far branch 411 is predicted taken. Thus
the instruction sequence jumps to the target of the far branch 411, which is the guest
instruction F. Similarly, in the corresponding native instructions, a far branch 412 is
followed by the native instruction F. The near branches are not predicted. Thus, they

do not alter the instruction sequence in the same manner as far branches.

[039] In this manner, embodiments of the present invention generate a trace of
conversion blocks, where each block comprises a number (e.g., 3-4) of far branches.

This trace is based on guest far branch predictions.

11
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[040] In one embodiment, the far branches within the native conversion block
include a guest address that is the opposite address for the opposing branch path. As
described above, a sequence of instructions is generated based upon the prediction of far
branches. The true outcome of the prediction will not be known until the corresponding
native conversion block is executed. Thus, once a false prediction is detected, the false
far branch is examined to obtain the opposite guest address for the opposing branch
path. The conversion process then continues from the opposite guest address, which is
now the true branch path. In this manner, embodiments of the present invention use the
included opposite guest address for the opposing branch path to recover from occasions
where the predicted outcome of a far branch is false. Hence, if a far branch predicted
outcome is false, the process knows where to go to find the correct guest instruction.
Similarly, if the far branch predicted outcome is true, the opposite guest address is
ignored. It should be noted that if far branches within native instruction block are
predicted correctly, no entry point in CLB for their target blocks is needed. However,
once a miss prediction occurs, a new entry for the target block needs to be inserted in

CLB. This function is performed with the goal of preserving CLB capacity.

[041] Figure 5 shows a diagram of an exemplary hardware accelerated
conversion system 500 illustrating the manner in which guest instruction blocks and
their corresponding native conversion blocks are stored within a cache in accordance
with one embodiment of the present invention. As illustrated in Figure 5, a conversion
look aside buffer 506 is used to cache the address mappings between guest and native
blocks ; such that the most frequently encountered native conversion blocks are

accessed through low latency availability to the processor 508.

[042] The Figure 5 diagram illustrates the manner in which frequently
encountered native conversion blocks are maintained within a high-speed low latency
cache, the conversion look aside buffer 506. The components depicted in Figure 5
implement hardware accelerated conversion processing to deliver the much higher level

of performance.

12
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[043] The guest fetch logic unit 502 functions as a hardware-based guest
instruction fetch unit that fetches guest instructions from the system memory 501.
Guest instructions of a given application reside within system memory 501. Upon
initiation of a program, the hardware-based guest fetch logic unit 502 starts prefetching
guess instructions into a guest fetch buffer 503. The guest fetch buffer 507 accumulates
the guest instructions and assembles them into guest instruction blocks. These guest
instruction blocks are converted to corresponding native conversion blocks by using the
conversion tables 504. The converted native instructions are accumulated within the
native conversion buffer 505 until the native conversion block is complete. The native
conversion block is then transferred to the native cache 507 and the mappings are stored
in the conversion look aside buffer 506. The native cache 507 is then used to feed
native instructions to the processor 508 for execution. In one embodiment, the
functionality implemented by the guest fetch logic unit 502 is produced by a guest fetch

logic state machine.

[044] As this process continues, the conversion look aside buffer 506 is filled
with address mappings of guest blocks to native blocks. The conversion look aside
buffer 506 uses one or more algorithms (e.g., least recently used, etc.) to ensure that
block mappings that are encountered more frequently are kept within the buffer, while
block mappings that are rarely encountered are evicted from the buffer. In this manner,
hot native conversion blocks mappings are stored within the conversion look aside
buffer 506. In addition, it should be noted that the well predicted far guest branches
within the native block do not need to insert new mappings in the CLB because their
target blocks are stitched within a single mapped native block, thus preserving a small
capacity efficiency for the CLB structure. Furthermore, in one embodiment, the CLB is
structured to store only the ending guest to native address mappings. This aspect also

preserves the small capacity efficiency of the CLB.

[045] The guest fetch logic 502 looks to the conversion look aside buffer 506
to determine whether addresses from a guest instruction block have already been
converted to a native conversion block. As described above, embodiments of the

present invention provide hardware acceleration for conversion processing. Hence, the

13
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guest fetch logic 502 will look to the conversion look aside buffer 506 for pre-existing
native conversion block mappings prior to fetching a guest address from system

memory 501 for a new conversion.

[046] In one embodiment, the conversion look aside buffer is indexed by guest
address ranges, or by individual guest address. The guest address ranges are the ranges
of addresses of guest instruction blocks that have been converted to native conversion
blocks. The native conversion block mappings stored by a conversion look aside buffer
are indexed via their corresponding guest address range of the corresponding guest
instruction block. Hence, the guest fetch logic can compare a guest address with the
guest address ranges or the individual guest address of converted blocks, the mappings
of which are kept in the conversion look aside buffer 506 to determine whether a pre-
existing native conversion block resides within what is stored in the native cache 507 or
in the code cache of Figure 6. If the pre-existing native conversion block is in either of
the native cache or in the code cache, the corresponding native conversion instructions

are forwarded from those caches directly to the processor.

[047] In this manner, hot guest instruction blocks (e.g., guest instruction blocks
that are frequently executed) have their corresponding hot native conversion blocks
mappings maintained within the high-speed low latency conversion look aside buffer
506. As blocks are touched, an appropriate replacement policy ensures that the hot
blocks mappings remain within the conversion look aside buffer. Hence, the guest fetch
logic 502 can quickly identify whether requested guest addresses have been previously
converted, and can forward the previously converted native instructions directly to the
native cache 507 for execution by the processor 508. These aspects save a large number
of cycles, since trips to system memory can take 40 to 50 cycles or more. These
attributes (e.g., CLB, guest branch sequence prediction, guest & native branch buffers,
native caching of the prior) allow the hardware acceleration functionality of
embodiments of the present invention to achieve application performance of a guest
application to within 80% to 100% the application performance of a comparable native

application.

14
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[048] In one embodiment, the guest fetch logic 502 continually prefetches
guest instructions for conversion independent of guest instruction requests from the
processor 508. Native conversion blocks can be accumulated within a conversion
buffer “code cache” in the system memory 501 for those less frequently used blocks.
The conversion look aside buffer 506 also keeps the most frequently used mappings.
Thus, if a requested guest address does not map to a guest address in the conversion
look aside buffer, the guest fetch logic can check system memory 501 to determine if

the guest address corresponds to a native conversion block stored therein.

[049] In one embodiment, the conversion look aside buffer 506 is implemented
as a cache and utilizes cache coherency protocols to maintain coherency with a much
larger conversion buffer stored in higher levels of cache and system memory 501. The
native instructions mappings that are stored within the conversion look aside buffer 506
are also written back to higher levels of cache and system memory 501. Write backs to
system memory maintain coherency. Hence, cache management protocols can be used
to ensure the hot native conversion blocks mappings are stored within the conversion
look aside buffer 506 and the cold native conversion mappings blocks are stored in the
system memory 501. Hence, a much larger form of the conversion buffer 506 resides in

system memory 501.

[050] It should be noted that in one embodiment, the exemplary hardware
accelerated conversion system 500 can be used to implement a number of different
virtual storage schemes. For example, the manner in which guest instruction blocks and
their corresponding native conversion blocks are stored within a cache can be used to
support a virtual storage scheme. Similarly, a conversion look aside buffer 506 that is
used to cache the address mappings between guest and native blocks can be used to

support the virtual storage scheme (e.g., management of virtual to physical memory

mappings).

[051] In one embodiment, the Figure 5 architecture implements virtual
instruction set processor/computer that uses a flexible conversion process that can

receive as inputs a number of different instruction architectures. In such a virtual

15
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instruction set processor, the front end of the processor is implemented such that it can
be software controlled, while taking advantage of hardware accelerated conversion
processing to deliver the much higher level of performance. Using such an
implementation, different guest architectures can be processed and converted while
cach receives the benefits of the hardware acceleration to enjoy a much higher level of
performance. Example guest architectures include Java or JavaScript, x86, MIPS,
SPARC, and the like. In one embodiment, the "guest architecture” can be native
instructions (e.g., from a native application/macro-operation) and the conversion
process produces optimize native instructions (e.g., optimized native instructions/micro-
operations). The software controlled front end can provide a large degree of flexibility
for applications executing on the processor. As described above, the hardware
acceleration can achieve near native hardware speed for execution of the guest

instructions of a guest application.

[052] Figure 6 shows a more detailed example of a hardware accelerated
conversion system 600 in accordance with one embodiment of the present invention.
System 600 performers in substantially the same manner as system 500 described
above. However, system 600 shows additional details describing functionality of an

exemplary hardware acceleration process.

[053] The system memory 601 includes the data structures comprising the
guest code 602, the conversion look aside buffer 603, optimizer code 604, converter
code 605, and native code cache 606. System 600 also shows a shared hardware cache
607 where guest instructions and native instructions can both be interleaved and shared.
The guest hardware cache 610 catches those guest instructions that are most frequently

touched from the shared hardware cache 607.

[054] The guest fetch logic 620 prefetches guest instructions from the guest
code 602. The guest fetch logic 620 interfaces with a TLB 609 which functions as a
conversion look aside buffer that translates virtual guest addresses into corresponding

physical guest addresses. The TLB 609 can forward hits directly to the guest hardware
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cache 610. Guest instructions that are fetched by the guest fetch logic 620 are stored in
the guest fetch buffer 611.

[055] The conversion tables 612 and 613 include substitute ficlds and control
fields and function as multilevel conversion tables for translating guest instructions

received from the guest fetch buffer 611 into native instructions.

[056] The multiplexers 614 and 615 transfer the converted native instructions
to a native conversion buffer 616. The native conversion buffer 616 accumulates the
converted native instructions to assemble native conversion blocks. These native
conversion blocks are then transferred to the native hardware cache 600 and the

mappings are kept in the conversion look aside buffer 630.

[057] The conversion look aside buffer 630 includes the data structures for the
converted blocks entry point address 631, the native address 632, the converted address
range 633, the code cache and conversion look aside buffer management bits 634, and
the dynamic branch bias bits 635. The guest branch address 631 and the native address
632 comprise a guest address range that indicates which corresponding native
conversion blocks reside within the converted lock range 633. Cache management
protocols and replacement policies ensure the hot native conversion blocks mappings
reside within the conversion look aside buffer 630 while the cold native conversion
blocks mappings reside within the conversion look aside buffer data structure 603 in

system memory 601.

[058] As with system 500, system 600 seeks to ensure the hot blocks mappings
reside within the high-speed low latency conversion look aside buffer 630. Thus, when
the fetch logic 640 or the guest fetch logic 620 looks to fetch a guest address, in one
embodiment, the fetch logic 640 can first check the guest address to determine whether
the corresponding native conversion block resides within the code cache 606. This
allows a determination as to whether the requested guest address has a corresponding
native conversion block in the code cache 606. If the requested guest address does not

reside within either the buffer 603 or 608, or the buffer 630, the guest address and a
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number of subsequent guest instructions are fetched from the guest code 602 and the

conversion process is implemented via the conversion tables 612 and 613.

[059] Figure 7 shows an example of a hardware accelerated conversion system
700 having a secondary software-based accelerated conversion pipeline in accordance

with one embodiment of the present invention.

[060] The components 711-716 comprise a software implemented load store
path that is instantiated within a specialized high speed memory 760. As depicted in
Figure 7, the guest fetch buffer 711, conversion tables 712-713 and native conversion
buffer 716 comprise allocated portions of the specialized high speed memory 760. In
many respects, the specialized high-speed memory 760 functions as a very low-level

fast cache (e.g., LO cache).

[061] The arrow 761 illustrates the attribute whereby the conversions are
accelerated via a load store path as opposed to an instruction fetch path (e.g., from the

fetched decode logic).

[062] In the Figure 7 embodiment, the high-speed memory 760 includes
special logic for doing comparisons. Because of this, the conversion acceleration can
be implemented in software. For example, in another embodiment, the standard
memory 760 that stores the components 711-716 is manipulated by software which uses
a processor execution pipeline, where it loads values from said components 711-716
into one or more SIMD register(s) and implements a compare instruction that performs
a compare between the fields in the SIMD register and, as needed, perform a mask
operation and a result scan operation. A load store path can be implemented using
general purpose microprocessor hardware, such as, for example, using compare

instructions that compare one to many.

[063] It should be noted that the memory 760 is accessed by instructions that
have special attributes or address ranges. For example, in one embodiment, the guest

fetch buffer has an ID for each guest instruction entry. The ID is created per guest
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instruction. This ID allows easy mapping from the guest buffer to the native conversion
buffer. The ID allows an easy calculation of the guest offset to the native offset,
irrespective of the different lengths of the guest instructions in comparison to the

corresponding native instructions. This aspect is diagramed in Figure 3 above.

[064] In one embodiment the ID is calculated by hardware using a length
decoder that calculates the length of the fetched guest instruction. However, it should

be noted that this functionality can be performed in hardware or software.

[065] Once IDs have been assigned, the native instructions buffer can be
accessed via the ID. The ID allows the conversion of the offset from guest offset to the

native offset.

[066] Figure 8 shows an exemplary flow diagram illustrating the manner in
which the CLB functions in conjunction with the code cache and the guest instruction to
native instruction mappings stored within memory in accordance with one embodiment

of the present invention.

[067] As described above, the CLB is used to store mappings of guest
addresses that have corresponding converted native addresses stored within the code
cache memory (e.g., the guest to native address mappings). In one embodiment, the
CLB is indexed with a portion of the guest address. The guest address is partitioned
into an index, a tag, and an offset (e.g., chunk size). This guest address comprises a tag
that is used to identify a match in the CLB entry that corresponds to the index. If there
is a hit on the tag, the corresponding entry will store a pointer that indicates where in
the code cache memory 806 the corresponding converted native instruction chunk (e.g.,

the corresponding block of converted native instructions) can be found.

[068] It should be noted that the term "chunk" as used herein refers to a
corresponding memory size of the converted native instruction block. For example,
chunks can be different in size depending on the different sizes of the converted native

instruction blocks.
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[069] With respect to the code cache memory 806, in one embodiment, the
code cache is allocated in a set of fixed size chunks (e.g., with different size for each
chunk type). The code cache can be partitioned logically into sets and ways in system
memory and all lower level HW caches (e.g., native hardware cache 608, shared
hardware cache 607). The CLB can use the guest address to index and tag compare the

way tags for the code cache chunks.

[070] Figure 8 depicts the CLB hardware cache 804 storing guest address tags
in 2 ways, depicted as way x and way y. It should be noted that, in one embodiment,
the mapping of guest addresses to native addresses using the CLB structures can be
done through storing the pointers to the native code chunks (e.g., from the guest to
native address mappings) in the structured ways. Each way is associated with a tag.
The CLB is indexed with the guest address 802 (comprising a tag). On a hit in the
CLB, the pointer corresponding to the tag is returned. This pointer is used to index the
code cache memory. This is shown in Figure 8 by the line “native address of code
chunk=Seg#+F(pt)” which represents the fact that the native address of the code chunk
is a function of the pointer and the segment number. In the present embodiment, the
segment refers to a base for a point in memory where the pointer scope is virtually
mapped (e.g., allowing the pointer array to be mapped into any region in the physical

memory).

[071] Alternatively, in one embodiment, the code cache memory can be
indexed via a second method, as shown in Figure 8 by the line “Native Address of code
chunk =seg#+ Index * (size of chunk) + way# * (Chunk size)”. In such an embodiment,
the code cache is organized such that its way-structures match the CLB way structuring
so that a 1:1 mapping exist between the ways of CLB and the ways of the code cache
chunks. When there is a hit in a particular CLB way then the corresponding code chunk

in the corresponding way of the code cache has the native code.

[072] Referring still to Figure 8, if the index of the CLB misses, the higher
hierarchies of memory can be checked for a hit (e.g., L1 cache, L2 cache, and the like).

If there is no hit in these higher cache levels, the addresses in the system memory 801
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are checked. In one embodiment, the guest index points to a entry comprising, for
example, 64 chunks. The tags of each one of the 64 chunks are read out and compared
against the guest tag to determine whether there is a hit. This process is shown in
Figure 8 by the dotted box 805. If there is no hit after the comparison with the tags in
system memory, there is no conversion present at any hierarchical level of memory, and

the guest instruction must be converted.

[073] It should be noted that embodiments of the present invention manage
cach of the hierarchical levels of memory that store the guest to native instruction
mappings in a cache like manner. This comes inherently from cache-based memory
(e.g., the CLB hardware cache, the native cache, L1 and L2 caches, and the like).
However, the CLB also includes “code cache + CLB management bits” that are used to
implement a least recently used (LRU) replacement management policy for the guest to
native instruction mappings within system memory 801. In one embodiment, the CLB
management bits (e.g., the LRU bits) are software managed. In this manner, all
hierarchical levels of memory are used to store the most recently used, most frequently
encountered guest to native instruction mappings. Correspondingly, this leads to all
hierarchical levels of memory similarly storing the most frequently encountered

converted native instructions.

[074] Figure 8 also shows dynamic branch bias bits and/or branch history bits
stored in the CLB. These dynamic branch bits are used to track the behavior of branch
predictions used in assembling guest instruction sequences. These bits are used to track
which branch predictions are most often correctly predicted and which branch
predictions are most often predicted incorrectly. The CLB also stores data for
converted block ranges. This data enables the process to invalidate the converted block
range in the code cache memory where the corresponding guest instructions have been

modified (e.g., as in self modifying code).

[075] Figure 9 shows an exemplary flow diagram illustrating a physical storage

stack cache implementation and the guest address to native address mappings in
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accordance with one embodiment of the present invention. As depicted in Figure 9, the

cache can be implemented as a physical storage stack 901.

[076] Figure 9 embodiment illustrates the manner in which a code cache can be
implemented as a variable structure cache. Depending upon the requirements of
different embodiments, the variable structure cache can be completely hardware
implemented and controlled, completely software implemented and controlled, or some

mixture of software intimidation and control and underlying hardware enablement.

[077] The Figure 9 embodiment is directed towards striking an optimal balance
for the task of managing the allocation and replacement of the guest to native address
mappings and their corresponding translations in the actual physical storage. In the
present embodiment, this is accomplished through the use of a structure that combines

the pointers with variable size chunks.

[078] A multi-way tag array is used to store pointers for different size groups
of physical storage. Each time a particular storage size needs to be allocated (e.g.,
where the storage size corresponds to an address), then accordingly, a group of storage
blocks each corresponding to that size is allocated. This allows an embodiment of the
present invention to precisely allocate storage to store variable size traces of
instructions. Figure 9 shows how groups can be of different sizes. Two exemplary
group sizes are shown, “replacement candidate for group size 4" and "replacement
candidate for group size 2". A pointer is stored in the TAG array (in addition to the tag
that correspond to the address) that maps the address into the physical storage address.
The tags can comprise two or more sub-tags. For example, the top 3 tags in the tag
structure 902 comprise sub tags Al B1, A2 B2 C2 D2, and A3 B3 respectively as
shown. Hence, tag A2 B2 C2 D2 comprises a group size 4, while tag A1 B1 comprises

a group size 2. The group size mask also indicates the size of the group.

[079] The physical storage can then be managed like a stack, such that every
time there is a new group allocated, it can be placed on top of the physical storage stack.

Entries are invalidated by overwriting their tag, thereby recovering the allocated space.
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[080] Figure 9 also shows an extended way tag structure 903. In some
circumstances, an entry in the tag structure 902 will have a corresponding entry in the
extended way tag structure 903. This depends on upon whether the entry and the tag
structure has an extended way bit set (e.g., set to one). For example, the extended way
bit set to one indicates that there are corresponding entries in the extended way tag
structure. The extended way tag structure allows the processor to extend locality of
reference in a different way from the standard tag structure. Thus, although the tag
structure 902 is indexed in one manner (e.g., index (j)), the extended way tag structure

is indexed in a different manner (e.g., index (k)).

[081] In atypical implementation, the index(J) can be much larger number of
entries within the index(k). This is because, in most limitations, the primary tag
structure 902 is much larger than the extended way tag structure 903, where, for

example, (j) can cover 1024 entries (e.g., 10 bits) while (k) can cover 256 (e.g., 8 bits).

[082] This enables embodiments of the present invention to incorporate
additional ways for matching traces that have become very hot (e.g., very frequently
encountered). For example, if a match within a hot set is not found in the tag structure
902, then by setting an extended way bit, the extended way tag structure can be used to
store additional ways for the hot trace. It should be noted that this variable cache
structure uses storage only as needed for the cached code/data that we store on the
stack, for example, if any of the cache sets (the entries indicated by the index bits) is
never accessed during a particular phase of a program, then there will be no storage
allocation for that set on the stack. This provides an efficient effective storage capacity
increase compared to typical caches where sets have fixed physical data storage for

cach and every set.

[083] There can be also bits to indicate that a set or group of sets are cold (e.g.,
meaning they have not been accesses in a long time). In this case the stack storage for
those sets looks like bubbles within the allocated stack storage. At that time, their
allocation pointers can be claimed for other hot sets. This process is a storage

reclamation process, where after a chunk has been allocated within the stack, the whole
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set to which that chunk belongs become later cold. The needed mechanisms and
structures (not shown in Figure 9 in order not to clutter or obscure the aspects shown)
that can facilitate this reclamation are: a cold set indicator for every set (entry index)
and a reclamation process where the pointers for the ways of those cold sets are reused
for other hot set’s ways. This allows those stack storage bubbles (chunks) to be
reclaimed. When not in reclamation mode, a new chunk is allocated on top of the stack,
when the stack has cold sets (e.g., the set ways/chunks are not accessed in a long time) a
reclamation action allow a new chunk that needs to be allocated in another set to reuse
the reclaimed pointer and its associated chunk storage (that belongs to a cold set) within

the stack.

[084] It should be noted that the Figure 9 embodiment is well-suited to use
standard memory in its implementation as opposed to specialized cache memory. This
attribute is due to the fact that the physical storage stack is managed by reading the
pointers, reading indexes, and allocating address ranges. Specialized cache-based

circuit structures are not needed in such an implementation.

[085] It should be noted that in one embodiment, the Figure 9 architecture can
be used to implement data caches and caching schemes that do not involve conversion
or code transformation. Consequently, the Figure 9 architecture can be used to
implement more standardized caches (e.g., L2 data cache, etc.). Doing so would
provide a larger effective capacity in comparison to a conventional fixed structure

cache, or the like.

[086] Figure 10 shows a diagram depicting additional exemplary details of a
hardware accelerated conversion system 1000 in accordance with one embodiment of
the present invention. The line 1001 illustrates the manner in which incoming guests
instructions are compared against a plurality of group masks and tags. The objective is
to quickly identify the type of guest instruction and assign it to a corresponding group.
The group masks and tags function by matching subfields of the guest instruction in
order to identify particular groups to which the guest instruction belongs. The mask

obscures irrelevant bits of the guest instruction pattern to look particularly at the
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relevant bits. The tables, such as for example, table 1002, stores the mask-tag pairs in a

prioritized manner.

[087] A pattern is matched by reading into the table in the priority direction,
which is depicted in this case being from the top down. In this manner, a pattern is
matched by reading in the priority direction of the mask-tag storage. The different
masks examined in order of their priority and the pattern matching functionality is
correspondingly applied in order of their priority. When a hit is found, then the
corresponding mapping of the pattern is read from a corresponding table storing the
mappings (e.g., table 1003). The 2nd level tables 1004 illustrates the hierarchical
manner in which multiple conversion tables can be accessed in a cascading sequential
manner until a full conversion of the guest instruction is achieved. As described above,
the conversion tables include substitute fields and control fields and function as
multilevel conversion tables for translating guest instructions received from the guest

fetch buffer into native instructions.

[088] In this manner, each byte stream in the buffer sent to conversion tables
where each level of conversion table serially detects bit fields. As the relevant bit fields

are detected, the table substitutes the native equivalence of the field.

[089] The table also produces a control field that helps the substitution process
for this level as well as the next level table (e.g., the 2nd level table 1004). The next
table uses the previous table control filed to identify next relevant bit field, which is in
substituted with the native equivalence. The second level table can then produce
control field to help a first level table, and so on. Once all guest bit fields are
substituted with native bit fields, the instruction is fully translated and is transmitted to
the native conversion buffer. The native conversion buffer is then written into the code
cache and its guest to native address mappings are logged in the CLB, as described

above.

[090] Figure 11A shows a diagram of an exemplary pattern matching process

implemented by embodiments of the present invention. As depicted in Figure 11A,
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destination is determined by the tag, the pattern, and the mask. The functionality of the
pattern decoding comprises performing a bit compare (e.g., bitwise XOR), performing a
bit AND (e.g., bitwise AND), and subsequently checking all zero bits (e.g., NOR of all

bits).

[091] Figure 11B shows a diagram 1100 of a SIMD register based pattern
matching process in accordance with one embodiment of the present invention. As
depicted in diagram 1100, four SIMD registers 1102-1105 are shown. These registers
implement the functionality of the pattern decoding process as shown. An incoming
pattern 1101 is used to perform a parallel bit compare (e.g., bitwise XOR) on each of
the tags, and the result performs a bit AND with the mask (e.g., bitwise AND). The
match indicator results are each stored in their respective SIMD locations as shown. A
scan 18 then performed as shown, and the first true among the SIMD elements
encountered by the scan is the element where the equation (Pi XOR Ti) AND Mi = 0 for
all 1 bits is true, where Pi is the respective pattern, Ti is the respective tag and Mi is the

respective mask.

[092] Figure 12 shows a diagram of a unified register file 1201 in accordance
with one embodiment of the present invention. As depicted in Figure 12, the unified
register file 1201 includes 2 portions 1202-1203 and an entry selector 1205. The
unified register file 1201 implements support for architecture speculation for hardware

state updates.

[093] The unified register file 1201 enables the implementation of an
optimized shadow register and committed register state management process. This
process supports architecture speculation for hardware state updating. Under this
process, embodiments of the present invention can support shadow register
functionality and committed register functionality without requiring any cross copying
between register memory. For example, in one embodiment, the functionality of the
unified register file 1201 is largely provided by the entry selector 1205. In the Figure
12 embodiment, each register file entry is composed from 2 pairs of registers, R & R’,

which are from portion 1 and the portion 2, respectively. At any given time, the register
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that is read from each entry is either R or R’, from portion 1 or portion 2. There are 4
different combinations for each entry of the register file based on the values of x & y

bits stored for each entry by the entry selector 105.

[094] The values for the x & y bits are as follows.

00 : R not Valid; R’ committed (upon read request R’ is read)
01: R speculative; R’ committed (upon read request R is read)
10: R committed; R’ speculative ( upon read request R’ is read)
11: R committed; R’ not Valid ( upon read request R is read)

[095] The following are the impact of each instruction/event. Upon Instruction
Write back, 00 becomes 01 and 11 becomes 10. Upon instruction commit, 01 becomes
11 and 10 becomes 00. Upon the occurrence of a rollback event, 01 becomes 00 and 10

becomes 11.

[096] These changes are mainly changes to the state stored in the register file
entry selector 1205 and happen based on the events as they occur. It should be noted
that commit instructions and roll back events need to reach a commit stage in order to

cause the bit transition in the entry selector 1205.

[097] In this manner, execution is able to proceed within the shadow register
state without destroying the committed register state. When the shadow register state is
ready for committing, the register file entry selector is updated such that the valid
results are read from which portion in the manner described above. In this manner, by
simply updating the register file entry selector as needed, speculative execution results
can be rolled back to most recent commit point in the event of an exception. Similarly,
the commit point can be advanced forward, thereby committing the speculative
execution results, by simply updating the register file entry selectors. This functionality

is provided without requiring any cross copying between register memory.
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[098] In this manner, the unified register file can implement a plurality of
speculative scratch shadow registers (SSSR) and a plurality of committed registers (CR)
via the register file entry selector 1205. For example, on a commit, the SSSR registers

become CR registers. On roll back SSSR state is rolled back to the CR registers.

[099] Figure 13 shows a diagram of a unified shadow register file and pipeline
architecture 1300 that supports speculative architectural states and transient

architectural states in accordance with one embodiment of the present invention.

[0100] The Figure 13 embodiment depicts the components comprising the
architecture 1300 that supports instructions and results comprising architecture
speculation states and supports instructions and results comprising transient states. As
used herein, a committed architecture state comprises visible registers and visible
memory that can be accessed (e.g., read and write) by programs executing on the
processor. In contrast, a speculative architecture state comprises registers and/or

memory that is not committed and therefore is not globally visible.

[0101] In one embodiment, there are four usage models that are enabled by the
architecture 1300. A first usage model includes architecture speculation for hardware

state updates, as described above in the discussion of Figure 12.

[0102] A second usage model includes dual scope usage. This usage model
applies to the fetching of 2 threads into the processor, where one thread executes in a
speculative state and the other thread executes in the non-speculative state. In this
usage model, both scopes are fetched into the machine and are present in the machine at

the same time.

[0103] A third usage model includes the JIT (just-in-time) translation or
compilation of instructions from one form to another. In this usage model, the
reordering of architectural states is accomplished via software, for example, the JIT.

The third usage model can apply to, for example, guest to native instruction translation,
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virtual machine to native instruction translation, or remapping/translating native micro

instructions into more optimized native micro instructions.

[0104] A fourth usage model includes transient context switching without the
need to save and restore a prior context upon returning from the transient context. This
usage model applies to context switches that may occur for a number of reasons. One
such reason could be, for example, the precise handling of exceptions via an exception
handling context. The second, third, and fourth usage models are further described in

the discussions of Figures 14-17 below.

[0105] Referring again to Figure 13, the architecture 1300 includes a number of
components for implementing the 4 usage models described above. The unified shadow
register file 1301 includes a first portion, committed register file 1302, a second portion,
the shadow register file 1303, and a third portion, the latest indicator array 1304. A
speculative retirement memory buffer 1342 and a latest indicator array 1340 are
included. The architecture 1300 comprises an out of order architecture, hence, the
architecture 1300 further includes a reorder buffer and retirement window 1332. The
reorder and retirement window 1332 further includes a machine retirement pointer
1331, aready bit array 1334 and a per instruction latest indicator, such as indicator

1333.

[0106] The first usage model, architecture speculation for hardware state
updates, is further described in detail in accordance with one embodiment of the present
invention. As described above, the architecture 1300 comprises a out of order
architecture. The hardware of the architecture 1300 able to commit out of order
instruction results (e.g., out of order loads and out of order stores and out of order
register updates). The architecture 1300 utilizes the unified shadow register file in the
manner described in discussion of Figure 12 above to support speculative execution
between committed registers and shadow registers. Additionally, the architecture 1300
utilizes the speculative load store buffer 1320 and the speculative retirement memory

buffer 1342 to support speculative execution.
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[0107] The architecture 1300 will use these components in conjunction with
reorder buffer and retirement window 1332 to allow its state to retire correctly to the
committed register file 1302 and to the visible memory 1350 even though the machine
retired those in out of order manner internally to the unified shadow register file and the
retirement memory buffer. For example, the architecture will use the unified shadow
register file 1301 and the speculative memory 1342 to implement rollback and commit
events based upon whether exceptions occur or do not occur. This functionality enables
the register state to retire out of order to the unified shadow register file 1301 and
enables the speculative retirement memory buffer 1342 to retire out of order to the
visible memory 1350. As speculative execution proceeds and out of order instruction
execution proceeds, if no branch has been missed predicted and there are no exceptions
that occur, the machine retirement pointer 1331 advances until a commit event is
triggered. The commit event causes the unified shadow register file to commit its
contents by advancing its commit point and causes the speculative retirement memory
buffer to commit its contents to the memory 1350 in accordance with the machine

retirement pointer 1331.

[0108] For example, considering the instructions 1-7 that are shown within the
reorder buffer and retirement window 1332, the ready bit array 1334 shows an "X"
beside instructions are ready to execute and a "/" beside instructions that are not ready
to execute. Accordingly, instructions 1, 2, 4, and 6 are allowed to proceed out of order.
Subsequently, if an exception occurs, such as the instruction 6 branch being miss-
predicted, the instructions that occur subsequent to instruction 6 can be rolled back.
Alternatively, if no exception occurs, all of the instructions 1-7 can be committed by

moving the machine retirement pointer 1331 accordingly.

[0109] The latest indicator array 1341, the latest indicator array 1304 and the
latest indicator 1333 are used to allow out of order execution. For example, even
though instruction 2 loads register R4 before instruction5, the load from instruction 2
will be ignored once the instruction 5 is ready to occur. The latest load will override the

earlier load in accordance with the latest indicator.
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[0110] In the event of a branch prediction or exception occurring within the
reorder buffer and retirement window 1332, a rollback event is triggered. As described
above, in the event of a rollback, the unified shadow register file 1301 will rollback to

its last committed point and the speculative retirement memory buffer 1342 will be
flushed.

[0111] Figure 14 shows a diagram 1400 of the second usage model, including
dual scope usage in accordance with one embodiment of the present invention. As
described above, this usage model applies to the fetching of 2 threads into the processor,
where one thread executes in a speculative state and the other thread executes in the
non-speculative state. In this usage model, both scopes are fetched into the machine

and are present in the machine at the same time.

[0112] As shown in diagram 1400, 2 scope/traces 1401 and 1402 have been
fetched into the machine. In this example, the scope/trace 1401 is a current non-
speculative scope/trace. The scope/trace 1402 is a new speculative scope/trace.
Architecture 1300 enables a speculative and scratch state that allows 2 threads to use
those states for execution. One thread (e.g., 1401) executes in a non-speculative scope
and the other thread (e.g., 1402) uses the speculative scope. Both scopes can be fetched
into the machine and be present at the same time, with each scope set its respective
mode differently. The first is non-speculative and the other is speculative. So the first
executes in CR/CM mode and the other executes in SR/SM mode. In the CR/CM mode,
committed registers are read and written to, and memory writes go to memory. In the
SR/SM mode, register writes go to SSSR, and register reads come from the latest write,

while memory writes the retirement memory buffer (SMB).

[0113] One example will be a current scope that is ordered (e.g., 1401) and a
next scope that is speculative (e.g., 1402). Both can be executed in the machine as
dependencies will be honored because the next scope is fetched after the current scope.
For example, in scope 1401, at the “commit SSSR to CR”, registers and memory up to
this point are in CR mode while the code executes in CR/CM mode. In scope 1402, the

code executes in SR and SM mode and can be rolled back if an exception happens. In
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this manner, both scopes execute at the same time in the machine but each is executing

in a different mode and reading and writing registers accordingly.

[0114] Figure 15 shows a diagram 1500 of the third usage model, including
transient context switching without the need to save and restore a prior context upon
returning from the transient context in accordance with one embodiment of the present
invention. As described above, this usage model applies to context switches that may
occur for a number of reasons. One such reason could be, for example, the precise

handling of exceptions via an exception handling context.

[0115] In the 3rd usage model occurs when the machine is executing translated
code and it encounters a context switch (e.g., exception inside of the translated code or
if translation for subsequent code is needed). In the current scope (e.g., prior to the
exception), SSSR and the SMB have not yet committed their speculative state to the
guest architecture state. The current state is running in SR/SM mode. When the
exception occurs the machine switches to an exception handler (e.g., a convertor) to
take care of exception precisely. A rollback is inserted, which causes the register state
to roll back to CR and the SMB is flushed. The convertor code will run in SR/CM
mode. During execution of convertor code the SMB is retiring its content to memory
without waiting for a commit event. The registers are written to SSSR without updating
CR. Subsequently, when the convertor is finished and before switching back to
executing converted code, it rolls back the SSSR (e.g., SSSR is rolled back to CR).

During this process the last committed Register state is in CR.

[0116] This is shown in diagram 1500 where the previous scope/trace 1501 has
committed from SSSR into CR. The current scope/trace 1502 is speculative. Registers
and memory and this scope are speculative and execution occurs under SR/SM mode.
In this example, an exception occurs in the scope 1502 and the code needs to be re-
executed in the original order before translation. At this point, SSSR is rolled back and
the SMB is flushed. Then the JIT code 1503 executes. The JIT code rolls back SSSR
to the end of scope 1501 and flushes the SMB. Execution of the JIT is under SC/CM
mode. When the JIT is finished, the SSSR is rolled back to CR and the current
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scope/trace 1504 then re-executes in the original translation order in CR/CM mode. In

this manner, the exception is handled precisely at the exact current order.

[0117] Figure 16 shows a diagram 1600 depicting a case where the exception in
the instruction sequence is because translation for subsequent code is needed in
accordance with one embodiment of the present invention. As shown in diagram 1600,
the previous scope/trace 1601 concludes with a far jump to a destination that is not
translated. Before jumping to a far jump destination, SSSR is committed to CR. The
JIT code 1602 then executes to translate the guess instructions at the far jump
destination (e.g., to build a new trace of native instructions). Execution of the JIT is
under SR/CM mode. At the conclusion of JIT execution, the register state is rolled back
from SSSR to CR, and the new scope/trace 1603 that was translated by the JIT begins
execution. The new scope/trace continues execution from the last committed point of

the previous scope/trace 1601 in the SR/SM mode.

[0118] Figure 17 shows a diagram 1700 of the fourth usage model, including
transient context switching without the need to save and restore a prior context upon
returning from the transient context in accordance with one embodiment of the present
invention. As described above, this usage model applies to context switches that may
occur for a number of reasons. One such reason could be, for example, the processing

inputs or outputs via an exception handling context.

[0119] Diagram 1700 shows a case where a previous scope/trace 1701 executing
under CR/CM mode ends with a call of function F1. Register state up to that point is
committed from SSSR to CR. The function F1 scope/trace 1702 then begins executing
speculatively under SR/CM mode. The function F1 then ends with a return to the main
scope/trace 1703. At this point, the register state is rollback from SSSR to CR. The

main scope/trace 1703 resumes executing in the CR/CM mode.

[0120] Figure 18 shows a diagram of an exemplary microprocessor pipeline
1800 in accordance with one embodiment of the present invention. The microprocessor

pipeline 1800 includes a hardware conversion accelerator 1810 that implements the
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functionality of the hardware acceleration conversion process, as described above. In
the Figure 18 embodiment, the hardware conversion accelerator 1810 is coupled to a
fetch module 1801 which is followed by a decode module 1802, an allocation module
1803, a dispatch module 1804, an execution module 1805 and a retirement modules
1806. It should be noted that the microprocessor pipeline 1800 is just one example of
the pipeline that implements the functionality of embodiments of the present invention
described above. One skilled in the art would recognize that other microprocessor
pipelines can be implemented that include the functionality of the decode module

described above.

[0121] The foregoing description, for the purpose of explanation, has been
described with reference to specific embodiments. However, the illustrated discussions
above are not intended to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible in view of the above
teachings. Embodiments were chosen and described in order to best explain the
principles of the invention and its practical applications, to thereby enable others skilled
in the art to best utilize the invention and various embodiments with various

modifications as may be suited to the particular use contemplated.
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CLAIMS

What is claimed is:

1. A hardware based translation accelerator, comprising:

a guest fetch logic component for accessing a plurality of guest instructions;

a guest fetch buffer coupled to the guest fetch logic component and a branch
prediction component for assembling the plurality of guest instructions into a guest
instruction block;

a plurality of conversion tables coupled to the guest fetch buffer for translating
the guest instruction block into a corresponding native conversion block;

a native cache coupled to the conversion tables for storing the corresponding
native conversion block;

a conversion look aside buffer coupled to the native cache for storing a mapping
of the guest instruction block to corresponding native conversion block;

wherein upon a subsequent request for a guest instruction, the conversion look
aside buffer is indexed to determine whether a hit occurred, wherein the mapping
indicates the guest instruction has a corresponding converted native instruction in the
native cache; and

in response to the hit the conversion look aside buffer forwards the translated

native instruction for execution.

2. The hardware based translation accelerator of claim 1, wherein a hardware
fetch logic component such as the plurality of guest instructions independent of the

processor.
3. The hardware based translation accelerator of claim 1, wherein the

conversion look aside buffer comprises a cache that uses a replacement policy to

maintain most frequently encountered native conversion blocks stored therein.
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4. The hardware based translation accelerator of claim 1, wherein a conversion
buffer is maintained within a system memory and cache coherency is maintained

between the conversion look aside buffer and the conversion buffer.

5. The hardware based translation accelerator of claim 4, wherein the
conversion buffer is larger than the conversion look aside buffer, and a write back
policy is used to maintain coherency between the conversion buffer and the conversion
look aside buffer.

6. The hardware based translation accelerator of claim 1, wherein the
conversion look aside buffer is implemented as a high-speed low latency cache memory

coupled to a pipeline of the processor.

7. A system for accelerating the translation of guest instructions to native
instructions for a processor, comprising:

a guest fetch logic component for accessing a plurality of guest instructions;

a guest fetch buffer coupled to the guest fetch logic component and a branch
prediction component for assembling the plurality of guest instructions into a guest
instruction block;

a plurality of conversion tables coupled to the guest fetch buffer for translating
the guest instruction block into a corresponding native conversion block;

a native cache coupled to the conversion tables for storing the corresponding
native conversion block;

a conversion look aside buffer coupled to the native cache for storing a mapping
of the guest instruction block to corresponding native conversion block;

wherein upon a subsequent request for a guest instruction, the conversion look
aside buffer is indexed to determine whether a hit occurred, wherein the mapping
indicates the guest instruction has a corresponding converted native instruction in the
native cache; and

in response to the hit the conversion look aside buffer forwards the translated

native instruction for execution.
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8. The system of claim 7, wherein a hardware fetch logic component such as the

plurality of guest instructions independent of the processor.

9. The system of claim 7, wherein the conversion look aside buffer comprises a
cache that uses a replacement policy to maintain most frequently encountered native

conversion blocks stored therein.

10. The system of claim 7, wherein a conversion buffer is maintained within a
system memory and cache coherency is maintained between the conversion look aside

buffer and the conversion buffer.

11. The system of claim 10, wherein the conversion buffer is larger than the
conversion look aside buffer, and a write back policy is used to maintain coherency

between the conversion buffer and the conversion look aside buffer.

12. The system of claim 7, wherein the conversion look aside buffer is
implemented as a high-speed low latency cache memory coupled to a pipeline of the

Proccssor.

13. A microprocessor that implements a method of translating instructions, said
Microprocessor comprises:

a microprocessor pipeline;

a hardware accelerator module coupled to the microprocessor pipeline, wherein
the hardware accelerator module further comprises:

a guest fetch logic component for accessing a plurality of guest instructions;

a guest fetch buffer coupled to the guest fetch logic component and a branch
prediction component for assembling the plurality of guest instructions into a guest
instruction block;

a plurality of conversion tables coupled to the guest fetch buffer for translating
the guest instruction block into a corresponding native conversion block;

a native cache coupled to the conversion tables for storing the corresponding

native conversion block;
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a conversion look aside buffer coupled to the native cache for storing a mapping
of the guest instruction block to corresponding native conversion block;

wherein upon a subsequent request for a guest instruction, the conversion look
aside buffer is indexed to determine whether a hit occurred, wherein the mapping
indicates the guest instruction has a corresponding converted native instruction in the
native cache; and

in response to the hit the conversion look aside buffer forwards the translated

native instruction for execution.

14. The microprocessor of claim 13, wherein a hardware fetch logic component

such as the plurality of guest instructions independent of the processor.

15. The microprocessor of claim 13, wherein the conversion look aside buffer
comprises a cache that uses a replacement policy to maintain most frequently

encountered native conversion blocks stored therein.

16. The microprocessor of claim 13, wherein a conversion buffer is maintained
within a system memory and cache coherency is maintained between the conversion

look aside buffer and the conversion buffer.

17. The microprocessor of claim 16, wherein the conversion buffer is larger
than the conversion look aside buffer, and a write back policy is used to maintain

coherency between the conversion buffer and the conversion look aside buffer.

18. The microprocessor of claim 13, wherein the conversion look aside buffer is
implemented as a high-speed low latency cache memory coupled to a pipeline of the

processor.
19. The microprocessor of claim 13, wherein the hardware accelerator module

functions comprises a parallel guest instruction fetch pipeline that functions in parallel

to a native microprocessor fetch pipeline.
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20. A microprocessor that implements a method of translating instructions, said
Microprocessor comprises:

a microprocessor pipeline;

an accelerator module comprising high speed memory coupled to the
microprocessor pipeline, wherein the accelerator module further comprises:

a guest fetch logic for accessing a plurality of guest instructions;

a guest fetch memory coupled to the guest fetch logic for assembling the
plurality of guest instructions into a guest instruction block;

a plurality of conversion tables for translating the guest instruction block into a
corresponding native conversion block;

a native conversion buffer for storing the corresponding native conversion
block;

wherein upon a subsequent request for a guest instruction, a conversion look
aside buffer storing a mapping of the guest instruction block to corresponding native
conversion block is indexed to determine whether a hit occurred, wherein the mapping
indicates the guest instruction has a corresponding converted native instruction in the
native cache; and

in response to the hit the conversion look aside buffer forwards the translated

native instruction for execution.

21. The microprocessor of claim 20, wherein the high speed memory comprises

an L0 cache of the microprocessor.

22. The microprocessor of claim 20, wherein the accelerator module further

comprises a load store instruction fetch path of the microprocessor.
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