(57) Abrégé/Abstract:
Cutting tools and cutting inserts having a wear resistant coating on a substrate comprising a metal carbide particle and a binder. For certain applications, a cutting insert having a wear resistant coating comprising hafnium carbon nitride and a binder comprising...
(57) Abrégé(suite)/Abstract(continued):
ruthenium may provide a greater service life. The wear resistant coating comprising hafnium carbon nitride may have a thickness of from 1 to 10 microns. In another embodiment, the cutting tool comprises a cemented carbide substrate with a binder comprising at least one of iron, nickel, and cobalt.
ABSTRACT

Cutting tools and cutting inserts having a wear resistant coating on a substrate comprising a metal carbide particle and a binder. For certain applications, a cutting insert having a wear resistant coating comprising hafnium carbon nitride and a binder comprising ruthenium may provide a greater service life. The wear resistant coating comprising hafnium carbon nitride may have a thickness of from 1 to 10 microns. In another embodiment, the cutting tool comprises a cemented carbide substrate with a binder comprising at least one of iron, nickel, and cobalt.
CARBIDE CUTTING INSERT

[0001]

RELATED APPLICATIONS

This application is a division of Canadian Patent Application Serial No. 2,677,554, and which has been submitted as the Canadian national phase application corresponding to International Patent Application No. PCT/US2008/054082.

TECHNICAL FIELD

The present invention is directed to embodiments of a cutting tool comprising a wear resistant coating on a substrate. The substrate comprises metal carbides in a binder, wherein the binder comprises ruthenium. In one embodiment, the cutting tool further comprises a wear resistant coating comprising hafnium carbon nitride. In a specific embodiment, the cutting tool comprises a hafnium carbon nitride wear resistant coating on a substrate comprising tungsten carbide (WC) in a binder comprising cobalt and ruthenium. Such embodiments may be particularly useful for machining difficult to machine materials, such as, but not limited to, titanium and titanium alloys, nickel and nickel alloys, super alloys, and other exotic materials.

BACKGROUND

[0002] A common mode of failure for cutting inserts is cracking due to thermal shock. Thermal shock is even more common in the more difficult machining processes, such as high productivity machining processes and machining of materials with a high hot hardness, for example. In order to reduce the buildup of heat in cutting inserts, coolants are used in machining operations. However, the use of coolants during the machining operation contributes to thermal cycling that may also contribute to failure of the cutting insert by thermal shock.

[0003] Thermal cycling also occurs in milling applications where the milling cutter gets hot when actually cutting the work material and then cools when not cutting the work material. Such thermal cycling of heating and cooling results in sharp temperature gradients in the cutting inserts, and the resulting in differences in expansion of different portions of the insert causing internal stresses and initiation of cracks in the cutting inserts. There is a need to develop a novel
carbide cutting insert that can not only maintain efficient cutting performance during the high-hot hardness machining process, but also improve the tool life by resisting thermal cracking.

[0004] The service life of a cutting insert or cutting tool is also a function of the wear properties of the cemented carbide. One way to increase cutting tool life is to employ cutting inserts made of materials with improved combinations of strength, toughness, and abrasion/erosion resistance. Cutting inserts comprising cemented carbide substrates for such applications is predicated on the fact that cemented carbides offer very attractive combinations of strength, fracture toughness, and wear resistance (such properties that are extremely important to the efficient functioning of the boring or drilling bit). Cemented carbides are metal-matrix composites comprising carbides of one or more of the transition metals as the hard particles or dispersed phase and cobalt, nickel, or iron (or alloys of these metals) as the binder or continuous phase. Among the different possible hard particle-binder combinations, cemented carbides comprising tungsten carbide (WC) as the hard particle and cobalt as the binder phase are the most commonly used for cutting tools and inserts for machining operations.

[0005] The bulk properties of cemented carbides depend upon, among other features, two microstructural parameters, namely, the average hard particle grain size and the weight or volume fraction of the hard particles and/or the binder. In general, the hardness and wear resistance increases as the grain size decreases and/or the binder content decreases. On the other hand, fracture toughness increases as the grain size increases and/or as the binder content increases. Thus there is a trade-off between wear resistance and fracture toughness when selecting a cemented carbide grade for any application. As wear resistance increases, fracture toughness typically decreases and vice versa.

[0006] In addition, alloying agents may be added to the binder. A limited number of cemented carbide cutting tools or cutting inserts have ruthenium added to the binder. The binder
may additionally comprise other alloying compounds, such as TiC and TaC/NbC, to refine the properties of the substrate for particular applications.

[0007] Ruthenium (Ru) is a member of the platinum group and is a hard, lustrous, white metal that has a melting point of approximately 2,500 °C. Ruthenium does not tarnish at room temperatures, and may be used as an effective hardener, creating alloys that are extremely wear resistant. It has been found that ruthenium in a cobalt binder of a cemented carbide used in a cutting tool or cutting insert improves the resistance to thermal cracking and significantly reduces crack propagation along the edges and into the body of the cutting tool or cutting insert. Typical commercially available cutting tools and cutting inserts may include a concentration of ruthenium in the binder phase of cemented carbide substrates in the ranges of approximately 3% to 30%, by weight.

[0008] A cutting insert comprising a cemented carbide substrate may comprise a single or multiple layer coating on the surface to enhance its cutting performance. Methods for coating cemented carbide cutting tools include chemical vapor deposition (CVD), physical vapor deposition (PVD) and diamond coating. Most often, CVD is used to apply the coating to cutting inserts due to the well-known advantages of CVD coatings in cutting tools.

[0009] An example of PVD coating technologies, Leyendecker et al. discloses, in a United States Patent No. 6,352,627, a PVD coating method and device, which is based on magnetron sputter-coating techniques to produce refractory thin films or coats on cutting inserts, can deliver three consecutive voltage supplies during the coating operation, promoting an optimally enhanced ionization process that results in good coating adhesion on the substrate, even if the substrate surface provided is rough, for example because the surface was sintered, ground or jet abrasion treated.

[0010] An example of CVD coating technologies, Punola et al. discloses, in a United States Patent No. 5,462,013, a CVD coating apparatus that uses a unique technique to control the
reactivity of a gaseous reactant stream at different coating zones in the CVD reactor. As a result, the CVD coating produced has greatly improved uniformity in both composition and thickness.

[0011] An example of hard-metal coating developments and applications in cutting inserts with regular carbide substrates, Leverenz and Bost from Stellram, an Allegheny Technologies Company located at One Teledyne Place, LaVergne, Tennessee, USA 37086 and also the assignee of this invention, describes in a recently granted United States Patent No. 6,929,851, a surface etching technology that is used to enhance the CVD or PVD coating including HfCN coating on the regular carbide substrates. Additional examples of hard-metal coating developments and applications in cutting inserts with regular carbide substrates are United States Patent No. 4,268,569 by Hale in 1981, United States Patent No. 6,447,890 by Leverenz et al. in 2002, United States Patent No. 6,617,058 by Schiel in 2003, United States Patent No. 6,827,975 by Leverenz et al. in 2004 and United States Patent No. 6,884,496 by Westphal and Sottke in 2005.

[0012] There is a need to develop a carbide cutting insert that can satisfy the demand for high-hot hardness machining operations while increasing the tool life with reduced thermal cracking failure.

SUMMARY

[0013] The invention is directed to cutting tools and cutting inserts comprising a substrate comprising metal carbide particles and a binder and at least one wear resistant coating on the substrate. In one embodiment the wear resistant coating comprises hafnium carbon nitride and the binder comprises ruthenium. In another embodiment, the wear resistant coating consists essentially of hafnium carbon nitride. The cutting tools of the invention may comprise a single wear resistant coating or multiple wear resistant coatings. The wear resistant coating comprising hafnium carbon nitride may have a thickness of from 1 to 10 microns. In embodiments, the
cutting tool comprises a cemented carbide substrate with a binder comprising at least one of iron, nickel and cobalt.

[0014] As used in this specification and the appended claims, the singular forms "a" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a wear resistant coating" may include more than one coating or a multiple coating.

[0015] Unless otherwise indicated, all numbers expressing quantities of ingredients, time, temperatures, and so forth used in the present specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, may inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.

[0016] It is to be understood that this invention is not limited to specific compositions, components or process steps disclosed herein, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
BRIEF DESCRIPTION OF THE FIGURES

[0017] Figure 1 is a bar graph comparing the experimental results of Tool Wear Test 1 for three cutting inserts with different coatings machining Inconel™ 718;

[0018] Figure 2 is a bar graph comparing the experimental results of Tool Wear Test 2 for three cutting inserts with different coatings machining Stainless Steel 316;

[0019] Figure 3 is a bar graph comparing the experimental results of Tool Wear Test 3 for three cutting inserts with different coatings machining Titanium 6V;

[0020] Figure 4a, 4b, and 4c are photomicrographs of three cutting inserts with different coatings showing the cracks and wear formed during Thermal Cracking Test 1; and

[0021] Figure 5a, 5b, and 5c are photomicrographs of three cutting inserts with different coatings showing the cracks and wear formed during Thermal Cracking Test 2.

DESCRIPTION OF THE INVENTION

[0022] Embodiments of the invention include cutting tools and cutting inserts comprising substrates comprising cemented carbides. The binders of cemented carbides comprise at least one of iron, nickel, and cobalt, and in embodiments of the present invention the binder additionally comprises ruthenium. Ruthenium may be present in any quantity effective to have a beneficial effect on the properties of the cutting tool, such as a concentration of ruthenium in the binder from 1% to 30%, by weight. In certain embodiments, the concentration of ruthenium in the binder may be from 3% to 30%, by weight, from 8% to 20%, or even from 10% to 15%, by weight.

[0023] The invention is based on a unique discovery that applying a specific hard metal coating comprising hafnium carbon nitride (HfCN) to a cutting tool or cutting insert comprising a cemented carbide comprising ruthenium in the binder phase can reduce the initiation and propagation of thermal cracks during metal machining. The hafnium carbon nitride coating may be a single coating on the substrate or one coating of multiple coatings on the substrate, such as a
first coating, an intermediate coating, or a final coating. Embodiments of cutting tools comprising the additional coating may include coatings applied by either PVD or CVD and may include coating comprising at least one of a metal carbide, a metal nitride, a metal boride, and a metal oxide of a metal selected from groups IIIA, IVB, VB, and VIB of the periodic table. For example, a coating on the cutting tools and cutting inserts of the present invention include hafnium carbon nitride and, for example, may also comprise at least one coating of titanium nitride (TiN), titanium carbonitride (TiCN), titanium carbide (TiC), titanium aluminum nitride (TiAlN), titanium aluminum nitride plus carbon (TiAlN+C), aluminum titanium nitride (AlTiN), aluminum titanium nitride plus carbon (AlTiN+C), titanium aluminum nitride plus tungsten carbide/carbon (TiAlN+WC/C), aluminum titanium nitride (AlTiN), aluminum titanium nitride plus carbon (AlTiN+C), aluminum titanium nitride plus tungsten carbide/carbon (AlTiN+WC/C), aluminum oxide (Al₂O₃), α-alumina oxide, titanium diboride (TiB₂), tungsten carbide carbon (WC/C), chromium nitride (CrN), aluminum chromium nitride (AlCrN), hafnium carbon nitride (HfCN), alone or in any combinations. In certain embodiments, any coating may be from 1 to 10 micrometers thick; though it may be preferable in specific applications for the hafnium carbon nitride coating to be from 2 to 6 micrometers thick.

[0024] In certain embodiments of the cutting insert of the invention, coatings comprising at least one of zirconium nitride (ZrN), zirconium carbon nitride (ZrCN), boron nitride (BN), or boron carbon nitride (BCN) may be used in combination with the hafnium carbon nitride coating or replacing the hafnium carbon nitride coating. In certain other embodiments, the cutting insert may comprise a wear resistant coating consisting essentially a coating selected from zirconium nitride (ZrN), zirconium carbon nitride (ZrCN), boron nitride (BN), or boron carbon nitride (BCN).

[0025] The coating comprising hafnium carbon nitride, the coating consisting essentially of hafnium carbon nitride, or the coating comprising zirconium nitride, zirconium carbon nitride,
boron nitride, or boron carbon nitride coating applied to the cutting tool or cutting insert of the present invention produce coatings with enhanced hardness, reduced friction, chemical stability, wear resistance, thermal crack resistance and prolonged tool life.

[0026] The present invention also includes methods of coating a substrate. Embodiments of the method of the present invention include applying the coatings described above on a cemented carbide substrate by either CVD or PVD, wherein the cemented carbide substrate comprises hard particles and a binder and the binder comprises ruthenium. The method may include treating the substrate prior to coating the substrate. The treating prior to coating comprises at least one of electropolishing, shot peening, microblasting, wet blasting, grinding, brushing, jet abrading and compressed air blasting. Pre-coating surface treatments on any coated (CVD or PVD) carbide cutting inserts may reduce the cobalt capping effect of substrates. Examples of pre-coating surface treatments include wet blasting (United States Patent Nos. 5,635,247 and 5,863,640), grinding (United States Patent No. 6,217,992 B1), electropolishing (United States Patent No. 5,665,431), brushing (United States Patent No. 5,863,640), etc. Improper pre-coating surface treatment may lead to poor adhesion of a CVD or PVD coating on the substrate comprising ruthenium in the binder, thus resulting in premature failure of CVD or PVD coatings. This is primarily due to the fact that the CVD and PVD coating layers are thin and the surface irregularities due to cobalt capping are more pronounced in a carbide substrate comprising ruthenium.

[0027] Embodiments of the method may comprise optional post-coating surface treatments of coated carbide cutting inserts may further improve the surface quality of wear resistant coating. There are a number of methods for post-coating surface treatments, for example, shot peening, Japanese Patent No. 02254144, which is based on the speed injection of small metal particles having a spherical grain shape with grain size in a range of 10-2000 μm. Another example of post-coating surface treatment is compressed-air
blasting, European Patent. No. 1,198,609 B1, which uses an inorganic blasting agent, like A1203, with a very fine grain size ranging from 1 to 100 μm. Another example of post coating treatment is brushing, United States Patent No. 6,638,609 B2, which uses a Nylon™ straw brush containing SiC grains. A gentle wet blasting can also be used as a post-coating surface treatment to create a smooth coating layer, United States Patent No. 6,638,609 B2. In general, a surface treatment, such as, but not limited to, blasting, shot peening, compressed air blasting, or brushing, on coated inserts comprising ruthenium in the binder can improve the properties of the surface of the coatings.

[0028] In embodiments of both the method and the cutting inserts, the cemented carbide in the substrate may comprise metal carbides of one or more elements belonging to groups IVB through VIB of the periodic table. Preferably, the cemented carbides comprise at least one transition metal carbide selected from titanium carbide, chromium carbide, vanadium carbide, zirconium carbide, hafnium carbide, tantalum carbide, molybdenum carbide, niobium carbide, and tungsten carbide. The carbide particles preferably comprise about 60 to about 98 weight percent of the total weight of the cemented carbide material in each region. The carbide particles are embedded within a matrix of a binder that preferably constitutes about 2 to about 40 weight percent of the total weight of the cemented carbide.

[0029] The binder of the cemented carbide comprises ruthenium and at least one of cobalt, nickel, iron. The binder also may comprise, for example, elements such as tungsten, chromium, titanium, tantalum, vanadium, molybdenum, niobium, zirconium, hafnium, and carbon up to the solubility limits of these elements in the binder. Additionally, the binder may contain up to 5 weight percent of elements such as copper, manganese, silver, and aluminum. One skilled in the art will recognize that any or all of the constituents of the cemented hard particle material may be introduced in elemental form, as compounds, and/or as master alloys.
EXAMPLES

[0030] The following examples are given to further describe some details of this invention regarding the performance tests of cutting inserts comprising a substrate comprising ruthenium in the binder with CVD coatings.

Example 1 – Results of Wear Test (GX20 substrate)

[0031] Stellram's GX20™, a trademark of Allegheny Technologies, Inc., is a cemented carbide powder comprising ruthenium. GX20™ may be used to prepare a tough grade of cemented carbide for use in machining P45/K35 materials according to ISO standard. The nominal chemical composition and properties of the substrate of Stellram's GX20™ cutting inserts is shown in Table 1. The major constituents in GX20™ metal powders include tungsten carbide, cobalt and ruthenium.

<table>
<thead>
<tr>
<th>Chemical Compositions (weight percent)</th>
<th>Average Grain Size (μm)</th>
<th>Transverse Rupture Strength (N/mm²)</th>
<th>Density (g/cm³)</th>
<th>Hardness (HRA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC 91</td>
<td>Co 9.5</td>
<td>Ru 1.4</td>
<td>2.5</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.55</td>
<td>89.5</td>
</tr>
</tbody>
</table>

[0032] The metal powders in Table 1 were mixed and then wet blended by a ball mill over a 72-hour period. After drying, the blended compositions were compressed into compacted green bodies of the designed cutting insert under a pressure of 1 - 2 tons/cm². The compacted green bodies of the tungsten carbide cutting inserts were sintered in a furnace to close the pores in the green bodies and build up the bond between the hard particles to increase the strength and hardness.

[0033] In particular, to effectively reduce the micro-porosity of the sintered substrate and ensure the consistent sintering quality of GX20™ carbide cutting inserts, the sinter-HIP, i.e. high-pressure sintering process, was used to introduce a pressure phase following the dewaxing,
presintering and low-pressure nitrogen (N\textsubscript{2}) sintering cycle. The sintering procedure for GX20TM carbide cutting inserts was performed with the following major sequential steps:

- a dewaxing cycle starts at room temperature with a ramping speed of 2\textdegree C/min until reaching 400\textdegree C and then holds for approximate 90 minutes;
- a presintering cycle, which breaks down the oxides of Co, WC, Ti, Ta, Nb, etc., starts with a ramping speed of 4\textdegree C/min until reaching 1,200\textdegree C and then holds at this temperature for 60 minutes;
- a low pressure nitrogen (N\textsubscript{2}) cycle is then introduced at 1,350\textdegree C during the temperature ramping from 1,200\textdegree C to 1,400\textdegree C/1,450\textdegree C, i.e. sintering temperature, and then holds at this sintering temperature at a low nitrogen pressure of about 2 torr for approximate 30 minutes;
- a sinter-HIP process is then initiated while at the sintering temperature, i.e. 1,400/1450\textdegree C, during the process argon (Ar) pressure is introduced and rises to 760 psi in 30 minutes, and then the sinter-HIP process holds at this pressure for additional 30 minutes; and finally
- a cooling cycle is carried out to let the heated green bodies of the GX20 carbide cutting inserts cool down to room temperature while inside the furnace.

\[0034\] Thus obtained GX20TM carbide cutting inserts shrunk into the desired sintered size and became non-porous. Followed by the sintering process, the sintered tungsten carbide cutting inserts may be ground and edge-honed.

\[0035\] Then three different CVD multilayer coatings were applied to the GX20 substrates, as shown in Table 2 for details.
Table 2: CVD Coatings

<table>
<thead>
<tr>
<th>Multilayer Coatings</th>
<th>Individual Coating</th>
<th>Chemical Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiN-TiC-TiN</td>
<td>First Coating: TiN</td>
<td>H₂+N₂+Titanium Tetrachloride (TiCl₄)</td>
</tr>
<tr>
<td></td>
<td>Second Coating: TiC</td>
<td>H₂ + TiCl₄ + CH₄</td>
</tr>
<tr>
<td></td>
<td>Third Coating: TiN</td>
<td>H₂+N₂+Titanium Tetrachloride (TiCl₄)</td>
</tr>
<tr>
<td>TiN-HfCN-TiN</td>
<td>First Coating: TiN</td>
<td>H₂+N₂+Titanium Tetrachloride (TiCl₄)</td>
</tr>
<tr>
<td></td>
<td>Second Coating: HfCN</td>
<td>H₂+N₂+ Hafnium Tetrachloride (HfCl₄) + Acetonitrile (CH₃CN)</td>
</tr>
<tr>
<td></td>
<td>Third Coating: TiN</td>
<td>H₂+N₂+Titanium Tetrachloride (TiCl₄)</td>
</tr>
<tr>
<td>TiN-Al₂O₃-TiCN-TiN</td>
<td>First Coating: TiN</td>
<td>H₂+N₂+Titanium Tetrachloride (TiCl₄)</td>
</tr>
<tr>
<td></td>
<td>Second Coating: Al₂O₃</td>
<td>H₂+HCl+Aluminum Chloride (AlCl₃)+CO₂ +H₂S</td>
</tr>
<tr>
<td></td>
<td>Third Coating: TiCN</td>
<td>H₂+N₂+Titanium Tetrachloride (TiCl₄)</td>
</tr>
<tr>
<td></td>
<td>Fourth Coating: TiN</td>
<td>H₂+N₂+Titanium Tetrachloride (TiCl₄)</td>
</tr>
</tbody>
</table>

[0036] A milling insert, ADKT1505PDER-47, with GX20™ as carbide substrate was used for the tool wear test. The workpiece materials and the cutting conditions are given in Table 3.

Table 3: Tool Wear Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Work Materials</th>
<th>Cutting Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear Test 1</td>
<td>Inconel 718 475HB</td>
<td>Cutting Speed = 25 meter per minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feed Rate = 0.08 mm per tooth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth of Cut = 5 mm</td>
</tr>
<tr>
<td>Wear Test 2</td>
<td>Stainless Steel 316 176HB</td>
<td>Cutting Speed = 92 meter per minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feed Rate = 0.10 mm per tooth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth of Cut = 5 mm</td>
</tr>
<tr>
<td>Wear Test 3</td>
<td>Titanium 6V 517HB</td>
<td>Cutting Speed = 46 meter per minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feed Rate = 0.10 mm per tooth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth of Cut = 5 mm</td>
</tr>
</tbody>
</table>

[0037] The experimental results including analysis of the effects of wear at both cutting edge and nose radius are shown in Figures 1 to 3. The total machining time shown in the figures indicates when a cutting insert either exceeds the tool life or is destroyed during the machining process. The analysis is given below.
[0038] In Figure 1, the results of machining a work piece of Inconel 718 are shown. The nominal composition of Inconel 718 is considered to be a difficult-to-machine work material. For the cutting insert with TiN-TiC-TiN coating, the wear at edge has reached 0.208 mm and the wear at radius reached 0.175 mm after only machining for 5.56 minutes. A cutting insert of the present invention with a multilayer TiN-HfCN-TiN coating demonstrates the best performance with only 0.168 mm wear at edge and 0.135 mm wear at radius after machining for 11.13 minutes. The cutting insert with TiN-Al2O3-TiCN-TiN coating demonstrated the performance close to that with TiN-HfCN-TiN coating.

[0039] In Figure 2, the results of machining stainless steel 316 with several cutting inserts are shown. The cutting insert with TiN-TiC-TiN coating showed 0.132 mm wear at edge and 0.432 mm wear at radius only after machining for 2.62 minutes. The cutting insert with TiN-Al2O3-TiCN-TiN coating showed 0.069 mm wear at edge and 0.089 mm wear at radius after machining for 2.62 minutes. Again, the cutting insert with TiN-HfCN-TiN coating demonstrates the best performance with only 0.076 mm wear at edge and 0.117 mm wear at radius after machining for 5.24 minutes which is as twice as the time of other two cutting inserts.

[0040] In Figure 3, the results for machining titanium 6V, which is also considered to be a difficult-to-machine work material are shown. The cutting insert with TiN-TiC-TiN coating created demonstrated 0.091 mm wear at edge and 0.165 mm wear at radius only after machining for 4.36 minutes. The cutting insert with TiN-Al2O3-TiCN-TiN coating showed 0.137 mm wear at edge and 0.15 mm wear at radius after machining for 8.73 minutes. Once again, the cutting insert with TiN-HfCN-TiN coating demonstrated the best performance and service life with 0.076 mm wear at edge and 0.117 mm wear at radius after machining for 8.73 minutes.

Example 2 - Results of Thermal Crack Test (GX20™ substrate)

[0041] Three cutting inserts comprising a substrate of GX20™ were coated by CVD. The three coatings were a three-layer TiN-TiCN-Al2O3 coating, a single layer HfN (hafnium
nitride) coating, and a single layer HfCN (hafnium carbon nitride) coating. The three coated GX20TM substrates were tested for resistance to thermal cracking.

The cutting conditions used in the thermal crack test are shown as follows.

Cutting speed: \(V_c = 175 \text{ m/min (Thermal Crack Test 1)} \)

\(V_c = 220 \text{ m/min (Thermal Crack Test 2)} \)

Feed rate: \(F_z = 0.25 \text{ mm/tooth} \)

Depth of cut: \(\text{DOC} = 2.5 \text{ mm} \)

Work Material: 4140 steel with a hardness of 300 HB

[0042] The test results may be compared by the photomicrographs in Figures 4 and 5. The photomicrographs of Figure 4 summarize Thermal Crack Test 1 and show that the cutting insert with a coating of HfN generated 5 thermal cracks in 3 passes of machining (see Figure 4b) while the cutting insert coated with HfCN demonstrated the best performance and generated only 1 thermal crack in 3 passes (see Figure 4c). As a general comparison, the cutting insert with three-layer TiN-TiCN-Al\textsubscript{2}O\textsubscript{3} coating generated 4 thermal cracks in 3 passes of machining (see Figure 4a).

[0043] The photomicrographs of Figure 5 summarize the results of Thermal Crack Test 2. In Thermal Crack Test 2, the cutting speed was increased to 220 meter per minute. The edge of the cutting insert with single layer coating HfN was destroyed after only 1 pass of machining (see Figure 4b). The cutting insert with three-layer coating TiN-TiCN-Al\textsubscript{2}O\textsubscript{3} generated 12 thermal cracks in 2 passes of machining (see Figure 4a). Once again, the cutting insert with single layer coating HfCN generated only 1 thermal crack in 2 passes of machining. In the comparison between Thermal Crack Test 1 and Thermal Crack Test 2, it becomes clear that at higher cutting speeds, there is a larger difference in performance between the cutting insert with single layer HfCN as compared with the cutting inserts with single layer coating HfN and three-layer coating TiN-TiCN-Al\textsubscript{2}O\textsubscript{3}.
[0044] The results from both wear test and thermal crack test directly indicate that it is the unique combination of hafnium-carbon-nitride based coating and ruthenium-featured carbide substrate that demonstrates the best performance in machining. The hafnium-carbon-nitride based coating may be the intermediate layer coating in a case of multilayer coating or just as a single layer coating.
We claim;

1. A cutting tool, comprising:
 a substrate comprising metal carbide particles and a binder, wherein the binder
 comprises ruthenium; and
 at least one wear resistant coating on the substrate, wherein the one wear resistant
 coating consists essentially of zirconium nitride (ZrN), zirconium carbon nitride (ZrCN),
 boron nitride (BN), or boron carbon nitride (BCN).

2. The cutting tool of claim 1, wherein the wear resistant coating has a thickness from
 1 to 10 microns.

3. The cutting tool of claim 1, wherein the binder comprises at least one of iron,
 nickel and cobalt.

4. The cutting tool of claim 3, wherein the binder comprises cobalt.

5. The cutting tool of claim 1, wherein the concentration of ruthenium in the binder
 is from 1% to 30%, by weight.

6. The cutting tool of claim 5, wherein the concentration of ruthenium in the binder
 is from 4% to 30%, by weight.

7. The cutting tool of claim 6, wherein the concentration of ruthenium in the binder is
 from 8% to 20%, by weight.

8. The cutting tool of claim 7, wherein the concentration of ruthenium in the binder is
 from 10% to 15%, by weight.

9. The cutting tool of claim 1, comprising a second coating and the second coating
 comprises at least one of a metal carbide, a metal nitride, a metal silicon and a metal oxide
 of a metal selected from groups HIA, IVB, VB, and VIB of the periodic table.

10. The cutting tool of claim 9, wherein the second coating comprises at least one of
 titanium nitride (TiN), titanium carbide (TiC), titanium carbonitride (TiCN), titanium
 aluminum nitride (TiAlN), titanium aluminum nitride plus carbon (TiAlN+C), aluminum
 titanium nitride (AlTiN), aluminum titanium nitride plus carbon (AlTiN+C), titanium
 aluminum nitride plus tungsten carbide/carbon (TiAlN+WC/C), aluminum titanium nitride
 (AlTiN), aluminum titanium nitride plus carbon (AlTiN+C), aluminum titanium nitride
plus tungsten carbide/carbon (AlTiN+WC/C), aluminum oxide (Al₂O₃), α-alumina oxide, titanium diboride (TiB₂), tungsten carbide carbon (WC/C), chromium nitride (CrN), aluminum chromium nitride (AlCrN), or hafnium carbon nitride (HfCN).
Tool Wear Test 1

5.56 minutes (total machining time)

11.13 minutes (total machining time)

11.13 minutes (total machining time)

FIGURE 1
FIGURE 2
Tool Wear Test 3

- **TiN-TiC-TiN**
 - Wear, mm: 0.15
 - 4.36 minutes (total machining time)

- **TiN-HfCN-TiN**
 - Wear, mm: 0.10
 - 8.73 minutes (total machining time)

- **TiN-Al2O3-TiCN-TiN**
 - Wear, mm: 0.25
 - 8.73 minutes (total machining time)

FIGURE 3
Thermal Cracking Test 1 (TiN-TiCN-Al₂O₃)
3 passes with 4 thermal cracks

FIGURE 4a

Thermal Cracking Test 1 (HfN)
3 passes with 5 thermal cracks

FIGURE 4b

Thermal Cracking Test 1 (HfCN)
3 passes with 1 thermal crack

FIGURE 4c
Thermal Cracking Test 2 (TiN-TiCN-Al₂O₃)
2 passes with 12 thermal cracks

FIGURE 5a

Thermal Cracking Test 2 (HfN)
1 pass with edge destroyed

FIGURE 5b

Thermal Cracking Test 2 (HfCN)
2 passes with 1 thermal crack

FIGURE 5c
Tool Wear Test 3

- TiN-TiC-TiN: 4.36 minutes (total machining time)
- TiN-HfCN-TiN: 8.73 minutes (total machining time)
- TiN-Al2O3-TiCN-TiN: 8.73 minutes (total machining time)

Wear, mm

- TiN-TiC-TiN: 0.15 mm
- TiN-HfCN-TiN: 0.15 mm
- TiN-Al2O3-TiCN-TiN: 0.15 mm