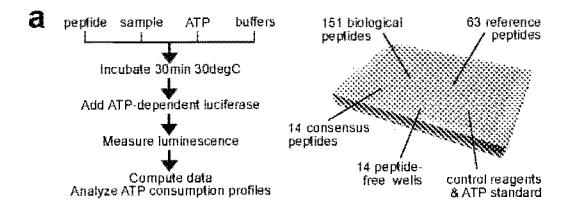
CA 3096871 A1 2019/10/17

(21) 3 096 871

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) **A1**


- (87) Date publication PCT/PCT Publication Date: 2019/10/17
- (85) Entrée phase nationale/National Entry: 2020/10/09

(86) Date de dépôt PCT/PCT Filing Date: 2019/04/12

- (86) N° demande PCT/PCT Application No.: US 2019/027201
- (87) N° publication PCT/PCT Publication No.: 2019/200245
- (30) Priorité/Priority: 2018/04/13 (US62/657,620)

- (51) Cl.Int./Int.Cl. *C12N 9/12* (2006.01), *C12N 9/10* (2006.01), *G01N 33/50* (2006.01)
- (71) Demandeur/Applicant:
 THE REGENTS OF THE UNIVERSITY OF CALIFORNIA,
 US
- (72) Inventeurs/Inventors: COPPE, JEAN-PHILIPPE, US; VAN 'T VEER, LAURA J., US
- (74) Agent: SMART & BIGGAR LLP

(54) Titre: DETECTION DE SIGNATURES DE PHOSPHOKINASE (54) Title: DETECTION OF PHOSPHOKINASE SIGNATURES

Fig. 1

(57) Abrégé/Abstract:

The disclosure provides methods and compositions for determining the kinase activity profile of a biological sample, e.g., that contains multiple kinases.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 17 October 2019 (17.10.2019)

(10) International Publication Number WO 2019/200245 A1

(51) International Patent Classification:

C12N 9/12 (2006.01) *C12N 9/10* (2006.01)

G01N 33/50 (2006.01)

(21) International Application Number:

PCT/US2019/027201

(22) International Filing Date:

12 April 2019 (12.04.2019)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/657,620

13 April 2018 (13.04.2018)

US

- (71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 1111 Franklin Street, 12th Floor, Oakland, California 94607-5200 (US).
- (72) Inventors: COPPE, Jean-Philippe; c/o University of California, San Francisco, 2340 Sutter Street, S441, San Francisco, California 94115 (US). VAN 'T VEER, Laura J.; c/o University of California, San Francisco, 2340 Sutter Street, N415, San Francisco, California 94115 (US).
- (74) Agent: LOCKYER, Jean M. et al.; Kilpatrick Townsend & Stockton LLP, Mailstop: IP Docketing 22, 1100 Peachtree Street, Suite 2800, Atlanta, GA 30309 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

 as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

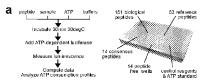


Fig. 1

(57) **Abstract:** The disclosure provides methods and compositions for determining the kinase activity profile of a biological sample, e.g., that contains multiple kinases.

DETECTION OF PHOSPHOKINASE SIGNATURES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority benefit of U.S. provisional application no. 62/657,620, filed April 13, 2018, which is incorporated by reference in its entirely for all purposes.

5

20

25

30

BACKGROUND OF THE INVENTION

- 10 [0002] In a functional sense, cancer is a proteomic disease that arises from selectively diverted signaling pathways^{1,2}. Kinase phosphorylation cascades function as adaptive networks that are re-wired by oncogenic processes³⁻⁷. Half of all cancer-drugs that are FDA-approved or in clinical trials target hyperactive kinases, such as BCR-ABL, BRAF^{V600E} or HER2^{8,9}. While therapeutic decisions increasingly rely on the detection of mutated kinase genes or aberrantly expressed/phosphorylated proteins, few experimental platforms are practical enough to directly and comprehensively monitor the activity of kinase enzymes¹⁰, and thus the key actionable dependencies of tumors remain often unclear^{11,12}. A technology capable of identifying the phospho-catalytic signatures of kinases in biological samples could benefit the bio-medical field and improve therapeutic guidance.
 - [0003] Proteomic detection systems use the phosphorylatable regions of proteins to infer kinase activity. Antibody-based assays measure (phospho-)protein levels, which depend on availability and specificity of antibodies^{1,13-15}. Mass spectrometry techniques¹⁶⁻²¹, sometimes combined with kinase inhibitors²²⁻²⁵, allow detection of raw amounts of (phospho-)proteins, but remain restricted due to cost, equipment and protocols. Alternatively, generic amino-acid sequences are used as individual biochemical probes to directly detect the phospho-catalytic activity of kinases in radioactive-labeling assays, microfluidic electrophoresis systems, ATP-consumption tests, hybrid peptide/phospho-antibody platforms, or SPR and FRET techniques²⁶⁻³³. Readouts from these approaches, however, rely on broad-spectrum consensus peptides originally designed for one-probe-to-many-kinases detection methods, well suited for pharmacological drug screens, but not intended to specifically identify or differentiate between kinases' activity in biological extracts.

5

10

15

20

25

30

BRIEF SUMMARY OF SOME ASPECTS FO THE DISCLOSURE

[0004] Provided herein is a new technological resource to distinguish and measure the phospho-catalytic activity of many kinases in parallel. This strategy relies on collections of peptide probes that are derived from the biological target sites of kinases^{34,35}, and are physically used as distinct combinatorial sets of sensors to monitor the activity of kinases in samples. The technology is modular by design: users can adapt probe libraries and assay conditions to their needs. Using a proof-of-concept 228-peptide library, computational methods to analyze phospho-catalytic signatures established from high throughput ATPconsumption measurements are provided in the examples section, which illustrate the present invention. Further, aspects of the invention relate to identification of kinase targets in specific types of cancer. For example, an analysis of BRAF^{V600E} tumors for kinase activity is provided as an illustration. BRAF^{V600E} colorectal cancers (CRC) and melanomas (MEL) remain clinical challenges, with poor prognosis and mostly palliative treatment options, that likely involve kinase-signaling pathways, which can hold the key to new therapeutic opportunities. In one aspect, this approach is used to identify new druggable kinase nodes that drive the unresponsiveness of CRC and MEL to anti-BRAFV600E therapy in cell models and patient tumors. Additional benefits of the present invention will also be apparent to one of skill in the art, e.g., as discussed in the EXAMPLES section.

[0005] In some aspects, the disclosure is thus based, in part, on a high-throughput system to measure the activity of kinase enzymes using their biological peptide targets as phosphosensors. In some embodiments, the disclosure provides a target peptide set to detect the activity of multiple kinase/kinase families, including, e.g., ABL, AKT, CDK, EGFR, GSK3B, MAPK and SRC, using a multiplex assay, e.g., an ATP-consumption screen, to identify the activity of kinases of interest to be evaluated, e.g., kinase activities in cancer cells. Further, in some aspects, the disclosure provides methods and compositions for the analysis of drug sensitivity, e.g., drug-sensitivity to BRAFV600E-targeted therapy in colorectal cancer; and identifies phosphocatalytic signatures of melanomas for designing and implementing therapies.

BRIEF DESCRIPTION OF THE FIGURES

[0006] Fig. 1. Libraries of biological peptides function as combinatorial sensors to identify, differentiate, and measure the phosphorylation activity of kinases.

(a) Schematic of the assay procedure.

- (b) Unsupervised hierarchical clustering of phospho-catalytic activity signatures of 25 recombinant kinases established from 228 peptides. For each experimental run, the average value of ATP consumption across the 228 peptides was used for internal normalization. The kinase activity per-peptide was then calculated as the difference in ATP consumption
- between individual peptide-derived values and the overall internal mean. Next, peptidespecific activity values were averaged across independent repeats to establish the phosphoactivity signature of each kinase for all peptide sensors. Finally, the 228-peptide-derived phospho-catalytic signatures of the 25 recombinant kinases were analyzed using unsupervised hierarchical clustering. Phospho-catalytic profiles are color-coded based on the relative level of activity measured in presence of each peptide, from blue for low-or-no activity, to white
- for intermediate-or-mean activity, to red for high phospho-catalytic activity. The red/gold/grey peptide color-key on the right side of the phospho-catalytic heatmap indicates the origin of peptides (biological, generic positive control, or random). The number of independent experimental repeats per kinase (n) is listed underneath the heatmap. The same concentration of recombinant kinases was used (see Supplemental Methods).
 - (c) Pearson-correlation heatmap highlighting the functional relationship between kinase enzymes established from their differential spectrum of 228-peptide-specific phosphocatalytic activities. Kinases are arranged by alphabetical order within their respective families.
- (d) Profile of AUC values obtained for an increasing number of randomized sampling combinations of peptide sensors to predict the identity of HCK. AUC values (y-axis) reflect the performance of HT-KAM assay for predicting HCK's identity by comparing the 7x 228-peptide phospho-signatures of HCK versus the 113x 228-peptide phospho-signatures measured for all other 24 kinases, when relying on one or multiple peptide sensors (x-axis; random peptide sampling of a combination of up to 50 peptides out of 228). The AUC values corresponding to Diagonal Linear Discriminant Analysis (DLDA) classifiers that match HKC's specific all-biological peptide subset is shown as a red dot; HCK's all-generic positive control peptide subset as a gold dot; all-random peptides as a grey dot; exact AUC
- 30 (e) Distinct subsets of peptides can be identified as functional predictors of the differential activity signature of each kinase family. The number and origin of peptides composing the differential phospho-signature of kinases is shown in the bar graph. Peptides were classified as 'predicted' (dark shade) or not (i.e. 'other'; light shade), where 'predicted' defines a peptide sequence previously identified in the literature as a target of a given kinase. For a

values and number of peptides for each combination are indicated.

biological peptide, it is an amino acid sequence that corresponds to a known phosphorylatable protein region³⁴, and for a generic positive control peptide it is an amino acid sequence that is commercially available. The AUC of each peptide set per kinase is listed underneath the graph.

- (f) Phospho-catalytic profiles measured in presence of the biological peptide targets of AKT1, MAPK1/ERK2 or JAK2 kinase. The average activity per indicated biological peptide across 'n' independent experiments is color-coded blue-to-white-to-red from low-to-medium-to-high kinase activity. Biological peptide probes are organized by decreasing phospho-catalytic activity per kinase. Each phospho-catalytic heatmap is shown side-by-side with a grey-scale of significance (p-values for a pairwise t-test comparing the activity measured from 'n' independent experimental runs for each biological peptide vs. the average activity measured with 5-random peptides). Average phospho-catalytic activities obtained from four distinct control peptide groups are shown for comparison at the bottom of each panel (random, Y/S/T-free, reference, or generic positive control).
- 15 (g) Box plots showing that the subsets of biological peptides specific to each kinase are associated with significantly higher levels of phosphorylation activities than activities measured from the pool of 5-random peptides. Box plot distribution of data displays minimum, first quartile, median, third quartile, and maximum. The difference in kinase activity experimentally measured with biological vs. reference peptides was highly significant (p<2E-100; left vs. right set of box plots).</p>
 - (h) Functional clustering of kinases based on the 151-biological peptides included in the assay. The analysis is based on all HT-KAM readouts, but only phospho-activity values derived from the 151 biological peptides were used for ranking analysis. Kinases belonging to distant genetic families are distinguishable. ABL and SRC kinases from non-receptor tyrosine kinase families are identified as functionally related. Individual kinases of known distant biological/biochemical relationship with the rest of their genetic families can be singled out (e.g. ABL1^{T3151}; AKT2; MAPK14; SRMS).

25

- (i) AUC forest-plots comparing the specificity/sensitivity of biological (red) vs. generic control positive (gold) vs. random (grey) peptide subsets. Biological peptides behave as good functional sensors of kinases, and the identity of a kinase can be effectively predicted from the phospho-signature monitored with its subset of biological peptides.
- (j) Enzymatic activity of ABL1 measured in presence of its 11-biological peptides, and either without treatment (left column; UNT) or treated with serial dilutions of ABL1-targeting

inhibitors imatinib and dasatinib (2 sets of 3 columns on the right; concentrations indicated at the top).

(k) Measurable effects of inhibitors on the activity of ABL1, ABL1^{T315I}, LYNA, AKT1 kinases using their biological peptides as reporters. Shifts in activity are represented as the average (colored dot) +/- StDev of the change in ATP consumption across all biological peptides in comparison to untreated control. While the activity of ABL1 was most reduced by these inhibitors, the anticipated specific effects of inhibitors was apparent by their relative low or lack of effect on ABL1^{T315I}, LYN A and AKT1 kinases (e.g. LYN A was affected by higher doses of Dasatinib). Staurosporine was used as a non-specific control of kinase activity inhibition.

5

10

[0007] Fig. 2. Mapping the phospho-catalytic signatures of cancer cells in their native or drug-treated/resistant states, identify their specific kinase dependencies and reveal their differential vulnerabilities to single and combinatorial kinase-targeting therapies. (a) Identification of kinases known to participate in the response of BRAF^{V600}E CRC cells (WiDr) to BRAF^{V600E}-targeting therapy (VEM). Western blots for total and phospho-protein 15 MEK1/2, ERK1/2 and EGFR are shown as controls on the left. Change in activity of these kinases after VEM treatment was measured using their respective subsets of biological peptides (shown as heatmaps and bar graphs). Briefly, for each experimental run, the average value of ATP consumption across the 228 peptides and 14 data-points from cell extract alone (i.e. established from 14 peptide-free control wells per 384-well plate) was used for internal 20 normalization. Each sample's kinase activity per-peptide was then calculated as the difference in ATP consumption between individual peptide-derived read outs and the internal mean. Next, the peptide-specific activity values were averaged across independent repeats (3 independent biological replicates tested in 4 independent technical replicates). Finally, the 25 difference in phosphorylation activity per peptide between VEM and UNT profiles was calculated across all 228 peptides. Results are represented as a series of kinase-focused heatmaps using their particular subset of biological peptides (top right panel). Each colored bar represents the differential activity in presence of a biological peptide of the indicated kinase, ranging from blue-to-white-to-red to respectively indicate lower-to-unchanged-tohigher activity after VEM treatment. The number of biological peptide sensors per kinase is 30 indicated underneath the name of the kinase. A relative cumulative index of activity for each kinase was plotted as an indicator of the differential kinase signatures found in VEM-treated samples versus their control counterpart (bar plot on the bottom right; average of differential

activity values across all kinase-specific biological peptides, divided by the number of peptide sensors). Significance is measured in pairwise Student t-test comparisons between VEM and UNT across all runs (*/#: p<0.05; **/##: p<0.01), and either including all biological peptide sensors (*/**), or 75% of peptides that followed the main activity trend (#/##) to elude cross-reaction effects due to parallel feedback activation loops such as AKT or EGFR as illustrated from the biological peptide targets of ERK2 that paradoxically display higher activity (red bars at the top of the ERK2-heatmap) but relate to proteins directly involved in mechanism of therapeutic resistance, such as the EGFR-pathway^{4,36} or TGFBR-pathway⁴⁷.

- (b) Identification of new kinases that mediate intrinsic resistance to BRAF^{V600E}-targeted therapy in WiDr CRC cells.
 - (c) Validation of changes in activity of kinase enzymes using western blot. For example, increased phospho-S473 AKT1 relates to increased AKT1 activity, while increased phospho-S9 GSK3B foretells decreased GSK3B activity.
- (d) Response of WiDr cells to combinatorial-targeted therapies. Survival graphs show cell growth sensitivity profiles to dual targeting of BRAF^{V600E} + AKT1 or PDPK1 or PRKCA. Table insets provide characteristics of response to drug combinations: C.I. = combination index following Loewe Additivity model and measured as the average growth inhibition for VEM≤2uM and 2nd drug≤GI50 concentration (arbitrary threshold: synergy CI≤0.6; additivity 0.6<CI≤1.0); D.I. = drug interaction (two-way ANOVA p-val). Drug responses serve as a validation of kinase activity signatures found by HT-KAM screening, as well as a discovery

of new vulnerabilities.

(e) Peptide phosphorylation activity signature of cancer cell lines. For each experimental run, the average value of ATP consumption in sample-containing wells measured across 228
25 peptides and 14 peptide-free controls, was used for internal normalization. The activity perpeptide was then calculated as the difference in ATP consumption between individual peptide-derived read outs and the internal mean. Next, phosphorylation activity values measured for each peptide were averaged from ≥3 independent replicates for each cell line. Finally, the phospho-catalytic activity signatures measured across the 228-peptide sensors
30 were subjected to unsupervised hierarchical clustering. Phospho-catalytic activities are color-coded based on the relative level of activity measured in presence of each peptide for each cell line, from blue for low activity, to white for intermediate-or-mean activity, to red for high activity. The peptide class is indicated as a red/gold/grey color streak on the right side of the heatmap.

- (f) Kinase activity signature of cancer cell lines. For each cell line, the activity of kinases was calculated as the average of the phosphorylation activities measured in presence of their respective biological peptide subsets. The profiles of 60 individual kinases or kinase families detected with ≥4 biological peptides are shown. Unsupervised hierarchical clustering was applied across both kinases and cell lines, and color-coded as a blue-to-black-to-yellow scale from low-to-medium-to-high activity. Profiles highlight the heterogeneity of kinases' activity across cancer cells. Control for ATP levels and protein concentrations across cells, and validation of phospho-signatures using complementary computational analysis, immuno-blotting, or drug treatment responses are available in **Figs. 18-22**.
- 10 (g) Comparison of kinase activity and drug sensitivity in two phenotypically distinct BRAF^{V600E} cell lines: A375 (melanoma) vs. WiDr (colorectal), which are respectively considered to be inherently sensitive and resistant to BRAF-therapy. The activity of 10 different kinases was mean-centered between cell lines (y-axis) and compared to their GI50's (x-axis; drug concentration causing 50% inhibition of cell growth in 3-day assays) for 14 inhibitors. Color-coded drug names are indicated underneath each graph. Validation using a second, alternative drug was tested for four of the kinases. All drug concentrations are in uM, except dinaciclib and trametinib in nM.
 - (h) Graphical correlation of kinase activity with drug sensitivity. Kinase activity values (y-axis) correspond to activities shown in (c). The x-axis shows the sensitivity of A375 calculated as the Log₁₀ of GI50(WiDr) / GI50(A375).
 - [0008] Fig. 3. Mapping the phospho-catalytic signatures of melanoma tumors reveals druggable kinases predictive of poor outcome and vemurafenib-unresponsiveness in BRAF V600E patients.
 - (a) Schematic of the procedure.

5

20

25 (b) Peptide phosphorylation signatures of patient tissues. Data analysis followed the same steps as for cancer cell extracts. HT-KAM data were clustered using Euclidean distance and ward linkage. Phospho-catalytic activity and peptide annotation are color-coded as indicated in the bottom right legend. Retrospective knowledge of survival outcome, recurrence and treatment-resistance are indicated above each map, along with their BRAF^{V600E} mutational status. Within the deceased group, patients #4-5-9 were VEM-resistant (red squares), and patients #2-4-8 were ipilimumab-resistant (i.e. refractory to anti-CTLA4 immuno-therapy); see Figs. 23-24 for details.

- (c) Kinase activity signatures of tumor tissues. Analysis followed the same steps used to deconvolute the profiles of cell lines. For each tumor, the activity of kinases was calculated as the average of phosphorylation activities measured in presence of their respective biological peptide subsets (only kinases detected with ≥4 biological peptides are shown).
- Kinase activity profiles were mean-centered per tumor and then per kinase across samples. Semi-supervised hierarchical clustering was applied across kinases (tree on the left; Euclidean distance), while maintaining the order of patients established in (b). Kinases' catalytic activity is color-coded as a blue-to-black-to-yellow scale of relative low-to-high activity. Particular kinases are indicated by an arrow/letter on the right, and underline the balance between up/down-activation of proto-oncogenic kinases (RPS6KB, PIM, AKT) versus tumor suppressor kinase (GSK3B), either within each patient (top vs. bottom; e.g. VEM-resistant BRAFV600E mutated melanomas), or between patient groups (left vs. right; e.g. good vs. poor outcome).
- (d) Table of kinases whose biological peptides are significantly represented among most differential peptides associated with survival outcome. The middle column shows significance based on enrichment analysis EASE Fisher one-sided test using 34 out of 228 peptide sensors (p<0.05 as significance cut-off). The right column provides significance values (FDR-corrected Student t-test) using all (unselected) biological peptides per kinase subset, and comparing all experimental runs between surviving and deceased groups.
- 20 (e) Biological peptide-derived activity signatures of AKT, PIM, RPS6KB and GSK3B kinases averaged across tumors from VEM-resistant patients #4,5,9.

25

- (f) Response of BRAF^{V600E} melanoma cell lines to drugs that target vulnerabilities identified by HT-KAM assay. We chose to target AKT, PIM, RPS6KB and GSK3B kinases based on the kinase profiles of VEM-resistant patients shown in panels (c-e). The growth of A375 and Sk-Mel-28 cells was tested in presence of a range of concentrations of VEM (horizontal axis; concentrations indicated at the top) combined with a 2nd inhibitor (vertical axis; kinase target, drug name, range of concentrations indicated on the left) in 3-day survival assays. We elected to use Sk-Mel-28 cells because they are inherently highly resilient to BRAF-therapy. The relative scale of growth inhibition (GI) is color-coded (legend on the top left). GI heatmaps serve as visual indicators of whether the therapeutic index of BRAF-therapy alone can be improved when combined with a 2nd kinase-targeting drug.
- (g) Streamlined side-by-side comparison of drugs' effects on cells' response to BRAF^{V600E}-targeting. Graphs show the percentage of growth inhibition (y-axis) resulting from combining VEM at various concentrations (x-axis) with a 2nd inhibitor at its GI50 concentration alone

(curves of VEM+2nd drug are color-coded; black lines represent the control VEM alone). The 2nd and 4th graph serve as control response profiles obtained from MTOR- and MEK-inhibitor treatment in A375 and Sk-Mel-28. Rectangles highlight the highest achievable response elicited by these various drug-combinations. Percent cell death at GI50 concentrations are provided underneath the graphs.

5

15

20

25

30

- (h) Characteristics of drug combination effects. D.I. = drug interaction. C.I. = combination index following the Bliss Independence model and measured as the average of all experimental CI values (threshold: synergy CI<0; additivity CI=0; antagonism CI>0)⁴⁸.
- (i) Primary tumor cells derived from a VEM-resistant melanoma PDX that displays high level
 of phospho-RPS6KB1 protein (used as readout of kinase activity), are sensitive to RPS6KB-targeting drug in 3-week colony formation assay.

[0009] Fig. 4. Source of peptide probes and arrangement of kinase assay plates.

- (a) List of 228 peptides used in the assay. The table provides the connectivity details between kinases and peptide substrates (columns 3-5) for the 151 biological peptides, 14 generic positive control peptides, and 63 reference peptides included in the assay. Peptide ID's and categories are listed in the first two columns. The 25 kinases listed above the color-coded area (right side) are those tested in biochemical assay using purified recombinant kinases.
- (b) Numerical-/color-coded connectivity used in table (a). This defines the 'functional' relationship between each peptide lane and each tested recombinant kinase shown in table
- (a). For instance, a peptide/kinase intersection coded 1-black corresponds to a biological peptide predicted from literature to be phosphorylated by the kinase indicated at the top of table. However, this same biological peptide is coded 2-yellow in adjacent columns, which indicates that other kinases are not predicted to phosphorylate this peptide/substrate target sites. Similarly, a peptide/kinase intersection coded 3-orange corresponds to a generic
- positive control peptide predicted from literature to be phosphorylated by the kinase indicated at the top of table. However, this same generic positive control peptide is coded 4-teal in adjacent columns, which indicates that other kinases are not predicted to phosphorylate this peptide/substrate target sites.
- (c-d) Origin of peptide sensors. The functional relationship between kinases and peptides was previously established from computational curation resources built to mine public databases (see: website at http address cancer ucsf.edu/phosphoatlas; US20120296880^{1,2,15}). Panel (c) summarizes the curation process and molecular connectivity between kinases, substrate proteins, and phosphorylatable peptide target sequences. Panel (d) is a projection of the

coverage of biological peptide targets (left) and generic positive control peptides (right) per kinase across all human kinases/kinase families. Generic positive control peptides were curated from commonly available/advertised single-probe kinase assays or screens. The quantitative and qualitative coverage of peptides per kinase is represented as discs, which are dimensioned based on absolute number of peptide targets per kinase, and color-coded based on uniqueness of peptide targets per kinase.

(e) Biological peptide/kinase connectivity.

5

10

30

(f) Overall arrangement of individual 384-well plates. Besides the 228 peptides, each experimental plate includes: (i) 14 'peptide-free' wells (i.e. sample with buffers but without any peptide), (ii) internal duplicates for a series of peptides-containing wells and peptide-free wells, (iii) assay controls: ATP alone (ATP-loading control), kinase assay buffer alone, and ATP dilution standard.

[0010] Fig. 5. Activity signatures established for all recombinant kinases across all peptide sensors and all experiments.

- (a) Repeatability of the assay across 120 different 384-well-plate assays. The graph shows a run-to-run comparison of activity profiles for individual kinases. The reproducibility of the assay was high, as measured by Pearson's correlation coefficient for replicate runs of 228-peptide-derived kinase activity profiles of 25 recombinant kinases, and based on >40,000 single ATP-consumption data points.
- 20 (b-e) Example of peptide-derived phospho-catalytic signatures for the JAK2 kinase. Four independent experimental runs are compared. ATP consumption profiles derived from luminescence readouts are shown in (b) and compared in (c). Results transformed as internally normalized data by centering ATP consumption profiles against their overall 228-peptide-derived mean, are shown in (d) and compared in (e). The stack bar graph in (d)
- visually shows that ATP consumption profiles follow similar trends across all different runs: most bars follow the same activity trend of "all-up/higher-than-the-mean", or "all-down/lower-than-the-mean", or "close-to-the-experimental-mean". This relates to the good correlation (>0.9) found between experiments as shown in table (e), and in graph (a).
 - (f-k) Cumulative bar plots for the other 24 recombinant kinases we tested. Each plot represents the stacked results of activities observed in experimental repeats and in presence of each individual peptide. In each graph, most bars follow the same "all medium" (around '0', i.e. mean kinase activity measured across all 228-peptides per experimental run), or "all-high" (above the mean), or "all-low" (below the mean) activity trends, which further

demonstrates run-to-run reproducibility and data consistency. Graph-to-graph comparisons (i.e. kinase-to-kinase) allow discerning kinases' specific catalytic signature.

5

10

15

20

30

- (1) Cumulative bar plot resulting from merging all profiles of all 25 kinases/120 experiments together. Together, the comparison of panels (d,f-I) show that some peptides are associated with high kinase activity for a particular kinase, or a kinase family, or broadly across multiple kinases/kinase families. Some other peptides are associated with minimal kinase activity (see most negative stacked bars). Peptides from the pool of 63 reference peptides were broadly associated with low kinase activity. As also shown in main Fig. 1b, panels (d,f-m) show that differences in pattern and intensity of activity between members of a same kinase sub-family can be identified (e.g. ABL2 vs. ABL1; AKT2 versus AKT1/3; BRK, FRK or SRMS versus other SFK's; ERK2 vs. p38a). The differential activity of distinct kinase isoforms (LYN A versus LYN B) or 'wild type' versus oncogenic kinase (ABL1 versus mutated ABL1^{T315I}) can be found, which functionally corroborates what has been so far inferred from the differential interactomes (PPI) of distinct protein isoforms¹⁶. This shows that kinases affected by alternative-splicing events or 'minimal' genetic / oncogenic mutations can exhibit highly specific and distinctive phospho-catalytic functions (as if encoded by unrelated genes). Such results expand the anticipated complexity of cell signaling networks and their alternative cancer-state¹. These data also illustrate the broad dynamic range (over 4 logs of magnitude) of measurable catalytic activities offered by the use of a large variety of peptides, and observable between different kinases. The differential distribution of 228-peptide-derived activities per kinase reveals that each kinase displays distinctive catalytic capabilities. These data show that the HT-KAM strategy is a robust discovery platform that detects and discerns the unique catalytic properties of different kinase enzymes.
- [0011] Fig. 6. Dilution and time course assays. A subset of kinases and generic positive control peptide sensors commonly used in the field, were interrogated to assess the quality of the results generated with the HT-KAM assay platform.
 - (a) Activity of kinases measured at different concentrations and over time.
 - (b) Activity of kinases measured over time in presence of generic positive control peptides versus negative control (non-phosphorylatable) peptides. Significance is shown at the top of the box plot. Kinase-dead recombinant proteins or inactive kinase spliced isoforms (e.g. FYN C) were also used as negative controls to validate results from the assay (data not shown). Profiles in (a-b) match standards in the field, and show the quality of the assay was excellent.

[0012] Fig. 7. Comparison of dynamic range to data variation across peptides.

- (a) Heatmaps of the top-20 peptides associated with the highest measurable activity per tested recombinant kinase. The first column of each kinase sub-panel indicates three peptide categories: (i) an orange square is for a kinase's generic positive control peptide (as advertised/commonly used); (ii) a yellow square is for any other generic positive control peptide out of the 14 generic positive control peptides included in the HT-KAM assay; (iii) a 5 fuchsia square is for a biological peptide. The second column of each kinase sub-panel shows the peptide-phosphorylation activities for the top-20 peptides (red color scale). Activity profiles were normalized following the method applied in Fig. 1b and Fig. 5, i.e. raw luminescence data were transformed into ATP-consumption data, and then transformed in kinase activity profiles by mean-centering results across 228-peptide sensors per run and per 10 kinase, before averaging profiles for each kinase and comparing significance of peptide phosphorvlation profiles across experimental repeats. Activities are shown as a white-to-red scale (saturated red at ±100nM above the mean ATP consumption measured across 228peptide per kinase). In the third column of each kinase sub-panel, FDR-corrected t-test values per peptide probe are shown to assess the significance of activity profiles. The 15 phosphorylation activities measured with each of the top-20 peptides were compared to the pool of 63-reference peptides included in HT-KAM assays across all experimental repeats for each kinase. FDR-corrected t-test values (BHp) are shown as a white-to-grey-to-black scale (white color cut-off at 0.05; saturated black at 1E-10).
- These results indicate that, for many kinases, their best generic positive control peptides have a good, but not necessarily optimal, ability to report on their enzymatic activity. More specifically, the 'best' positive control peptide for 17 out of the 25 recombinant kinases did not correspond to one of their originally advertised generic positive control peptides (i.e. yellow surpasses orange for BLK, BRK, FRK, HCK, LCK, LYN A, SRC, YES1, ABL1,
 ABL1^{T3151}, EGFR, ErbB2, ErbB4, JAK2, CSK, AKT2, MAPK14). Furthermore, for 18 out of 25 kinases, biological peptides were better reporters than their best, originally advertised, generic positive control peptide (i.e. fuchsia surpasses orange for BLK, BRK, FGR, FRK, HCK, LCK, LYN A, SRMS, YES1, ABL1^{T3151}, EGFR, JAK2, CSK, AKT1, AKT2, AKT3, MAPK1/ERK2, MAPK14/p38a). In many instances, biological peptides can be considered as at least as good sensors of kinases' activity as currently available generic positive control
 - (b) Individual comparisons of FDR-corrected t-test across top activity reporting peptides per peptide category. This graph compares the significance (BH-p values) for the highest phosphorylation activities measured with the top peptide belonging to each of the three

peptides.

categories: (i) best of the advertised/commonly used generic positive control peptide(s) for each kinase (orange dot); (ii) any other best generic positive control peptide (i.e. best of any of the 14 generic peptides other than the ones advertised for the indicated kinase; yellow triangle); (iii) best biological peptide (fuchsia lozenge). Along with data in panel (a), kinase assays show that positive control peptides work well (as expected), but performance can be improved by using/including biological peptide sequences.

5

10

- (c) Z-factor profiles. Comparing the dynamic range to data variation of 'positive' versus 'negative' controls is a standard method in the field to evaluate the performance of an enzymatic assay (i.e. Z-factor or Z'). We used this method to assess the quality of individual assays included in HT-KAM experimental sets, and to further assess how using different peptide probes impacts assay readout performance. Z' was evaluated by comparing ATP consumption values measured in presence of a peptide probe versus in absence of peptide (Z' = 1 (3 * (StDev Pos + StDev Neg) / |Ave Pos Ave Neg|)). Z' values from kinase activity profiles were calculated for the three kinds of peptide probes shown in panels (a-b).
- 15 Comparing the extent of the assay's dynamic range (~0.1 to ~250nM ATP consumption) to experimental variation (<1 to 20nM ATP standard deviation) using generic positive control peptides versus no-peptide negative controls (i.e. orange dots; measured across the 14 peptide-free wells), showed overall excellent performance of the HT-KAM assay at the level of individual peptide assays (average Z'=0.53). Yet, Z' could be significantly increased up to 0.59 when using "any" best peptide out of the 228 peptides included in the HT-KAM screen, and in particular when including biological peptide sensors (fuchsia lozenges). Along with results from activity and significance profiles shown in (a-b), these data show that peptide sequences derived from biological substrate proteins are well suited to measure the phosphorylation activity of kinases.
- 25 [0013] Fig. 8. Profiles of Area Under the Curve (AUC) values obtained for an increasing number of randomized combinations of peptide sensors to predict the identity of an individual kinase or a kinase family.
 - (a-c) Progression profiles of AUCs for individual kinases and kinase families. In the analysis described below, the 'outcome' we wanted to predict was the identity of a kinase based on peptide activity profiles. For example, for AKT, the analysis outcome was "is this kinase in the AKT family: yes or no?" when using the activity profile from one or multiple peptides where peptide(s) were 'drawn' from any of the 228 peptides, and activities compared across all 25 recombinant kinases and all experimental repeats. To do so, Diagonal Linear

5

10

15

20

25

30

Discriminant Analysis (DLDA) class predictors were built for each kinase or kinase family using randomized combinations of an increasing number of peptides to discriminate one given kinase (or kinase family) from others. The performance of the DLDA classifier was defined as the AUC for predicting the identity of a kinase (or kinase family) from repeated iteration (i=1,000) of random peptide sampling. The confidence intervals of AUC's were computed using the DeLong method (from the pROC package of R). AUC values (y-axis) obtained for any number of combined peptides (x-axis) are shown as progression profiles of AUC's (box plots) for individual kinases (a-b) and kinase families (c). Plots show the effect of increasing n on AUC values, where n random peptides are drawn out of 228 peptides, and where n spans from 1 to a combination of 50 peptides (graphs in panels (\mathbf{a},\mathbf{c})) or from 1 to a combination of 100 peptides (graph in (b)). We analyzed individual kinases for which enough experimental repeats were executed (here we chose a stringent cut-off of ≥ 6 repeats; i.e. ABL1, AKT1, EGFR, MAPK1/ERK2, MAPK14/p38a, HCK, SRC; panels (a-b)), and for kinases grouped by subfamilies (with sufficient (≥6) repetitions per family; i.e. ABL, AKT, HER, MAPK, SFK; panel (c)). For each of the 50 boxplots per graph shown in (a,c), or for each of the 100 boxplots in the graph shown in (b), the line in the middle of each 'box' is the median of the data, the length of the box is 25% and 75% of the data, and the whisker is (25% - 1.5 x (InterQuartile Range)) (IQR) and (75% + 1.5x IQR). The outliers (points) are anything that falls outside of that range.

[0014] Results in (a-c) show that, for every kinase or kinase family, the sensitivity and specificity of a kinase-assay intended to measure their phospho-catalytic activity, is systematically improved when: (i) including an increasing number of combined peptide sensors; and/or (ii) when using particular subsets of peptides that perform significantly better than other combinations within a particular iterative number of peptides (i.e. higher AUC's within a given *n*-number of peptides). These results also show that some unique combinations of few peptides can behave as highly specific and sensitive reporters of a given kinase (i.e. these peptide subsets would be located toward the top left corner of each plot; note that the results of this method/analysis do not –however– define which peptide sets differentiate with the highest probability and highest specificity/sensitivity between different kinases, which is a question we resolve later in Figs. 10, 11, 14, 15 and shows that biological peptide subsets happen to be exquisitely well-suited for). It can be noted from these data that, in the perspective of expanding the coverage of the HT-KAM platform to monitor more/other kinases, the computational analyses and modeled data in (a-c) already demonstrate that

including additional peptide probes would only increase the capability of the HT-KAM system to accurately predict the identity of more/different kinases out of their phosphocatalytic activity signatures. Together, these results demonstrate that our strategy of including a multiplicity of peptide sensors considerably improves the sensitivity and specificity of any kinase assay.

5

- [0015] Fig. 9. Kinase phosphorylation activity measured in presence of individual generic positive control peptides. To further show that including a multiplicity of peptide sensors improves the performance of a kinase assay, we asked whether any individual generic positive control peptide could provide the specificity needed to accurately identify individual kinases.
- (a) List of kinases whose activities are 'expected' to be measured with the positive control peptides included in the HT-KAM assay. The 14 generic peptides included in the 228-peptide library are commonly used as reporters of the phospho-catalytic activity of >63 individual kinases and >27 kinase families (e.g. ABL, AKT, ERK, HER, p38, SFK, TK, etc).
- (b) Comparison of kinases' phosphorylation activity patterns across positive control peptides based on either what is anticipated from literature (top panel), or experimentally measured (bottom panel). In the top panel, the red-colored areas correspond to peptides expected to report on the activity of the indicated kinases, whereas the blue areas are not advertised as such. In the bottom panel, the blue-to-white-to-red heatmap corresponds to the experimental
 profile of recombinant kinases' activity levels measured in presence of these peptides. The bottom panel is an excerpt from the complete 228-peptide phospho-catalytic activity signature of kinases. In principle, the red areas from the top panel should match the 'redder' areas from the bottom panel, and, as critical, the blue areas from the top panel should match the 'bluer' areas from the bottom panel.
- 25 (c) Detailed comparison of kinases' activity level for each generic positive control peptide. The 14 individual graphs display the activity of all 25 recombinant kinases for each of the 14 peptides. In each graph, the red bars indicate catalytic activities expected to be the highest/most positive. Conversely, black bars are not anticipated to display high activity or any activity.
- 30 **(d)** Concordance between expected and experimental activities. The % concordance was evaluated based on whether experimental readouts belong or not to their expected activity groups (vertically: per kinase; horizontally: per peptide). The overall average concordance is ~52%. Cross-reactivity between kinases/peptides observed in **(b-d)** indicates that it would not

be possible to use any individual positive control peptide as a mean to specifically identify or differentiate a particular kinase from other kinases.

(e) Comparison of individual peptides' AUC to evaluate how specific and sensitive each of the 14 positive control peptides is to identify their respective kinases. AUCs were calculated from repeated iteration of single peptide sampling for kinases tested ≥6 times (i.e. HCK, SRC, ABL1, EGFR, AKT1, MAPK1/ERK2, MAPK14/p38a). This analysis compared all 228-peptide phospho-catalytic profiles across all 25 recombinant kinases and all experimental repeats (method described in **Fig. 8**). This method answers the question: "how good is an individual peptide at predicting the identity of a kinase?", and results can be interpreted as:

5

10

15

- "the higher a peptide's AUC is for a particular kinase, the more this peptide (and this particular level of phosphorylation for this peptide) is good at discriminating this kinase from all other kinases". The top section shows all calculated AUCs for all 14 positive control peptides across all interrogated kinases (color-coded scale of AUCs shown on the right; kinase name on top). A black side-bare next to AUC(s) designates positive control peptide(s) expected to report on the indicated kinase. To help compare the performance of individual positive control peptides' specificity and sensitivity, the bottom section displays the AUCs for 14 individual biological peptides with the highest AUCs for each kinase.

 Results show that most individual positive control peptides do not provide the highest possible specificity and sensitivity for the kinases they are expected to report on.
- Furthermore, most individual positive control peptides are outperformed by individual biological peptides. These data provide new leads on how to improve single-peptide kinase assays using (biological) peptides found with the HT-KAM strategy. More critical to the concept underlying our study, these results underline why a multi-peptide approach is a valuable alternative to single peptide-based activity measurements when investigators want to specifically and differentially identify a given kinase from other kinases.
 - **[0016]** Fig. 10. Systematic identification of combinatorial peptide sets that best differentiate between kinase families. We implemented computational methods to define which unique set of peptides most significantly distinguishes a kinase from all other kinases. (a-e) Differential phospho-catalytic signatures of kinase families. The phospho-catalytic activity heatmaps of ABL (a), AKT (b), HER (c), MAPK (d), SFK (e) are established from the peptide subsets that best differentiate each kinase family from all other kinases. Peptide-IDs are listed on the right side of each heatmap. A scale of catalytic intensity is shown underneath (blue-to-white-to-red of mean-centered activities). The two color-coded columns

on the left of each heatmap show the type/origin of peptides, and the mean difference in activity: (i) peptide types or origin are shown in red shade (biological), yellow shade (generic positive control), grey (reference); (ii) the mean difference in activity is shown on the left, as an indicator of how significantly more (pink) or less (green) active a kinase family is in presence of the listed peptide that was included in their differential signature.

5

10

15

- The first step of the computational method was to systematically compare each of the 228-peptide activity signatures from all kinases belonging to a given family with ≥ 6 experimental repeats (i.e. ABL, AKT, HER, MAPK, SFK), to the 228-peptide signatures of all other kinases belonging to all other families, and then select peptides associated with the most differential activities based on whether any of the 228 peptide-associated activity values passed or not a significance threshold of p<0.05 for both FDR-corrected t-test and Wilcoxon rank sum test. This implies that: (i) the selected, most differential peptides can be associated with either low, or high, or 'average' phospho-catalytic activities specific to a kinase family if it significantly contrasts with activities observed across all other kinases (following this principle, a peptide can be found as part of the differential signature of multiple kinase families owing activity levels and significances that are specific to the differential signature of its given kinase family versus all other kinases); (ii) the activities from the selected, most significantly differential peptides specific to a kinase family follow a trend that may vary from one individual kinase to another within that family (and between experimental read outs), and some individual kinases may also cluster away from the majority of other kinase family members (which underlines the functional precision of the combinatorial measurements provided by the HT-KAM assay toward the systematic identification of the specific functional attributes unique to a kinase family yet can distinguish sub-family members).
- 25 [0018] The second step of this analysis, was to extract all phospho-activity values that match the significantly differential peptides out of the 228-peptide-derived activity values for each individual family, and then apply unsupervised hierarchical clustering to group peptides and kinases based on their functional relationship (classification trees at the top and far left of each heatmap).
- 30 [0019] Each panel (a-e) also includes a graph on the top right that shows the Receiver Operating Characteristic (ROC) curve and AUC value calculated for the specific subset of most differential peptides for each kinase family. The method used to assess the performance of each peptide set (i.e. its sensitivity and specificity) was the same as the one used to predict

the performance of increasing numbers of random peptide sets described in **Fig. 8**. We used the 228-peptide / 25 kinases / 120 experiments dataset to build classifiers, and then predict and compare performance using the exact differential peptide set associated with each kinase.

[0020] As an example, panel (b) shows that a unique combination of 89 peptides out of 228 peptide sensors best differentiates AKT-family kinases from all other kinases/kinase families. This 89-peptide subset includes both significantly high, low and intermediate activity features of AKT that uniquely differentiate AKT from all other tested kinases. This unique set of 89 peptides is capable of detecting/identifying AKT with a high degree of sensitivity and specificity (i.e. AUC = 0.945). AKT's differential signature includes every type of peptides, whether biological, generic or reference, and whether phosphorylated or not by AKT. We complemented our analyses using Monte Carlo cross validation to further estimate how accurately our predictive model performed, which confirmed the validity of the differential peptide signature (data not shown).

5

- [0021] Results in (a-e) show that differential peptide phosphorylation signatures can be assigned to every kinase families. This also demonstrates that using a multi-peptide activity-screening assay such as the HT-KAM strategy can find specific combinations of peptides that can serve as predictors of kinases' identity. As displayed in (a-e) and summarized in Fig. 1e, these results also indicate that the majority of peptides most capable of discerning kinases' unique phospho-catalytic activities are biological peptides.
- 20 [0022] Fig. 11. Peptide sets that best differentiate individual kinases. We applied the computational methods designed in Fig. 10 to identify the subsets of peptides that most significantly distinguish an individual kinase from other kinases.
 - (a-e) Differential phospho-catalytic signatures of kinases. Differential signatures and AUCs were calculated for individual kinases with ≥ 6 experimental repeats: ABL1 (a), AKT1 (b),
- MAPK1/ERK1 (c), MAPK14/p38a (d), HCK (e). We also identified the differential activity signatures of EGFR and SRC kinases, which respectively included 42 and 43 peptide features associated with AUC's of 0.840 and 0.893, and that successfully passed the significance threshold (p<0.05) for either FDR-corrected t-test or Wilcoxon rank sum test, but since they did not concurrently pass both criteria, we decided not to include their profiles here.
- 30 (f) Bar plot summarizing the number and origin of peptides composing each kinase-specific differential signature. Biological peptides constitute the majority of peptide sensors making the differential catalytic signatures of individual kinases.

5

10

15

20

25

30

WO 2019/200245 PCT/US2019/027201

Together, results from Figs. 8-11 and Fig. 1b-e show that using an array of peptides [0023] to measure the activity of kinases is an effective approach to functionally distinguish and identify different kinases. Such multi-peptide sensor-based kinase identification system is superior to any single probe enzymatic assay, including assays relying on a generic positive control peptide or any individual peptide in general. The level of differentiability, sensitivity and specificity offered by our multi-peptide platform approach is such that all kinases/kinase families can be predictably identified based on their activity signatures. Even though some of the kinases we chose to examine can be considered as more difficult to distinguish since they are biologically closely related (e.g. SFKs or ABLs), our system was capable of identifying and differentiating them (a functional distinction that no individual peptide was able to predictably achieve). As well, the signatures of kinases of more distant biological functions/unrelated genetic families were more distinct from other kinases and systematically distinguishable (e.g. MAPKs or HERs). In fact, our computational analyses and experiential data demonstrate that if we were to test larger numbers of recombinant kinases belonging to more distant kinase families, their activities would be more divergent from other kinases, and thus easier to measure/identify. While these results imply that the HT-KAM strategy could be used as a discovery tool to identify peptide sensors most uniquely differential and predictive of the identity of a kinase/kinase family, these results also indicate that the biological peptides of kinases are an already available subsets of specific/sensitive/differential sensors that are well-suited to decipher between kinases and their respective levels of activity.

[0024] Fig. 12. Phospho-catalytic signatures of kinases established from their respective biological peptides. The computational analyses developed in Figs. 10-11 and Fig. 1e show that biological peptides contribute most to the differential peptide signatures of kinases, so we asked whether kinases phosphorylate their respective biological peptide sequences.

(a-g) Activity profiles of recombinant kinases measured in presence of their respective biological peptides. Individual kinases are organized by kinase sub-families: AKTs (a), MAPKs (b), SFKs (c), ABLs (d), HERs (e), and include JAK2 (f) and CSK (g). The origin of peptides is indicated on the left of each panel. The phosphorylation activity per indicated biological peptide is averaged from 'n' independent experiments. Kinase activity is color-coded blue-to-white-to-red from low-to-medium-to-high activity (i.e. a white/dim color indicates measurable enzymatic activity within the spectrum of low-to-high activity). For each kinase heatmap, activities are organized by decreasing intensity from top/high to

5

10

20

bottom/low. The average catalytic activities obtained from three different peptide groups (random, Y/S/T-free, reference) are shown for comparison at the bottom of each panel. The t-test p-values comparing the activity profiles of each biological peptide to random or Y/S/T-free or reference peptide groups across all experimental runs for a given kinase (indicated by 'n' at the top of each kinase-specific panel), are represented as a grey scale.

- (h) Box plots of kinases' activity measured in presence of either their biological peptide subset, or 5-random, or 16-Y/S/T-free, or 63-reference peptides. Each box plot distribution of data displays: minimum, first quartile, median, third quartile, and maximum. Each box plot includes all experimental values across all repeats. Normalization and analyses of profiles follow previously described steps. The number of biological peptides per kinase is indicated underneath each box plot in the top graph. The t-test p-values comparing the overall activity profiles established from biological peptide versus either of the three other peptide groups measured across all kinases, are indicated in brackets on the right side of the graphs
- (i) Table of significance comparing kinases' phosphorylation activity profile established from their biological peptide subsets versus either of the other 'control' peptide groups (i.e. random, or Y/S/T-free, or reference).

(respectively p<2E-100, p<2E-110, p<6E-121).

- Results in (a-i) show that biological peptide probes established from substrate protein regions of kinases were overall associated with measurably and significantly higher levels of phosphorylation activities than 'control' peptides. More than 94% of all kinase activities measured in presence of their biological peptides were greater than activities measured in presence of the 5-random peptide set. Differences in kinase activity between biological and reference peptide sets were highly significant (p<7E-11 for AKT1, AKT3, MAPK1/ERK2, FYN A, HCK, LYN A, ABL1, and JAK2; p<4E-2 for AKT2, MAPK14/p38a, BLK, BRK,
- LCK, LYN B, SRC, HER2, HER4). Individual kinase activity values derived from their individual biological peptides were significantly different from the reference peptide set (27.2% with p≤0.01 and 66.7% with p≤0.05). Kinase activity levels were also significantly higher when measured in presence of their 'non-modified' biological peptides than with their mutated or pre-phosphorylated counterparts included in the assay (see **Fig. 13** for details).
- Finally, phosphorylation activities measured with biological peptides of nearly identical sequences were similar (e.g. MTOR T2446 and MTOR S2448; CDKN1A T145 and CDKN1A S146; RAF1 Y340 and RAF1 Y341; JAK2 Y1007 and JAK2 Y1008; GSK3B S9 and GSK3A S21), which further demonstrates the repeatability of the kinase activity measurements made with their biological peptides.

(j) Unsupervised hierarchical clustering of kinases' functional signatures using only biological peptides. The clustering of kinases (top) demonstrates that the 151 biological peptides included in the assay are excellent functional discriminators of kinases' catalytic signatures. Kinases belonging to a same sub-family most closely resemble each other, while most functionally distant kinases segregate away from each other.

5

10

15

20

25

30

Together, results in (a-j) demonstrate that biological peptides are effective combinatorial sensors to functionally differentiate kinases from each other, and to measure the enzymatic activity of their respective kinases. Kinases are significantly and specifically more capable of phosphorylating a vast majority of their predicted biological peptide targets than reference peptide sets.

- [0025] Fig. 13. Comparing the activity of kinases measured in presence of their biological peptides versus modified peptide counterparts. To further assert the preference of kinases to phosphorylate their biological peptide targets, we compared how significantly different the levels of phosphorylation activity of kinases were when measured in presence of their biological targets versus in presence of the mutated or pre-phosphorylated biological peptide counterparts.
- (a) Difference in the activity of kinases comparing pairs of non-modified versus modified biological peptide sequences. In the waterfall plot, each teal bar shows the difference in activity between a biological peptide and its mutated $(Y / S / T \rightarrow G)$ counterpart. Each violet bar shows the difference in activity between a biological peptide and its pre-phosphorylated $(Y / S / T \rightarrow pY / pS / pT)$ counterpart. Each peptide pair substrate's origin and target site along with its kinase is indicated underneath the graph. Results are derived from all experimental measures for all kinase. The significance of the difference in activity in presence of two different peptides was assessed in pairwise comparisons between experimental runs (grey scale of t-test values underneath the graph).
- (b-c) Overall comparison of activity profiles of Tyrosine kinases or Serine/Threonine kinases measured in presence of their predicted Y/S/T-containing biological peptides versus any Y/S/T-free biological or reference peptide. The phosphorylation activities of both Tyrosine kinases and Serine/Threonine kinases are significantly higher in presence of their Y/S/T-containing biological peptides than any Y/S/T-free biological or reference peptides.
- [0026] Along with results in Fig. 12, data in (a-c) indicate that the variety of biological peptides and control peptides included in our assay provides a practical framework to systematically validate and compare activity profiles within individual assays, or across

technical repeats, or between different samples. These analyses show that kinases significantly prefer to phosphorylate their 'un-modified' biological peptide targets.

5

20

- [0027] Fig. 14. Using HT-KAM as a 'discovery platform' to identify best targets of kinases, finds that biological peptides are systematically included among the most significantly high activity profiles of kinases.
- (a) Binary heatmap showing peptides associated with high (red) or low (blue) activity for each kinase. For this analysis, each kinase was tested independently of all others, and we used two separate computational approaches to compare levels of ATP consumption per individual peptide to the pool of 63-reference peptides.
- 10 [0028] In the first approach, the average 228-activity data points from all experimental repeats was used in a Kalmagorov-Smirnov (KS) test comparing each 165-non-reference peptides (i.e. 151 biological peptides, and 14 positive control peptides) to the 63-reference peptides (p values with or without BH correction controlling for false-discovery rate). In parallel, the mean and standard deviation (SD) of the 63-reference peptides was computed to then identify which peptides among the 165-non-reference peptides display activity signals >2 fold SD from the mean (>highest 2.5% of reference).
 - [0029] In the second approach, all experimental replicates (instead of averaging them as in the first method) were used in either a linear additive model with BH corrected p-values from each 165-non-reference peptide versus 63-reference peptide (BH.p.lam<0.05 threshold), or an ANOVA model with BH corrected replicate error.
 - [0030] The overlapping results of these two approaches and their statistical cut-offs identify the most significantly and stringently selected high –and low– activities per peptide per kinase. This highly conservative method finds that 110 biological peptides act as best probes/sensors of kinases' individual phospho-catalytic activities. Binomial high/low activity levels are represented as a heatmap in this panel (a; high in red, low in blue), along with the 25-tested recombinant kinases organized by subfamily (indicated at the top), and the identified 124 peptides organized based on unsupervised clustering (correlation tree on the left; peptides probe ID's/origin on the right).
- (b) Analysis of activity profiles established in presence of inhibitors to validate results found in panel (a). Here, the underlying postulate is that, when the activity of a kinase is measured in presence of an inhibitor, any peptide associated with a significant decrease in activity may

be considered as a suitable probe to detect the activity of this kinase. Such data would also retrospectively validate (or not) the previously identified peptides from the method in (a). In the three graphs shown in (b), the model system uses ABL1 or LYN A kinases, and serial dilutions of imatinib or dasatinib.

- [0031] For instance, quadrant A shows a strong correlation between levels of inhibition 5 (captured by the Pearson correlation coefficient between imatinib concentration and ATP consumption for each peptide; y-axis), and the activity level per peptide in an untreated context (x-axis) (R^2 (Fisher(inhibition), activity) = -0.48; p = 2.75e-14). Importantly, the relationship between the activity levels of (all 228) peptides incubated with ABL1 in an untreated setting and their level of inhibition under increasing concentrations of imatinib, also 10 showed that the peptides that report higher activity levels of ABL1 kinase (i.e. dots located toward the right end of the x-axis; indicating highest ATP consumption), exhibit greater inhibition of that activity in presence of increasing concentrations of imatinib (i.e. dots located toward the bottom end of the y-axis; indicating strongest negative correlation and thus strongest inhibition). These peptides (bottom right area) largely overlap with the 15 peptides found with the previous method in (a) (indicated as red dots in quadrant A). For instance, biological peptides JUN Y170, CDK5 Y15, WASL Y256, or BTK Y223 are at the top of the list of peptides most significantly associated with high ABL1 activity, and they also show strong inhibition of activity in presence of imatinib (shown as red dots in (b)), which confirms that they are ABL1 substrates targetable by anti-ABL1 therapeutic drug. So, these 20 data are a finding consistent with the initial validation purpose of the analysis. Importantly, this method also finds that the biological peptide targets of ABL1 are most systematically and significantly associated with the measurable response of ABL1 to ABL1-inhibitors (besides the 4 peptides previously mentioned, this method also finds JAK2 Y1007, MAP4K1 Y232, ABL1 Y226, TP73 Y99, CDKN1B/p27 Y88, MDM2 Y394, RAD51 Y54 as good reporters 25 of ABL1's activity; shown in main Fig. 1j).
 - [0032] Similar results were obtained for dasatinib-treated ABL1 (quadrant **B**) and dasatinib-treated LYN A (quadrant **C**) using the same experimental validation approach and statistical analysis.
- 30 **[0033]** (**c-d**) Comparison of the most repeatable peptide-derived activities of ABL1 to the spectrum of activities established from the differential signature of ABL1. Following the x-axis of the graph shown in (**c**), the 22 peptides that behave as the most internally robust

sensors of ABL1 activity are represented as 14 green squares + 8 black triangles (data derived from the analysis used to generate panel (a)). Following the y-axis of this graph, the 40 peptides that best differentiate ABL1 activity signature from all other kinases' signatures are represented as 32 purple lozenges + 8 black triangles (data established in Fig. 11a). The dashed rectangles (i) and (ii) outlined in graph (c) match the dashed areas (i) and (ii) in panel (d), where peptides' IDs/origins are listed. The red-filled or red-highlighted-margin squares or lozenges or triangles or circles in (c) correspond to biological peptide targets of ABL1 as defined by PhosphoAtlas and included in the HT-KAM peptide library. Noticeably, all ABL1's biological peptide targets are located on the top right corner of the graph (i.e. reporting on high ABL1 activity). This analysis also finds that peptides associated with significantly low/minimal ABL1 activity correspond to biological targets of Ser/Thr-kinases (dashed rectangle (ii) in the lower left area in (c) and listed in panel (d) as biological peptides established from phospho-target sites: AKT1 T308, MAP2K1 T192, SOS1 S1193, BRCA1 S988, NFkB1 S907, SMAD2 T8, CREB1 S133, EGFR T678). These observations directly support why combinations of 'disparate' biological peptides are intrinsically good discriminators and identifiers of different kinases.

5

10

15

20

- [0034] (e-f) Venn diagrams intersecting results from analysis in (a) (i.e. robustness of peptide-phosphorylation activities) and analysis in Fig. 11 (i.e. most differential peptide activities). Results similar to ABL1 data (e) were found for other kinases, such as AKT1 (f), or SFK's, HER's, MAPK's (data not shown). In all cases, biological peptides act as robust sensors of the differential and individual phospho-catalytic activity signatures of kinases.
- [0035] Based on the computational methods we developed and peptide library we designed to showcase our system, we find that biological peptides are systematically associated with most significantly and measurably high activity profiles of kinases.
- 25 [0036] Fig. 15. Comparison of the specificity and sensitivity of kinases' signatures established with their biological peptide subsets, or their generic positive control peptide sets, or random peptide sequences.
 - (a-b) ROC curves and AUC profiles of kinase families and individual kinases. The ROC curves and AUC values of each kinase measured with their specific subsets of either all-biological (red), or all-positive (gold), or all-random (grey) peptides are shown as lines and annotated within each graph. ROC curves and AUC values were established using the method explained in Fig. 8.

(c) Comparison of AUCs measured across kinases and measured from all-biological (red) vs. all-positive (gold) vs. all-random (grey) vs. differential (violet) peptide sets. Averages, standard deviations and p-val are calculated from AUC's values shown in (a,b) for biological (red), positive (gold) and random peptides (grey), and from AUC's values for the differential peptide subsets (violet) that were analyzed in Figs. 10-11.

5

10

15

20

[0037] Results from these plots show that the combinations of biological peptides are very good predictor of kinases' identity. Specifically, for kinase families ABL, AKT, HER, and MAPK, and for individual kinases AKT1, EGFR, MAPK1/ERK2, HCK, SRC, the AUC values obtained from their biological peptides are excellent (on average >0.94). It can be noted that the somewhat lower AUC observed for SFK's biological peptides (i.e. 0.859) was attributable to peculiar activity differences from individual SRC family members. Indeed, the AUC derived from the predicted biological peptides of SFK's was increased when the most dissimilar members of the SFK family and their related peptides were 'excluded' (AUC augments from 0.859 to >0.92, while singling out FGR and FRK kinases along with SRMS and BRK as majorly distinctive functional subclasses among SRC kinases, and in fact display little overlap among subsets of biological peptide target pools, hence the differential effect on specificity and sensitivity of SFK's catalytic signatures; analysis/data not shown). Following such principle, entire predictions on the functional distance between kinase enzymes (instead of kinase genes) could be made, and could reshape kinase classifications. This concept also relates to the good-yet-somewhat-lower AUC found for the MAPK family, since the two recombinant MAPK's (ERK2 vs. p38a) we studied are functionally/biologically quite distant from each other, and thus their enzymatic activities for their respective biological peptides are fairly dissimilar (which was already noticeable in earlier analyses/figures).

[0038] In addition, it can be noted from panel (c) that the specificity/sensitivity (AUC's)
from biological peptide subsets performed almost to the same degree as the differential
peptide sets computationally identified in Figs. 10-11 (e.g. ABL AUC(biological peptide set;
n=11) = 0.974 vs. ABL AUC(differential peptide set; n=34) = 0.911; AKT1 AUC(biological
peptide set; n=20) = 0.986 vs. AKT1 AUC(differential peptide set; n=27) = 0.977; HER
AUC(biological peptide set; n=22) = 0.967 vs. HER AUC(differential peptide set; n=76) =
0.948)). AUC's from positive control peptide subsets performed systematically and
significantly less well.

[0039] These results demonstrate that biological peptide subsets are well-suited predictive sensors to specifically, sensitively, and differentially detect their respective kinases. These data underline the strict precision of the HT-KAM assay/data analysis system we developed, and its ability to accurately account for peculiar functional differences between kinases, including between individual kinases otherwise considered as genetically related.

5

10

15

20

25

- [0040] Fig. 16. Measuring the effects of kinase inhibitors using biological peptides. Measuring the effects of inhibitors on kinases' activity is a good way to evaluate the performance of biological peptides as sensors of kinases. So, we tested whether biological peptides of kinases reported on the inhibited activity of their kinases in presence of drugs at multiple concentrations.
- (a) Table of IC50 concentrations of imatinib, dasatinib, and staurosporine for ABL1, ABL1^{T315I}, LYN A and AKT1 kinases. IC50 values are indicative averages established from IC50 estimations measured in biochemical assays reported in the literature.
- (b) Monitoring the effects of kinase inhibitors on the activity of ABL1, ABL1^{T315I}, LYN A and AKT1 kinases using their respective subsets of biological peptides as sensors of changes in activity. Experimental concentrations of imatinib and dasatinib correspond to 0.01x, 1x and 100x IC50 concentrations specific to ABL1 (i.e. 0.002uM, 0.2uM, 20uM, and 0.01nM, 1nM, 100nM, respectively). These concentrations are thus anticipated to affect the other recombinant kinases tested here (ABL1^{T315I}, LYN A and AKT1) with less or little-to-no effect on their levels of activity. This means that the relative differences in reported IC50 concentrations between ABL1 and LYN A for imatinib (0.2 versus 100uM) and dasatinib (1 versus 9nM) can be used to compare the measurable differences in effects of inhibitors. As well, AKT1 can be used as a 'negative control' for lack of response. Every experimental phospho-signature was initially measured across all-228 peptides, and either in presence or absence of inhibitor (i.e. each sample profile was normalized against the mean activity level measured across 228 peptides, and then averaged across all 3 independent replicates of each of the 8 different conditions for all 4 kinases). Only activities measured in presence of the predicted biological peptide targets of each kinase are shown (11 biological peptides for ABL1; 8 for LYN A; 20 for AKT1). The effect of increasing concentrations of inhibitors can be compared to control untreated (UNT) activity profiles (compare far left column to the two sets of three columns on the right). The sensitivity of ABL1, ABL1^{T315I}, LYN A and AKT1 kinases to imatinib and dasatinib can be assessed from changes in activity measured from their individual biological peptides. The averages of the kinase activity values measured

5

10

across their biological peptides in each experimental condition are provided at the bottom-end of the panel (blue-to-black-to-yellow scale of average ATP consumptions).

- (c-e) Evaluation of the effects of inhibitors on kinase activity profiles using complementary analytical methods. In (c), each 228-peptide-activity profile of each sample was first normalized against the baseline activity level measured from the 14 peptide-free well controls included in each experimental 384-well plate, and then each single peptide-derived activity level measured in presence of inhibitor was compared to the activity level found in untreated sample (i.e. all activities from all peptides in untreated sample become the baseline '0' value). Results of the average of the differential ATP consumption comparing inhibitor-treated versus untreated for each biological peptide are shown as color-coded kinase activity profiles in (c). (These data were used to plot Fig. 1k.) High concentration (10uM) of staurosporine is included as control of general shut down of kinases' activity.

 In (d), entire 228-peptide activity profiles of ABL1^{T3151} comparing untreated versus imatinibor dasatinib- treated samples were investigated for potential trends in inhibitory effects
- following the principles and statistical methods used in **Fig. 14b**. These data validate the overall lack of inhibition of ABL1^{T3151} observed with imatinib using its biological peptides in (**b-c**). A general dampening effect of dasatinib on ABL1^{T3151} activity was observed (bottom graph in (**d**); almost all 228 peptide probes display a negative R²), which may relate to lower activity levels measured with some of the biological peptides shown in (**c**).
- In (e), the analysis used ATP consumption levels measured in presence of peptides most robustly associated with high activity of ABL1 (derived from the analysis described in **Fig. 14a**, and including biological peptides). Results directly validate the gradually inhibited activity profiles found in panels (b-c).
- these different drugs. For instance, the mean correlation coefficient (meanR²) relating ATP consumption and dasatinib concentration was -0.997 (SD=0.003), -0.766 (SD=0.21), -0.33 (SD=0.09) for ABL1, LYN A and ABL1^{T3151} respectively (calculated using peptides associated with kinases' highest catalytic activity, including their biological peptides). So, dasatinib had the strongest inhibitory effects on ABL1, followed by LYN A, and had some limited but measurable effect on ABL1^{T3151}. As an additional validation of these data, a formal comparison of the t-test to the Fisher-transformed correlation coefficients established from the levels of drug inhibition measured either with the high-activity peptide group, or with the 63-reference peptide group (which is one of the principal peptide control groups

5

10

15

20

WO 2019/200245 PCT/US2019/027201

used to analyze HT-KAM readouts), showed that dasatinib inhibited significantly more the subsets of (biological) peptide targets of ABL1 and LYN A than the reference set (respective T-test (fisher): p=1.087e-07 and p=3.081e-06), but the effects of dasatinib did not differ significantly between these peptide groups for ABL1^{T315I} (T-test (fisher) p=0.41; which is explained by the general dampening of activity profiles in (d)). Based on experimental conditions tested here, data indicate that the IC50 concentration of dasatinib for ABL1 may be relatively higher than the anticipated 1nM (but far lower than 100nM), while IC50(dasatinib) for LYN A is between 1 and 100nM (and probably close to the anticipated 9nM). Using the same series of comparisons and peptide sets, the imatinib drug could be identified as a strong inhibitor of ABL1 (mean(R²)=-0.847; SD(R²)=0.111), with no effect on ABL1^{T315I} (mean(R^2)=0.66; SD(R^2)=0.025; which is the basis of the failure of imatinib therapy in leukemia), but with measurable, although limited, inhibitory effect on LYN A $(\text{mean}(R^2)=-0.462; SD(R^2)=0.49)$. T-test to the Fisher-transformed correlation coefficients measuring levels of drug inhibition formally showed that imatinib inhibited significantly more the subsets of (biological) peptide targets of ABL1 and LYN A than the reference peptide set (p=0.00252 and p=2.054e-06, respectively). Conversely, the peptide sensor group appeared to be more activated by imatinib for ABL1^{T3151} (p=0.027), which may relate to some of the observed increased activities monitored with biological peptides in (c). (Such phenomenon was also observed for imatinib- and dasatinib-treated AKT1 (bottom heatmaps in (b-c)), while AKT-targeting drug MK2206 treatment effectively decreased AKT1 activity (data not shown) in control assays using the same analytical methods presented in (b-e).) Based on the set of drug concentrations used in this experiment, the IC50(imatinib) for ABL1 may be higher than the anticipated 0.2uM (but far lower than 20uM), while IC50(imatinib) for LYN A may be lower than the anticipated 100uM (possibly close to 20uM).

25 [0042] Such kind of analyses also allowed comparing the effects of different drugs on a given kinase. In particular, these results showed that dasatinib is a more potent drug than Imatinib for ABL1, and this is also true for LYN A or ABL1^{T315I}. For example, the biological peptides of ABL1 revealed a stronger response to dasatinib than imatinib, which is corroborated by statistical analysis (dasatinib vs. imatinib: mean(R²)= -0.997 vs. -0.847; T-test (fisher) p = 1.087e-07 vs. 0.00252). Moreover, representations in (b,c,e) indicate that the kinetics of response to drug treatment are not identical between different peptides, which suggests that the avidity for, and the phosphorylation of, particular peptide sensors may be differentially affected by an inhibitor.

- [0043] These results indicate that drug-responses established from arrays of peptide probes provide the confidence and reliability that any single-peptide readout may not offer. These data also demonstrate that the HT-KAM can be used as a functional screen to assess the differential response of different kinases to inhibitors, which further illustrates the performance of the HT-KAM assay and its potential utility toward pharmacological screens. All these results directly show that biological peptides are excellent sensors to measure the activity of their cognate kinases.
- [0044] Fig. 17. Measuring the effects of SFK-inhibitors using SFK's biological peptides as sensors of drug response.
- (a) Activity of FYN A, HCK, LCK, and SRC kinases treated with PP2 (20nM) and SU6656 (250nM) inhibitors. Literature reports indicate that IC50 concentrations of PP2 and SU6656 are (5nM; 170nM) for FYN A; (5nM; not available) for HCK; (4 to 30nM; >5uM) for LCK; (35 to 100nM; 280nM) for SRC. Differences in drug sensitivity can be observed between kinases. Data overall corroborate previously reported ranges of sensitivities for these drugs.
- (b) Activity of HCK treated with serial dilutions of SU6656 (1nM to 100uM). Of note, the sensitivity of HCK to SU6656 was more pronounced when measuring it with biological peptides than when monitoring it using HCK's generic control positive peptides (n=4; data not shown). In (a-b), results were processed using the same analysis described in Fig. 16c. Together, these results show that the biological peptides of SRC kinases are adequate sensors to monitor the effects of SRC kinase-inhibitors.
 - [0045] Fig. 18. Multi-peptide-based identification of kinases that mediate intrinsic resistance to BRAF $^{
 m V600E}$ -targeted therapy in colorectal cancer (CRC) cells.
 - (a) Schematic of the experimental procedure.

5

- (b) Previously identified mechanisms involved in resistance to BRAF^{V600E}-targeted
 25 therapy^{3,17}. The anticipated reduction in MEK1/2 and ERK1/2 protein phosphorylation (blue shading), and increase in EGFR protein phosphorylation (red shading), served as validated knowledge to assess whether the HT-KAM platform can effectively detect MEK / ERK / EGFR kinases' activity in biological samples after vemurafenib (VEM) treatment.
 - (c) Baseline levels of protein and ATP concentrations comparing untreated (UNT) vs. VEM-treated WiDr cell extracts across all samples. VEM and UNT samples were comparable.
 - (d) Comparison of the activity levels of MAPKs, HERs, AKTs derived from kinases' biological peptide subsets (x-axis), versus those derived from peptides associated with kinases' most differential signature (y-axis; peptide sets previously computationally

identified in **Figs. 10-11**). The table on the right of the graph indicates the number of peptides per kinase. In the graph, the x- and y- axes represent a scale of the differential activity profile between VEM and UNT samples across all experimental repeats (total of 12 UNT and 12 VEM HT-KAM runs). Data plotted on the x-axis display the average of the activity differences across all experimental repeats and all biological peptides per kinase. Data plotted on the y-axis use kinase activity levels calculated as the difference between (i) the mean activity measured from the peptide subset that specifically differentiates the kinase in question from all other kinases, and that is associated with greater phosphorylation by the recombinant kinase in question, 'minus' (ii) the mean activity measured from the differential peptide subset specifically associated with lower phosphorylation by this kinase.

[0046] For example, after VEM treatment, the 'increase' in activity of AKT1 kinase (red mark) is +82 based on the 20 biological peptide targets of AKT1 (x-axis), and +46 based on the difference between the average activity measured from AKT1's 21 most differentially high-activity peptides 'minus' the average activity measured from AKT1's 6 most differentially low-activity peptides (y-axis).

15

20

25

- [0047] The plot also incorporates activity profiles established from two different normalization methods. One normalization uses the average value of ATP consumption across 228 peptides + 14 peptide-free cell extracts (circles). The other normalization uses the average across 16 Y/S/T-free peptides (squares). Both normalizations lead to overall similar outputs of VEM-UNT differential activity profiles. Correlation between peptide subsets and for each normalization is indicated below the table, and the trend line of the linear regression between all data points is shown (overall correl. = 0.757).
- [0048] (e) Comparison between changes in phospho-protein levels measured by western blot (top section), versus the changes in kinase activity measured with generic positive control peptides (middle section), versus the changes in kinase activity measured with their subsets of biological peptides (bottom section). Each blue-to-white-to-red color band represents the average of the difference in phospho-activities per peptide between VEM and UNT samples and across all experiments (i.e. UNT equals '0'; not shown). A gray side bar is drawn by the top-75% biological peptides that follow the main activity trend. Western blots serve as validation of kinases activity profiles.
- [0049] (f) Formal comparison between changes in phospho-protein levels by western blot (x-axis), and the differences in levels of phosphorylation activity for individual kinases (y-

axis) based on either their generic positive control peptides (triangles), or biological peptide subsets (circles), or differential peptide subsets (squares). The identity of kinases is color-coded (markers' legend are shown in between the graph and the table). We used Image J to quantify intensities of bands identified by western blots. Phospho-protein amounts (x-axis) are plotted against the mean difference in kinase activity (y-axis; VEM 'minus' UNT) measured with 'n' peptides belonging to each category (indicated in the table on the right) across all experiments. In the case of GSK3B, we used the opposite value of the western blot quantification since higher phosphorylation of GSK3B is associated with a decrease in its activity.

5

- [0050] Results show that kinase activity values established from either biological or differential peptide subsets correlate with protein levels: circles and squares are located either in the top right quadrant (i.e. high phospho-protein amount is associated with high kinase activity after VEM; which includes: EGFR, AKT1, PDPK1, SGK1, PRKCA, PKN1/2), or in the bottom left quadrant (i.e. low phospho-protein amount is associated with low kinase activity after VEM; which includes: MEK1, ERK2, p38a, GSK3B). Unlike kinase signatures established from biological or differential peptide subsets, positive control peptides did not correlate with kinases' activity (see triangles in the top left quadrant and the bottom right quadrant; e.g. positive control peptides did not identify ERK2 and EGFR kinase as respectively less and more active after VEM treatment). This is also visible in panel (e)
 - [0051] Together, results in (d-f) show that the HT-KAM system can identify and differentiate individual kinases and kinase families from each other in cell extracts, which validates the utility of the HT-KAM platform. The different biological peptide subsets of different kinases can effectively be used to measure the activity of their related kinases in biological samples.
 - [0052] (g) Summary of the functional state of kinases found in WiDr BRAF^{V600E} CRC cells treated with VEM using HT-KAM. Arrow linkers represent the functional connectivity between kinases, and colors indicate activity (e.g. VEM induces higher AKT activity, which leads to GSK3B phosphorylation, which reduces GSK3B activity).
- 30 [0053] Fig. 19. Levels of phosphorylation activity measured with peptides derived from functionally related proteins or pathways. We provide examples of phospho-

activities measured with individual biological peptides that we purposely selected and organized by protein of origin or by signaling pathway of interest.

- (a) Peptide sensors related to EGFR-signaling (EGFR, PLCG1, GAB1, CBL, GRB10).
- (b) Peptide sensors related to TGFBR-signaling (SMAD2 transcription factor).
- 5 (c) Peptide sensors related to transcription factors/regulators (CREB's, FOXO's, cFOS, STAT's, SP1, JUN's, NFkB1, cMYC).
 - (d) Peptide sensors related to kinase proteins: MTOR, JAK's.
 - (e) Peptide sensors related to phosphatase proteins: CDC25C. PTEN.
- [0054] In all panels, the levels of phosphorylation activity measured with individual peptide sensors correspond to the differences in activity measured between VEM-treated and UNT-control samples. Significance per peptide (or peptide group) comparing all experimental read outs across samples and repeats is indicated (pairwise t-test p-val comparing UNT vs. VEM profiles).
- [0055] Based on these observations, it is tempting to link levels of phosphorylation measured with biological peptides to the functional state of the signaling circuits these peptides originate from, and how they relate to mechanisms of VEM-resistance (e.g. EGFR, CDC25C³, TGFBR¹8, MTOR). Some of these biological peptides also happen to be those that are 'paradoxically' more phosphorylated within the peptide-phospho-signatures of kinases that otherwise exhibit low activity profiles after VEM treatment (e.g. ERK2's biological peptide subset includes peptides related to EGFR-reactivation circuit (GAB1 T476, GAB1 T312, GRB10 S150 peptides) and TGFBR-pathway (SMAD2 S250 peptide); see Fig. 18e first panel on the left). It would be interesting to investigate whether such peptides are early signs of re-activation of particular kinases (e.g. re-activation of MAPK signaling contributes to insensitivity to RAF inhibition¹¹7,¹¹9).
- 25 [0056] Inspection of the results for individual biological peptides demonstrate the robustness of the phospho-catalytic profiles established from cell extracts: (i) similar activity levels measured with biological peptides of similar sequences (e.g. peptides from MTOR, or JAK1, or CDKN1A, or CDC25C), (ii) systematically higher activity levels measured with biological peptides than with their mutated/pre-phosphorylated counterparts (e.g. EGFR,
- PLCG1, GAB1, GRB10, STAT1, GRIN2B, ABL1, MTOR; data not shown). The phosphorylation state of many biological peptides could also be corroborated by western blots, for example for EGFR (Y1068) (see **Fig. 18e** third panel). MTOR (S2448) (d), and

others for which western blots are not shown (e.g. upregulation of phospho- EGFR (Y869), PLCG1 (Y1253), CBL (Y774), FOXO3 (S253), and downregulation of phospho- cMYC (T58), JUN (Y170), CDC25C (T48)).

[0057] Fig. 20. Response of BRAF^{V600E} CRC cells to targeted therapy combinations.

- To validate the kinase activity signatures of VEM-resistant WiDr cells found by HT-KAM screen, and as a mean to assess the role of these kinases (AKT1, PDPK1, PRKCA, SGK1) as mediators of the response to VEM and their potential value as druggable vulnerabilities in our model, we used 3-day cell viability assays to monitor the response of cells to drug combinations.
- (a) Summary graph of WiDr cell growth response to VEM at 2uM (=GI50 concentration) or 0.25uM, and either used alone or in combination with other inhibitors. The bar graph is derived from complete cell growth response data curves (as shown in Fig. 2d or in the VEM+EVE graph shown underneath the main panel in (a)). All results were confirmed with PLX4702, a compound related to VEM (data not shown). Results show that lower than
 single-agent-GI50-doses resulted in effective combinatorial cell growth inhibition. These data validate that the significantly hyperactive kinases found by HT-KAM are biologically meaningful targetable vulnerabilities.
 - (b) Table summarizing the characteristics of WiDr cells' response to drug combinations. The significance of drug interaction (two-way ANOVA; p-val) and combination index (CI; following the Loewe Additivity model^{6,7}; arbitrary threshold: synergy CI≤0.6; additivity 0.6<CI≤1.0; average for VEM≤2uM and 2nd drug≤IC50 concentrations) are listed.
 (c) List of other drugs and additional BRAF^{V600E} cell lines intrinsically resistant to VEM that we tested to further validate kinase hits identified by HT-KAM profiling.

20

[0058] These results confirm that the kinases found by HT-KAM are involved in the
response and resistance to VEM in BRAF^{V600E} CRC. Together with data in Figs. 18-19 and
Fig. 2a-b, these results show that a finite number of key functional dependencies can be
identified as additional mechanisms participating in therapeutic resistance, which offers a
selective choice of effective targets to explore. So, HT-KAM can be used as an
exploratory/discovery platform to survey kinases and their activity levels, which is especially
valuable in the case of diseases that cannot be defined by a single driver mutation or
individual genetic dependencies such as BRAF^{V600E} CRC. As such, the HT-KAM system can
help select drug candidates that target orthogonal modes of resistance with high likelihood of

restoring therapeutic sensitivity, thus providing a rational approach to design combination therapies.

[0059] Fig. 21. Ranges and levels of peptide phosphorylation measured across 20 cancer cell lines.

- 5 (a) Peptide phosphorylation activity signature of cancer cell lines. Protein extracts were generated for 20 cancer cell lines. Their phosphorylation activity was tested on the HT-KAM platform. For each experimental run, the average value of ATP consumption across the 228 peptides and 14 data-points from cell extract alone (i.e. established from 14 peptide-free control wells per 384-well plate) was used for internal normalization, and then the activity per-peptide was calculated as the difference in ATP consumption between individual peptide-10 derived read outs and the internal mean. Next, phosphorylation activity values measured for each peptide were averaged across experimental repeats for each cell line. Finally, the phospho-catalytic activity signatures measured across the 228-peptide sensors were subjected to unsupervised hierarchical clustering. Phospho-catalytic activities are color-coded based on the relative level of activity measured in presence of each peptide for each cell line, from blue 15 for low activity, to white for intermediate-or-mean activity, to red for high activity. This analysis showed that each cancer cell displayed a unique phospho-catalytic fingerprint. On the right side of the main heatmap, the peptide class is indicated as a red/gold/grey color streak. At the bottom of the main heatmap, the phosphorylation activity profiles of cell extracts without peptide (i.e. measured in the 14 peptide-free control wells) are shown. 20 [0060] (b-d) Examining the patterns of phosphorylation activity across cancer cells. The phospho-catalytic activity profile of cancer cell lines was examined for three technical variables: range of activity per peptide probe, level of phosphorylation intensity per peptide probe, and peptide class. The underlying reason is that, for an assay to best distinguish the phosphorylation activities of different samples, it would be most appropriate to rely on 25 phospho-sensing probes that capture the widest possible dynamic range of phosphorylation activities between cells, and/or provide the overall highest level of phosphorylation activity across cells. While asking this question, we also considered the possibility that the results of these two first variables may be different depending on the class of peptide used in the HT-30 KAM assay, that is: biological peptides, or positive control peptide probes, or reference peptides.
 - [0061] In (b), results are sorted by peptide class, and then by highest to lowest range of phosphorylation activity per peptide.

[0062] In (c), the table lists the values calculated from (b) to compare the three-peptide classes.

[0063] In (d), results are sorted by highest to lowest average phosphorylation activity per peptide. Peptide classes are then grouped and counted in the lower graphs to provide a sense of which peptide class reports on the highest to lowest levels of phosphorylation activity.

5

10

- [0064] Results in (b-d) show that biological peptides provide the broadest ranges and highest levels of measurable phosphorylation activities. Reference peptides provide the lowest activity measurements overall, while still providing a broad range of phosphoactivities. Generic positive control peptides provide the lowest range of activities, and the measured phospho-activity levels remain lower than the overall mean activity per cell line across all cells. We conclude that, although virtually all peptides participate in defining the unique peptide-phosphorylation activity signature of every cancer cell line, the set of biological peptides are particularly well-suited catalytic activity sensors to measure and differentiate the unique functional phospho-fingerprint of cancer cells.
- [9065] (e) ATP levels in peptide-free wells and protein concentrations per cell line. In the graph on the left, each bar represents the average +/- st dev of ATP concentration of cell extract alone measured across the 14 peptide-free control wells available for each experimental 384well/plate. All samples for each cell line were tested at least three times. The range of ATP-standard across all HT-KAM assays is shown on the far right of the graph (averages and standard deviations across all HT-KAM experiments are shown). These results show that ATP profiles of all samples fit within the limits of the range of ATP standard. ATP profiles were comparable between different cell lines or samples or experimental repeats. There is no evidence for any ATPase or phosphatase contamination. So, variations in phospho-catalytic activity measured in presence of peptides were both peptide-dependent and cell-specific (results shown across all figures). As such, phospho-catalytic activity profiles can be interpreted with confidence.

[0066] Fig. 22. The kinase activity signature of cancer cells identifies druggable vulnerabilities.

(a) Kinase activity signature of cancer cell lines. The activity of kinases was calculated as the average of the phosphorylation activities measured in presence of their respective subset of biological peptides. The kinase activity profile of each cell line was deconvoluted from the corresponding peptide phosphorylation profile shown in Fig. 21a, and for individual kinases

or kinase families with ≥3 biological peptides. Unsupervised hierarchical clustering was applied across cells and kinases. Each cancer cell line displayed a distinguishable kinase signature. Kinase activity is color-coded blue-to-black-to-yellow from low-to-medium-to-high activity.

- (b) Pearson-correlation heatmap highlighting the functional relationship between cancer cells established from their kinase activity signature. Cells are arranged by tumor tissue of origin (MEL: melanoma; CRC: colorectal cancer; BC: breast cancer; LC: lung cancer; PC: prostate cancer).
- (c-d) Comparing kinase activity and drug sensitivity of cancer cell lines. A good way to

 evaluate the performance of HT-KAM-defined kinase signatures is to measure the effect of a
 kinase inhibitor on cell growth and then correlate it to kinase activity level. This would assess
 whether kinase signatures are predictive of drug sensitivity and indicative of cell-specific
 kinase dependencies. We tested the effects of 28 kinase-inhibiting drugs (list in (c)) in 3-day
 dose-response cell viability assays using a core set of cell lines (A375, AU565, H3122,
- 15 HCC70, HCT116, HT29, MCF7, MDA231, MDA436, SK-CO-1, SkMel2, T47D, WiDr; additional cell lines were tested on a case by case basis where it was deemed useful, such as PC9 to compare EGFR activity versus gefitinib sensitivity²⁰). We intentionally chose to test more than one inhibitor per kinase for some of the kinases in order to validate results (the 28 drugs inhibit 17 different kinases/kinase families; see table in (c)). We also further
- 20 corroborated GI50 results from literature²¹⁻²³. Kinase activity levels where extracted from signatures available in (a). We then correlated cancer cells' GI50's with their kinase activity for each drug. Examples are shown in panel (d). The table in (c) provides all correlations. The negative correlation between kinase activity and drug-GI50 across cells indicates that, overall, cell lines were more susceptible to inhibitors for which they displayed higher kinase activity. These results directly verify that profiles measured by HT-KAM assays accurately

predict differences in kinase activity.

(e) Correlation between kinase activity and drug sensitivity. Results from both the analysis in (c-d) and from Fig. 2g are included (total of 373 data points established from 37 inhibitors that target 22 kinases). For each kinase/drug pair, we compared the differential kinase activities and drug-GI50s across tested cancer cell lines. These results show that the kinase signature of cancer cells can reveal their actionable vulnerabilities, and thus their kinase dependencies.

[0067] Along with Figs. 18-21, this demonstrates that the peptide phosphorylation signatures can be reasonably converted in kinase activity profiles with translational relevance. The HT-KAM platform is a practical solution to find active, druggable kinases in cell culture models.

5 [0068] (f-g) Controls for the comparison of A375 vs. WiDr cells. Protein concentration, baseline ATP levels, and protein expression/phosphorylation levels are provided for validation of Fig. 2g-h.

[0069] Fig. 23. Melanoma specimens.

- (a) Table with details about treatments received by patients before and after the 10 biopsy/excised biospecimen that was used for histo-pathology/diagnostic and retrospectively tested on the HT-KAM platform. Treatments (muphoran; dacarabazin; interferon (IFN; low/high dose); ipilimumab (anti-CTLA4); vemurafenib (BRAF^{V600E} inhibitor); interleukin; irradiation) are color-/letter-coded. Numbers of treatment cycles are specified. Tumor stage, BRAF status, recurrence and survival are indicated. The flash-frozen tumor biospecimen of 15 patient #1 was a superficial spreading melanoma (SSM) excised from the trunk; patient #2: SSM metastasis from the trunk; patient #3: subcutaneous metastasis from a recurrent cutaneous tumor from the leg; patient #4: nodular melanoma metastasis from the leg; patient #5: cutaneous metastasis from the cubital fossa; patient #6: cutaneous metastasis from the neck; patient #7: inguinal lymph node metastasis (axillary lymphadenectomy of positive 20 sentinel); patient #8: cutaneous metastasis from a recurrent cutaneous tumor of the temporal area, patient #9: cutaneous metastasis from a recurrent cutaneous tumor located on the back. (b) Baseline ATP levels measured across HT-KAM assays, and protein concentrations from tissue extracts. Levels are comparable between tumors and experiments.
 - [0070] Fig. 24. Analysis of the phospho-catalytic signatures of tumors.
- 25 (a) Peptide phosphorylation activity signature of melanoma specimens. Unsupervised clustering of 36 activity profiles measured across 228 peptides is shown (9 patient tumor tissues tested in 4 independent technical replicates).
 - (b-h) Principal component analysis (PCA). We investigated the potential association between 'variables of interest' and principal components (PCs) that define individual phospho-
- signatures (linear regression, overall fit of univariate model PC(i) for variable (j)). The table in (b) provides a summary of the results visually represented in graphs (c-g).

In (c), results show that replicate runs from the same patient sample were significantly similar (9 patients are shown as 9 different colors, with 4 dots per patient for the 4 experimental replicates), with an association between patient ID and PC1 of p=1.44E-06. In (d), results show that days at which assays were run were not associated with the primary PCs of melanoma kinomes (3 different days of experimentation are shown as 3 different colors; p>0.05). So, the results of the PCA from the two technical variables in (c-d) demonstrate the excellent performance and high reproducibility of the HT-KAM system (i.e. experimental procedure, instrumentation, data analysis).

5

10

15

20

25

30

In (e-f), results show that survival status (f) and recurrence status (g) were highly associated with the PCs of the kinome signatures (respectively PC1:p= 5.14E-06 and PC2:p=0.028; and PC1:p=2.31E-07). So, the results of the PCA from the two clinical variables in (f-g) reveal the strong predictive and prognostic value of the phospho-catalytic signature of tumors. In (g), results show that PCs of melanoma phospho-signatures do not associate with BRAF mutational status. This demonstrates that, even if a BRAF^{V600E} mutation is a dominant oncogenic driver, HT-KAM effectively discerns different types of BRAF^{V600E} tumors depending on other critical variables that the phospho-signatures of tumors reflect. HT-KAM differentiates fatal BRAF^{V600E}-postive conditions (patients #4,5,8,9) from non-fatal BRAF^{V600E}-postive conditions (patients #3,7). And similarly, HT-KAM distinguishes fatal non-BRAF^{V600E} conditions (patient #2) from non-fatal non-BRAF^{V600E} conditions (patients #1,6).

In (h), we overlaid PC results from (e-g) and annotated patients groups for outcome and therapeutic resistance. This shows that the PCs from VEM treated-but-resistant patients (#4,5,9) cluster together, indicating that tumor phospho-signatures reflect patients' unresponsiveness to BRAF-targeted therapy. The strong association between BRAF-therapy resistant lethal melanoma tumors and the PCs of their phospho-signatures fully validates the results generated from the clustering analysis available in Fig. 3b.

[0071] The results of the PCA shown in (b-g) were established from phospho-signatures normalized to the 228-peptides + 14 peptide-free readouts, and were closely recapitulated when signatures were normalized using the 63-reference peptides, or the 14 peptide-free tissue extract alone readouts, or 16-Y/S/T-free peptides, or when using raw ATP-consumption data (data not shown). Collectively, this formal investigation of the PCs of tumor phospho-signatures demonstrates the robustness of the HT-KAM system, and the reliability of its output to map the phospho-catalytic signatures of tumor tissues.

[0072] Fig. 25. Identifying the predictive peptide signature of patients with poor survival outcome, including BRAF^{V600E}-mutated patients resistant to BRAF-therapy.

Since survival is a significant clinical variable identified from patients' phospho-signatures (clustering analysis in **Fig. 3b**, and PCA in **Fig. 24**), we asked whether we could find peptides that would qualify as best predictors of patients' survival outcome. To do so, we applied two methods.

5

20

25

- (a-c) Method #1: analysis of peptide phosphorylation signatures using dual significance threshold selection. In (a), the waterfall plot shows the differential activity profile across all 228-peptides comparing patients #1,3,6,7 (alive) versus patients #2,4,5,8,9 (dead).
- Significance values (t-test and Wilcoxon rank sum test; FDR-adjusted or not) are provided underneath the graph. Peptide phosphorylation signatures were normalized to the 228-peptides + 14 peptide-free readouts. In (b), peptide phosphorylation activities were selected when concurrently passing FDR-adjusted t-test p<0.05 and Wilcoxon rank sum test p<0.05. This rigorous dual selection threshold identified 34 peptides as the most significantly differentially phosphorylated peptides associated with poor survival. In (c), peptide
 - phosphorylation activities shown in (b) are detailed across all patient signatures. Two thirds of the peptides are biological peptides (listed and color-coded on the right side of the heatmap), most of which are associated with higher phosphorylation activity in tumors from patients with poor survival outcome. We further validated these data using alternative
 - normalization schemes (data not shown), and by applying this same computational analysis to identify peptides qualifying as best predictors of recurrence (identifying an overlapping set of 27 peptides; data not shown).
 - (d-e) Method #2: analysis of peptide phosphorylation signatures using top-25%-activity threshold selection. The top 25% peptides displaying phospho-activities that were most variable between all patients and all experimental repeats were selected. Panel (d) shows the unsupervised hierarchical clustering of these 57 most differential signals (same normalization as in a-c). In (e), the waterfall plot shows the differential activity per peptide across these 57 peptides and between patient groups (differential survival outcome as black bars; differential recurrence outcome in violet; differential BRAF status in blue; data sorted by highest to lowest differential activities comparing survival outcome).
 - [0073] Results in (a-e) show that the most significant and consistently high signals associated with fatal outcome were measured with biological peptides such as SMAD2 S465 and S245 and S250, KHDRBS1/SAM68 Y440 and Y435, MTOR T2446 and S2448,

CDKN1A/p21 T145 and S146, BRCA1 S988 and T509, ABL1 Y226 (corresponding to Y245 in another ABL1 isoform), FCGR2B Y292, or CHEK1 S280. Likewise, peptide sensors associated with consistently low activity in fatal outcome were biological peptides NOTCH2 S2070, JUN Y170, TERT Y707, GAB1 Y627, and reference peptides from modified biological peptides PA 128, PA 134, or PA 230. Interestingly, the phospho-signatures of 5 poor survival outcome included peptide sensors related to kinases such as SFK's, MTOR, or TGFBR-signaling, some of which were found to confer acquired resistance to BRAF or MEK inhibitors in cell culture models of melanoma²⁴⁻²⁸. Phospho-catalytic activities measured with peptides of related sequences behaved similarly and were useful internal controls validating assay repeatability (e.g. MTOR T2446 and S2448; CDKN1A T145 and S146; CDK5 Y15 10 and generic positive control PA 240 which is originally derived from CDK1 Y15 and is mostly conserved between these two CDK's). So, the peptides included in the HT-KAM platform are robust sensors that can be used to generate clinically valuable signatures to diagnose cancer specimens.

- [0074] Fig. 26. Identifying the kinase signature of patient tumors. Determining the activity of kinases in tumors could reveal tractable candidates for therapeutic interventions. So, we explored the potential clinical utility of the kinase activity signatures of melanomas.
 (a) Waterfall plot showing the differential activity of kinases between patient groups. For each tumor, the activity of kinases with ≥4 biological peptides was calculated as the average of the phosphorylation activities measured in presence of their respective biological peptide subsets across all experimental repeats. Next, we calculated the mean activity per kinase for each patient group, and then plotted the differential activity between groups of interests, i.e. survival / black bars, recurrence / violet, BRAF status / blue. Significance was calculated using all experimental repeats between patient groups (shown underneath the graph).
- (b) Differential kinase activity signature of tumors. Kinase activity profiles were mean-centered per tumor tissue and then mean-centered across patient tumors. Semi-supervised hierarchical clustering was applied across the 60 individual kinases or kinase families. As a validation of the results in (a-b), the differential activities of some of the kinases we found in patient tumors are corroborated by gene over-expression screen for RAF-inhibitor resistance in melanoma cell lines 25 (e.g. upregulated kinase activity of PRKC(E), RAF(1), MAP3K8/COT1, PAK(1)).
 - (c) Comparison of the activity of ABL1, AKT1, ERK2, HCK and p38a deconvoluted from kinases' biological peptide subsets (x-axis), versus activity levels converted from kinases'

differential peptide signature (y-axis; method explained in **Figs. 11, 18d**). Results show good concordance across kinases and tumor groups (e.g. the correlation between kinases' activity related to survival (circles) was 0.847).

(d) Validation of differential kinase signatures using enrichment analysis. We applied an enrichment analysis (EASE – Fisher one-sided test; p<0.05) to identify kinases whose biological peptides were most represented among the 34 peptides most significantly associated with survival outcome (identified in **Fig. 25b-c**). Results are shown in the table, and formally identify AKT's, PIM's, and RPS6KB's as most significantly related to the melanoma survival outcome phospho-signatures.

- (e) Differential biological peptide-activity profiles comparing different patient groups. We chose to show AKT, PIM, RPS6KB, and GSK3B kinase families because analyses in (a-b,d) showed their changes were most significant and most profound (increase or decrease). Significance per peptide across patients groups (grey scale) are shown. The bottom graph compares the kinase profiles of BRAF^{V600E} tumors from patients retrospectively known to survive (#3,7) versus patients who died (#4,5,8,9; which includes all patients who did not respond to BRAF-therapy). This means that the intrinsic vulnerabilities of these tumors were not inhibited, and that alternative treatment options would have been available at the time of biopsy based on kinase signatures revealed by HT-KAM.
- [0075] Together, these results demonstrate that differences in the activity of kinases can be measured within a tumor biospecimen (i.e. for each patient), and between different tumors (i.e. across patients and their individual malignancies). As well, significant changes in levels of kinase activity can be identified between different groups of patients (e.g. survival outcome). So, the HT-KAM assay successfully maps the oncogenic kinase signatures of tumor tissues, and reveals the significantly hyperactive kinases that are most predictive of poor outcome. Accordingly, HT-KAM identifies druggable kinase vulnerabilities most tractable to treat patients with highest likelihood of recurrence and poorest survival outcome, including patients who are unresponsive to BRAF-therapy. Specifically, our results indicate that AKT1, PIM1 and RPS6KB1 kinases are most conserved and overly active in poor outcome melanoma.
- 30 **[0076]** Fig. 27. Analysis of gene expression data as an indirect mean to corroborate phospho-catalytic signatures. Even though gene expression is a relatively distant factor influencing the oncogenic activity of kinase enzymes and phospho-signaling circuits^{29,30}, we asked whether melanoma patients with poorer outcome available in the TCGA resource¹⁴

displayed changes in mRNA levels that match kinases we found by HT-KAM. We confirmed that patients who express high levels of AKT1 or PIM1 displayed significantly worse overall survival or disease-free survival, as shown in (a-b) and (c-e). Kaplan-Meier curves and logrank t-test p-values are provided in (a,c). Not shown here, we also found from the TCGA data set: (i) co-occurrence of AKT1 and RPS6KB1 mRNA alteration in poor outcome melanoma (log odds ratio of +2.66; p<0.001); (ii) up-regulation of CDKN1A mRNA expression in worse progression-free survival which is interesting since CDKN1A-derived peptide sensors are among top predictors of poor outcome (see Fig. 25c).

5

[0077] Fig. 28. Response of BRAF^{V600E} melanoma cell lines to drug combinations.

- (a) Summary of possible cell responses to the combination of two drugs. The heatmap on the left represents the experimental effects of combining increasing concentrations of drug A+B as changes in cancer cell growth. The middle graph is a conceptual representation of how differences in effects of drugs alone or combined can be interpreted as either synergistic, additive, or antagonistic (derived from ¹⁰). The heatmap on the right represents the calculated combination index from all experimental cell growth data points. We decided to analyze experimental profiles using the Bliss Independence model to calculate combination indices (CI) and avoid inaccuracies from dose-effect curve estimations (CI = log2 (Eab/(Ea*Eb); synergy CI<0; additivity CI=0; antagonism CI>0) 10-12.
- (b) Maps of cell growth responses (left) and combination indices (right). We tested the dependency of BRAFV600E melanoma cell lines for kinases found as differentially active by 20 HT-KAM in patient tumors (Fig. 26a,b). We included everolimus or trametinib (bottom two rows) as experimental 'positive' controls and for side-by-side comparison of the effects of other kinase-targeting drugs we tested. Arrows located above and on the left of each cell growth heatmaps serve as indicators of GI50 concentrations for each drug alone. The GI50s of A375 maintained in 5% or 0.25% FBS media for drug alone were: VEM (0.15uM; 25 0.02uM); MK2206 (10uM; 2.5uM); AZD1208 (12.5uM; 12.5uM); LY2584702 (50uM; >200uM); PF-4708671 (32uM; 16uM); 1-Azakenpaullone (20uM; 2.5uM); BI-D1870 (12.5uM; >50uM); everolimus (5uM; 10uM); trametinib (5nM; 2.5nM). The GI50s of Sk-Mel-28 maintained in 5% or 0.25% FBS media for drug alone were: VEM (0.63uM; 0.31uM); MK2206 (2.5uM; 5uM); AZD1208 (25uM; 25uM); LY2584702 (100uM; 100uM); 30 PF-4708671 (32uM; 16uM); 1-Azakenpaullone (20uM; 10uM); BI-D1870 (25uM; 12.5uM); everolimus (10uM; 10uM); trametinib (10nM; 10nM).

[0078] Results of growth responses (left) and combination indices (right) show that strong growth inhibitory effects were found when combining VEM with inhibitors of RPS6KB (LY2584702 or PF-4708671) or PIM kinases (AZD1208). Overall, synergistic effects of these drugs were superior to, or at least as good as, those of drugs targeting MTOR (everolimus) or MEK (trametinib) that are currently used in the clinic, but whose effects in patients remain variable and often transient.

5

10

15

20

25

30

[0079] Our results also show that other kinases whose catalytic activities were originally identified by HT-KAM as less highly or less significantly upregulated than RPS6KB, PIM or AKT kinases in BRAF^{V600E} melanoma tumors were indeed less effective therapeutic targets. This is exemplified by RPS6KA inhibition (additive effects only of the BI-D1870 drug; see heatmaps), or PKC inhibition (limited additivity effects of Go6983 or Sotrastaurin; data not shown).

[0080] Furthermore, we found that inhibiting the GSK3B kinase, which is a tumor suppressor kinase we identified as systematically less catalytically active in melanoma tumors of poor outcome patients, resulted in antagonizing the effects of VEM treatment, which means that melanoma cells became more resistant to BRAF^{V600E}-targeting drug when it was combined with the GSK3B inhibitor 1-Azakenpaullone, as visually noticeable from the patterns of cell growth and CI in heatmaps. This also strongly suggests that some of the 'good' effects of VEM rely in part on 'proper' kinase activity of the GSK3B tumor suppressor.

[0081] (c-e) Evaluating the effects of drug combinations on melanoma cell death. We used Fluorescence-Activated Cell Sorting (FACS) and measured cell death in melanoma cells treated at GI50 concentration of drug alone in 5% and 0.25% FBS culture conditions. Panel (c) shows examples of flow cytometry profiles obtained for Sk-Mel-28. Graphs in (d-e) show percentages of apoptosis for Sk-Mel-28 and A375 are graphically (averages of cell death measured in 5% or 0.25% FBS conditions). Numbers above grey bars in (d-e) indicate gain or loss in apoptosis when combining VEM with a 2nd kinase-targeting drug.

[0082] Increase in apoptosis was systematically found when combining VEM with inhibitors of RPS6KB or PIM, and these effects were overall more potent than when combined with MTOR or MEK targeting drugs. Decrease in apoptosis was found when combining VEM with GSK3B inhibitor (i.e. GSK3B inhibition rescues BRAF^{V600E} melanoma cells from cell death upon VEM treatment). Highest level of apoptotic cell death was induced

by RPS6KB-targeting combined with VEM in Sk-Mel-28, thus achieving a critical endpoint in the perspective of eradicating tumor cells.

[0083] Altogether, these results demonstrate that the top kinase hits identified in patient tumors as predictive of their therapeutic failure (see Fig. 3c-e and Fig. 26) correspond to central kinase dependencies in BRAF^{V600E} melanoma cells. We conclude that inhibitors of RPS6KB, PIM or AKT are strong therapeutic candidates to restore therapeutic sensitivity. The HT-KAM platform successfully identifies new exploitable vulnerabilities of melanoma tumors based on the kinome profiling of patient tumor tissues.

- [0084] Fig. 29. A375 expressing a constitutively active AKT1 oncogenic kinase remain sensitive to RPS6KB- or PIM-targeting. We exogenously expressed myrAKT1 (i.e. a constitutively active oncogenic AKT1) in A375 cells. We then tested the sensitivity of A375 myrAKT1 cells to drug combinations.
 - (a) Control for myrAKT1 expression. myrAKT1-expressing A375 cells were significantly less sensitive to VEM than their control counterpart (p=2.77E-06; 65% increase in GI50).
- 15 (b-c) Cell response of A375 myrAKT1 cells to drug treatments (same experimental settings and analysis as in Fig. 28). Cell growth is shown in (b), cell death is shown in (c).
 - (d) Ranking treatment effects by comparing CI values between melanoma cell lines. Data from both Figs. 28-29 are included.
- [0085] Results indicated that BRAF^{V600E} melanoma cells that acquired the expression of the AKT oncogene remained sensitive to combinations of VEM with inhibitors of RPS6KB or PIM kinases. As well, mimicking the loss of tumor suppressive activity by inhibiting GSK3B in myrAKT1-expressing cells to recapitulate the coordinated inactivation of GSK3B kinase and hyper-activation of AKT1 found in tissues from BRAF^{V600E} melanoma patients with poorest outcome, led to strong resistance to VEM treatment. The growth response of myrAKT1-expressing A375 cells treated with combinations of VEM + MTOR or MEK targeting drugs was comparable to wild type A375 cells. These results support the notion that these multiple oncogenic phospho-signaling hubs can function independently of each other's. These kinases are suitable alternative targets to restore response in melanoma cells.
- [0086] Fig. 30. Restoring therapeutic sensitivity by targeting the RPS6KB kinase in melanoma tumor cells from patients that acquired resistance to BRAF^{V600E}-therapy.

(a-b) Phospho-RPS6KB profiles of two patient-derived xenografts (PDXs) tumor tissues (a) and related cell lines (b). PDXs were previously^{4,5} established from patients refractory to BRAF^{V600E}-therapy. A limited number of primary cell lines were derived from these PDX's. (c) Sensitivity of primary melanoma cell lines to RPS6KB-inhibitor PF-4708671 in 3-week colony formation assays.

5

20

25

30

- [0087] The PDX tumor M032R6.X1 displayed high levels of RPS6KB1 in tumor tissue, and the PDX-derived cell line M032R6.X1.CL maintained high levels of RPS6KB1, and the cell line M032R6.X1.CL was sensitive to RPS6KB1 targeting. This corresponds to data shown in Fig. 3i.
- [0088] Conversely, the PDX tumor M061R.X1 did not display high levels of RPS6KB1 in tumor tissue, and the PDX-derived cell line M061R.X1.CL also did not display high levels of RPS6KB1, and the cell line M061R.X1.CL was not sensitive to RPS6KB1 targeting. This can be considered as a control for results in Fig. 3i.
- [0089] The results indicate that targeting RPS6KB can be a successful therapeutic intervention in BRAF^{V600E} melanoma tumors/tumor cells where RPS6KB1 is elevated. Such vulnerability may be valuable to restore therapeutic sensitivity in patients who do not respond to, or relapse from, current therapies.

DETAILED DESCRIPTION OF THE INVENTION

[0090] The disclosure is based, in part, on the discovery of an effective, sensitive assay for determining a phospho-kinase activity profile of cells, *e.g.*, tumor cells, or other biological samples in which it is desirable to evaluate kinase activity. The method comprises using a panel of sensor peptides that comprise biological substrate regions for different kinases. Evaluation of all of the members of the panel provide an indication of the kinase pathways that are active in the sample. In one embodiment, provided herein is a 228-peptide panel developled to detect the activity of over 60 kinases/kinase families, including ABL, AKT, CDK, EGFR, GSK3B, MAPK, or SRC. Such a panel provides a method of defining new mechanisms of resistance to targeted therapy, *e.g.*, BRAF^{V600E}-targeted therapy in colorectal cancer, can identify new druggable targets, *e.g.*, RPS6KB1 and PIM1 as new druggable vulnerabilities predictive of poor outcome in BRAFV^{600E} melanomas patient; and otherwise provides for comprehensive evaluation of kinase activity in cancer and in other complex or previously uncharacterized samples of interest to identify kinase type.

[0091] Accordingly, provided herein are panels of sensor peptides that can be used in combination to assay for the activities of multiple kinases at the same time to identify the kinase activity and/or determine the kinase signature of a biological sample of interest, e.g., a cancer sample obtained from a patient. The invention further comprises methods of assigning a kinase activity identified in a biological sample, e.g., a cancer sample, to a kinase family and/or of identifying the kinase activity as belonging to a particular kinase. Such information can be used, for example, to further characterize the kinases/kinase activities from biological samples of interest. In some embodiments, e.g., evaluation of kinase activity in cancer or other disease states, analysis of a combinatorial peptide panel in accordance with the invention can be used to develop therapeutic strategies or for further development of drug candidates.

5

10

15

20

25

30

[0092] A "sensor" peptide in the context of this invention refers to any peptide that is contained in a kinase peptide activity panel as described herein which is used to assess kinase activity. These include biological sensor peptides and sensor peptides that have mutations relative to the naturally occurring sequences that influence kinase activity. As used herein, the terms "kinase activity" and "phosphorylation activity" are used interchangeably to refer to the ability of a phosphokinase to phosphorylate a sensor peptide.

[0093] The term "peptide" is used herein to refer to a polymer of amino acid residues. The term appies to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. Thus, a peptide for used in a panel of peptides to assess kinase activity as described herein can comprise naturally occurring and/or synthetic amino acids, including analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. "Naturally occurring" amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. " Synthetic amino acids" or "amino acid analogs" refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified polypeptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an

amino acid, but that functions in a manner similar to a naturally occurring amino acid. Amino acid is also meant to include -amino acids having L or D configuration at the α -carbon.

[0094] Amino acids may be referred to herein by either their commonly known three letter
 symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical
 Nomenclature Commission.

Biological Sensor Peptides

20

25

30

[0095] In the context of this disclosure, a "biological sensor peptide" refers to a peptide that comprises a substrate region that is derived from a naturally occurring substrate region.
Thus, a biological sensor peptide as used herein refers to a peptide a known substrate region phosphorylated by a kinase belonging to a kinase family. Such substrate regions can be identified, *e.g.*, from the PhosphoAtlas or PhosphoSitePlus databases (see, *e.g.*, *Olow et al.*, "An Atlas of the Human Kinome Reveals the Mutational Landscape Underlying Dysregulated Phosphorylation Cascade in Cancer" *Cancer Res.* 76(7):1733-45, April 1, 2016;
Epub 2016 Feb 26; and Hornbeck *et al.*, "PhosphositePLus, 2014: Mutations, PTMs and recalibrations. *Nucl. Acids Res.* 43:D512-D520, 2015).

[0096] Biological sensor peptide can vary in length, *e.g.*, from 7 to 25 amino acids in length, or from 9 to 21 amino acids in length. In some embodiments, a peptide may be up to 50 amino acids in length, or even up to 100 amino acids in length and at least 6 amino acids in length. In some embodiments, a biological peptide is 9, 10, 11, or 12 amino acids in length. In some embodiments, a biological sensor peptide is 11 amino acids in length. In some embodiments, biological peptides can comprise additional amino acids at the C-terminal and/or N-terminal ends of the peptide. For example, an 11-mer may comprise 9 amino acids from the naturally occurring substrate region sequence and 2 amino aicds, *e.g.*, GC at the C-terminus or CG at the N-terminus. In other embodiments, the biological peptide does not contain a GC or CG tag at the end terminus.

[0097] Although the sequence of a biological sensor peptide is typically identical to the corresponding region of the native substrate phosphorylation site, in some embodiments, the biological sensor peptide may contain one or more amino acid residues at the end of the peptide, relative to the native sequence, that does not influence kinase activity, as explained in the preceding paragraph. In further embodiments, a biological sensor peptide may contain an amino acid change relative to the sequence of a naturally occurring substrate region that

does not influence activity of the kinase that phosphorylate that region. In some embodiments, a biological peptide may have a conservative substitution that does not influence kinase activity. In some embodiments, a biological sensor peptide may include modified amino acids. For example, modifying a peptide to have a pre-phosphorylated peptide on one Y residue may make it easier for a kinase to phosphorylate a 'free' Y nearby within that peptide sequence. This is also applicable to other post-translational modifications that may be biologically relevant and thus, a peptide that mimics such a state may imrove the sensitivity/specificity/differentiability of detection for one or more kinases.

[0098] The number of biological sensor peptides employed in the panel per kinase is variable, but the panel comprises a pluarility of biological sensor peptides for the majority of the kinases to be represented in the panel. For example, in some embodiments, a panel of comprises, 8, 9, 10, 11, 12, 13, 14, or 15 biological sensor peptide per kinase, but may range from 3 to 50 biological sensor peptides per kinase. In some embodiments, a panel of kinases may employ at least 4 biological sensor peptides per kinase. In some embodiments, the number of biological sensor peptides per kinase that is included in a panel is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 16, 17, 18, 19, or 20. In some embodiments, the number of biological sensor peptides per family ranges from 4 to 20 or more.

[0099] In some embodiments, a panel of sensor peptide comprises at least 15 biological sensor peptides per the majority of kinase families to be represented in the panel. In some embodiments, at least 10 biological sensor peptide, or at least 15 biological sensor peptides are included per kinase family represented in the panel. In some embodiments, nor more than 50 peptides is included per kinase family.

Control sensor peptides

5

10

15

20

25

30

[0100] Various control sensor peptides are included in a peptide panel of the present invention for experimental controls and statistical analysis, as detailed in the Examples section and accompanying figures and figure descriptions. The controls, also referred to herein as reference peptides, include generic positive controls, and mutated peptides, in which a naturally occurring substrate region is mutated such that a known kinase that phosphorylates the substrate in nature is exhibits modified activity towards the mutant peptide, *e.g.*, is inactive against the mutated peptide. Mutated control sensor peptides provide increased confidence in the assay and improves analysis/interpretation and visualization of data from the screening assay. For example, a mutated reference peptide may contain an

amino acid substitution at a phosphorylatable tyrosine, serine, or threonine, *e.g.*. a tyrosine, serine, or threonine, may be substituted with a glycine or othe residue that is not longer able to be phosphorylated. In some embodiments, a control peptide may have a phosphorylatable site that is pre-phosphorylated to render it insensitive to kinases that may be present in a given sample. Control peptides may also include peptides that have random peptide sequences. Finally, know generic peptides that can serve as positive controls are available, including commercially available. Such peptides may also be included in the panel as further controls.

Sensor peptide panels

5

20

25

30

[0101] A 'sensor peptide panel" or "kinase activity panel" as used herein refers to an assemblage of peptides that collectively provides phosphorylation activity data (for a sample of interest being evaluated to characterize the kinases in the sample) for multiple kinases at the same time and thus is sufficient to assign kinase activy in the sample to a kinase family, or one or more specific kinases; or can be used to characterize kinases in a biological sample of interest. In a kinase activity assay panel of the present invention, it is the combination of different kinase-specific sets of peptides that provides the read out of activity for multiple kinases at once.

[0102] Further, even though many kinases may have few identified target sites or even substrate protein targets, a kinase activity panel assessment as described herein can be used to identify peptides that best match a kinase and thus provide greater insight into the kinase function.

[0103] In some embodiments, a kinase activity panel of the present invention comprises a multiplicity of sensor peptides to determine kinase activity for at least two, at least three, at least four, or at least five, or more kinases families. In some embodiments, a kinase activity panel of the present invention comprises a multiplicity of sensor peptides to determine kinase activity for at least ten, at least fifteen, at least twenty, at least twenty five, or more kinase families. In some embodiments, a kinase activity panel of the present invention comprises a multiplicity of sensor peptides to determine kinase activity for at least two, at least three, at least four, or at least five, or more specific kinases. In some embodiments, a kinase activity panel of the present invention comprises a multiplicity of sensor peptides to determine kinase activity for at least ten, at least fifteen, at least twenty, at least twenty five, or more specific kinases. Accordingly, a panel may comprise any number of peptides. Indeed, a panel and

assay of the present invention is modular by design in that users can adapt panels and assay conditions to their needs. Indeed, in some embodiments, a set of peptide sensors may be employed to study particular kinases under specific condtions, e.g., pH, ion, etc.; however, the panel still employs multiple peptides to capture kinase activity for multiple kinases.

[0104] In some embodiments, a kinase activity panel of the present invention can comprise a multiplicity of sensor peptides to determine kinase activity for multiple kinases, e.g., at least five, at least ten, at least fifteen, at least twenty, at least thirty, at least forty, at least fifty, or more, kinases selected from the group consisting of ABL1, ABL1(H396P), ABL1(Q252H), ABL1(T315I), BCR-ABL (fusion gene, Philadelphia translocation), ABL2, BLK, BRK
 (PTK6), FGR, FRK, FYN, HCK, LCK, LYNA, LYNB, SRC, SRMS, YES1, CSK, BTK, BTK(E41K), FER (TYK3), FES, ITK, LTK (TYK1), SYK, TEC, TEK (TIE2), TXK, TYRO3, ZAP70, JAK1, JAK2, JAK3, TYK2, PTK2 (FAK, FAK1), PTK2B (FAK2, PYK2), ALK, AXL, AXL(R499C), CSF1R, DDR1 (NTRK4, RTK6, PTK3), DDR2 (NTRKR3,

TYRO10), EGFR, ERBB2, ERBB3 (in its dimeric state with another HER fam. member),

- ERBB4, FGFR1, FGFR2, FGFR2(N549H), FGFR3, FGFR4, FLT1 (VEGFR1), FLT3, FLT3(D835Y), FLT4 (VEGFR3), KDR (VEGFR2), IGF1R, INSRR (IRR), INSR, ROS1, KIT (SCFR), MET, PDGFRA, PDGFRB, RET, ROR1 (ROR1 (NTRKR1), ROR2 (NTRKR2)), ROR2 (NTRKR2), EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA8, EPHB1, EPHB2, EPHB3, EPHB4, RON (MST1R), NTRK1 (TRKA), NTRK2 (TRKB),
- NTRK3 (TRKC), MERTK (MER), WEE1 (WEE1A), WEE2 (WEE1B), MUSK, ACVR1 (ACVR1A, ALK2), ACVR1B (ALK4), TGFBR1 (ALK5), TGFBR2, BMPR1B (ALK6), AKT1, AKT1(E17K), AKT2, AKT2(E17K), AKT3, AKT3(E17K), AKT3(G171R), ARAF, BRAF, RAF1 (cRAF), ATM, ATR, AURKA, AURKB, AURKC, CHEK1, CHEK2, PRKDC (DNA-PKcs, DNAPK), PLK1, PLK3, BRSK1, BRSK2, BUB1, C11orf7, CAMK1,
- CAMK1beta, CAMK1delta, CAMK1gamma, CAMK2, CAMK2A, CAMK2B, CAMK2D, CAMK2G, CAMK4, CAMKK1, CDC42BPA (MRCK alpha), CDC42BPB (MRCK beta), CDK1 (CDC2), CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8, CDK9, CDK11, CHUK (IKK alpha), IKBKB (IKK beta), IKBKE (IKK-E), CLK1, CLK2, CSNK1A1 (CK1A), CSNK1D (CK1D), CSNK2A1 (CK2A1), CSNK2A2 (CK2A2), CSNK2B (CK2B),
- DAPK3 (ZIPK), DMPK (DM1), DYRK1A, DYRK2, IRAK1, IRAK4, EIF2AK1, EIF2AK2, EIF2AK3 (PEK), EIF2AK4, GRK3 (ADRBK2), GRK5, GSK3A, GSK3B, HIPK2, ILK (p59integrin-linked kinase RAF-like kinase), STK3 (MST2, KRS1), STK4 (MST1, KRS2), STK10 (LOK), STK11 (LKB), MTOR (FRAP1), KSR1, KSR1(A635F), KSR1(L639F),

KSR2, KSR2(R676S), MAPK1 (ERK2), MAPK3 (ERK1), MAPK7 (ERK5/6), MAPK8 (JNK1), MAPK9 (JNK2), MAPK10 (JNK3), MAPK11 (p38b), MAPK12 (p38g), MAPK13 (p38d), MAPK14 (p38a), MAP2K1 (MEK1, MKK1, MAPKK1), MAP2K2 (MEK2, MKK2, MAPKK2), MAP2K4 (MEK4, MKK4, MAPKK4, JNKK1), MAP2K7 (MEK7, MKK7,

- 5 MAPKK7, JNKK2), MAP3K1 (MEKK1, MAPKKK1), MAP3K7 (MEKK7, TAK1), MAP3K8 (COT), MAP3K14 (NIK), MAP3K17 (TAOK2, PSK1), MAP4K2, MAP4K4 (MEKKK4), MAP4K5, MAP4K6 (MINK), MAPKAPK2 (MK2), MAPKAPK3 (MK3), MAPKAPK5 (MK5), MARK1, MARK2 (EMK1), MARK3 (CTAK1), PKMYT1 (MYT1), NDR1 (STK38), NDR2 (STK38L), NEK1, NEK2, NEK6, NEK7, NLK, NME1 (NM23,
- NDPK-A), NME2 (NM23B, NDPK-B), NME1-NME2, NUAK1, PAK1, PAK2 (p21 (RAC1) activated kinase 2), PAK3, PAK4, PAK7, PDK1 (pyruvate dehydrogenase kinase 1, GeneID: 5163), PDPK1 (3-phosphoinositide dependent protein kinase 1, GeneID: 5170), PHKG1, PIM1, PIM2, PIM3, PKN1 (PRK1), PKN2 (PRK2), PRKAA1 (AMPKa1), PRKAA2 (AMPKa2), PRKACA (PKA C-alpha, PKACA = protein kinase cAMP-activated (PKA)
- catalytic subunit alpha), PRKACB (PKA C-beta, PKACB = protein kinase cAMP-activated (PKA) catalytic subunit beta), PRKACG (PKA C-gamma, PKACG = protein kinase cAMP-activated (PKA) catalytic subunit gamma), PRKCA (PKC alpha, PKCA), PRKCB (PKC beta, PKCB), PRKCD (PKC delta, PKCD), PRKCE (PKC epsilon, PKCE), PRKCG (PKC gamma, PKCG), PRKCH (PKC eta, PKCL), PRKCI (PKC iota, PKCI), PRKCM (PKC mu,
- 20 PKCM), PRKCN (PKC nu), PRKCQ (PKC theta), PRKCZ (PKC zeta), PRKD1 (PKD1, PKD), PRKD2 (PKD2), PRKD3 (PKD3), PRKG1 (PKG 1, subunits I-alpha & I-beta, PRKGR1, PRKG1 = protein kinase, cGMP-dependent (PKG), type I), PRKG2 (PKG 2, PRKGR2, PRKG2 = protein kinase, cGMP-dependent (PKG), type II), PRKRIR (THAP12, DAP4, P52rIPK), ROCK1, ROCK2, RPS6KA1 (RSK1, p90RSK), RPS6KA2 (RSK3,
- p90RSK2, S6K-alpha-2), RPS6KA3 (RSK2, p90RSK2, S6K-alpha-3), RPS6KA4 (MSK2, S6K-alpha-4), RPS6KA5 (MSK1), RPS6KA6 (RSK4, p90RSK6, S6K-alpha-6), RPS6KB1 (S6K1, p70S6K, S6K-beta-1), RPS6KB2 (S6K2, p70S6Kb, S6K-beta-2), SGK1 (SGK), SGK2, SGK3 (SGKL), SMG1, TAF1, TBK1 (NAK, T2K), TP53RK (PRPK), TSSK1, TSSK2, TSSK4, VRK1, ABL fam. (=ABL1, ABL1(H396P), ABL1(Q252H), ABL1(T315I),
- 30 BCR-ABL, ABL2), SRC fam. (BRK (PTK6), FGR, FRK, FYN, HCK, LCK, LYNA, LYNB, SRC, SRMS, YES1), JAK fam. (JAK1, JAK2, JAK3, TYK2), PTK2/FAK fam. (PTK2/FAK1, PTK2B/FAK2), EGFR fam. (EGFR, ERBB2, ERBB3, ERBB4), FGFR fam. (FGFR1, FGFR2, FGFR2(N549H), FGFR3, FGFR4), FLT/VEGFR fam. (FLT1 (VEGFR1), FLT3, FLT3(D835Y), FLT4 (VEGFR3), KDR (VEGFR2)), IGFR/INSR fam. (IGF1R,

INSRR (IRR), INSR), PDGFR fam. (PDGFRA, PDGFRB), ROR fam. (PDGFRA, PDGFRB), EPHA/B fam. (EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA8, EPHB1, EPHB2, EPHB3, EPHB4), ALK fam. (ACVR1, ACVR1B, TGFBR1, TGFBR2, BMPR1B), AKT fam. (AKT1, AKT1(E17K), AKT2, AKT2(E17K), AKT3, AKT3(E17K),

- AKT3(G171R)), RAF fam. (ARAF, BRAF, RAF1 (cRAF)), AURK fam. (AURKA, AURKB, AURKC), CHEK fam. (CHEK1, CHEK2), PLK fam. (PLK1, PLK3), BRSK fam. (BRSK1, BRSK2), CAMK fam. (CAMK1, CAMK1beta, CAMK1delta, CAMK1gamma, CAMK2, CAMK2A, CAMK2B, CAMK2D, CAMK2G, CAMK4), CDK fam. (CDK1 (CDC2), CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8, CDK9, CDK11), IKK fam.
- 10 (CHUK (IKK alpha), IKBKB (IKK beta), IKBKE (IKK-E)), CLK fam. (CLK1, CLK2), CK fam. (CSNK1A1 (CK1A), CSNK1D (CK1D), CSNK2A1 (CK2A1), CSNK2A2 (CK2A2), CSNK2B (CK2B)), IRAK fam. (IRAK1, IRAK4), EIF2AK fam. (EIF2AK1, EIF2AK2, EIF2AK3 (PEK), EIF2AK4), GRK fam. (GRK3 (ADRBK2), GRK5), GSK3 fam. (GSK3A, GSK3B), ERK fam. (MAPK1 (ERK2), MAPK3 (ERK1)), JNK fam. (MAPK8 (JNK1),
- MAPK9 (JNK2), MAPK10 (JNK3)), p38 fam. (MAPK11 (p38b), MAPK12 (p38g), MAPK13 (p38d), MAPK14 (p38a)), MEK fam. (MAP2K1 (MEK1, MKK1, MAPKK1), MAP2K2 (MEK2, MKK2, MAPKK2)), MAP3K fam. (MAP3K1 (MEKK1, MAPKKK1), MAP3K7 (MEKK7, TAK1), MAP3K8 (COT), MAP3K14 (NIK), MAP3K17 (TAOK2, PSK1)), MAPKAPK fam. (MAPKAPK2 (MK2), MAPKAPK3 (MK3), MAPKAPK5
- 20 (MK5)), MARK fam. (MARK1, MARK2 (EMK1), MARK3 (CTAK1)), NEK fam. (NEK1, NEK2, NEK6, NEK7), NME fam. (NME1 (NM23, NDPK-A), NME2 (NM23B, NDPK-B), NME1-NME2), PAK fam. (PAK1, PAK2 (p21 (RAC1) activated kinase 2), PAK3, PAK4, PAK7), PIM fam. (PIM1, PIM2, PIM3), PKN fam. (PKN1 (PRK1), PKN2 (PRK2)), AMPKa fam. (PRKAA1 (AMPKa1), PRKAA2 (AMPKa2)), PKA fam. (PRKACA (PKA C-alpha),
- 25 PRKACB (PKA C-beta), PRKACG (PKA C-gamma)), PKC fam. (PRKCA (PKC alpha, PKCA), PRKCB (PKC beta, PKCB), PRKCD (PKC delta, PKCD), PRKCE (PKC epsilon, PKCE), PRKCG (PKC gamma, PKCG), PRKCH (PKC eta, PKCL), PRKCI (PKC iota, PKCI), PRKCM (PKC mu, PKCM), PRKCN (PKC nu), PRKCQ (PKC theta), PRKCZ (PKC zeta)), PKD fam. (PRKD1 (PKD1, PKD), PRKD2 (PKD2), PRKD3 (PKD3)), PKG fam.
- 30 (PRKG1 (PKG 1, subunits I-alpha & I-beta, PRKGR1, PRKG1 = protein kinase, cGMP-dependent (PKG), type I), PRKG2 (PKG 2, PRKGR2, PRKG2 = protein kinase, cGMP-dependent (PKG), type II)), ROCK fam. (ROCK,1 ROCK2), RPS6KA fam. (RPS6KA1 (RSK1, p90RSK), RPS6KA2 (RSK3, p90RSK2, S6K-alpha-2), RPS6KA3 (RSK2, p90RSK2, S6K-alpha-3), RPS6KA4 (MSK2, S6K-alpha-4), RPS6KA5 (MSK1), RPS6KA6

(RSK4, p90RSK6, S6K-alpha-6)), RPS6KB fam. (RPS6KB1 (S6K1, p70S6K, S6K-beta-1), RPS6KB2 (S6K2, p70S6Kb, S6K-beta-2)), SGK fam. (SGK1 (SGK), SGK2, SGK3 (SGKL)), and TSSK fam. (TSSK1, TSSK2, TSSK4).

[0105] In some embodiments, a kinase activity panel to identify a kinase signature that represents a kinase family or a specific kinase comprises biological sensor peptides that correspond to phosphorylated substrate regions from naturally occurring peptides that are phosphorylated by members of various kinase families, *e.g.*, ABL, AKT, ERK, HER, p38, SFK, and TK kinase families. A kinase activity panel can, however, include a plurality of sensor peptides for any kinase of interest, including pseudo kinases and orphan kinases.

- [0106] In some embodiments, a kinase activity panel in accordance with the invention comprises biological peptides that are phosphorylated by kinases enzymes that can include kinases evaluated in cancer cells and tumor cells, or other disease conditions, including BLK, BRK (PTK6), FGR, FRK, FYN, HCK, LCK, LYN, SRC, SRMS, YES1, ABL1, ABL2, EGFR, ErbB2, ErbB4, JAK2, CSK, AKT1, AKT2, AKT3, MAPK1 (ERK2), and/or
- 15 MAPK14 (p38a) kinases. In some embodiments, a panel may comprises biological peptides that are phosphorylated by kinases found in cancer and tumor cells and may include biological sensor peptide fro one or more of PIMs, RPS6KBs, PAKs, PDPK1, GSK3B, PKCs, PKDs, PKAs and the like. In some embodiments, the panel comprises at least 3, or at least 4, biological peptides for each kinase; or at least 4 peptides for each of the kinase
- families. In some embodiments, the panel comprises 5, 6, 7, 8, 9, 10, 11, or 12 peptides for each kinase family represented in the panel. In some embodiments, the panel comprises 5, 6, 7, 8, 9, 10, 11, or 12 peptides for each kinase represented in the panel.
- [0107] In some embodiments, a kinase panel in accordance with the invention comprises at least 75, at least 80, at least 90, at least 100, at least, 110 at least 120, at least 125, at least 130, at least, or at least 140, or at least 150, or 151 of the biological peptides comprise a sequence as shown in Table 1 of a peptide having a peptide ID as shown in Fig. 4. In some embodiments, the kinase activity panel further comprises at least 10, at least 15, at least 20, at least 25, or 27 mutated peptides having a mutation in the substrate region as shown in Fig. 4. In some embodiments, the mutated peptides have the sequence as shown in Table 1 for the peptide ID shown in Fig. 4. In some embodiments, the panel further comprises prephosphorylated reference peptides as mutated peptides.

[0108] In some embodiments, a kinase activity panel in accordance with the invention comprises 228 peptides as described in Fig. 4. The sequences of the peptides are provided in Table 1 for each peptide under the peptide probe ID number shown in Fig. 4. The panel comprises 151 biological peptides, 14 generic positive control peptides and 63 reference peptides, i.e., mutated peptides. The 14 generic positive control peptides are communly uses as industry standards. The 63 reference peptides include 27 mutated peptide sequences, 31 pre-phosphorylated peptides and 5 peptides having random sequences. The phosphoresidue target is shown in Fig. 4, as is the origin of the peptide probe (i.e., the name of the biological substrate protein). The kinase enzyme associated with the biological peptides are also provided.

Activity

5

10

15

20

25

30

[0109] Kinase activity can be evaluated using any number of assays, including, *e.g.*, measuring ATP consumption; measuring consumption of any factor related to catalytic activity of an enzyme (e.g. GTP for GTPases instead of ATP for ATP-dependent kinases), measuring post-translational modification of any substrate molecule (e.g. the physical detection of the catalytic addition of a phosphorylation group onto a peptide; and the like). In some embodiments, ATP consumption is conveniently measured using an ATP consumption assay. An illustrative assay is detailed in the Examples under the **Kinase activity assay** section.

[0110] Activity pattern against various peptides in an assay panel can be assessed to determine kinase signature patterns as described herein. Activity can thus be used to assign the kinase activity of a sample undergoing evaluation to one or more kinase families. In some embodiments, kinase activity is assigned to one or more members of a kinase family. Assigning the activity of the kinase can be performed by comparing the activity to control patterns of activity of known kinases. The range of kinases activity of the test sample can vary from a high level of activity to little activity compared to the various control kinases.

[0111] In some embodiments, activity is evaluated as follows. Although this illustration of activity assessment uses ATP consumption to define activity, one of skill understands that similar analyses can be performed using endpoints other than ATP consumption to assess Activity. In an illustrative assay, ATP consumption is measured across a matrix comprising the kinase sensor peptides, *e.g.*, the matrix may be wells or other containers that will hold the kinase assay contents. Again, although this is illustrated using a "well" as a container, other

container may be used. Each well contains reagents/buffers, including the sensor peptide, ATP, and sample. In some embodiments, a kinase inhibitor may be included as a reagent component. A subset of control wells are also employed in which no peptide is present to assess basedline ATP consumption in the sample. ATP consumption measured across all experimental wells provides an activity signature of a sample. A first activity analysis is performed to determine ATP consumption per peptide. This provides an 'agnostic' view of the results. All ATP consumptions for a sample represent a 'fingerprint'. These fingerprints can be compared between samples to determine how different samples are. One example is to use such fingerprints to compare cancer cell lines or tumor tissues (or even recombinant kinases). The results can then be interpreted to assess ATP consumption per kinase.

5

10

15

20

25

- [0112] In the kinase activity screening panel, as explained above, some of the peptides are typically biological sensor peptides, i.e., they have naturally occurring amino acid sequences that are phosphorylated by a kinase enzyme. In some embodiments, a variant of such a peptide may be employed where the peptide may a minor change *e.g.*, a conservative substitution, that does not influence kinase activity. Kinase activity obtained using the biological sensor peptides can then be used to deconvolute the agnostic peptide phosphorylation signatures to measure the activity of their respective kinases.
- [0113] In some embodiments, some kinases may have only one biological sensor peptide associated with them in the assay. Some kinases may have two, some three, etc. More peptides per kinase typically provide for higher sensitivity, specificity and differentiability to identify kinases and their activity levels (i.e. ATP consumption measured and averaged across peptides that are biologically related to each kinase). In typical embodiments, a threshold of at least four biological peptides per kinase is employed to measure the activity of a given kinase, although alternative values, such as three biological peptides per kinase, may also be used.
- [0114] For a given kinase, all ATP consumption per biological peptide of this kinase is included to measure the average ATP consumption (i.e. activity) for this kinase. Thus, all activities (ATP consumptions) per peptide can be useful to measure a kinase activity. Activity levels between knases within a sample can then be compared, as can activity levels between samples. Normalization is performed by creating a scale and using a threshold value. This is illustrated in the descriptions of Figs. 1 and 2. Determination of signature patterns and use of a panel to characterizes a kinase in a sample to be evaluated can be

determined as described in the Figures; and in the descripton of Figures, *e.g.*, Figs. 5, 7, 9, 12, 16, 18, 21, 24, and 26. For example, a sample obtained from a melanoma patient may be evaluated for phosphorylation signatures using a 228-petide phosphorylation panel as described herein, see, *e.g.*, 4a and Table 1. Phosphorylation activity can be analyzed using unsupervised heriarchical clustering, principal component analysis, and dual significance threshold selections. Such an analysis can identify not only phosphosignatures that are indicative or particular kinases, or kinases families, but hyperactivity can be identified; and such associates can be associated with outcome.

[0115] In some embodiments, identification of overly active AKT1, PIM1, and RPS6Kb1 kinases as overly active in a melanoma sample is indicative of a poor prognosis (see, e.g., Fig. 23). In some embodiments, targeting RPS6KB or PIM1 in a patient having a BRAFV600E melanoma in which RPS6KB1or PIM1 is elevated can provide an improved outcome compared to therapies that rarget other kinases.

Samples

5

- 15 [0116] A "sample" as used herein comprises cells or is derived from cells, *e.g.*, comprises cellular extracts, to be evaluated that can be obtained from any biological source, such as tissues, extracts, or cell cultures, including cells (e.g. tumor cells), cell lines, cell lysates. The sample can be obtained from animals, preferably mammals, most preferably humans.

 Samples can be from a single individual or in some embodiments, can be pooled prior to analysis. Samples may from any source may be evaluate dusing a panel of sensor peptides that provide the ability to simultaneous evaluated activities of different activities. Thus, a sample can be obtained from any prokaryote or eukaryote, including plants, yeast, bacteria, cyanobacteria, or any other biological sour ce of interest.
- [0117] Samples for analysis employing sensor peptides in accordance with the disclosure can be from any source for which it is desired to determine a kinase activity profile. In some embodiments, the sample is a mammalian sample, *e.g.*, from primates (such as humans and non-human primates, *e.g.*, apes, monkeys) or from other mammals, *e.g.*, a bovine, ovine, porcine, equine, canine, feline, caprine, a murine, or other mammal.
 - [0118] In some embodiments, the sample is obtained from a patient that has a disease for which it is interest to assess kinase activity, where the sample comprises cells from a tissue that is affected by the disease. A "disease" refers to any disorder, disease, condition, syndrome or combination of manifestations or symptoms recognized or diagnosed as a

disorder that may be correlated by a kinase activity profile. Illustrative disease include, but are not limited to, cancer, cardiovascular diseases including heart failure, hypertension and atherosclerosis, respiratory diseases, renal diseases, gastrointestinal diseases including inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, hepatic, gallbladder and bile duct diseases, including hepatitis and cirrhosis, hematologic diseases, metabolic diseases, endocrine and reproductive diseases, including diabetes, bone and bone mineral metabolism diseases, immune system diseases including autoimmune diseases such as rheumatoid arthritis, lupus erythematosus, and other autoimmune diseases, musculoskeletal and connective tissue diseases, including including arthritis, achondroplasia infectious diseases and neurological diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease.

Cancer

5

10

- [0119] In some embodiments, a sample evaluated in accordance with the disclosure is a cancer. Cancer for which kinase activity profiles can be obtained include breast cancer, melanoma, colorectal cancer, lung cancer, ovarian cancer, uterine cancer, cervical cancer, prostate cancer, pancreatic cancer, bladder cancer, head and neck cancers, liver cancer, kidney cancer, brain cancer, including glioma and astrocytomas, thyroid cancer, laryngeal cancer, nasopharyngeal cancer, and oropharyngeal cancer; stomach cancer, and testicular cancer.
- 20 [0120] In some embodiments, the cancer is a hematological cancer, such as a lymphoma or leukemia, or multiple myeloma. Examples of leukemias include acute lymphoblastic leukemia, acute myeloid leukemia, chronic myeloid leukemia, hairy cell leukemia, acute nonlymphocytic leukemia, chronic lymphocytic leukemia, acute granulocytic leukemia, chronic granulocytic leukemia, and acute promyelocytic leukemia, among others. Examples of lymphomas include cutaneous T-cell lymphoma, Hodgkin's lymphoma, an non-Hodgkin's lymphoma.
 - [0121] In some embodiments, a sample comprising cancer cells is obtained from a patient who has been treated with a therapeutic agent, such as a chemotherapeutic agent, e.g., a protein kinase inhibitor.
- 30 **[0122]** In some embodiments, the analysis of kinase activity in cancer cells can be used to select a therapeutic agent that targets a kinase identified as being overactive in cancer cells.

[0123] The following examples are intended to illustrate, but not limit, the claimed invention. Thus, a panel of the invention may comprise a multiplicity of sensor peptides to detect activity for any kinases of interest and the reaction conditions and reagents for assessing activity can be modified as appropriate for evaluation of the kinase activity of interest.

EXAMPLES

Example 1. Peptide multiplex platform as a robust sensor of kinases' activity

[0124] Directly measuring the activity of kinases is the most proximal assessment of their functional status. This example describes the development of a high throughput kinase activity-mapping (HT-KAM) assay, whereby a compendium of biological peptide targets of kinase enzymes serves as combinatorial sensors of phospho-catalytic activity.

Description of experimental results

5

10

15

20

Peptide sensing platform to monitor phospho-signatures

- [0125] We sought to develop a high-throughput kinase activity-mapping (HT-KAM) assay, whereby a compendium of peptides serves as combinatorial sensors of the phospho-catalytic activity of kinase enzymes. To demonstrate our strategy, we synthesized a 228-peptide library (Fig. 4) that includes 151 biological 11-mer peptides corresponding to substrate protein regions variously phosphorylated by kinases involved in oncogenic processes³⁴. The library also includes 14 generic 'positive control' peptides commonly used as industry standards, and 63 reference peptides comprising 27 mutated, 31 pre-phosphorylated, and 5 random peptide sequences. A liquid dispensing instrument was programmed to aliquot peptide, sample, ATP, and buffer solutions in 384-well plates (Fig. 1a; Additional Methods section). Each well contains one peptide, and each plate simultaneously assesses the phospho-signature of one sample.
- 25 [0126] The description section below concentrates on the biological relevance and technical advance offered by our strategy. Analyses demonstrating repeatability, specificity and validation for recombinant kinases (Fig. 1; Figs. 5-17), cell extracts (Fig. 2; Figs. 18-21) and tissue extracts (Fig. 3; Figs. 23-26) are briefly explained in this section, and more fully described in the Additional Methods section.
- 30 <u>Multi-peptide-derived phospho-catalytic signatures distinguish individual kinases and their enzymatic subfamilies</u>

[0127] The phospho-catalytic activity profile of 25 recombinant kinases was measured in presence of all 228-peptides (**Fig. 1b**; **Figs. 5-7**). Inspection of kinases' activity across all peptides revealed that each kinase displayed a unique phosphorylation fingerprint (**Fig. 1b**). Particular family members were functionally distinguishable from genetically related kinases (e.g. BRK or SRMS vs. other SFK's; MAPK14 vs. MAPK1), and the activities of kinase isoforms or oncogenic variant were discernable (LYN A vs. LYN B; ABL1 vs. ABL1^{T3151}). Nevertheless, the principal factor clustering kinases was their family of origin (**Fig. 1b**, horizontal clustering; **Fig. 1c**, Pearson correlation grid).

5

10

15

20

- [0128] We then examined how including a multiplicity of peptide sensors impacted the sensitivity and specificity of the assay for predicting the identity of an individual kinase. We computed Area Under the Curve (AUC) from repeated iteration of random peptide sampling. Sensitivity and specificity systematically improved when including an increasing number of peptides, while any single peptide performed poorly overall (example in Fig. 1d; Figs. 8-9). For any given number of peptides, specific subsets performed significantly better than others. For instance, for HCK, the AUC derived from the specific combination of its 8 biological peptide targets was higher than most other 8-peptide combinations (Fig. 1d).
 - [0129] Next, we asked whether our system could find peptide sets that best differentiate a kinase from others. We compared all phospho-catalytic profiles of kinases using a dual significance threshold (p<0.05 for FDR-corrected t-test and Wilcoxon rank sum test). This revealed that a unique differential phospho-signature could be systematically assigned to every kinase (Fig. 1e; Figs. 10-11). Optimal signatures included every type of peptide (biological, generic, reference) associated with both significantly high and significantly low phosphorylation activities. So, using a large spectrum of phospho-catalytic activity sensors is a highly sensitive reporting system to differentially identify a specific kinase/kinase family.
- 25 Biological peptides are effective combinatorial activity sensors of their kinase enzymes
 - [0130] We then asked whether kinases preferentially phosphorylated their respective biological peptides. We found that kinases were significantly more capable of phosphorylating the great majority of their biological peptide targets than control pools of 63-reference, or 5-random, or 16-Y/S/T-free peptides (example of AKT1, MAPK1, JAK2 in Fig. 1f; box plots in Fig. 1g; complete dataset in Figs. 12-13). Unsupervised clustering of kinases' activity using only biological peptides showed that biological peptides distinguished individual kinases, yet grouped them by functional relationships and kinase families (Fig.

1h). Biological peptides contributed most to kinases' differential phospho-signature (Fig. 1e,h; Figs. 10-11) and highest measurable activity (Fig. 14). Computational analysis revealed that the phospho-catalytic signatures of kinases derived from their biological peptides outperformed generic peptides and provided excellent specificity and sensitivity (average AUC>0.9; Fig. 1d,i; Fig15).

5

10

- [0131] To further evaluate the performance of biological peptides as sensors of kinases, we measured the effect of kinase inhibitors. The activity profiles of ABL1, ABL1^{T31SI}, LYN A and AKT1 treated with dasatinib, imatinib and staurosporine showed that biological peptides effectively revealed the distinct drug-sensitivities of kinases (Fig. 1j-k; Figs. 14b, 16). Statistical analyses determined that biological peptide sets systematically and significantly correlated with kinases' activity inhibition (Figs. 14b, 16). Similar results were found when measuring the effects of SFK-inhibitor PP2 and SU6656 on FYN A, HCK, LCK, and SRC (Fig. 17). Altogether, these results show that the identity and activity of kinases can be measured using their respective biological peptides.
- 15 Identifying druggable kinases that mediate intrinsic resistance to BRAF^{V600E}- targeted therapy
 - [0132] Providing a functional assay that identifies hyperactive, druggable kinases in cell culture models would be valuable to investigators. In the case of BRAF^{V600B} CRC, finding targeted therapies has been a biomedical challenge. RNA-interference screens performed in WiDr BRAF^{V600E} CRC cells originally found that parallel feedback activation of EGFR caused intrinsic resistance to vemurafenib (VEM)^{4,36}, but the limited response of patients treated with BRAF+EGFR combination therapy³⁷ underlines how crosstalk between signaling pathways often confounds genetic screen–drug response relationships. We applied our assay to explore whether other kinases drive such unresponsiveness to BRAF-therapy.
- MEK1 and ERK2 kinase activity, and increased EGFR activity (Fig. 2a; Fig. 18). This matched the reduction in phospho-MEK1/2 and ERK1/2 proteins, and increase in phospho-EGFR, which confirmed that the HT-KAM assay could functionally replicate what is anticipated from literature. We then concentrated on finding novel targets. Examination of kinase signatures revealed that AKT1 was overly active, while its downstream tumor suppressor kinase GSK3B was inactivated (Fig. 2b, left). Furthermore, the activity of PDPK1 and its downstream effector kinases SGK1, PRKCA, PKNs were increased (Fig. 2b, right). These changes in kinase activity were significant (Fig. 2b; Figs. 18-19) and confirmed by

immuno-detection (**Fig. 2c**). Such specific changes are cancer-promoting processes implicated in cell cycle, survival and metabolism, which suggests that drug resistance can be functionally defined by our assay as the coordinated re-programing of multiple signaling pathways.

[0134] To assess the role of these kinases as mediators of resistance to VEM, we tested the response of WiDr to drug combinations in cell survival assays. Besides AKT1, strong synergy was observed when BRAF^{V600E}-targeting was paired with inhibitors for PDPK1 and PRKCA (Fig. 2d). Results were confirmed using other BRAF^{V600E} CRC cell lines and inhibitors (Fig. 20). This demonstrates that our strategy can serve as a discovery platform to predict differences in kinase activity and provide a rational design for new combination therapies.

The phospho-catalytic signatures of cancer cells reveal their specific kinase dependencies

[0135] Next, we asked whether our approach could be used to survey the activity of kinases across different cancer cell lines. Fig. 2e-f and Figs. 21-22a,b show that cancer cell lines could be systematically distinguished based on either their 228-peptide phosphorylation profiles, or their kinase activity signatures. We then evaluated whether the differential kinase activities of different cells could foretell their drug sensitivity (Fig. 22c-e), and specifically asked whether HT-KAM could identify kinases that functionally distinguish BRAFV600E CRC from BRAFV600E MEL cells (WiDr vs. A375; Fig. 2g-h). Graphs in Fig. 2g compare kinase activity (y-axis) to GI50 concentration for individual drugs (x-axis). Data for the 10 kinases and 14 inhibitors we tested, are compiled in Fig. 2h. Results showed that the higher the activity of a kinase, the more a cell line was susceptible to respond to a matching drug. For instance, CDKs and MEKs were significantly more catalytically active in A375 than in WiDr, and A375 cells responded to much lower concentrations of the related drugs dinaciclib and trametinib than WiDr did. So, BRAFV600E cells of different tumor origins inherently relied on distinct kinase dependencies that were predictive of their drug sensitivities. Altogether, results in Fig. 2f-h and Fig. 22 indicate that our platform provides a pragmatic solution to find active, druggable kinases in cell culture models.

Mapping the phospho-catalytic signatures of patients' melanomas

15

20

25

30 **[0136]** Identifying which kinases are overly active in patients' tumors would be of high clinical value. Malignant melanoma is a disease ultimately refractory to most current forms of therapy, including BRAF/MEK/ERK inhibitors used to treat metastatic BRAF^{V600E} tumors³⁸-

⁴¹. We thus evaluated the potential utility of our assay to map the phospho-catalytic signatures of patients' melanomas.

5

25

- [0137] Nine surgically excised, fresh-frozen tumors from melanoma patients (Fig. 3a; Fig. 23) were tested in four independent HT-KAM technical replicates. The 228-peptide phosphorylation signatures were analyzed using unsupervised hierarchical clustering (Fig. 3b), principal component analysis (Fig. 24), and dual significance threshold selection (Fig. 25). We found that the phospho-fingerprints of tumors were highly robust signatures that strongly associated with outcome (Fig. 3b, black squares; Figs. 24, 25). The group of signatures that retrospectively predicted poor outcome included BRAFV600E tumors that did not respond to VEM treatment (Fig. 3b, red squares; Figs. 24, 25b-e). 10
- [0138] Next, we asked whether peptide phosphorylation profiles could reveal the hyperactive kinases of poor outcome tumors. Fig. 3c and Fig. 26a-c show that kinase activity signatures established from biological peptides and compared across tumors, were associated with outcome. Enrichment analysis using the most significantly and differentially phosphorylated biological peptides in poor outcome patients, determined that PIM, RPS6KB 15 and AKT kinases were most active (Fig. 3d; Figs. 26d-e, 27), and highest in VEM-resistant melanomas (Fig. 3c, arrows; Fig. 3e). GSK3B was significantly downregulated in these tumors (Fig. 3c.e). These hyperactive kinases suggest new vulnerabilities that may be exploitable in the clinic.
- 20 Translating kinase hits into new therapeutic opportunities for BRAFV600E melanoma treatment
 - [0139] Based on these patient tumor kinase activity profiles, we assessed the growth response of A375 and Sk-Mel-28 cells to kinase-targeting drug combinations. Fig. 3f-h and Fig. 28 show that inhibitors of PIM, RPS6KB or AKT significantly potentiated the anticancer effects of BRAF inhibition, and outperformed MTOR- or MEK-inhibitors whose effects in patients are variable and transient. Cells exogenously expressing constitutively active AKT1 remained sensitive to RPS6KB- or PIM-targeting (Fig. 29), suggesting that these signaling hubs can function independently and represent suitable alternative targets to alleviate therapeutic resistance. GSK3B inhibition antagonized VEM effects, thus mimicking a loss of tumor suppressive function by promoting resistance to BRAF-therapy. These results support observations we made in patient tumors (Fig. 3c-e), where unresponsiveness to

BRAF^{V600E}-therapy was accompanied with the coordinated inactivation of GSK3B and activation of PIM, RPS6KB and AKT kinases.

[0140] Finally, we used tumor cells isolated from a patient-derived xenograft (PDX) established from a BRAF^{V600E} melanoma patient refractory to VEM 42, and that maintained high levels of phospho-RPS6KB1 (Fig. 3i; Fig. 30). Colony formation showed these tumor cells were particularly sensitive to RPS6KB inhibition (Fig. 3i). So, the activation of RPS6KB is a confirmed vulnerability that can be targeted to restore therapeutic sensitivity in BRAF therapy-resistant melanomas.

Discussion of experimental results described above

- 10 [0141] A key to successful therapy is the identification of critical aberrant signaling networks whose inhibition would result in system failure of diseased cells. This example demonstrates the use of an innovative proteomic approach to identify specific kinase vulnerabilities that lie within the proto-oncogenic phospho-circuits of cancer cells and tumor tissues.
- 15 **[0142]** We developed a system that relies on collections of peptides to directly monitor the phospho-catalytic signatures of biological samples. Our strategy provides access to a vast, untapped resource of meaningful measurements, whether readouts are interpreted irrespective of which enzymes phosphorylate which probes, or analyzed to convert global phosphosignatures into functional profiles of kinase activities.
- [0143] In-depth computational analyses and systematic drug targeting of kinases established the advantages of our system to gain biological insights into phospho-signaling circuits. The combination of single phospho-activities measured across peptide sensors collectively distinguished the activity of different kinases within or between samples of simple or complex composition (purified kinases, cells, tissues). Particular subsets of peptides —especially kinases' biological targets—provided superior sensitivity, specificity and discernibility over any single probe-derived measurement. The identity and activity of kinases across a broad range of kinase families could be simultaneously assessed from their subset of biological peptides in various cancer cells and tumor tissues.
- [0144] Based on our analyses, the differential spectrum of low-to-high phospho-catalytic activities measured across peptides predicts that expanding the peptide library beyond the current 228 peptides will enable mapping many more kinases with even finer accuracy. It will

5

10

15

20

25

30

also be possible to build 'fit-for-purpose kits' relying on narrow sets of best-predictor peptides customized to monitor the activity of particular kinases for research or diagnostic purposes. The HT-KAM strategy is a versatile platform adaptable to users' needs (e.g. interchangeable peptide library, or assay conditions), and practical to both laboratory research and clinical settings.

- established that peptide phospho-signatures of cancer cells could be deconvoluted to identify hyperactive, druggable kinases. We showed that the intrinsic and adaptive kinase dependencies of different BRAF^{V600E} cancers were distinctive and predictive of their drugsensitivity to single or combinatorial targeted therapies. The newly revealed kinase vulnerabilities of VEM-resistance in BRAF^{V600E} CRC cells included signaling pathways orchestrated by PDPK1, PRKCA, SGK1 and GSK3B. In melanoma, PIM1 and RPS6KB1 were identified as new druggable vulnerabilities predictive of poor outcome in BRAF^{V600E} patients. Some of these susceptibilities are new therapeutic alternatives that could be tested in the clinic. Since kinase circuits are likely cell/patient specific, it will be important to profile the kinome signatures of individual patients' tumors to personalize medical treatments.
- [0146] Our approach effectively identified kinase targets beyond those previously found by synthetic lethality genetic dropout screens in same model systems. While shRNA approaches focus more on individual genetic dependencies, our assay allows capturing the functional fingerprint of kinases in their native state, without requiring exogenous interventions that may alter the dynamics of signaling circuits. Furthermore, large scale gene expression or mutation analyses would not identify the kinase targets we found because no evident genetic alteration are reported for these genes in cell lines or patient tumors (e.g. RPS6KB1 or PIM1 in MEL; PRKCA or PDPK1 in CRC)^{18,34,42,43}. As well, the results of considerable genomic study efforts suggest that, for many cancers including CRC, therapeutic resistance is likely not driven by individual genetic dependencies or caused by some dominant driver mutations. Therefore, functional proteomic platforms designed to detect the activity of kinases—and eventually the functionality of the whole kinome— such as HT-KAM, are needed to start elaborating higher-order functional maps of signaling networks that can directly pinpoint actionable vulnerabilities of tumors.
- [0147] How to choose and pair limitless combinations of drugs is a pressing need for pharmaceutical industries and physicians who grapple with treatment resistance in patients⁴⁴-

⁴⁶. Our platform provides a new rational design to help prioritize drug combinations and maximize likelihood of success. Furthermore, the phospho-peptide signatures uncovered in our study represent a new parameter that has the potential to be configured into diagnostic tests. For instance, BRAF^{V600E} melanoma patients who retrospectively displayed phosphosignatures indicative of aggressive disease, may have benefited from targeting BRAF + RPS6KB1 or PIM1, instead of standard therapies on which patients almost inevitably relapse.

5

10

15

20

[0148] The fact that our assay identifies multiple kinases as a cause of drug-resistance defies the usual scenario of trying to map a highly specific feedback loop that ends up describing a 'unique' pathway that mediates 'all' of the observed resistance. Instead, our results argue that resistance can result from a combination of pathways that are upregulated, working in concert, and interdependent on each other, such that it requires their coordinated signaling activities to drive the resistance. As such, a finite number of key cooperative dependencies can be identified, thus offering a highly selective choice of relevant targets to explore. Such herd-like mode of resistance can only be discovered by the kind of mass-scale functional proteomic approach we developed.

[0149] The combinatorial peptide sensing system described herein is thus a new, effective way to capture the functionality of kinases in cells and tissues. This modular strategy addresses a central issue in the bio-medical field, and could play an integral role in improving research productivity and guiding therapeutic decisions. Mapping the phospho-catalytic signatures of diseases innovates the molecular exploration of signaling networks, and supports the discovery of new actionable dependencies for precision medicine.

References Cited By Number in Above Experimental Results and Discussion, Figure

Descriptions For Figs. 1-3, Background of the Invention section, and First Paragraph of Brief

Summary of Aspects of the Disclosure Section:

- 25 1. Petricoin, E.F., Zoon, K.C., Kohn, E.C., Barrett, J.C. & Liotta, L.A. Clinical proteomics: translating benchside promise into bedside reality. Nature reviews. Drug discovery 1, 683-695 (2002).
 - 2. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355-365 (2001).

- 3. Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427-430 (2010).
- 4. Prahallad, A., et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100-103 (2012).
 - 5. Duncan, J.S., et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307-321 (2012).
 - 6. Sos, M.L., et al. Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. Cell reports 8, 1037-1048 (2014).
- 7. Johannessen, C.M., et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972 (2010).
 - 8. Janne, P.A., Gray, N. & Settleman, J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nature reviews. Drug discovery 8, 709-723 (2009).
 - 9. Fleuren, E.D., Zhang, L., Wu, J. & Daly, R.J. The kinome 'at large' in cancer.
- 15 Nature reviews. Cancer 16, 83-98 (2016).

5

- 10. Johnson, S.A. & Hunter, T. Kinomics: methods for deciphering the kinome. Nature methods 2, 17-25 (2005).
- 11. Krogan, N.J., Lippman, S., Agard, D.A., Ashworth, A. & Ideker, T. The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer. Molecular cell 58, 690-698 (2015).
- 12. Hoadley, K.A., et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929-944 (2014).
- 13. Akbani, R., et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature communications 5, 3887 (2014).
- 25 14. Chandarlapaty, S., et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer cell 19, 58-71 (2011).
 - 15. Coppe, J.P., et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6, 2853-2868 (2008).

- 16. Huttlin, E.L., et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell 162, 425-440 (2015).
- 17. Rikova, K., et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190-1203 (2007).
- 5 18. Zhang, B., et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382-387 (2014).
 - 19. Uhlen, M., et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
- Drake, J.M., et al. Phosphoproteome Integration Reveals Patient-Specific Networksin Prostate Cancer. Cell 166, 1041-1054 (2016).
 - 21. Sharma, K., et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell reports 8, 1583-1594 (2014).
 - 22. Bantscheff, M., et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature biotechnology 25, 1035-1044 (2007).
- 15 23. Daub, H., et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Molecular cell 31, 438-448 (2008).
 - 24. Kubota, K., et al. Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nature biotechnology 27, 933-940 (2009).
- 25. Nomura, D.K., Dix, M.M. & Cravatt, B.F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nature reviews. Cancer 10, 630-638 (2010).
 - 26. Ren, W., Damayanti, N.P., Wang, X. & Irudayaraj, J.M. Kinase phosphorylation monitoring with i-motif DNA cross-linked SERS probes. Chem Commun (Camb) 52, 410-413 (2016).
 - 27. Anastassiadis, T., Deacon, S.W., Devarajan, K., Ma, H. & Peterson, J.R.
- Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nature biotechnology 29, 1039-1045 (2011).
 - 28. Houseman, B.T., Huh, J.H., Kron, S.J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nature biotechnology 20, 270-274 (2002).

29. Karaman, M.W., et al. A quantitative analysis of kinase inhibitor selectivity. Nature biotechnology 26, 127-132 (2008).

- Fang, C., et al. Integrated microfluidic and imaging platform for a kinase activity radioassay to analyze minute patient cancer samples. Cancer research 70, 8299-8308 (2010).
- 5 31. Li, X., et al. The reverse in-gel kinase assay to profile physiological kinase substrates. Nature methods 4, 957-962 (2007).
 - 32. Wu, J., Barbero, R., Vajjhala, S. & O'Connor, S.D. Real-time analysis of enzyme kinetics via micro parallel liquid chromatography. Assay Drug Dev Technol 4, 653-660 (2006).
- 33. Sanz, A., et al. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. PloS one 6, e18522 (2011).
 - Olow, A., et al. An Atlas of the Human Kinome Reveals the Mutational Landscape Underlying Dysregulated Phosphorylation Cascades in Cancer. Cancer research (2016).
 - 35. Hornbeck, P.V., et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
- 15 Nucleic acids research 43, D512-520 (2015).
 - 36. Corcoran, R.B., et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer discovery 2, 227-235 (2012).
- van Geel, R.M., Beijnen, J.H., Bernards, R. & Schellens, J.H. Treatment
 Individualization in Colorectal Cancer. Curr Colorectal Cancer Rep 11, 335-344 (2015).
 - 38. Flaherty, K.T., et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England journal of medicine 367, 1694-1703 (2012).
 - 39. Larkin, J., et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England journal of medicine 371, 1867-1876 (2014).
- 25 40. Van Allen, E.M., et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer discovery 4, 94-109 (2014).
 - 41. Wagle, N., et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer discovery 4, 61-68 (2014).

42. Kemper, K., et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell reports 16, 263-277 (2016).

- 43. Cancer Genome Atlas, N. Genomic Classification of Cutaneous Melanoma. Cell 161, 1681-1696 (2015).
- 5 44. Bernards, R. A missing link in genotype-directed cancer therapy. Cell 151, 465-468 (2012).
 - 45. Cohen, R.L. & Settleman, J. From cancer genomics to precision oncology--tissue's still an issue. Cell 157, 1509-1514 (2014).
- 46. Holohan, C., Van Schaeybroeck, S., Longley, D.B. & Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nature reviews. Cancer 13, 714-726 (2013).
 - 47. Brunen, D., et al. TGF-beta: an emerging player in drug resistance. Cell Cycle 12, 2960-2968 (2013).
 - 48. Foucquier, J. & Guedj, M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3, e00149 (2015).

15

20

25

30

Additional Methods-Results are summarized in the Descriptions of the Figures

[0150] Kinase activity assay. The phospho-catalytic signature of samples was established from simultaneously occurring ATP-consumption tests measured in presence of peptides that are experimentally isolated from each other in multi-well plates. Assays were run in 384 well-plates (solid white flat bottom plates; Corning, cat.# 3570), where each experimental well contained one kind of peptide. The final 8 uL reaction mixtures per well contained the following final concentrations of reagents: (i) kinase assay buffer (KaB1x prepared daily and diluted in ddH₂O from a 10x stock solution of 25mM Tris-HCl (pH7.5), 10mM MgCl₂, 0.1mM Na3VO4, 5mM β-glycerophosphate, 2mM dithiothreitol (DTT); or purchased from Cell Signaling cat.# 9802), (ii) 250 nM ATP (prepared from a 10mM stock solution of adenosine-5'-triphosphate in ddH2O, and diluted daily with KaB1x; Cell Signaling cat.# 9804), (iii) 200 ug/mL 11-mer peptide (lyophilized stocks originally prepared as 1mg/mL in KaB1x, 5% DMSO), and (iv) samples typically made of either 5ng/uL recombinant kinase enzyme protein or 10 ug/mL protein extract from cell or tissue lysates (see below for

protocol) that were kept on ice and diluted in KaB1x <30min before experimental testing.

Controls with no-ATP, or no-peptide, or no-sample as well as ATP standards, were run sideby-side within each 384-well plate.

[0151] High-throughput liquid dispensing of all reagents was achieved using the Biomek® FX Laboratory Automation Workstation from Beckman Coulter (hosted by the Center for Advanced Technologies, UCSF), and was programmed to specifically address the dispensing requirements of the assay (timing, sequence, tip-touch location/height/depth, etc). Accurate dispensing was thoroughly and regularly validated. All reagents were kept on ice and plates on cold blocks (VWR/BioCision; COOLRACK XT PCR96 cat.# 89239-498; COOLSINK XT 96F cat.# 89239-504) until enzymatic reactions were started. For all intermediary steps over the course of the assay (i.e. buffer and sample preparation, dispensing, etc), we used micro-centrifuge tubes (Costar; cat.# 3621) and clear 96-well PCR-plates (VWR; cat.# 83007-374).

[0152] Once the dispensing of reaction mixtures was completed, 384-well reaction plates were typically incubated for 30min at 30degC. After enzymatic reactions were completed, the final detection step used Kinase-Glo revealing reagent (Promega; cat.# V3772; dispensed using Biomek automated workstation), which stops the activity of kinase enzymes and produces a luminescent signal directly correlated with the amount of remaining ATP in samples over a broad range of ATP concentrations (repeatability and accuracy of the ATP-dependent luminescence assay measurements were tested and validated over 5 logs of ATP concentration; R²>0.99). Luminescence data are inversely correlated with the amount of kinase activity. Luminescence was measured using the Synergy 2 Multi-Mode Microplate Reader from BioTek, and occasionally the Molecular Devices Analyst AD Microplate Reader from McKinley Scientific.

15

20

[0153] Peptide sensors. 11-mer amino acid sequences were made-to-order and mass synthesized by GenScript at >95% purity. The 228-peptide library included 151 biological peptides, 14 generic positive control peptides, and 63 reference peptides that include 27 mutated (Tyrosine (Y) / Serine (S) / Threonine (T) → Glycine (G)) and 31 prephosphorylated (Y / S / T → pY / pS / pT) peptides, and 5 random peptide sequences (Fig. 4 provides peptide sequence details and connectivity between peptides and kinases). Biological peptides correspond to phosphorylatable amino acid regions of substrate protein identified from literature and curated in resources such as PhosphoAtlas¹ (Fig. 4c-d) or PhosphoSitePlus². Each generic positive control peptide corresponds to a kinase activity

reporting probe commonly used in single-peptide assays, as available/advertised from literature. Some of the generic positive control peptides were purchased from SignalChem (e.g. Abltide, cat.# A02-58; Poly (4:1 Glu, Tyr) peptide, cat# P61-58).

- [0154] Recombinant kinases. The following purified, recombinant kinase enzymes were purchased from SignalChem: ABL1/c-ABL (cat.# A03-18H), ABL1^{T3151} (cat.# A03-12DG), ABL2/ARG (cat.# A04-11H), AKT1/PKB/RAC (cat.# A16-10G), AKT2 (cat.# A17-10G), AKT3 (cat.# A18-10G), BLK (cat.# B02-10G), BRK/PTK6 (cat.# P94-10G), CSK (cat# C63-10G), EGFR/HER1 (cat# E10-11G), ErbB2/HER2/NEU (cat# E27-11G), ErbB4/HER4 (cat.# E29-11G), ERK2/MAPK1/p42 (cat.# M28-10G), FGR (cat.# F10-10G), FRK (cat.# F14-11G), FYN isoforms A (cat.# F15-10G), FYN isoform C (inactive; cat.# F15-14G-20), HCK (cat.# H02-11G), JAK2 (cat.# J02-11H), LCK (cat.# L03-10G), LYN isoform A (cat.# L13-18G), LYN isoform B (cat.# L13-10G), p38a/MAPK14 (cat.# M39-10BG), SRC/c-SRC (cat.# S19-18G), SRM/SRMS (cat.# S20-11G), YES/YES1 (cat.# Y01-10G). The same concentration of every kinase was used in all experiments (Fig. 1, Figs. 5-17).
- 15 [0155] Kinase inhibitors. The following 46 inhibitors were used in biochemical assays or cell culture. Inhibitors purchased from Selleck Chemicals are: AT13148 (cat.# S7563), AZD1208 (cat.# S7104), AZD7762 (cat.# S1532), BAY-61-3606 (cat.# S7006), BI-D1870 (cat.# S2843), bosutinib / SKI-606 (cat.# S1014), CI-1040 / PD184352 (cat.# S1020), CHIR-99021 (cat.# \$1263), dasatinib (cat.# \$1021), dinaciclib / SCH-727965 (cat.# \$2768), everolimus / RAD001 (cat.# S1120), fedratinib / SAR302503 (cat.# S2736), gefitinib / ZD-20 1839 (cat.# S1025), Go6983 (cat.# S2911), GSK2334470 (cat.# S7087), H89 (cat.# S1582), imatinib (cat.# \$1026), IPA-3 (cat.# \$7093), JNK Inhibitor VIII (cat.# \$4901), LFM-A13 (cat.# \$7734), LY2584702 (cat.# \$7704), MK2206 (cat.# \$1078), nilotinib / AMN-107 (cat.# S1033), NPK76-ii-72-1 (cat.# S), OSU-03012 (cat.# S1106), pelitinib / EKB-569 (cat.# \$1392), PLX-4720 (cat.# \$1152), PF-4708671 (cat.# \$2163), ponatinib / AP24534 (cat.# 25 \$1490), RO-3306 (cat.# \$7747), ruxolitinib / INCB018424 (cat.# \$1378), saracatinib / AZD0530 (cat.# S1006), selumetinib / AZD6244 (cat.# S1008), sotrastaurin (cat.# S2791), TAK-715 (cat.# \$2928), trametinib / GSK1120212 (cat.# \$2673), vemurafenib / PLX4032 (cat.# S1267), VX-702 (cat.# S6005), 1-Azakenpaullone (cat.# S7193). Inhibitors obtained from other companies are AS601245 (Cayman; cat.# 17542), bryostatin 1 (Sigma-Aldrich; 30 cat.# B7431), PP2 (Invitrogen; cat.# PHZ1223), PP3 (Tocris; cat.# 2794), SL 0101-1 (Tocris; cat.# 2250), staurosporine (Sigma-Aldrich; cat.# S4400), SU6656 (EMD-CalBiochem; cat# 572635). Conditions of use are indicated in the text.

- [0156] Cell culture. The 23 cancer cell lines used in this study were purchased from ATCC or provided by the laboratories of Drs. R. Bernards, S. Ortiz-Urda, M. Bissell, or F. McCormick (colorectal: WiDr, HT29, SK-CO-1, HCT-116, RKO-1; melanoma: A375, Sk-Mel-28, Mel888, MM485, Sk-Mel-2; lung: H1755, H3122, PC9; breast: AU565, HCC70, MCF7, MDA-MB-231, MDA-MB-436, T47D, HMT-3522 S1, HMT-3522 T4; prostate: PC3; thyroid: 8505C). Cells were cultured following ATCC's instructions or as previously described ³. Information regarding primary melanoma cell lines derived from therapyresistant BRAF^{V600E}-melanoma patient-derived xenografts (PDXs) are previously described ^{4,5}.
- [0157] To assess the growth/survival response of cell lines to single or combinatorial drug 10 treatments in Figs. 2-3 and Figs. 20, 22, 28, 29, we used CellTiter-Glo cell viability assay (Promega; cat# G7571). Cell culture and luminescence readouts were performed in 96- and 384-well plates after 3-day treatments. Drug treatment conditions are described in the text. The effects of drug combinations on cell growth were assessed by calculating drug interaction (D.I.; two-way ANOVA using Prism or Sigma Plot software) and combination 15 index (C.I.; following either the Loewe Additivity ⁶⁻⁹ or Bliss Independence models ¹⁰⁻¹²). IC50 and GI50 correspond to the concentration of a given drug that causes 50% inhibition of kinase activity (IC50) or cell growth (GI50). We systematically tested the effects of drugs in both regular and low serum culture conditions (i.e. 5% and 0.25% FBS media). To quantitate cell death in Fig. 3 and Figs. 28-29, FACS analysis of nuclear degradation was performed as 20 previously described ¹³. Colony formation assay in Fig. 3 and Fig. 30 were performed as previously described ⁵.
- [0158] To test the responses of WiDr cells treated with VEM in Fig. 2 and Figs. 18-20, cells were plated in medium containing 10% FBS 24h prior to being washed with serum-free medium, and cultured for 24h in medium containing 0.1% serum ³. After low serum incubation, cells were treated with drugs for 30min and stimulated by 10% FBS. After 8h, 85% confluent cells were washed in PBS, then lyzed, and supernatants stored at -80degC. In cases where experiments happened at the Netherlands Cancer Institute, samples were shipped on dry-ice to the University of California at San Francisco.
- 30 **[0159]** Preparing protein lysates from cell lines for kinase assay. To measure the phosphocatalytic activity of cancer cell lines (Fig. 2 and Figs. 18, 19, 21, 22), cultured cells were lyzed for 5min in ice-cold cell lysis buffer. Freshly prepared lysis buffer (1mL per 5.10⁶ cells)

contained non-denaturing Cell Lysis Buffer 1x (diluted in ddH2O from 10x stock of 20mM Tris-HCl (pH7.5), 150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% Triton, 2.5mM sodium pyrophosphate, 1mM b-glycerophosphate, 1mM Na3VO4, 1ug/mL leupeptin; or purchased from Cell Signaling, cat.# 9803), complemented with 1x Halt Protease & Phosphatase

- (ThermoScientific cat.# 1861281, which contains inhibitors of Ser/Thr-phosphatases and Tyr-phosphatases). Scraped off lysates were then spun down at 14,000rpm for 15min, and supernatants stored at -80degC. Protein and ATP concentrations were quantified. Since every HT-KAM assay plate includes 14 wells with sample alone (i.e. without peptide; see (Fig. 4f), internal controls for ATP levels were systematically available for all assays/samples (see Figs. 18, 21, 22).
- [0160] Immuno-detection and antibodies. Cell lysates were resolved by SDS gel electrophoresis (gels from BioRad), followed by immuno-blotting as previously described ^{3,5} and following manufacturer's instructions. The following primary antibodies and phosphoantibodies were used. Antibodies to detect ATK1/2/3 (cat.# 4691), AKT1/2 pS473 (cat.# 4060), AKT1/2 pT308 (cat.# 2965), EGFR (cat.# 4267 and 3771), EGFR pY1068 (cat.# 3777 15 and 2234), ERK1/2 (i.e. MAPK1/ERK2/p44 and MAPK3/ERK1/p42; cat.# 4695), ERK1/2 pT202/Y204 (cat.# 4370), GSK3B (cat.# 9315), GSK3B pS9 (cat.# 9323), MAPK14/p38a (cat.# 8690), MAPK14/p38a pT180/pY182 (cat.# 9215), MEK1/2 (i.e. MAP2K1 and MAP2K2; cat.# 4694), MEK1/2 pS217/221 (cat.# 9121), MTOR (cat.# 2972), MTOR pS2448 (cat.# 2971), PIM1 (cat.# 3247), PDPK1/PDK1 (cat.# 3062), PDPK1/PDK1 pS241 20 (cat.# 3438), PKN1/PRK1 pT774 and PKN2/PRK2 pT816 (cat.# 2611), PRKCA/PKCa (cat.# 2056), PRKCA/PKCa pT514 (cat.# 9379), RPS6KA1/p90RSK1 (cat.# 8408), RPS6KA1/p90RSK1 pT353 (cat.# 8753), RPS6KB1/p70S6K1 (cat.# 2708), RPS6KB1 pT389 (cat.# 9234), RPS6KB1/p70S6K1 pT421/pS424 (cat.# 9204), SGK1 (cat.# 3272), SGK1 pS78 (cat.# 5599), were from Cell Signaling. Antibodies to detect ERK1 (C-16), 25 ERK2 (C-14), ERK1/2 pT202/pY204 (E-4), HSP90 (cat.# sc-7947) were from SantaCruz. A
 - [0161] Tumor specimens from melanoma patients. Clinical details regarding patients are available in Fig. 23a. Patient samples were collected at The Rudolfstiftung Hospital, Vienna Austria, and the University of California San Francisco, California USA, under the IRB# 13-204-VK and 12-09483, respectively. Tumor tissue not needed for diagnostic purposes were collected intraoperatively, macroscopically dissected and flash frozen. A small piece of tumor

mixture of ERK1 and ERK2 antibodies was used for detection of total ERK3. Dilutions

followed manufacturers' instructions.

30

tissue was O.C.T.-embedded, sectioned, H&E stained and analyzed to ensure >80% tumor cell content in tumor tissue samples.

- [0162] Preparing protein lysates from tumor tissues for kinase assay. Flash frozen melanoma tissue specimens were pulverized using BioSpec 59012MS. Protein extracts from powdered samples were prepared following the lysis protocol used for cultured cells, i.e. lyzed for 5min in ice-cold non-denaturing CLB1x diluted in ddH2O from 10x stock of 20mM Tris-HCl (pH7.5), 150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% Triton, 2.5mM sodium pyrophosphate, 1mM b-glycerophosphate, 1mM Na3VO4, 1ug/mL leupeptin, complemented with 1x Halt Protease & Phosphatase (containing Ser/Thr- and Tyr- phosphatases inhibitors), then spun down at 14,000rpm for 15min, and supernatants collected. All samples were stored at -80degC. Internal controls for ATP levels in peptide-free wells were systematically measured (see Fig. 23b). The total amount of tumor tissue sample necessary to profile the activity of kinases across 384well/plates, ranged from 20ug to 30ug (which is less than the typical 100ug collected per core biopsy).
- 15 **[0163]** TCGA data analysis. mRNA data from melanoma specimens available from the TCGA resource ¹⁴ were analyzed to identify samples with altered gene expression in comparison to reference samples using a z-score cut off of +/-2. The z-score is defined as (expression in tumor sample mean expression in reference sample) / (standard deviation of expression in reference sample), where the reference population is either all tumors that are diploid for the gene in question, or, when available, normal adjacent tissue. Other statistical analysis details are described in **Fig. 27**.
 - [0164] Analysis of phosphorylation activity profiles. The computational methods, technical notes, and statistical tools developed to analyze the peptide phosphorylation activity profiles and kinase activity signatures are explained in the main text and supplemental information.

References Cited by Number in "Additional Methods" Section and Descriptions of Figures.

25

- 1. Olow, A., et al. An Atlas of the Human Kinome Reveals the Mutational Landscape Underlying Dysregulated Phosphorylation Cascades in Cancer. Cancer research (2016).
- Hornbeck, P.V., et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
 Nucleic acids research 43, D512-520 (2015).

- 3. Prahallad, A., et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100-103 (2012).
- 4. Kemper, K., et al. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts. EMBO Mol Med 7, 1104-1118 (2015).
- Kemper, K., et al. BRAF(V600E) Kinase Domain Duplication Identified in
 Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell reports 16, 263-277 (2016).
 - 6. Breitinger, H.-G. Drug Synergy Mechanisms and Methods of Analysis, (InTech, 2012).
- 7. Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer research 70, 440-446 (2010).
 - 8. Chou, T.C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22, 27-55 (1984).
- 9. Berenbaum, M.C. Synergy, additivism and antagonism in immunosuppression. A critical review. Clin Exp Immunol 28, 1-18 (1977).
 - 10. Foucquier, J. & Guedj, M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3, e00149 (2015).
 - 11. Berenbaum, M.C. What is synergy? Pharmacol Rev 41, 93-141 (1989).
- Bliss, W.L. Early Man in Western and Northwestern Canada. Science 89, 365-366(1939).
 - 13. Moasser, M.M., Srethapakdi, M., Sachar, K.S., Kraker, A.J. & Rosen, N. Inhibition of Src Kinases by a Selective Tyrosine Kinase Inhibitor Causes Mitotic Arrest. Cancer Res 59, 6145-6152 (1999).
- 14. Cancer Genome Atlas, N. Genomic Classification of Cutaneous Melanoma. Cell
 25 161, 1681-1696 (2015).
 - 15. Chen, Z. & Coppé, J.-P. Method and system for building and using a centralized and harmonized relational database (US2012/0296880). (United States, 2012).
 - 16. Yang, X., et al. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell 164, 805-817 (2016).

- 17. Corcoran, R.B., et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer discovery 2, 227-235 (2012).
- 18. Brunen, D., et al. TGF-beta: an emerging player in drug resistance. Cell Cycle 12, 2960-2968 (2013).
 - 19. Ahronian, L.G., et al. Clinical Acquired Resistance to RAF Inhibitor Combinations in BRAF-Mutant Colorectal Cancer through MAPK Pathway Alterations. Cancer discovery 5, 358-367 (2015).
- 20. Arao, T., et al. Small in-frame deletion in the epidermal growth factor receptor as a target for ZD6474. Cancer research 64, 9101-9104 (2004).
 - 21. Garnett, M.J., et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570-575 (2012).
 - 22. Yang, W., et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic acids research 41, D955-961 (2013).
- Daemen, A., et al. Modeling precision treatment of breast cancer. Genome biology 14, R110 (2013).
 - 24. Nazarian, R.M., Prieto, V.G., Elder, D.E. & Duncan, L.M. Melanoma biomarker expression in melanocytic tumor progression: a tissue microarray study. J Cutan Pathol 37 Suppl 1, 41-47 (2010).
- 25. Johannessen, C.M., et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972 (2010).
 - 26. Girotti, M.R., et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer cell 27, 85-96 (2015).
- 27. Girotti, M.R., et al. Inhibiting EGF receptor or SRC family kinase signaling
 25 overcomes BRAF inhibitor resistance in melanoma. Cancer discovery 3, 158-167 (2013).
 - 28. Sun, C., et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118-122 (2014).

29. Petricoin, E.F., Zoon, K.C., Kohn, E.C., Barrett, J.C. & Liotta, L.A. Clinical proteomics: translating benchside promise into bedside reality. Nature reviews. Drug discovery 1, 683-695 (2002).

5

10

- 30. Bernards, R. A missing link in genotype-directed cancer therapy. Cell 151, 465-468 (2012).
- [0165] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, accession numbers, and patent applications cited herein are hereby incorporated by reference for the purposes in the context of which they are cited.

_
7
~~
729

WO 2019/20	JU Z	43																						Г	C 1	I/U	32	UI:	9/0.	412	.01		
MINASE PROTEIN (NOTES (1); are in the surveyers have been to along the survey surveyers the survey survey surveyers the surveyer surveyers the surveyer of the surveyer surveyers the surveyer surveyers the surveyers as surveyers as surveyers the surveyers as surveyers the surveyers as surveyers the surveyers as surve	BLK, LYNA, LYNB;	BLK; FYN, LYNA; LYNB; SYK	BRK (PTK6)	BRK (PTK6)	FGR	FGR, CSK.	FGR; FYN; LYNA; LYNB; PTK2B (FAK2; FYK2); SYK	FRX	FRK	FYN	FYN, BRK (PTK8); EGFR, FGFR2; FGFR3, NTRK1	FYN SRC YES1	HOK	HCK	HCK LCK LYNA, LYNB	רכא	LOK; SRO	LOK	ABL1; LYNA; LYNB; SRC; YES1	LYNA, LYNB,	SRC; ABL1	SRC; BRK (PTK6)	SRC	SRC; ALK	SRC	SRC	SRC	SRC; JAK2	SRC; HCK; BRK (PTK6); FGFR3; FGFR4; JAK1; JAK2, ALK; FER; RET	SRC; YES1	ABL1	ABL1; LYNA, LYNB; BTK; ITK; TEC	ABL1; FYN; EPHA4
PHOSPHO-RESIDUE target (NUTES! (1)) are between dishandire sides of the same protein substitute. (2) I are between dishandire sides of the same securities of different incident incident within the problem securities with same securities of the same parties incident incident within the problem sequences (3), are between their direction with the problem sequences) (4) (8) are sides treating seducine sequences) (4) (8) are sides treating seducine direction of their direction sequences.	Y292	Y304	7435	Y342	Y412	Y530	7125	\$133	T232	7199	Y142	Y420/Y419/Y428	Y752	7720	Y411 / Y394 / Y397	Y174	Y334	7492	Y58	Y64	Y226	Y326	Y234	7160	Y944	164 164	Y707	7341	Y705	Y354	Y394	Y223	Y15
SUBSTRATE PROTEIN (NOTES. (1). (sre- herween 'offerent' substrate profeits with same peptides target exquence.	FCGR2B	FCGR2A	KHDRBS1 (SAM68)	BRK (PTK6)	FGR	SRC	SNCA	SOH	F0S	CD76A	CTNNB1	FYN/SRC/YES1	CSF3R	ELMO1	HOK / LCK / LYNA; LYNB	рск	PRKCD	ZAP70	CDKN1B (p27; KIP1)	PRKCD	4표L1	AKT1	BCAR1	GRB2	EGFR	4F.4.P1	TERT	RAF1 (cRAF)	STAT3	0046	MDM2	ВТК	CDK5
13-mer PEPTIDE probe (11-mer sequ., with mode tage at least the MOTES; (1) in 12-55-12-23 in the mode tage at least the with sometime additional also mode to 8, (2) in 12-55-23 in 12-52-22 in 12-52-	ENTITYSLLMHGC	DDKNINLTIPPGC	PVKGANREHPYGC	KEDV-4.SHDHGC	KDDEYNPCQGGC	STEPQYQPGENGC	PDINEAVEMPSEGC	KVEQLSPEEEGG	LPEVATPESEEGC	DDCSMYEDISRGC	VNLINYQDDAEGC	JEDNEYTAROGGC	SDANLYGALLGGC	KEPSNYDEC	JEDNEYTAREGGC	GLHGSYVLRVEGC	DNSGT7 GKIWEGC	GADDS:// TARSGC	SLPEFYYRPRGC	FDAHIYEGRVIGC	NKPTV/GVSPNGC	LEDND/GRAVDGC	PEQDEYDIPRINGO	PQQPT5VQALFGC	CTIDV-MIMVKec	LPEGYYEEAVPGC	PPPEL YFVKVDGC	RD 55 Y1 WEIE AGC	GSAAPYLKTKFGC	WPYRYLORRKGC	QESEDYSQPSTGC	KVVALYDYMPMGC	GEGT/GTVFKGC
equoi epige brope	0.0	BIO	BIÇ	BIO	O iii	BIO	Bio	0.0	BIO	o ia	BIO	BIO	OIB	BIO	DIO.	O E	BIO	BIC	BIC	Ö	BIO) BIO	BIO	BIO	BIC	BIC	Bio						
color- coded per peptide class (i.e., BIC-grpA vs. CCON+-grp B vs. REF-grps																																	
Peptide Group Group (A=biologica), B=consensus ,C=mutated biologica, D=mutated consensus, E=random	₫.	«	∢	<	∢	≪	<	∢	«	∢	<	∢	«	∢	∢.	۹	≪	≪	∢	«	4	⋖	<.	⋖	≪	∢	≪	∢	<	⋖	<	∢	∢.
well description	Key_L1_001 - sample + KaB + ATP + pept, PA_001	Key_L1_002 - sample + KaB + ATP + oept PA_002	Key_L1_003 - sample + KaB + ATP + pept. PA 003	Key_L1_004 - sample + KaB + ATP + pept, PA_004	Key_L1_005 - sample + KaB + ATP + pept, PA_005	Key_L1_006 - sample + KaB + ATP + pept, PA_006	Key_L1_007 - sample + KaB + ATP + pept. PA_007	Key_L1_008 - sample + KaB + ATP + pept, PA_008	Key_L1_009 - sample + KaB + ATP + pept, PA_009	Key_L1_010 - sample + KaB + ATP + nept PA 010	Key_L1_011 - sample + KaB + ATP + pept, PA_011	Key_L1_012 - sample + KaB + ATP + pept, PA_012	Key_L1_013 - sample + KaB + ATP + pept, PA 013	Key_L1_014 - sample + KaB + ATP + pept. PA_014	Key_L1_015 - sample + KaB + ATP + pept, PA_015	Key_L1_016 - sample + KaB + ATP + pept, PA_016	Key_L1_017 - sample + KaB + ATP + pept. PA_017	Key_L1_018 - sample + KaB + ATF + pept, PA_018	Key_L1_019 - sample + KaB + ATP + pept. PA_019	Key_L1_020 - sample + KaB + ATP + pept. PA_020	Key_L1_021 - sample + KaB + ATP + pept. PA_021	Key_L1_022 - sample + KaB + ATP + pept, PA_022	Key_L1_023 - sample + KaB + ATP + pept. PA_023	Key_L1_024 - sample + KaB + ATP + pept. PA_024	Key_L1_025 - sample + KaB + ATP + pept, PA_025	Key_L1_026 - sample + KaB + ATP + pept, PA_026	Key_L1_027 - sample + KaB + ATP + pept, PA_027	Key_L1_028 - sample + KaB + ATP + pept. PA_028	Key_L1_029 - sample + KaB + ATP + pept, PA_029	Key_L1_030 - sample + KaB + ATP + pept, PA_030	Key_L1_031 - sample + KaB + ATP + pept. PA_031	Key_L1_032 - sample + KaB + ATF + pept, PA_032	Key_L1_033 - sample + KaB + ATP + pept, PA_033
Lane/ Column focation in 384 well plates	8	6	28	1,000	8	1803	1003	EEE03	5002	8	S0.24	9	<u>\$</u>	500	S	50331	505	- - - - -	\$605	18005	es ब	503	1001	16207	1012	22	114.07	18007	80 124 124	9041	56 02)EE03	8
Psyside ID (total of 618 in peptides infected in Company, with 575 in unique peptides + 20 peptides in Complicates in Authorisate/friphteate)	PA_001	P.A_002	PA_003	PA_004	PA_005	PA_006	PA_007	PA_008	PA_009	PA_010	PA_011	PA_012	PA_013	PA_014	PA_015	P.A_016	PA_017	PA_018	PA_019	PA_020	PA_021	PA_022	P.A_023	PA_024	PA_025	P.A_026	PA_027	PA_028	PA_029	P.A_030	PA_031	PA_032	P.A_033

1 :	- FYN SRC YES1	FYN SRC YES1	FGR; CSK	FGR, CSK	SRC; HOK; FGFR3; FGFR4; JAK1, JAK2	SRC; HOK; FGFR3; FGFR4; JAK1; JAK2	SRC; ABL1	SRC; ABL1	all TKs (>90 Tyrosine Kinases)	all TKs (>90 Tyrosine Kinases)	BRK (PTK6)	NVF	NA	TOK	HCK, SRC, ABL1	LOK	LCK	LYNA; LYNE; SYK	SRC	SRC; BTK; JAK2	SRC; FYN, TEC	SRC; FYN; TEC	SRC, FYN; TEC	NA	LCK	SRC; FYN; TEC	LYNA; LYNB; SYK	NYA	LCK	SRC, FYN, TEC	LYNA; LYNB; SYK	ABL:	ABL1; JAK2	ABL1	ASL1
	- Y420/Y419/Y428_Y to G	Y420/Y419/Y425 _ Y to pY	Y530Y to G	Y530_ Y to pY	Y705_Y10 G	Y705_ Y to pY	Y226_Y to G	Y226_ Y to pY	ı		7440	Y1252	7353	Y1253	Y504	Y512	Y688	Y131	4773	Y248	٨٤٧	, Y67	757	Y1252_Y to G	Y688_Y to G	Y67_ Y to G	Y131_Y to G	Y1252_Y to pY	Y689 _ Y to pY	Y67_Y to pY	Y131Y to pY	Y232	Y1007	7170	754
	- FYN / SRC / YES1 _ CON (-) _ Y to G	FYN / SRC / YES1 _ CON (-) _ Y to pY	SRC_CON()_Y to G	SRC_CON(-)_Y to pY	STATE_CON(-)_Y to G	STAT3_CON(-)_Y to pY	ABL1_CON (-)_Y to G	ABL1_CON (-)_ Y to pY	consensus _ CON+	consensusCCNY to T	KHDRBS1 (SAM68)	GRINZE	ITPR4	PLCG1	RAPGEF1	XFII	PIK3R1	SYK	ITGB3	GTF2I	GRB10	GR810	GRB10	GRINZB_CON(-)_Y to G	PIK3R1_CON(-)_Y to G	GRB10_CON (-) _ Y to G	SYK_CON(-)_Y to G	GRINZB_CON(-)_Y to pY	PIK3R1_CON (-) _ Y to pY	GRB10_CON(-)_Y to pY	SYK_CON(-)_YtopY	MAP4K1	J,4K2	NO	RAD51
AAAAABTO GGGGGYGEGGGGC GGAGGYGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	IEDNE(pY)TARQGGC	STEPQGQPGENGC	STEPQ(pY)@PGENGC	GSAAPGLKTKFGC	GSAAP(pY)LKTKFGC	NKPTVGGVSPNGC	NKPTV(pY)GVSPNGC	PGEFKKKAAC	TGEFKKKAAC	KGAYREHPYGRGC	KAGNUTDISEDGC	QEKMVYSLVSVGC	SFESRYQQPFEGC	IPSVP:YAPFAAGC	VLDDQ: TSSTGGC	EPYNLYSSLKEGO	NLIREYVKOTWGC	ANNPL ?KEATSGC	SEDPDYYOYNIGO	SLESLYSACSMGC	SLESLYSACSWGC	SLESLYSACSMGC	KAGNLGDISEDGC	EPYNLGSSLKEGC	SLESI. GSACSMGC	NLIREGVKOTWGC	KAGNL(pY)DISEDGC	EPYNL(pY)SSLKEGC	SLESL(pY)SACSMGC	NLIRE(pY)VKQTWGC	MTKSGYQPPRLGC	PODKEYYKVKEGO	SEPPV/ANLSNGC	VEAVANAPKKEGC
CON random CON random	CON mutated BIO	CON mutated BIO	CON mulated BIO	CON mutated BIO	+ NOO	CON mutated CON+ ITGEFKKKAAC	ONE	OIB	SIC	BIO	BIO	Bio	BIC	BIO	OI8	BIO	BIO_ Rep (lib1-4)_i1	BIO	BIO_Rep (lb1-4)_e1	CON mutated BIO	CON mutated BIO	CON mutated BIO	CON mutated BIO	CONmutated BIO	CON mutated BiO	CON mutated BIO	CON mutated BIO	019	BIO	BIO	980				
Key_L _034. sample + KaB + ATP = + pept, PA_056 Key_L _035. sample + KaB + ATP = + pept, PA_036 sample + KaB + ATP = Key_L _036. sample + KaB + ATP = Key_L _036. sample + KaB + ATP =			Key_L1_039 - sample + KaB + ATP_C + pept, PA_041	Key_L1_040 - sample + KaB + ATP_C + pept, PA_042	Key_L1_041 - sample + KaB + ATP_C + pept, PA_043	Key_L1_042 - sample + KaB + ATP_C + pept: PA_044	Key_L1_043 - sample + KaB + ATP_C + pept. PA_045	Key 1.1 044 - sample + KaB + ATP C + pept. PA_048	Key_L1_045 - sample + KaB + ATP B + pept. PA_048	Key_L1_046 - sample + KaB + ATP_0 + pept; PA_051	Key_L1_047 - sample + KaB + ATP_A + pept. PA_065	Key L1 046 - sample + KaB + ATP A + pept. PA 067		Key_L1_050 - sample + KaB + ATP_A + pept_PA_069	Key L1 051 - sample + KaB + ATP A + pept. PA 070	Key_L1_052 - sample + KaB + ATP A + pept. PA_071	Key_L1_053 - sample + KaB + ATP_A + pept, PA_072	Key_L1_054 - sample + KaB + ATP_A + pept. PA_073	Key_L1_055 - sample + KaB + ATP A + pept, PA_074	Key_L1_056 - sample + KaB + ATP A + pept. PA_075	Key_L1_057 - sample + KaB + ATP A + pept. PA_076		Key_L2_001 - sample + KaB + ATP A + pept. PA_076	Key_L1_059 - sample + KaB + ATP_C + pept: PA_077	Key_i1_060 - sample + KaB + ATP _C + pept. PA_078	Key_L1_061 - sample + KaB + ATP_C + pept. PA_079	Key_L1_062 - sample + KaB + ATP C + pept: PA_080	Key_L1_063 - sanple + KaB + ATP_C + pept, PA_081	Key_L1_064 - sample + KaB + ATP C + pept. PA_082	Key_L1_065 - sample + KaB + ATP C + pept. PA_083		Key_L1_067 - sample + KaB + ATP_A + pept: PA_085	Key_L1_066 - sample + KaB + ATP A + pept. PA_085	Key_L1_069 - sample + KaB + ATP A + pept. PA_067	Key_L1_070 - sample + KaB + ATP_A + pept, PA_088
PA_035 (K09) PA_036 (632)		PA_040 1EE11	PA_041 1G11	PA_042 5811	PA_043 1811	PA_044 18611	PA_045 10ff	PA_046 3.813	PA_046 1K12	PA_051 1813	PA_066 1402	FA_067 1092	PA_066 1EE02	PA_069 1,G02	PA_070 5102	PA_071 1K02	PA_072 18602	PA_073 1002	PA_074 1A94	PA_075 1034	PA_076 3C1S	PA_078 15E504	PA_076 2015	PA_077 1G04	PA_078 1:034	PA_079 16:04	PA_080 18804	PA_061 1004	PA_062 1A06	PA_083 15285	PA_084 1EE08	PA_085 1008	PA_086 1:06	PA_087 1K06	PA_068 35666

W	O	20 1	19/2	200	245															P	CT/U	S20	19/	02	72 0	1	
ABL 1 ABL1; FTK2 (FAK, FAK1)	ABL:	ABL1	FYN, HCK; LCK; LYNA; LYNB; SRC	BLK; BRK (PTK8); FGR, FRK; FYN; HCK; LCK; LYNA; LYN8; SRC; SRMS; YES1	ABL1, ABL1(H398P), ABL1(Q252H); ABL1(T315); ABL2; BTK, FLT3; FLT3(D835Y); KTT (SCFP); MET: RET	ABL1, ABL2	LYNB; SRMS; EPHA1; EPHA2; EPHA4, EPHA5; EPHA8; EFHB1; EPHB2, EPHB3, EPHB4; FORFR3, METTIK (MER3; MTRA2 (TRMS), NTRNG (TRNS); FTA28 (FAA2, PYK2), TAK, TYRO3	LYNB; SRAWS, EPHA1; EPHA2; EPHA3; EPHA4, EPHA5; EPHA8; EPHB1; EPHB2, EPHB3, EPHB4, FGFF3, MERTIX (MER); MTRA2, CRNE), MTRA3 (TRKC); FES; ITK; FTA38 (FAX2, PYA2), TYK, TYFO3	L'NB, SHAS, EPHA1, EPHA2, EPHA3, EPHA3, EPHA4, EPHA5, EPHB2, EPHB3, EPHB3, EPHB3, EPHB3, EPHB3, EPHB3, EPHB3, EPHB3, EPHB3, TRKE), MYRK2, TRKE), MYRK2, PKW3, TKK, TYRQ3		1	1	EGFR, FGFR2, FGFR3, FGFR4, PDGFRA; KDR (VEGFR2); FER (TYK3); SYK	FYN, HOK, LOK, LYNA, LYNB, SRC	ABL1; ABL1(H398P), ABL1(Q252H); ABL1(T315); ABL2; BTI4; FLT3; FLT3(D835Y); KT7 (SGFR): MFT RFT	EGFR, FGFR2, FGFR2(NS49H), FGFR3; FGFR4, PDGFRA; KDR (VEGFR2), FER (TYK3), SYK	FYN; HOK; LOK; LYNA; LYNB; SRC	AEL1; ABL1(H365P); AEL1(O252H); AEL1(T315); ABL2; BTN; FLT3; FLT3(D835Y); MT7(SCFP); MFT; DFT	NI (304 N), MLI, NE. EGFR, FGFR2, FGFR2(NS49H), FGFR3; FGFR4, FDGFRA, KDR (VEGFR2), FER (TYK3): SYK	EGPR, ERBBS (in its dimeric state with another HER Part, member), ERBB4, HCK, LYNA;	L fNe, 5 ft, Abl.1 [GFR] ERBS (in its diment state with another HER fam member), ERBS4, HOK, LYNA, LYNB, SYK, ABL.1	EGFR; ERBB3 (in its dimeric state with another HER fam. member); ERBB4; HCK; LYNA; I YNR SYK; ARI 1	EGFR, ERBB3 (in its dimeric state with another HER fam. member); ERBB4; LCK	EGFR; FYN; HCK	EGFR, LOK, FGFR3, FGFR4, JAK1, JAK2; KIT (SGFR), TYK2	EGFR; MET; INSR	EGFR; MET; INSR
Y95 Y256	Y54_ Y to G	Y54Y to pY	ı	1	· ·	ı	-1	i	1	1	1	i	í	ı	1	i	i	ı	t	Y771	Y777	1477	7450	7731	7701	Y627	7472
TP73 WASL	RAD51_CON (-)_Y to G	RAD51_CON (-) _ Y to pY	consensus _ CON+	consensus _ CCN+	consensusCCN+	consensus_CON+	1	CONSERVACE CONSERVACE				1	consensus_COM+	consensus_CON Y to G	consensus_CCN Y to G	consensus_CCNY to G	consensus_CON Y to pY	consensusCONY to pY	consensus _ CON Y to pY	PLCG1	P.cei	Pcs1	RASA1 (GAP)	CSL	STAT	GAB1	GAB1
PTHSPYAQPSSGC TSKVYDFIEKGC	VEAVAGAPKKEGC	VEAVA(pY)APKKEGC	EGIYGVLGC	KYVVGYTGEGIKEVKGC	EALYAAPGC	EALYAAPFAKKKGC	EFPIN DELPAKIAKOC	EFPIYOFLPANKKGC	EPPINDPLFAKKINGO	REEEYEREEYEREEGG	EEEFYEEEFYEEEGC	EEEEYEEEEYEEEGC	EPLYWSFPAGO	EGIGGVLGC	- EAIGAAPGC	: EPLGWSFPAGC	EGI(pY)GVLGC	EARDYAAPGC	- EPL(pY)WSFPAGC	TAEPDY GALYEGC	TAEPDYGALYEGG	TAEPDYGALYEGC	DOKEIYNTIRRGC	IDSCT-/EAMYNGC	PKGTGYIKTELGC	DKGVEN LDLDLGC	IOEANYVPMTPGC
BIO	CON mutated BIO	CON mutated BIO	+ NOO	+ NOO	CON+	+ NOO	CCN + _ Rep (lib1-	+ NOO	CON + _ Rep (lib1- 4)_e2	COM random	CON random _ Rep (lib1-4) i3	CONrandom_Rep (ilb1.4)_e3	+ NOO	CON mutated CON+ EGIGGVLGC	CON mutated CON+	CON mutated CON+ EPL@WSFPAGC	CON mutated CON+ EGI(pY)GVLGC	CON mutated CON+ EAI(pY)AAPGC	CON mutated CON+ EPL(pY)WSFPAGC	Ole	BIO _ Rep (in1-4)_i4	SIO_, Rep (851-4)_e4	OIG	SIC	Ola	018	BIC
17005 Key_L1_071 - sample + KaB + ATP A + pept. FA_089 Key_L1_072 - sample + KaB + ATP A + pept. FA_080	Cods Key-1-1073 - sample + KaB + ATP C + bept. PA 081	65508 Key_L1_074 - sample + KaB + ATP_C + pept. PA_092	1/308 Key_L1_075 - sample + KaB + ATP_B + pept. PA_083	106 Key_L1_U76 - sample + KaB + ATF B + pept, PA_084	Koy_L1_077 - sample + KaB + ATP 8 + pept. P4_085	(M008 + pept. PA 099	K415. Kay_LL 079 - sanple + KaB + ATP B + pept. PA_067	Key_L1_080 - sample + KaB + ATP B + pept PA_097	2015. Koy_L2_U02 - sangae + KaB + ATP _B + pept. PA_2097	1810 Key_L1_081 - sample + KaB + ATP E + near PA 198	Key_L_1 082 - sample + KaB + ATP = + pept. PA 088	2537 Key, L.2, 505 - sample + KaB + ATP E + pept PA 098	Key_L1_083 - sample + KaB + ATP B + pept PA_099	(佐安) Key_LT_084 - sample + KaB + ATP_D + pept, PA 100	C518 Key_L1_085 - sample + KaB + ATP_D + pspt. PA_101		76/16 Key_L1_087 - sample + KaB + ATP_D + pept. PA 103	MATD Key_11_086 - sample + KaB + ATP D + pept PA_104	(2018) Key_L1_089 - sample + KaB + ATP D + pept. PA_105	Key_L1_090 - sampte + KaB + ATP_A + pept. PA_108		26138 Key_L2_004 - sangle + KaB + ATP _A + papt. PA_108	Key_L1_092 - sample + KaB + ATP A + pept. PA 107	SERVE Key_L1_093 - sample + KaB + ATP A + near PA 108	Key_L1_034 - sample + KaB + ATP_A + pept. PA_109	(45) (45) (45) (45) (45) (45) (45) (45)	Krys
980 \	A_091	4_092	4_093	√094	560~	960~	7007	.097	n_097	a ₀ _098	960~	960_^	960_4	100	101	1.102	103	104	A_105	A_106	7,106	A_106	4_107	108	109	7110	L111

V	VO	20	19/	200)24	5																					P	C7	ſ/U	S2	019	9/02	272	201	
EGFR, ZAP70 EGFR	C 01 01 01 01 01 01 01 01 01 01 01 01 01	EGFR: SYK	EGFR	ERBB2	ERBB3 (in its dimend state with another HER fam, member)	ERBB4	EGFR; ERBB2	EGFR; ERBS4	ERBB4; JAK2; JAK3; BTK; SYK; LCK; SRC EGFR; JAK2; BRK (PTK8); HCK; SRC	ERBB3 (in its diment state with another HER fam. member); ERBB4	ERB53 (in its oimeric state with another HER (am. member); ER584; PTK2 (FAK.FAK1); BRK (PTK6)	ERBES (in its cimeric state with another HER fam. member); ERBS4	ERBB3 (in its dimeric state with another HER fam. member); ERBB4	ERBB3 (in its dimeno state with another HER fam. member); ERBB4; SYK	EGFR; LOK; FGFR3; FGFR4; JAK1; JAK2; KIT (SCFR); TYK2	EGFR, MET, INSR	EGFR	ERBB2	ERBE3 (in its almedo state with another HER tam. member)	ERB54	ERBB3 (in its dimeno state with another HER fam. member); ERBB4; PTK2 (FAK,FAK1)	ERBE3 (in its dimeric state with another HER fam. member); ERBS4	EGFR; LCK; FGFR3, FGFR4; JAK1; JAK2, KIT (SCFR); TYK2	EGFR; MET, INSR	EGFR	EGFR	EGFR	ERBB2	ERBE3 (in its dimeric state with another HER fant, member)	ERBB4	ERBB3 (in its dimeric state with another HER fam. member); ERBB4; PTK2 (FAK, FAK1)	ERBB3 (in its olmeric state with another HER (am. member); ERBB4	EGFR; JAK2	PRKCA (PKC alpha, PKCA); PRKCD (PKC detta, PKCD); PRKD1 (PKD1, PKD); PKN1	SRC; EGFR
Y1229 X472	2441	744 744	<u>8</u> ,	Y1028	Y54	Y1048	Y1248	71197	Y694 / Y699	Y213	Y664	Y24	Y305	7525	Y701 _ Y to G	Y627Y10 G	7472_ Y to G	Y1023_Y10 G	Y54_Y to G	Y1048_ Y to G	Y864_, Y to G	Y305_ Y to G	Y761 _ Y10 pY	Y627 _ Y to pY	Y472_ Y to pY	Y472_ Y to pY	Y472_Y to pY	Y1023 Y10 pY	Y54 _ Y to pY	Y1048_ Y to pY	Y854_ Y to pY	Y305 Y to pY	71059	3/91	7809
MUC! PI CG1	95TVIS		PKIA	ERBB2	PABPC1	TEK (TIE2)	ERBB2	EGFR	STAT5A / STATSE	ABI1	BCAR1	CDK8	NFKBIA (IKBA)	SYK	STAT1_CON(-)_Y to G	GAB1_CON(-)_Y to G	PLCG1_CON()_Y to G	ERBB2_CON()_Y to G	PABPC1_CON(-)_Y to G	TEK (TIE2)_CON (-)_Y to G	BCAR1_CON()_Y to G	NFKBIA (IKBA) _ CON (-) _ Y to G	STAT1_CON(-)_Y to pY	GAB1_CON(-)_Y to pY	PLCG1_CON(-)_Y to pY	PLCG1_CON(-)_Y to pY	PLCG1_CON(-)_Y to pY	ERBB2_CON(-)_Y to pY	PABPC1_CON(-)_Y to pY	TEK (TIE2) _ CON (-) _ Y to pY	BCAR1_CON(-)_Y to pY	NFKBIA (IKBA) _ CON (-) _ Y to pY	EGFR	EGFR	EGFR
TURSPYEKVSAGO ABGSSAYERVETOS		VEDDG/DVPKPGC	DVETTYADPIAGC	VDAEEYLVPQQGC	RSLGYAYVNFGC	rcael yekl.Pagc	AENPEN LGLDVGC	A.E.NAEYLRVAPGC	(AVDEYVRPOIGC	TVPND://MTSPAGC	SWMEDYDYVHLGC	GEGAYGKVFKGC	EDELPYDDCVFGC	RADENYKKAQTGC	PKGTGGIKTELGC	OK QVE BLDLDLGC	AEGSAGEEVPTGC	VDAEEGLVPaagc	RRSLGGAYVNFGC	TOAELGEKLPQGO	GWMEDGDYVHLGC	EDELPGDDCVFGC	PKGTG(pY)INTELGC	ρκανε(ργ)ιρισισς	AEGSA(pY)EEVPTGC	AEGSA(pY)EEVPTGC	AEGSA(pY)EEVPTGC	VDAEE(pY)LVPQQGC	RRSLG(p1)/AYVNFGC	TCAEL(pY)EKLPGGC	GWMED(pY)DYVHLGC	EDELP(pY)DDCVFGC	SFLQRYSSDPTGC	VRKRITRREGC	AEEKE: HAEGGGC
				BIO	BIO	EIO.	BIC	810	BIO	e oi	018	SIO	BIO	BIC	CON mulated BIO	CON mutated BIO D	CON mutated BIO	CON mulated BIO N	CON mutated BIO F	CON mutated BIO	CON mutated BIO C	CON mutated BIO	CON mutated BIO P	CON mutated BIO		<u></u>	<u>`</u>		CON mutated BIO F	CON - mutated BIO 11	CON mutated BIO	CON mulated BIO_E	SIO	O (6)	SIC
ا الم + pept PA_112 المجابرة (Key_L1_096 - sample + KaB + ATP الم	+ pept. P4_113 Key_L1_099 - sample + KaB + ATP	+ pept. PA_114 Key_L1_100 - sample + KaB + ATP	+ pept. PA_115 Key_L1_101 - sample + KaB + ATP	7618 KAPL 1.102 - Sample + KaB + ATP A 7618 + nerd 94 117	Key 1 10 sample + KaB + ATP A + nept, PA 118	K4.8 Key_L1_104 - sample + KaB + ATP A + pept. PA 119	Mass Key_L1_105 - sample + KaB + ATP A + pept, PA 120	O38 Key_L1_106 - sample + KaB + ATP A + near PA 121	200 Key_L1_107 - sample + KaB + ATP A + opt. PA 122	(K25) Key_L1_108 - sample + KaB + ATP A + pept. PA_123	(Key_L1_109 - sample + KaB + ATP A + pept PA_124	1620 Key_L1_110 - sample + KaB + ATP A + pept, PA_125	((20 + pept PA 128 + ATP A + pept PA 128	K20 Key_L1_112 - sample + KaB + ATP_A + pept. PA_127	M200 Key_L1_113 sample + KaB + ATP_C + pett. PA_128	1020 Key_L1_114 - sample + KaB + ATP_C + pept, PA 129	(超)な Key_L1_115 - sample + KaB + ATP_C + pept. PA_130	Dya Key_L1_116 - sampte + KaB + ATF_C + pept. PA_131	7619 Key_L1_117 - sample + KaB + ATP_C + pept. PA_132	(6)2 Key_L1_116 - sample + KaB + ATP_C + pept. PA_133	Key_L1_119 - sample + KaB + ATP_C + pept. PA_134	E14 Key_L1_120 - sample + KaB + ATP_C + pept. PA_135	Mrs Key_L1_121 - sample + KaB + ATP C + pept. PA_136	(校)な Key_L1_122 - sample + KaB + ATP_C + pept. PA_137	.B. Rey_L1_123 - sampte + KaB + ATP_C + pept. P4_138	G14 Key_L1_124 - sample + KaB + ATP_C + pept. PA_138	2534 Key_L2_005 - sample + KaB + ATP_C + pept. PA_138	3DNB Key_L1_125 - sample + KaB + ATP_C + pept. PA_139	(内)农 Key_L1_126 - sample + KaB + ATP_C + pept, PA_140	Hris Key_L1_127 - sample + KaB + ATP_C + pept, PA_141	3,465 Key_L1_128 - sample + KaB + ATP_C + pept. PA_142	12.18 Key_L1_129 - sampte + KaB + ATP_C + pept. PA_143	1801 Key_L1_130 - sample + KaB + ATP_A + pept, PA 144	(DØ) + Pept. PA_145	Key_L1_132 - sample + KaB + ATP A
112	2 5	115	116	117	118	119	120	121	.122	_123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	138	136	139	140	141	142	143	144	145	146

WO 2019/200245		PCT/US2019/027201
ACVRTB (ALK4), TOFBR1 (ALK5), BNPR15 (ALK6) MAPK1 (ERK2), MAPK3 (ERK1) MAPK1 (BRK2), MAPK3 (ERK1)	MAPKT (ERK2) FAKT, PAK2, PAK3, FAK7, MAP2KT, (MEK1, MKK1, MAPSKK1, PAFT (GRAF) MKK1, MAPSKK1, PAFT (GRAF) ART1, AKT3, SGK1 (SGK) AR2A, BRAF, RAF1 (GRAF), MAP3KT (MEKK1, MAPGKK1, MAP3KT (GCM) ARAF, BRAF, FAK1 (GRAF), MAP3KT (MEKK1, MAPKKT), MAP3KT (GCM) ARAF, GCM, (GCD2), GDF, RAF1 (GRAF) MAP2KT (GCC2), CDK5, FAK1 (GRAF) CGK1 (GCC2), MAPKT (GRAF) FAK1 MAP2KT (MEK1, MMK1, MAPKT), MAP2K2 MAP2KT (GCK2), MAPKT (GRAF) FAK1 MAP2KT (MEK2), MAPKT (GRAF) FAK1 MAP2KT (GFK2), MAPKT (GFK2), ARAPC (GCK2), MAPKT (GFK2), ARAPC (GCK2), MAPKT (GFK2), ARAPC (GCK2), MAPKT (GFK2), ARAPC (GFK2), MAPKT (GFK2), ARAPC (GCK2), MAPKT (GFK2), ARAPC (GFK2), MAPKT (GFK2), ARAPC (GFK2), MAPKT (GFK2), ARAPC (GFK2), MAPKT (GFK2), ARAPC (GFK2), MAPKT (GFK2), ARAPC (GFK4), MAPKT (GFK2), ARAPC (GFK4), MAPKT (GFK2), ARAPC (GFK4), MAPKT (GFK2), ARAPC (GFK4), ARAPC (GF	PROMAPING DIAPRIC PRICA SIGNA, PRICAL PRICA SIGNA, PRICAL PRICAL PRODE PRICAL PRODE PRICAL PRICAL PRODE PRICAL PRODE PRICAL PRODE PRICAL SIGNA, PRICAL PRODE CAMMAN SIGNA, PRICAL PROPEL PRICAL PRICAL PRICAL PRICAL PRICAL CAMMAN SIGNA, PRICAL
S-455 S-245 T-7220 T-8 S-259 Y-340 S-289	5:286 5:385 5:216 / 5:222 5:222 / 5:226 T286 T286 Y187 (+T185) / Y204 (+T202) T185 (+Y187) / T202 (+Y204)	5473 / 5474 / 5472 7308 / 7308 / 7305 748 5216 5214 7739 74334 71034 71034
SMAD2 SMAD2 SMAD2 SMAD2 SMAD2 FAP1 (GPAP) RAP1 (GPAP)	RAFT (GRAF) FAFT (GRAF) FAAF MAP2K1 (MEK1) / MAP2K2 (MEK2) MAF2K1 (MEK1) MAP2K1 (MEK1) MAP2K1 (MEK1) MAP2K1 (MEK1) MAP2K1 (MEK1) MAP2K1 (GRK2) / MAPK3 (FRK1) MAPK1 (FRK2) / MAPK3 (FRK1) MAPK1 (FRK2) / MAPK3 (FRK1)	AKT1 / AKT2 / AKT3 AKT1 / AKT2 / AKT3 AKT1 CDC25C CDC25C CDC25C SP1 SP1 SP1 SP1 JAK1 JAK1
COGSPSVRCS:MS SPAELSPTTLSGC SMOTG:PAELSGC NV:PET:PPPVWGC RORTSTFNVHGC GROSSYYWEEGC HSESA:PRALSGC	SALSSSPINALSGC RGGRDSSYNWEGC RGRRSS-APNVHGC GGLIDSMAN-FGC GGLAS-FRENCE GGRANGFVGTRGC GRANGFVGTRGC GRANGFVGTRGC GRANGFVGTRGC GRANGFVGC PPRRFTPGRPLGC PPRRFTPGRPLGC PPRRFTPGRPLGC PPRRFTPGRPLGC PPRRFTPGRPLGC PPRRFTPGRPLGC PPRRFTPGRPLGC PRTRUSYNGEGGC RYTNLSYNGEGGC	HPPQF:YSASGGG GATDAKTPCGTPGC GTDPEYLAPEVGC PDVPRTPVGHFGC LYRSPGMPENLGC SGLYRSPGMPENLGC SGLYRSPGMPENLGC SGLYRSPGMPENLGC SGLYRSPGMPENLGC SGLYRSPGMPENLGC SGLYRSPGMPENLGC SGLYRSPGMPENLGC ETDKEYTVGDGC ETDKEYTVKDGC ETDKEYTVKDGC ETDKEYTVKDGC ETDKEYTVKDGC
		BIC BIO BIO BIO BIO BIO BIO BIO BIO BIO BIO
(66) (49 L.1.133 - Sample + KaB + ATP A 1991. PA 147 - Sample + KaB + ATP A 147 - Sample + KaB + ATP A 147 - Sample + KaB + ATP A 1991. PA 143 - Sample + KaB + ATP A 1991. PA 143 - Sample + KaB + ATP A 1991. PA	(AP) L 141 - Sangle + KaB + ATP A + Page, 141 - 142 - Sangle + KaB + ATP A + Page, 143 - 154 - 1	(MOS) (MOY, L1, 152 - Sample + KaB + ATP A + pept, PA_168 (MOY, L1, 153 - Sample + KaB + ATP A + pept, PA_168 (MOY, L1, 154 - Sample + KaB + ATP A + pept, PA_168 (MOY, L1, 154 - Sample + KaB + ATP A + pept, PA_1169 (MOY, L1, 155 - Sample + KaB + ATP A + pept, PA_1169 (MOY, L1, 155 - Sample + KaB + ATP A + pept, PA_1170 (MOY, L1, 156 - Sample + KaB + ATP A + pept, PA_1170 (MOY, L1, 156 - Sample + KaB + ATP A + pept, PA_1170 (MOY, L1, 156 - Sample + KaB + ATP A + pept, PA_1170 (MOY, PA_1170 (MOY, L1, 161 - Sample + KaB + ATP A + pept, PA_1170 (MOY, PA_1170 (M

Table 1

	V	VO 2	2019	0/200245								PCT	ľ/U	S2	019	0/02	272	01	
MAPKT (ERK2): MAPK3 (ERK1)	. PK2	MAPZKI (MEKI, MKKI, MAPKKI), MAPZKZ (MEKZ, MKKZ, MAPKKZ), MAPKI (ERKZ);	MAPINS (EHRIT) MAPINS (JINKT); MAPINS (JINKZ); MAPIN 14 (938a) MAPINS (JINKT)	MAPKI (ERK2), MAPK3 (ERK1): MAPK8 (MKY1), MAPA (MK2, CDK5, CDFK3, CZPK), DYRK2, TRAKI, MENS, MLK, FBKCD, CPKC (MK8, PKCD), PRKCE FPKC epsien, PKCE), FPSBAS, RSRSZ, PBNSRSZ, SBK-eizhe-3); FPSBAS, RSRSZ, PBNSRSZ, SBK-eizhe-3);	AKT1, AKT3, AURKA, PRIKACA (PKA C-abha), MAH4K, RPKAC PKO CABha, PKOB, FRKCO (PKC pela, PKCD), PRKCO (PKC pela, PKCD), PRKCO (PKC pela, PKCD), PRKCO (PKC pela, PKCD), PRKCO (PKC), PRSKO (PKC), PRSKO (PKC), PRSKO, PRSSKO, RPSSKA, (PSSKA, PSSKA, PSSKA, PSSKA, (PSC), PSSKA, PSSKA, PSSKA, PSSKA, PSSKA, PSSKA, PSSKA, (PSSKA, PSSKA, PSSKA, PSSKA, PSSKA, (PSC), PSSKA, (PSC), PSSKA, (PSKA, PSSKA, PSSKA, PSSKA, PSSKA, (PSC), PSSKA, PSSKA, (PSC), PSSKA, PSSKA, (PSC), PSSKA, (PSC), PSSKA, PS	AKTT: NEBKE (BKK-E), PRIVACA (PKA C-agma), PHEVCA (pKO: agma; PKCA); PREVCB (PKC theat, PKCB); PRIVCD (PKC elata, PKCD), PHEVCD (PKC pkomne, PKCD), ela, PKCLI, FREVGD (PKC); PRESEKA, FREXC, RESERVA, SBK-alpha-3), SGR (SGR); SGRS, KSGRJ, SGRS, SGRS, SGRS, SGRS,	(VOLIL) ANT1, AKT2; AKT3; PAK4, PAK7; SGK1 (SGK), SGK2	ARTT, ARTT (ETM), SERT (SERV) ARTT (ETM), ARTZ, ARTZ(ETM), ARTZ, ART3(ETTM), ARTZ(GTTR), PDK1, PLK3, RPS6KA, (RSK2), RPS6KA, (MSK2),	RPS6K45 (KSK1), RPS9K61 (S6K1) SGK1 (SGK), SGK3, SGK1, MAPK1 (ERK2), MAPK3 (ERK1), MAPK11 (p38b), MAPK12 (p36g); MAPK13 (p38d);	MAPK14 (psea), COK6; IRAK4 MAPK6 (JNK1); MAPK9 (JNK2); MAPK14 (p38a); VRK1	ANT1 AKT3: PAK1, PAK2, PAK4, PAK7; PAK1, PAK2, PAK1, PAK2, PAK1, PAK2, P	AKTT: AKT3; PAK1; PIM2, PIM3; PIM3; PIM3; PIM3; PIM4CA, PIK4CE PRVC ession, PIK4CB; PIPKCI PPKC PRVC PIV6; PIPKCI PPKCI PKCI	AKT1	СНЕЖ2	AKT1; PIM1; PIM2; PRKCA (PKC alpha, PKCA); NUAK1; LATS2	AKT1: DAPK3 (ZIPK), PIM1	AKT1; DAPK3 (ZIPK); PIM1	AKT1, DAPK3 (ZIPK); PIM1	AKTI
8358	7.	7125	791 / 7102	5727	89	128	1	í	i l	171	SYS	56S	T509	8988	5:146	1145	7145	7145	2280
1 de la companya de l	JAKO	CASP9	JUN / JUNB	97.413	GSK3B	0.5K3A	consensus _ CON+	Consensus CON+	onrsensus _ CCN+	ATF2 (CREB2)	BAD.	ВАО	BRCA:	BRCA1	CDKN1A (p21, WAF1, CIP1)	CDKN1A (p21, WAF1, CIP1)	CDKN1A (p21, WAF1, CiP1)	CDKN1A (p21, WAF1, CIP1)	CTEX4
LSYLOSPITTSGC	ODKEYYKKERGO	VLRPETPRPVDGC	GVITTIPPEGGC	IDLFWS/PRTLDGC	PPRTTSFAESOGC	RARTS:FAEPGGC	KRPRAASFAGO	REPORT OF A CONTROL OF A CONTRO	PFSPITTIVEGC	ADQTPTRFLGC	RSRHSSYPAGTGC	RGRSRSAPPALGC	PKRRP(SGLHPGC	LFPIKSFVKTKGC	KRRQTSMTDFYGC	RKRRQTSMTDFGC	PKRRGTSMTDFGC	RKRRQ:SMTDFGC	RPRVTSGGVSEGC
018	Ola	810	OIB	<u>S</u>	Q	ON	+ NOO	t t	† NOO	SIC	Ç.	08	BIO	BIO	BIC	BIO_Rep (lib1-4)_i7	BIO	8IO _ Rep (851-4)_e7	OIS
Key_L1_164 - sample + KaB + ATP A	+ pept. PA_177 Key_L1_165 - sample + KaB + ATP	+ pept. HA_178 Key_L1_196 - sample + KaB + ATP + pept. PA_178	.009 Key_L1_167 - sample + KaB + ATP A .009 + pepl. PA_160	Key_L1 166 - sample + KaB + ATP A + pept. PA_181	NG9 (49, 11, 109 - sample + KaB + ATP A + pept. PA_182	170 - Sanpte + KaB + ATF A + 1961. FA_183		+ pept PA_185 B + Key_11_173_sample + KaB + ATP_B	+ pept. FA_163 Key_L1_174 - Sample + KaB + ATP + near PA_187	Key_L1_175 - sample + KaB + ATP _A + pept. PA_188	Ney_L1_178 - sample + KaB + ATP_A + pept. PA_189	(1977 - Sample + KaB + ATP _A + pept. FA_100	Key_L1_178 - sample + KaB + ATF A + pept. PA_181	1818 Key L1 179 - sample + KaB + ATP A 1818 + pept PA 192	Key_L1_180 - sample + KaB + ATP A + pept. PA_193	1908 Key_L1_181 - sample + KaB + ATP A + pept. PA_194	FF KaB + ATP A FF F + pept. PA_194	2606 Key_L2_007 - sample + KaB + ATP A + pept. PA_194	Heys Key_L1_183 - sample + KaB + ATP_A + pept. PA_195
221				181	7.85 ***	8817		190		1.188	881.7	190	191	7.192	7_193	7.194	7.194	194	\$617

WO 2019/20024	5																				P	CI	ΊU	S20	019	0/02	272	01		
AKTT: ATM: CAMKG; CAMKZD; CAMKZG; CAMKG; CDKY; (CDCZ); MAFPKB; (CDC) MAFPKA; (MCZ); FPKGC, (PKA, C-alpha); PRYCA, (PKC, CAMPA, PKCA); FPKCG (PKC PRING, PRYCB; PPKCD; (PKC); PPKCD; PPKCD; PRYCB; (PKC); PPKCD; (PKC); PPSGKA, PRSKA, PPSGKA, PRSKA, PPSGKA, (PKC); PPSGKA, PPCS, MAFPKC; PPKCA, PPK	(FRAP1), GSK3B AKT1, MAPKAPK5, PIM1, SGK1 (SGK)	AKT1, AKT2; SGK1 (SGK); PIM1 AKT1; AKT2, SGK1 (SGK)	AKT1; AKT3; RPS6KB1 (S6K1); RPS6KB2 (S6K2)	AKT1, AKT3; RPS6KB1 (S6K1) AKT1; AKT3; RPS6KB1 (S6K1)	AKT1: AKT3; RPS6KB1 (S6K1)	MAPK1 (ERK2); MAPK3 (ERK1)	MAPIKI (ERK2); MAPK3 (ERK1)	AKT1	MAPK1 (ERK2); MAPK3 (ERK1)	MAPK1 (ERK2): MAPK3 (ERK1), MTOR (FRAP1)	MAPK1 (ERK2); MAPK3 (ERK1); MTOR (FRAP1)	MAPK1 (ERK2); MAPK3 (ERK1)	MAPK1 (ERK2); MAPK8 (JNK1); GSK3A; GSK38	AKT1; CSNK1D (CK1D); DAPK3 (ZIPK); MAPKAPK2; PIM1; SGK1 (SGK)	GSK38; CSNK2A1 (CK2A1); CSNK2A2 (CK2A2)	GSK3B; CSNK2A1 (CK2A1); CSNK2A2 (CK2A2)	GSK3B; CSNK2A1 (CK2A1); CSNK2A2 (CK2A2)	GSK3B	GSK35	GSK3B	GSK3B	MAPK1 (ERK2); CDK5	MAPK1 (ERK2); MAPK3 (ERK1)	MAPK1 (ERK2), MAPK3 (ERK1)	MAPK1 (ERK2); MAPK8 (JNK1); ODK8	ART1, CSNK2A1 (CK2A1); PLK1; PRKC2 (PKC zeta); ROCK1; STK11 (LKB)	MAPZK1 (MEK1, MKK1, MAPKK1); MAPK14 (p38a)	MAP2K1 (MEK1, MKK1, MAPKK1); MAPK14 (p38a)	MAPH(1 (ERH(2)	MAPK1 (ERK2)
S133 / £136 S65	7.37 5.253	132/124	52448	7246 7246	72446	7312	1476	5159	S623	8150	5476	858	7163	S156	158	758	T58	5907	2907	2807	S2070	1212	S12	S21	5112	5380, 7382, 7383	T568	5343	51132	51193
OREB1 / OREM GREP1 / GREM	EF4E8P1 (4EBP1)	Foxo3 / Foxo1	MTOR (FRAP1)	MTOR (FRAP1) MTOR (FRAP1)	MTOR (FRAP1)	GAB1	GAB1	GAB2	GAB2	GRB10	GRE10	LCK	MCL1	MDM2	MYC	MYC	MYC	NFKB1	NFKB1	NFKB1	NOTCH2	PAK1	PPARA	PPARA	PFARG	NELA	RPS6KA4 (MSK2)	RPS6K44 (MSK2)	sosi	sosi
LSRRPSYRKEGC MECRNSPVTKTGC	GDYSTTPGGTLGC RRRAVSMDNSNGC	RPRSC:WPLQRGC	RTR7D8YSAGGG	RSRTRTD&YSAGC RSRTRTD®YSAGC	RSRTR(DSYSAGC	VDIPPTPGNTYGC	NYVPMTPGTFDGC	RERKSSAPSHSGC	DFQPSSPSPHRGC	TPGPGSPPVLTGC	ILGSQ:PLHPSGC	SNPPASPLQDNGC	GSUPSTPPPAEGC	RRRAISETEENGC	FELLPTPPLSPGC	FELLPYPPLSPGC	Selentation of the control of the co	HSLPLSPASTRGC	HSLPLSPASTRGC	HSLPLSPASTRGC	YNVTPSPPGTVGC	EPLPV/PTRDVGC	PLOPLEAGGO	AGDLESPLSEEGC	KVEPASPPYYSGC	DHYRYSD77DSGC	GVPMQTPCFTLGC	LEPVYSPPGSPGC	PHGPRSASVSSGC	TSKAYSPRYSIGC
	BIC BIC	BIO	BIO	BIO _Rep (fb1-4)_6 BIO	BIO_Rep (iib1-4)_e8	SIC	OIB	019	OIE	BIO	Bic	810	OIA	BIO	BIO_Rep (lib1-4)_19	BIO	BIO_Rep (itb1-4)_e9	SIC_Rep (lib1-4)_i10	810	BIO_Rep (lib1-4)_e10	OIG	018	BIO	OIB	BIO	019	BIO	BIO	BIO	610
Key_L1_184 - Sample + KaB + ATP + pept. PA_166 Key_L1_185 - Sample + KaB + ATP + key_L1_185 - Sample + KaB + ATP + key_L1_186 - Sample + KaB + ATP + key_L1_186 - Sample + KaB + ATP	### ##################################	Rey_L1_168 - sample + KaB + ATP A + pspt. PA_200	Key_L1_189 - sample + KaB + ATP + pept, PA_201 Key_L1_190 - sample + KaB + ATP	#606 + pept PA_202		HAS + pept. PA_203	K8y_L1_193 - sample + KaB + ATP_A + pept_PA_204	1115 Key_L1_194 - sampte + KaB + ATP A + pept: PA_205	N/15 Key_L1_195 - sample + KaB + ATP_A + pept. PA_205	#515 Key_L1_196 - sample + KaB + ATP A + pept PA_207	(超)	10/7 Key_L1_198 - sample + KaB + ATP A + pept. PA_209	Key L1 199 - sample + KaB + ATP A + oent PA 210	(6); Key_L1_200 - sample + KaB + ATP A + pept. PA_211		Key_L1_202 - sample + KaB + ATP_A + pept. PA_212	2000 Key_L2_009 - sample + KaB + ATP A + pept PA_212	1992 Key_L1_203 - sample + KaB + ATP A + pept. PA_213	33.55 Key_L1_204 - sample + KaB + ATP A + pept, PA_213	2002 Key_L2_010 - sample + KaB + ATP A + pept PA_213	(松) Key_L1_205 - sample + KaB + ATP A + pept: PA_214	Key_L1_206 - sample + KaB + ATP A + pept. PA_215	Big Key_L1_207 - sample + KaB + ATF A + pept. PA_216	(E) Key_L1_206 - sample + KaB + ATP A + pept, PA_217	(#18 Key_L1_209 - sample + KaB + ATP A + pept. PA_218	Hrig Key_L1_210 - sample + KaB + ATP A + pept, P4_219	Key_L1_211 - sample + KaB + ATP A + pept. PA_220	1(1) Key_L1_212 - sample + KaB + ATP A + pept: PA_221	Key_L1_213 - sample + KaB + ATP _A + pept. PA_222	(Key_L1_214 - sample + KaB + ATP_A + pept. PA_223
96.7-	38 90 198	-200	201	202	_202	203	204	205	206	,207	_206	209	210	211	212	212	212	213	_213	213	214	,215	_216	217	216	_219	_220	_221	222	_223

PCT/US2019/027201

,	WO 2	2015	1/ Z	υU	<i>2</i> 43	3													I/U	S20.	19/0	Z / 2	UI		
MAPKI (EFKZ): MAPKI3 (ERKI); MAPKI4 (p38a), ATM, ATR, CHEKI; CHEKZ; PRKOC (DNA-PKS, DNAPK); CDKS; DYRKI4, NUAKI;	PRKAA1 (AMPKa1); SMG1; STK11 (LKE); TPS3RK (PRPK) MADK1 (PRK2): GRK5, TAP1	MAPK14 (p38a), CDK2, CDK7, CDK9, CSK71 (CSK2A1 (CK2A1), EIF24K2, NUAK1; STK11	(LKB)	SRC; EGFR	SRC; EGFR	MAPZK1 (MEK1, MKK1, MAPKK1); MAPZK2 (MEK2, MKK2, MAPKK2); MAPK1 (ERK2); MAPK3 (FRK1); RFT, JAK2	MAPERT (MEKT, MKKT, MAPKKT), MAPEKZ (MEKZ, MKKZ, MAPKKZ), MAPKT (ERKZ); MASKA (MKKZ, MAPKKZ), MAPKT (ERKZ);	MAPTAS (JEKT.), KET. JANA. MAPZKZ (MEKZ, MKKZ, MAPKS); MAPKS (ERKT.) MAPKT (ERKZ).	AKTT: AKT3; AURKA, PRKACA (PRA Celpha), Mahaya, SPKACA (PRO depha), PRKCB, PRKCB, PRKCD (PKC OBM. PRKCD), PRKCD (PKC) (PRKCD (PKC) (PRKCD (PKC) (PRKCH (PKC) (PRKCD), PRSKCH, PRSKC), PRSSKA, I (SSK, DASSKA,	AKT1, AKT3; PAK1; PIMI;	AKT1; AKT3; RP36KB1 (86K1)	MAPK1 (ERK2); WAPK3 (ERK1)	MAPK1 (ERK2); MAPK3 (ERK1)	AKT1; CSNKID (CKID); DAPK3 (ZIPK); MAPKAPK2; PIM1; SGK1 (SGK)	AKT1, CSNK1D (CK1D); DAPK3 (ZIPK); MAPKAPK2; PIM1; SGK1 (SGK)	MAPK1 (ERK2); cDK5	ABL1; BCR-ABL; ABL2, AXL, AXL(R499C); FLT3; FLT3(D835Y); LTK (TYK1)	TATE 6-90 (1900s) KOASSE, ALL TIME BITK 6-90 (1900s) KOASSE ALL TIME BEHAL, EPHORIS PITK, FAKI, PITK, EPHORIS, MET, MITK, EPHORIS, POORISE, SYK, TIEZ (TEK), TITKS, ZAPOU)	BLK; BRK (PTK6); FGR; FRK; FYN; HCK; LCK; LYNA; LYNB; SRC; SRMS; YES1	AKT1: PIM1; PIM2; PIM3; PRKACA (PKA C.alpha); RPS6KA1 (RSK1, p90RSK); RPS6KA2 (RSK3, p90RSK2, S6K-alpha-2)	BRSK1, BRSK2, CHEK1, CHEK2, MARK1, MARK2 (EMK1); MARK3 (CTAK1); TSSK1; TSSK2	CDK7; MAPK1 (ERK2); RPS6KA1 (RSK1; p90RSK)	ATM	EGFR	CLK1; TGFBR2
\$15	-7-5-5 -7-5-5	0 85 85 85 85 85		Y659_ Y to pY	Y669_Y to G	Y187 (+T185) / Y204 (+T202) _ T/Y to pT/p/	Y187 (+1185) / Y204 (+7202)T7/ to G/G	T T185 (+Y187) / T202 (+Y204) _ T to pT	୍ର ପ - ୧ ଓ - ୧ ଓ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧	See_ 5:5 to p.S.p.S	72446T/S to pT/pS	S68_S to pS	S 59 S 10 G	S165_ S/T to pS/pT	S156_ S/T to G/G	T212_ T/T to pT/pT	i	1	1	5118	i	5118	S140 (C-lerm and)	7142	1176
प्रमुख्य सम्बद्ध	Z di	TP-53		EGFR_CON(-)_Y to pY	EGFR_CON (-)_Y to G	MAPK1 (ERK2) / MAPK3 (ERK1) _ CON (+) _ T/Y to pT/pY	MAPK1 (ERK2) / MAPK3 (ERK1) _ CON (+) _ T/Y to G/G	MAPK1 (ERK2) / MAPK3 (ERK1) _ CON (+) _ T to pT	GSK3BCCN (-)_S to pS	BAD_CON(+)_S/S to pS/pS	MTOR (FRAP1)CON (-)T/S to pT/pS	LCK_CON(-)_S to pS	LCK_CON()_S to G	MDM2_CON(-)_S/T to pS/pT	MDM2_CCN (-)_S/T to G/G	PAK1_ CON (-) _ T/T to pT/pT	consensus _ CCN+	consensus _ CCN+	consensus_CCN+	BAD	consensusCOA+	ESRI	H2AFX	VAVZ	TGFBR1
VEPPLGQETFSGC	Obdicedal, who a	CGLARKTEGPDSD		AEEKE(pY)HAEGGGC	AEEKE G HAEGGGC	GFL(pT)E(pY)VATRWGC	GFL GEG VATRWGC	HTGFL(pT)E-YVATGC	RPRTT(ps)FAESCGC	RIGR(pS)R(pS)APPNLGC	RSRTR(p1)D(p8)YSAGC	SNPPA(pS)PLQDNGC	SNPPAGPLODNGC	RRRA!(pS)E(pT)EENGC	RRRAIGEGEENGC	EPLPV(pT)P(pT)RDVGC	KVEKIGEGTYGVVYK-anide	9 ~- (3333)	EARTARPEAKKK	ELRRWSDEFVDGC	KKVSRSGLYRSPSMPENLGC	PPPQLSPFLQPGC	COGKKATGAEGEY	NDDDVYRSLEEGO	ISEGT:LKDLIGC
Ola	Cin	0 0		CON - mutated BIO	CON mutated BIO	CON mulated BIO	CON mutated BIO	CON mutated BIO	CCN mutated BIO	CON mutatec BIO	CON mutated BIO	CON mutated BiO	CON mutated BIO	CON mutated BIO	CON mulated BIO	CON mutated BIO	+ NOO	+ NOO	* NOO	SIO	* NOO	BIO	OIB	OIS	BIO
. 1876 - Kay L. 1, 215 - sample + KaB + ATP A	Your CALESA (C), (C)	+ pept. PA_225 Key_L1_217 - sample + KaB + ATP	+ pept. FA_220 Key, 11 218 - samole + KaB + &TP	###\$ + pept, PA_227	Key_L1_219 - sample + KaB + ATP C + pept. P4_228	34,38 K8y_L1_220 - sample + KaB + ATF _C + pspt. PA_229	1948 Key_L1_221 - sample + KaB + ATP_C + pept. PA_230	Key_L1_222 - sample + KaB + ATP_C + petr. PA_231	IBXIC Key_L1_223- sample + KaB + ATF_C + pept, PA_232	:D20 Key_L1_224- sample + KsB + ATP_C + pept. PA_233	F20 Key_L1_225 - sample + KaB + ATP_C + pept, PA_234	1420 Key_L1_226 - sample + KaB + ATF C + pept. PA_235	1890 Key_L1_227 - sample + KaB + ATP_C 1890 + pept_PA_236	1(28 Key, L1 228 - sample + KaB + ATP C + pept PA_237	MXQ Key_L1_229 - sample + KaB + ATF_C + pept. P4_238	HP30 Key_L1_230 - sample + KaB + ATP_C HP30 + pept, PA_239	Key_L1_231 - sample + KaB + ATP B + pept: PA_240	16006 Key, L1_2332 - sampte + KaB + ATP_8 + pept. PA_241	M(2 Key_L1_233 - sample + KaB + ATF B + pept. PA_242	K6y_L1_234 - sample + KaB + ATF A + pept, PA_245	Key_L1_235 - sample + KaB + ATP B + ppt. PA_246	KBV_11_236 - sample + KaB + ATP_A + pept, PA_247	(200) Key_L1_237 - sample + KaB + ATP_A + pept, PA_248	(2008) Key_L1_238 - sample + KaB + ATP A + pept. PA_248	3411
224	222	328	i	_227	228	229	230	231	-252	233	234	_236	.236	237	_238	_239	.240	284	242	245	246	_247	246	249	_250

	W	O 2	019	/2(002	45																		PC	CT /	US	20	19/	027	720	1	
Mapping Carlo	CHUK (KK alpha); MAP3K7 (MEKK7; TAK1); MAP3K14 (NIK); PRKCG (PKC theta); PRKCZ	(PKC zeka) SYK	FLX2	PKN2 (PRK2)	AURKA	ATM; CHEK2; PLK1; PLK3	\$)G5	MAPK1 (ERK2)	P <u>.</u> K†	CDK1 (CDC2)	ESN:	AKT1; AKT2; AKT3; AURKA; CAMKI:beta; CAMKI:eeta; CAMKI;gamma; CAMK2; CAMK4; KBK8 (IKK:beta); IRAK4; KSR1; KSR2; KSR2; KSR2]	PRINCAD, PRINCAD (PRINCAD PRINCAD PRIN	PRKACA (PKA C-alpha); RPS9KA1 (RSK1,	CDK4	t	1	ı	FYN; HOK; LOK; LYNA; LYNB	MAPK1 (ERK2), MAPK9 (JNK2)	PDGFRA	AKT1; PDK1; PDPK1	MAPK1 (EFK2); MAPK9 (JNK2); MAPK10 (JNK3); MAPK11 (p38b); MAPK12 (p38g); MAPK13 (p38a); MAPK14 (p38a)	CDK4	ZAP70	FYN; JAK2; LCK; TXK	CDK2: CDK4; MAPK1 (ERK2)	CLKI; TGFBR2	EGFR	EGFR	EGFR	BTK, (TK, TEC
288	8177	Y183	S193	T196 (C-term end)	5353	T58	T356	1359	S4 (N-term end)	7360	7352			5362	1369	i	ı	ı	Y753	8374	7754	T779 (C-term)	ı	5780	Y200	Y201	8204	5213	1	i	1	7216
MYC CON (2) S/T to A/V	IKBKB (IKK beta)	SH38P2	BRCA2	CDKN18 (p27, KIP1)	CDC25B	CHEK2_CON (-)_S/T/Y to A/V/F	RB1	RPS6KA1 (RSK1)	NPM1	OSNKZA1 (OKZA1)	DOK1		consensus_CON+	FOS	RBL1	i	1	ı	PLCG2	FOS	PDGFRA	ITGB3	consensusCCN+	RB1	LAT	CTLA4	SMAD3	TGFBR2	ı	consensus_COM+	1	BMX
PVPPI APARRAGG	ELDQGSLCTSFGC	DEDDSYLEPDSGC	VDPDMSW8SSLGC	CGTPKKPGLRRRGT	NKRRESVTPPEGC	LEVVAVQELFAGC	FETGRYPRKSNGC	EFTSRTPKDSPGC	MEDSMDMBPGC	ISSVP1PSPLGGC	KEDPINDEPEGGC		OKPREILSRRPSYRK	AHRKGSSSNEPGC	SFAPSTPLTGRGC	MEVERLANDGO	MEVERLANDGO	NEVERLANDGO	DINSLYDVSRMGC	CGSSDSLSSPTILLAL	KEVSKYSDIQRGC	CGKEATSTETNITYRG	IPT11P11T1YFFFKKGC	RPPTLSPIPHIGC	ESIDD YVNVPEGC	LTTGV:VKMPPGC	SMDAGSPNLSPGC	KLMEFSEHCAIGC	ADEVLIPAGGC	ADEYLIPQGGC	ADE:/LIPQGGC	TSLAQ) DSNSKGC
CON - mutater: BIC		Ola	OIB	BIO	BIO	CON mutated BIO	Bio	BIO	BIO	OIB	BIC		• NOO	Ola	BIO	CON random	CON - random Rep (libs-8) e3	CON random Rep (lib5-8)3	BIO	BIO	BIC	BIO	+ CON +	BIC	BIO	BIO	OIB	BIO	CON + _ Rep (lib5- 8)_e2	+ NOOO	CON + _ Rep (lb5- 8)_2	BIO
Mars Key_L1_240 - sample + KaB + ATP C	+ pept. PA_251 Key_L1_241 - sample + KaB + ATP + nent PA_252	Key_L1_242 - sample + KaB + ATP_A + pept, PA_253	Key_L1_243 - sample + KaB + ATP A 18315 + pept PA_254	SHSS + pept, PA 255 + pept, PA 255	O18 Key_L1_245 - sample + KaB + ATP_A + pept, PA_256	AST Key_L1_246 - sample + KaB + ATP_C + pept, PA_257	Key, L1, 247 - sample + KaB + ATP A + pept PA, 258	Nov. L1 248 - sample + KaB + ATP A + peqt. P4, 259	M17 Key_L1_249 - sample + KaB + ATP_A + neot_PA_260	Key_L1_250 - sample + KaB + ATP A + pept, PA_261	(5) Key_L1_251 - sample + KaB + ATP A + pept. PA_262		1039 Key_L1_252 - sample + KaB + ATP B + pept. PA_263	10019 Key_L1_253 - sample + KaB + ATP A + neor, PA_264	3058 Key_L1_254 - sangle + KaB + ATP A + negr, PA_265	7674 Key_L1_255 - sample + KaB + ATP E + oent, PA_266	Key_L1_256 - sample + KaB + ATP E + pept. PA_265	图符 Key_L2_011 - sample + KaB + ATP E + pept. PA_268	(程度)な Key_L1_257 - sample + KaB + ATP A + pept. P4_267	Key_L1_256 - sample + KaB + ATP A + pept. PA_268	1034 Kay_L1_259 - sample + KaB + ATP A + pept PA_269	ON Key_L1_280 - sample + KaB + ATP A + pept. PA_270	18602 Key_L1_261 - sample + KaB + ATP_B + pept, PA_271	1503 Key_LI_262 - sample + KaB + ATP_A + pept. PA_272	P02 Key_L1_283 - sample + KaB + ATP A + pept. P4_273	H02 Key_L1_264 - sample + KaB + ATP_A + pept_PA_274	11.02 Key_L1_265 - sample + KaB + ATP A + pept. PA 275	1402 Key, L1_266 - sample + KaB + ATP A + pept. PA_278	M(48 Key_L1_267 - sample + KaB + ATP B + pept. P4_277	F02 Key_L1_266 - sample + KaB + ATP_B + pept_PA_277	20035 Key_L2_012 - sample + KaB + ATP_B + pept: PA_277	3804 Key_L1_269 - sample + KaB + ATP A + pept, P4_278
251		_253	254	,255	_256	257	256	259	_260	7501	7562		282	264	7,265	756	266	286	7367	798	7569	270	122)	272	273	274	275	276	772	772	772	278

	V	VO	20:	19/:	200	24	5																		P	C1	Γ/U	S2019/0	27201
DOCCULAR (ACCULA)	ABL1: ABL2: EGFR: IGF1R	Meda	OSNKZA1 (OK2A1); OSNKZA2 (CKZA2)	CSNH2A1 (CK2A1); CSNK2A2 (CH2A2)	MTOR (FRAP1), PDPK1	EGFR; INSR; MET	SRC	MAPK1 (ERK2); MAPK8 (JNK1)	SYK	AKT1	IKBKB (IKK beta)	CSNKZA1 (CK2A1); EIFZAK2; IKBKB (IKK beta); RPS6KA1 (RSK1, p80RSK)	ATM; ATR	ATM; CDK5; CDK8; GSK3B; PRKDC (DNA- PKos, DNAPK)	CSNKZA1 (CKZA1); IKBKB (IKK beta); IKBKE (IKK-E); TBK1 (NAK, T2K)	CDC42EPA (MRCK alpha); CDC42EPB (MRCK beta); CHUK (KK alpha); IKBNE (HKK beta); CHVC HAK PIMH; IPMC; PRKG; PRKG; IPMC; PRKG; IPMC; IPMCA); ROCK; ROCK2; ROCK2; ROCK2; ROCK2;	RPSBIKAI (RSKI, pBDRSKI, RPSBIKAZ (RSK3, pBCRSBL, SBK-capita-3), RPSBIKA3 (RSK2, pBCRSL, SBK-capita-3), RPSBIKA4 (MSK2, pBCRSPL, SBK-capita-3), RPSBIKA4 (MSK2, RSK4, pBCRSKC, SBK-capita-3), RPSBIKA5 (SBK1, p70SBIK, SBK-beta-1)	ATM; ATR; CHEK1; PRKDC (DNA-PKcs, DNAPK)	сркт (срс2)	CDK2	BUB:	CHEK1; CHEK2	CDK2, CDK4, MAPK1 (ERK2)	LCK; SRC	NME1-NME2; NME2 (NM23B, NDPK-B)	KBKB (IKK bets); MAPK8 ("NK1)	SGK1 (SGK)	OHUK (WK alona), IKBKB (WK bela), IRAK1; IRAK4, IMPBASK (OOT), MADPAH T (TAOK2, IPSK1), MAPPAK (HGR), MAPPAK (MINK), STK3 (MST2, KRS1), STK4 (MST1, IMPK), STK3 (MST2, KRS1), STK4 (MST1, IMPK), FIPSAK3, IPRK1, IMBK1; IMBK3, IMBK3, IMPK7 FIPSAK3, IPRK1, IMBK1; IMBK3, IM	CHUK (WK alpha), IKBKB (WK bela), IPAK1; FAKH, IMPARK (COT), MAPARY (TAOKZ, PSK1), IMPARK, IMPARK (HSK), IMPARK (MINK), STY (MINZ), KTS (MINZ), KTS (MINK), STY (MINZ), KTS (MINZ), IMPK1, IMPK2, IMPK3, IMPK7, EFF2AK3 (PEK), PILK1; IMPK1, IMPK3, IMPK3, IMPK3, IMPK1, IMPK1, IMPK3, IMP
three most life Co	7221	\$221	8370	ı	8370	Y373	Y373	\$226	Y227	8228	831	532	533	833	536		1	537	238	7621	541	\$178	1179	Y42	S44	5312	5315	1	
, care	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	RPSBKA1 (RSK1)	PTEN	consensus_CONS/T to A/V	RPS6KB2 (S8K2)	GAB1	1)HCH	NR3C1	IL15RA	TERT	KBKG (KKG, NEMO)	NFKBIA (IKBA)	CHEK2	TP53	NFKBIA (IKBA)		consensus_CCN4+	TP53	STAN1	RB1_CON (-)_ S/T to A/V	cDC20	CDC25A	SMAD3	NFKBIA (IKBA)	NME2	RS1	FOXO3	1	1
004700070g03	PEPGP: AQPSVGC	EKKAYSFOGTVGC	//PDV/SDNEPDGC	RRADDGDDDGC	atpvdspdgtagc	DTDSSYCIPTAGC	DDEDCY GNYDNGC	ENCLISPLAGEGC	SLLAC'1.LKSRQGC	RRRGGSASRSLGC	VLGEESPLGKPGC	ODRHOSGLOSMGC	saessagaec	ENNVLSPLPSQGC	DSGLDSMKDEEGC		(RRR.A%:LRAGC	SPLPSQAMDDGC	PEFPLSFPKKKGC	AEGLPVPVKMVGC	AGPAPSPMRAAGC	FORONSAPARMGC	SNPETPPGYGC	WEDEEVEOWVKGC	KFLRASEEHLKGC	SITATSPASMVGC	RSRTNSNASTVGC	GPT: VAPGC	.GF7:VAPGC
			Ola	CON mutated CON+	Old	BIO	OIB	BIC	610	Ola	N OIB	D OIS	BIO	OIB	Bio		* CON *	N OIB	BIO	CON mutated BIO p	BIO	BIO	BIO	BIO	OI8	SIO	Ole	CCN + _Rep (fb58)e1	CON + _ Rep (8558)_11
Key_L1_270 - sample + KaB + ATP ^	+ pept. PA_278 Key_L1_271 - sample + KaB + ATP	+ pept. PA_281 Key_L1_272 - sample + KaB + ATP + pept_PA_282	Key_L1_273 - sample + KaB + ATP_A 1808 + nent_PA_283	1208 Key_L1_274 - sample + KaB + ATP_D + pept, PA_254	1006 Key_L1_275 - sample + KaB + ATP_A + pept, FA_285	Mg6 Key_L1_276 - sample + KaB + ATP A + pept, PA 285	1808 Key_L1_277 - sample + KaB + ATP_A + pept_PA_287	3808 Key_L1_278 - sample + KaB + ATP_A + pept. P4_288	1008 Key_L1_279 - sample + KaB + ATP_A + pept, PA_289	7,08 Key_L1_280 - sample + KaB + ATP_A + pept. PA_290	1808 Key_L1_281 - sample + KaB + ATP A + pept. PA_291	1908 Key_L1_262 - sample + KaB + ATP A + pept, PA_292	3810 Key_L1_283 - sample + KaB + ATP A + nept, PA 293	7618 Key_L1_284 - sample + KaB + ATP A + pept PA_294	Key_L1_285 - sample + KaB + ATP A + pept. PA_295		/KK69	1910 Key_L1_287 - sample + KaB + ATP A + pept, PA 297	1812 Key L1 286 - sample + KaB + ATP A + pept, PA 298	1012 Key_L1_289 - sample + KaB + ATP_C + pept, PA_289	10055 Key_L1_290 - sample + KaB + ATP A 10055 + pept. PA_301	Key_L1_291 - sample + KaB + ATP A + pept. PA_302	3038 Key_L1_292 - sample + KaB + ATP A + pept. PA_303	2X01 Key_L2_013 - sample + KaB + ATP_A + pept, PA_304	250: Key_L2_014 - sample + KaB + ATP A	Key_L2_015 - sample + KaB + ATP_A 286681 + pept. PA_306	2666 + pept. PA_307	Key_L1_293 - sample + KaB + ATP B + pept. PA_308	Key_12_017 - sample + KaB + ATP B + pept PA_308
	281		263	284	285	_286	787	288	289	290	291	292	293	294	\$62°		986 7	.297	296	298	301	302	303	304	305	306	,307	9087	306

WO 2019/200245			PCT/US2019/027201
CHUK (KK alpra) (KBKB (RK bean), RAUT; RAK4 (MAPASIA) (TAOR), PSK4) (MAPASIA (COT), MAPAKIA PSK1) (MAPAKIA, MAPAKIA (HSK) MAPAKIA (MINK), STK3 (MST2, KRS1), STK4 (MST1, (MINK), STK3 (MST2, KRS1), STK4 (MST1, CDK2, CDK5, CDK9 CDK2, CDK5, CDK9 ATM, ATR LCK, ZAP70 PDFK1 CSNKZA1 (CKZA1), CSNKZA2 (CKZA2), TAF1	MAPKT (ERK2), MAPK3 (ERK1) GRK3 (ADPBK2) ATM; HIPK2 PLK1 NAME; HMR2; NAME2 (NAZ3B, NOPKB) (FRAK1; IRAK4) FROFR; FGFR2; LYNA; LYNB; SYK CDK2, CDK2, KAPKT (ERK2); MAPK14 (S58)) ARAF; BRAF; RAFT (GRAF)	ARAP, BRAF, RAF (BAAF) ARAP, BRAF, RAF (BRAF) ARAPRA (JANG), KARPE (JANG), KARPE (JANG), MAPKT1 (GGBD), MAPKT2 (GGB), MAPKT3 (GGB), MAPKT3 (GGB), MAPKT3 (GGB), MAPKT3 (GGB), MAPKT4 (GGB), MAPKT4 (GGB), MAPKT4 (GGB), MAPKT4 (GGB), MAPKT4 (GGB), MAPKT1, MAPKT1 (GGR), MAPKT4 (GGB), MTOR (FRAP), FRSIGKS (MSKT) AKT1, MAPKT (GRR), MAPKT4 (GGB), MTOR (FRAP), FRSIGKS (MSKT) AKT7; MAPKT (GGR), MAPKT4 (GGB), MTOR (FRAP), MAPKT4 (GGB), MTOR (GGB), MAPKT4 (G	AKT1, STK11 (LKB) RAF1 (GRAF) RAAK1, IRAK4 AURKB MTOR (PRAP1), PDPK1 EPHB2 ATM, CHEK2, PLK1, PLK3 ATM, CHEK2, PLK1, PLK3 ATM, CHEK2, PLK1, PLK3
S315 S317 Y319 Y320	T342 S46 S46 S120 (nisfake: sequence snifed.) S276 T7 Y381 S208	5222 5222 5036, 5386 5423 / 5424 145, 746 745, 747 5283	S385 1386 (C.Aorm) 1387 S387 1386 Y66 158
oorsensusCON+ TP53 CHEK1 ZAP70 SGK3 GTF2A1		MAPEK! (MEK!)CON (-)SIT to AV MAPEK! (MEK!)CON (-)SIT to AV EEF?K HDAC1 / HDAC2 EF4EBP! (4EBP!) EF4EBP! (4EBP!) EF4EBF! (4EBP!) EF4EBF! (5AK!) EFKEBF! (5AK!)	PTEN MAPTK! (MEK!) IRAK! RACGAP! RPSBKB2 (SBK2) CHEK2 CHEK2 CHEK2
LGFTVVAPGC NNTSSSPQPHKGC VKYSS:QPEPRGC VTESP:SDPEEGC SUTIT:FOGTPGC SEDVVCBEGGGC	APRTPGGRAGC SVYTRSTGEOEGC DULM.SPDDIEGC GNIDDSLIGGNGC GRNIHGSDSVGC SPSGSMVARTGC SPSGSMVARTGC PEE 1 QYQDQPMFEGC SSDOD YDOVDIGC GSPNLSPNPNSGC DAMANAFVGVRGC	DAMANAFVORMEC DAMANAFVORMEC DALPSSPSATPHGC GTLFSTTPGGTRGC GTLFSTTPGGTRGC GTLFSTTPGGTRGC FWSTLSPIAFRGC FWSTLSPIAFRGC EPPLSQEAFADLWAKGC	SDTTDSDPENEGO CGLNOPS:FTHAA GTVRGSCBTTAYLPGC GLYRISGCBTTGC AFLGFTYVAPSGC TFEDS-TKICSGC LETVSTGELYSGC LETVSTGELYSGC LETVSTGELYSGC LETVSTGELYSGC
+ CON+ HIC CON+ HIC CON+ HIC CON+	## CON + ## CON - ##	CON mutater BIO_ CON mutater BIO_ Rep (lab-8)_15 BIO_ Rep (lab-8)_e10 BIO_ Rep (lab-8)_110 BIO_ Rep (lab-8)_110 BIO_ Rep (lab-8)_110 CON +	BIC BIC BIC BIC BIC BIC BIC BIC BIC BIC
(key, L.2, 016 - sangle + KaB + ATP + 1984. L.2, 016 - sangle + KaB + ATP + 1984. L.2, 019 - sangle + KaB + ATP + 1984. L.2, 020 - sangle + KaB + ATP + 1984. L.2, 020 - sangle + KaB + ATP + 1984. L.2, 021 - sangle + KaB + ATP + 1984. L.2, 021 - sangle + KaB + ATP + 1984. L.2, 022 - sangle + KaB + ATP + 1984. L.2, 022 - sangle + KaB + ATP + 1984. L.2, 022 - sangle + KaB + ATP + 1984. L.2, 023 - sangle + 1984. L.	Key, L.2, 03A, -sample + KaB + ATP Key, L.2, 03A, -sample + KaB + ATP Key, L.2, 03D, -sample + KaB + ATP Key, L.3, 03D, -sample + ATP Key, L.3, 03D, -sam	2005 (No. 12, 20.3) (No. 12,	2007
306 310 311 312 313	316 316 316 318 320 321	325 326 326 326 326 328 328	330. 333. 335. 336. 336. 336.

LATE CANADA CANADA LATE CANADA LAT	MARKZ (EMK1); MARK3 (CTAK1); TSSK1; TSSK2	MAPK8 (JNK1); MAPK9 (JNK2); MAPK10 (JNK3)		MAPK1 (ERK2), MTOR (FRAP1)	JNK1)			WME1-NME2; NME1 (NM23, NDPK-A)	CDK1 (CDC2), MTOR (FRAP1)	38K38		FGFR1; FGFR2; PTK2 (FAK; FAK1)	ht:			ALK; FGFR1; FLT1 (VEGFR1); IGF1R; JAK2; MET; RET; ROS1	MAPKS (JNKT); MAPKS (JNKZ); MAPZKS MEKS, MKKS, MAPKS, JNKKS); MAPZK7 (MEK7, MKK7; MAPKK7, JNKK2)		DDK6	PTK2B (FAK2, PYK2); SRC		PK1	MAPSK7 (MEKK7, TAK1)	EGFR; HOK; LYNA; LYNB; RET; SRC; SYK	OSNK2A1 (CK2A1); OSNK2A2 (CK2A2)	ERBB3 (in its dimeric state with another HER fam. member); ERBB4; NTRK1 (TRKA)				CHUK (IKK alpha); IKBKB (IKK beta)		CHUK (KKY alpha) IKEKG (HKX bean), IRAK1, RASAM MARPARIO (CIT), MAPARIO (TADO)2, PSKY), MAPARIO (MAPARIO KRING), STAS (MST2, KRS1), STAG (MST1, KRS2), MTCR (FRPP), INEK1, NEK2, NEK6, NEK2), MTCR (FRPP), INEK1, NEK2, NEK6,		PRICO (PKC delta, PKCD)
	MARK2 (TSSK2	MAPK8 ((JINK3)	ATR	MAPK1 (MAPK8 (1	AKT	NWE1-N	CDK1 (C	GSK34;	GSK3B	FGFR1; I	INSR; RE	BTK	CDK2	ALK; FGF MET; RE		CDK7		PTK2B (F	PDPK1	NEK6; PI	MAPSK7	EGFR; H	CSNK2A		CDK4	AKT1	CDK4	OFUK (*	PDGFRB	CHUK (P FRAKA) N FRAKA) N FRAKA) N FRAKA) N FRAKA) N FRAKA) N	PAK1	PRKCD (
1mulated CONH KKVGRGGLGRGRGRRENLGC LAPAGEDGPRGGC GGREGOPTOPGC RGGLGSPGVAGC CGGREGOPTOPGC RGGLGSPGVAGC LATTLERRRVGGC GTPVDSPDGSTGC LATTLERRRVGGC GTPVDSPDGSTGC ATTLERRRVGGC ATTLERRRVGGC ATTLERRRVGGC ATTLERRRVGGC ATTLERRRVGGC ATTLERRRVGGC ATTLERRRVGGC LTPPCGGRACHARHARHCAEDEEEGC BRGL:PPCGGRGGC LTPPCGGRGGGC LTPPCGGRGGGC LTPPCGGRGGGGC LTPPCGGRGGGGC LTPPCGGRGGGGC ATTLERRRVGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CON S/T to A/V	898	S345		571	1	571	2392		S/T to A/V	7395		Y398	Y398	1399	- CON+		S403				5422	8422	Y783			5785	S824	T826	2857	Y657	CCN S/T to A/V	8888	T890
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						AREENAGO														а.												<u></u>		
	CON mutated COM+ KXVGF									Ę							<u>'</u>								+				· ·		Sec	Ē,		
	PA_337 %EE69	PA_338 \$608	PA_339 2036	PA_340 2K09	PA_341 2000	PA_342	PA_343 2A11	PA_344 27:11	PA_345	PA_346	PA_347	PA_346 2K11	PA_349 20013	PA_350 2043	FA_351 2A13	PA_352 2013	PA_353 2EE13	PA_354 2K13	PA_355 2N33	PA_356	PA_357 2&15	PA_356 26315	PA_359 2018	PA_360 2045	PA_361 2A17	PA_362 2017	PA_363 2807	P.A. 364 20013	PA_365 2EE19	PA_366 2018	PA_367 2008	PA_368 28619	P.A_366 2018	PA_370 2AG2

	V	VO	20	19/	200)24	5																			PO	CT/U	JS2	019)/02	272		
CHUK (KK alpha); IKBKB (IKK beta)	の できません 大田 (1975年) (CHUK (KK alpha); IKBKB (IKK beta)	EGFR; INSR; MET	AKTi	FGFR1; FGFR2, PDGFRB	EGFR	EFZAK1; EIFZAK2, EIFZAK3 (PEK); EIFZAK4	BTK; ERBB3 (in its dimeric state with another HER fam. member); ERBB4	FLT1 (VEGFR1)	ATM; CSNK1A1 (CK1a)	RPS6KA3 (RSK2, p90RSK2, S6K-alpha-3); RPS6KA5 (MSK1)	AURKB	ATR; OSNKID (OKID); OSNKQA1 (OKZA1); OSNKQB (OK2B); PRKDO (DIVA-PKOS, DNAPK); VRK1	FGFR1; FGFR2	OSK3B	CDK1 (CDC2); CDK2; CDK3; CDK3; PRKACA (PKA C-alpha); PRKACB (PKA C-beta); PRKACB (PKA C-beta);	CSNK2A1 (CK2A1)	ATM; ATR	ATM. ATR	ATM, ATR	LYNB, SRWB, EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHB2, EPHB2, EPHB2, EPHB3, EPHB3, EPHB3, EPHB3, EPHB3, EPHB3, EPHB3, TRRG), TRRG), TRRG), TRRG, TRRG), TRRG, TRRG	CDK2	ATM	GSK3B	MTOR (FRAP1)	CHUK (RKK alpha); MAP3K7 (MEKK7, TAK1); MAP3K14 (MIK); PRKCQ (PKC theta); PRKCZ (PKC peta)	N TO ESSENT MIKKA, MAPKKA, JNKKT), MAPSKT (MEKT, MIKKT, MAPKKA, JNKKZ), RET	NDR1 (STK38); NDR2 (STK38L); SGK1 (SGK); SGK2; SGK3 (SGKL)	ATM	MAPKS (ERK1)	OHEK2	MAPK1 (ERK2), MAPK8 (JNK1)	FRKAGA (PKA C-apha); PPKGA (PKC apha, PKCA); RPS6KA3 (RSK2, pe0RSK2, S6K-apha, 3)
8923	5923	S923	Y589	5939	Y1021	Y1172	ì	74197	Y1213	ŝ	<u>:</u>	512	7.5 5.1	۲۶42	\$1227	I	T1343	\$1387	S1387	81387	1	SS	51524	12074	S2481	\$180/\$181	Y185 (T163) / Y185 (T163) / Y223 (T221)	i	7363	5364	S384	8636	828
NTKBI	NEXR4	NFKB1	GAB1	TSC2	PDGFRB	EGFR	consensusCON+	PLCG2	FLT1 (VEGFR1)	TP53	HIST3H3	DES	TP53	PDGFRA	MUG1	consansus_CONS/T to A/V	TOP2A	BRCA1	BRCA:	BRCA1	consensus _ CCAL _ S/T to A/V	102	BRCA1	NOTCH2	MTOR (FRAP1)	CHUK (IKK alpha) / IKBKB (IKK beta)	MAPK8 (JNK1) / MAPK9 (JNK2) / MAPK10 (JNK3)	consensus _ COM+	STK11 (LKB)	DUSP1	E2F1	IRS1	HAGNZ
LRDSDSVCDSGGC	HDSD:VCDSGGC	LRDSDSVCDSGGC	DSEENYVPMNPGC	RARSTOLNERPGC	EGDNDYIPLPGC	LDNFDYGQDFFGC	CORSRSRSRSRSR	SEEELYSSCRQGC	SDDVRYVNAFKGC	EPOSDPSVEPPLGC	QTARKSTGGKAGC	SSQRVSSYRRTGC	PLSOETFSDLW3C	ADTTQ://PMLEGC	SSTDRSPYEKVGC	CGGGGFAVFKKAKKL	DFDEKYDDEDFGC	DESCLSSOSDILTGC	DESGLS÷QSDILTGC	DESGLSSQSDILTGC	EFPIGIDFLPAKKKGC	MKAFSPVRSVRKGC	NRNYPSQEELIGG	PSPPG1VLTSAGC	PESIHSFIGDGGC	GSLCTSFVGTLGC	FMMTP\VVTRYGC	CKKRINRRLSVA	DDIIYTQDFTVGC	CGALSYLQSPITT&PS	LSRMGSLRAPVGC	D: MPMGPKSVSGC	EPORREARLSAGO
BIO Rep (155-8) 87	i Ola	BIO_Rep (lib5-8)_17	Ola	BIO	Bio	BIO	+ NOO	BIC	BIO	OIB	BIC	BIO	BIO	BIC	Bio	CON mutated CON+ CGGGGFAVPKi/AKi/L	BiO	BIO _ Rep (lib5-8)_e8	BIO	BIO_Rep (lb5-8)_16	CON - , mulated CON+ EFPIGDFL PAKKKGC	BIO	BIC	DIO	BIO	BIO	OIB	+ CON +	Bio	Bio	BIO	OIB	OHB
Key_L1_297_sample + KaB + ATP A	+ pept. PA_3/2 Key_L2_085 - sample + KaB + ATP	+ pept. PA_372 Key_L2_086 - sample + KaB + ATP		7 peptr PA_373 2/05 Key_L2_036 - sample + KaB + ATP A + peptr PA_374	3K32 Key_L2_089 - sampte + KaB + ATP A + pept, P4_375	MOS + pept, PA 375	2002 Key_L2 091 - sample + KaB + ATP B + opt. PA 377	ZACOS - FOR SAMPLE - SAMPLE - KAB + ATP A + pept. PA_378	次の女子 Key_L2_093 - sampte + KaB + ATF A + pept. PA_379	ZEE04 Key_L2_094 - sample + KaB + ATP A + pept. PA_380	2:204 Key_L2_095 - sample + KaB + ATP_A + pept. PA_361	2004 Key_L2_096 - sample + KaB + ATP A + pept. PA_382	2KGK Kay_L2_097 - sample + KaB + ATP _A + pept. PA_363	20054 Key_L2_096 - sampie + KaB + ATP A + pept. PA_364	20004 Key_L2_099 - sample + KaB + ATP_A + peot, PA 385	26/06 Key_L2_100 - sample + KaB + ATP_D + pept. PA_368	2008 Key_L2_101 - sample + KaB + ATP A + pept. PA_367	THISE HOP. L1_296 - Sampte + KaB + ATP A + pept. P4_388	XBESOS Key_L2_102 - sample + KaB + ATF A + pept. PA_388	2H96 - Key_L2_103 - sample + KaB + ATP A 2 + 9ept, PA 388	20308 Key_L2_104 - sample + KaB + ATP_D + pepl. PA_388	2006 Key_L2_105 - sample + KaB + ATP A + pept, PA_390	2KOD Key_L2_106 - sample + KaB + ATP A + pept. PA 391	30006 Key_L2_107 - sample + KaB + ATP A + pept. P4_392	XXX68 Key_L2_108 - sample + KaB + ATP A + nept. PA 393	Key_12_109 - sample + KaB + ATP_A + pept. PA_394	2036 Key_L2_110 - sample + KaB + ATP A + pept PA_395	Xey_L2_111 - sample + KaB + ATP B + pept, PA_396	2308 Key_L2_112 - sample + KaB + ATP_A + pept. PA_397	2108 Key_L2_113 - sample + KaB + ATP_A + pept. PA_388	2K036 Key_L2_114 - sample + KaB + ATP_A + pept. PA_399	20006 Key_L2_115 - sample + KaB + ATP A + pept PA_400	20008 Key_L2_116 - sample + KaB + ATP A + pept PA_401
372	372	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	386_	386	986.	390	391	392	393	394	395	396	397	398	388	400	401

	wo	20	19/	200	0245																			P	C T	Γ/U	S2	019	9/02	272	01	
JAK1	PRKAA1 (AMPKa1); PRKAA2 (AMPKa2); PRKACA (PKA C-alpha); RPSBKA1 (RSK1, p99RSK); RPSBKB1 (SBK1, p70SBK, SBK-beta- 1)	I)	GRK3 (ADRBK2)	PRKDC (DNA-PKos, DNAPK)	AXI, DDRI (WTRKA, RTNG, PTK3), DDR2 (MTRKR3, TYRO10), DMPK (DM1), FGFR1; GFRT: INSR (NSRR (RRE), JAK2, RON (MSTT1F), STK3 (MST2, KR3S), STK4 (MST1, KRS2), STK10 (LON), TYK3	RPS6KA1 (RSK1, p90RSK)	PDGFRB	FLT3; SRC; SYK; ZAP70	CAMK2A; GSK3B; MARK1; PHKG1; PRKACA (PKA C-alpha); PRKOD (PKC delta, PKCD)	PTK2B (FAK2, PYK2)	AKT1; PIM1; PIM2, PRKCA (PKC alpha, PKCA), NUAK1; LATS2	MAPICE (JNK1)	GSK3B; CDK5	GSK3B, CDK5	PDPK1	PRKACA (PKA C-alpha); RPS6KA3 (RSK2, p90RSK2, 56K-alpha-3); RPS6KA5 (MSK1), RPS6KB1 (S6K1, p7085K, 56K-psla-1)	AKT1	FRKDC (DIVA-PKcs, DNAPK)	1	PLK1	ODK1 (ODC2)	PRKDC (DNA-PKcs, DNAPK)	AURKA, AURKB, AURKC, PRKACA (PKA C- alpha), PRKACB (PKA C-bela), PRKACG (PKA C-gamma), PRKG1 (PKG1); PRKG2 (PKG2);	JAK1	SGK1 (SGK)	SYK	PRKDC (DNA-PKcs, DNAPK)	NTRK2 (TRKB)	GSK3A; GSK3B	GSK3E	CDK2; PKN2 (PRK2)	ACVR1 (ACVR1A, ALK2); TGFBR1 (ALK5)
7364	83968	T303, T304	5336, 5337	99	1	5347 / 5376	1771	Y349, Y350	S579	7579, Y580	5146	189, S70	5717, 1720, 5721	S717, T720, S721	7423	S428 (C-lem)	S429	S4 (N-term)	ı	5429	S434	5435		7446	5448	7448	T21	7455	1	S480	7187	S453 (C-term)
1.2R8	EEF2K	PAX6	CCR5	RPA2	oonsensus _ CCN+	NR4A2 / NR4A3	PDGFRB	SHC1 (p66Shc / p52Shc / p46Shc)	МАРТ (ТАU)	PTK2B (FAK2)	CDKN1A (p21, WAF1, CIP1)CON (-)S/T/Y to A/V/F	BCL2	MAPT (TAU)_CON (-)_S/T to A/V	MAPT (TAU)	PAK1	STK11 (LKB)	BRAF	RPA2	ł	MYT1	RPS6KB1 (S6K1)	SRF	oonsensus _ COM S/T to A/V	1.10RA	NEDD4L	SH3BP2	RPA2	FRS3	consensusCCN+	MYOCD	CDKN1B (p27, KIP1)	SWAD1
FTNQG;FFFHLGC	QVRTL:sGSRPPGC	PIPQPYTPVSSFGC	APERASSVYTRSGC	NSGFESYGSSSYGGC	CKKSHGDYMTMQIG	RGRLPSKPKSPGC	IESSNYMAPYDGC	PPDHQYYNDFPGGC	KSKIGSTENLKGC	JEDED YYKASVTGC	KRROYAMVDFFGC	DPVARTSPLQTPGC	KSPVVAGDVAPRHLANGC	KSPVVSGDTSPRHLSNGC	QSKRS:MVGTPGC	COSSNIFRLAACKQQ	RERKSSSSEDGC	MMNSGFESYGSSGC	KINA(ps)EMAPPINGC	RKSYYSKDPSRGC	EPKIRSPRRFIGO	VLNAFSQAPSTGC	OON+ LRRAALGGC	VAFQGYLRQTRGC	RPRSLSSPTVTGC	DSDEDYEKVPLGC	GAGGYTQSPGGGC	RSSDSAAVIDLGC	AVPPSPSLSRHSSPHQSEDEEEGC	SSPPISPASSDGC	GSVEQTPKKPGGC	CGGSPHNPISSVS
OIB	Ois	Ola	BIC	OIB	* NOO	OIS	BIO	BIO	OIB	BIO	CON mutated BIO	SIS	CON mutated BIO	Ola	OiB	OIB	BIO	BIC	CONrandom	BIO	Ola	BIO	CON mutated CON+	OIG	SIC	OIE	OIS	018	÷ NOO	Ola	BIO	BIC
26/10 Key L2_117 - sample + KaB + ATP A	7 Pepu 1 A_488 20010	SEENG Key_L2_119 - sample + KaB + ATP A + new PA and	2331g Key_L2_120 sample + KaB + ATP A + nept, PA 405	2010 Key_L2_121 - sample + KaB + ATP A + ned PA 406		30450 Key_L2_123 - sample + KaB + ATF_A + pect_PA_408	XO18 Key_12_12F sample + KaB + ATP A + nent PA 409	28/2 Key, L2, 125 - Sample + KaB + ATP A + pept. PA_410	Xey, L2, 126 - sample + KaB + ATP A + pept, PA_411	SEEN2 Key_L2_12T - sample + KaB + ATP_A + peot. PA_412	2013 Key, L2, 126 - Sample + KaB + ATP C + pept. PA_413	28 Key_L2_129 - sample + KaB + ATP A + pept. PA 414	20 2 Key_L2_130 - sampte + KaB + ATP_C + pept. PA_415	20472 Key_L2_131 - sample + KaB + ATP_A + pept, PA_416	Key_L2_132 - sample + KaB + ATP A + peol: PA_417	Key_L2_133 - sample + KaB + ATP _A + pept. PA_418	XK/4 Key_L2_134 - sample + KaB + ATP_A + pept, PA 419	20014 Key_L2 135 sample + KaB + ATP A + pept: PA_420	2034 Key_L2_136 - sampte + KaB + ATP E + pept. PA_421	XX16 + pept. PA, 422 + pept. PA, 422	2016 Key_L2_136 - sample + KaB + ATP_A + pept. PA_423	26546 Key_L2_139 - sample + KaB + ATP A + pept. PA_424	XC()	2//5 Key_L2_141 - sample + KaB + ATP A + pept. PA_426	2K/18 + pept. PA_427 + AB + ATP A	30(18 + pspt. PA_428 + pspt. PA_428	2018 Key_L2_144 - sample + KaB + ATP_A + pept_PA_429	26(8 + pept. PA_430 + KaB + ATP A + pept. PA_430	2038 Key_L2_146 - sample + KaB + ATP B + pept. PA_431	26至38	2018 Key_L2_146 - sample + KaB + ATP A + pept, PA_433	2018 Key_L2_149 - sample + KaB + ATP A + pept. PA_434
,402	1,403	404	1,405	1,406	1,407	408	409	410	7,411	412	413	414	415	4,416	7,417	418	419	1_420	421	422	423	1,424	425	426	4.427	428	429	430	(431	4.432	433	1_434

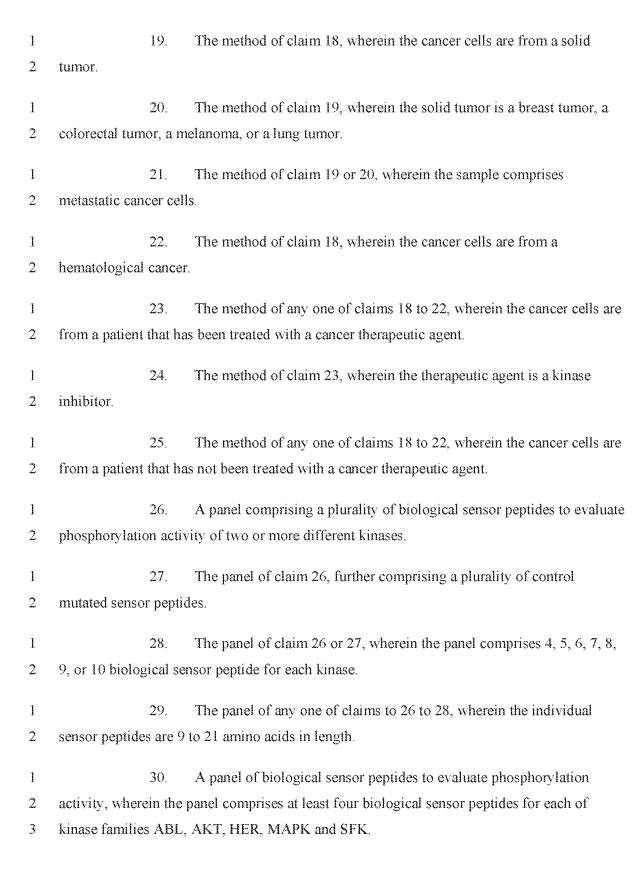
V	VO	2 0:	19/:	200)24	5																					P	C T	r/U	S2019/02	7201	
AURKA, AURKB, AURKC, PRKACA (PKA Calpha), PRRACO (PKA Calpha), PRRACO (PKA Calpha), PRRACO (PKA Calpha), PRRACO (PKA Calpha), PRKG)	ABL1; SRC	POPK1	AKT1, AKT2	LCK	JAK2	B TX	CHEK2	PKN2 (PRK2)	PDPK1	CSNK2A1 (OK2A1); OSNK2A2 (OK2A2)	PAK2	OLK1; CLK2	AKT1, AKT2	PAK1; PAK2; PRKACB (PKA C beta); PRKACG (PKA C-gamma); RPS6KA8 (RSK4, p90RSK6, S6K-atcha-6)	CDC428PA (MRCK alpha); PAK1; ROCK1	PAK1	CSNK2A1 (CK2A1); CSNK2A2 (CK2A2)	CDC428PA (MRCK alpha); ROCK1	жвкв (IKK beta)		PRKDC (DNA-PKcs, DNAPH)	CDK5; GSK3B; PRKACA (PKA C-alpha); RPS6KA3 (RSK2, p90RSK2, S6K-alpha-3)	CSK	KBKB (IKK beta); MAPK8 (JNK1)	ATM	CDK1 (CDC2)	ABL1, INSR; LCK	CHUK (KK alpha)	NMET-NME2, NME1 (NM23, NDPK-A)	AKTT, AKTZ, AURIVA, CAMIKTBEIE; CAMIKTGEIE; CAMIKTGEIETER, CAMIKTG	alpha, PKCA), PRKCB (PKC bela, PKCB), PRKD (PKC oeta, PKD); PRKCI (PKC ida, PKC), PRKCM (PKC m, PKCM), PRKCN (PKC no): PRKCZ (PKC zeta), PPKDZ (PKD2); RPS6KAS (MSK1)	BUB1
	7453	S474	123	Y474	Y496 (C-term)	Y503	5354	T507	7507	T366	5235, 5236	S242, S243	724 / 732	ı	7508	8518	7519	1526	8527	i	TS (N-tem)	T529	Y531 (C-(em))	\$531	\$25	S382	Y536	5536	S44		1	5153
consensus _ CON+	PRKD1 (PKD1)	AKT2	CHUK (IKK alpha)	ZAP70	SIRPA	GTF2I	EZF1_CON(-)_S/T to A/V	CDC25A	PRKCD (PKCD)	PTEN	RPS6	Print1	FOXO1 / FOXO4	consensus_CCM+	LIMK1	NF2	XRCC1	LIMK2	IRS1	1	HSP90AA1	MAPT (TAU)	N.	IRS1	1P53BP1	CSNK2A1 (CK2A1)	SNOTE	RELA	WME1	ronsensus CON- SAT to AV	1	CDC20
LRRASLGGC	TGSRYYYEIPLGC	CETHFPOFSYSASE	REPLGTGGFGNGC	LVNRHYAKISDGC	CGEPSFSEYASVQVPR	HPNDL:Y/EGLPGC	LARMGALRAPVGC	RTKSR7WAGEKGC	ESRASTFOGTPGC	SSTSVTPDVSDGC	KRRRLSSLRASTGC	KRKDPSSVDIKKGC	RPRSCTWPLPRGC	OGKROEQIAKRRPLSSLRASTSKSGGSGK	RKKRYTVVGNPGC	DMKRLSMEIEKGC	PYAGSTDENTDGC	KSYDETVDIFSGC	RKRTHSAGTSPGC	PEP(pT)IDERIDDLEGC	MPEETGTQDQPGC	GSRSRTPSLPTGC	CGTATEPQYOPGEN	HSAGTSPTITHGC	LIEDSOPESOSC	SVPTPSPLGPLGC	GQESEYGNITYGC	DEDFSSIADMDGC	KFMQASEDLLKGC	скянен дянраянк		EKVLYSQKATPGC
· NOO	BIO	BIO	BIC	BIO	BIO	OIB	CON mutated BIO	BIO	Ola	BIC	BIO	SIO	OIG	* NOC	SIO	oia	Bio	BIO	OHA	CON random	OIB	BIO	BIO	BIO	BIO	BIO	BIO	BIC	BIO	COM - misled COM		0.10
2K/8 Key_L2_150-sample+KaB+ATP_B + pept. PA_43	Mits Key_L2_151 - sample + KaB + ATP A + pent PA_436	2018 Key_L_1.52 - sample + KaB + ATP A + oest, PA 437	2620 Key_L2_153 - sample + KaB + ATP_A + peor, PA 438	2020 Key L2 154 - sample + KaB + ATP A + pept, PA 439	SEE 20 Key_L2_155 - sample + KaB + ATP_A + nent_PA_440	2020 Key, L.Z. 156 - sample + KaB + ATP A + oest PA 441	200 Key L2 157 - sample + KaB + ATP C + neor PA 442	XXQ Key_L2_156 - sample + KaB + ATP A + Dept. PA 443	X820 Key_L2_159 - sample + KaB + ATP A + oent PA 444	2020 Key_L2 190 sample + KaB + ATP A + pept. PA 445	2801 Key L2 181 - sample + KaB + ATP A + pept. PA 448	2003; Key_L2_162 - sample + KaB + ATP_A + pept_PA 447	2800 Key_L2_163 - sample + KaB + ATP A	2000 Key_L2_164 - sample + KaB + ATP B 2000 + pept. PA_449	XX01 Key_L2_165 - sample + KaB + ATP_A XX01 + pept, PA_450	2000 Key_L2_186 - sample + KaB + ATP A + oest, PA 451	ZN03 Key_L2_167 - sample + KaB + ATP A + pept. PA_452	29051 Key_L2_168 - sampte + KaB + ATP_A + peqt_PA_453	2803 Key_L2_169 - sample + KaB + ATP_A + oent PA 454	2003 Key L2 170 - sample + KaB + ATP E + pept. PA 455	2F08 Key_L2_171 - sample + KaB + ATP_A + nerr_PA_458	SHGS Key L2 172 - sample + KaB + ATP A + nept, PA 457	2,03 Key L2, 173 - sample + KaB + ATP A + pept, PA, 458	2003 Key_L2_174 - sample + KaB + ATP_A 2003 + pept. PA_459	SNGS Key_L2_175 - sample + KaB + ATP A	APDS Key_L2_176 - sample + KaB + ATP_A + pept_PA_461	2605 Key_L2_177 - sample + KaB + ATP A + pept. PA_462	2003 + peor, PA 453	25056 Key_L2_179 - sample + KaB + ATP A + pept, PA_464	Ney_L2_190 - sample + KaB + ATP_0	+ pspt. FA_455	X:05 Key_L2_181 - sample + KaB + ATP_A + pept, PA_465
.435 2 435	_436 BB		. 436 28	439	_440	.441	442	_443	444	245	446	.447 88	446 2F	449	450	-451 20	_452 .20K	453	454 288	455 200	456	_457 3P-	.458	21.	_460 gr	461	.462	_463	_464 @P	466		-466

W	/O	2 0:	19/2	200	24:	5																	P	C T	r/U	S20	019	0/02	272	01		
NLK RAF1 (GRAF)	P <u>E</u> K1	MTOR (FRAP1); PDPK1	PLK1	BMPR16	CHUK (IKK alpha); IKBKB (IKK beta)	AKT1, AKT2	CSNKZA1 (CKZA1); PRKDC (DNA-PKcs, DNAPK)	BUB1	CHUK (KK alpha); IKBKB (IKK beta)	AKT1	CDK1 (CDC2); PIM1	CDK1 (CDC2)	JAK2; SRC	FLT3; FYN; INSR; LCK; ZAP70	PDPK1	PDPK1	AKT1, PAK1	PDPK1	CSNKZA1 (CKZA1); CSNKZA2 (CKZA2)	ATM	CDC428P4 (MRCX alpna), CDC428PB (MRCX bea), CHMX (Ket alpna), IKSRB (HK bea), CLK2, PAK2, PMM; PMM; PMM; PMM; (FKK); PRKG2; PKG3; PCOCK2, FPCSRA, (FSKT), FDCA, PMCX, PDCACX, SSK-Appra), PRESKA, RSK2, pBDCSK2, SSK-Appra), PRESKA, RSK2, SSK-Appra, PRESKA, MSKA, RSK2, SSK-Appra, PRESKA, MSKA, RSK2, SSK-Appra, PRESKA, MSKA), RPSSK4, (FSKT, BSKA, MSKA), RPSSKA, MSKA, (FSKT, BSKA, MSKA), RPSSKA, MSKA, (FSKT, BSKA, MSKA), RPSSKA, MSKA, RSK2, SSK-Appra, RSKA, MSKA, RSK2, (FSKT, BSKA, MSKA), RPSSKA, MSKA, RSK2, (FSKT, BSKA, MSKA), RPSSKA, MSKA, RSK2, (FSKT, BSKA, MSKA), RPSSKA, MSKA, RSK2, (FSKT, RSKA, RSKA, RSKA, RSKA, RSK2,	RPS6KA1 (RSK1, p80RSK)	RAF1 (GRAF)	KBKB (IKK beta)	CHEK1; CHEK2	AURKB	CSNK2A1 (CK2A1); CSNK2A2 (CK2A2); TAF1	OSK3B	ATM; ATR; PRKDC (DNA-PKcs, DNAPK)	MAPIK1 (ERK2)	AURKA	JAK2; SRC
7155	253	7228	5239	S245	S18	T246 (S247)	5249	292	i	7(00	5116	S249	Y250	7.427	7252	7253	S256	1256	S263	8264		7266	7258	5272	S279	S7 (M-term)	5281	1286	S196	5301	5308	Y310
Consensus _ CON+	WEE1	RPS6KB2 (S6K2)	BRCAZ	STAMBP	NFKBIB (IKBB)	AKT1S1	NOT	CDC20	consensus _ CON+	IRAK1	CDC25A	R81	STAP2	SHC1 (p86Shc / p52Shc / p46Shc)	RPS6KB1 (S6K1)	SGK2	F0X01	SGK1	MYCN	MRE11A	oonsensus CON S/T to A/V	CEBPS	RAF1 (GRAF)	IRS1	CDC25A	CENPA	GTF2A1	CCND1	XPA	RAF1 (CRAF)	BRCA1	STAP2
AVHPLTPLITYGC LIDSMANSFVGGC	STGEDSAFQEPGC	GAVTHEFEGTIGE	SNIHDESLIKKNDGC	GALSNSESIPTOC	DEWCDSGLGSLGC	COPRPRINTSDFOK	PIDMESQERIKGC	QMEVASFLLSKGC	CGKKKKERLLDDRHDSGLDSMKDEE	ARDITAWHPPGC	KLLGCSPALKRGC	PNGSPRTPRGC	ULDED YEKVLGGC	FDDPS:VNVQNGC	GTVTH7FCGTIGC	EDTTS:FCGTPGC	RRRAASMDNNSGC	NSTTSTFCGTPGC	DTLSDSDDEDDGC	QLFY/SQPGSSGC	KRRRL aa lpago	SKAKKTVDKHSGC	VHMVST7LPVDGC	RSKSOSSSNOSGC	KRPERSQEESPGC	MGPRRESRKPEAPGC	TGDTS:EEDEDGC	CGEVDLACTPTDVRD	LEVWGSQEALEGC	SPINILSPTGWSGC	EFCNKSKOPGLGC	NQEENYVTPIGGC
+ NOO	BIO	BIO	BIC	BIO	BIO	Ola	BIC	DIE.	+ NOC	OI8	OIS	OIS	OIB	BIC	BIO	Ola	Bio	BIO	BIO	BIO	CON mulated CON+ KRRRLAALRADO	OIB	BIC	BIO	OIE	BIO	SIC	BIO	BIO	BIO	BIO	BIO
+ Pepti PA 467 + Pepti PA 467 + Key L2 133 - sample + KaB + ATP B + Park PA 468		Key_L2_185 - sample + KaB + ATP A + pept, PA 470	Key_L2_186 - sample + KaB + ATP A + pept. PA 471	Key_L2_187 - sample + KaB + ATP_A + pept, PA_472	Key_L2_188 - sample + KaB + ATP A + pept. PA_473	Key L2 189 - sample + KaB + ATP A + pept PA 474	Key_L2_190 - sample + KaB + ATP_A + pept. PA_475	Key_L2_191 - sample + KaB + ATP_A + pept. PA_476	Key_L2_192 - sample + KaB + ATP_B + pept. PA_477	Key_L2_193 - sample + KaB + ATP A + pept. PA_478	Key_L2_194 - sample + KaB + ATP_A + pept. PA_479	Key_L2_195 - sample + KaB + ATP_A + pept. PA_480	Key_L2_196 - sample + KaB + ATP_A + pept_PA_461	Key_L2_197 - sample + KaB + ATP A + pept. PA_462	Key_L2_198 - sample + KaB + ATP_A + pept, PA_483	Key L2 199 - sample + KaB + ATP A	Key_L2_200 - sample + KaB + ATP A + pept. PA_485	Key_L2_201 - sample + KaB + ATP A + pept, PA_488	Key_L2_202 - sample + KaB + ATP A + pept. PA_487	Key_L2_203 - sample + KaB + ATP A + pept. PA_488	Key_L2_20& - sample + KaB + ATP_D + papt. PA_489	Key_L2_205 - sample + KaB + ATP_A + pept. PA_490	Key_L2_206 - sample + KaB + ATP A + pept. PA_491	Key_L2_207 - sample + KaB + ATP_A + pept. PA_492	Key_L2_208 - sample + KaB + ATP_A + pept, PA_493	Key_L2_209 - sample + KaB + ATP A + pept, PA_494	Key_L2_210 - sample + KaB + ATP A + pept. PA_495	Key_L2_211 - sample + KaB + ATP_A + pept, PA_495	Key_L2_212 - sample + KaB + ATP _A + pept. PA_497	Key_L2_213 - sample + KaB + ATP A + pept. PA_498	Key_L2_214 - sample + KaB + ATP_A + pept. PA_489	Key_L2_215 - sample + KaB + ATP A + peet, PA_500
467 21.09 468 2NGS	469 32035	470 2897	471 2003	472 28-07	473 28-107	474 2.07	475 20.07	476 and?	477 2897	478 2809	479 2009	480 2509	481 28699	482 2303	483 auds	484 2N08	485 2809	486	487 2011	486 2F11	999	490 2.87	491 22.57	492 ZM11	493 32011	494 2813	495 2073	496 28913	497 28-13	498 2.713	499	500 ZN13

W	O	2 0:	19/:	2002	245																						PC	T /	US	2 01	19/	027	720	1	
MATI (SMAE) ATM	GRK3 (ADRBK2)	SRC	ATM; ATR; CHEK1; PLK3; PRKDC (DNA-PKcs; DNA-PKcs;	PRKAČA (PKA C-atpha); PRKCA (PKC atpha, PKCA); RPS6KA3 (RSK2, p89RSK2, S6K-atpha- 3)	CSNK2A1 (CK2A1); CSNK2A2 (CK2A2)	JAK1	FGFR1; FGFR2	GSK3B; GSK3A	GSK3B, GSK3A	GSK3B; GSK3A	PKWYT1 (MYT1); LYNA; LYNB; STK10 (LOK); WEE1 (MEE1A); WEE2 (WEE1B)	CDK1 (CDC2), CDK2, CDK3, CDK5, PRK4CA (PK4 C-alpha), PRKACB (PKA C-beta), PRKACB (PKA C-beta)	MAPK1 (ERK2)	AKT1: PKN2 (PRK2)	NEK	EGFR; FGFR1; FGFR2	SYK	ARAF; BRAF; RAF1 (dRAF)	CDK2	ATM, ATR, PLK1	MAP3K14 (NIK), PRKCQ (PKC theta)	LCK; SRC	ABL1; LCK; LYNA; LYNB	CSNK2A1 (CK2A1); PRKACA (PKA C-alpha)	CDK2	RPS6KA1 (RSK1, p90RSK)	NSR	FLT3	PKN2 (PRK2)	CDK1 (CDC2)	CDK7; CDK8; CDK9; CDK11	INSR	ATM, ATR	JAK1	CHUK (张K alpha)
5343	8349	Y9 (N-term)	520	828	S99, S102, S103 (C-term end)	Y1054, Y1055	Y584	\$129 / \$132	8129 / 5132	5129/5132	714, 715	t	529	7157	5186	Y172	Y17&	5218	8612	125	\$176	Y537	7564	563	5567	727	7580	7581	1596	54 (N-term)	ı	Y607	81423	Y612	T931, S932
consensust.ConS/T to A/V	CORS	POPKt	TP53	HWGNZ	HWGA1	TYK2	GAB2	CREB! / CREM	CREB1 / OREM	CREB1/CREW	CDK1 (CDC2); CDK2	consensusCON+	RAF1 (cRAF)	CDKN1B (p27, KIP1)	EF1	VAVZ	SH3BP2	MAP2K1 (MEK1) _ CON (+) _ S/T to A/V	RB1	CHEK2	CHUK (IKK alpha)	ESR1	PTPN6	STMN1	783. 1	GMFB	P!K3R1	FLT3	BRAF	UBA1	consensus_ CON+	PIK3R1	BRCA1	IRS1	NFKB1
HDAMAINAFVGGC PGPSL÷QGVSVGC	CGTRSTGEQEISVGL	RTTSQLYDAVPIGEC	SOETFSDLWKLGC	REARLSAKPAPGO	COEEGISQESSEEGO	PEGHEY (RVREDGO	DSEENVVPMQNGC	RRELLSPRPSYGC	RREILSRRPSYGC	RREILSRRPSYGO	(IGEGTYGV/YKGC	ОБББВАТРККАККІ	GSSCISPTIVAGC	KRPA:DDSSTGC	SDEHFSPGSHPGC	GGDDIYEDIIKGC	IDNED/EHDDEGC	GQLIDAMANAFGC	SPVRSPKKKGGC	HGSV1QSQGSGC	DVDQGSLCTSFGC	NVVPLYDLLEGC	HKEDV: ENLHTGC	SERRKSHEAEVGC	AMLSD SPLFDLGC	REPRETINNAAIGC	CTRDQ7LMWLTGC	DNEYFYVDFREGC	DFGLATVKSRWGC	ASSOPLSKKRRGC	CGKKYSPTSPSYSPTSPS	VTEDQYSLVEDGC	EQHESOPSNSGC	HTDDGYMPMSPGC	DSGVETSFRKLSGC
CON mutated CON+ Libramathan VGGC	BIO	eio	BIC	O B	OIB	BIO	BIO	EIO_Rep (ib5-8)_e9	BIO	BiC_Rep (lb5-8)_19_8	BIO	† NOO	Bic	BIO	BIO	DIB.	BIO	CON mutated BIO	BIO	Bic	019	BIO	98	Bio	BIO	BIO	Bio	DI9	EIO EIO	BIO	t NOO	BIO	DIA N	Oia	BIO
2813 + pept. PA_501 2813 Key_L2_217 - sample + KaB + ATP A + neor PA_502	2015 Key_12_216 - sample + KaB + ATP A + pept, PA 503	Key_L2_219 - sample + KaB + ATP A + cent. PA 504	Zevs Key_L2_220 - sample + KaB + ATP A + nept, PA 505	Key_12_221 - sample + KaB + ATP _A	2015 Key_L2_222~sample + KaB + ATP_A + pept, PA_507	24(5 + pept. PA_508 + ATP A + pept. PA_508	Sports Kay L2 224 - sampte + KaB + ATP A + pept, PA 509	1676 - Kay_L1_299 - sample + KaB + ATP_A + pept. PA_510	ZB17 Key_L2_225- sample + KaB + ATP A + pept. PA_510	2k.18 Kay_L2_226 - sample + KaB + ATP A + pept. PA_510	XD(r) Key_L2_227 - sample + KaB + ATP A + pept. PA_511	28-17 Key_L2_228 - sample + KaB + ATP B + pept, PA_512	26452	30.77 Key_L2_230 - sample + KaB + ATP_A + pept, PA_515	MAT Key_L2_231 - sample + KaB + ATP A + pept, PA 516	2619 Key_L2_232 - sample + KaB + ATP A + pept; PA 518	20018 Key_L2_233 - sample + KaB + ATP A + pept, PA 519	2618 - Key_L2_234 - sample + KaB + ATP_C + pept, PA_520	2H18 Key_L2_235 - sample + KaB + ATP A + pept, PA_521	2//8 Key_L2_236 - sample + KaB + ATP A + pept. PA_522	20.78 Key_L2_237 - sample + KaB + ATP_A + pept, PA_523	3N/3 Key_L2_236 - sample + KaB + ATP_A + pept, PA_524	2F(19 Kay_L2_239 - sample + KaB + ATP A + pept: PA_525	ZB02 Key_L2_240 - sample + KaB + ATP_A + pept, PA_526	ZDZZ Key_L2_241 - sample + KaB + ATP_A + pept, PA_527	2602 Key_L2_242 - sample + Kaß + ATP_A + pept, PA_528	2602 Key_L2_243 - sample + KaB + ATP A + pept. PA_529	2002 Key_L2_244 - sample + KaB + ATP A + pept, PA_530	SNG2 Key_L2_245 - sample + KaB + ATP_A + pept, PA_531	2606 Key_L2_246 - sample + KaB + ATP A + pept PA_532	ZEO4 Kay_L2_247 - sample + KaB + ATP_B + pept. PA_533	3,004	2004 Key_L2_249 - sample + Kaß + ATP_A + pept, PA_535	2/104 Key_L2_250 - sample + KaB + ATP A + pept: PA_536	29504 Key_L2_251 - sample + KaB + ATP A + neut_PA_537
502	503	504	505	506	507	508	909	510	510	510	-511	.512	513	515	516	518	.518	520	521	522	523	524	525	526	527	528	528	530	531	532	533	534	535	536	537

Table 1

	W	O	2 0:	19/2	0024	15																	P	CT	ľ/U	S2	019	/02	720	1	
FOFR (; FGFR2; PDGFRB	CDK5; GSK3B	CHEX1	AKTT, CLKT, CLKZ	CHUK (IKK alpha); MAP3K14 (NIK); MAP3K7 (MEKK7, TAK1); PRKCQ (PKC theta); PRKCZ	W NO 2004) W NO 2004) W NO 2004); PRICO (PINC della, PKCD); PRKRIR (THAP12, DAP4, provincia)	CDK1 (CDC2)	AURica	MAPKS (JNK1)	CAMK1; CAMK2G; PRKACA (PKA C-alpha); RPSBKA4 (MSK2, S6K-alpha-4); RPS8KA5 (MSK1)	CDK1 (CDC2)	NME1-NME2, NME1 (NM23, NDPK-A)	CDK1 (CDC2); CDK2	PLK1	JAK2	PDGFRB	ODC428PA (MPCK alpha); CDC428PB (MRCK beta); CHUK (MK alpha); KBMB (HK beta); CACK: PAKC; MMI; PRMS PAKS; FRKG1 (PKG1); PRKG2; PKG2); RCCK1; RCCK2 RPS6K41 (RSK1; p80RSIG); RPS6K42; (RSK3)	pB0RSK2, Slevapine-2), RFSBKA, RRSU2, pB0RSK2, Slevapine-3), RFSBKA (MSK2, SSK-alpha-4), RFSBKA5 (MSK1), RFSBKA5 (RSK4), RFSBKA5 (RSK4), RFSBKE1 (SSK4, pQ0RSK6, SSK-alpha-5), RFSBKE1 (SSK1, p70G8K, SGK-peta-1-5).	AURKB	PLK†	AKT1; IRAK1	EGFR; INSR	PRKACA (PKA C-alpha); PRKCA (PKC alpha, PKCA); RPSBKA3 (RSK2, p90RSK2, SBK-alpha-	ZAP70	MAPK1 (ERK2)	ATM	АТМ	EGFR, INSR, MET	FRKACA (PKA C-apha); PRKCA (PKC apha, PKCA); RPS6KA3 (RSK2, p90RSK2, S6K-apha- 3).	CHUK (KK alpha); IKBKB (IKK beta)	CHUK (KK alpha), IKBKB (IKK beta)	CDK1 (CDC2); MAPH3 (ERK1)
7740	77,44	S743	055	5177	552	T53	280	S62 (T58)	563	S2 or T5 (N-term end)	\$120	S120	\$133	7139	Y545		1	8139	S64	156	366	525	Y614	S642 (C-term)	S140	S645	Y659	821	823	1	828
PDGFRB	an-X	TLK1	Nette Nette	KBKB (IKK beta)_CON (-)_S/T to A/V	EF2S1	HMGA1	DES	MYC	ATF1	HIST1H1A	NWE1	UBE2A	CCNB1	COR2	PTPN11	Consensus COX4	ı	M8UN2	TPT (PAK1	PTPMI	HMGN1	GAB2	RAF1 (CRAF)	H2AFX_CON (-)_S/T to A/V	DOLRETC	GAB1	HMGN1	NFKBIB (IKBB)	consensus_CONS/T to A/V	STMN1
ESDGGYMDMSKGC	VDAAV7PEERHGC	MRRSNESGNLHGC	RYRDVSPFDHSec	ELDQGALCVAFGC	LLSELSRRRRGC	PSEVPTPKRPRGC	QVSRT:GGAGGGC	PYPPLSPSRRSGC	LARRPSYRKILGO	MSETVPPAPASGO	NIHGSDSVESGC	EPNPNSPANSGGC	SPMETSGCAPAGC	LTIDEXLAIVHGC	RKGHEYTNIKYGC	SHER STEADS		KILRKSPHLEKGC	GEGTESTVITGGC	RSGQRTASVLWGC	GEDNDYINASLGC	RSARLSAKPPAGO	TGSVDYLALDFGC	CGMACTLTTSPRLPV	CGGKKAYQAAQEF	STNADSQSSSDGC	DERVD: VVVDQGC	EPKRESARLSAGO	DeglestaPDAGC	CON mutated CON+ CGKKKKERLLDDRHDAGLDAMKDEE	FELILOPRSKEGO
BIC	BIO	BIO	OIB	CCN mutated BIO	BIO	OIB	BIC	BIO	SIC	SIC	OIS	OIS	OIB	BIO	BIO	, NOO		OIS	BHO	BIO	BIO	BIO	BIO	810	CON mutated BIO	BIO	Bio	BIO	BIO	CON mutated CON+	BIO
2806 Key_L2_252 - sample + KaB + ATP A	2008	XX03 Key_L2_254 sample + KaB + ATP_A + pept, PA_540	2006 Key_L2_255 - sample + KaB + ATP_A + oed; PA_541	2006 Key_L2_256 - sample + KaB + ATP C + pept. PA_542	2608 Key_L2_257 - sample + KaB + ATP A + pepf. PA_543	2008 Key_L2_256 - sample + KaB + ATP A + oest, PA 544	2008 Key_L2_259 - sampte + KaB + ATP A + pept, PA 545	2NGS Key_IZ_260 - sample + KaB + ATP_A	20008 Key_L2_201 - sample + KaB + ATP _A + pept. PA_547	25:10 Key_L2_262 - sample + KaB + ATP A + pept. PA_548	3H10 Key_L2_263 - sampte + KaB + ATP_A + pept; PA_550	SNt0 Key L2_264 - sample + KaB + ATP A + pept. PA_551	26:10 Key_L2_265 - sampie + KaB + ATP A	28/3 Key_L2_266 - sample + KaB + ATP A + pept. PA 553	2012 Key_L2_267 - sample + KaB + ATP_A + pept_PA_564	. key_L2_236 - sample + KaB + ATP _B	+ pept. FA_555	20072 Key_12_269 - sanple + KaB + ATP A + pept. PA_556	3Pt/2 Key_L2_270 - sample + KaB + ATP_A + pept. PA_557	28(4) Kay_L2_271 - sample + KaB + ATP A + pept. PA_558	2004 Key_L2_272 - sample + KaB + ATP A + pept. PA_559	2614 Key_L2_273 - sample + KaB + ATP A + pept. PA_550	Key_L2_274 - sample + KaB + ATP_A + pept PA_561	21.14 Key_L2_275 - sampte + KaB + ATP_A + pept. PA_563	3N/4 Key_L2_276 - sampte + KaB + ATP_C + pept. PA_564	2814 Key_L2_277 - sample + KaB + ATP_A + pept. PA_565	26(1) Key_L2_276 - sample + KaB + ATP A + pept. PA_568	2016 Key_L2_279 - sample + KaB + ATP A + pept. PA_567	2616 Key L2, 280 - sample + KaB + ATP A + pept, PA_568	26% Key_L2_281 - sample + KaB + ATP D + pept. PA_569	2006 Key_L2_282 - sample + KaB + ATP A + pept. PA_570
A_538	1,539	0,_540	541	A_542	1_543	544	4_545	546	1,547	4_548	4_550	4_551	4_552	A_553	1_554	ហ ហ ហ	į	956	4_557	1_558	4_559	J-560	1_561	1,563	, 564	1,565	,_566	4_567	4_568	1_569	A_570


		W	O :	20:	19/	20 0	24	5																				PC	'T /	US	20	19/	027
-	ATRA	EGFR; FGFR1; FGFR2; STK10 (LOK)	CAMK2G; PRKCD (PKC delta, PKCD); RPS6KA5 (MSK1)	PDPK1; PDK1	AURKB	AKT1, AKT2; AKT3; PAK4; PAK7; SGK1 (SGK), SGK2	BUB1	MAPKAPK2 (MK2); MAPKAPK3 (MK3)	MAPK7 (ERKS)	CDK2; CDK7; CDK9; CSNK2A1 (OK2A1); EIF2AK2; MAPK14 (p38a); NUAK1; STK11 (LKB)	MAPKAPK2 (MK2); MAPKAPK3 (MK3)	CDK2	MAPK1 (EFK2); MTOR (FRAP1)	AKT	PKN2 (PRK2)	MAPKS (JNK1); MAPK9 (JNK2)	AKT1; RPSSKA1 (RSK1, p90RSK); RPSSKA3 (RSK2, p90RSK2, S5K-alpha-3); RPSSKA5 (MSK1)	AKT1: RPSSKA1 (RSK1, p90RSK); RPSSKA3 (RSK2, p90RSK2, SSK-alpha-3); RPSSKA5 (MSK1)	AKT1, RPS6KA1 (RSK1, p90RSIV), RPS6KA3 (RSK2, p90RSK2, S6K-alpha-3), RPS6KA5 (MSK1)	CDK2	PKN2 (PRK2)	PKW2 (PRK2)	PKN2 (PRK2)	PKN2 (PRK2)	AKT1; PIM1; PIM2; PFKCA (PKC alpha, PKCA); NUAK1; LATS2	AKT1	CSNK2A1 (CK2A1)	CSNK2A1 (CK2A1)	CSNK2A1 (CK2A1)	MAPK1 (ERK2)	GSK3B	GSK3B	GSK3B
-	5664	7700	5727	T774 / T816	T892, S893, S894	1	S72	878	578	S392	882	55	563	Se3	586	191	5351	5351	S351	T821	T599 _ p.V800E _ COSMIC prevalence: 22678	T599p.V500KCOSMIC prevalence, 472 x	T599_p.K801E_COSMIC prevalence: 77 x	T599	S146 (+T145) _ p.R143tW _ COSMIC prevalence: 2x	T24_p.R21C_COSMIC prevalence: 1x	7155	T155_p.V157F_COSMIC prevalence: 164 x	T155_p.R156P_COSMIC prevalence, 24 x	T55_ p.E58KCOSMIC prevalence: 3 x	741	T41 _ p.T41A _ COSMIC prevalence: 828 x	741_p.S45FCOSMIC prevalence: 518 x
	RBBP3	CBL	STATA	PKN1 (PRK1) / PKN2 (PRK2)	INCENP	consensus_CCNS/T to A/V	02020	нѕрві	SGK1	TP53_ CON (-) _ S/T to A/V	нарві	23	E1F4E8P1 (4E6P1)	MAPSK5 (ASK1)	HSPB1	NOT	nraat	NR4A1	NR4A!	R81	ВЯАГ	ВРАГ	ВЯАЕ	BRAF_CON()_T to G	ODKN1A (p21, WAF1, OFF)	FOX01	TP53	TP53	TP53	TP53	CTNNB1	CTNNB1	CTNNB1
	PGADLSQYKWDGC	EEDTEVMTPSSGC	NLPMSPEEFDGC	GDRTSTFCGTPGC	RYHKR: 88AVWNSGC	RPRAAAFAEGO	/attrskpgggg	SPALSROLSSGC	PSPPPPPQ	CGLMFI-VEGFDAD	SRQLSSGVSEGC	WKALSPVRGCYEGC	PGVTSPSSDEGC	4GRGSSVGGGSGC	SSGVSEIRHTGC	GHITTIFIFTQGC	RGRLPSKPKQPGC	RGRLFSKPKQPGC	RGRLP:KPKQPGC	SEGLP7PTKM/GC	DFGLATIKKSRWGC	DFGLA77/KSRWGC	DEGLATVESRWGC	DFGLAGVKSRWGC	REMOTEMENT	RPOSCOWPLPRGC	TPPPGTRVRAMGC	PPPGTRARAMGC	PPPG127VAMGC	EQWF 7KDPGPGC	HSGATTTAPSLGC	HSGATATAPSLGC	HSGATITAP/LGC
-	BIC BIC	3 018	N N N N N N N N N N N N N N N N N N N	OIB	BIC	COM mulabed CON+ KRPRAAFAEGC	BIO) A	BIO	CON mutated BIO C	n OIB	BIC	e Oig	n. Ola	Ola	BIC	BIC_Rep ((b5-8)_e5 R	BIO_Rep (ib5-8)_i6	BIO 018	BIO	BIO_nsPV C	BIO_nsPV	ZIO_USPV	CON mutated BIO D	N V9er_08	FI VEST OF BIO	T BIO	BIO_nsPV	T Vest Old	BIO_nsPV	BIO		HIO_nsPV
	24.15 Key_L2_283 - sample + KaB + ATP A + pept. PA_571	267/8 Key_L2_284 - sample + KaB + ATP A + pept, PA_572	XB)(8 + pept. PA_573 + pept. PA_573	2018 Key_L2_286 - sample + KaB + ATP A 2018 + pept. PA 574	ZE18 Key_L2_287 - sample + KaB + ATP A + peor PA 575	Mey L2 288 - sample + KaB + ATP D + pept, P4, 576	XXXX Key_L2_289 - sample + KaB + ATP_A + pept, PA_577	Zi.8 Key_L2_290 - sample + KaB + ATP A + nept, PA 578	Key L2 291 - sample + KaB + ATP A + neor, PA 579	26:18 Key_L2_292 - sample + KaB + ATP C + pept. PA_560	2820 Key_L2_293~ sample + KaB + ATP A + gent, PA 561	Key_L2_294 - sample + KaB + ATP A + pept PA_562	3720 Key_L2_295 - sample + KaB + ATF A + papt, PA_583	XH26 Key_L2_296 - sample + KaB + ATP A + nent PA 584	2,29 Kay_L2_297 - sample + KaB + ATP A + nept; PA 565	20.20 Key_L2_296 - sample + KaB + ATP_A + neor, PA_568	Key_L1_300 - sample + KaB + ATP _A + pept. PA_567	Ney_L2_299 - sample + KaB + ATP_A + pept. PA_587	2012) Kay_L2_300 - sample + KaB + ATP A + pept. PA_587	XPX0 Key_L2_301 - sample + KaB + ATP A + nept, PA 588	1233 Key_L1_301 - sample + KaB + ATP A + neor, PA 569	RE13 HOULT 302 - Sampte + KaB + ATP A + pect. PA 590	11.04 Key_L1_303 - sample + KaB + ATP_A + pept, PA_591	7612 Key_L1_304 - sample + KaB + ATP C	1004 Key, L1, 305 - sampte + KaB + ATP A + pept. PA, 593	XXXX Key_L2_302 - sample + KaB + ATF A + pept, PA_594	2847 Key_L2_303 - sample + KaB + ATP_A + pept, PA_595	2F10 Key_L2_304 - sample + KaB + ATP A + pept. PA_598	**************************************	2018 + Dept. PA 598 + Sample + KaB + ATP A + Dept. PA 598	2K:19 Key_L2_307 sample + KaB + ATP_A + pept. PA_599	1K/19 Kay_L1_306 - sample + KaB + ATP A + pept. PA_600	2003 Key_L2_308 - sample + KaB + ATP A + pept, PA_601
	4_571	A_572	A_573	4_574	A_575	A_576	4_577	4_576	4_579	4_580	4_581	A_582	A_563	A_584	4_585	A_586	4_587	4_587	4_587	4_588	4_589	4_590	4_591	4_592	A_593	A_594	4_595	4_596	A_597	4_598	4_599	4_500	A_501

WHAT IS CLAIMED IS:

1	1. A method of determining the phosphorylation activity profile of a
2	sample comprising one or more kinases, the method comprising:
3	incubating the sample with a panel of sensor peptides comprising a diversity
4	of biological sensor peptides, wherein each biological sensor peptide comprises a substrate
5	region phosphorylated by a kinase, and the diversity of biological sensor peptides comprises
6	biological sensor peptides for different kinases; and further, wherein members of the panel of
7	peptides are distributed into separate reaction mixtures to assess phosphorylation activity,
8	such that each reaction mixture represents one biological sensor peptide; and
9	measuring phosphorylation activity for each peptide in the separate reaction
10	mixtures, thereby determining the phosphorylation activity profile of the sample.
1	2. The method of claim 1, further comprising a plurality of mutated
2	control sensor peptides.
4-1	Control Scrisor populació.
1	3. The method of claim 1 or 2, wherein the step of measuring
2	phosphorylation activity comprises detecting ATP consumption.
1	4. The method of claim 1, 2, or 3, further comprising normalizing the
2	phosphorylation activity measured in each reaction mixture and assigning the activity to a
3	subfamily or to a kinase based on the pattern of phosporylation activity.
1	5. The method of any one of claims 1 to 4, wherein the panel comprises
2	biological sensor peptides for kinases that are members of at least two different kinase
3	subfamilies.
1	6. The method of any one of claims 1 to 4, wherein the panel of sensor
2	peptides comprises biological sensor peptides for kinases that are members of the ABL,
3	AKT, HER, MAPK and SFK kinase subfamilies.
1	7. The method of claim 6, wherein the panel of sensor peptides comprise
2	biological sensor peptides for kinases that are members of the ABL1, AKT1, EGFR,
3	MAPK1/ERK2, MAPK14/p38a, HCK, and SRC subfamilies.
1	8. The method of claim 6, wherein the panel of sensor peptides
2	comprises biological sensor peptides for BLK, BRK, FGR, FRK, HCK, LCK, LYN A,

3 SRMS, YES1, ABL1T315I, EGFR, JAK2, CSK, AKT1, AKT2, AKT3, MAPK1/ERK2, and

- 4 MAPK14/p38a kinases.
- 1 9. The method of any one of claims 1 to 8, wherein the panel comprises
- 2 at least three biological sensor peptides for each kinase.
- 1 The method of claim 9, wherein the panel comprises 4, 5, 6, 7, 8, 9, or
- 2 10 biological sensor peptides for each kinase.
- 1 The method of any one of claims 1 to 10, wherein the individual sensor
- 2 peptides are 9 to 21 amino acids in length.
- 1 The method of claim 11, wherein the individual sensor peptides are
- 2 from 9 to 15 amino acids in length.
- 1 13. The method of claim 12, wherein the individual sensor peptides are 11
- 2 amino acids in length.
- 1 The method of any one of claims 1 to 13, wherein the panel comprises
- at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, or
- 3 at least 90 biological sensor peptides having a sequence as shown in Table 1 for the peptide
- 4 id of a biological sensor peptide shown in Fig. 4.
- 1 15. The method of claim 14, wherein the panel comprises at least 100
- 2 sensor peptides, or at least 110, at least 120, at least 130, at least 140, or 151 biological sensor
- 3 peptides having a sequence as shown in Table 1 for the peptide id of a biological sensor
- 4 peptide shown in Fig. 4.
- 1 16. The method of claim 15, wherein the panel comprises at leaset 10, at
- 2 least 20, at least 30, at least 40, at least 50, at least 60, or 63 reference peptides as identified
- 3 in Fig. 4.
- 1 The method of claim 15, wherein the panel comprises the 228 peptides
- 2 as identified in Fig. 4.
- 1 18. The method of any one of claims 1 to 17, wherein the sample
- 2 comprises cancer cells.

- 1 31. The panel of claim 30, wherein the panel of sensor peptides comprises
- 2 at least four biological sensor peptides for each of kinase subfamilies ABL1, AKT1, EGFR,
- 3 MAPK1/ERK2, MAPK14/p38a, HCK, and SRC.
- 1 32. The panel of claim 30, wherein the panel of sensor peptides comprises
- 2 at least three biological sensor peptides for each kinase BLK, BRK, FGR, FRK, HCK, LCK,
- 3 LYN A, SRMS, YES1, ABL1T315I, EGFR, JAK2, CSK, AKT1, AKT2, AKT3,
- 4 MAPK1/ERK2, and MAPK14/p38a.
- 1 33. The panel of claim 32, wherein the panel comprises 4, 5, 6, 7, 8, 9, or
- 2 10 biological sensor peptide for each kinase.
- The panel of any one of claims 30 to 33, wherein the individual sensor
- 2 peptides are 9 to 21 amino acids in length.
- The panel of claim 34, wherein the individual sensor peptides are from
- 2 9 to 15 amino acids in length.
- 1 36. The panel of claim 35, wherein the individual sensor peptides are 11
- 2 amino acids in length.
- The panel of any one of claims 30 to 36, wherein the panel comprises
- at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, or
- 3 at least 90 biological sensor peptides having a sequence as shown in Table 1 for the peptide
- 4 id of a biological sensor peptide shown in Fig. 4.
- The panel of claim 37, wherein the panel comprises at least 100 sensor
- 2 peptides, or at least 110, at least 120, at least 130, at least 140, or 151 biological sensor
- 3 peptides having a sequence as shown in Table 1 for the peptide id of a biological sensor
- 4 peptide shown in Fig. 4.
- 1 39. The panel of claim 38, wherein the panel comprises at least 10, at least
- 2 20, at least 30, at least 40, at least 50, at least 60, or 63 reference peptides as identified in Fig.
- 3 4.
- 1 40. The panel of claim 38, wherein the panel comprises the 228 peptides
- 2 shown in Fig. 4.

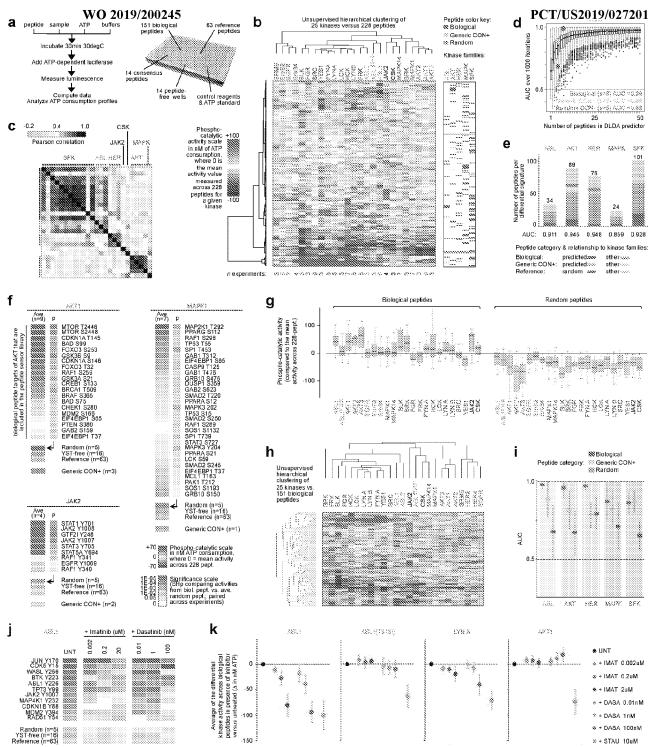


Fig. 1

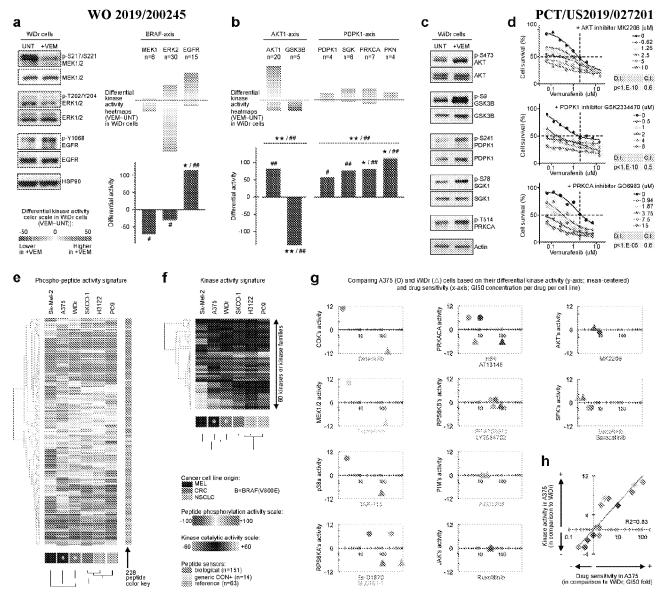


Fig. 2

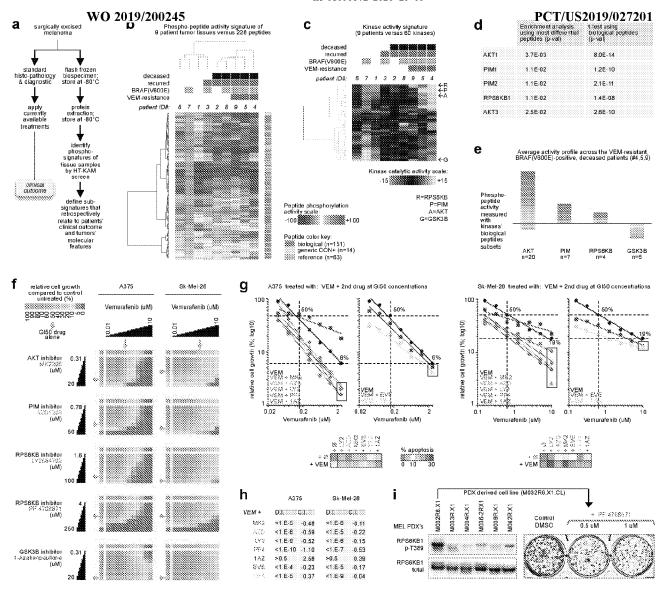
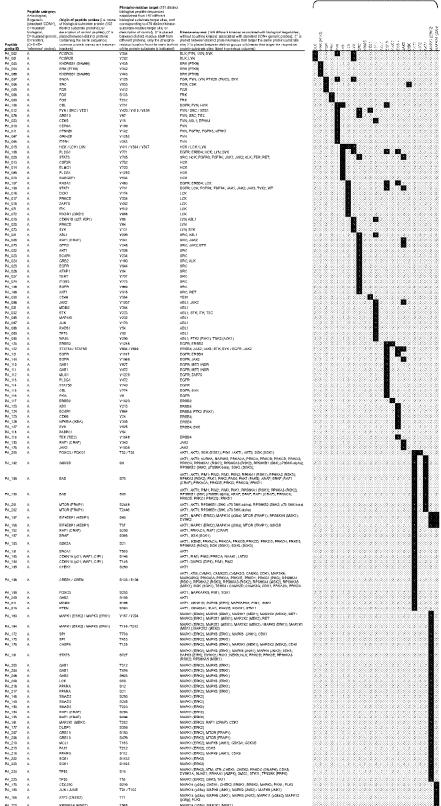



Fig. 3

WO 2019/200245

Petitle cate por:
Propile cate p

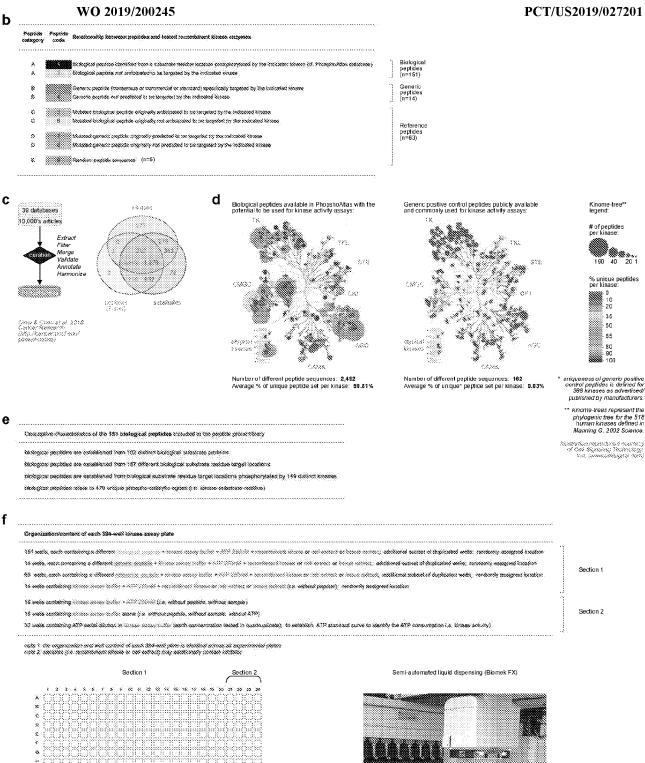

Biological peptides

Fig. 4 (part 1)

PCT/US2019/027201

WO 2019/200245

	Peplide category:		Phospho-residue target (151 distinct biological pectide acquences established from 187 different	1		
	Broeseric (standard 'CON+), Crautated	Origin of peptide prokes (i.e. name of biological substrate protein (I 02 distinct substrate proteins); or	biological substrate target sites, and corresponding to 479 distinct kinase-		8 8	
	histogical, D=mutated generic	description of control paptide); (7' is , placed between distinct proteins	description of controls: (7' is placed between distinct residue sites from different protects; column at protects.)	Kinese enormas (400 afficer) kineses associated vidh balopius taipentines, without counting kineses associated with damphad CON+ generic probes), (*) is placed between black probes in these trial target in easier profess substantial along 1% placed between dislant groups of timeses that target the respective profess substantial sealing the probes of the probes of the properties of the probes of the pr	CONTRACTOR (ASSESSMENT OF ASSESSMENT OF ASSE	
Paptide probe ID	E-randon; (C+D+E- 'reference' probss)	containing the same sequence; common protein names are between brackets)	different proteins; only the phospho- realdue location from the main lacform of the protein substrate is indicated)	sides 7' is placed between distinct groups of kineses that terget the respective profein substrate sides listed in previous columns)	25 mm m m m m m m m m m m m m m m m m m	
PA_145	A	EGFR	T676	PRICCA; PBKCD, PRKD1 (PKD); PKNI, PKNS		1
PA_147 PA_156	A A	SMAD2 RAF1 (CRAF)	S465 S336	TGFBRI; ACVRI B; BMPRIB MAPK2K1 (MEK1); PAK1; PAK2; PAK3; PAK7 (PAK5), RAF1 (CRAF)		
PA_158	٨		8218 / 8222	ARAF; BRAF; RAFI (CRAF); MAPSK1 (MEKK1); MAPSK8 (COT) / BRAF; MAPSK8 (COT)		
PA_159 PA_169	A	MAP2KI (MEKI) / MAP2K2 (MEK2) MAP2KI (MEKI)	S222 / S226 T266	ARJE; BRAE, RAEI (CRAE); MAPSKI (MEKKI); MAPSKI (CCT); PDPKI I BRAE; MAPSKI (CDT); PDPKI RAEI (CRAE); CDKI; CDKS		Biological peptides
PA_162 PA_165	Ã. A	MAP2KI (MEKI) MAPKI (ERK2)	8298 829	PAKI RAPI (CRAF)		(continued)
PA_166	A	AKT1 / AKT2 / AKT3	6473 / 6474 / 6472	IKEKE; TBIK1; ILK; LRRKO; MAPKAPKI; MTOR; PRKDC (DNAPK); PDK1; PDPK1; PRKOA; PRKOB; PRKOD; PRKD1 (PKD); PKFVVE (PIPRKS) / PDPK1		
PA_167		ARTI /ARTE / ARTS	T009/T009/T005	/ PRKCD; PRKCZ IKBKE; TBK1; CAMKK1; PDK1; PDPK1; PRKCA; PRKCB; PRKCZ; PRKC1 (PKD) / PDPK1 / PDPK1; PRKCZ		
PA_169 PA_171	A	CDC25C CDC25C	T46 \$214	CDK1 (CDC2)		
PA_174 PA_175	A	SRC JAKI	517 ¥1054	PRINCA JAKS JAK1		
PA_176 PA_192	A A	JAKI BRCA1	Y1036 S088	JAKS; JAK1 CHEK2		
PA_212 PA_213	A A	MYC NPKB1	T56 S907	GSK3B; CSNK2A1; CSNK2A2 GSK3B		J
PA_049	A	genaric peșt, probe_CON(+)#01	S2070 _(IYGEPKKKAA)	GSKSB all TKs (+90 Tyrosine Khases)		3
PA_241 PA_094	В	generic pept. probe _ CON (+) #02 generic pept. probe _ CON (+) #03	_(EEEEY)*~46 _(KYV/GYTGEGIKEYK)	all TKs (+90 Typosine Kinassa) all 11 SFKs (BLK; BRK; FRK; FGR; FVN; HCK; LCK; LYNA/B; SRC; SRMS; YES1)		
PA_240	D	generic pept. probleCON (+) #04 (seq derived from CDR1)	_(KVEKIGEGTYGVVYK-enid)	all 11 SPKs (BLK; BRK; FRK; FGR; FYN; HCK; LCK; LYNA/B; SRC; SRMS; YES1)		
PA_083	В	generic pept. prohe_CON(+)#06	_(EG/YGVL)	6 SFKs (FYN); HCK; LCK; LYNA/B; SRC) 2 SFKs (LYNB; SRMB), 10 EPHs (Ephs1, Ephs2; Ephs3; Ephs4; Ephs6,		
PA_097	В	genaric pept. probe _ CON (+) #06	_(EFPIYDFLPAKKK)	EphA8; EphB1; EphB2; EphB3; EphB4; 5 RTKs (FGFR3; MERTK; NTRK2;		
PA_095	В	generic pept. probe _CON (+) #07	_(EAIYAAP)	all 2 ABLs and 3 ABL mutants (ABL1; ABL2; ABL1(0.252%; ABL1(T3159); ABL1(H3999)), 4 RTKs and 1 RTK mutant (FLT3; KIT, MET, RET, FLT3(D835Y)), 2 NRTK (6TK)		Generic peptides
PA_096	В	generic pept. probe _CCIN(+)#08	_(EAIYAAPFAKKK)	all 2 ABLS (ABL1, ABL2)		
PA_242	В	generic pegt, pions _ CON (+) #08 (enq derived from ABL1)	_(EAIYAAPFAK)	all 2 ABLs (ABL1, ABL2) EGED 3 EGED; and 1 EGED outside EGED2 EGED3 EGED4		
PA_098 PA 184	В	generic pept. probe _ CON (+) #10 generic pept. probe _ CON (+) #11	_(EPLYWSFPA) (KRPRAASFAE)	EGER, 3 FGERs and 1 FGER; nuture (FGERs; FGERs, FGERs; FGERS(N549-b), 2 RT Ks (PDGFRs; VEGFRZ), 2 NRTKs (FER; SYK) all 3 AKTs (MCT); AKT2, AKT3)		
PA_185 PA_186	B B	generic pept. probe _ CON (+) #12 generic pept. probe _ CON (+) #13	_(RPRAATEPS) _(PRTSSFAE)	all 3 AKTs (AKT1; AKT2; AKT3), SGK1 all 3 AKTs (AKT1; AKT2; AKT3), SGK1, RPSSKA5		
PA_187	B	generic pept. probeCON(+)#1.4	_(IPTSPITTYF)	6 MAPKS (MAPK1/Erk2; MAPK3/Erk1; MAPK11/p36b2; MAPK12/p36g; MAPK13/p38d; MAPK14/p38e), CDK8; IRAK4		ノ
PA_041 PA_042	D D	SRC _ PA_508 CON (4 _ Y to G 5RC _ PA_508 CON (4 _ Y to pY	7500 _ Y to pY Y500 _ Y to G	FGR CSK FGR, CSK)
PA_039	C	FYN / SRC / YES1 _ Ph_012 CON (: _ Y to G		FYN/ BRC/YES1		
PA_040 PA_079	C D	FYN / SRC / YES1 _ P9_012 CON (:) _ Y to pY GRB10 _ PA_076 CON (:) _ Y to G	VIII V to G	FYN/ SRC/YES1 FYN/ SRC/TEC		
PA_063 PA_077	C C	GRB10_PA_076 CON (-) _ Yto pY GRIN2B PA 067 CON (-) Yto G	Y67 _Y to pY Y1252 Y to G	PVN: SRC: TEG FVN		
PA_081 PA_043	C C	GRINZB _ PA_097 C ON (-) _ Y to pY STAT3 _ PA_029 CON(-) _ Y to G STAT3 _ PA_029 CON(-) _ Y to pY	Y1252 Y to nY	FYN SRC; HCK; FGFR0; FGFR1; JAK1; JAK2; ALK; FER; RET;		
PA_044 PA_129	D	STATS_PA_029 CON(·)_Y to pY 6TAT1_PA_119 CON(·)_Y to 6 STAT1_PA_119 CON(·)_Y to pY	Y705 _Y to pY Y701 _Y to 0	SRC; HCK; FGFRS; FGFRS; JAKS; JAKS; ALK; FER; RET; EGFR; LCK; FGFRS; FBFRS; JAKS; JAKS; TYKS; KIT		
PA_156 PA_078	c C	PIKSR1 (GRB1) _ PA_372CON (-) _ Y to G	V101 _V to pV V958 Y to G	EGRI; LCK; FGFRI; FGFRI; JAKI; JAKI; JAKI; TVKI; KIT LCK		
PA_082	c	PIKSRI (GRB1) _ PA_172CON (-) _ Y to oV		LCK		
PA_080 PA_081	c c	SYK_PA_073 CON (-) _ Y to G SYK_PA_073 CON (-) _ Y to yY	Y101 _Y to G Y101 _Y to pV	LYN, SYK LYN, SYK	8888466566666666666666	
PA_045 PA_046	D.	ABL1 _PA_021 CON () _ Y to G ABL1 _PA_021 CON () _ Y to pY	Y226 _ Y to G Y226 _ Y to pY	SRC, ASL1 SRC, ASL1	K 0 8 6 4 K 0 K 0 C 0 C 0 K 0 C 0 K 0 K 0 K 0 K 0	
PA_047 PA_048	c c	EGFR _ PA_025 CON() _ Y to G EGFR _ PA_025 CON() _ Y to pY EGFR _ PA_148 CON() _ Y to pY	Y944 _ Y to G Y944 _ Y to pY	SPC SRC		
PA_227 PA_228	D.		Y889 _Y to pV Y899 _Y to G	sRc SRC		
PA_091 PA_092 PA_129	C C	RAD51 _ PA_006 CON (-) _ Y to G RAD51 _ PA_066 CON (-) _ Y to pV GAB1 _ PA_110 CON (-) _ Y to G	Y54 _Y to G Y54 _Y to pY Y827 _Y to G	ADLI ABLI EGFR: MET, IASR		
PA_130 PA_137	Ċ C	PLCG1 PA 113 CON(-) Yto G	Y472 Y to G	EGFR, MET, INGR		
PA_135 PA_131	D D	GAB1 _PA_118 CON () _Y to pY PLCG1 _PA_113 CON (·) _Y to pY ERBB2 _PA_117 CON (·) _Y to G ERBB2 _PA_117 CON (·) _Y to pY	Y472 _ Y to pY Y1025 _ Y to G	EGFR ER882		
PA_138 PA_138	0	BCAR1 _ RA_124 CCN (-) _ V16 G	ARRY TA FC	ERBB2 (FIX2 (FAX1)		
PA_185	C C	NPKBIA (IKBA)_ PA_128 CON (-) _ \ to G		ERBB4 PTK2 (FAK1)	a o s s s s s s s s s s s s s s s s s s	
PA_142 PA_143	c	BCAR1 _ PA_124 CON (-) _ Yto pY NPKBIA (IKBA) _ PA_126 CON (-) _ Y	Y305_Y to pY	ER884	**************	
PA_182 PA_140	D C	PABPC1 _ PA_118 CON (-1 _ Y16 G PABPC1 _ PA_118 CON (-1 _ Y16 pY	Y64_Y10 G Y54_Y10 gY			
PA_155	c	TEK (TIE2)_ PA_119 CON(-) _Y10	Y1048_Y10 G	ER654	0 2 0 6 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PA_181	c	TEK (TIE2) _ PA_119 CON(-) _Y10 pY	Y1048 _ Y to pY	ER884	x = 5	
PA_232	Ċ	GGKSB_PA_162 CON (-) _ 6 to p6	89_8 to p8	ALTT; ALTT; ALERIA; MAPRICE, PRICACA; PRICCA; PRICCB; PRICCC, PRICCC, PRICCC, PROBACA; (Refc.); RPG6KA1 (Befc.); 77086K-alpha); RPSBK32 (SBFC; p7088K-beta); SGKL (SSKS);	* * * * * * * * * * * * * * * * * * * *	
PA_213	С	BAD_PA_180CON (-1_5/5 to	\$98 _ \$75 to p\$/p\$	AKTI; AKT3, PIM1; PIM2; PIM3, PAK1, RPBBKA1 (RSK1); RPBKA3 (RSK2); RPSBKB1 (SBK; D70SBK-siphs); ARAF; BRAF; RAF1 (CRAF); PRKACA; PRKCE; PRKC1 (PRKC3, PRKD1		Reference peptides
	С	pSipS WTOR (FRAP1) _ MA_202 CON (-) _ Trib to pTripS			***	Translation President
PA_234 PA_237	D D		T2446 (6 S2446) _ TIS to pTipS S168 _ S/T to pS/pT	AKT1; AKT5; RPS6KB1 (SIK;)/T0 S6K-alpha); RPS6KB2 (S6K2; p/70 S6K-beta) AKT1; CSNK1D; DAPK5 (ZIPK); MAPKAPK2; PIM1; SGK1		
PA_ZSS	Б	pSpT MDM2_PA_2II CON(-) _ art to evi		ARTI; CONKID; DAPKS (DPK); MAPKAPK2; PINI; BOKI		
PA_229	С			MAPK1 (ERK2); MAPK3 (ERK1); MAP2K1 (MEK1); MAP2K2 (MEK2); RET / MAPK3 (ERK1); MAPZX1 (MEX1); MAPZX2 (MEK2); RET		
PA_250	Б			MAPK1 (ERK2); MAPK3 (ERK1); MAP2K1 (MEK1); MAP2K2 (MEK2); RET / MAPK3 (ERK1); MAP2K1 (MEK1); MAP2K2 (MEK2); RET	A 0 1 6 4 6 0 8 8 0 8 0 8 8 6 8 6 8 8 8 8 8 8 8 8	
PA_231	C	MAPK1 (ERKI) / MAPK3 (ERK1) _ PA_184 CON () _ T to pT	T165 /T202 _T to pT	MAPK1 (ERC3), MAP2K1 (MEX1); MAP2K2 (MEK2) / MAPK3 (ERK1); MAP2K1 (MEK1); MAP2K2 (MEK2)		
PA_235 PA_236	C C	LCK _PA_209 CON (-) _ S to pS LCK _PA_209 CON (-) _ S to G	\$56 _ \$ to p\$ \$55 _ \$ to G	MAPKI (ERK2); MAPKS (ERKI) MAPKI (ERK2); MAPKS (ERKI)	* * * * * * * * * * * * * * * * * * *	
PA_288	D	PAK1_PA_215 CON () _T/T to pT/pT	T212 _T/T to pT/pT	MAPKI (ERK2), CDK5		
PA_051	D	generic pept. probe _ PA_049 CON (- _ Y to T	`-	all TKs (+90 Tyrssine Khases)		
PA_055	D	generic pest, probe _ PA_049 CON (- _ Yie 6	'-	all TKs (>60 Tyrosine Kinases)		
PA_057	D	Y to 0 generic pept. probe PA_D49 CON ()invest seq / technical control_ Y to pY	_	all TKs (>00 Tyrosine Kinasos)		
PA_100	D	generic pept. probePA_063 CON (Y16 G	· _	6 SPKs (FYN; HCK; LCK; LYNA/B; SRC)		
PA_103	D	generic pest, probe _ PA_063 CON (- _Y to pV) -	a arks (FYN, HOK, LOK, LYNWA; arko)		Fin 4
PA_151	D	generic pept. probe _ RA_066 C:ON (Y to G.	· _	all 2 ABLs and 3 ABL mutants (ABL1; ABL2; ABL1(02524); ABL1(1315); ABL1(14869); 4 RTKs and 1 RTK mutant (FLT3; KIT; MET; RET; FLT3(D635Y)), 1 NRTK (RPT6)		Fig. 4
PA_104	D	generic peat, probe _ PA_695 CON (- _ Y to pY		all 2 ABL and 3 ABL mutants (ABL1, ABL2; ABL1(Q252H); ABL1(T3151); ABL1(H396P)), 4 RFKs and 1 RTK mutant (FLT3; RIT; MET; RET; FLT3(D836Y)), 1 NRTK (BTK)		
		_Y to pl' generic pept. probe _ RA_000 CCN (- _Y to G				, , , , , ,
PA_102 PA_105	D	_ Y to G generic pept. probe _ PA_099 CON (- _ Y to pV		EGFR, 3 FGFRs and 1 FGFR nutset, FGFRS, FGFRS, FGFRS, FGFRS(NS46H), 2 RTKs (PDGFRs, VEGFRS), 2 NRTKs (FER, SYK) EGFR, 3 FGFRs and 1 FGFR nutset (FGFR2, 5 NRTKs (FER, SYK) FGFR2(NM46H), 2 RTKs (PDGFRs), VEGFR2), 2 NRTKs (FER, SYK)		(part 2)
PA_014	E	(control) CON (-) _polyA	=	FGFR2(N6491-I), 2RT Ks (PDGFRA; VEGFR2), 2 NRTKs (FER; BYK) -		(1)
PA_035 PA_036 PA_037	E E	(control) CON (-) _poly G _Y to pY (control) CON (-) _poly G _Y to pY	-	:		
PA_098	<u>i</u>	(control) CON () _poly E _Y to pY	-	-		ノ

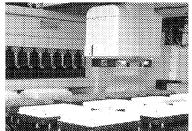
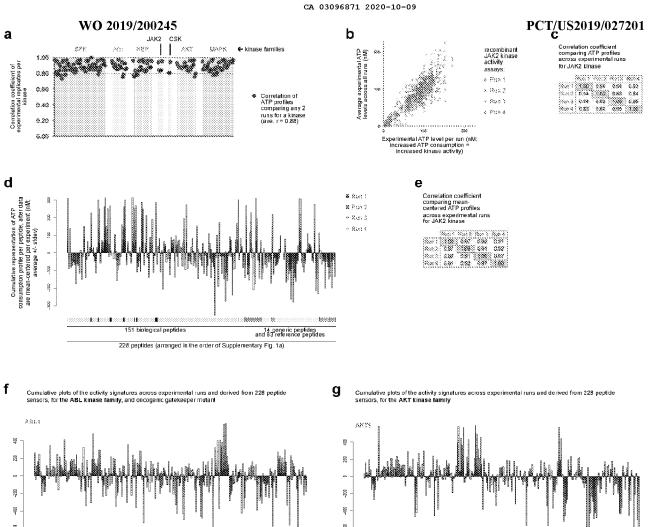
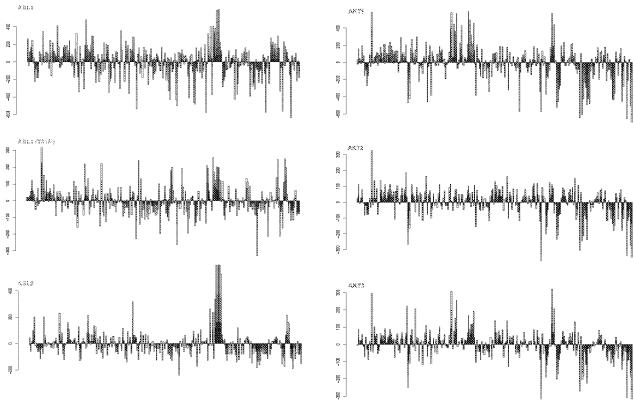
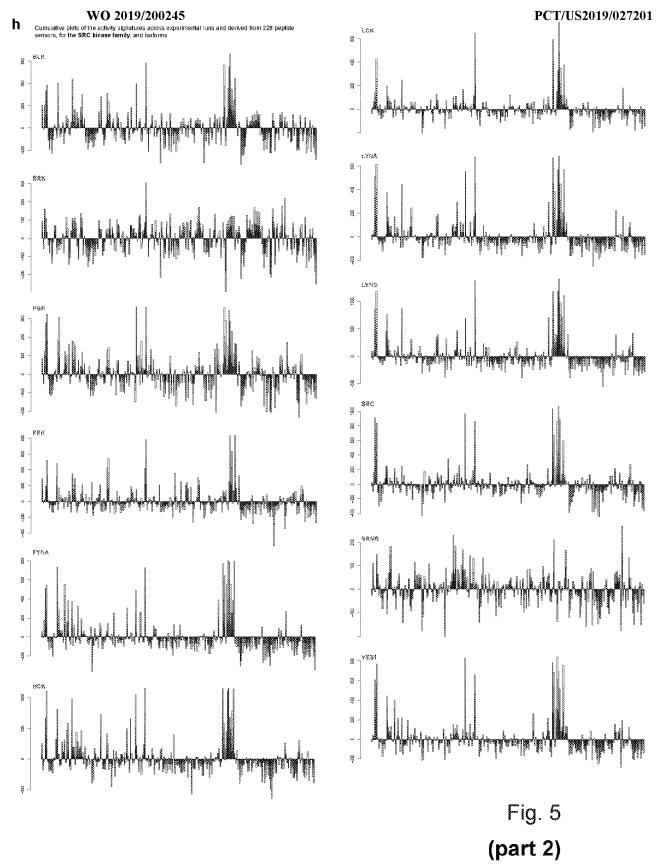





Fig. 4 (part 3)

8/40

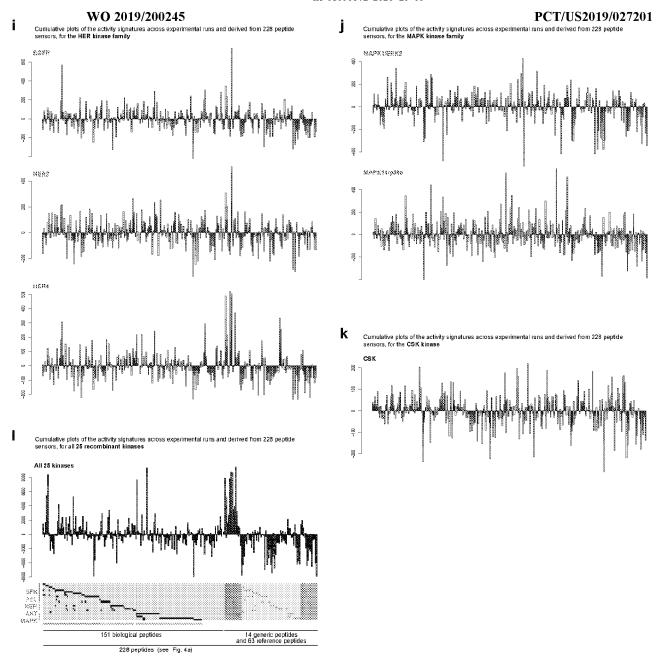


Fig. 5 (part 3)

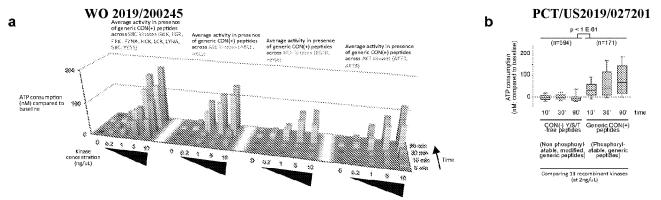
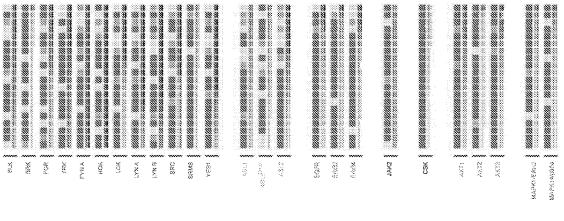
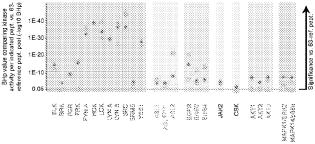



Fig. 6


WO 2019/200245 PCT/US2019/027201 а Perkinase: Column #1 = peptide category:

3333 advertised generic CON+ for the indicated kinase other/non-advertised generic CON+ for the indicated kinase biological peptide Column #2 = level of catalytic activity per peptide (mean-centered across 228 peptides, and averaged across all experiments per kinase; in nM ATP) 0 +100 Column #3 = significance (BHp) of activity (comparing activity measured from the indicated peptide versus the pool of 63-reference peptides)
0.05 peptides (out of 228) (out of 228)
associated
with the
highest
phosphocatalytic
activity per
kinase, and
specific to
each kinase

Top 3-peptides per peptide category: best activity-reporting peptide among advertised generic CON+ for the indicated kinase
best activity-reporting peptide among any other/non-advertised generic CON+ for the indicated kinase
best activity-reporting peptide among biological peptides

b

C Top 3-peptides per peptide category:

Set activity-reporting peptide among advertised generic CON+ for the indicated kinase
 best activity-reporting peptide among any other/non-advertised generic CON+ for the indicated kinase
 best activity-reporting peptide among biological peptides

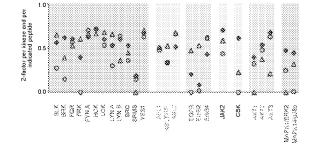
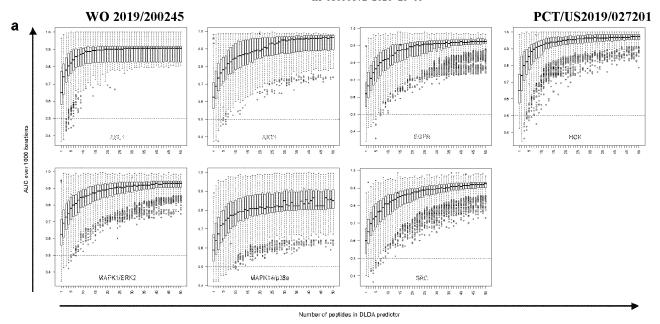
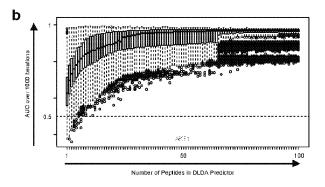




Fig. 7

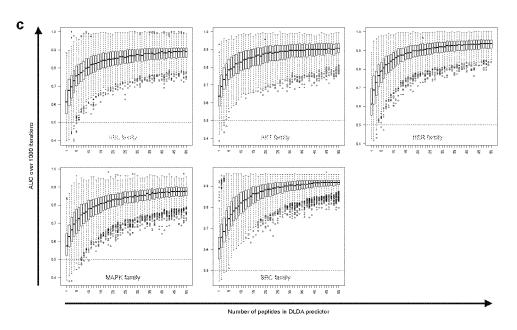
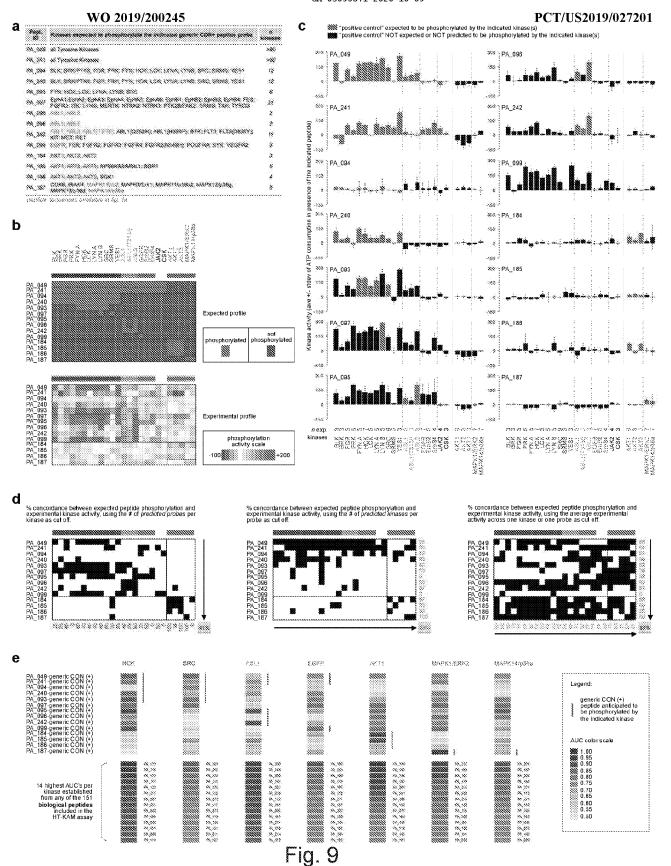
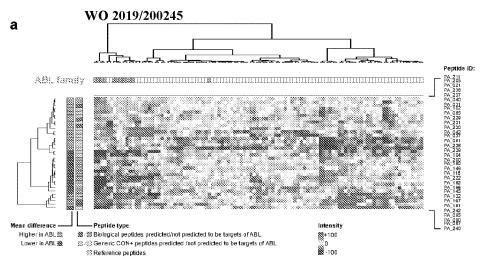
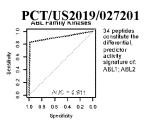
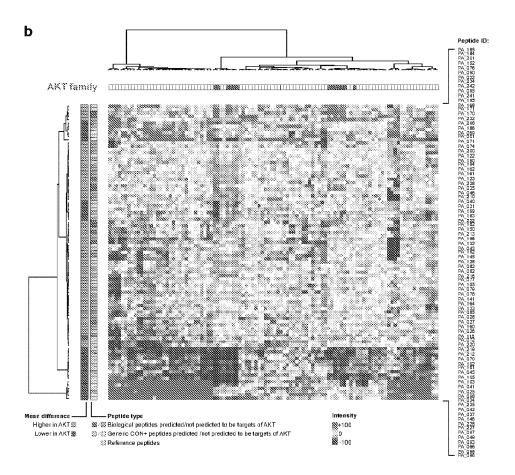






Fig. 8

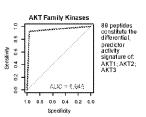
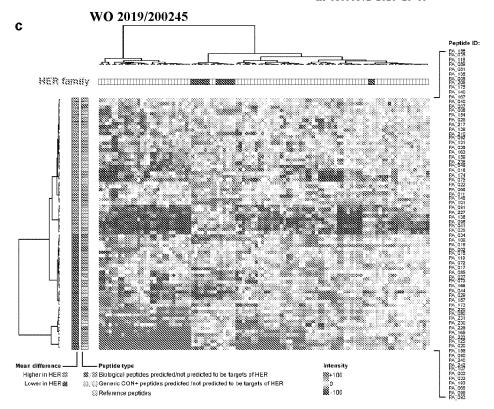
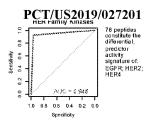




Fig. 10 (part 1)

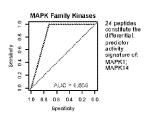
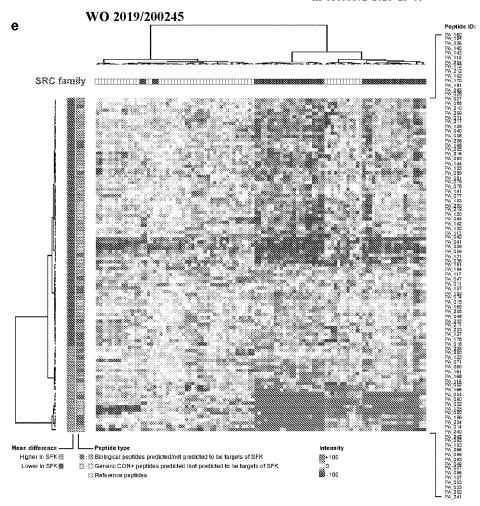
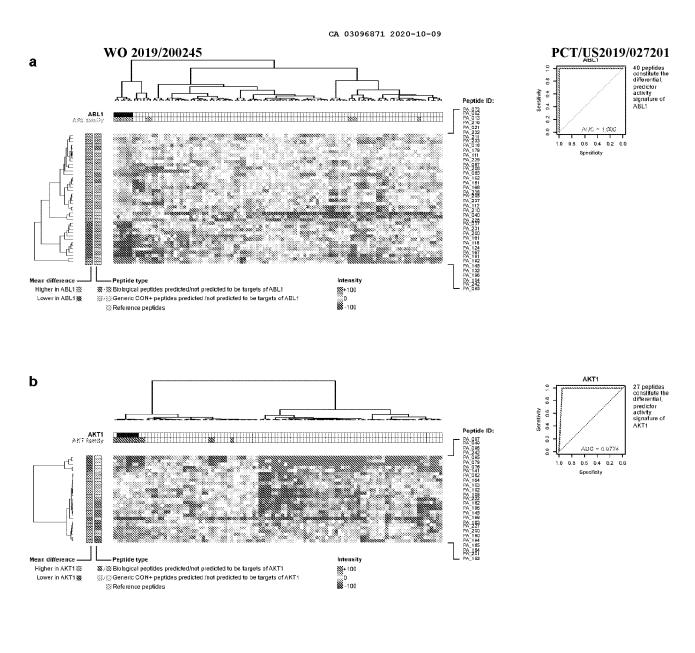
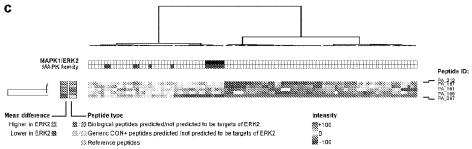



Fig. 10 (part 2)

To peptides constitute the differential, predictor activity signature of BIKK, BRK; FGK; FRMS, YES1

1.0 0.8 0.8 0.4 0.2 0.0 Specificaty


1.0 0.8 people of the differential predictor activity signature of BIKK, BRK; FGK; FRMS, YES1


1.0 0.8 0.8 0.4 0.2 0.0 YES1

1.0 0.8 0.8 0.4 0.2 0.0 YES1

PCT/US2019/027201

Fig. 10 (part 3)

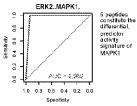
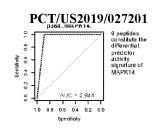
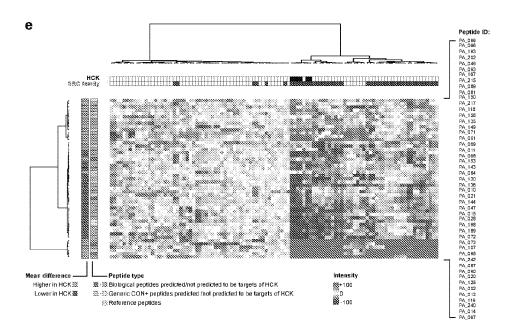





Fig. 11 (part 1)

☼/☼ Generic CON+ peptides predicted/not predicted to be targets of p38a

Lower in p38a 💸

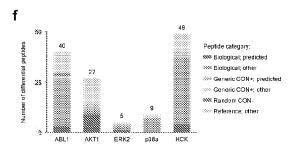


Fig. 11 (part 2)

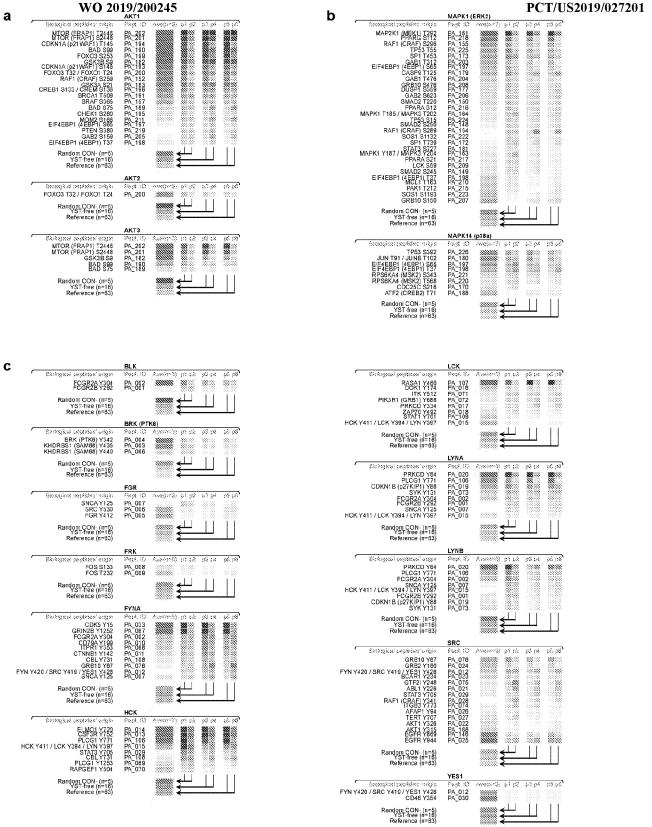


Fig. 12 (part 1)

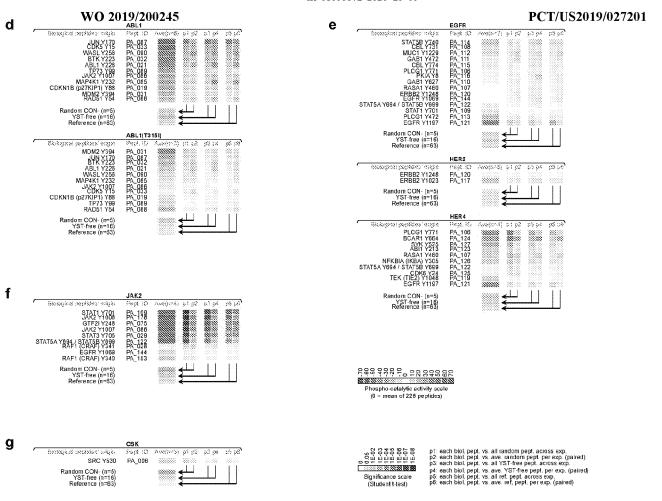
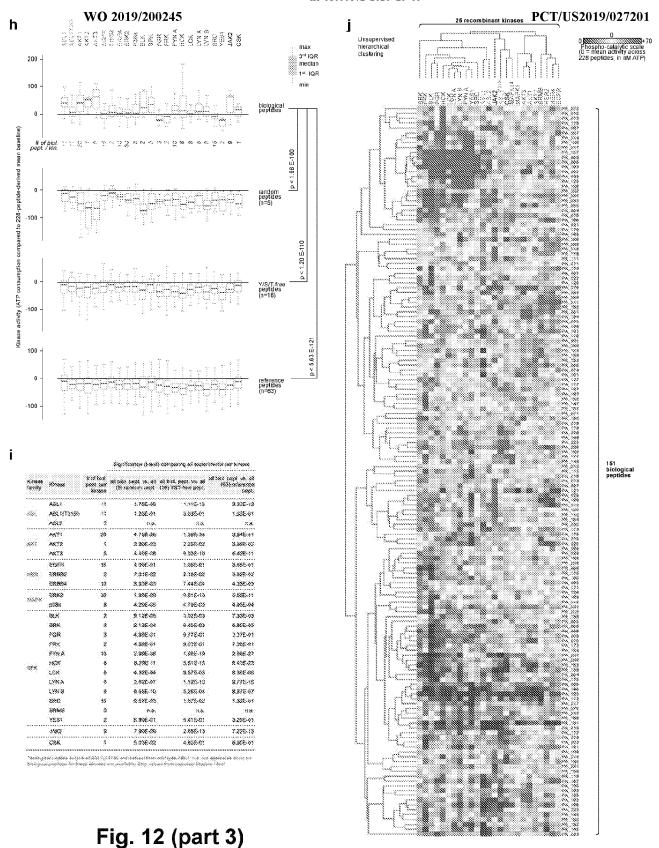



Fig. 12 (part 2)

21/40

PCT/US2019/027201

More phosphorylation in a 'wild type' peptide than in its respective modified peptide counterpart

Less phosphorylation in a 'wild type' peptide than in its respective modified peptide counterpart

Connections of Tytestope Kineson's activity presides, measured in presence of sitherent people classes (Student blast, measured in presence of sitherent people classes (Student blast, measured in the sitherent people classes (Student blast, measured in the sitherent people control in t

Compension of SechalThreorine Kineses' activity profiles, maceured in presence of different people closeses. (Student Idea), uncertained.	SP Area Roborosco popides, 800 data pointa: Ave. potholy x -18 t	735 data polote:
Distoglish target pastities of SerThi; Kin.; 499 cote proste; Ave. activity = 20.9	1.676-66	2376-16

	45.,	p < 8.8 E-65 p < 2.7 E-41	p < 1.6 E-55 p < 2.4 E-16
Dfferential kinase activity (in nM of ATP) measured in presence of biological target peptides versus the indicated group of peptides	30 15 0	Kinas Ref. pept.	지원 S/T-free Ref. pept ##################################

Comparison of Tyrosine Kinssee* activity profiles, measured in presence of different peptide classes (Stratent Host; urpeited)	F. Ref. popt. (end.); 4772 date points; Ave. schluty * 15.5	Vi-Rai page (n=10) 804-maio pointe Ava. activity 0 -11 2	7: Blod-Con sept. (n=54) 4603 data parieta Ann. activity = 4.6
T+ BitsCon page, perfit). (803) sate printy Ave. section + 18.7	0.0000.400	1,020-48	8.816-217

Comparison of Serine Theorems Kinases' activity profiles, measured in presence of different people classes (Student (Ass); unparied)	ST for page (medic \$20 and points \$40 activity \$120.0	STY flot peri pictel. Stot sep ports per petroly e-12	SF Bred Company (mile) 900 data piona aut autiety n 2 5
ST+ Section sept (n=131) STH sections: An activity = 11.1	5. 686 -514	1,808-47	6.086.36

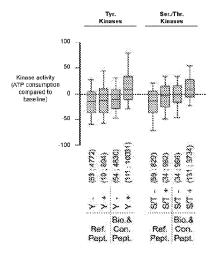


Fig. 13

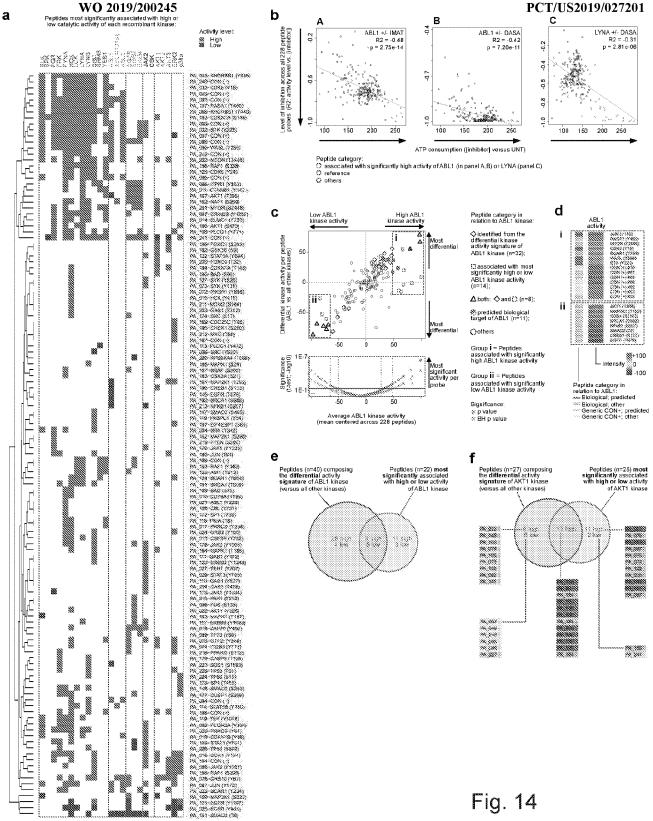



Fig. 14

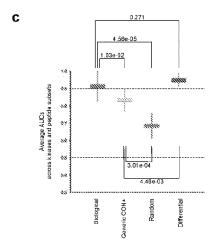


Fig. 15

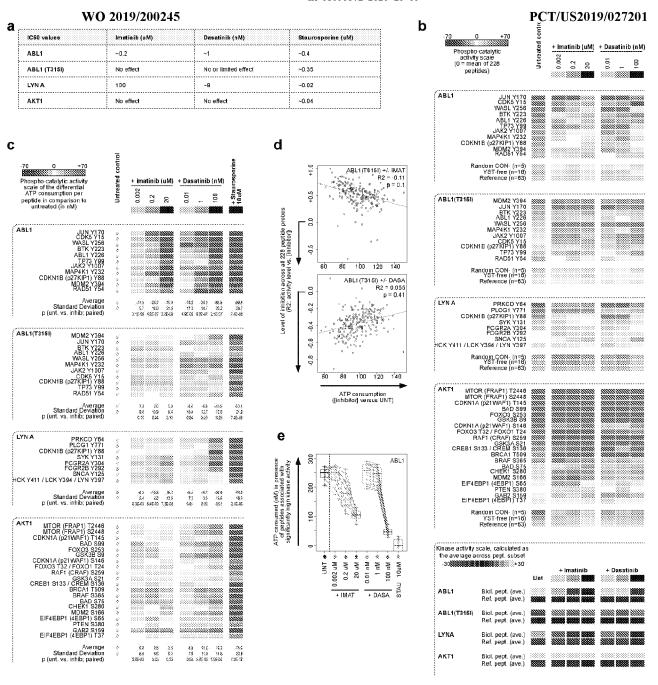


Fig. 16

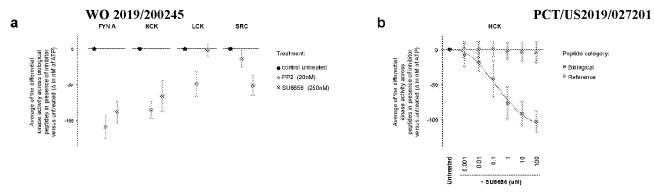
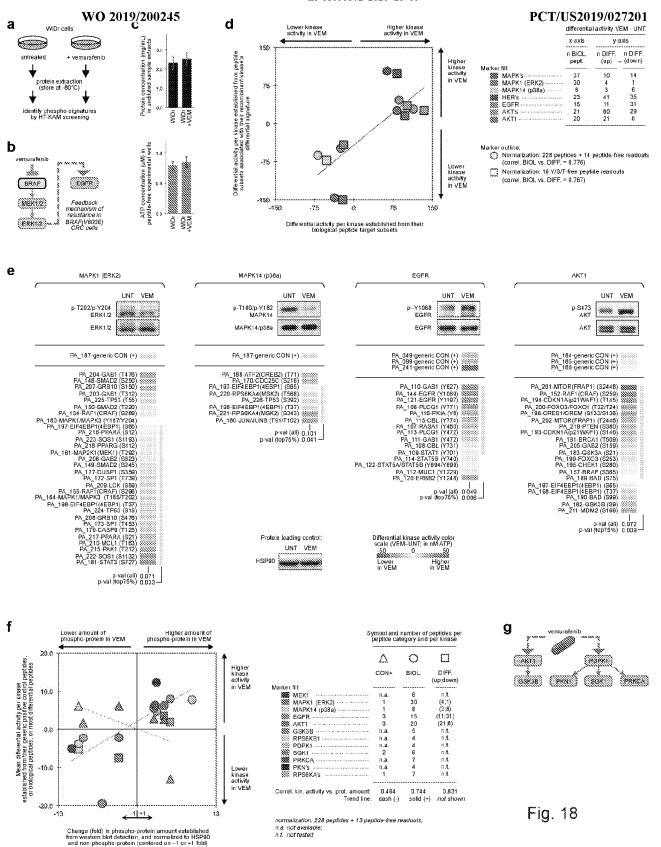
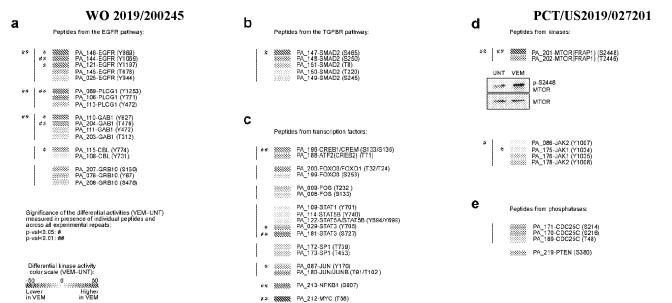
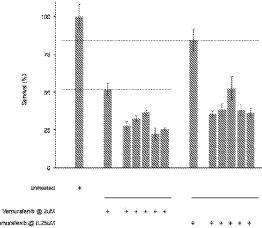
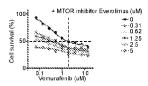



Fig. 17


Fig. 19

SRAF(VS0GE) innibitor ERAF(V803E) inhibitor Vernurefents @ 0.256M AKT1 intektion 14902208 02 5654 GGK2394470 @ 4uM PDPKI intelior GSK650894 @ 7.5uM SCHOLOWSPROM PRIKCAlmbilion GO6883 @ ? SUM WITCH INNEROY Everofinite & Stati

WO 2019/200245

b

Verburalismin combined	ndirtti helicaleki sele dew
And the second second	24 (0.40) 1 (2.00) 27 (4.00)

	900S 8000	Venturalismin combined with the indicated inhibitor		
	(KC60; uM)	Drug interestion (Non-way ANOVA p-val)	Combination index (§) #IC60 concentrations)	
ANTE Intribitor	5.5	prisite	8.6	
PCPK1 inhibitor	3.5	p=1E-10	8.8	
SGK1 inhibitor	12.8	pe 15-04	8.8	
PFKCA inhibitor	15	pc 165-35	8.8	
METCHE Inhibitor	Ś	ps:1E-08	8.7	

Tested and validated inhibitors and BRAF(V600E) cell lines

Kinase targets	Inhibitors	Cell lines (§)
AKT1	MK2206	WIDt, HT29, RKO1
EGFR	Gefitinib (発)	WIDr, HT29
BRAF(V600E)	Vernurafenib (PLX4032)	WIDr, HT29, RKO1, 8505C
MTOR	Everalimus (RAD001)	WIDr, 8505C
PDPK1	GSK2334470, OSU-03012	WIDs, HT29
PRKCA	GO6983, Sotrastaurin	WiDr
SGK1	GSK650394	WIDs, HT29

% used as control based on Prahailad A et al. 2012 Nature, and Corcoran RB et al. 2012 Cancer Discovery, § inhibitor effects we measured in the indicated cell lines were further corroborated using data from Garnett MJ 2012 Nature and Yang W 2013 NAR.

Fig. 20

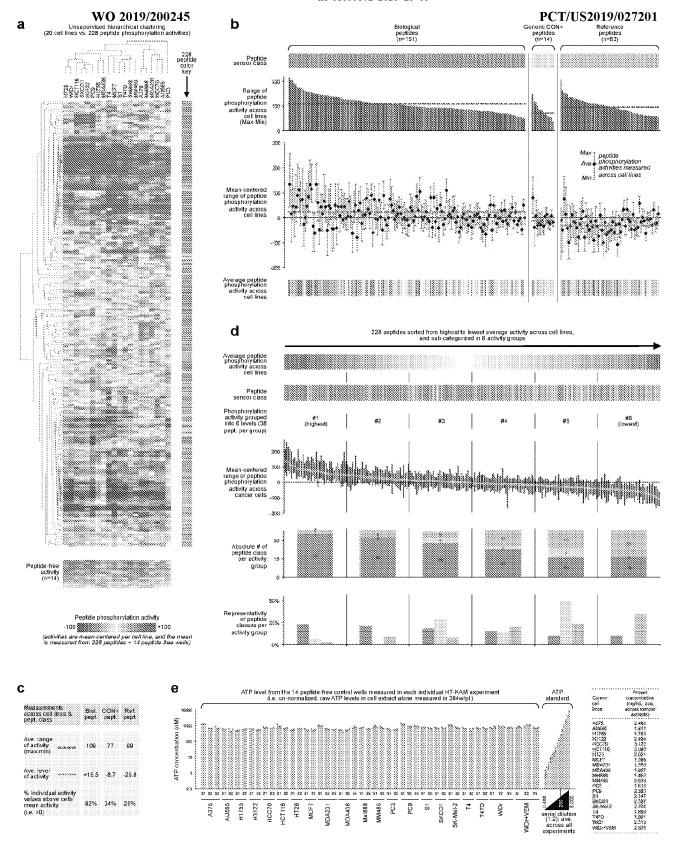


Fig. 21

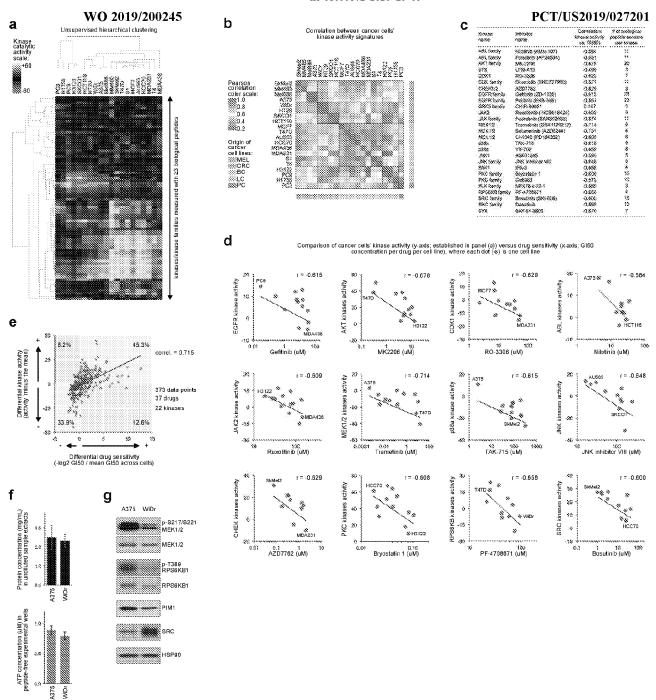
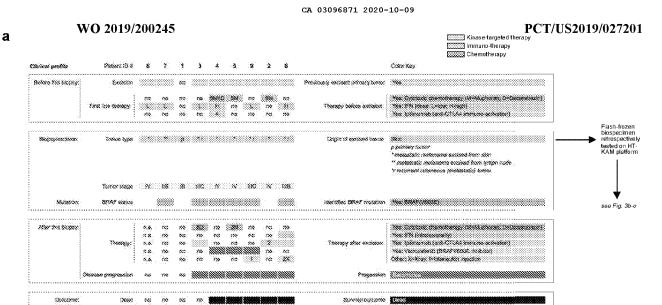



Fig. 22

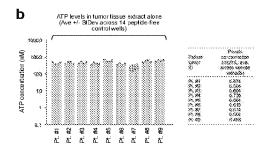
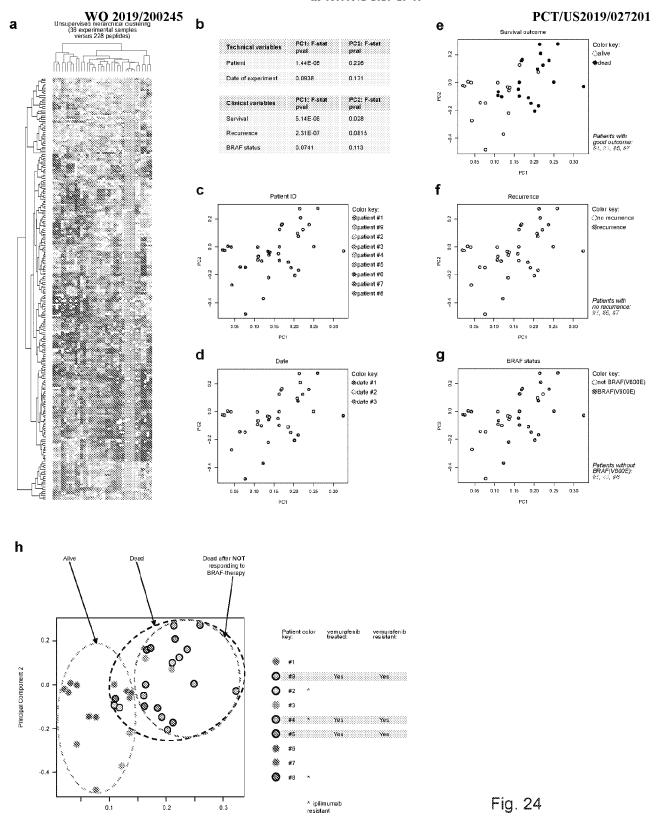



Fig. 23

Principal Component 1

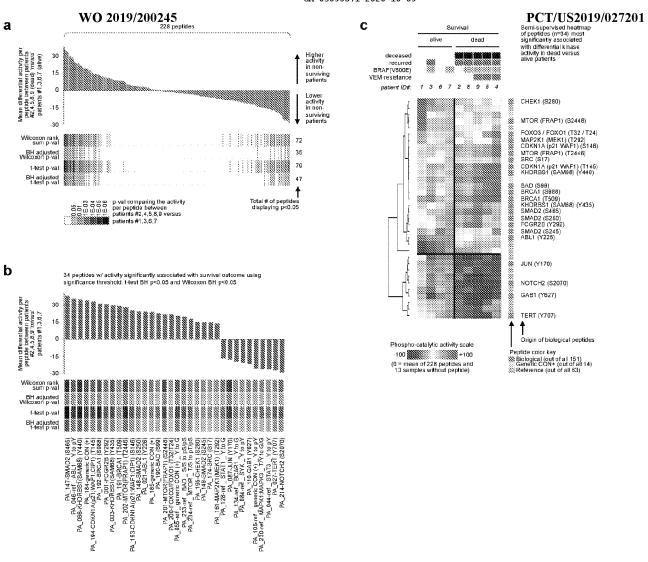


Fig. 25 (part 1)

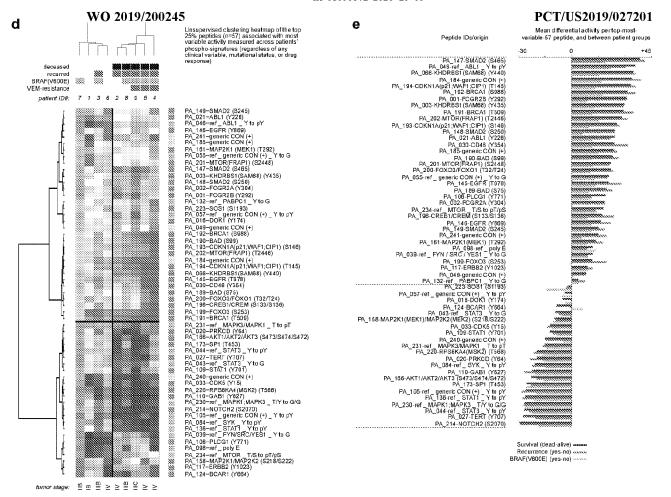
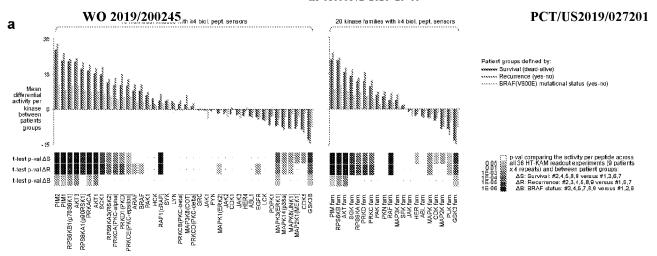
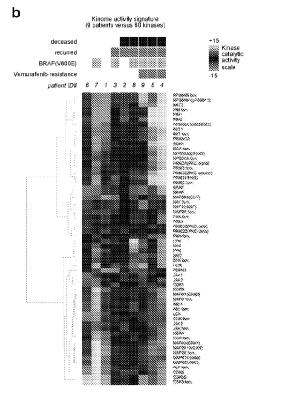
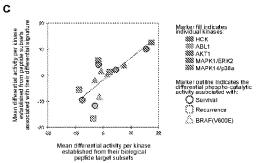





Fig. 25 (part 2)

d

Significance of peptide-derived kinase activity signatures associated with		
survival (p-val)	peptides)	peptides)
Individual kinases:		
AKT1	3.7E-03	8.0E-14
PIM1	1.1 E-02	1.2E-10
PIM2	1.1 E-02	2.1 E-11
RPS6KB1	1.1 E-02	1.4 E-08
AKT3	2.5E-02	2.6E-10
Kinase families:		
AKT fam.	3.7E-03	8.0E-14
PIM fam.	1.1 E-02	1.3E-10
RPS6KB fam.	1.1 E-02	1.4 E-08

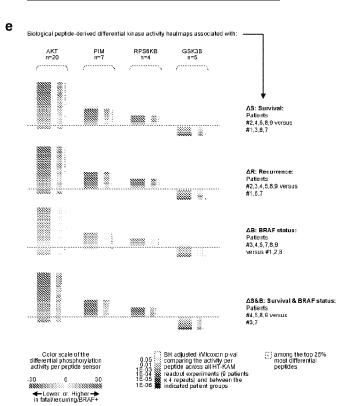


Fig. 26

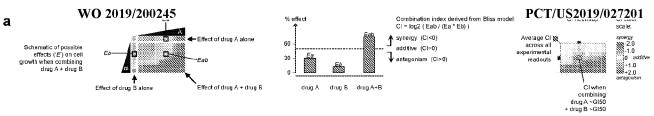
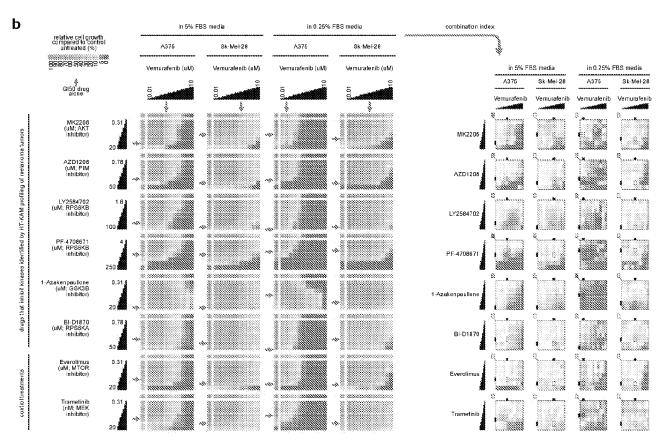




Fig. 27

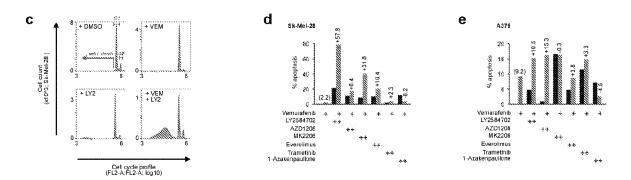


Fig. 28

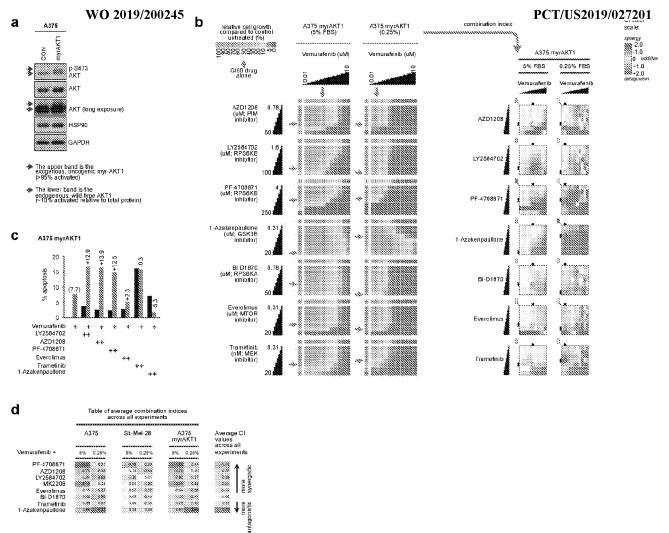


Fig. 29

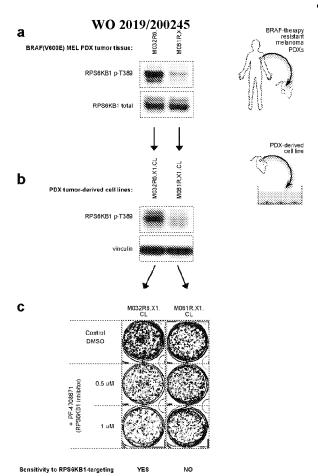


Fig. 30

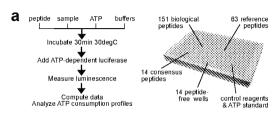


Fig. 1